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Infants exhibit exceptional development in complexity of behavior during 
their first year of life. This growth in behavior is mirrored in the brain, 
the first year of life is marked by an explosion in neural growth and 
optimization of existing brain structure (Ball et al., 2014; Keunen, 
Counsell, & Benders, 2017b; Lodygensky, Vasung, Sizonenko, & Hüppi, 
2010; van den Heuvel et al., 2014), through the strengthening of important 
connections and the pruning on non-used connections (Innocenti & Price, 
2005). Special attention to explain behavioral development is given 
towards the development of the human connectome: the collection of 
functionally distinct areas in the brain and their interconnectivity. 
Complex behaviors likely require the optimized integration of information 
processed throughout the brain. Studying the connectome during the first 
year of life could provide us valuable insight into why certain behaviors 
develop when.  

One such complex type of behavior that shows considerable growth in 
the first year of life is social competency mostly. At birth, infants mostly 
interact from a distance. Looking at familiar and new faces, analyzing 
sounds and smells. This changes rapidly, aided by motor skill 
development. At two months, infants start to respond to their 
environment by utilizing smiling and laughter (Wolff, 1987). At three 
months, infants recognize faces and clear neural substrates of face 
processing can be found (de Haan, Johnson, & Halit, 2003; Halit, de Haan, 
& Johnson, 2003; Sangrigoli & De Schonen, 2004). At five months, infants 
start to babble towards their parents and show an increased affinity for 
the mother’s voice (de Boysson-Bardies, Sagart, & Durand, 1984; Oller & 
Eilers, 1988). At 9 months, infants show the first signs of joint attention, 
actively trying to let others attend to what they are attending to and vice 
versa (Eggebrecht et al., 2017; Kopp & Lindenberger, 2011; Mundy, Card, 
& Fox, 2000). Lastly, during the last weeks of their first year of life, infants 
even start to participate in game-like constructs.  

Understanding how these social behaviors arise is of critical importance, 
not only to better understand which conditions must be met for these 
behaviors to develop, but also, to better understand how these behaviors 
are represented in human cognition, both in adults and in children. This 
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dissertation aims to study the development of the functional connectome 
during infancy to detect early markers for social competency.  

The following sections deal with a short outline of the study of the 
development of the human connectome and the use of graph theory to 
describe this development. Subsequently, the development of the social 
brain will be shortly discussed. Thereafter, I will discuss the use of EEG 
in infants to study the development of both functional brain networks and 
social competency. Lastly, an outline of this dissertation is presented. 

 
1.1 Analyzing and quantifying brain networks 
Whole-brain networks are complex. Comparing networks across subjects 
or following the development of networks over time within a subject can 
therefore be difficult. To quantify the core characteristics of these 
networks graph theory can be used (for review see Bullmore & Sporns, 
2009). In the graph-theoretical framework, networks are composed of 
nodes and edges. Nodes are centers of information and edges are the 
connections between the nodes. The determination of what is defined as a 
node in neuroscientific research depends on neuroimaging method. 
Opposed to (f)MRI connectivity research, where nodes are usually defined 
as anatomically distinct areas based on anatomical or functional atlases, 
within EEG connectivity research each electrode with its specific scalp-
based location is used as nodes. To calculate the edges between the nodes, 
a measure of signal correlation is used. In EEG, phase difference 
consistency is often seen as a measure of connectivity as synchronized 
oscillatory activity allows for an optimized flow of information between 
two regions (Fell & Axmacher, 2011).  

It can be useful to divide graph characteristics into two camps: ones 
quantifying network integration and ones quantifying network segregation 
processes (Rubinov & Sporns, 2010; Sporns, 2013; Zhao, Xu, & He, 2019). 
In brain networks, segregation usually represents the ability of the network 
to have anatomically near brain areas closely working together to perform 
specialized functions.  

To quantify the segregation ability of a network the clustering 
coefficient and the modularity are often calculated (see figure 1.1). The 
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Figure 1.1 Analyzing functional EEG networks. To analyze functional networks in 
infants, the following steps are taken. Firstly, Network creation (panel 1) by measuring 
the EEG-signal, then calculation connectivity between electrode sites and storing this 
information in an adjacency matrix. This can be visualized as a graph. Here shown 
fictionalized, top down, with the electrodes being nodes and the connectivity between 
the electrodes being edges. In panel 2, two of the most important global characteristics 
of a network are visualized: segregation and integration. Networks with high 
integration and high segregation are small-world networks (panel 3). Here visualized 
as circle graphs, with neighboring nodes in the graph also neighboring in the circle 
graph. A small-world graph is a shown as a midpoint between a completely regular 
graph, with all neighboring electrodes being connected and a fully random graph. 
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clustering coefficient determines the tendency of interconnectedness of 
neighboring nodes in a network. That is to say: if a node is connected to 
two other nodes, how large is the chance that these other nodes are also 
connected? Modularity quantifies whether the network follows a modular 
structure. In these networks, communities of nodes show strong 
interconnectedness, but weak connectivity to other nodes in different 
communities (Newman, 2004). 

In contrast to segregation, integration of a network pertains to the 
ability of different parts of the network to communicate easily. The most 
commonly used characteristics to describe this trait are characteristic path 
length and global efficiency. Characteristic path length is the average of 
all the shortest path lengths in the network, where a path is the sum of 
the number of edges or weights between two nodes. Global efficiency is 
the inverse of the characteristic path length. A network with high global 
efficiency and low characteristic path length has a high global transfer 
efficiency and integrates information easily. 

These seemingly opposing network traits are vital for the optimized 
processing of information. On the one hand, nodes need to form cliques to 
optimize communication for specialization. However, the information 
processed by these cliques needs to be easily conveyed and integrated into 
the information of other communities of nodes within the network. An 
optimized topology of a network should therefore possess a high clustering 
coefficient and a relatively low characteristic path length. This topology is 
referred to as small-worldness and is commonly found in biological, social, 
and traffic networks (Watts & Strogatz, 1998). The small-worldness of a 
network is calculated as the ratio of the normalized clustered coefficient 
and the normalized characteristic path length. With a random network 
being used as a null network for these normalizations. Networks with a 
small-worldness much larger than 1 are referred to as small-world 
networks.  

 
1.2 The development of the infant functional connectome 
Right after birth, the infant functional connectome already shows 
considerable similarities with the mature connectome. Neonatal brain 
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networks show highly efficient small-world topologies and modularity 
structure (De Asis-Cruz, Bouyssi-Kobar, Evangelou, Vezina, & 
Limperopoulos, 2015; Fransson, Åden, Blennow, & Lagercrantz, 2011; Gao 
et al., 2011). Gao and colleagues found among a sample of 147 sleeping 
infants that global efficiency and local efficiency increased over the course 
of the first year of life. They noted that the development of long-range 
connections especially increased global connectivity (Gao et al., 2011). 
These findings were replicated in a MEG-study by Berchicci and 
colleagues (Berchicci, Tamburro, & Comani, 2015), who found that the 
infant sensory-motor network showed marker increases in global and local 
efficiency throughout infancy. Both these studies underline the increase of 
network segregation and integration during the first year of life.  

The main hypothesis for the development of connectivity during the 
first year of life is the “local to distributed” developmental pattern of the 
human brain (Fair et al., 2009; Johnson, 2000). At birth, infants’ brain 
connectivity is mostly focused on short-range connections. The 
connectome is therefore highly fractured. As mentioned before, during the 
first year of life both global and local efficiency increase, but global 
efficiency makes the most improvement. Long-range connections linking 
distributed brain regions become strengthened. It is hypothesized that 
after birth environmental stimuli encourage the cooperation of many 
different brain areas. Therefore, increasing the need for network 
integration (Vértes & Bullmore, 2015). 
 

1.3 The relationship between the functional connectome and behavior 
The relationship between the infant connectome and cognition is not fully 
understood. Most of the current studies focus on predicting cognition later 
in life or predicting atypical development based on neonatal connectomes. 
Keunen and colleagues found that neonate structural connectivity 
segregation and integration could predict Performance IQ at age 5 
(Keunen et al., 2017a). Wee and colleagues found that clustering 
coefficients in certain neonatal brain areas could be associated with 
internalizing and externalizing behavior in early childhood (Wee et al., 
2017). From a functional point of view, most studies have looked into the 
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connectivity from and to specific brain areas. Behavioral inhibition at two 
years old has been associated with default mode network connectivity in 
neonates (Sylvester et al., 2018). An EEG-coherence study by Kuhn-Popp 
and colleagues found that left-hemispheric coherence could predict 
individual language skills at age 4 (Kühn-Popp, Kristen, Paulus, 
Meinhardt, & Sodian, 2015). Lastly, functional connectivity has also been 
related to atypical development. Orekhova and colleagues showed that 
infants at risk for ASD who later get ASD show hyperconnectivity in the 
alpha band compared to infants at risk for ASD who do not get ASD later 
in life (Orekhova et al., 2014).  

 
These results show the potential of infant brain network analysis to 
conceive early biomarkers for cognition and atypical behavior. However, 
while predicting cognition is undeniably valuable, following the 
development of the connectome concurrently with the development of 
cognition is vital to better understand how one affects the other. Complex 
behaviors require brain areas to effectively communicate and integrate all 
available information into one unified construct. Conversely, experience 
with complex behaviors further optimizes and enhances brain network 
structure through selective pruning and the enhancement of important 
connections. Closely following this unending feedback loop might yield 
valuable insight into how complex behaviors develop and what can go 
wrong. To study this, some requirements have to be met. In the next 
section, I will go over the outline of this dissertation to attempt to tackle 
this difficult question. 

 
1.4 Outline of this dissertation 
To relate individual developmental differences in cognition to 
developmental differences in the infant connectome, a large sample size of 
infants is needed. This could pose some issues. The infants need to be 
studied multiple times throughout their first year of life. As infants cannot 
be reliably scanned in an MRI-scanner unless they are neonates, the 
measurements need to be done using EEG. Measuring functional 
connectivity with EEG is not uncommon, but it is important to check the 
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reliability of our measures. From previous research, we know that graph 
characteristics can be reliably detected based on fMRI measurements 
(Andellini, Cannatà, Gazzellini, Bernardi, & Napolitano, 2015; Wang et 
al., 2011) and EEG measurements in adults (Hardmeier et al., 2014). It is 
currently unclear, however, whether the same holds for infants. Infant 
EEG data is notoriously noisy, due to the researcher’s inability to instruct 
the infant. Additionally, as infants will not tolerate watching a black 
screen or close their eyes for extended periods of time, a movie will be 
shown to occupy the infant. In what way this affects the network 
measurements is currently unknown. The detection of reliable and stable 
measures is vital for the measures to be used as possible biomarkers for 
cognition. Therefore, in Chapter 2 we explore this question, by testing the 
same group of infants twice – one week apart – and comparing the found 
network measures. 

 
Similar issues arise due to the size of the sample used in this dissertation. 
As mentioned before, infant EEG data can be noisy compared to adult 
data. This effect could be exacerbated due to the use of a large population 
of infants, as this necessitates the use of a multitude of research assistants, 
testing locations, and testing environments. Understanding what the 
influence is of these external conditions on EEG data quality is therefore 
essential. Additionally, the magnitude of the sample allows us to test the 
effect of some external factors on data quality that were until now 
untested. In Chapter 3, we, therefore, test the influence of external factors 
(e.g. Season, Time of testing, Research Assistant, Age) on EEG data 
quality. We end that chapter with recommendations that we take heed to 
in the remainder of the dissertation 

 
Social behavior can be related to the infant's connectome in multiple ways. 
In Chapter 4, we study how the networks in the infant brain process social 
information. Here we compare EEG whole-brain network characteristics 
when an infant is watching a social video with when an infant is watching 
a non-social video. Most importantly, we analyze whether the difference 
between the processing of social versus non-social cues develops over time, 
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by comparing infants of 5-months-old with the same infants at 10-months-
old.  

 
In Chapter 5, we study the relationship between social behavior and the 
infant connectome in a different way. By following the development of 
infant brain network integration and segregation over the first year of life 
and relating this development to the development of social competency 
and infant temperament. Cross-lagged panel models allow for the detection 
of whether the brain network influences behavior later in the first year or 
vice versa.  

 
Finally, in Chapter 6, the recommendations, and issues with the use of 
EEG in infant connectivity research in Chapter 2 & 3, the outcomes of 
how social cues are processed by the infant brain (Chapter 4), and how 
social competency is related to the development of the human connectome 
(Chapter 5), will be discussed. Conclusions will be drawn based on the 
findings in this dissertation and future directions will be extensively 
discussed.  
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2.1 Abstract 
Functional EEG networks in infants have been proposed as useful 
biomarkers for developmental brain disorders. However, the reliability of 
these networks and their characteristics has not been established. We 
evaluated the reliability of these networks and their characteristics in ten-
month-old infants. Data was obtained during two EEG sessions one week 
apart and was subsequently analyzed at delta (0.5-3 Hz), theta (3-6 Hz), 
alpha1 (6-9 Hz), alpha2 (9-12 Hz), beta (12-25 Hz), and low gamma (25-
45 Hz) frequency bands. Connectivity matrices were created by calculating 
the phase lag index between all channel pairs at given frequency bands. 
To determine the reliability of these connectivity matrices, intra-class 
correlations were calculated of global connectivity, local connectivity, and 
several graph characteristics. Comparing both sessions, global 
connectivity, as well as global graph characteristics (characteristic path 
length and average clustering coefficient) are highly reliable across 
multiple frequency bands; the alpha1 and theta band having the highest 
reliability in general.  In contrast, local connectivity characteristics were 
less reliable across all frequency bands. We conclude that global 
connectivity measures, but not local connectivity measures are highly 
reliable network measures in infants. 

 



CHAPTER 2 | RELIABILITY OF NETWORK CHARACTERISTICS 
 

 27 

2 

2.2 Introduction 
The brain is a complex network consisting of highly interconnected 
regions. During early childhood, these networks develop at a rapid pace. 
Electroencephalography (EEG) can be used to study this early 
development of functional networks (Boersma et al., 2013; Orekhova et 
al., 2014). The high temporal resolution of EEG allows for the study of 
high-frequency oscillatory brain activity, while the infant is relatively 
unrestricted in its movements. Synchronized oscillatory activity allows for 
optimized flow of information between two regions (Fell & Axmacher, 
2011) and therefore studying oscillatory brain activity, either at rest or 
during a task, gives insight in underlying functional connectivity and brain 
networks. Oscillatory brain activity ranges from ultraslow oscillations 
(0.05 Hz) to fast transient oscillations (up to 500 Hz) (Buzsáki, 2004). 
Infant EEG has limited functionality in the detection of high-frequency 
oscillations, as contamination with muscle-induced high-frequency 
artifacts is difficult to remove. Therefore, most developmental EEG 
researchers focus on slower oscillatory activity, including delta (0.1-3 Hz), 
theta (3-6 Hz), alpha (6-12 Hz), beta (12-25 Hz), and low gamma (25-45 
Hz) bands. Functionally distinct networks can be found at these different 
frequency bands, which is most notably represented in the spatial scale of 
oscillatory synchrony, which ranges from several centimeters in slow 
oscillations (Schoffelen, 2005) to micrometers in ultrafast oscillations 
(Izhikevich, 2001).  

Functional brain networks and characteristics have been used in the 
past to study differences between typical and atypical brain development. 
In autism spectrum disorder (ASD) for example, global connectivity (the 
averaged connection strengths of the whole brain network) tends to be 
deteriorated at lower frequencies, which is compensated by increased 
global connectivity at higher frequencies (Boersma et al., 2013; Orekhova 
et al., 2014; O’Reilly, Lewis, & Elsabbagh, 2017; Peters et al., 2013; Righi, 
Tierney, Tager-Flusberg, & Nelson, 2014). Similarly, children with 
attention-deficit hyperactivity disorder show an increase in frontal low 
alpha connectivity and a decrease in frontal high alpha connectivity 
(Murias, Swanson, & Srinivasan, 2007). 
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Comparing these networks on a global connectivity level has shown 
usefulness. However, to better understand the differences between these 
complex networks on a detailed level, a graph theoretical framework can 
be used (Albert & Barabási, 2002; Bullmore & Sporns, 2009), which 
simplifies the network into nodes (centers of information or – in the case 
of EEG connectivity – EEG sensors) and edges (connections between the 
nodes). With this mathematical approach, several metrics can be 
calculated describing certain aspects of a network. The most commonly 
used network metrics are the characteristic path length (Lw), the average 
clustering coefficient (Cw) and the small-worldness index (SWI). The 
characteristic path length is the average shortest path length between all 
nodes in the network. A shorter characteristic path length generally 
indicates a higher global efficiency in networks. The average clustering 
coefficient describes the number of clusters in a network. Higher clustering 
generally indicates higher local efficiency in networks. Small-world 
networks are networks in which both short path lengths and high 
clustering are present. As such, small-worldness is calculated as the ratio 
between the normalized clustering coefficient and the normalized path 
length. All of these characteristics have been connected to several 
neurodevelopmental disorders, like ASD (Peters et al., 2013; Rudie et al., 
2013; Tsiaras et al., 2011) and ADHD (Ahmadlou, Adeli, & Adeli, 2012). 

While these connectivity and graph measures show potential as 
biomarkers to detect atypical development, biomarkers are only useful if 
they have a low inter-subject variability and a high test-retest reliability 
(Hardmeier et al., 2014). Several studies have shown that this is the case 
for adult EEG/MEG networks (Deuker et al., 2009; Hardmeier et al., 2014; 
Kuntzelman & Miskovic, 2017). Whether this also holds true for infants, 
however, is currently unknown. For the early detection of 
neurodevelopmental disorders, it is especially vital that network measures 
are reliable during infancy. Therefore, in this study, we set out to 
determine the test-retest reliability and inter-subject variability for 
functional EEG network measures, created by task-dependent continuous 
EEG in infants.  

