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Multilevel Dynamic Twin Modeling
N. K. Schuurmana, Y. Zheng b, and C. V. Dolan c
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ABSTRACT
Recent developments in the collection and modeling of intensive longitudinal data have enabled us to fit 
dynamic twin models, in which within-person processes are separated into genetic and environmental 
components. A well-known dynamic twin model is the genetic simplex model, which is fitted to a few 
repeated measures for many twins. A more recently developed model is the iFACE model, which is fitted 
to many repeated measures for a single pair of twins. In this paper, we introduce a missing link between 
these two models – a multilevel extension that allows for making both population-level and twin-level 
inferences. We provide a proof-of-principle simulation study for this model, and apply it to an experience 
sampling data set on 148 monozygotic and 88 dizygotic twins. We use the multilevel model to examine 
the overlap and differences between the dynamic genetic twin models and the classic twin models, as 
well as their interpretation.
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Twin models conventionally have been used to investigate the 
relative contributions of genes and environment to psycholo
gical and behavioral trait variance based on measurements of 
stable inter-individual differences between twins. Recent devel
opments in the collection and modeling of intensive longitu
dinal data have offered a novel opportunity to examine the 
heritability of intra-individual differences: the proportion of 
variance in fluctuations in a phenotype over time that is due to 
genetic effects.

This type of heritability differs conceptually from the con
ventional definition of heritability, and may produce very 
different results. For example, consider a phenotype, such as 
agreeableness. There could be substantial differences in the 
agreeableness of different persons, as a result of differences in 
their genetics, indicating a fairly high inter-individual herit
ability. When we evaluate whether fluctuations in a person’s 
level of agreeableness from day to day—one day a person is 
more agreeable than the next—is the result of genetic effects or 
environmental effects, the results may be quite different. For 
instance, if the effects of the genetics of a person related to 
agreeableness do not change much from day to day, the intra- 
individual heritability of agreeableness for that person is low, 
even if the inter-individual heritability is high.

Intra-individual heritability can be investigated with 
dynamic twin models, in which genetic and environmental 
components are considered as dynamic processes that vary 
within persons over time. A well-known dynamic twin model 
is the genetic simplex model, in which intra-individual (i.e., 
within-person) differences in genetic and environmental com
ponents are modeled for a group of twins. In this model, one 
common dynamic autoregressive process is assumed for all 
twins (Boomsma & Molenaar, 1987; Dolan et al., 1991). That 
is, all the model parameters—including the autoregressive 
effects- are assumed to be identical for each twin in this 

model. A more recently developed model is the iFACE 
model, in which a similar model is fitted for a single twin- 
pair, based on more intensive longitudinal data (Molenaar, 
2011; Molenaar et al., 2012; Nesselroade & Molenaar, 2010). 
This model allows for the estimation of intra-individual herit
ability and the contribution of environmental influences spe
cific to each twin in the pair. Hence, the iFACE model allows 
for different heritabilities of within-person fluctuations in 
a phenotype for each person.

The interpretation of the intra-individual genetic and envir
onmental components, and that of intra-individual versus 
inter-individual heritability, is not trivial, yet has received 
relatively little attention in the field. In this paper, we aim to 
elucidate these concepts, and the opportunities and pitfalls of 
dynamic genetic models. To this end, we introduce the “miss
ing link” between the genetic simplex model and the iFACE 
model—a multilevel extension of these models implemented 
with Dynamic SEM (DSEM; Asparouhov et al., 2018). This 
multilevel model allows for making both population-level and 
twin-level inferences. We discuss the interpretation of its 
model parameters and intra-individual heritability, as well as 
the link of the multilevel model with the genetic simplex model 
and the iFACE model.

In the following sections, we first discuss conventional 
cross-sectional twin models to highlight the aspects in which 
these models are distinct from their dynamic counterparts. 
Next, we briefly discuss the genetic simplex and iFACE 
model. After that, we introduce the multilevel extension of 
these models, the interpretation of the model parameters, and 
the resulting intra-individual heritability estimates. We also 
discuss how the three dynamic genetic models are related. 
After that, we discuss the results of a proof-of-principle simu
lation study on the performance of the multilevel model imple
mented in Mplus’ DSEM (Asparouhov et al., 2018). We 
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illustrate the interpretation of dynamic twin models via an 
empirical application on how “zen” twins feel over time, 
using empirical data from Wichers et al. (2007). We finish 
with a discussion of the limitations of the current work, and 
potential directions for future work.

Background: Twin models

Twin models can be used to estimate the proportions of the 
phenotypic variance that are attributable to genetic effects and 
to environmental effects (Jinks & Fulker, 1970; Martin & Eaves, 
1977; Rijsdijk & Sham, 2002). By comparing the similarity 
between monozygotic (MZ) and dizygotic (DZ) twin pairs, 
we can estimate these proportions without actually measuring 
the environmental or genetic causes of the phenotype, or the 
genes. Instead of measuring and modeling the genes and envir
onmental characteristics directly, the ensemble of genetic 
effects and the ensemble of environmental effects are captured 
in latent variables. By making several assumptions about the 
MZ and DZ twin data, it is possible to estimate what propor
tion of phenotypical variance is due to the latent genetic vari
able, and due to the latent environmental variable (Eaves et al., 
1977, we get back to the assumptions in the next subsection). 
These models were initially developed for studying inter- 
individual differences based on cross-sectional data. 
Subsequent extensions of these models to longitudinal data 
were developed that shift the focus from inter-individual dif
ferences, to intra-individual changes in the latent genetic and 
environmental variables—that is, to changes in these variables 
within persons over time. In the following we first discuss the 
ideas behind the classic cross-sectional model, followed by 
such extensions to longitudinal data.

The classical AE twin model

The classical AE twin model distinguishes two latent variables, 
denoted A and E. A captures additive genetic effects, and 
E captures non-shared environmental effects that are unique 
to each member of each twin pair. More complex models 
include additional latent variables. For example, the ACE 
model includes common environmental effects that are shared 
by each twin member; the ADE model includes a latent variable 

for dominant genetic effects that captures interactions between 
alleles (i.e., epistasis; Rijsdijk & Sham, 2002). It is also possible 
to fit genetic models based on data from other family members, 
such as parents, other siblings, or cousins, next to or instead of 
twins (Fulker & Bonné-Tamir, 1982; Heath et al., 1985; Keller 
et al., 2009). Throughout this paper, however, we will focus on 
the AE model that includes only the data of MZ and DZ twins, 
for the sake of simplicity.

In the classic cross-sectional AE model, the phenotype of 
interest is measured at one occasion in a sample of MZ twin 
pairs, who share all of their genes, and in a sample of DZ twins, 
who on average share half of their segregating genes. Hence, if 
the scores for the MZ twins are more similar, or more strongly 
correlated than for the DZ twins, this indicates that part of the 
variance in the phenotype of different persons can be explained 
by variation in their genes. The classical AE twin model is used 
to estimate the variance in the phenotype that can be attributed 
to genetic components, and to unique environmental compo
nents. A path-model representation of the cross-sectional AE 
model is depicted in Figure 1. The measured phenotypes of the 
twins are denoted ‘Phen1ʹ and ‘Phen2ʹ in Figure 1, for twin 1 
and twin 2 of a pair, respectively. Further, the model includes 
four latent variables, two that capture the additive genetic 
components for each twin, respectively (A1 and A2), and two 
that capture the unique environmental components for each 
twin (E1 and E2). If we can estimate the variances for the latent 
variables A and E, we can determine how much of the total 
variance in the phenotype across persons is due to genetic 
components A, and how much is due to unique (non-shared) 
environmental components E.

The classic cross-sectional twin models are fitted as 
a multigroup model, where MZ twins and DZ twins are two 
different groups, as is depicted in Figure 1. To estimate this 
model, a number of assumptions need to be made (c.f., Rijsdijk 
& Sham, 2002, for an overview). Particularly, it is assumed that 
the genetic components are perfectly correlated with each 
other in the MZ twins, because they are genetically identical 
(although there is debate on this, c.f., Charney, 2012; Liu et al., 
2018). DZ twins will on average across twins share approxi
mately 50% of their alleles. Based on this assumption, assuming 
random mating, the expected correlation between the additive 
genetic variables equals .5. The unique environmental 

Figure 1. Cross-sectional AE twin model. On the left the model for the mono-zygotic twins is displayed, on the right the model for the di-zygotic twins. For both groups 
the phenotype of the two twins in each pair load on a factor A that captures additive genetic effect, and a factor E that captures unique environmental effects. For the 
monozygotic twin pairs, the A factor is perfectly correlated, for the dizygotic twin pairs, the A factor is correlated 0.5. The E factor is uncorrelated among the twins.
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components are uncorrelated by definition for MZ and DZ 
twins.1 By making these assumptions, it is possible to estimate 
the variance of the latent additive genetic components A and 
the latent unique environmental components E. The propor
tion of the total variance in the phenotype across the twins that 
is explained by latent variable A, is referred to as the heritability 
of that phenotype. That is, if the estimated heritability for the 
cross-sectional model is 0.6, 60% of the variance in the pheno
type scores across twins is explained by variance in the genetic 
components A, and 40% by variance in the unique environ
mental components E. This procedure is convenient, because 
the relative contributions of the environment and genetics can 
be determined without having to measure the relevant specific 
genes and characteristics of the environment.

Dynamic twin models

The classic cross-sectional model does not take into account 
that a phenotype, as well as the associated genetic and environ
mental latent variables, may change over time, or how these 
changes could influence the estimates of heritability. At first 
glance, it may seem that the scores of latent variable A should 
not fluctuate over time given that people’s genes do not typi
cally change. It is important to note, however, that what is 
captured through the latent variables A and E are not the genes 
and environmental characteristics themselves, but the effects of 
the genes and the environment, respectively. Although genes 
typically do not change across a person’s lifespan, the effects of 
the genes may change. For example, the expression of genes 
may change, resulting in their effects becoming gradually 
stronger or weaker (e.g., genetic amplification; Plomin, 1986). 
Furthermore, the specific genes relevant to the phenotype may 
change as well. For instance, the specific genes that affect the 
phenotype may differ from childhood to adulthood (e.g., 
genetic innovation and attenuation; Kendler et al., 2008). The 
environmental effects or relevant environmental characteristics 
may likewise change over time. To account for such changes in 
genetic and environmental effects, and to explicitly study 
changes of these effects over time, dynamic genetic twin mod
els have been developed. Dynamic twin models differ from the 
classical twin models in that they model change in the pheno
type and latent environmental and genetic components within 
twins over time. That is, genetic and environmental compo
nents are considered to be part of a dynamic, within-twin 
process.

Genetic simplex model

A well-known dynamic twin model is the genetic simplex 
model (Boomsma & Molenaar, 1987; Dolan et al., 1991), 
which is applied by means of Structural Equation Modeling 
(SEM) to panel data that consist of a few repeated measure
ments (e.g., fewer than 10) for many twin pairs. The genetic 
simplex model, like classical twin models, makes use of the 
difference in genetic relatedness between MZ and DZ twins, 
where for the MZ twin members the additive genetic compo
nents are assumed to be perfectly correlated across MZ twins 

for each time point, .5 across DZ twins, and the unique envir
onmental components are uncorrelated for all twins at each 
time point. However, the phenotype scores and the scores on 
the latent genetic and environmental variables change across 
measurement occasions. The measurement equation of the 
genetic simplex model can be expressed as follows: 

yijt ¼ μt þ λAtAijt þ λEtEijt þ �ijt (1) 

�ijt,Nð0; σ2Þ: (2) 

Here yijt are the phenotype scores for twin j, member i, at time 
point t. These scores consist of a mean score μt , the genetic 
contribution to the phenotype λAtAijt , the environmental con
tribution to the phenotype λEtEijt , and occasion-specific resi
dual term �ijt (which includes measurement error). The 
occasion-specific residuals �ijt are assumed to be normally 
distributed with a mean of zero and variance σ2. The genetic 
and environmental components A and E at one occasion may 
be related to those at the next occasion. That is, there is 
dependency between the components over time. In the genetic 
simplex model, this dependency over time is modeled with an 
autoregressive process of order 1, where the genetic compo
nents A, and the unique environmental components E are 
regressed on themselves at the nearest previous occasion. 
This relationship is presented in the following transition equa
tions for components A and E respectively: 

Aijt ¼ ϕAtAijt� 1 þ υAijt (3) 

Eijt ¼ ϕEtEijt� 1 þ υEijt: (4) 

Here, the ϕ regression coefficients represent the associations 
between the scores of the twins across time, and υ represent the 
residuals of the respective processes. To estimate the model, 
residuals υEijt and υAijt are both assumed to be normally dis
tributed with a mean of zero, and variances fixed to 1 for 
scaling purposes. The correlations between these residuals of 
A υAijt are 1 between MZ twin members, .5 between DZ twin 
members. Correlations among the residuals of E υEijt are 
assumed to be equal to zero. As is the case in the classical cross- 
sectional twin models, the Genetic Simplex model is fitted as 
a multigroup model, where the two groups are the MZ and DZ 
twins.