 



CHAPTER 2 | RELIABILITY OF NETWORK CHARACTERISTICS 
 

 29 

2 

2.3 Methods & Materials 
2.3.1 Subjects & Procedure 
77 ten-month-old infants, recruited from communal registers in the 
Netherlands, participated in the study. The final sample consisted of 60 
infants (29 males, at first visit: mean age = 301 days, range = 272-342, at 
second visit: mean age = 308 days, range = 279-349). During the EEG 
recording infants were seated in a high chair and watched two different 
one-minute videos on a computer screen, three separate times. The first 
video depicted social stimuli with singing women as the subject, the second 
video depicted non-social stimuli of toys that were moving without human 
interference, earlier used in a study by Jones and colleagues (Jones, 
Venema, Lowy, Earl, & Webb, 2015). The parents/guardians received 
information about the study beforehand and signed an informed consent 
form before the start of the first session. The medical ethical committee of 
the University Medical Center Utrecht approved the study (application 
number: 14-221). Children received a toy after participation. 

 

2.3.2 EEG Acquisition 
EEG was recorded using a cap with 32 electrodes (ActiveTwo system, 
BioSemi) positioned according to the international 10/20 system, at a 
sampling rate of 2048 Hz. A Common Mode Sense (CMS) and Driven 
Right Leg (DRL) electrode were used to provide an active ground. In 
addition, two mastoid electrodes (EXG1 & EXG2) were placed behind the 
ears and one ocular electrode under the eye (EXG3). 

 

2.3.3 EEG Analysis 
EEG data was analyzed exclusively using Matlab, by means of the 
FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). The 
original 2048 Hz data was down sampled to 512 Hz, using chip 
interpolation and band-pass filtered at 0.1-70 Hz with a two-way 
Butterworth filter. Artifacts were removed from the continuous EEG. 
Artifacts were defined as an absence of signal, clipping, muscle artifacts 
and excessive noise. Channels were removed if more than 50 percent of the 
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signal in a channel contained artifacts. Bad channels were removed from 
both sessions of a subject. The cleaned data was used for further analysis.  

 

2.3.4 Connectivity calculation 
The cleaned data for each subject was bandpass filtered into 6 bands: delta 
(0.1-3 Hz), theta (3-6 Hz), alpha1 (6 – 9 Hz), alpha2 (9 – 12 Hz), beta (12 
– 25 Hz), and gamma (25 – 45 Hz). Since individual theta and alpha peaks 
are influenced by development, alpha1 and theta bands were chosen to 
encompass all theta and alpha peaks +/- 1 Hz. The resulting data was cut 
into 5s. epochs. 20 random epochs were picked per subject per session. For 
each epoch, connectivity between pairs of electrodes (32*31/2 = 496) was 
calculated with the phase lag index (PLI) and the debiased weighted PLI, 
both relying on the same principle of phase locking or phase synchrony 
(Tass et al., 1998). The phase lag index (PLI), proposed by Stam et al., 
(Stam, Nolte, & Daffertshofer, 2007), describes the asymmetry of the 
distribution of phase differences between pairs of signals: 

 
   PLI = %〈𝑠𝑖𝑔𝑛+sin/Δ𝜑(𝑡𝑘)67〉%	 ,  
 

where Δ𝜑 is the instantaneous phase difference between signals at time 
point t for k = 1 … N per epoch (N = 5*512 = 2560), determined using 
the Hilbert transformation. || stands for absolute values, <> for the mean 
values and the sign for a signum function (phase difference is either -1, 0, 
or 1). The resulting PLI can range from 0 to 1. Volume conductance, the 
effect that multiple electrodes register activity from the same source, plays 
a minimal role in the PLI. Activity from a single source will appear in 
both electrodes as having a phase difference of exactly zero. Since the PLI 
indexes the stability of phase leaping or lagging, a phase difference of zero 
will lead to a PLI of zero. 

The debiased weighted (dwPLI) PLI is an adjustment of the PLI 
developed by Vinck and colleagues (Vinck, Oostenveld, van Wingerden, 
Battaglia, & Pennartz, 2011). The PLI is weighted by the amount of lag 
between the two signals, thereby limiting the influence of near zero phase 



CHAPTER 2 | RELIABILITY OF NETWORK CHARACTERISTICS 
 

 31 

2 

differences. This minimizes the amount of false positive connectivity 
between near zero phase difference signals, which could be caused by noise 
in the data. Since infant data is notorious for its noisiness, the dwPLI is 
included as well. Our used version of the weighted PLI also debiases the 
connectivity based on the number of epochs, since infant data likely 
involves few trials. This debiasing can cause the dwPLI to be negative 
and, therefore, ranges from -1 to 1. 

 

2.3.5 Graph Analysis 
Several graph measures were calculated using the acquired individual 
connectivity matrices. The complete weighted matrices were used, 
eliminating the need for arbitrary thresholds. The following graph 
measures were calculated using the brain connectivity toolbox (Sporns & 
Rubinov, 2010) (table 2.1): average clustering coefficient (Cw), 
characteristic (average shortest) path length (Lw); and small-worldness 
index (SWI, calculated as the ratio between normalized Cw and 
normalized Lw). Both the averaged clustering coefficient and the 
characteristic path length are normalized to limit the influence of global 
connectivity on these characteristics. 

 
Table 2.1 Graph measures references and formulae 

Name  Formula Reference 

Average clustering 
coefficient 

Cw Cw = 	
1
𝑛'

2𝑡!
𝑘!(𝑘! − 1)!∈#

 (Onnela, Kaski, & Kertész, 
2004) 

Characteristic path length Lw Lw = 	
1
𝑛'

∑ 𝑑!$$∈#,!&$

𝑛 − 1
!∈#

 (Dijkstra, 1970) 

Small-worldness Index SWI S =
C C'()*⁄
L L'()*⁄  (Watts & Strogatz, 1998) 

 

2.3.6 Statistical Analysis 
The test-retest reliability was determined differently across three different 
steps of the analysis (figure 2.1). At the most basic level (step 1, figure 
2.1a), the complete connectivity matrices were compared over sessions by 
calculating the Pearson’s correlation coefficient (R). The reliability of the 
connectivity measures of steps 2 and 3 (figure 2.1b and c) were calculated 
by comparing sessions through an intra-class correlation (ICC) (Shrout & 
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Fleiss, 1979; Weir, 2005), which uses a one-way ANOVA to determine the 
mean squared error (MS3) and the between object (subject) variance 
(MS4	). Shrout & Fleiss (1979) describe six distinct statistical models which 
carry the name, of which we are using an ICC(3,1) two-way mixed effect 

Figure 2.1 Overview of the different steps in network analysis and their respective 
reliabilities. This figure shows the complete steps of network analysis and graphically 
depicts the reliabilities calculated for each step. A) reliability at the most fundamental 
level, in which connectivity matrices are correlated over sessions for each subject, for 
each frequency band. B) reliability of global (left) and local, ‘unit-wise’ (right), 
connectivity. C) graph theoretical representation of the network and several graph 
characteristics, which are compared over sessions. 
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model, similar to other studies on the reliability of graph measures 
(Hardmeier et al., 2014; Hatz et al., 2016). ICC values were calculated 
using: 

 

ICC = 56!	7	56#
56!	8(9	7	:)56#

 , 

 
where k is the number of measurements per subject.  

We assessed the reliability of both global and local (dw)PLI 
connectivity matrices (step 2, figure 2.1b). The global PLI/dwPLI (ICC-
glob) was calculated by averaging over all 325 electrode pairs of each 
subjects’ matrix, creating one value per subject per frequency band per 
session. A single ICC value per frequency band was calculated by 
comparing session 1 vs session 2. The local PLI/dwPLI unit-wise reliability 
was determined by calculating an ICC value per electrode pair over all 
subjects’ session 1 vs session 2, creating 325 ICC values. Since these values 
did not follow a normal distribution, the median was taken as the single 
reliability value (ICCunit). To summarize, the reliability of the global 
PLI/dwPLI is the reliability of all connections combined, while the unit-
wise reliability is the median reliability of all the reliabilities of individual 
connections. To test the influence of noisy connections with low 
connectivity, an average connectivity matrix was calculated based on all 
connectivity matrices from both sessions. The top 25th percentile of 
connections were selected based on connectivity strength and the unit-
wise reliability calculation was performed using only these connections for 
each subject (Guo et al., 2012). 

To test the reliability of the graph measures (Cw, Lw, and SWI), values 
were calculated for each subject, per session, per frequency band (step 3, 
figure 2.1c). An ICC was used to calculate the reliability of these graph 
measures over sessions. In accordance to previous research on graph 
metrics, we report ICC values below 0.4 as low reliability, 0.4 < ICC < 
0.6 as mediocre reliability, 0.6 < ICC < 0.75 as good reliability and an 
ICC of 0.75+ as excellent reliability (Hardmeier et al., 2014; Jin, Seol, 
Kim, & Chung, 2011). To understand the effect of outliers, a 
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bootstrapping procedure with replacement and 10000 permutations was 
used to estimate the 95% confidence intervals for both COV and ICC 
values, similarly used by Hardmeier and colleagues (Hardmeier et al., 
2014). For a clear overview of the reliability tests, please refer to figure 
2.1. Lastly, for both the connectivity and graph measures the inter-subject 
variability was determined using the coefficient of variation (ratio between 
mean and standard deviation). 
 
2.3 Results  

2.3.1 Reliability of connectivity matrices 
The results of the correlation of the connectivity matrices across sessions 
are presented in figure 2.2. Correlation coefficients range widely and the 
median of the coefficients is generally low. There is little difference 
between the reliability of dwPLI and PLI connectivity matrices, showing 
ranges of respectively 0.1 - 0.37 and 0.03 - 0.33.  

 

2.3.2 Reliability of network connectivity measures  
Inter-subject variability (table 2.2) of global PLI was low for all frequency 
bands (0.02 < COVglob < 0.12). Reliability of global PLI (table 2.3) was 

Figure 2.2 Connectivity matrix correlation coefficients for all frequency bands.  Boxplot 
of all individual connectivity matrix correlations for session 1 vs session 2, shown for 
delta (d), theta (t), alpha1 (a1), alpha2 (a2), beta (b), and gamma (g). The left graph 
shows the correlation coefficients for the connectivity matrices calculated with the 
dwPLI, the right graph shows the PLI calculated connectivity matrices. Correlations 
range widely, but the median of the correlations within each frequency band is low. 
Plotted with BoxplotR (Spitzer, Wildenhain, Rappsilber, & Tyers, 2014) 
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excellent for theta, alpha1, and alpha2 frequency bands (0.84 < ICCglob < 
0.91), mediocre to good for delta, gamma and beta frequencies (0.60 < 
ICCglob < 0.72). Global PLI values at session 1 differed significantly 
between frequencies (F: 772, p<0.00001). All frequency bands differed 
significantly from each other (p<0.00001), except for alpha1 and alpha2 
global connectivity values (p = 0.11). 

Compared to global PLI, inter-subject variability of global dwPLI 
(table 2.2) was higher (0.91 < COVglob < 1.15) and reliabilities were lower, 
with theta, alpha1, alpha2 frequencies showing good to excellent reliability 
(0.75 < ICCglob < 0.91) and delta, beta, and gamma frequencies having a 
poor reliability (-0.29 < ICCglob < 0.74) (table 2.3).  Also, note the wider 
95% confidence intervals for the dwPLI calculated global connectivity. 
Therefore, dwPLI is excluded from this point onwards in the results to 
prevent misinformation.   

The reliability of local, unitwise, PLI connectivity was lower than 
global PLI, with the median ICC showing mediocre to good reliability in 
the theta and alpha1 frequency band (0.50 < ICCunit < 0.62) and delta, 
alpha2, beta and gamma frequency bands showing poor reliability (0.07 < 
ICCunit < 0.27). The reliability of unit-wise connectivity improved 
considerably when using the 25th top percentile of the on average strongest  

 
Table 2.2 Inter-subject variability of global connectivity with 95% confidence intervals  

 
 

Table 2.3 Test-retest reliability of global connectivity with 95% confidence intervals 
  Delta Theta Alpha1 Alpha2 Beta Gamma 

PLI  0.60 0.91 0.84 0.86 0.72 0.61 

 95% CI 0.38 - 0.73 0.82 - 0.95 0.71 - 0.92 0.61 - 0.93 0.52 - 0.83 0.32 - 0.74 

dwPLI  -0.29 0.82 0.75 0.91 0.74 0.49 

 95% CI -1.51-0.11 0.69 - 0.90 0.54 - 0.87 0.39 - 0.97 0.47 - 0.88 0.28 - 0.73 

  
Delta Theta Alpha1 Alpha2 Beta Gamma 

PLI  0.02 0.12 0.09 0.05 0.05 0.05 

 95% CI 0.02-0.03 0.09-0.15 0.08-0.11 0.02-0.06 0.04-0.06 0.03-0.06 

dwPLI  0.92 1.11 0.73 1.15 0.76 0.91 

 95% CI 0.47–1.18 0.89-1.33 0.60-0.89 0.64-1.42 0.60-0.89 0.64-1.11 
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connections over both sessions (figure 2.3A), with both theta and alpha1 
having good reliability (0.62 < ICCunit < 0.73), alpha2, beta and gamma 
having mediocre reliability (0.41 < ICCunit < 0.48). Delta local 
connectivity reliability is still poor (ICCunit = 0.18). The distribution of 
unit-wise reliability showed a considerable spread in ICC values. All 
frequency bands were skewed towards the higher ICC values, with alpha1 
and theta frequency bands being most pronounced (figure 2.3B).  

 

2.3.3 Reliability of graph measures 
Table 2.4 shows the reliability of graph measures calculated from the PLI 
matrices. PLI average clustering coefficient (Cw) was excellently reliable 
across alpha1, alpha2 and theta frequency bands (0.84 < ICCCw < 0.91) 
and was mediocre to good in reliability in delta, beta and theta frequency 
bands (0.59 < ICCCw < 0.73). Lwnrm showed excellent reliability across 
theta, alpha1, apha2, and gamma frequency bands (0.84 < ICCLw  < 0. 
89) and mediocre to good reliability in delta, theta, and beta frequency 

Figure 2.3. Reliability of unit-wise PLI. A) Bar plot of ICC values for unit-wise reliability 
per frequency band with theta and alpha1 showing the highest reliability. All frequency 
bands show marked improvement when only the on average strongest 25% of 
connections are used. Errorbars represent 2SE. B) Distribution of ICC values for all 
frequency bands. All frequency bands show a distribution skewed towards the positive 
ICC values. This is most pronounced in the theta and alpha1 frequency band. 
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bands (0.53 < ICCCw < 0.72). The small-worldness index (SWI) was least 
reliable, with mediocre reliability in theta and alpha1 frequency bands 
(0.56 < ICCSWI < 0.67) and poor reliability in the delta, alpha2, beta, and 
gamma frequency bands (0.13 < ICCSWI < 0.25. During session 1, not all 
networks showed small-worldness (range: 0. 9869< SWI < 1.02). Average 
connectomes were created for both sessions for all frequency bands, which 
shows a strong similarity in strongest connections and connection strength 
between session 1 and 2 (Figure 2.4). 
 

Table 2.4 ICC Reliability of PLI graph measures 
  Delta Theta Alpha1 Alpha2 Beta Gamma 

Cwnrm  0.59 0.91 0.84 0.87 0.73 0.62 

 95% CI 0.32-0.73 0.81-0.95 0.81-0.91 0.63-0.93 0.53-0.84 0.37-0.75 

Lwnrm  0.53 0.89 0.84 0.84 0.72 0.59 

 95% CI 0.19-0.71 0.79-0.94 0.72-0.92 0.63-0.92 0.53-0.84 0.33-0.75 

SWI  0.25 0.56 0.67 0.21 0.14 0.13 

 95% CI -0.02-0.54 0.36-0.73 0.40-0.83 -0.47-0.71 -0.07-0.34 -0.10-0.49 

 

2.4 Discussion 
In this paper, we showed for the first time that infant functional brain 
network characteristics can be reliable, by determining the test-retest 
reliability and the inter-subject variability of infant functional EEG 
connectivity across a 1-week period. Overall, reliabilities of global 
connectivity characteristics were high, while more local characteristics 
showed lower, though still acceptable reliabilities. Characteristics 
calculated with the connectivity matrices of theta and alpha1 frequency 
bands were most reliable. This pattern of reliability is similar to earlier 
studied reliability of adult network characteristics.  

Broadly, the reliability of EEG networks can be assessed on three levels, 
which coincide with three steps of network analysis: The reliability of 1) 
the complete connectivity matrices, 2) global and local functional 
connectivity measures gathered from these matrices and, 3) graph 
characteristics gathered from the graphs created from these matrices. 
Firstly, we reported that connectivity matrices correlate poorly over 
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sessions. Reliabilities of complete connectivity matrices have, to our 
knowledge, never been reported for EEG networks in adults nor infants. 
It is thus difficult to compare our reliabilities to other studies. Most other 
studies focus on the reliability of steps two and three of connectivity 
analysis: global and local connectivity measures; and graph characteristics. 