Each parameter has subscript t in the genetic simplex 
model, indicating that the model parameters can vary over 
time. As a result, the contributions of A and E to the phenotype 
can vary across time points. That is, the heritability of the 
modeled phenotype can change over time. Hence, the genetic 
simplex model is typically used to study dynamics over rela
tively long periods of time across twins on a group level. The 
heritability of the inter-individual differences is then deter
mined at each measurement occasion, which allows for inves
tigating changes in the heritability over time. For example, 
Dolan et al. (1991) applied the genetic simplex model to the 
weight for 83 female twins, which was measured every 
half year, six times in total. They allowed the heritabilities to 

1Note that the assumption in the AE model is that there are no common environmental effects, which may be unrealistic in some situations. However, the model can be 
extended to the ACE model to account for this factor by introducing a third latent variable which is correlated at 1 for both MZ and DZ twins.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 103



change from occasion to occasion, and found that the herit
abilities of weight were considerable, and fairly stable over time 
(i.e., heritabilities of .87, .89, .87, .89, .91, and .89).

An important limitation of the genetic simplex model is that 
it does not allow for inter-individual differences in the dynamic 
processes across twins; the model parameters are assumed to be 
the same for each person. Recent studies have discussed several 
potential sources of substantial inter-individual differences in 
genetic and enviromental effects, such as stochastic within- 
person developmental noise (e.g., Molenaar et al., 1993; 
Molenaar & Raijmakers, 1999) and epigenetic processes that 
could modify gene expression (e.g., DNA methylation; Bell & 
Saffery, 2012; Bell & Spector, 2011; Dolan et al., 2015; Kan et al., 
2010; Petronis, 2010; Wright et al., 2014). It seems particularly 
likely that there will be inter-individual differences in the 
means of twins for most phenotypes, meaning that parameter 
μ should be allowed to differ from twin to twin. For instance, if 
we take concentration level as the phenotype of interest, we 
know that some people generally find it easier to concentrate 
than others, and hence some people would have a higher 
average concentration level than others. In the basic genetic 
simplex model such stable between-person differences are not 
taken into account. However, it is possible to alter the genetic 
simplex model to account for such level differences in the 
phenotypes among different persons by incorporating random 
means or intercepts in the model (see also Hewitt et al., 1988). 
In the following, we will specify such a model. To do this, 
however, we will specify a simplex model where all parameters 
are the same over time. The resulting stationary Genetic 
Simplex model with a random mean is strongly related to the 
other dynamic models discussed in this paper. The equations 
of the genetic simplex model are altered as follows: 

yijt ¼ μij þ λAAijt þ λEEijt þ �ijt (5) 

Aijt ¼ ϕAAijt� 1 þ υAijt (6) 

Eijt ¼ ϕEEijt� 1 þ υEijt: (7) 

The random means are μij. These random means may differ 
between twins, but are assumed to be stable within a twin over 
time. These means are sometimes referred to as “trait scores,” 
as they reflect traits of particular persons that are stable over 
time. These traits stand in contrast to the “states” yijt , which 
include deviations from the trait at each time point. For exam
ple, a person might find it easier to concentrate at the start of 
a working day, rather than four hours later: This effect would 
be reflected in a higher concentration score yijt in the morning 
than in the evening, while μij reflects a general tendency that is 
stable over time. The fluctuations of the scores yijt over time are 
reflected in the deviations at time point t from mean μij for 
each twin ij (yijt � μij). These deviations are captured in the 
remainder of the measurement equation, λAAijt, λEEijt , and �ijt . 
Hence, by including random means in the model, variance due 
to stable between-person differences—differences among twins 
in μij—can be distinguished from within-person variance 
(Hamaker & Grasman, 2015; Hamaker et al., 2015; Hoffman 

& Stawski, 2009a). In other words, the stable between-person 
variance in traits μij have been filtered out by including random 
means, such that any variability in A and E is now the result of 
within-person fluctuations over time. As a result, for this 
model we can obtain a different kind of heritability for the 
phenotype under study: the intra-individual heritability. The 
intra-individual heritability is the proportion of within-person 
variance in the phenotype (varðyÞintra) that is the result of 
within-person variance in the genetic components Aijt over 
time (varðAÞ). The within-person variance of the phenotype 
varðyÞintra is equal to: 

varðyÞintra ¼ λ2
AvarðAÞ þ λ2

EvarðEÞ þ σ2: (8) 

That is, the variance in the phenotype excluding variability that 
results from stable differences between persons in muij. Given 
that A and E follow an autoregressive process, the (within- 
person) variance of A (varðAÞ) is equal to 

varðAÞ ¼
varðυAÞ

1 � ϕ2
A
; (9) 

and the (within-person) variance of E (varðEÞ) is equal to 

varðEÞ ¼
varðυEÞ

1 � ϕ2
E
: (10) 

These functions for the variances of E and A result because they 
have an autoregressive process of order 1 (Kim & Nelson, 1999, 
p. 27). Note that for estimating the model the variances of υE 
and υA (varðυAÞ, varðυEÞ) in this equation would be fixed to 1 
for scaling purposes. The intra-individual heritability for the 
genetic simplex model with a random intercept is then equal to: 

h2
intra ¼

λ2
AvarðAÞ

λ2
AvarðAÞ þ λ2

EvarðEÞ þ σ2
: (11) 

The intra-individual heritability represents the within-person 
variance in the states y over time that is due to variance in the 
genetic effects A over time. Hence, this intra-individual herit
ability is distinct from the inter-individual heritabilities dis
cussed earlier for the non-stationary genetic simplex model 
without random means and classical twin models. Classic 
twin models generally aim to determine the between-person 
heritability of stable traits, that is, the proportion of variance 
among the traits of different people that can be explained by 
the genetic variance among those people. In the context of the 
simplex model with random means, this heritability would be 
comparable to the between-person heritability of the random 
means μij. That is, to estimate the between-person trait herit
ability in the genetic simplex model with random means, we 
would extend it to include an additional between-person AE 
model on the random means μij. This approach to estimating 
between-person trait heritability for longitudinal data is often 
taken in the context of genetic latent growth curve models 
(Long et al., 2017).

Both the the classical between-person heritability of stable 
traits, and intra-individual heritability, in turn differ from the 
heritabilities that are estimated per time point in the non- 
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stationary simplex model that excludes random means: These 
inter-individual heritabilities show for a particular measure
ment occasion t the proportion of variance among the pheno
type state scores yijt of different twin pairs that is due to 
variance in the genetic components Aijt . Given that this basic 
simplex model does not separate out stable between-person 
variability from within-person variability in the phenotype, the 
resulting heritabilities would represent a blend of between- 
person trait heritability and intra-individual heritability.

In the current work, we will focus mainly on the concept of 
intra-individual heritability: The proportion of variance in the 
phenotype y over time that can be explained by variance in the 
genetic effects A over time. In this context, it is important to 
note that the intra-individual heritability may actually differ 
from person to person. This would be the case when the 
changes over time in the genetic and environmental effects 
differ from person to person, for example, because one person 
has different experiences and thus encounters different envir
onmental characteristics than another person. This possibility 
is not accounted for in the genetic simplex models, because the 
genetic and environmental components are assumed to have 
identical dynamic processes. That is, other than the means μij 
in the Genetic Simplex model with random means or inter
cepts, the model parameters are assumed to be identical for 
each twin. As a result, the intra-individual heritability specified 
above reflects an overall intra-individual heritability across all 
modeled twins. However, a dynamic twin model that does 
account for person-specific intra-individual processes is the 
iFACE model developed by Molenaar (2011). We discuss this 
model in the following subsection.

iFACE model

The idiographic filter ACE (iFACE) model (Molenaar, 2011; 
Molenaar et al., 2012; Nesselroade & Molenaar, 2010) is 
a recently introduced dynamic twin model which is applied 
to time series data for a single twin pair at a time – either MZ or 
DZ. Hence, unlike the previously described models, the iFACE 
model is not a multigroup model. Time series data consists of 
many repeated measures (e.g., >25 measurements), usually 
measured relatively close in time, such as over the course of 
a day, a few days or weeks. Typically, psychological time series 
data are collected with daily diary and ESM measurement 
procedures (Hamaker & Wichers, 2017). The iFACE model 
makes use of correlations of 1 between the additive genetic 
components for a single MZ twin pair, and a to be estimated 
correlation for a single DZ twin pair which is expected to be 
around, but not necessarily equal to .5. The correlations 
between the unique environmental components are equal to 
zero. The AE rendition of the iFACE model can be expressed as 
follows for a single twin pair: 

yit ¼ μi þ λAiAit þ λEiEit þ �it (12) 

�it,Nð0; σ2
i Þ (13) 

Ait ¼ ϕAiAit� 1 þ υAit (14) 

Eit ¼ ϕEiEit� 1 þ υEit: (15) 

Note that the equations are essentially the same as for the 
genetic simplex model, albeit applied to a single twin pair. 
The phenotype scores yit for twin i at time point t consist 
of 1) a mean score μi which is stable over time but specific to 
twin i; 2) the genetic contribution to the phenotype λAiAit ; the 
environmental contribution to the phenotype λEiEit ; and occa
sion-specific residual �it . Furthermore, the changes in the 
genetic and environmental components are also modeled 
with an autoregressive process captured in ϕAi and ϕEi. 
However, unlike the genetic simplex model, the processes are 
modeled for each twin pair separately, such that there is no 
between-twin-pair variance in the model. Furthermore, the 
modeled processes are unique to each twin i: all the parameters 
may differ between the twins i. The dynamic processes itself are 
assumed to be stationary in the iFACE model, such that the 
parameters and heritabilities remain the same over time 
(hence, subscript t is absent for the model parameters). The 
(within-person) variance in the phenotype for each twin i is 
then equal to: 

varðyitÞ ¼ λ2
AivarðAiÞ þ λ2

EivarðEiÞ þ σ2
i ; (16) 

where the person-specific variance of A is equal to 

varðAitÞ ¼
varðυAiÞ

1 � ϕ2
Ai
; (17) 

and the person-specific variance of A is equal to 

varðEitÞ ¼
varðυEiÞ

1 � ϕ2
Ei
: (18) 

Note that for estimating the model, the variances of υEi and υAi 
(varðυAiÞ, varðυEiÞ) in this equation would be fixed to 1 for 
scaling purposes. The within-person variances are different for 
each twin, given that the twins each have unique model para
meters. As a result, the intra-individual heritability of the 
phenotype can also differ for the two twins. This person- 
specific intra-individual heritability reflects the proportion of 
variance in the twin’s phenotype over time that is due to 
variance in that twin’s genetic effects over time. This person- 
specific heritability can be calculated as follows: 

h2
i ¼

λ2
AivarðAiÞ

λ2
AivarðAiÞ þ λ2

EivarðEiÞ þ σ2
i
: (19) 