Secondly, we found excellent test-retest reliability of global 
connectivity, the average of all connections in a connectivity matrix. Local, 
unit-wise, reliability showed a wide range of test-retest reliabilities across 
most frequency bands, ranging from connections with very low reliability 
to connections with excellent reliability. This is in concurrence with several 
adult MEG/EEG reliability studies. Hardmeier and colleagues reported 
excellent global connectivity reliability in their eyes-closed resting state 
EEG study, in theta, alpha1, and alpha2 frequency bands, while local 
inter-regional connectivity ranged from poor to excellent across all 
frequency bands (Hardmeier et al., 2014). Deuker and colleagues found 
good test-retest reliability for MEG global connectivity during eyes-open 
resting state and excellent reliability during an n-back task in theta and 
alpha frequency bands (Deuker et al., 2009). Lastly, Jin and colleagues 
found moderate to high test-retest reliability in eyes-open and closed MEG 
resting state global connectivity, in theta and alpha frequency bands (Jin 
et al., 2011). 

Thirdly, the reliability of global first order graph metrics tested in this 
study ranged from moderate to excellent, with both average clustering 
coefficient (Cw) and characteristic path length (Lw) being excellently 
reliable across theta, alpha1 and alpha2 frequency bands. This is also 
found in other EEG network reliability studies. Previously mentioned 
Hardmeier and colleagues also tested the reliability of graph metrics and 
found excellent reliabilities for both Cw and Lw in theta, alpha1 and 
alpha2 bands (Hardmeier et al., 2014). More recently, Kuntzelman & 
Miskovic tested adults during an eyes-closed resting state EEG paradigm, 
comparing global and local graph measures on coherency and dwPLI. They 
reported good reliability of global dwPLI metrics in theta, alpha1 and 
alpha2 frequency bands (Kuntzelman & Miskovic, 2017). 
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Across the study, we report lower reliabilities for delta, beta and 
gamma frequency bands than for theta, alpha1, and alpha2 frequency 
bands. This is in concurrence with several previously mentioned studies in 
which lower beta and gamma reliabilities (Hardmeier et al., 2014; Jin et 
al., 2011; Kuntzelman & Miskovic, 2017); and lower delta reliabilities 
(Deuker et al., 2009; Kuntzelman & Miskovic, 2017) were found. Most 
commonly, the lower reliability of higher frequency bands is explained by 
the dichotomy between higher and lower frequency bands, where higher 
frequency bands are more involved in establishing cognitive 
representation, while lower frequencies are more anatomically constrained 
(Bassett & Bullmore, 2006). This constraint could aid higher reliabilities 
over sessions. Also, both theta and alpha have been suggested to be 
important for processing attention (Aftanas & Golocheikine, 2001; 
Klimesch, Doppelmayr, Russegger, Pachinger, & Schwaiger, 1998) and top 
down control (Engel, Fries, & Singer, 2001). Since our task could 
specifically target these systems, the resulting higher signal to noise ratio 
in these frequency bands could result in more reliable networks. Lastly, 
the higher prevalence of muscle artifacts in the higher frequency bands 
could limit reliability, especially in children. The small-worldness index 
(SWI) is also less reliable in our study, which is in concurrence with 
previous studies (Hardmeier et al., 2014; Kuntzelman & Miskovic, 2017). 
Since small-worldness is calculated using both clustering coefficient and 
path length, and both these characteristics vary independently across 
sessions, a combination of these variances in the SWI (SWI) could 
contribute to a lower reliability for the SWI.  

The overall spatial resolution has a large influence on test-retest 
reliability with global connectivity characteristics being highly reliable, 
while local connectivity characteristics are somewhat less reliable. This 
study also shows that different steps of the analysis yield different 
reliabilities. Most interestingly, lowly reliable connectivity matrices 
generate highly reliable connectivity and graph characteristics, which can 
be explained in several ways. Firstly, it is possible that some lowly 
connected, noisy connections are present in the full connectivity matrices, 
which are averaged out in global connectivity characteristics. Secondly, 
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brain networks fluctuate in activity over time (Chang & Glover, 2010). It 
is possible that, comparing multiple sessions, the state of the network is 
different, but the underlying characteristics and anatomy are equal. 
Thirdly, a difference in fixing the EEG cap over sessions could lead to a 
rotation in connectivity matrices over sessions (Hatz et al., 2016) and 
lastly, an unknown covariate, that remains stable over sessions, could 
influence network characteristics, but not connectivity matrices. It is, 
currently unknown which of these explanations (or a combination of these 
explanations) is correct and future research is needed to further 
understand the relationship between unreliable connectivity matrices and 
reliable connectivity characteristics.  

It is important to note that reliability does not imply validity and that 
this study, therefore, does not allow conclusions on the validity of these 
measures. It is currently unknown how tightly these measures reflect true 
cortical and subcortical brain connectivity. This becomes more difficult 
with EEG, which is restricted to measuring activity at the sensor level. 
While resting state oscillations have been found to be connected to resting-
state connectivity gathered from functional MRI data (Laufs, 2008; 
Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 2007), in our study, 
due to the difficulty of doing resting-state research with infants, we opted 
for a continuous video stimulus. While this makes it more difficult to 
understand how these network characteristics are reflected in the 
structural connectome, it comes with the added benefit of minimizing the 
variance over sessions, thereby possibly improving reliability. This is also 
reflected in the study of Deuker and colleagues, where task-dependent 
connectivity measures were shown to be more reliable than resting state 
connectivity measures (Deuker et al., 2009). In addition, previous research 
has shown the influence of global connectivity on both characteristic path 
length and average clustering coefficient. Therefore, the high reliability of 
both these metrics in this study could be explained through the high 
reliability of global connectivity. Even normalizing these graph metrics 
does not completely eradicate this problem and future research is therefore 
necessary to understand the exact implications of this (van den Heuvel et 
al., 2017).  
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While the validity of these measures can be disputed, previous research 
has shown the potential of network characteristics as biomarkers of 
neurodevelopmental disorders. Orekhova and colleagues found that while 
comparing infants at risk for ASD, global connectivity was related to 
whether or not an infant actually developed ASD (Orekhova et al., 2014). 
Boersma and colleagues found similar results when comparing toddlers 
with ASD to toddlers without ASD (Boersma et al., 2013). Others have 
noted differences in graph characteristics in adults suffering from ASD 
(Belmonte et al., 2004) and ADHD (Ahmadlou et al., 2012). This, together 
with the here reported excellent reliability of graph and connectivity 
measures in theta, alpha1 and alpha2 frequency bands in infants, 
underlines the potential of using these measures to detect 
neurodevelopmental disorders at an earlier age, conceivably increasing our 
fundamental knowledge on how these disorders develop and could possibly 
be treated.  

 

2.5 Conclusions 
This study showed for the first time that global and to a lesser extent local 
PLI connectivity measures in infants are reliable over a one-week period. 
We recorded EEG from infants twice, one week apart, while they were 
watching social and non-social videos. We found that when comparing the 
resulting PLI networks, global network measures are stable over time. 
Reliable global network measures could play a vital role in finding 
biomarkers for several disorders. The unrestrictive nature and the relative 
ease of an EEG recording make it especially useful to detect these network 
characteristics at a very young age, giving us important insight in the 
development of these disorders, possibly making early detection and 
intervention possible.  
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3.1 Abstract 
EEG is a widely used tool to study the infant brain and its relationship 
with behavior. As infants usually have small attention spans, move at free 
will, and do not respond to task instructions, attrition rates are usually 
high. Increasing our understanding of what influences data loss is therefore 
vital. The current paper examines external factors to data loss in a large-
scale on-going longitudinal study (the YOUth project; 1279 five-month-
olds, 1024 ten-months-olds, and 109 three-year-olds). Data loss is 
measured for both continuous EEG and ERP tasks as the percentage data 
loss after artifact removal. Our results point to a wide array of external 
factors that contribute to data loss, some related to the child (e.g., gender; 
age; head shape) and some related to experimental settings (e.g., choice of 
research assistant; time of day; season; and course of the experiment). 
Data loss was also more pronounced in the ERP experiment than in the 
EEG experiment. Finally, evidence was found for within-subject stability 
in data loss characteristics over multiple sessions. We end with 
recommendations to limit data loss in future studies.  
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3.2 Introduction 
Infancy is a developmental period that marks clear changes in behavior 
and the brain. Electroencephalography (EEG) is an oft-used method to 
study these changes during infancy for two reasons. The high temporal 
resolution of EEG allows researchers to study closely linked brain-behavior 
correspondences. That is, to study whether and when infants can perceive 
contrasts between certain stimuli, researchers rely on changes in the EEG 
signal as a proxy for changes in behavior. Also, EEG can be used in an 
easy-going and non-threatening environment while infants are not required 
to make overt responses or to follow task instructions. Consequently, 
infant EEG research has a long history dating back to the 1930s when the 
development of sleep and awake EEG rhythms was studied in infants 
(Smith, 1938).  

With the advance of neuroimaging techniques, the last decades saw an 
additional increase in studies relying on infant EEG (Azhari et al., 2020; 
Reid, 2012). However, measuring EEG in infants is not a straightforward 
task, and comes with its own challenges, often resulting in high attrition 
rates (Noreika et al., 2020; Stets et al., 2012). Fortunately, there is 
literature focusing on explaining and improving the methodology (cf. e.g., 
Bell & Cuevas, 2012; De Haan, 2007; Stets, Stahl, & Reid, 2012; Thierry, 
2005). Our article aims to attribute to this literature by examining how 
factors beyond paradigm-specific parameters contribute to data attrition 
in infant EEG studies. Before we elaborate on the methodology of infant 
EEG, we will give a short overview of how EEG data can be used to better 
understand the developing brain.   

Infant EEG researchers can derive several measures from the EEG 
signal. One of the most commonly used measures is the Event-related 
potential (ERP). In ERP paradigms, subjects are presented with certain 
types of stimuli numerous times while EEG is recorded. The ERP 
represents the averaged brain activity patterns to one type of stimuli 
within a short time window, beginning at the onset of a stimulus (‘time-
locked’). Researchers then compare ERPs of different types of stimuli to 
understand whether infant brains can differentiate between different 
stimuli. With this paradigm, one can, for instance, observe whether and 
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when infants can distinguish faces from other objects. This has been widely 
studied in adults, who show distinct differences in the peak around 170ms 
after stimulus onset (N170) (Kanwisher et al., 1997). A similar peak is 
found in infants but slightly delayed after stimulus onset. Six-month-olds 
show differences in facial and object processing 290ms after stimulus onset 
(Haan et al., 2002; Halit et al., 2004), which indicates that while infants 
do show distinct differences in the processing of faces versus other objects, 
it is not fully matured. This finding encapsulates the promise of using ERP 
as a behavioral proxy but is certainly not the only field for which ERPs 
have been used. ERPs have also been extensively used to study, among 
others, the development of language (Junge et al., 2012; Kuhl, 2010; Peña 
et al., 2010), emotions (de Haan et al., 2004; Leppänen et al., 2007), and 
joint attention (Kopp and Lindenberger, 2011; Striano et al., 2006).  

The study of brain waves is a different EEG measure which specifically 
exploits the high temporal resolution of EEG (oscillations). Studying the 
oscillatory patterns of brain activity follows the hypothesis that 
synchronized oscillatory activity allows for an optimized flow of 
information between two regions (Fell and Axmacher, 2011). Therefore, it 
is likely that areas in the brain exhibiting similar oscillatory activity 
patterns are communicating or allowing for communication. These 
oscillatory activity patterns oscillate in functionally distinct frequency 
bands. For EEG, the frequency bands are (in order from low to high-
frequency oscillations) the delta, theta, alpha, beta, and gamma frequency 
bands. In infants, EEG power analysis has been used to better understand, 
among others, the development of working memory (Bell and Wolfe, 
2007), joint attention skills (Mundy et al., 2000), and motor development 
(Cuevas et al., 2014). More recently, EEG oscillatory information along 
with network analysis has been used to study the development of infant 
brain connectivity. Global network strength (the average connectivity in 
the whole brain), for example, has been related to autistic spectrum 
disorder symptoms: results show that infants who develop autism later in 
life exhibit higher global connectivity in theta and alpha frequency bands 
(Orekhova et al., 2014), while toddlers show lower global connectivity in 
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the beta frequency band (Boersma et al., 2013). These global network 
measures are reliable in infants (van der Velde et al., 2019). 

 
The aforementioned studies shortly sketch the breadth of possibilities 

in using EEG to study the infant brain and its development. One of the 
downsides in using EEG in infants, however, is the high rate of attrition. 
As it may be time-consuming and costly to recruit infants and their 
parents, high attrition rates might contribute to the fact that many infant 
(EEG) studies are underpowered (Bell and Cuevas, 2012; Frank et al., 
2017; Noreika et al., 2020), increasing the likelihood of drawing false 
conclusions or resulting in non-replicable findings (Button et al., 2013). 
There are several reasons why attrition is high in studies testing infants. 
Awake infants cannot be instructed to remain attentive over the full course 
of an experiment, and the earlier the experiment is terminated before 
completion (because an infant will start crying, refuses to sit still, or falls 
asleep), the more likely an infant becomes excluded from further analysis. 
Of course, high attrition rates are found in any type of research involving 
awake infants (Frank et al., 2017; The ManyBabies Consortium, 2019). 
However, EEG seems to have especially high rates of attrition even when 
compared to other infant study designs (Stets et al., 2012), with an average 
attrition rate of 49.2 percent based on 149 ERP articles published between 
1990 and 2010.  

This begs the question: what causes such high attrition factors in infant 
EEG studies? Ideally, future studies can use such information to minimize 
attrition rates during recording. Previous studies have aimed to shed some 
light on this question and determined several important factors that 
influence attrition rates. A recent meta-analysis comparing different 
paradigms on their attrition rates revealed that task-specific factors are a 
major influence, with auditory and audio-visual ERP studies resulting in 
markedly lower attrition rates than studies yielding visual ERP studies 
(Stets et al., 2012). Also, child characteristics partly explain the likelihood 
of attrition. For instance, infant temperament plays a role, with infants 
who are exhibiting more negative temperament showing higher rates of 
attrition (Marshall et al., 2009).  
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Additionally, Slaughter and Suddendorf found infant age to predict 
infant fussiness, with younger infants showing higher rates of fussiness, 
which they attributed to younger infants being more likely to fall asleep 
during the experiment (Slaughter and Suddendorf, 2007). While infant 
fussiness is a major reason to exclude infants in any kind of infant research, 
there is reason to believe that EEG recordings might place an additional 
burden on children’s willingness to complete the task: Some infants do not 
tolerate the designated headgear (net or cap) while other infants lose the 
required attention due to the repetitive nature of EEG paradigms 
(Slaughter and Suddendorf, 2007). 

This additional burden on infants in the case of EEG causes trials to 
be contaminated by artifacts caused by movement, absence of data, or 
tiredness. To obtain a sufficient number of trials one solution might be to 
prolong experiments, thus anticipating data loss. However, ERP 
components can alter due to habituation processes (Stets and Reid, 2011). 
Moreover, it is important to note that there is no ‘golden standard’ in 
what the field considers the minimum number of clean trials required for 
a reliable. It varies from paradigm to paradigm and is also dependent on 
the variable of interest. For instance, there is evidence that an ERP-
component related to visual attention (‘Nc-component’) is already visible 
in 7 trials (Stets & Reid, 2011), while a modulation of the ERP-component 
related to auditory processing (‘mismatch-negativity’) might require over 
100 trials (Cheour et al., 1998). Therefore, prolonging experiments is not 
always ideal, and, as such, it is important to limit data loss from the onset 
in any experiment.  

 
3.2.1. The current study: motivations and goals  
This study aims to improve the process of infant EEG data collection 

by extending the literature on data attrition described in the previous 
paragraphs. Most of the previous work into origins of data loss compared 
attrition rates over various smaller studies, through (meta)-reviewing. In 
this study, we will focus on one large longitudinal study to examine factors 
that vary between individuals and which possibly contribute to data loss. 
This allows us to study relationships between factors that differ for each 
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infant and their respective data loss. Some of these analyses aim to 
replicate previous findings while others serve to confirm researchers’ 
hunches to ideal circumstances of testing. To examine such effects, each 
factor needs to have enough variation to warrant further inspection. As 
such, large-scale studies are required since these studies invariably show 
high variability in testing conditions and environments, as keeping these 
steady over extended periods of time is impossible. 

The large-scale study used here is the YOUth study (Onland-Moret et 
al., 2020). YOUth fits our requirements for various reasons. It consists of 
two separate EEG-experiments – an ERP-study on face discrimination 
and a continuous video EEG-experiment on social versus non-social 
discrimination. Therefore, the YOUth study allows us to compare the 
effects of factors on attrition rates in two different tasks, one visual and 
one audio-visual, thus assessing whether any observed factor is viable 
across tasks (i.e., generalizable to other tasks) or whether it is task-specific. 
Additionally, the YOUth study is a longitudinal study, with infants 
visiting multiple times between the age of 5 months and 6 years. The study 
is on-going and aims to include 3000 children. At the time of writing, we 
have included 1279 five-month-olds, 1024 ten-months-olds, and 109 three-
year-olds. This allows us to not only study the effects of a wide range of 
external factors on data loss but also enables us to assess whether 
longitudinal effects are working on attrition (e.g., some children are more 
prone to data loss than others). 