The iFACE model can be used to study the genetic and envir
onmental processes, and estimate the intra-individual herit
ability, for each twin. For example, Molenaar et al. (2012) 
applied the iFACE model to multivariate electroencephalo
gram data from a DZ twin pair, and demonstrated considerable 
differences in the proportions of genetic and environmental 
variance between the two twins. Typically, however, time series 
data is not collected for a single twin pair but for multiple twins 
pairs. The iFACE model can then be fitted for each twin pair 
separately—a replicated time series design—resulting in 
unique parameter estimates for each twin and each twin pair. 
By inspecting the results across the different twin pairs, the 
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iFACE model can be used to get an impression of the differ
ences between twin pairs in the processes and heritabilities 
when the iFACE model. For example, Zheng et al. (2016) 
applied the iFACE model separately to the daily positive and 
negative school feelings of multiple 10-year-old MZ twin pairs. 
They found that the amount of variance in the daily fluctua
tions in these feelings that was due to unique environmental 
influences varied greatly across twin pairs. Note that this is 
done in a two-step procedure, first fitting the iFACE model for 
each twin, and then in a new analysis summarizing or analyz
ing the variability among the twins pairs. Hence, it is disre
garded that the different twin pairs may to some extent be 
similar to each other, for example, that all twins may typically 
have positive autoregressive effects. Furthermore, the two step 
approach to analyzing the interindividual differences in the 
within-twin processes does not take into account that there is 
uncertainty about the parameter estimates of each twin. More 
ideal may be to actively model and analyze the between-twin 
differences in the within-twin processes while 1) allowing for 
differences in the parameters of each twin, 2) taking into 
account that the twins may be to some extent similar to each 
other, and 3) taking into account that there is uncertainty 
about the estimates of each twin by implementing a one-step 
procedure. We implement this in a multilevel bridge model 
between the genetic simplex and iFACE model, as we’ll discuss 
in the following sections.

Bridge model between the genetic simplex and iFACE model
Although the genetic simplex model and the iFACE model are 
applied on different types of data they are clearly closely 
related. Both model the change in the latent genetic and envir
onmental components, and both do so with an autoregressive 
process. Both models can be used to shift focus from the 
heritability of interindividual differences between persons, as 
is the focus in classic twin models, to the heritability of intra- 
individual differences within persons. For the simplex model 
this would require separating the stable between-person var
iance from the within-person variance in the model, for 
instance, by including a random intercept or mean. In any 
case, the estimated heritabilities for genetic simplex models 
and the iFACE model differ from those in the classical cross- 
sectional twin model, and the interpretation of the models and 
resulting heritabilities are not trivial. In the following section, 
we present what may be considered a missing link between the 
genetic simplex model and the iFACE model: A multilevel 
dynamic twin model that is applied to intensive longitudinal 
data, which consists of time series for multiple twins. We will 
use this model to further discuss the interpretation of the 
dynamic genetic models, intra-individual heritability, and the 
relationship between the different dynamic genetic models.

A multilevel dynamic twin model

In the following we introduce a multilevel dynamic twin model 
for genetically informative intensive longitudinal data, consist
ing of time series from multiple twin pairs. Such data allow us 
to model intra-individual processes of the underlying genetic 
and environmental effects, as well as explicitly model inter- 
individual differences in these processes. We will focus on an 

AE model for MZ and DZ twins for a single phenotypic vari
able. However, it is possible to fit multilevel dynamic twin 
models to either MZ twins or DZ twins alone, or to extend 
the model to include other family members, common environ
mental effects, or multiple indicators. We return to possible 
extensions of the model in the discussion. We focus on a 2-level 
model, where the intra-individual dynamics based on repeated 
measurements are modeled at level 1, and the inter-individual 
differences in these dynamics are modeled at level 2. In the 
following section, we will first discuss the level 1 model, fol
lowed by the level 2 model. After that, we discuss the resulting 
intra-individual heritability estimates based on the model para
meters. Finally, we discuss how the multilevel twin model 
relates to the genetic simplex model and the iFACE model. 
A graphical representation of the multilevel twin model is 
included in Figure 2.

Level 1

Level 1 of the multilevel dynamic twin model consists of 
a measurement equation and a transition equation. The mea
surement equation relates the observed phenotypic scores to 
the latent genetic and environmental variables of the repeated 
measures of each twin. The transition equation describes the 
dynamic process of the genetic and environmental compo
nents of each twin.

Measurement equation
The measurement equation is specified as follows: 

yijt ¼ μij þ λAijAijt þ λEijEijt þ �ijt: (20) 

In the measurement equation, the observed phenotype yijt at 
each time point t of each twin j and twin member i are divided 
into four parts. First, a person-specific (random) mean score μij 
that is allowed to be different for each twin member, but remains 
the same across all time points. That is, μij is a random mean, 
which ensures that we allow for differences in levels among 
twins. It can be seen as a special case of a random intercept, 
where the random intercept is equal to the mean. As discussed 
previously, such random means are sometimes referred to as 
“trait scores,” as they reflect stable traits of particular persons. 
These traits stand in contrast to “states,” which reflect time point 
specific scores. The fluctuations of the states over time are 
reflected in the deviations at time point t from mean μij of 
each twin ij. These deviations are captured in the remainder of 
the measurement equation, λAijAijt , λEijEijt , and �ijt .

As discussed previously, here lies the main difference between 
classic cross-sectional and dynamic twin models: The classic 
twin models focus on the heritability of traits, using measure
ments that should reflect overall differences between twins. This 
between-person heritability is the proportion of the variance in 
people’s trait scores that can be explained by variation in additive 
genetic effects between people. This heritability would be akin to 
the between-person heritability of the random means μij which 
are taken in the multilevel model to reflect phenotype trait 
scores. However, we will focus on the intra-individual heritabil
ity of fluctuations in the phenotype within a twin over time, 
similar to that of the iFACE model. This intra-individual 
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heritability is the proportion of variance of the fluctuations of 
a particular person over time that is due to fluctuations over time 
in their additive genetic effects.

To this end, the state deviations around the mean are 
separated into three parts: 1) a score on latent variable Aijt 
weighted by person-specific factor loading λAij. This represents 
the contribution of the additive genetic effects to the fluctua
tion at time t, of twin j, member i; 2) a score on latent variable 
Eijt weighted by factor loading λEij. This represents the con
tribution of the unique environmental effects to the fluctuation 
at time t, of twin j, member i; and finally 3) a residual score ½i�
of twin j, member i, at time point t, which captures any devia
tions from the mean due to other unobserved influences on the 
system that are specific to measurement occasion t, including 
any measurement error. These residuals are assumed to be 
normally distributed with a mean of zero and variance σ2

ij, 
that is, 

�ijt,Nð0; σ2
ijÞ: (21) 

To identify the model, the additive genetic components of 
the states Aijt of the MZ twin members are assumed to be 
perfectly correlated across twin members over time; MZ 

twin members hence have the same scores Aijt . For DZ 
twin members, the latent scores Aijt are assumed to be 
correlated at .5 over time on average across the DZ twins. 
Note that for individual DZ twin pairs, this correlation may 
be higher or lower than .5. We allow for the estimation of 
this genetic correlation at level 2 of the model as will be 
discussed later. The unique environmental components of 
the twin members are uncorrelated across both MZ and DZ 
twins. The fluctuations of the genetic components over time 
of MZ twin members will be identical in this model, but 
will differ for the DZ twins. The fluctuations of the unique 
environmental components are unique to each member of 
the MZ and DZ twins. In this respect, the model builds on 
the same ideas as the classic cross-sectional models. The 
correlation matrix among the latent variables for the MZ 
and DZ twins implied by the multilevel model is depicted 
in Table 1.

The factor loadings λij determine the relative contributions 
of the environmental and genetic components to the observed 
phenotype, and hence in part the heritability. These loadings 
can vary across twin members, taking into account that for 
some people the fluctuations in their phenotype over time may 
depend more on environmental effects, while for others, 

Figure 2. A graphical representation of the multilevel dynamic twin model. It includes random factor loadings λij , autoregressive coefficients ϕij , random means μij of the 
phenotype yijt , and random variances σ2

ij of occasion-specific residuals �ijt , across twins j and twin members i. It also includes random correlations ρDZij between the 
genetic components of the DZ twins j. Note that for the MZ twins, we assume that ϕA1i ¼ ϕA2i .
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genetic effects play a relatively large role. Note that the inter
pretation of the latent variables as additive genetic and envir
onmental components is ensured via the assumptions about 
the correlations among the latent variables of the MZ and DZ 
twins (1, 0.5, or 0). Hence, the model makes use of the idio
graphic filter introduced by Nesselroade et al. (2007), and this 
is also where the “iF” in the iFACE model name stems from 
(Molenaar & Nesselroade, 2012).

Note again that the latent additive genetic components 
represent additive effects of genes on intra-individual dif
ferences within twin members over time, rather than differ
ences between twins in cross-sectional designs. Hence, for 
the phenotypes of the MZ or DZ twins to load on the 
genetic effects A, the twin members need to share variance 
in the fluctuations of their phenotypes over time. In other 
words, genetic effects on the twins’ phenotype are implied 
when the fluctuations in the phenotypes of MZ twins are 
more ’similar’ from moment to moment than those of DZ 
twins. As such, to capture such genetic effects, it is espe
cially important to consider the role of the measurement 
design compared to its role in cross-sectional studies. For 
example, it is essential that the twin members are measured 
at approximately the same time to capture shared genetic 
effects. Furthermore, especially when considering shared 
environmental effects, it is important to consider whether 
one measures twins that spend their time mostly together, 
or apart.

The residual scores �ijt are assumed to be uncorrelated 
among all twins, and hence can be considered to capture 
unique environmental effects that are specific to a particular 
measurement occasion. This term will also capture random 
measurement error. This contrasts with the unique environ
mental effects captured in E which are dependent from occa
sion to occasion, because they are carried over from moment to 
moment through the autoregressive process (Schuurman & 
Hamaker, 2019; Schuurman et al., 2015).

Transition equation
The transition equation at level 1 of the model specifies the 
dependency over time among the genetic and environmental 

components. Specifically, the latent variables Aijt and Eijt are 
modeled with a first order autoregressive process. This is spe
cified as follows, for the genetic and environmental compo
nents, respectively: 

Aijt ¼ ϕAijAijt� 1 þ υAijt (22) 

Eijt ¼ ϕEijEijt� 1 þ υEijt: (23) 

Here, parameters ϕAij and ϕEij capture the autoregressive effects 
of the genetic and environmental components, respectively. If 
the autoregressive coefficient of the genetic components is posi
tive, it indicates that when a twin has relatively high (compared 
to themselves) additive genetic effects at one occasion, they also 
tend to have relatively high genetic effects at the next occasion. 
The larger the autoregressive coefficient, the stronger this carry
over of the genetic effects from one moment to the next. If the 
autoregressive effect is zero, the twins’ genetic effects at one 
occasion cannot be predicted from the previous occasion at all. 
If it is negative, twins with relatively high genetic effects at the 
first occasion tend to have relatively low effects the following 
occasion, although this type of autoregressive effect seems unli
kely in this context. The same idea applies to the environmental 
components. For the genetic components, the autoregressive 
effects are allowed to differ for each member of the DZ twins. 
For the MZ twins, the genetic autoregressive effects are allowed 
to differ across twin pairs j, but are assumed to be the same for 
the two members i of each MZ twin pair, such that they are 
assumed to have the same genetic process. For the environmen
tal components, the autoregressive effects may differ for both 
members of the DZ and MZ twin pairs.

The residuals υAijt and υEijt represent fluctuations in the 
genetic and environmental components over time that are 
not explained by the autoregressive process. They are assumed 
to be normally distributed with means of zero. Note that in this 
model either the factor loadings λij or the residual variances of 
υijt need to be fixed to a certain value for scaling purposes for 
each twin. Here, we will fix the residual variances υijt of the 
genetic and environmental variables to be equal to one.2 The 
correlations between the residuals of A υAijt are 1 between MZ 
twin members, .5 between DZ twin members on average across 
the DZ twins, and correlated at 0 among different twins pairs, 
over time, and with the unique environmental components. 
Correlations with the residuals of E υEijt are generally assumed 
to be equal to zero.

All parameters in the level 1 model – the mean level of the 
phenotype μij, factor loadings λij, residual measurement error 
variance σ2

ij, and autoregressive effects ϕij – are allowed to vary 
among twin pairs, and among twins of the same pair, aside 
from ϕAj of the MZ twins. Note however that these parameters 
are assumed to remain the same over time. In particular, we 
assume that the full model is stationary for each twin (see 
Hamilton, 1994, p. 259).

Table 1. Correlation matrix of the genetic (A) and environmental (E) latent 
variables of the two MZ twins and DZ twins over time points t, implied by the 
multilevel dynamic twin model.

AMZ1j AMZ2j ADZ1j ADZ2j EMZ1j EMZ2j EDZ1j EDZ2j

AMZ1j 1 1 0 0 0 0 0 0
AMZ2j 1 1 0 0 0 0 0 0
ADZ1j 0 0 1 0.5* 0 0 0 0
ADZ2j 0 0 0.5* 1 0 0 0 0
EMZ1j 0 0 0 0 1 0 0 0
EMZ2j 0 0 0 0 0 1 0 0
EDZ1j 0 0 0 0 0 0 1 0
EDZ2j 0 0 0 0 0 0 0 1

* This is the average correlation among the genetic latent variables of the DZ 
twins, the correlation is allowed to vary across the DZ twin pairs. This is 
discussed in section “A Multilevel Dynamic Twin Model” section “Level 2.”

2We choose to scale the variances, rather than the factor loadings, for practical reasons: All level 1 parameters are allowed to vary randomly across twins. By scaling the 
variance we avoid having to model an additional random variance, but instead model a random loading. Random variances are generally more complicated to model 
than random loadings. If desired, it is possible to include random variances in the model instead, and scale the loadings, but it would be more involved. An example of 
how to include random variances is provided later in this section, where we discuss the random variances for the measurement model residuals ½�ijt� included in the 
model.
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Level 2

At level 2 of the multilevel dynamic twin model, the between- 
person differences in the person-specific parameters of level 1 
are specified. That is, for the random means μij, factor loadings 
λij, residual measurement error variance σ2

ij, and autoregressive 
effects ϕij.

With respect to the person-specific means—the trait 
scores—it is probable that they may also be more similar 
for the MZ twins than for the DZ twins, if they have 
a between-person genetic component. Hence, it is impor
tant to take into account that the trait scores may be 
correlated for the twin members, and that this correlation 
may be different for MZ twins (ρμMZ) and DZ twins (ρμDZ).3 

Hence, we assume that the trait scores μij are multivariate 
normally distributed, where twin member 1 is jointly dis
tributed with twin member 2, as follows: 

μijMZ,MvNðγμ;ΨμMZÞ (24) 

μijDZ,MvNðγμ;ΨμDZÞ: (25) 

The average trait scores γμ are assumed to be the same for both 
members of the MZ twins and the DZ twins: We implemented 
this in the Mplus code using latent variables, which is available 
in the supplemental materials. The 2 × 2 covariance matrices 
for the traits may differ for the MZ twins and DZ twins, with 
ΨμMZ and ΨμDZ for the MZ twins and DZ twins, respectively. 
The variances of the traits of the MZ twins and the DZ twins, 
ψ2

μMZ and ψ2
μDZ, capture the amount of variation in the person- 

specific means across twin members. These may differ for MZ 
twins and DZ twins, but are assumed to be the same for the 
members of each twin pair (i.e., for DZ1 and DZ2, and for MZ1 
and MZ2). The covariances ψμMZ1MZ2 and ψμDZ1DZ2 capture the 
associations between the traits for the MZ twins and DZ twins, 
respectively. For the person-specific autoregressive coefficients 
and the factor loadings, we assume normal distributions with 
means γ and variances ψ that are the same for all twins. That is: 

ϕAij,NðγϕA;ψ
2
ϕAÞ (26) 

ϕEij,NðγϕE;ψ
2
ϕEÞ (27) 

λEij,NðγλE;ψ
2
λEÞ (28) 

λAij,NðγλA;ψ
2
λAÞ: (29) 

Here, the fixed effects γ represent the average coefficients 
across twins, and the variances ψ represent the variance 
among twin members in these coefficients. For the sake of 
simplicity, we do not model these random coefficients multi
variately, which would allow the random means, loadings, and 
regression coefficients to correlate among twin members. The 
model may be extended to account for this; we return to this 
idea in the discussion.

Next to the means, factor loadings, and autoregression 
coefficients, the residual variances in the measurement model 
may also differ from person to person. For example, some 
people may be more sensitive to external events, or experience 
more impactful external events, and hence will have more 
variable scores. To take this into account, we allow the residual 
variances to vary from person to person (see also Jongerling 
et al., 2015). We assume a normal distribution for the log 
transformed variances, as follows: 

logðσ2
ijÞ,Nðγσ2 ;ψ2

σ2Þ: (30) 

Note that for all random parameters we have assumed that the 
fixed effects and variances for the random parameters are equal 
for both twins in a pair, and for MZ and DZ twins except for 
the variances of the random means. Hence, we assume impli
citly that these twins essentially represent the same population 
with respect to these parameters, as is common in twin model
ing. It is straightforward to relax this assumption by specifying 
different fixed effects and variances for different twins. This 
would allow for testing whether there are certain structural 
differences between the dynamic processes of MZ and DZ 
twins, such as testing whether MZ and DZ twins on average 
have different means, factor loadings, autoregressive effects, or 
residual variances. Of course, one would need sufficient twins 
of both types to estimate these parameters well. If these para
meters differ substantively for MZ and DZ twins, this would 
imply they represent different populations with different char
acteristics, which implies that MZ/DZ twin model results can
not be generalized to different types of twins, which in turn 
indicates that they cannot be generalized to non-twin 
populations.

Finally, we have assumed that the correlation of the genetic 
components of the DZ twins is equal to 0.5. While this would 
be expected to be the case on average across DZ twins, the exact 
overlap between genes can vary from twin pair to twin pair, 
and hence this correlation may differ for each twin pair to some 
extent. We can allow this correlation to vary across the DZ twin 
pairs. We assume a normal distribution for this correlation 
with the mean correlation fixed to 0.5, and variance ψρADZ

, as 
follows: 

ρADZj,Nð:5;ψ2
ρADZ
Þ: (31) 

Note that by specifying a normal distribution with a mean 
of 0.5 and a to be estimated variance, it is possible that 
correlations for twin pairs take on values larger than 1 or 
smaller than −1. We rely on the data and empirical identi
fication of the model to keep the estimated correlations 
within a sensible range. The distribution specified can be 
seen as a prior distribution, and will be updated by the 
data. However, for very complex models, models with little 
data, or miss-specified models it will be harder to empiri
cally identify the model. In that situation it can be helpful 
to specify a distribution that takes into account that the 
correlations should stay within a range of −1 to 1, for 
example, with a truncated normal distribution. The same 

3It may also be possible to specify an additional between-person genetic twin model at level 2 for these means, but this is beyond the scope of this paper. We will return 
to this idea in the discussion.
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applies to the normal distribution for the autoregressive 
effects: for a stationary model, autoregressive parameters 
are restricted in range. For a simple AR(1) model, the 
autoregressive coefficient should range from −1 to 1 for 
a stationary model. In this case, we rely on empirical 
identification of the model to keep the parameters in 
a stationary range. If the process is truly non-stationary, 
however, this approach may result in autoregressive para
meters larger than 1 or smaller than −1. This approach is 
commonly taken for dynamic multilevel models (e.g., 
Bringmann et al., 2013; Epskamp et al., 2018; Jongerling 
et al., 2015; Schuurman, Ferrer et al., 2016; Schuurman, 
Grasman et al., 2016).

Intra-individual heritability

Based on the person-specific parameters in the model, we can 
calculate a heritability estimate of the intra-individual differ
ences in the phenotype under study. This estimate h2 reflects 
the heritability of intra-individual differences, that is, the pro
portion of variance in fluctuation in the phenotype over time 
that is due to genetic effects. To obtain this estimate, we first 
separate the between-person level differences – the estimated 
trait scores μij – from the within-person fluctuations (yijt � μij). 
For these fluctuations, we determine the proportion of the 
variance due to genetic and unique environmental effects.

Note that because the factor loadings, autoregressive effects, 
and residual variances are allowed to differ from person to 
person, the total variances of the intra-individual differences 
may differ from person to person, and thus the intra-individual 
heritabilities may differ from person to person as well. Hence, 
we will obtain person-specific intra-individual heritability esti
mates. The within-person variance of the phenotype of 
a specific person (varðyijÞintra) can be decomposed as follows, 
where varðAijÞ represents the variance of the genetic compo
nent of that person across the repeated measurements and 
varðEijÞ represents the variance of the environmental compo
nent of that person across the repeated measurements: 

varðyijÞintra ¼ λ2
AijvarðAijÞ þ λ2

EijvarðEijÞ þ σ2
ij; (32) 

where 

varðAijÞ ¼
varðυAijÞ

1 � ϕ2
Aij
; (33) 

and where 

varðEijÞ ¼
varðυEijÞ

1 � ϕ2
Eij
: (34) 

The functions for the person-specific within-person variances 
of E and A across the repeated measurements result because A 
and E have an autoregressive process (Kim & Nelson, 1999, 
p. 27). Based on these variances, we can calculate person- 
specific estimates of the intra-individual heritability h2

ij: 

h2
ij ¼

λ2
AijvarðAijÞ

λ2
AijvarðAijÞ þ λ2

EijvarðEijÞ þ σ2
ij
: (35) 

We can calculate this intra-individual heritability for each twin 
member separately. Similarly, we can estimate the contribution 
de2

ij of the unique environmental effects that are part of the 
dynamic process, or the contribution me2

ij of the unique envir
onmental effects that are specific to each measurement occa
sion (including measurement error), as follows: 

de2
ij ¼

λ2
EijvarðEijÞ

λ2
AijvarðAijÞ þ λ2

EijvarðEijÞ þ σ2
ij

(36) 

me2
ij ¼

σ2
ij

λ2
AijvarðAijÞ þ λ2

EijvarðEijÞ þ σ2
ij
: (37) 

Based on these person-specific estimates we can also determine 
some group descriptives, such as the average intra-individual 
heritability and the variance among the estimated intra- 
individual heritabilities across the sample of twins.

It is important to note again that the heritabilities esti
mated for cross-sectional models and dynamic models qua
litatively differ, because these models investigate genetic 
and environmental components of different variables. The 
cross-sectional models focus on between-person differences 
in traits that are considered stable over time (at least for 
the period of the study). The corresponding heritability 
estimate reflects the proportion of variance of the differ
ences across persons in those traits that is due to genetic 
effects. The dynamic models, on the other hand, focus on 
fluctuations within persons over time, that is, on the devia
tions from the stable traits over time. The intra-individual 
heritability of a particular person is the proportion of 
variance in their fluctuation over time that is due to genetic 
effects. Given the differences between the variables under 
consideration, there is little reason to expect heritability 
estimates of classic twin models and dynamic twin models 
to be similar or comparable, or that one can be easily 
generalized to another (as is the case generally for cross- 
sectional, between-person and within-person results, c.f., 
Adolf et al., 2014; Borsboom et al., 2003; Hamaker, 2012; 
Hamaker et al., 2015; Hoffman & Stawski, 2009a; Kievit 
et al., 2013; Molenaar, 2004).