This large-scale study will be used to determine whether data loss can 
be predicted based on several external factors. We use data loss as the 
dependent variable here, as the failure to meet the requirement to have a 
certain number of clean trials is one of the foremost reasons for attrition. 
What is important to note, however, is that high data quality does not 
equal low data loss. As mentioned earlier, in some ERP paradigms, a low 
amount of trials at the start of the experiment can provide similar or 
better results than when too many trials are used (Stets and Reid, 2011). 
Nevertheless, most experiments are constructed in such a way to yield a 
reasonable number of trials within a reasonable amount of testing. Of 
course, it remains questionable what is reasonable: there is no golden 
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standard in the minimum number of trials. Nevertheless, at least for 
continuous EEG paradigms, the main assumption is that more clean data 
leads to higher reliability (Fraschini et al., 2016).  

In the current paper, we examine various factors possibly related to 
data loss. Our factors of interest can be categorized into three groups. 
First, we focus on factors related to the infant, namely the gender, age, 
head shape, and the general well-being of the infant. The second group of 
factors related to the experimental conditions out of control of the subject: 
time of testing, the season of testing, whether the subject participated in 
other tasks before the EEG measurements, and research assistant (RA) 
present. Finally, as this study has a longitudinal design, we examined the 
stability of some data loss measurements within-subjects, namely the 
likelihood of data loss and attrition across visits.  

In short, this paper is meant to illustrate the impact of a range of 
factors on data loss in infant EEG paradigms. Some of these factors of 
interest have been put forward as ‘hunches’ based on our own (subjective) 
experience but have never been put to a test: for example, the effect of 
season and time slot of testing. Other factors have already been proven in 
the literature, and we aim here to replicate them. Please note that our 
study is by no means meant as a complete overview of all factors possibly 
influencing infant EEG data loss. Moreover, although we will be analyzing 
two separate paradigms, one visual and one audio-visual, we do not know 
how well these results generalize to other studies, paradigms, locations, 
and setups. What we aim to achieve is to broaden our understanding of 
what factors could influence data loss. Therefore, this paper could prove 
useful for both novel researchers venturing into the world of infant EEG 
and experienced EEG researchers. Both novel infant and experienced EEG 
researchers can use these findings to set up new studies, taking heed to 
here described influential data loss factors and trying to keep these factors 
optimal over the course of their study. Additionally, experienced 
researchers can use this paper to better understand the data loss issues 
likely influencing their own datasets to detect possible biases during 
analysis. 
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3.3 Methods 
3.3.1 Participants 
The YOUth study is a longitudinal cohort study consisting of two large 
cohorts differing in age range. The YOUth Baby & Child cohort follows 
infants from 20-24 weeks gestational age until the age of seven years while 
the YOUth Child & Adolescent cohort follows children from the age of 8 
until the age of 16 years. Both behavioral and cognitive development is 
tracked through numerous tasks and methods (e.g. eye-tracking, EEG, 
MRI, questionnaires). The YOUth study was approved by the Medical 
Research Ethics Committee of the University Medical Center Utrecht and 
all participants’ parents provided written informed consent. A brief 
overview of the YOUth study including the measurements conducted at 
each timepoint is available from https://www.uu.nl/en/research/youth-
cohort-study (cf. Onland-Moret et al., this issue).  

The current study only uses data from the YOUth Baby & Child 
cohort, since this is the only cohort in which EEG was measured, in young 
children from 5 months onwards. In total, 1278 5-month-old infants, 1046 
10-month-old infants, and 104 3-year-old toddlers were included. The 
lower amount of 3-year-olds is due to the fact that measurements for the 
latter have started only recently, and data for all waves is still on-going. 
Data of 3-year-olds are only included in the data loss comparison between 
waves. All other analyses are done with only the 5 and 10-month-old 
infants. As attrition and data loss are fundamental elements of our study 
design, no infants were excluded from our analysis. Table 3.1 and Table 
3.2 show the demographic and attrition information for our study, for the 
EEG and ERP paradigm, respectively. Attrition due to fussiness was 
counted when the infant was excluded from the analysis for having too 
little (or no) data due to the infant being too tired or inattentive, started 
crying or moving too much, or refused to wear the cap. Note that for these 
tables we categorized infants in the attrition group using a conservative 
threshold (data loss over 75 percent), but that in the remainder of the 
paper data loss is used as a continuous variable. Attrition due to 
experiment(er) error was counted when the RA logged this or when the 
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resulting data file was corrupted. Attrition rates are 27% or even lower, 
which is somewhat below the expected range (Stets et al., 2012).   

 
Table 3.1 Demographic and attrition information – Continuous EEG 

 
Table 3.2 Demographic and attrition information – ERP  

Wave Gender Total Attrition Exp. Error Fussiness Age (in days) 

    N N % N % N % mean sd 

5m  1278 328 25.7 34 2.7 294 23 166.7 23.4 

 Boy 628 154 24.5 14 2.2 140 22.3 166.7 23.0 

 Girl 650 174 26.8 20 3.1 154 23.7 166.7 23.8 

10m  1035 261 25.2 41 4 220 21.3 315.7 24.4 

 Boy 514 128 24.9 19 3.7 109 21.2 316.3 24.4 

 Girl 521 133 25.5 22 4.2 111 21.3 315.1 24.4 

3y  101 10 9.9 3 3 7 6.9 957.8 161.2 

 Boy 51 6 11.8 2 3.9 4 7.8 954.5 168.9 

 Girl 50 4 8 1 2 3 6 961.1 154.6 

 

3.3.2 Apparatus and stimuli 
EEG was recorded using a cap with 32 electrodes (ActiveTwo system, 
BioSemi) positioned according to the international 10/20 system, at a 
sampling rate of 2048 Hz. A Common Mode Sense (CMS) and Driven 
Right Leg (DRL) electrode were used to provide an active ground. During 

 Gender Total Attrition Exp. Error Fussiness Age (in days) 

    N N % N % N % mean sd 

5m  1278 342 26.8 41 3.2 301 23.4 166.7 23.4 

 Boy 628 160 25.5 18 2.9 142 22.6 166.7 23.0 

 Girl 650 180 27.7 23 3.5 157 24.2 166.7 23.8 

10m  1046 240 22.9 46 4.4 194 18.5 315.7 24.4 

 Boy 514 111 21.6 20 3.9 91 17.7 316.3 24.4 

 Girl 523 127 24.3 26 5 101 19.3 315.2 24.4 

3y  104 15 14.4 6 5.8 9 8.7 957.8 161.2 

 Boy 51 9 17.6 3 5.9 6 11.8 954.5 168.9 

  Girl 50 6 12.0 3 6 3 6 961.1 154.6 
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the EEG recording, all infants and toddlers were seated 65 cm from a 
computer screen. 

The presentations of the two experiments were in a fixed order. The 
first experiment was the ERP experiment in which children saw pictures 
of faces with neutral expressions and houses. Pictures were presented for 
1000ms, and the ISI was 700 – 1000 ms. There were 96 trials: 48 in the 
neutral face condition (4 x 12 models) and 48 in the house condition (4 x 
12 houses). Order of stimuli was pseudo-randomized: per block of 24 trials 
(4 blocks in total), all pictures appeared once in a randomized order. 
Between blocks and whenever the infant was not looking at the screen, 
the experimenter played additional sounds or video clips as attention 
getters. The task lasted approximately 3-4 minutes.  

The other experiment was a continuous EEG experiment, which 
consisted of two, one 1-minute long, videos repeated three times. One 
video depicted singing women, while the other depicted moving toys 
without human interference. In between videos, short breaks were taken 
(5 in total) after which the new video was started. Similar videos were 
used earlier in a study by Jones and colleagues (Jones, Venema, Lowy, 
Earl, & Webb, 2015). During both experiments, research assistants were 
allowed to pause the task if the child got too fussy. This task lasted 6-7 
minutes. Tasks could be stopped at any time if either parent or child 
prevented continuation. 

 
3.3.3 Data loss calculation 
The calculation of data loss was similar for both tasks. EEG data were 
analyzed exclusively using MATLAB, using the FieldTrip toolbox 
(Oostenveld et al., 2011). The original 2048 Hz data were downsampled 
to 512 Hz, using chip interpolation and band-pass filtered at 0.1–70 Hz 
with a two-way Butterworth filter. A notch-filter at 50 Hz was used to 
remove the background mains hum. The common average was used as a 
reference. For the ERP task, epochs were created based on stimulus 
presentation which led to 96 one-second epochs cut from 200ms before 
stimulus presentation until 800ms after stimulus presentation. For the 
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continuous EEG task, the data was divided into 360 equal one-second 
epochs.  

Data loss calculation was kept as analogous as possible to the regular 
cleaning of EEG data. Trials were rejected based on the following criteria: 
amplitude (>+-250uV); jumps; kurtosis (>7); and absence of data. Jumps 
were detected using the FieldTrip toolbox1. Thresholds were chosen based 
on commonly used thresholds in earlier EEG studies. However, both 
maximum amplitude and kurtosis are subjective thresholds (which 
researchers can disagree on). To prevent eventual influence of subjectivity 
in choosing thresholds on data loss calculation, we also calculated data 
loss with a wide range of thresholds, ranging from stringent (amplitude > 
+-100uV & kurtosis > 3) to lenient (amplitude > +- 300 & kurtosis > 8). 
Outside these ranges, almost all data were respectively removed or 
included, which makes determining differences between factors impossible. 
We did not observe any noticeable differences depending on our choice of 
rejection criteria: results were similar regardless of whether we used more 
stringent or more lenient thresholds. This is not surprising as correlations 
between data loss values found for each subject for different leniency in 
data loss calculation methods were high (0.83 < r < 0.91). We, therefore, 
decided to maintain our relatively lenient thresholds for artifact rejection.  

All trials with artifacts based on the criteria mentioned above in any 
channel were counted as bad trials (Nbadtrials). Data loss (DL) was 
calculated as the percentage of bad trials of all expected trials separate for 
the ERP and the continuous experiment with the following formula: 

 

𝐷𝐿 = 	
𝑁;<=>?@<AB

𝑁CDECF>C=>?@<AB
∗ 100 

 
, with Nexpectedtrials = 96 in the case of the ERP task and Nexpectedtrials = 360 
in the case of the continuous task. Channels with more than 40 percent 
data loss were considered ‘bad channels’ and removed. Bad channels were 
interpolated using weighted averaged neighboring clean channels. 

 
1 Using ft_artifact_jump with standard options 
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Whenever there were more than two bad channels, we removed the entire 
subject was removed entirely, and set the data loss of that particular 
subject to 100 percent. Therefore, we expected two peaks in data loss 
distributions. One ‘low-data-loss’ peak for subjects who have successfully 
completed the experiment with limited to no data loss (around 20 percent 
data loss) and one ‘high-data-loss peak for subjects who showed little to 
no clean data (around 100 percent data loss). A graphical summary of the 
calculation of data loss is shown in Figure 3.1. 
 
3.3.4 Creating groups based on factors  
Demographic information of all infants tested can be found in Table 3.1. 
Since the number of infants tested per factor changes (number of infants 
tested by selected RAs are less than infants tested during a type of season), 
all number of infants per analysis are separately mentioned in the 
appropriate figures. For every analysis, infants were grouped according to 
factor. The following child-related factors were used to group infants: 

 
1. Gender (for more info on demographics see Table 3.1 and Table 

3.2). 
2. Age. We grouped age by the wave as used in the YOUth project 

(5-month-old vs. 10-month-old vs. 3-year-old). Note that since we 
only recently started testing 3-year-old toddlers, the number of 
subjects is considerably lower (for more info on demographics see 
Table 3.1 and Table 3.2). 

3. Head shape. This was logged by the RA present during the 
testing day. There are four possible options: normocephaly 
(regular skull shape), brachycephaly (shorter than usual skull 
shape), plagiocephaly (skull with a flat spot), and scaphocephaly 
(elongated skull). Note that these are simplified denominations 
and RAs were only asked to group infants based on the category 
which best represented the infant’s head shape 

4. General well-being of the infant. The RA asked the parent after 
testing whether the child was experiencing a typical day, or 
whether there was something amiss. There were three possible 
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answers: “My child is having a typical day”, “my child is ill”, and 
“my child is tired / did not sleep well” 

 
The following setting related factors were used to group infants:  

1. Time of EEG experiment. We grouped these into four time slots: 
early morning testing (08:00-10:00), late morning testing (10:00 
– 12:00), early afternoon testing (12:00-14:00), and late afternoon 
testing (14:00+). The latter was exceedingly rare and was 
therefore discarded from the study.  

2. Order of testing during the test day. Besides the EEG-testing, 
the infant also took part in an eye-tracking session and a parent-
child interaction session. Therefore, the EEG session could be the 
first, second, or third session (cf. Onland-Moret et al., this issue). 

3. Season of testing: spring, summer, autumn, winter. 
4. Research assistant (RA). Our approach is similar to the one 

employed by Hessels & Hooge (2019), who assessed the influence 
of RA in the YOUth cohort on data loss in the eye-tracking 
sessions for those RAs who tested at least 33 infants per wave. In 
our case, there were four RAs that tested clearly more infants 
than the others: these four (coded RA1, RA2, RA3, and RA4) 
tested over 40 5- and 10-month-old infants. In addition, to 
observe whether RAs improve with increasing experience, we 
tested the effect of time of RA on data loss over time for all RAs. 

5. Task length. To study the influence of task duration on data loss, 
we logged the average amount of data loss as the task progressed. 
This allowed us to follow the progression of data loss and whether 
or not taking breaks in between trials played a positive role in 
limiting data loss throughout the experiment. Breaks in the 
continuous EEG experiment were breaks in between videos, 
during which a new video was started up. Breaks in the ERP 
experiment were videos used as attention grabbers shown every 
24 trials. 

 
For the following factors, stability over session was determined: 
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1. Attrition due to fussiness. As Tables 3.1 and 3.2 show for each 
wave, several children were to be excluded for further analysis, 
even though they participated in other sessions (i.e., eye tracking 
or parent-child interactions). In all cases, too little (or no) data 
was clean enough for analysis. Attrition due to fussiness of the 
infant was counted when the task was stopped either by the RA 
or parent, due to excessive movement, refusal to wear the cap, 
inattentiveness, sleepiness, or crying. When too much noise was 
detected in the data for analysis (either through too few trials 
surviving cleaning or more than 2 channels being noisy) and the 
infant was logged as restless or crying, this child was also to be 
counted as attrition due to fussiness. 

2. Cap refusal. A subset of too fussy infants, but only those who 
specifically did not start the EEG-experiment but did participate 
in other experiments during the day. 

3. Data loss. For those infants who participated in the tasks, we 
categorized them based on the proportion of data loss: a low 
group (the lowest 50 percent of data loss) and a high group (the 
highest 50 percent of data loss).  

 
To prevent unreliable visual and statistical comparisons, only the 
categories of the categories within a factor which included more than 40 
subjects were used for visualization and statistical analysis. 
 
3.3.5 Data visualization and statistics 
Data loss for infant and setting-related factors was visualized using a 
kernel-smoothed density plot, using MATLAB, with automatically 
determined bandwidth. The kernel-smoothing is used to increase the ease 
of visual comparisons between groups. Data is plotted using the gramm 
MATLAB toolbox (Morel, 2018). As mentioned earlier, data loss 
distributions have two distinct peaks: one around 20 percent data loss and 
another one around 100 percent data loss. Therefore, data is non-normally 
distributed, which is why we used non-parametric tests to compare groups. 
For this, we used the Kruskal-Wallis H test (Kruskal and Wallis, 1952), 
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which is an extension of the Mann-Whitney U test (Mann and Whitney, 
1947) and can be used for comparing two or more independent samples of 
equal or different sample sizes. To test the effect of experience on RA data 
loss, a linear regression was performed with experience as a running 

Figure 3.1. Graphical overview of analysis design. Data is analyzed in four steps. 1) Raw 
data is cut into 1s trials for both the continuous and ERP task, resulting in 360 and 
96 trials respectively. 2) Jump, noise and flatline artifacts are detected and trials 
containing artifacts are selected. 3) Data loss is calculated by calculating the percentage 
of trials containing artifacts over the total expected trials (360 in the case of the 
continuous experiment and 96 in the case of the ERP experiment). 4) Subjects are 
grouped based on factor and the data loss distributions are visualized using a 
probability density function. The probability density functions plotted in the 
visualization step are made using the gramm toolbox (Morel, 2018). The 
stat_density.m function is based on the standard ksdensity.m function in matlab.  
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number of the number of infants tested by the RA. To test the stability 
of longitudinal factors over the course of the entire study, cross-tabulation 
was used to visualize results and chi-square tests of independence were 
used to determine correlations between the categorical variables.   
 
3.4 Results 
We carried out analyses and created figures for both the EEG and the 
ERP experiments. Most figures show distributions of data loss. The data 
loss of each infant is one value in each distribution. Higher amounts of 
data loss imply noisier data. Therefore, distributions with its center of 
gravity further towards the left signify generally cleaner data.  

Since both tasks yielded similar results for most comparisons, we 
decided to present only the results for the continuous EEG task in the 
main article, as these results were determined using more trials. Only when 
there was a difference between the tasks we present both results in the 
main article. The results for the ERP task are in the supplementary 
materials.  
 

3.4.1 Influence of child-related factors on data loss 
Distributions of data loss for four different factors regarding the child 
tested are shown in figure 3.2. Figure 3.2A presents the different data loss 
distributions for different genders. Data loss was nearly identical across 
genders. For both genders, there are bimodal distributions of data loss, 
with clear peaks around 15 and 100 percent data loss. The peaks around 
100 percent appear similar, while the early peak is more pronounced for 
boys. In other words, boys show a slight increase in lower amounts of data 
loss compared to girls. A Kruskal-Wallis H test using gender as a fixed 
factor resulted in a significant effect of gender at the p<.01 level (χ2(1) = 
7.282, p = 0.007), indicating that boys have slightly lower data loss 
compared to girls.  