Furthermore, note that the estimated intra-individual herit
ability may change depending on the time intervals between 
measurements, because this can affect the estimated dynamic 
processes for A and E. Revisiting the example from the intro
duction, consider the intra-individual heritability of agreeable
ness. The intra-individual heritability reflects to what extent 
fluctuations in a person’s level of agreeableness from year 
to year, or day to day, or hour to hour, is the result of genetic 
effects or environmental effects. This is estimated by evaluating 
what proportion of the variability in the phenotype can be 
attributed to variation in the genetic effects. However, it may 
matter whether we evaluate this from year to year, or day to day, 
or hour to hour. For instance, it could be the case that the effects 
of genes on agreeableness vary more year to year, than they 
do hour to hour, and that such a difference is more pronounced 
for genetic effects than environmental effects. This would indi
cate that we would expect relatively little variance in A for 
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measurements taken closely together in time, resulting in a lower 
intraindividual heritability.

Relation with the genetic simplex and iFACE model

The multilevel dynamic twin model can be considered a bridge 
model between the iFACE model and the genetic simplex model. 
An overview of the differences in assumptions of the models is 
presented in Table 2. The main difference between the multilevel 
model and the iFACE model, is that in the multilevel model, the 
simplifying assumption is added that the twin-specific para
meters come from common normal population distributions, 
while the iFACE model makes no such assumption. This 
assumption implies that the data of one person are to some 
extent informative about other persons, because the data of 
each person informs the estimates of the level 2 parameters, 
and those level 2 parameters in turn inform the estimates of 
the person-specific parameters at level 1. As a practical result, the 
number of persons in the sample can compensate for the num
ber of time points, and vice versa, when estimating the multilevel 
model. A downside nonetheless is that this assumption might be 
wrong, which could negatively affect our estimates. Note how
ever, that the normality assumption is essentially a prior in the 
Bayesian multilevel model. Hence, if enough data are available, 
this prior can become less influential as it becomes dominated by 
the data, which could limit the negative effects of making an 
erroneous assumption. Empirical evidence on the impact of the 
assumption is currently limited, but a recent study by Bulteel 
et al. (2018) showed that multilevel VAR models had better 
predictive performance than n = 1 VAR models, because the 
additional distributional assumptions regularize the model.

Our implementation of the multilevel model may also 
differ from iFACE implementations in that we specify the 
autoregressive effects of MZ twins to be identical, and 
hence essentially identical genetic components A. It may 
be possible to allow for distinct genetic components Aijt 
and genetic autoregressive effects ϕAij of the MZ twins in 
the multilevel model: This would entail specifying different 
latent variables A for both MZ twins, and assuming that the 
residuals of these latent variables are perfectly correlated. 
We expect that this model would be considerably harder to 
estimate.

The introduced multilevel genetic model corresponds to 
a stationary genetic simplex model, if all parameters in the 
multilevel model could be assumed to be the same across 

twins (i.e., no random parameters). This may be considered 
a stringent assumption, particularly assuming no differences 
among twins with respect to their mean levels (assuming no 
trait-like differences among twins). If one were to make this 
assumption while in reality there are differences in the twins’ 
means, this will affect the resulting heritability estimates. For 
instance, it is known that if differences among means are 
disregarded in an autoregressive model, the resulting autore
gressive effects would represent a blend of between-person 
associations and within-person associations; the exact mix 
depends on how much between-person and within-person 
variance is present in the data (Hoffman & Stawski, 2009a). 
Hence, heritability estimates based on a genetic simplex model 
without random means may also represent a blend of the intra- 
individual heritability, and the heritability of the traits, as noted 
earlier. This may be avoided, however, by appropriately per
son-mean centering the data for the genetic simplex model (c. 
f., Hamaker & Grasman, 2015; Hamaker et al., 2015), or by 
specifying a genetic simplex model with a random mean or 
intercept as discussed in the previous section. An interesting 
direction for future research is to further investigate how dis
regarding random effects of the various parameters (means, 
autoregressive effects, loadings and residual variances) each 
could affect the parameter estimates and the estimated herit
abilities (see also related work by Dolan et al., 2015, on the 
effect of ignoring random loadings in classical ACE models).

Another difference with the genetic simplex model, is that the 
genetic simplex model does not necessarily assume stationarity, 
while we do assume stationarity in the multilevel model. This may 
not always be a realistic assumption, depending on the duration of 
the study and the psychological process in question. It may be 
possible to relax this assumption by extending the model to allow, 
for instance, for sudden changes (e.g., Chow & Zhang, 2013; De 
Haan-Rietdijk et al., 2016; Hamaker & Grasman, 2012; Kim & 
Nelson, 1999) or gradually changing parameters (e.g., Bringmann 
et al., 2017; Haslbeck et al., 2020; Lo, 2016; Molenaar et al., 1992), 
although these latter extensions of AR models and the iFACE 
model have so far been limited to the n = 1 setting.

Model implementation in Mplus’ DSEM and 
simulation study

We investigated the performance of the multilevel genetic 
model presented in the previous section with a proof-of- 
principle simulation study. We implemented the model using 

Table 2. Mapped out assumptions that differ for the four dynamic twin models discussed in this paper.

Assumption Genetic Simplex Random Intercept Genetic Simplex iFACE Multilevel

Parameters fixed/random across twins
Means/intercepts fixed random random random
Autoregressive coefficients fixed fixed random fixed per pair,
of A of MZ twins. random across pairs.
Other autoregressive coeffs. fixed fixed random random
Factor loadings fixed fixed random random
Measurement error variance fixed fixed random random
Correlation A DZ twins fixed fixed random random
Distributional assumptions na Normal distribution+ None Normal distribution+

random parameters across twins
Parameters fixed across time No Yes, for random interceps* Yes* Yes*

+Typically, but other distributions also possible. *This assumption may be relaxed.
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Mplus v8’s Dynamic SEM (DSEM; Asparouhov et al., 2018). 
The Mplus model specification is included in the supplemental 
materials (applied to the empirical example, but the same 
model specification as is used in the simulation study).

DSEM in Mplus v8 employs a Bayesian Gibbs Sampling 
procedure to estimate the model parameters. The details of 
the estimation procedure, including the conditionals for the 
DSEM framework in Mplus are described in Asparouhov et al. 
(2018). For an in depth derivation of the conditionals and 
posteriors for the estimation of a multilevel state space model 
with latent variables and autoregressive effects, as we have here, 
we refer the interested reader to Lodewyckx et al. (2011).

For each parameter to be estimated a prior distribution 
must be specified for the Bayesian analysis. For this implemen
tation of the model, we employed the default priors of Mplus’ 
DSEM, which are conjugate prior distributions, intended to be 
uninformative. For the measurement equation 20, we need to 
specify a prior distribution for the mean and variance of 1) the 
random means; 2) the random factor loadings for A and E; 3) 
the log-transformed random residual variances. For the transi
tion equations 22 and 23 we need to specify a prior distribution 
for the mean and variance of the autoregression coefficients, 
and the variance of the random DZ correlation. By default 
Mplus applies non-informative normal distributions with 
a mean of 0 and a variance of 1010 for the means of all the 
parameters. For covariance matrices, Mplus applies Inverse- 
Wishart distributions, while for single variances it applies 
Inverse-Gamma distributions. In our current implementation 
we only model single variances, with the default improper 
Inverse-Gamma priors with a df of −1 and a scale of 0. This 
specification is used to get a prior distribution that is unin
formative, the distribution nearing a uniform distribution with 
a wide range. Note that due to the uninformative nature of the 
prior distributions, the priors allow for a large range of values 
for each parameter. This is useful for specifying an uninforma
tive prior distribution, but also means allowing for values that 
the parameter should not, or most likely will not take on. For 
example, for the variance of the random DZ correlation, a large 
variance would indicate that the correlations may take on 
values smaller than −1 or larger than 1. This is typically not 
problematic, if the model is sufficiently empirically identified 
by the data. However, particularly for complex models or 
models with relatively few observations, it can be beneficial to 
specify more informative prior distributions that restrict the 
values each parameter may take on. For the variance of the DZ 
correlation, we may for instance, restrict it to be very small 
(e.g., 0.01) such that the random correlations will not take on 
values outside of a −1 to 1 range. Particularly interesting would 
be to restrict the range based on theory or empirical knowledge 
about what variances should be expected. However, for this 
first implementation, we applied the default prior distributions 
of Mplus, given that these are most likely the prior distribu
tions that will be applied by researchers that use DSEM in 
practice.

Note that although the multilevel dynamic twin model is in 
essence a multi-group model, with a group for the DZ twins 
and a group for the MZ twins, as is the cross-sectional model 
and Genetic Simplex model, multi-group modeling is not yet 
available for the DSEM module of Mplus. Instead, we 

implemented the model as a multivariate model with four 
observed variables, one for the DZ twins 1, one for the DZ 
twins 2, and one for the MZ twins 1 and one for the MZ twins 
2. The implication of this strategy is that for designs where we 
have unequal amounts of twins in the four variables, or 
unequal amounts of repeated numbers for the twins, this 
results in missing observations for those variables with less 
observations. These missing observations are estimated 
alongside the model parameters during the Bayesian estima
tion procedure. This is done according to the model specified, 
based on a missing at random (MAR) assumption. The con
sequence of this is that the estimation procedure takes more 
time than would be the case if these missing observations 
were not included.

Simulation conditions and convergence

For the simulation study, we evaluated the performance of the 
model for various sample sizes. We chose these conditions both 
to show the consistency of the estimators, and to evaluate the 
performance of the model for sample sizes we may expect in 
practice. For models that account for measurement error with 
a single indicator, as is the case here, a fairly large amount of 
repeated measurements are necessary for the estimators to 
perform well (e.g., around 100 or more; Schuurman & 
Hamaker, 2019; Schuurman et al., 2015). The number of 
repeated measurements can be compensated to some extent 
by including many participants. In practice, the number of 
repeated measurements is typically around 50, although col
lecting more is becoming more common. The number of twins 
included is in practice typically similar to or larger than the 
number of repeated measurements. Hence, the conditions we 
chose vary from very small samples sizes, to more medium 
sample sizes that are more common in practice, to relatively 
large sample sizes, which may be necessary for the model to 
perform optimally. Particularly, we included the following 
conditions: 1) 25 MZ and 25 DZ twin pairs and 50 time 
points, 2) 50 MZ and 50 DZ twin pairs and 50 time points, 3) 
50 MZ and 50 DZ twin pairs and 100 time points, 4) 100 MZ 
and 100 DZ twin pairs and 100 time points, 5) 100 MZ and 100 
DZ twin pairs and 200 time points, 6) 200 MZ and 200 DZ twin 
pairs and 100 time points, and 7) 200 MZ and 200 DZ twin 
pairs and 30 time points. The last condition is intended to be 
representative of a situation we may encounter in empirical 
practice, where we have a large amount of twins, but few 
repeated measurements.

From preliminary results, it became clear that the residual 
(measurement error) variance σ2

ij and the factor loading λEij for 
the unique environmental components are the hardest to esti
mate. There is a trade-off where when the structural part of the 
environmental effects (loadings and autoregressive effects) is 
underestimated, the residual variance tends to be overesti
mated. This is a pattern that may be expected for autoregressive 
models where measurement error-like variance (the residuals 
�ijt) is separated from dynamic error variance (the residuals 
υijt) with a single indicator (Schuurman & Hamaker, 2019; 
Schuurman et al., 2015). Separating these sources of variance 
for a single indicator is relatively hard as it depends on how 
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strong the dynamic effects are. These types of variance can be 
distinguished only because the residuals υijt are carried over 
across time points via the autoregressive effect, while the resi
duals �ijt are not. This also implies that when there is no 
autoregressive effect, the model is no longer identified. 
Hence, distinguishing the two different types of unique envir
onmental components will likely require relatively large sample 
sizes, particularly when dynamics are relatively weak. We know 
from Schuurman et al. (2015) that estimation becomes more 
difficult when the autoregressive coefficient is close to zero, and 
when the proportion of measurement error variance to the 
dynamic variance is large. Hence, we have picked two scenarios 
for the parameter values of our data-generating model: The 
first (worst case) scenario has low average autoregressive effect 
of 0.3 for the environmental components and a relatively large 
average residual variance (a log variance of −.6), meaning that 
on average about 56% of the unique environmental variance in 
yijt is measurement error-like variance. The second more opti
mistic scenario has a higher average autoregressive effect equal 
to 0.6 and smaller average residual variance (log variance of 
−1.2), meaning that on average about 33% of the unique 
environmental variance in yijt is measurement error-like var
iance. This latter scenario seems more realistic, given that these 
numbers are closer to what we have seen for measurement 
error AR models in the empirical literature (Hu et al., 2016; 
Schuurman & Hamaker, 2019; Schuurman et al., 2015). The 
true values chosen for the two scenarios are presented in 
Table 3 and Table 5 respectively.

For each of the conditions, we ran simulations with 100 
replications, to keep the computational time feasible.4 For each 
replication, we used two chains with 60,000 iterations of which 
half was discarded as burn-in. We evaluated the convergence of 
the model by test-running a number of models with multiple 
chains for each of the different conditions, visually inspecting the 

trace plots and density plots for the Monte Carlo samples, and by 
checking the Gelman Rubin statistics (i.e., Potential Scale 
Reduction Factors; Gelman & Rubin, 1992).

Based on these statistics, the means, and the model 
parameters related to the additive genetic effects converged 
well for all conditions, even for the smallest sample sizes. 
For these parameters the chains mixed well, seemed stable 
across iterations after the burn-in period, and the Gelman 
Rubin statistics approached 1. The (log) residual variance 
σ2

ij and the environment factor loading λEij are harder to 
estimate: In the condition with low autoregressive coeffi
cients and high measurement error variance, we see that 
the convergence for these parameters seems poor for the 
smallest sample sizes (25 or 50 MZ and DZ twins, 50 time 
points). The estimates for these parameters in these condi
tions are also not ideal, as we discuss below. For larger 
sample sizes in the low autoregression/high measurement 
variance condition, convergence for these parameters is 
considerably better, but not ideal, with strongly autocorre
lated samples, which leads to slow mixing and slow 
exploration of the posterior. Hence, for estimating these 
parameters well, taking a large number of samples is desir
able; we would consider 60,000 iterations to be a minimum.

For the condition with a higher autoregressive coefficient 
and smaller error variance, the model converges well for all 
but the smallest sample size (25 twins, 50 time points). For 
the smallest sample size the (log) residual variance σ2

ij and 
the environment factor loading λEij converge sub-optimally, 
albeit better than in the worst-case condition. For the 
remaining sample sizes the procedure seems to converge 
for all parameters. For smaller sample sizes there is stron
ger autocorrelation among the samples for the residual 
variance and environmental factor loadings, such that 
plenty of iterations are advised to estimate these parameters 

Table 3. Results of the simulations for the small ϕEij , large σ2
ij condition. Bias, mean absolute error (MAE), and coverage rates (CR) for the 95% credible intervals, for the 

multilevel dynamic twin model model for different numbers of repeated measures (t) and MZ and DZ twins (n).

Parameter = true bias MAE CR

n = 25 n = 50 n = 50 n = 25 n = 50 n = 50 n = 25 n = 50 n = 50
t = 50 t = 50 t = 100 t = 50 t = 50 t = 100 t = 50 t = 50 t = 100

γμ ¼ :55 .02 .01 .00 .07 .05 .06 .96 .97 .95
γϕA ¼ :7 −.01 .00 .00 .02 .02 .01 .98 .93 .96
γϕE ¼ :3 −.05 −.04 −.05 .10 .08 .07 .86 .84 .83
γλA ¼ :55 .00 .00 .00 .02 .01 .01 .95 .94 .95
γλE ¼ :63 −.08 .07 .09 .36 .16 .12 .76 .84 .82
logγσ2 ¼ � :6 −.73 −.45 −.39 .85 .52 .43 .84 .83 .79

ψ2
μMZ ¼ :3 .01 .00 .02 .07 .05 .05 .97 .98 .97

ψ2
μDZ ¼ :3 .01 .00 .00 .08 .06 .05 .98 .97 .98

ψμMZ1MZ2 ¼ :25 .05 .02 −.01 .12 .08 .08 .95 .95 .92
ψμDZ1DZ2 ¼ :125 .06 .03 .03 .08 .07 .06 .98 .94 .95
ψ2

ϕA ¼ :005 .00 .00 .00 .00 .00 .00 .98 .98 .98

ψ2
ϕE ¼ :01 .01 .01 .00 .01 .01 .00 1 1 1

ψ2
λA ¼ :008 .00 .00 .00 .00 .00 .00 .99 .95 .98

ψ2
λE ¼ :01 .01 .01 .00 .01 .01 .01 .96 .97 .99

logψ2
σ2 ¼ :1 .10 .06 .04 .14 .09 .06 .97 .98 .96

ψ2
ρDZA ¼ :01 .10 .06 .03 .10 .06 .03 .82 .86 .94

4Completion of 100 iterations for one replication took approximately 17 to 105 seconds depending on the sample size. In the supplemental materials we have included 
the results of additional runs of the smallest sample size conditions, to illustrate the stability of the simulation results based on 100 replications.
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optimally; but the chains mix, seem stable, and the Gelman 
Rubin Statistics approach 1.

Simulation results

We evaluate the estimation performance for each condition 
by determining the bias, absolute mean errors, and cover
age rates for the 95% credible intervals for the parameters 
of the model. The results are presented in Table 3 to 6. We 
first discuss the results for the worst-case scenario with low 
autoregressive coefficients and high error variance, followed 
by the scenario with high autoregressive coefficients and 
lower error variance.

Relatively small φEij, large σ2
ij condition. For the smaller 

samples sizes of 25 and 50 twin pairs with 50 time points, 
the estimation procedure for 1 of the 100 replications could 
not be completed. For the remaining conditions, all replica
tions were successfully completed. We will base our estima
tion performance results on the completed replications.

As can be seen from Tables 3 and 4, overall, bias and average 
absolute error decrease, and coverage rates improve, as sample 
size increase, as we would expect. Most parameters are esti
mated fairly well, even for low samples sizes. However, there is 
bias in the model for the dynamics pertaining to the fixed 
effects for the unique environmental components and resi
duals, particularly for small sample sizes: There is some trade- 
off where the structural part of the environmental effects (load
ings and autoregressive effects) is underestimated, while the 
residual variances tend to be overestimated. As discussed pre
viously, effectively distinguishing the two different types of 
unique environmental effects will require relatively large sam
ple sizes, particularly when dynamics are relatively weak, which 
is the case in this condition. Due to the bias for the environ
mental loadings and variances, we see that on a few occasions 
their coverage rates do not improve as the sample size 
increases, even though the absolute errors and bias have 
decreased. In these cases the increased sample sizes increased 
precision of the estimates, but bias did not decrease 

Table 4. Results of the simulations for the small ϕEij , large σ2
ij condition. Bias, mean absolute error (MAE), and coverage rates (CR) for the 95% credible intervals, for the 

multilevel dynamic twin model model for different numbers of repeated measures (t) and MZ and DZ twins (n).

Parameter = true bias MAE CR

n = 100 n = 100 n = 200 n = 200 n = 100 n = 100 n = 200 n = 200 n = 100 n = 100 n = 200 n = 200
t = 100 t = 200 t = 100 t = 30 t = 200 t = 200 t = 100 t = 30 t = 100 t = 200 t = 100 n = 30

γμ ¼ :55 .00 .01 −.01 .00 .04 .04 .03 .03 .93 .96 .93 .95
γϕA ¼ :7 .00 .00 .00 .00 .01 .01 .00 .01 .99 .97 1 .93
γϕE ¼ :3 −.02 −.01 −.01 −.03 .05 .04 .03 .06 .88 .85 .94 .86
γλA ¼ :55 .00 .00 .00 .00 .01 .01 .00 .01 .95 .97 .96 .94
γλE ¼ :63 .04 .02 .02 .05 .07 .05 .04 .09 .84 .86 .93 .83
logγσ2 ¼ � :6 −.13 −.07 −.06 −.19 .18 .13 .10 .25 .87 .89 .94 .82
ψ2

μMZ ¼ :3 .01 .01 .00 .01 .04 .04 .03 .03 .98 .94 .99 .93

ψ2
μDZ ¼ :3 .00 .00 .00 −.01 .04 .04 .03 .04 .98 .94 .93 .93

ψμMZ1MZ2 ¼ :25 .00 .00 −.01 .00 .06 .05 .04 .05 .96 .97 .98 .96
ψμDZ1DZ2 ¼ :125 .01 .01 .00 .03 .05 .04 .03 .05 .94 .97 .95 .95
ψ2

ϕA ¼ :005 .00 .00 .00 .00 .00 .00 .00 .00 .91 .97 .96 .98

ψ2
ϕE ¼ :01 .00 .00 .00 .00 .00 .00 .00 .00 .98 .98 .97 .98

ψ2
λA ¼ :008 .00 .00 .00 .00 .00 .00 .00 .00 .96 .97 .94 .97

ψ2
λE ¼ :01 .00 .00 .00 .01 .01 .00 .00 .01 .92 .93 .94 .95

logψ2
σ2 ¼ :1 .00 .00 .00 .00 .03 .02 .02 .04 .99 .93 .95 .94

ψ2
ρDZA ¼ :01 .02 .01 .01 .04 .02 .01 .01 .04 .95 .96 .91 .87

Table 5. Results of the simulations for the larger ϕEij , smaller σ2
ij condition. Bias, mean absolute error (MAE), and coverage rates (CR) for the 95% credible intervals, for the 

multilevel dynamic twin model model for different numbers of repeated measures (t) and MZ and DZ twins (n).

Parameter = true bias MAE CR

n = 25 n = 50 n = 50 n = 25 n = 50 n = 50 n = 25 n = 50 n = 50
t = 50 t = 50 t = 100 t = 50 t = 50 t = 100 t = 50 t = 50 n = 100

γμ ¼ :55 .01 .01 .00 .07 .05 .06 .96 .97 .95
γϕA ¼ :7 .00 .00 .00 .02 .02 .01 .97 .95 .96
γϕE ¼ :6 −.04 −.02 −.01 .06 .04 .02 .90 .97 .97
γλA ¼ :55 .00 .00 .00 .02 .01 .01 .96 .95 .95
γλE ¼ :63 .04 .02 .01 .06 .04 .02 .88 .91 .89
logγσ2 ¼ � 1:2 −.24 −.09 −.04 .28 .13 .08 .90 .90 .94
ψ2

μMZ ¼ :3 .01 .00 .01 .08 .06 .05 .95 .97 .97

ψ2
μDZ ¼ :3 .00 .00 .00 .09 .07 .05 .98 .96 .97

ψμMZ1MZ2 ¼ :25 .05 .02 −.01 .12 .09 .08 .96 .97 .96
ψμDZ1DZ2 ¼ :125 .07 .04 .03 .09 .07 .06 .98 .94 .97
ψ2

ϕA ¼ :005 .00 .00 .00 .00 .00 .00 .99 .98 .97

ψ2
ϕE ¼ :01 .01 .00 .00 .01 .00 .00 .98 .97 .97

ψ2
λA ¼ :008 .00 .00 .00 .00 .00 .00 .99 .96 .93

ψ2
λE ¼ :01 .00 .00 .00 .01 .00 .00 .98 .99 .95

logψ2
σ2 ¼ :1 .05 .01 .00 .07 .05 .03 1 .97 .98

ψ2
ρDZA ¼ :01 .09 .05 .03 .09 .05 .03 .85 .86 .94
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equivalently with it, resulting in slightly lower or similar cover
age rates as in lower sample size conditions.

Note that distinguishing between the variances for � and 
υE is relatively hard, but this does not apply to υA: The 
genetic residuals are distinguished from the rest due to the 
different correlation structures for MZ and DZ twins. As 
a result, the parameters pertaining to the additive genetic 
effects are generally estimated well. The additive genetic 
parameters are estimated with little bias and mean absolute 
errors, and good coverage – even for the smallest sample 
sizes. As such, we can get a good impression of the intra- 
individual heritability of the modeled process, even for 
small sample sizes.