Figure 3.2B visualizes the data loss distributions for the different waves 
as used in the YOUth study. Infants in both the 5- and 10-month-old 
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waves show very similar data loss distributions. The 3-year-old wave,  
however, revealed marked improvement. Three-year-old toddlers were less 
likely to be 100 percent discarded and more likely to show lower amounts 
of data loss. The fixed factor wave was tested using the Kruskal-Wallis H 
test, which found a significant effect at the p<.05 level (χ2(2) = 8.925, p 
= .012). 

Figure 3.2. Influence of infant related factors on infant EEG data loss. This Figure shows 
probability density functions of data loss for different factors relating to infants. Note 
that all distributions show two distinct peaks. One at 100 percent, indicating all infants 
discarded from the data set, either due to very noisy data or due to too many bad 
channels; and one at +/- 15 percent indicating the group of infants who very 
successfully participated. A) The data loss distributions for boys and girls: boys have 
a larger likelihood to have lower data loss. B) The data loss distributions between 
waves show a large effect for 3-year-old toddlers, who show markedly improved data 
loss. Data loss between 5-month-old and 10-month old waves is similar. C) Data loss 
distributions for different head shapes (normocephaly, brachycephaly, plagiocephaly, 
and scaphocephaly). Large differences can be seen in data loss distributions, with both 
plagiocephalic and scaphocephalic infants showing markedly higher and highly varying 
data amounts of data loss. D) Data loss distributions for ill or tired children showed 
no clear effect on data loss distributions compared to infants who participated during 
a typical day. 
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The data loss distribution for different head shapes of participating 
infants is depicted in figure 3.2C. Data loss distributions show distinct 
differences. The peak at 100 percent data loss is similar across head shapes. 
However, both normocephalic and brachycephalic infants show a higher 
likelihood of low data loss, with a higher peak of around 15 percent. Both 
plagiocephaly and scaphocephaly show peaks further to the right and 
highly variable amounts of data loss. This effect was tested to be 
significant at the p<.01 level (χ2(3) = 11.832, p = .008). 

Lastly, figure 3.2D shows the effect of any subtle problems the infant 
might have had during testing according to the parent present. The parent 
was asked whether the child had been ill, was tired, or was experiencing a 
typical day. Both tiredness and illness showed no marked effect on data 
loss distributions. A Kruskal-Wallis H test yielded no significant results. 
ERP data showed similar results and are depicted in Supplementary 
Figure 3.1. 
 
3.4.2 Testing related factors on data loss 
Figure 3.3 shows distributions related to the timing of the experiment. As 
can be seen in Figure 3.3A, data loss distributions were different across 
EEG timeslots. This is more visible in the peak resembling the lower data 
loss group: early EEG testing (between 8 a.m. and 10 a.m.) leads to a 
higher likelihood for the infant to be in the lower data loss group. The 
difference in timeslots is not apparent in the second peak, which resembles 
those infants with a 100 percent data loss. This suggests that the time of 
day only affects data loss for those infants who complete the tasks, but 
not for those infants for whom the task was terminated prior to 
completion. A Kruskal-Wallis H test with timeslot as fixed factor yielded 
a significant result at the p<.01 level (χ2(2) = 12.023, p = .002). 

The influence of experiment order is presented in Fig 3b. Recall that 
during the test day, each infant participates in three sessions in random 
order: the EEG-experiments, an eye-tracking session, and a parent-child 
interaction (PCI)-session. Each other session usually takes 10-20 minutes. 
To limit the influence of early morning testing, which is strongly correlated 
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to EEG being the first experiment tested, only infants who had their EEG-   
experiment after 10 a.m. were taken into account. Figure 3.3b shows that 
there is little difference in data loss distributions whether the infant 
participates in the EEG-experiment first, second, or last during a test day. 
The Kruskal-Wallis H test yielded no significant results. The ERP data 
showed similar results and are depicted in Supplementary Figure 3.3. 

Figure 3.3 Influence of timing related factors on infant EEG data loss. This figure shows 
probability density functions of data loss for different factors relating to the timing of 
testing. A) shows that starting time influenced data loss, with early starting infants 
(between 8 a.m. and 10 a.m.) showing cleaner EEG data. The low data loss peak is 
slightly displaced to the left and a higher peak indicates a higher portion of infants has 
low data loss early in the morning. Time slots did not cause differences in infants with 
100 percent data loss. B) shows that order of testing has limited influence on data loss: 
whether EEG was the first, second, or third task of the day, data loss was relatively 
similar. C) shows that season of testing also considerably influenced data loss. Infants 
showed lower data loss in sunny months in the Netherlands with a higher portion of 
infants showing low data loss and a lower portion of infants showing 100 percent data 
loss. D) shows the data loss of the study, averaged over year. Each dot represents the 
average data loss per day. A clear increase in data loss can be seen around late 
autumn/early winter. A smoothed line was drawn, which can be used as a visual aid 
(using Eilers and Marx’ method with automatic lambda (Eilers & Marx, 2002). 
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Figure 3.3C visualizes the effect of season of testing on data loss. 
Warmer seasons in the Netherlands (spring and summer) show markedly 
lower amounts of data loss compared to colder seasons (autumn and 
winter). This effect was visible in both peaks: in a higher amount of lower 
data loss infants and lower amounts of 100-percent data loss infants. The 
Kruskal-Wallis H test confirmed this effect to be significant at the p<.01 
level (χ2(1) = 7.011, p = .008). Figure 3.3D adds to this by showing the 
average data loss per day for every day in the year. A clear bump can be 
seen in the autumn and winter months. Supplementary Figure 3.2 shows 
this effect throughout the entire study (so not averaged per year), with 
clear bumps in data loss at the start and end (winter and autumn) of 2016, 
2017, 2018, and 2019, compared to spring and summer each year. 

Figure 3.4 shows data distributions across different research assistants 
(RAs). The only RAs included here are RAs who tested at least 40 infants 
of both 5-month-wave and 10-month-wave infants. The four panels show 
the distributions of data loss for infants in these waves (top and bottom), 
for both the continuous and the ERP task (left and right).  
 The continuous task (left panels) reveals large differences in data loss 
distributions between RAs, with RA 3 and RA4 outperforming RA1 and 
RA2 across age groups. Peaks of infants with low data loss can be seen 
further to the left. Clearly, RA4 has a distinctly lower 100 percent data 
loss peak compared to the other RAs. Kruskal-Wallis H tests were 
conducted, separately for each of the waves. The effect of RAs on the 5-
month-old data loss was found to be significant at the p<.01 level (χ2(3) 
= 11.549, p = .009). A significant effect was also found for the effect of 
RAs on the 10-month-old data loss at the p<.001 level (χ2(3) = 20.207, p 
< .001).  

The influence of RAs on data loss during the ERP task is shown in the 
right panels of Figure 3.4. In contrast to the continuous EEG sessions, we 
note that there were only limited differences between RAs in the 5-month- 
old infants. However, clear differences can be seen at the 100 percent peak, 
with RA4 showing lower proportions of infants with 100 percent data loss. 
Also, a slight displacement can be seen in the low data loss infant peak 
with RAs 1 and 2 being slightly more shifted to the right. Differences in 
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Figure 3.4 The influence of four research assistants (RAs) on data loss. Shown RAs have 
tested at least 40 infants in the 5 and 10-month waves in both continuous and ERP 
tasks. Clear influence of RA can be seen across all tasks and age groups. RA3 and 4 
continuously outperform RA1 and 2, with low data loss peaks shifted to the left in 
both the continuous and ERP task. The proportion low data loss is also higher for RA1 
and 2 in the continuous task and the ERP task with 10-month-old infants. The ERP 
task shows lower influence of RA in the 5-month-old wave compared to the 10-month-
old wave. Ranking of assistants remains consistent over age groups and tasks (RA4 > 
RA3 > RA2 > RA1). E) shows the data loss per previously studied RA over time. A 
clear downward trend can be detected for three of the four studied RAs. Indicating an 
effect of experience on data quality per RA. 
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the 10-month-old wave are more distinct with once again RA3 and RA4 
outperforming RA1 and RA2. Kruskal-Wallis H tests yielded significant 
results at the p<.01 level in the 5-month-old wave ERP data (χ2(3) = 
13.268, p = .004) and at the p<.001 level in the 10-month old wave ERP 
data (χ2(3) = 40.984, p < .001).  

What can be clearly seen from these distributions is that the ranking 
between RAs remains similar across tasks and waves (RA3 and 4 versus 
RA1 and 2), with RA4 outperforming all other RAs across tasks and 
waves, and RA1 performing worst across all tasks and waves. It is 
therefore likely that RA is the driving factor in data loss caused here, as 
RA performance appears consistent across waves and tasks.   
 Figure 3.4E shows data loss for 5 and 10-month-old infants for each of 
the four RAs as a function of time across the years, capturing their 
experience. Clear effects of experience can be seen in three of the four RAs: 
data loss decreases over time. To test this the effect of experience a linear 
regression was calculated using RA experience of all RAs (not just the four 
RAs mentioned above) to predict data loss. The following significant 
regression equation was found (F(1,2199) = 10.849), p<0.01, R2 = 0.005). 
 Figure 3.5 shows the effect of the length of the task on data loss. The 
top panel shows data loss of trials throughout the entire continuous EEG 
experiment while the lower panel repeats this for the ERP experiment. 
Recall that during the continuous EEG experiment, six one-minute-long 
videos are presented. In between videos, each infant can take a short break 
as the new video is started. Figure 3.5A reveals a clear effect of the breaks: 
they coincide with a decrease in data loss. A second finding is that there 
is only a minor upward trend indicating a higher likelihood of data loss 
over the course of the entire experiment. Comparison between the five- 
and ten-month-old infants further shows that both age groups perform 
rather similar over the course of the entire experiment.  

Figure 3.5B shows data loss as a function of the course of the task, for 
the ERP experiment. Every 24 trials mandatory breaks are taken by 
showing a short video clip (‘attention getter’). We can see the effect of 
these breaks, as a decrease in data loss right after the break. However, this 
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effect appears more short-lived. Thus, the ERP experiment differs from  
the continuous experiment in that the upward trend in data loss proceeds 
shortly (almost immediately) after the break. Moreover, compared to the 
EEG experiment, the ERP experiment witnesses a more pronounced 

Figure 3.5 Data loss over the course of the entire experiment. A) The continuous 
experiment consists of 2 unique videos, repeated 3 times. After each video a short break 
is experienced during the starting up of the new video. Clear upward trends can be 
spotted over the course of each separate video. This upward trend is reset after each 
break. A slight upward trend over the course of the entire experiment can also be 
detected. Both 5 and 10-month-old infants showed similar data loss over time. B) The 
ERP experiment consists of 96 trials, with mandatory breaks after every 24 trials, 
during which a video is shown. Here also a clear effect of break can be seen, with stark 
decreases in data loss after each break, especially later in the experiment. Contrary to 
the continuous experiment, however, the improvement does not last for much longer 
than 2 trials, which indicates that data loss did not reset. 5-month-old infants seem to 
outperform 10-month-old infants, but data loss increased more sharply over the course 
of the experiment in the 5-month-old infants. 
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increase in data loss over the course of the experiment. It appears that 
both groups of infants react differently to the stimuli they are viewing. 
Differences between 5 and 10-month-old infants become smaller over the 
course of the ERP-experiment, but 5-month-old infants consistently show 
lower amounts of data loss than the 10-month-old infants do. Note that 
for both paradigms the first and last trials show a larger proportion of 
data loss, which possibly indicates an effect of starting and quitting the 
experiment. 

 
Table 3.3 Cross table of included vs excluded based on fussiness 

 
3.4.3 Longitudinal effects and effects of entire study on data loss 
We determined stability between 5 and 10-month-waves of several data 
loss characteristics by creating cross tables of these characteristics and 
performing a chi-square test for independence to check whether there is a 
relationship between the categorical variables. Table 3.3 is a cross table 
comparing the stability of infants who were either included or excluded 
due to fussiness over sessions. No significant relationship was found 
(X2(1, N = 757) = 1.28, p = n.s.). Table 3.4 is a cross table of cap refusal 
of the 5-month-olds’ and 10-month-olds’  sessions. A significant 
relationship was found (X2(1, N = 980) = 4.4, p < .05), indicating that 
cap refusal in the first session influences the likelihood of cap refusal in 
session two and vice versa. Please note, however, that cap refusal is rare, 
and that only 3 / 980 infants refused the EEG cap in both sessions. 

Table 3.5 is a cross table for the amount of data loss. Data loss is 
categorized into high data loss (being in the group with the 50% highest 
data loss) and low data loss (being in the group with the 50% lowest data 
loss). A chi-square test for independence yielded a significant result 
(X2(1, N = 672) = 6.3, p < .05), indicating some stability over sessions 

   
Session 2 

  Included Excluded 

  N % N % 

Session 1 
Included 515 86.7 128 82.1 
Excluded 86 14.3 28 17.9 
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for these categories. However, a correlation showed no relationship 
between individual values of data loss over both sessions (r = 0.070).  
 
Table 3.4 Cross table of cap refusal  

 
Table 3.5 Cross table of amount data loss 

 

3.4 Discussion 
Attrition rates in infant EEG are usually high. While previous research 
has given a clear overview of which factors affect attrition rates similarly 
across studies, little is known about the factors contributing to data 
attrition within a study. In this paper, we showed that there is a wide 
array of factors influencing data attrition in one large-scale study. These 
factors can vary between subjects, possibly changing outcome measures 
and results, which may lead to biased conclusions.  
 The factors influencing data attrition described in this study can be 
broadly divided into three groups: child-related factors, testing-related 
factors, and longitudinal (study-specific) factors. Three child-related 
factors were found to influence data loss: gender, age, and head shape. 
Four testing-related factors were found to influence data loss: time of 
testing, the season of testing, research assistant present during the 
experiment, and task length all had considerable influence on data. Lastly, 
data attrition rates of the first session of testing were found to be related 
to the second session of testing, underlining possible longitudinal biases in 
terms of data loss. The influence of all these factors was found irrespective 
of which EEG task analyzed, even though data loss was found to be lower 

   Session 2 

  Yes No 

  N % N % 

Session 1 
Yes 3 6.8 19 2.0 
No 41 93.2 917 98.0 

   
Session 2 

  Low  High 
    N % N % 

Session 1 
Low  197 56.8 153 47.1 
High  150 43.2 172 52.9 
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in the continuous EEG experiment presenting audio-visual video clips 
compared to the ERP paradigm presenting still images. Below we first 
discuss the main findings concerning our three factors of interest, then we 
will discuss the limitations and future directions of this study and lastly, 
we will formulate recommendations based on the results described here to 
minimize data loss in future infant EEG studies.  

 
3.4.1 The impact of child-related factors on EEG data loss 
By comparing data loss between the age groups in our study, we found a 
slight influence of age on data loss. The oldest group (three-year-old 
children) showed markedly lower data loss, but between 5- and 10-month-
old infants, the difference in data loss was negligible. This is in 
contradiction with the finding of Slaughter and Suddendorf (2007), who 
described younger infants having slightly higher attrition rates compared 
to older infants, which they explained by a higher rate of sleepiness of 
younger infants during testing. What is likely is that in our study the 
higher likelihood of tiredness for younger infants during testing is offset 
by the higher likelihood of resistance to preparation procedures or 
restlessness in older infants (Hoehl and Wahl, 2012), resulting in similar 
data loss across waves. Support for this reasoning comes when we compare 
our results to data quality for the same set of children in a different session: 
eye tracking. Hessels and Hooge showed that for the eye-tracking sessions 
in the YOUth Infant & Child cohort there was a limited difference in data 
loss between 5 and 10-month-old infants, but that quality significantly 
improved for the three-year-olds (Hessels and Hooge, 2019).  

Surprisingly, data loss was lower for boys than for girls. We did not 
anticipate this finding. We tentatively speculate post-hoc here that 
research assistants might find it easier to approach and handle boys, which 
speeds up capping, whereas they are more careful and considerate in 
capping girls. This fits with findings that mothers, too, behave differently 
with their daughters than with their sons (Clearfield and Nelson, 2006). A 
different possibility might have to do with differences in head 
circumference. Boys have generally larger heads during infancy (Niklasson 
and Albertsson-Wikland, 2008), which we also, on average, found in our 
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study (boys: 44.8 cm +/-1.9, girls: 43.5 +/- 2.0). Larger heads could 
increase the fit of the cap and therefore decrease data loss.  

Another factor we examined was the impact of infant head-shape. 
Irregularity of head shape causes a higher possibility of data loss in infants, 
which is probably caused by poorer cap fit. It is important to note that it 
is currently unknown how well this result generalizes towards other EEG 
equipment types. In our experience, irregular head shape of an infant 
affects data loss in electrodes towards the edges of the cap most negatively. 
This is likely caused by an increase or decrease in pressure on the electrode 
sites. Net-saline equipment could also be affected by this, but further 
research is necessary. For cap-gel equipment, this is evidence that the 
development of infant specialized EEG-equipment is warranted. One 
possible solution could be the creation of caps specifically designed for the 
most common head shape irregularities (flat-spotted back head, elongated 
head shape). While this increases costs in terms of material needed, this 
could be counterbalanced by a lower probability of data loss. Future 
testing is needed to understand whether creating caps for a wider range of 
head shapes increases data loss. 