Finally, the DZ correlation variance is generally overesti
mated, especially for conditions with smaller numbers of twins. 
The parameter is estimated with very little certainty/precision, 
and on occasions large values for this variance are sampled, 
which inflates the point estimate for this parameter. The esti
mates for this variance improve the most by increasing the 
number of repeated measures for the DZ twins. An option for 
smaller sample sizes may be to keep the DZ correlation fixed to 
0.5 rather than allowing it to vary across DZ twins. Another 
option is to make use of more informative priors to restrict the 
range of the variance of the random DZ correlation to the most 
realistic values, rather than using Mplus’ default uninformative 
priors.

Relatively large φEij, small σ2
ij condition. For the condition 

with 100 MZ and 100 DZ twins and 100 time points, the 
estimation procedure for 1 of the 100 replications could not 
be completed. For the remaining conditions, all replications 
were successfully completed. We base our estimation perfor
mance results on the completed replications.

For the condition with large ϕEij, and small σ2
ij, the overall 

pattern is very similar to the previously discussed condition, as 
can be seen from Tables 5 and 6. The environmental para
meters are the hardest to estimate, while the genetic parameters 

are estimated quite well, even for smaller sample sizes. As 
sample size increases, the bias and mean absolute errors 
decrease, and coverage becomes closer to 0.95. Overall, the 
estimates for this condition are considerably better than those 
for the small ϕEij, and large σ2

ij condition. The bias and average 
absolute errors are fairly small even for the smallest sample 
sizes, and from samples sizes of 50 MZ and DZ twins and above 
the coverage rates for most parameters are around .95 and 
reach .90-.96 for the environmental fixed effects.

Empirical example: Moment-to-moment feelings of 
zen

To illustrate the multilevel dynamic twin model, we applied it to 
an empirical data set collected by Wichers et al. (2007). Wichers 
et al. (2007) collected momentary assessments of female Belgian 
MZ and DZ twins with ages ranging between 18 and 46 years 
using experience sampling method, collecting various measure
ments of mood, positive affect, negative affect and stress. The 
twins received random alerts to fill in self-assessments forms 10 
times a day for five consecutive days. More details on the data 
collection can be found in Wichers et al. (2007).

For the present purposes, we focus on 148 MZ and 88 DZ 
twins from this data set from whom more than 25 repeated 
measurements were collected for the items “I feel relaxed,” “I 
feel satisfied,” and “I feel calm.”5 Each of these items was rated 
on a seven-point Likert scale, with higher scores indicating 
higher levels of the respective feeling (1 = “Not at all,” 7 = 
“Very”). For this empirical example, we took the sum score of 
these items as the indicator of how ’Zen’ women felt from 
moment-to-moment (our phenotype variable). On average, 
38 repeated measures were collected per twin member, with 
a minimum of 26 and a maximum of 50 observations per twin 
member. Next to these observations, we added missing obser
vations to the data to make the repeated measures more evenly 

Table 6. Results of the simulations for the larger ϕEij , smaller σ2
ij condition. Bias, mean absolute error (MAE), and coverage rates (CR) for the 95% credible intervals, for the 

multilevel dynamic twin model model for different numbers of repeated measures (t) and MZ and DZ twins (n).

Parameter = true bias MAE CR

n = 100 n = 100 n = 200 n = 200 n = 100 n = 100 n = 200 n = 200 n = 100 n = 100 n = 200 n = 200
t = 100 t = 200 t = 100 t = 30 t = 100 t = 200 t = 100 t = 30 t = 100 t = 200 t = 100 t = 30

γμ ¼ :55 .00 .01 −.01 .00 .04 .04 .03 .03 .94 .97 .91 .95
γϕA ¼ :7 .00 .00 .00 .00 .01 .01 .00 .01 .99 .95 .99 .94
γϕE ¼ :6 .00 .00 .00 −.01 .02 .01 .01 .02 .95 .94 .96 .95
γλA ¼ :55 .00 .00 .00 .00 .01 .01 .00 .01 .94 .94 .94 .94
γλE ¼ :63 .00 .00 .00 .01 .02 .01 .01 .02 .91 .94 .91 .94
logγσ2 ¼ � 1:2 −.01 −.01 −.01 −.03 .05 .04 .04 .07 .92 .95 .88 .93
ψ2

μMZ ¼ :3 .00 .00 .00 .01 .04 .04 .03 .04 .98 .97 .96 .93

ψ2
μDZ ¼ :3 .00 .00 .00 −.01 .04 .04 .03 .04 .96 .93 .95 .93

ψμMZ1MZ2 ¼ :25 .00 .00 .00 .00 .06 .05 .04 .05 .96 .98 .98 .95
ψμDZ1DZ2 ¼ :125 .01 .01 .00 .03 .05 .04 .03 .05 .96 .97 .96 .93
ψ2

ϕA ¼ :005 .00 .00 −.01 .00 .00 .00 .00 .00 .95 .96 .97 .98

ψ2
ϕE ¼ :01 .00 .00 .00 .00 .00 .00 .00 .00 .95 .93 .94 1

ψ2
λA ¼ :008 .00 .00 .00 .00 .00 .00 .00 .00 .93 .93 .92 .95

ψ2
λE ¼ :01 .00 .00 .00 .00 .00 .00 .00 .00 .94 .89 .95 .97

logψ2
σ2 ¼ :1 .00 .00 .00 −.01 .02 .02 .01 .03 .98 .95 .97 .97

ψ2
ρDZA ¼ :01 .02 .01 .01 .04 .02 .01 .01 .04 .93 .92 .93 .85

5Translated here from the Dutch items “Ik voel me ontspannen”, “Ik voel me tevreden”, and “Ik voel me kalm” respectively. The answer options had a seven point likert 
scale, with labels for answer categories 1 “niet”, 4 “matig”, and 7 “zeer”.
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spaced within each twin, such that there are similar amounts of 
time in between all of the repeated measurements, and that the 
measurements of the twin members synchronize over time. We 
did this by calculating the time intervals between the observa
tions of each twin, and inserting extra missing observations 
where there were relatively large time intervals. These missing 
observations are estimated during the analysis based on the 
model, following a MAR assumption.6 We followed up with 
a manual inspection to ensure the timings of the measurements 
synced up for the repeated measurements of the two twins in 
each pair.

We investigated the genetic and unique environmental 
components of the Zen feelings experienced by the twins, 
particularly if there is carry-over of these components over 
time; to what extent each contributes to the Zen feelings of 
the twins; and the individual differences in these effects among 
twins. To this end, we fit the model as specified in Equation 
(20) to (31) for the Zen sum score, making use of the DSEM 
module of Mplus version 8 (Muthen & Muthen, 2017) (see the 
supplemental materials for the Mplus code).

Judging from the Gelman–Rubin statistics and a visual 
inspection of the trace plots the model appears to have con
verged. The samples were however strongly autocorrelated, as 
we found for smaller sample sizes in the simulation study. Hence 
we took a large amount of samples (200,000). However, the 
convergence of the variance of the random DZ correlation was 
poor: Its chains sometimes shoot up to high values (e.g., 1) and 
return slowly back to mixing with the other chains near zero. 
The effects of this are visible in the estimates with unrealistically 
high point estimate for this variance, as well as a unlikely large 
credible interval. This is most likely due to that the data contain 
relatively few DZ twins and repeated measures. As can be seen 
from our simulation study, many DZ twins and repeated mea
sures are necessary to obtain good estimates for this variance. 
We fixed the DZ correlation (no variability across twins), to see if 

this would impact the estimates/convergence of other para
meters in the model: The parameter estimates with fixed and 
random DZ correlations were extremely similar. In the following 
paragraphs, we focus on the results of the fully random model to 
illustrate the interpretation of the model’s results and the herit
ability estimates.

Results for dynamic multilevel twin model

The point estimates and 95% credible intervals for the fixed 
effects and the variances of the random effects are presented in 
Table 7 for the model with all random effects. We discuss the 
results for this fully random model below. Note that we had 
a relatively low number of time points for each twin, although 
our sample of twins is relatively large. The results of our simula
tion study indicate that in these circumstances the estimates of 
particularly the fixed effects for the unique environmental para
meters should be interpreted with caution.

Autoregressive effects & factor loadings
For the additive genetic components, the average autore
gressive effect is estimated to be very high and positive 
(.95), and the estimated variance around this average auto
regressive effect across women is very close to zero. As 
such, for all women we would expect strong autoregressive 
effects for the genetic components, which indicates that 
there is very strong carry-over in the genetic effects from 
moment to moment. This indicates that the genetic effects 
of Zen feelings do not change a lot over this time period. 
The average factor loading for the genetic components is 
estimated to be small (.06), but there is some variability 
(0.005) in this loading among twins. The estimated auto
regressive effects for the unique environmental components 
are much lower, but positive, with an average of .52 and 
a variance of .01 across women, indicating autoregressive 
effects ranging between approximately .3 and .7. That is, for 
all women we expect some carry-over for the unique envir
onmental components, but for some women this carry-over 
is stronger than others. Such autoregressive effects and 
variability therefore are in line with what we typically see 
in the literature for the fluctuation of affect variables over 
time (especially when measurement error has been taken 
into account, as is the case here, c.f., Schuurman & 
Hamaker, 2019; Schuurman et al., 2015). The factor load
ings of the unique environmental components are estimated 
to be considerably larger than those for the genetic compo
nents, with an average loading of .51. However, the varia
bility around this average effect is quite large (.07), such 
that we would expect loadings ranging from approximately 
0 to 1 across women.

Residual (measurement error) variances
The variances of the effects on the phenotype that are 
specific to each time point are estimated to be .43 on 
average; but there is also quite some variability in these 

Table 7. Parameter estimates for the bivariate multilevel MEVAR(1) and VAR(1) 
model for women in a relationship, modeling the relationship between daily 
relationship and general positive affect.

estimate [95% CI]

parameter FEs Variances REs
ϕA .95 [.94, .97] .00 [.00, .00]
ϕE .52 [.43, .60] .01 [.00, .03]
λA .06 [.04, .08] .01 [.00, .01]
λE .51 [.42, .59] .07 [.05, .10]
σ2 .43 [.34, .51] .16 [.10, .27]
logσ2 −1.17 [−1.41, −.98] .64 [.51, .82]
ρDZ 0.5 .24 [.01, .93]
μMZ 4.81 [4.73, 4.89] .25[.19, .34]
μDZ 4.81 [4.73, 4.89] .36[.25, .52]
ρμMZ .25 [.15, .38] –
ρμDZ .13 [.02, .29] –
h2 .12 [.09, .15] .02 [.01, .03]
de2 .45 [.39, .59] .06 [.06, .07]

Note that the variance reported for μMZ and μDZ is a residual variance, not the total 
variance. Note that the estimates for h2 and de2 concern sample means and 
variances.

FEs:  Fixed effects. REs: Random effects.

6Note that the DSEM framework in Mplus includes a function ’tinterval’ that can be used to add missing values between observations to make the observations more 
equally spaced as well. We did it manually, because our variables are the phenotypes of the two MZ and two DZ twins, and hence our different variables were not 
necessarily measured at the same moments. Hence each variable needed unique adjustments, such that we couldn’t easily use the tinterval function.
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variances across twins. This indicates that some people are 
either more sensitive to, or experience more, unique envir
onmental effects on their Zen feelings that are unique to 
each particular measurement occasion, than others.