Finally, we asked whether parents’ judgments on the suitability of the 
child for this particular testing day affected data loss. We did not observe 
noticeable effects here: ‘regular days’ showed similar patterns as ‘days 
when children were judged to be tired’; or when parents reported that 
their child had just recovered from illness, like a cold. The most likely 
explanation for this effect is that infants who are too ill or too tired will 
not come in for testing and, as such, only slightly ill or tired infants 
participate. It is therefore essential that the lab is flexible and allows for 
rescheduling of appointments whenever the parents feel it is necessary. 
Small changes in the well-being of an infant will apparently not influence 
the likelihood of data loss.  

 
3.4.2 The impact of measurement-related factors on EEG data loss 
We also examined a wide range of factors regarding the testing 
arrangements. Above all findings, the choice of research assistant (RA) 
influenced data loss in our infant sample. The RA-dependency of infant 
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EEG data underlines the importance of close monitoring of data loss. Even 
in the YOUth project, which has a rigorous training program for new RAs, 
with live-monitoring sessions, it is impossible to level the playing field 
between RAs in terms of data loss. In addition to the differences between 
RAs in data loss, a positive effect of experience was also found. Experience 
(as in the number of infants tested) was negatively related to data loss, 
both for the four RAs (Figure 3.6B) and for all RAs together.  

A possible explanation for this effect of RA on data loss is that some 
RAs are more proficient in capping. Shortening capping times presumably 
enables children to have more energy and attention for what is coming 
next (i.e., the experiment), which enhances the likelihood of infants 
successfully completing the experiment. Note, however, there is no 
research yet examining the factor of capping time on data loss. Secondly, 
some RAs might prove better at calming both infants and parents in 
potentially stressful situations, resulting in less data loss. Also, some 
assistants might be more likely to intervene in the experiment when the 
EEG signal is deteriorating or when the child signals a need for a break 
(to e.g. eat a breadstick). Lastly, it is also possible that some RAs simply 
need more time to become proficient enough to limit data loss. Figure 3.6B 
hints at this with start data loss wildly differing between RAs, but all 
seemingly trending towards the same data loss limit. It is important to 
mention that none of the RAs tested here underperformed based on our 
expectations. We expected a dropout rate of 20-30%, which all these RAs 
complied with. The main difference was caused by two overperforming 
RAs (data loss dropout rate of ≈ 10%). Specifically studying the 
outperforming RAs could provide us with valuable information to limit 
future data loss.  

What should be seen as a limiting factor is that studying the effect of 
RA on data loss is difficult as many other hidden factors could be driving 
differences in data loss. For example, some RAs could only have tested in 
the summer months, only during the early hours of the day, or only tested 
on certain weekdays. In our case, we only picked RAs who have tested for 
an extended period of time during the entirety of the study and are 
available throughout the day. So, the mentioned factors would likely not 
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affect the outcome here, but there might be currently unknown factors 
that drive these differences. Therefore, it will be valuable to know how 
well this result translates to other studies. 

A second factor that impacted data loss was the time of onset of the 
EEG task. Earlier hunches were confirmed that early morning testing 
lowered data loss. This is likely to be caused by early morning testing 
fitting better in most infants’ sleep/eat-schedules, with most young infants 
waking and eating early. An early morning participant will, therefore, 
more likely to be well-rested and well-fed. Also, an early morning 
participant will have had fewer chances to be overwhelmed by experiences 
that are out of the ordinary.  

Besides the time of day, we also found an influence of the season in 
which testing took place. Infants generally performing better during the 
warmer months in The Netherlands (spring and summer). One possible 
explanation for this is that during the warmer months in The Netherlands, 
infants have a possible lower likelihood of colds or flu. Even when parents 
indicate that their child can participate even though he or she just 
recovered from an illness such as the flu, it is our experience that these 
children can be irritable and do not tolerate capping. A different 
explanation of why data loss is lower in spring and summer could be 
related to the higher humidity during the summer months. Humidity 
affects skin impedance during a measurement (Clar et al., 1975). 
Therefore, higher humidity can increase the ease of signal transmission 
between the electrode and the scalp, lowering the possibility of data loss. 
Opposingly, an increase in high humidity can also increase sweating, which 
in turn can cause sweating artifacts (White and Van Cott, 2015). 

Lastly, the factor of time elapsed during a task impacted data loss. The 
more the task progressed, the higher the likelihood there was data loss. 
This effect was heightened in the ERP design, which showed a clear 
increase in data loss over the course of the experiment. These results are 
in line with earlier studies, which found results from ERP studies to 
change over the course of an experiment (Nikkel and Karrer, 2009; Stets 
et al., 2012). Both of our experiments revealed a positive effect of breaks: 
with the continuous experiment resetting in data loss likelihood after every 
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break while the ERP experiment only witnessed a short improvement in 
chance on data loss, after which it reverted to the original data loss 
progression. This could be caused by infants getting habituated to the 
ERP paradigm. The ERP paradigm has little changes over the course of 
the experiment, while the continuous EEG paradigm changes constantly 
over the course of every video. This underlines the importance of the 
development of new EEG paradigms specifically designed for infants. It is 
vital to not only consider the choice of stimuli but also how to implement 
new ways to take breaks. In the continuous experiment, the restarting of 
a new video seemed to have a desirable effect, while the showing of a short 
movie clip did not cause a similar long-lived effect in the ERP experiment.  
 
3.4.3 The impact of longitudinal factors on EEG data loss 
Some evidence was found for stability of data loss over waves. Data 
attrition due to fussiness was not found to be stable over sessions. 
However, infants who were categorized as high data loss in one session 
were more likely to be categorized similarly in the other session and vice 
versa. This ties in with the earlier found relationship between infant 
temperament and data attrition (Marshall et al., 2009), where infants with 
a negative temperament showed higher attrition rates than infants with a 
positive temperament. This could prove problematic in longitudinally 
designed studies, as infants with certain character traits would have biases 
in data availability. This might influence outcomes and in turn, can lead 
us to draw wrong conclusions when comparing infants. Moreover, it 
questions whether all results can be generalizable to the whole population.  

Similar results are found in cap refusal: when an infant refused to 
participate in the experiment in one session, he or she was more likely to 
refuse to participate in the other session as well. This result might be used 
for future researchers to decide to call on an infant who has refused to 
participate in a study before since there is a higher likelihood of cap 
refusal. What is important to note, however, is that cap refusal in our 
study was exceedingly rare. So rare that only 3 infants (of the in total 980 
tested) refused the cap twice.  
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3.4.4 Limitations of the current study 
Some caveats have to be taken into account when judging the 
abovementioned conclusions. First and foremost, we studied each factor 
in isolation. As a result, the exact relationship between the interplay of 
factors described here and data loss remains difficult to characterize. 
Moreover, there may be other, more fundamental, factors affecting the 
factors described here. Perhaps the differences between RAs are all to be 
explained if we realize that some RAs frequently start at 10 am or whether 
some RAs only work on some workdays. We have checked these 
specifically and found them to be untrue, but there could be countless 
other factors influencing data loss, stretching beyond our current 
imagination. Therefore, while our results suggest that some factors can 
explain data loss, these factors may share a common origin currently 
unknown.  

Secondly, this study focuses only on the external factors related to 
infant and setting but ignores any factors related to technical issues arising 
from using EEG in infants. For instance, the two most popular techniques 
currently used are cap-gel and net-saline systems. Since our study only 
uses cap-gel equipment, we cannot systematically compare these 
techniques on data loss (DeBoer et al., 2007; Johnson et al., 2001). 
Readers, therefore, have to be careful generalizing these results to other 
EEG techniques. This is especially true for head shape, which could have 
different effects on net-saline equipment. Also, researchers vary widely in 
how they pre-process the data (e.g., in choice of reference electrode; 
filtering, and trial rejection criteria). We did not manipulate the choice of 
analyses here since we felt this would go beyond the scope of the paper. 
There are other papers available that examine the consequences of 
different pre-processing steps or analyses (Luck, 2010). Future research is 
warranted to examine whether these technical issues influence infant EEG 
data loss differently. 

Lastly, it might be tempting to equate data loss to data quality, but it 
is not. Future research is necessary to better understand what constitutes 
acceptable data for different tasks. On the one hand, previous studies have 
found that studying more infants with fewer trials can sometimes yield 
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better and more reliable results in infant ERP studies (Stahl et al., 2010; 
Stets and Reid, 2011). On the other hand, in face-processing ERP tasks, 
ERPs appear more reliable when more trials are included (Munsters et al., 
2019). For EEG connectivity, current evidence seems to point to more 
data equates to more reliable results (Fraschini et al., 2016; van der Velde 
et al., 2019), but it is unknown whether this always holds true. Recall that 
there is no such thing as a golden standard for minimum amount of 
required data in an EEG study. Therefore, future studies are warranted 
to increase our understanding in which cases, which factors have to be 
taken into account to increase result replicability and quality. 

 
3.4.5 General recommendations  
Our results presented here, in addition with the earlier studies on data 
loss and attrition in infant EEG (Hoehl and Wahl, 2012; Slaughter and 
Suddendorf, 2007; Stets et al., 2012), lead us to provide the following 
recommendations for developmental EEG researchers. These 
recommendations can hopefully be used in future studies to ease the 
gathering and analysis of infant EEG data.  

Firstly, it is important to understand that there is a wide range of 
factors that potentially influence data loss in infant EEG studies. Some of 
these factors are well-established factors, like the length of the experiment, 
age, or child temperament, but there are also external influences that 
researchers are less likely able to control, like the season of testing or infant 
gender. It is especially important to understand that these uncontrollable 
external factors could be represented in your different groups in a biased 
way. For example, in a longitudinal study, one could study a group of 
young infants in the summer and then re-test them 6 months later in the 
winter. This could increase data loss specifically in the re-test group, 
possibly biasing outcomes in comparing the two groups. Also, this could 
lead to increased data attrition, limiting the power of your longitudinal 
analysis.  

It is likely that a far wider range of factors than described in this study 
influence data loss and data attrition. Keeping this in mind when 
analyzing studies is vital, especially with data-driven approaches, like 
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Hidden Markov Models and machine learning. Such factors potentially 
could mask our understanding of why differences between groups exist. 
Differences can likely arise from differences in data loss due to these 
external factors. Either from biases in the representation of certain infant 
characteristics or through lower reliability of measures gathered with 
increased data loss. Keeping a running tally of data loss and attrition can 
aid one’s understanding of when and why certain important events 
happen. 

Secondly, when studying the infant brain through EEG, we advise 
limiting the use of different research assistants. Not only did we observe 
influences from the research assistant present during testing on the 
amount of data loss, but we also saw that experience greatly reduced 
variation across RAs coupled with an overall decrease in data loss. In 
large-scale studies (like the YOUth project) it is not always possible to 
rely on a small set of RAs. In these cases, closely monitor your assistants. 
In the YOUth project, we have set up a running tally of data loss for each 
assistant. This allows a better understanding of which conditions data loss 
happens and also to intervene if necessary. More importantly, it allows us 
to learn from those assistants who are exceeding our expectations.  

Thirdly, it is important to understand that controlling for data loss is 
not always feasible. If data loss is biased in the amount between your 
groups, controlling for it could hide the true outcome. Moreover, increased 
data loss might lead to increased attrition. Having to test extra infants in 
certain groups to ensure equal population sizes could bias certain groups 
by increasing the likelihood of infants with better temperament being in 
certain groups. Therefore, ensuring environmental factors are least likely 
to cause data loss should be one of the most important points in designing 
infant EEG studies. We summarize these points as follows: 

 
1. Focus on testing early in the day, paying heed to infant eat and 

sleep schedules. 
2. Preferably test in the summer or spring months. 
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3. Keep the experiment short and interesting. Create infant-specific 
stimuli, with breaks. Use auditory (or audio-visual) stimuli if 
possible. 

4. Limit the number of research assistants used and designate them 
to EEG recordings only if possible 

 
Finally, it is unknown how well the results described here generalize to 
other infant EEG studies. We believe we can only advance our 
understanding of what factors contribute to data loss when more studies 
are more explicit in reporting their numbers of attrition and data loss. 
This echoes the recommendations put forward in the meta-analysis on 
data attrition by Stets and colleagues (2012), who reported that many 
studies prior to 2012 did not include such information. Failure to include 
these types of information limits our understanding of the origins and 
reasons for data loss. Moreover, it could mask biases within data sets. We, 
therefore, recommend that studies should report attrition rates split, at 
least, by age groups and gender. Ideally, to further improve general 
insights into the data loss of infant EEG studies, studies should include 
data loss distributions to visualize differences or highlight potential biases 
between groups.  

These recommendations are not only meant for researchers, but also 
for editors and reviewers of developmental journals. The field requires new 
guidelines to which infant EEG researchers need to adhere to when 
publishing their data. Especially, as data sets become larger and cross-lab 
collaborations increasingly common, we need better insights into the 
quality and biases in which individual data sets are collected.  
 
3.5 Conclusions 
Data loss in infant EEG is costly, as it leads to underpowered infant EEG 
studies. One (undesirable) solution to add power would be to test more 
infants, but this requires time, money, and easy access to infants. Another 
solution would be to create a testing environment that limits data loss. It 
is therefore of the utmost importance to design infant EEG studies 
specifically with limiting data loss in mind. Many decisions that 
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researchers make to limit data loss are based on their hunches. This study 
put these hunches and other factors to the test, by comparing data loss 
distribution across several factors related to the setting or the infant itself. 
These factors have to be kept in mind when designing and analyzing new 
infant EEG studies. We hope that this article not only informs the reader 
but also progresses the debate on the topic of EEG data loss in infants.  
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Appendix I: Supplementary figures 
 
 
 
 
 
 

Supplementary figure 3.1. Effects of infant-related external factors on ERP data quality. 
Plots with data loss distributions of all external factors also tested with continuous 
EEG data. Gender, wave, head shape, and typical day all show similar plots as with 
continuous EEG data, underlining the influence of these factors on data quality.  

Supplementary figure 3.2. Effects of timing-related external factors on ERP data quality. 
Plots with data loss distributions of all external factors also tested with continuous 
EEG data. Time of onset of testing, order, and season all show great overlap with the 
continuous EEG plots. Once again, a distinct bump in data loss can be seen in figure 
D) around autumn and winter.   
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Supplementary figure 3.3. Data loss over the course of the entire study. Data loss over the 
course of the entire study is shown here. Every dot is a measurement of a single subject 
in a particular month. Data is slightly jittered to increase visibility of most dots. A 
smoothed line of the averages per month is shown here. A cyclic rhythm can be seen 
with lower data loss in the spring and summer months (middle of each year) and higher 
data loss at the start and towards the end of each year (winter and autumn). This 
rhythm can be found across age groups. 
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4.1 Abstract  
Infants’ socio-cognitive ability develops dramatically during the first year 
of life. From the perspective of ontogeny, the early development of social 
behavior allows for parent-child attachment, which in turn enhances 
survival. Thus, it is theorized that the development of social behavior, 
driven by social brain networks, forms the core of developmental 
acquisitions during this period. Further, understanding the maturation 
within the neural networks during social development is crucial to obtain 
a better grasp of the development of social developmental disorders. 
Therefore, we performed a longitudinal study in 854 infants measured at 
around 5 and 10 months to map the development of functional networks 
in the brain when infants were processing social and non-social videos. 
Using EEG, we focused on the frequency bands most commonly connected 
to social behavior: theta and alpha. We found that alpha networks 
remained relatively stable over the first year of life and showed no 
selectivity for social versus non-social stimuli, theta networks, showed 
strong global reconfigurations. The development of the theta networks 
progressed from a parietal occipital network in early infancy to a 
frontoparietal network towards the end of the first year of life. This 
reconfiguration coincided with selectivity for social versus non-social 
stimuli, with infants approaching the end of their first year of life showing 
increased synchronicity of theta communication when watching social 
videos versus non-social videos. Our findings provide strong evidence for 
the involvement of a frontoparietal theta network in the development of 
the social brain.   
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4.2 Introduction 
Human social behavior develops dramatically during the first year of life. 
After birth, a newborn shows little social capabilities, but during the 
development between 4 and 12 months of age, infants start to exhibit signs 
of joint attention, vocal communication, and participate in complex social 
constructs, like games. These dramatic developmental changes in behavior 
are accompanied by equally dramatic changes in the brain, which triples 
in size during the first year of life (Huttenlocher and Dabholkar, 1997; 
Huttenlocher and de Courten, 1987; Innocenti and Price, 2005; Keunen et 
al., 2017). Young infants cannot tell us whether they possess certain social 
capabilities. Therefore, to study the onset of these capabilities, it is useful 
to detect whether unique neural correlates exist when processing certain 
social stimuli. For example, the finding that the brain of an infant already 
responds differently to faces versus houses at three months of age provides 
evidence that young infants are already primed to detect and process these 
important social cues (de Haan et al., 2001). Detecting and processing 
faces, however, is just one facet of social development. As an infant 
develops, social behavior becomes more complex, requiring input from a 
wide range of brain areas. 

Therefore, when linking the development of the processing of complex 
cues with neuronal changes, researchers often focus on the development of 
infant brain networks. After birth, the network features of the infant's 
brain show many of the macroscopic properties of an adult brain, with the 
exception that the infant brain has an overabundance of connections 
(Huttenlocher and de Courten, 1987) and is unoptimized. Therefore, 
during childhood and later development, brain networks are optimized 
through the process of selective pruning of unimportant connections and 
the strengthening of important (and often long-range) connections (Huang 
et al., 2015; Yap et al., 2011). This optimization process from a localized 
to an integrated brain network is already well underway during infancy 
(Fair et al., 2009; Huang et al., 2015; Tóth et al., 2017), possibly allowing 
for more complex behaviors to arise over the course of the first year of life.  

In this paper, we focus on the development of social behavior during 
infancy, by analyzing underlying brain networks and communication 
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patterns when infants view complex social stimuli. Early frameworks 
tackling the relationship between the development of behavior and the 
brain emphasized the maturation of dedicated brain areas as a prerequisite 
for specific behavior (Atkinson, 1984; Johnson, 1990), some emphasizing 
the role of experience herein (Shadmehr and Holcomb, 1997; Spencer et 
al., 2009). However, more recently, the interactive specialization (IS) 
framework highlighted the interrelationship between anatomically distinct 
brain areas (Johnson, 2011). In the IS framework, brain areas respond to 
a wide array of non-specific cues in the undeveloped brain. During 
development, interactions between brain areas cause these responses to be 
more specific towards certain stimuli. Therefore, new behaviors in infants 
will not arise through the onset of activity in one single region but through 
changes in the activity of multiple brain regions. Following this 
framework, the emergence of complex social behaviors coincides with the 
emergence of a so-called social brain network, involved in processing social 
cues.  

In adults, several areas thought to be involved in social processing have 
been grouped as the ‘social brain’ (Adolphs, 2008; 2003; 2001; 1999). This 
‘social brain’ consists of several areas in the prefrontal and the parietal 
cortex. Most importantly, the fusiform face area, superior temporal sulcus, 
and the orbitofrontal cortex. Trying to connect the social brain to 
development, Johnson and colleagues predicted that during infancy the 
differences in brain activity patterns towards social and non-social stimuli 
become more distinct in areas associated with the social brain and that 
the social brain matures as a whole during infancy, rather than maturing 
region by region (Johnson et al., 2005). Work underlining this increase in 
social specialization in the infant's brain is extensive. For example, Farroni 
and colleagues used fNIRS and found evidence for social cortical 
specialization as early as a few days after birth (Farroni et al., 2013). 
Several ERP studies show similar results: infants start showing different 
ERP responses towards upside down versus right side up faces between 6 
and 12-months (Haan et al., 2002; Halit et al., 2003); and start showing 
distinctly different brain activity patterns in response to fearful faces 
compared to neutral faces at 6-months but not at 3-months-of age (Hoehl 
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and Striano, 2010). These studies provide compelling evidence that the 
social brain is undergoing specialization during the first year of life. 
However, evidence for the interactive part of the IS framework is less 
commonly described. Most notably, little is known whether entire 
networks become more specialized towards social stimuli over time. In this 
study, we, therefore, aim to test this hypothesis by testing infant brain 
networks in response to animate and inanimate movies in a large-scale 
longitudinal study.  

Networks in the infant's brain can be studied using the synchronicity 
of oscillatory EEG rhythms to determine the likelihood of communication 
between distinct brain areas, as synchrony in oscillatory activity patterns 
allows for optimized communication between two distinct regions (Fell 
and Axmacher, 2011). These oscillatory rhythms can be divided into 
separate frequency bands. We focus on theta and alpha rhythm networks, 
as these networks can be reliably measured in infants (van der Velde et 
al., 2019). The theta rhythm (3-6 Hz) is  commonly associated with social 
processing. Theta power is greater in infants looking at neutral faces 
compared with smiling faces (Bazhenova et al., 2007) and is increased 
during infant-directed speech (Orekhova et al., 2006). Most notably, an 
earlier study comparing the oscillatory response to inanimate versus 
animate movies found a general increase of theta power that became more 
pronounced between 6 and 12 months of age (Jones et al., 2015).  

Alpha (6-9 Hz) oscillations have also been connected to social 
processing but in a less specific manner. Alpha power is thought to be an 
indication of brain ‘idling’. Therefore, alpha suppression is an indication 
of increased activity in that brain area. For example, observing goal-
directed actions showed this suppression of alpha power in 8 to 16-month-
old infants (Montirosso et al., 2019; Southgate et al., 2009). Also, during 
live eye contact, alpha band-activity desynchronizes in infants of 6-
months-old (Hoehl et al., 2014). Evidence for the involvement of alpha 
frequency communication in social behavior was also found in infants at 
risk for ASD, with infants later developing ASD showing distinctly higher 
alpha connectivity during infancy (Orekhova et al., 2014). 
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The abovementioned studies show the undoubted connection between 
the development of social processing and oscillatory activity patterns, but 
to our knowledge, no longitudinal studies have actively measured the 
development of functional social brain networks during infancy in a large 
population. To assess the underlying neurobiology of the emerging social 
brain, we utilize EEG to study alpha and theta waves in a large group of 
infants twice during the first year of life. Functional networks were created 
using EEG data (theta and alpha bands) gathered from infants watching 
naturalistic social and non-social videos, similar to the ones used in Jones 
and colleagues (2015). We set out to test the hypothesis by Johnson and 
colleagues (2011) that the social brain emerges during infancy and that 
the social brain network increasingly specializes during infancy. Therefore, 
we expect a significant reconfiguration of the functional connectome 
during infancy (between 4-10 months of age). We expect this 
reconfiguration to coincide with an increased specificity of global network 
strength comparing networks of social and non-social cues.    
 
4.3 Methods and materials 
4,3.1 Participants 
The YOUth study is a longitudinal cohort study consisting of two large 
cohorts differing in age range. The YOUth Baby & Child cohort follows 
infants from 20-24 weeks gestational age until the age of seven years. The 
YOUth Child & Adolescent cohort follows children from the age of 8 until 
the age of 16 years. Both behavioral and cognitive development is tracked 
through numerous tasks and methods (e.g. eye-tracking, EEG, MRI, 
questionnaires). The YOUth study was approved by the Medical Research 
Ethics Committee of the University Medical Center Utrecht and all 
participants’ parents provided written informed consent. A brief overview 
of the YOUth study including the measurements conducted at each 
timepoint is available from https://www.uu.nl/en/research/youth-cohort-
study (Onland-Moret et al., 2020)  

The current study only uses data from the YOUth Baby & Child 
cohort, since this is the only cohort in which EEG was measured in young 
children from 5 months onwards. In total, 849 5-month-old infants and 
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642 10-month-old infants were included. Table 4.1 shows the demographic 
and attrition information of all subjects in our study. Attrition due to 
fussiness was counted when the infant was excluded from the analysis for 
having too little (or no) data due to the infant being too tired, inattentive, 
started crying, moved too much, or refused to wear the cap. Attrition due 
to experiment(er) error was counted when the RA logged this or when the 
resulting data file was corrupted. Attrition rates are well into the expected 
range (Stets et al., 2012). Only subjects with EEG valid -data sets for 
both sessions were used in the longitudinal analyses. Table 4.2 shows the 
demographic information of these subjects. 
 
Table 4.1 Cross-sectional demographic and attrition information 

 
Table 4.2 Longitudinal demographic information 

Session Gender N Age (mean) Age (sd) 

5m  428 315.1 25.2 

 Boy 227 315.3 25.5 

 Girl 201 314.9 24.9 

10m  428 167.3 22.3 

 Boy 227 168.0 21.7 

 Girl 201 166.5 23.0 

 

4.3.2 Task Design 
Infants were seated at 65 cm from a computer screen. Either on the lap of 
the parent or, when possible, in a highchair. Infants watched videos of 
either social or non-social content. Each video was 60 seconds in length 
and repeated 3 times. In total, the infants viewed 6 videos with the tasks 

 Gender Total Attrition Exp. Error Fussiness Age (in days) 

    N N % N % N % mean sd 

5m  849 125 14.7 27 3.2 98 11.5 167.2 22.9 

 Boy 421 63 15 17 4 46 10.9 168.3 23.0 

 Girl 428 62 14.5 10 2.3 52 12.1 166.2 22.7 

10m  642 76 11.8 26 4 50 7.8 315.7 24.7 

 Boy 318 32 10.1 14 4.4 18 5.7 316.8 25.0 

 Girl 324 44 13.6 12 3.7 32 9.9 314.6 24.5 
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interleaved. The initial video was randomized between subjects. The social 
video depicted women singing nursery rhymes and the non-social video 
showed toys that were moving without human interference (meaning that 
no hands were present on the screen). All moving toys were toys that 
could move by themselves (for example a spinning top). These movies 
were highly standardized and adapted from earlier work (Jones et al., 
2015; Orekhova et al., 2014; Tomalski et al., 2013) by translating them to 
Dutch. The videos have earlier been used to detect reliable networks and 
characteristics (Haartsen et al., 2020; van der Velde et al., 2019). Beyond 
the content of the videos, the videos were kept as similar as possible. Both 
videos had comparable luminance and included similar amounts of motion 
and sound. The videos were meant to provide infants with typical 
experiences. In between videos, the infant was allowed a short break 
during the startup of the next video (see Figure 4.1A).  
 
4.3.3 EEG Acquisition & Cleaning 
EEG was recorded using a cap with 32 electrodes (ActiveTwo system, 
BioSemi) positioned according to the international 10/20 system, at a 
sampling rate of 2048 Hz. A Common Mode Sense (CMS) and Driven 
Right Leg (DRL) electrode were used to provide an active ground.  

EEG data was analyzed using MATLAB, using the FieldTrip toolbox 
(Oostenveld et al., 2011). The original 2048 Hz data was down sampled to 
512 Hz, using chip interpolation and band-pass filtered at 0.1-70 Hz with 
a two-way Butterworth filter. Artifact removal was similar to work done 
earlier in our lab (van der Velde et al., 2019). The continuous EEG data 
was cut into 1s. trials. Trials were selected for removal if they: contained 
too high amplitudes (> 250 uV); contained jumps (detected with 
ft_jump_removal.m); were excessively non-normal (kurtosis > 7); 
contained flatlining electrodes (inverse of variance > 0.1); or contained 
excessive noise (variance > 1500). The trials before and after bad trials 
were also selected for removal. Channels were removed if more than 40 
percent of the trials in a channel contained artifacts. If no more than two 
bad channels were found in a single subject, the two channels were 
interpolated utilizing weighted averaging of the neighboring channels. If 
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more than two bad channels were found in a subject’s EEG dataset or if 
the two bad channels in question were neighbors, that subject’s session 
was removed from the analysis. After cleaning, the continuous parts of the 
clean EEG data longer than 3 seconds were cut into 3-second trials. The 
sampling points to be included were stored for later use. The PLI can be 
prone to overestimation bias if the total amount of trials is low. Therefore, 
subjects were required to have at least 30 trials in the non-social condition 
and 30 trials in the social condition (see Figure 4.1B). After cleaning, 125 
5-month-old infants and 76 10-month-old infants were removed (see Table 
4.1). The remaining 724 5-month-old infants and 566 10-month-old infants 
were used for further analysis. Data quality characteristics of the EEG of 
the entire cohort are reported elsewhere (van der Velde and Junge, 2020).  

 
4.3.5 Network calculation 
Network calculation was similar to earlier studies of our group (van der 
Velde et al., 2019). To limit the influence of filter edge-effects, the raw 
EEG data was bandpass filtered into theta (3 up to, but not including 6 
Hz.) and low alpha (6 up to, but not including 9 Hz.) frequency bands. 
Since individual theta and alpha peaks are influenced by development, 
alpha1 and theta bands were chosen to encompass all theta and alpha 
peaks +/- 1 Hz. After filtering, the three-second trials were created based 
on the earlier stored sampling data for clean trials. For each epoch, 
connectivity between pairs of electrodes (32*31/2 = 496) was calculated 
with the phase lag index (PLI), relying on the same principle of phase 
locking or phase synchrony (Tass et al., 1998).  

The PLI was chosen over the debiased weighted PLI (Vinck et al., 
2011), as previous work has shown the PLI to be slightly more reliable in 
an infant population (van der Velde et al., 2019). The PLI, proposed by 
Stam and colleagues, (Stam et al., 2007), describes the asymmetry of the 
distribution of phase differences between pairs of signals: 

 

   PLI = %〈𝑠𝑖𝑔𝑛+sin/Δ𝜑(𝑡𝑘)67〉%	 ,  
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where Δ𝜑 is the instantaneous phase difference between signals at time 
point t for k = 1 … N per epoch (N = 5*512 = 2560), determined using 
the Hilbert transformation. | | stands for absolute values, <> for the mean 
values, and the sign for a signum function (phase difference is either -1, 0, 
or 1). The resulting PLI can range from 0 to 1. One of the key strengths 
of the PLI is that it is relatively resistant to volume conductance. Activity 
from a single strong source will likely appear in both electrodes as having 
a phase difference of close to zero. Maybe jumping from phase lagging to 
phase leaping every once in a while, under the influence of noise. This 
centering around zero phase lag will cause the PLI to be calculated as 
zero. The PLI is certainly not completely immune to volume conduction. 
It is, however, one of the most important tools we have to limit the 
influence of it on calculated connectivity. 

The 496 connectivity values per epoch were used to create an adjacency 
matrix for every epoch for a subject. These adjacency matrices were used 
to calculate three separate subject connectivity matrices for both 
frequency bands: 1) An average of the entire experiment, 2) an average 
over the entire social experiment, and 3) an average over the entire non-
social experiment (see Figure 4.1C). In addition to these adjacency 
matrices, global network strength was calculated for each subject 
connectivity matrix by averaging all connections in the network.  

 

4.3.6 Network visualization 
Grand averages were calculated for each of the six categories, by averaging 
each subject’s connectivity matrix for each category over all subjects. To 
visualize these grand averaged connectivity matrices, connectomes were 
created using in-house MATLAB scripts. Two separate visualization 
processes were undertaken. In the first process, the grand averaged 
connectivity matrices were thresholded, to only include the strongest 25 
percent of all connections. The remaining connections were visualized as 
connectomes based on electrode location. In the second process, 
neighboring nodes were grouped and connections between these nodes 
averaged to create average connectivity between areas. The following areas 
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were created through averaging: Frontal (F), consisting of electrodes Fp1, 
Fp2, AF3, AF4, Fz; Left Frontal (LF), consisting of electrodes F3, F7, 
FC5, FC1; Right Frontal (RF), consisting of electrodes F4, F8, FC6, FC2; 
Central (C), consisting of electrodes C3, C4, CP1, CP2, Cz; Left Parietal 
(LP), consisting of electrodes T7, CP5, P7, P3; Right Parietal (RP), 
consisting of electrodes T8, CP6, P8, P4; and Occipital (O), consisting of 
electrodes PO3, PO4, O1, Oz, O2, Pz. A graphical overview of the 
grouping can be seen in Figure 4.1D. In the paper, these networks are 
labeled ‘smoothed connectomes’ to distinguish them from the full 
connectomes, since the process of taking together the connectivity of 
neighboring nodes essentially smoothes the connectome. 

 
4.3.7 Spectral analysis 
Previous work has underlined the possibility of overestimating and 
overinterpreting functional connectivity results due to the strong 
relationship between functional connectivity measures and EEG power 
(Demuru et al., 2020). This is even true for the phase lag index, which is 
calculated without the involvement of signal amplitude. However, 
increases in amplitude likely increase signal-to-noise ratios and with it the 
likelihood to calculate increases in connectivity. Therefore, we have 
included a spectral analysis and will use both theta and alpha power as 
dependent variables to compare to our main outcomes studying functional 
connectivity.  

Spectral preprocessing was performed analogously to the spectral 
analysis in (Jones et al., 2015). Using MATLAB the cleaned epochs were 
subjected to an FFT, creating power spectra for all electrodes. Power 
values were averaged across all epochs and averaged across theta (3-6 Hz.) 
and alpha (6-9 Hz.) frequency bands. Only participants with enough clean 
trials and enough non-noisy channels were included in the analysis. The 
logged theta and alpha power was used for statistical analysis. The 
resulting power measures were strongly correlated with global 
connectivity. Theta power correlated strongly with theta global 
connectivity (r = 0.61) and alpha power correlated strongly with alpha 
global connectivity (r = 0.75).  
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4.3.8 Statistical analysis 
A major difficulty in assessing longitudinal effects is the almost 
unavoidability of missing data (Ibrahim and Molenberghs, 2009). 
Analyzing this type of data with a repeated measurements ANOVA 
(rmANOVA) forces the researcher to throw any subject away with missing 
data in one session, due to the rmANOVA requirement of MCAR (Missing 
Completely at Random). A linear mixed model (LMM), in contrast, 
assumes missing at random (MAR). This means, in practice, that even if 
a single session is missing, we can still use the participant’s data points 
that were observed in other sessions for the analysis. Additionally, 
rmANOVAs assume sphericity and require independent variables to be 
categorical. Therefore, rmANOVAs are an effective procedure, easy to 
implement with statistical software, but only if the above assumptions are 
met, the variances between repeated measures are relatively equal, and we 
have complete data of all subjects. Since missing data is not MCAR in our 
study and additionally we include participant age (which is a continuous 
variable) as an independent variable, using a rmANOVA is not possible. 
Therefore, we opt to use LMMs to test our hypotheses. 