Intra-individual person-specific heritabilities
Given that there is variability in the autoregressive effects 
and factor loadings across persons, the estimated intra- 
individual heritabilities will also differ from person to per
son. Given that there is considerably more variability in the 

loadings and autoregressive effects for the unique environ
mental components than for the genetic components, dif
ferences in heritability can be attributed primarily to the 
differences in unique environmental effects. On average, 
across twins the intra-individual heritability of Zen feelings 
is estimated at 0.13, which indicates that on average about 
13% of the moment-to-moment fluctuations in Zen feelings 
in women are due to additive genetic effects, while the 
majority of fluctuations of Zen feelings would be due to 
unique environmental effects. In other words, on average 
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Figure 3. Plots of the posterior distributions for the heritabilities of Zen feelings for MZ twin 1 (blue/right), and MZ twin 2 (orange/left). The dot in each distribution 
represents the median for that distribution. The tails of the posteriors are trimmed at their 95% credible intervals. The posteriors are ordered across MZ twins 1 based on 
their median heritability, from low to high (top left to bottom right).

Figure 4. Plots of the posterior distributions for the heritabilities of Zen feelings for DZ twin 1 (blue/right), and DZ twin 2 (orange/left). The dot in each distribution 
represents the median for that distribution. The tails of the posteriors are trimmed at their 95% credible intervals. The posteriors are ordered across DZ twins 1 based on 
their median heritability, from low to high (top left to bottom right).
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across women, the moment-to-moment fluctuations in their 
Zen feelings seems to be predominantly driven by the 
environment.

There is considerable variation in the estimated heritabil
ities from woman to woman: for some the contribution is less 
than 13%, and for others more than 13%. Figure 3 and Figure 4 
show the posterior distributions of the person-specific herit
abilities for the MZ and DZ twins. From these distributions it 
can be seen that there is a fair amount of uncertainty around 
the person-specific heritability estimates, as one would expect 
given that we had relatively few repeated measures per person. 
It is clear, however, that for most women the heritabilities are 
estimated to be roughly between 0 and 0.25.

Trait scores or means
The average trait score (average of the means) for Zen feelings 
is estimated at 4.81. This indicates that on average, women 
show moderate to high levels of average experienced Zen feel
ings. There is considerable variation in the mean levels among 
the twins (residual variances of .25 for the MZ and .36 for the 
DZ twins). We see that the correlation among the means of the 
MZ-twins (.25) is higher than that of the DZ twins (.13), which 
indicates that trait Zen feelings may be heritable. That is, 
variation in trait Zen feelings can be explained in part by 
variation in genetic effects across persons, that is, evaluated 
on a between-person level, akin to cross-sectional twin models.

Discussion

In this paper, we introduced the multilevel dynamic twin 
model, and discussed the relation of this novel model to two 
other dynamic twin models: the genetic simplex model and the 
iFACE model. All three models can be used to investigate the 
intra-individual heritability of phenoytypes that fluctuate over 
time by modeling latent genetic and environmental compo
nents with an autoregressive process. However, these three 
models have different underlying assumptions. The multilevel 
model connects the genetic simplex model and iFACE model: 
while the genetic simplex model assumes the same dynamic 
structure for all twins, the iFACE model is fitted to separate 
twin pairs and consequently assumes that the dynamics of 
different people are not informative for others. The multilevel 
model forms a middle ground between these two models by 
accounting for differences in the parameters of the dynamic 
processes of different people, and assuming that the parameters 
of each person’s dynamic model come from a common popu
lation distribution. As a result, the model can be used to model 
person-specific contributions of genetic and environmental 
effects, as well as individual differences therein.

We emphasize that dynamic twin models estimate intra- 
individual heritability, which is substantively and conceptually 
distinct from the classic interpretations or estimates of heritability. 
While classic cross-sectional studies consider how much variance 
in the stable differences between persons can be explained by 
variation in their genes, intra-individual heritability considers 
how much variance in people’s phenotypic fluctuations over 
time can be attributed to fluctuations in their genetic effects.

Interestingly, an extension of the multilevel model intro
duced here may be able to estimate both kinds of heritability 

simultaneously. For example, we find in our empirical example 
that the random means μij, the traits scores are correlated more 
strongly for MZ twins than DZ twins, which implies that these 
scores may be heritable. It could be possible – either in one step 
within the multilevel model, or with a two-step procedure – to 
specify a full A(C)E classic twin model for the random means, 
to determine what stable between-person differences are due to 
additive genetic and environmental effects. The AE model for 
the random means would then become μij ¼ Ab

i þ Eb
i . By 

determining the proportion of variance of between-person 
additive genetic effects (Ab

i ) relative to the total between- 
person variance (ψ2

μ), one would obtain the heritability for 
the stable, trait-like differences between persons in the pheno
type (trait-heritability), next to the person-specific intra- 
individual heritabilities discussed earlier in the paper. 
Similarly, one may consider investigating the heritability of 
other model parameters, such as the autoregressive coefficients 
(e.g., see, Zheng & Asbury, 2019, who implemented an ACE 
model for autoregressive parameters in an AR(1) model).

The distinction between these two types of heritabilities, trait 
heritability and intra-individual heritability, is also relevant for 
cross-sectional twin studies. Although cross-sectional twin studies 
typically aim to estimate the heritability of stable traits, cross- 
sectional measurements generally pick up both stable trait var
iance, as well as some variance due to within-person fluctuations. 
If these within-person fluctuations are regulated by a dynamic 
process, and hence are not pure noise, the cross-sectional herit
ability estimates may also represent a blend of intra-individual 
and between-person heritability. An interesting endeavor for 
future research would be to investigate the effects of not separating 
stable between-person differences and within-person fluctuations 
on the genetic twin models. Relatedly, it would also be worthwhile 
to further study the effects of disregarding different kinds of 
between-person differences in the parameters of dynamic twin 
models, for example, in their autoregressive effects, factor load
ings, variances, or even structural differences in their models.

In this paper, we have provided a proof-of-principle simula
tion study on the performance of the multilevel dynamic twin 
model. We found that to estimate the environmental effects 
well, the multilevel dynamic twin model requires a large num
ber of both twins and repeated measures. The large number of 
measurements is necessary for distinguishing the dynamic 
unique environmental effects from time point-specific unique 
environmental effects and measurement errors in this model. 
The parameters pertaining to the genetic effects nonetheless 
can be estimated quite accurately even with smaller sample 
sizes, which provides promising prospects for estimating intra- 
individual heritability in less ideal settings.

An option to ease the estimation of the dynamic unique 
environmental effects and the occasion-specific unique envir
onmental effects could be to use a multiple indicator factor 
structure as a measurement model for the phenotype (i.e., 
a dynamic factor twin model). This model may prove easier 
to empirically identify and estimate; however, it would require 
establishing indicators that function essentially as parallel tests 
within persons (c.f., Hu et al., 2016). It arguably would also 
require establishing measurement invariance across the twins, 
which may be unrealistic.
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To more fully evaluate the performance of an implementa
tion of the dynamic multilevel model, it would be relevant to 
include more conditions, including additional sample sizes and 
parameter values. For example, the study by schuurer on n = 1 
AR(1) models with measurement error indicates that the qual
ity of the estimated parameters can differ depending on the 
value of the autoregressive effects and amounts of measure
ment error variance. We saw an example of this in our simula
tion study. It is also worthwhile to investigate the effects of 
unbalanced designs, where we have more MZ twins than DZ 
twins and vice versa, to see if and how this affects the estima
tion, and how this interacts with including a common envir
onmental effects latent variable. In the current multivariate 
setup, rather than using a typical multi-group model, an addi
tional effect of an unbalanced design is that potentially many 
missing observations need to be estimated alongside the model 
parameters. Finally, it would be useful to evaluate the effects of 
different kinds of prior distributions, rather than Mplus’ 
default options. For example, a more informative prior distri
bution that restricts the values that the parameters may take on 
may improve the estimation for the DZ correlations between 
the genetic latent variable, or for the random variances in the 
model MBRWish, Gelman (2006).

Despite its complexity, the multilevel model we introduced 
represents a basic multilevel dynamic twin model, and is hence 
limited in various ways. For instance, we worked with an AE 
model for the sake of simplicity, which disregards that there 
may also be shared environmental effects between both the MZ 
and DZ twins. This could be taken into account by specifying 
an ACE model, including a latent variable that models com
mon effects among the twin members. For such a model, it also 
seems particularly pertinent in the context of longitudinal data, 
to account for whether the twins are together or apart at each 
measurement occasion.

One may also consider extending the model by specifying 
a multivariate model at level 2, allowing all level 2 parameters 
to be correlated with each other. Estimating such a large covar
iance matrix for the random parameters with any precision 
will, however, require many twins. Next to this, extra caution is 
needed when specifying the prior distribution for this covar
iance matrix: The typical conjugate Inverse Wishart prior dis
tribution is known to easily induce bias for this type of model 
when the variances are expected to be close to zero, which 
would be the case for these random coefficients given their 
scale (c.f., Schuurman, Grasman et al., 2016; Schuurman & 
Hamaker, 2019; Song & Ferrer, 2012).

The multilevel twin model, as well as the genetic simplex 
and iFACE model, account for both unique environmental 
effects that carry over from occasion to occasion, as well as 
unique environmental effects that are specific to one occasion 
which also accounts for measurement error. The models do not 
account for genetic effects that are specific to each measure
ment occasion. It is uncertain whether one would expect such 
effects to contribute considerably to the within person var
iance. In our empirical example, we found that the autoregres
sive effects for the genetic effects are quite high, so in this 
scenario it seems unlikely. However, this may also depend in 
part on how close in time the repeated measurements are 
taken. For future work it may be interesting to consider such 

genetic effects, and how to account for them in the dynamic 
genetic models.

Furthermore, a limitation of the introduced multilevel 
dynamic twin model is that it disregards potential gene- 
environment interactions. Given that genetic effects change 
over time, it seems likely that environmental effects play 
some part in this change. The opposite applies as well: changes 
in genetic effects may play a role in what effects the environ
ment may have. An interesting future development is to mea
sure specific genetic or environmental characteristics and to 
model their effects on the dynamic processes of genetic and 
environmental effects. Another interesting option may be to 
specify a multivariate vector autoregressive structure among 
the genetic and environmental latent variables, allowing the 
genetic and environmental components to affect each other 
over time (e.g., similar to the extended simplex model by Dolan 
et al., 2014).

Finally, a limitation of both the genetic simplex, iFACE, and 
the dynamic multilevel model presented here, is that they only 
consider dynamics in terms of autoregressive processes of 
order 1. A myriad of other dynamic models could be consid
ered, including higher order autoregressive processes, more 
complex time series models such as ARIMA models, (stochas
tic) differential equation models, or models for categorical 
variables such as Markov models. The autoregressive model 
of order 1 nonetheless represents a reasonable starting point 
for dynamic twin models, given that these autoregressive mod
els can serve as a basis for many other dynamic models, such as 
models from the state space modeling framework (Harvey, 
1989; Kim & Nelson, 1999), and the DSEM framework we 
used in this paper (Asparouhov et al., 2018).

For applications using dynamic twin models, it will gener
ally be of essence to consider the time scale of changes in the 
phenotype, environmental effects, and genetic effects. For 
example, in our empirical example, experience sampling mea
surements were taken multiple times a day, and our results 
showed that at this time scale there was little change in the 
genetic effects over time, as one would expect. As a result, the 
genetic effects can explain only a limited amount of variance 
over time in the phenotype, which may have been even less if 
we also took common environmental effects into account in 
the model. However, most essentially, these results imply that 
this type of dynamic twin model could be used to investigate 
the timescale at which one may expect relevant changes in the 
genetic effects for a particular phenotype, and whether this may 
differ from person to person.

In sum, although dynamic twin models have received rela
tively little attention compared to their cross-sectional counter
parts, they can provide relevant and novel perspectives on the 
contributions of genes and environment to psychological and 
behavioral processes, and potentially on their interplay. The 
dynamic perspective on the contribution of genes and envir
onment in these dynamic twin models fits in well with the 
renewed interest in epigenetics (Bell & Saffery, 2012; Bell & 
Spector, 2011; Kan et al., 2010). We hope that the multilevel 
dynamic twin model introduced here, as well as the discussion 
of intra-individual heritability, can help provide a springboard 
for further investigations of the heritability of intra-individual 
differences, to complement those of inter-individual 
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differences by leveraging genetically informative intensive 
longitudinal data.
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