LMMs can be seen as an extension of the linear regression models, but 
also include random effects and correlated errors (Bates, 2005; Jiang, 2007; 
McCulloch and Neuhaus, 2005). Similar to ANOVAs, LMMs include fixed 
effects (observed variables, like in our case connectivity strength towards 
social or toys videos; or time). The most common LMMs include at least 
a subject random effect. This random subject effect, also called random 
intercept, captures the differences in starting point between subjects. A 
subject that has a higher value in session 1 is assumed to also be higher 
in session 2. If necessary, additional random effects can be added to 
capture additional variance or correlation. This all allows for greater 
flexibility in the correlations between sessions. One additional important 
positive aspect of LMMs is that time does not have to be categorical: it 
can be added as a continuous measure. Therefore, in our case, where the 
age of infants is continuously noted in days, using an LMM provides an 
additional benefit (Krueger and Tian, 2004). 
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For our first research question, we evaluated how theta and low alpha 
networks developed over the first year of life. The research question can 
be split into two sub questions: 1) How does the average connectivity 
strength of EEG networks develop during the first year? 2) Does the 
network reconfigure over the first year, and if so, how? To answer these 
questions, we used the above described LMMs. The first sub question 
evaluates how average connectivity strength develops over infancy. We 
created two LMMs: one for theta average connectivity and one for low 
alpha average connectivity. With both LMMs, age was used as a fixed 
effect in addition to random intercept for participants. Since the PLI can 
induce a bias based on the number of trials, for each frequency band we 
compared two models: one with the number of trials as an extra fixed 
effect and one without. We used the Akaike information criterion (AIC) 
to select the most appropriate statistical model (lower is better). In both 
frequency bands, the model with the added fixed effect for the number of 
trials did not yield a significantly better model (theta: 3116.3 versus 
3116.6; and alpha: 2990.0 versus 3007.2). The final model formula was: 
averageConnectivity ~age + (1|subject). 

With the second sub question, we want to look at network 
reconfiguration over time. This is slightly different from our first sub 
question. If the first sub question determines that the network as on 
average increases in connectivity during the first year, we are not 
necessarily interested in that all the connections increase during this 
period. That would be redundant. What we are most interested in, is 
whether some connections become on average more or less important in 
the individual networks. Therefore, we center and scale the networks per 
subject for each session (also known as z-scoring). These z-scored 
connections are then used to perform LMMs. To do LMMs on all the 
connections in a network with 32 nodes would lead to multiple comparison 
issues. Therefore, we use the smoothed connectome of connectivity 
between 7 large areas in the brain (see above). In an undirected 7-node 
network, there are 28 connections. For each of the 28 connections, LMMs 
were fitted with age as a fixed effect, zscored connection as a dependent 
variable, and a random intercept for participant. This was done both for 
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theta and for low alpha networks. Once again, model fit was compared 
between the inclusion of the number of trials as a fixed effect or not. No 
models fitted better with the number of trials as a fixed effect. AIC of 
chosen models for theta connections varied between 2900.3 and 4520.9. 
For alpha connections, AIC varied between 2671.4 and 4596.8. Due to 
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space constraints, the AIC outcomes are in the supplementary material. 
The final formula use was connectionConnectivity ~age + (1|subject). All 
p-value thresholds were Bonferonni corrected. 

For our second research question, we want to understand whether 
during development these theta and low alpha networks show an increase 
in sensitivity for social stimuli versus non-social stimuli. That is to say, 
whether network differences in processing social versus non-social cues 
become more distinct. Once again this question was first answered 
globally: are there differences in average connectivity strength in 
processing social cues versus non-social cues and how does this develop 
over the first year of life. And then locally: are there differences in 
individual connections in processing social cues versus non-social cues and 
how does this develop over the first year of life. We try to answer the first 
sub question by constructing an LMM with average connectivity (for social 
or non-social trials) as a dependent variable and age and social contrast 
(whether the infant was watching a social video or a toys video) as fixed 
effects. Once again, a random intercept for the participant was used. The 
inclusion for the number of trials did not yield a better fitting model 
(theta: AIC = -14469.88 versus AIC = -14449.14; and alpha: AIC = -
13955.92 versus AIC = -13929.38). The final formula used was 
averageConnectivity ~age * socialContrast + (1|subject).  

Figure 4.1. Overview of analysis steps taken during this study. This figure shows all 
analysis steps taken during this experiment. From the gathering of data to the 
visualization of the eventual results. A) depicts an example video order during the 
experiment for a particular infant. The infant either started with the social or toy video 
and watched each video three times interleaved. B) Trials were created by cutting the 
60s dataset in 20 3s trials for each video (so 20*6=120 trials in total) and were 
consequently discarded if problems were found with variance, kurtosis, jumps, absolute 
amplitude, or absence of data. C) Networks were created for each infant by filtering 
clean trials in theta and alpha frequency band. For each frequency band communication 
synchrony was calculated between electrodes using the PLI. Resulting adjacency 
matrices were created for the average synchrony over the entire task, the social videos, 
and the non-social videos. This results in 2 (frequency bands) * 3 (task options) = 6 
adjacency matrices per subject. D) Grand averages were calculated using the average 
of all subject adjacency matrices for each of the 6 aforementioned categories. 
Connectomes were used to visualize data, either through thresholding or through 
averaging connectivity strength over neighboring electrodes.  
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For the second sub question, we constructed a similar LMM as in the 
first sub question, but now for every connection in the smoothed 
connectome separately. The 28 LMMs were created both for the theta and 
the low alpha networks. No improvement was found when adding the 
number of trials to the model fit. For theta AIC varied between -13215.97 
and -10619.19. For low alpha, AIC varied between -14263.85 and -
11261.27. Due to space constraints, the AIC outcomes are in the 
supplementary material. The final formula used was 
connectionConnectivity ~age * socialContrast + (1|subject). All p-value 
thresholds were Bonferonni corrected. 

Analyses were performed using the lmer4 package in R (Bates et al., 
2014; 2007). Relative effect sizes were computed following Brysbaert and 
Stevens (2018). Effect size of d < 0.2 were deemed small, 0.2 < d < 0.5 
were deemed small-medium, 0.5 < d < 0.8 were deemed medium-large, 
and d > 0.8 were deemed large.  

For the models including an interaction, pairwise contrasts were 
calculated for every month of age of a subject. Since data is non-normal, 
these pairwise contrasts were calculated using the Wilcoxon signed-rank 
test. P-value thresholds were Bonferroni corrected. Since Cohen’s d 
calculated effect size is calculated using means, which is non-optimal in 
non-normal data, Pearson’s R was used to calculate the effect size. We 
used the following notions for effect size: r < 0.1 is small effect size, 0.1 < 
r < 0.3 is small-medium effect size, 0.3 < r 0.5 is medium-large effect size, 
and r > 0.5 is large effect size. 
 

4.4 Results 
4.4.1 The development of global network strength over time  
For global network strength, the estimated subject variance was 0.11 with 
an estimated residual variance of 0.67. For low alpha global network 
strength, the estimated subject variance was 0.22 with an estimated 
residual variance of 0.47. For the theta global network strength LMM, a 
significant main effect was found for infant age in days (𝛽E = 0.48, p 
<0.0001, d = 1.35). For the low alpha global network strength LMM, a 
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significant main effect of infant age in days was also found (𝛽E = 0.53, p 
<0.0001, d = 1.89). See table 4.3 for the summary of the results. 
 
 
Table 4.3 Linear Mixed Model with age (in days) as a fixed effect and global network strength 
as the dependent variable 
Frequency Band Param. Estimate Test (df) p* Effect size 
Theta Age 0.48 t = 19.47 (833.21) <0.0001 d = 1.35 

      
Low Alpha Age 0.53 t = 25.31 (715.96) <0.0001 d = 1.89 
* Bonferroni corrected  

 

4.4.2 The reconfiguration of the theta network  
Figures 4.2 and 4.3 show the development of network topology in the 
infant's brain between 4-months-old and 11-months-old. The low alpha 
network configuration remains relatively stable over time, with high 
frontocentral connectivity. The theta network, however, reconfigures from 
an occipitoparietal network towards a frontoparietal network. To 
overcome the problems of choosing a threshold to depict networks, Figure 
4.3 shows simplified “smoothed” network topologies. Connections are 
averaged according to the location on the scalp. Here a clear 
reconfiguration in the theta network can be seen as well, with clear 
interconnectivity appearing at 9 months old between the frontal areas and 
the left and right parietal areas.  

To focus on the reconfiguration of the network, we evaluated the 
developmental pattern of individual connections in the network. To 
simplify the analysis, we used the smoothed networks, consisting of 28 
connections in total. Above, we showed that age has a strong effect on 
global connectivity. To control for general connectivity strength increase 
due to age, individual networks were scaled and centered. A high value of 
connectivity now indicates that the connection is relatively more 
important compared to the other connections in the individual's network. 
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The LMMs used single connection strength as the dependent variable, 
with age (in days) as a fixed variable and random intercepts for subject.  
 

The results are shown in Figure 4.4. The red connections indicate an 
increase in relative connectivity at the p<0.0001 level (Bonferroni 
corrected), the blue connections indicate a decrease in relative connectivity 
at the p<0.0001 level (Bonferroni corrected). In line with the earlier 

Figure 4.4. Development of important connections during infancy. Depicted here are the 
connections of the smoothed connectomes which become significantly more or less 
important in the connectome during the first year of life. A linear mixed model was 
run over each connection with normalized connection strength as dependent variable 
and age as fixed variable. The red connections indicate a significant increase in 
importance at the p<0.0001 level (Bonferroni corrected). The blue connections indicate 
significant decrease in importance at the p<0.0001 level (Bonferroni corrected). For 
theta, a clear switch can be seen, where connections to the occipital cortex become less 
important during the first year of life and the frontoparietal connection become more 
important. In the alpha network the opposite is true, where the already important 
frontocentral connectivity becomes increasingly prominent, while other connections 
become less involved.  
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visualizations of the networks, over the first year of life, a clear 
reconfiguration can be seen in the theta network, from an occipitoparietal 
network towards a frontoparietal network. In the alpha network, such a 
change was not found. If anything, the frontocentral network becomes 
more prominent over time. For the full linear mixed models of all 28 
connections and both frequency bands, please refer to the supplementary 
materials. 
 

4.4.3 The infant EEG network and social processing 
To understand whether this reorganization of the theta network coincided 
with an increase in sensitivity for the processing of social stimuli, we again 
utilized LMM (see Table 4.4 & Table 4.5). This time, global connectivity 
when watching social or toy videos was used as the dependent variable. 
Since we were interested in whether the development of the theta network 
increased sensitivity for social processing, we used both ‘age’ and ‘social 
versus toy’ contrasts as fixed effects. Once again, a random intercept for 
subject was included.  

For the theta networks (Table 4.4), the estimated subject variance was 
0.33 with an estimated residual variance of 0.47. Not surprisingly, a 
significant main effect was found for age (𝛽E = 0.37, p <0.0001, d = 0.81). 
Additionally, a significant main effect was found for the social versus toys 
contrast (𝛽E = 0.24, p <0.0001, d = 0.42). Lastly, and most importantly, 
a significant interaction effect was found between age and social contrast 
(𝛽E = 0.19, p <0.0001, d = 0.35) indicating that as the infant's brain 
develops, the difference in theta network synchronicity increases. Further 
analyzing this effect, we performed 6 post-hoc Wilcoxon signed-rank tests, 
separating the infants per age in months. We found that from 6 months 
onwards, a significant difference in global connectivity strength in the 
social versus non-social condition could be found. From 9-months-old 
onwards, a medium-large effect was detected (0.42 < r < 0.52). For more 
detailed statistics, please see Table 4.4.  
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We performed a similar LMM analysis for the low alpha networks. The 
estimated subject variance was 0.22 with an estimated residual variance 
of 0.47. A significant main effect was found for age (𝛽E = 0.52, p <0.0001,  

 

 

 
d = 1.40). No effect for social contrast or interaction effect between age 
and social contrast was found. Since we did not find an interaction effect, 
no post-hoc analyses were performed. For more detailed statistics, please 
see Table 4.5. Figure 4.5 shows the predicted global strength over the first 
year of life, based on these LMMs. A clear interaction effect can be seen 
in the theta networks, but not in the low alpha networks.  

We once more zoomed in on the interaction effect between age and the 
contrast type (social versus toy) to find out which connections, between 
which areas in the brain showed a similar interaction effect over the first 

year of life. With the theta networks, 28 LMMs with the age (in days) ✕ 

Table 4.4. Linear mixed model with age and social vs toys videos as the fixed effects and theta 
global connectivity as the dependent variable (pairwise contrasts are indented). 

Parameter Estimate Test (df) p* Effect size 

Age 0.37 t = 17.27 (1924.88) <.0001 d = 0.81 

Social  0.24 t = 8.58 (1503.96) <.0001 d = 0.42 

Age ✕ Social  0.19 t = 6.80 (1500.11) <.0001 d = 0.35 
   04m (Social vs Toys) Z = 0.95 n.s. r = 0.10 

   05m (Social vs Toys) Z = 2.05 n.s. r = 0.11 
   06m (Social vs Toys) Z = 2.83 <0.05 r = 0.24 

   09m (Social vs Toys) Z = 7.07 <.0001 r = 0.49 

   10m (Social vs Toys) Z = 7.79 <.0001 r = 0.52 

   11m (Social vs Toys) Z = 5.34 <.0001 r = 0.42 

* Bonferroni corrected 

Table 4.5. Linear mixed model with age and social vs toys videos as the fixed effects and low 
alpha global connectivity as the dependent variable (pairwise contrasts are indented). 

Parameter Estimate Test (df) p* Effect size 

Age 0.52 t = 30.26 (1852.00) <.0001 d = 1.40 

Social -0.06 t = -0.74 (1545.80) n.s. d = -0.04 

Age ✕ Social -0.01 t = -0.38 (1542.76) n.s. d =0.01 

* Bonferroni corrected 
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social contrast interaction effect with single connectivity strength as the 
dependent variable were calculated for each connection in the smoothed 
connectivity matrix. The resulting findings are presented in Table 4.6. The 
significance levels are Bonferroni corrected for multiple comparisons. 
Significant interaction effects were found in connections throughout the 
brain, except for the interconnectivity in the frontal regions. We plotted 
the connections with at least a small-medium effect size (d>0.2) in Figure 
4.6. Figure 4.6 nicely illustrates the frontoparietal triangle showing and 
the occipitoparietal connections both having a significant interaction 
effect. For the alpha networks, no significant interaction effects were found 

Figure 4.5. Interaction effect age and watching social videos. During the first year of 
life, theta global connectivity differences between watching social and toys videos 
become more distinct. This effect is significant from 6 months onwards but becomes 
more pronounced over the first year of life. No such effect can be seen in alpha1 global 
connectivity. Session 1 and 2 are depicted as light gray to visualize the age range the 
prediction of the LMM is based on.   
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for single connections. Therefore, the resulting LMMs are presented in the 
supplementary materials. 

 
4.4.4 Infant EEG power and social processing 
To provide a comparison, similar models were calculated with theta and 
alpha power as dependent variables. For the theta power, the estimated 
subject variance was 0.49 with an estimated residual variance of 0.29. A 
significant main effect was found for age (𝛽E = 0.46, p <0.0001, d = 1.47). 
Additionally, a significant main effect was found for the social versus toys 
contrast (𝛽E = 0.17, p <0.0001, d = 0.39). Lastly, a significant interaction  
effect was found between age and social contrast (𝛽E = 0.14, p <0.0001, d 
= 0.29). Note that both the scaled estimation and the effect size of theta  

Figure 4.6. The theta connections with significant age x social interaction effects. 
Depicted here are the connections with a significant interaction effect between age and 
social contrast. These connections developed an increase in synchronicity for social 
stimuli over the course of the first year of life. Connections are scaled in color and 
thickness according to their effect size. Only connections with an effect size higher than 
the cut off for small effect size (0.2)  are shown. Opposed to the development of the 
theta connectome, social specialization happens all throughout the brain, with the 
exception of frontal interconnectivity. Note the clear frontoparietal triangle and the 
strong connectivity between the occipital and the parietal areas. 
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power are lower for the interaction effect compared to interaction effect 
with theta global connectivity as dependent variable. 

We performed a similar LMM analysis for the low alpha power. The 
estimated subject variance was 0.44 with an estimated residual variance 
of 0.22. A significant main effect was found for age (𝛽E = 0.59, p <0.0001, 
d = 1.87). No effect for social contrast or interaction effect between age 

Table 4.6 Linear mixed model interaction effect between the fixed effects of age and social 
vs toys with theta individual connections as the dependent variable 

Connectivity Pair Estimate Test (df) p* Effect size 

Frontal Frontal -0.01 t = -0.19 (1761.49) n.s d = -0.01 

Frontal Left Frontal 0.08 t = 2.76 (1730.68) n.s d = 0.13 

Frontal Right Frontal 0.10 t = 3.53 (1739.68) < .05 d = 0.17 

Frontal Left Parietal 0.18 t = 6.47 (1720.44) < .0001 d = 0.31 

Frontal Right Parietal 0.18 t = 6.49 (1701.93) < .0001 d = 0.31 

Frontal Central 0.15 t = 5.36 (1721.69) < .0001 d = 0.26 

Frontal Occipital 0.15 t = 5.02 (1781.50) < .0001 d = 0.24 

Left Frontal Left Frontal 0.10 t = 3.26 (1722.31) < .05 d = 0.16 

Left Frontal Right Frontal 0.10 t = 3.74 (1725.42) < .01 d = 0.18 

Left Frontal Left Parietal 0.13 t = 4.66 (1725.74) < .0001 d = 0.22 

Left Frontal Right Parietal 0.17 t = 6.14 (1716.51) < .0001 d = 0.30 

Left Frontal Central 0.14 t = 5.07 (1727.79) < .0001 d = 0.24 

Left Frontal Occipital 0.19 t = 6.29 (1767.83) < .0001 d = 0.30 

Right Frontal Right Frontal 0.10 t = 3.48 (1726.44) < .05 d = 0.17 

Right Frontal Left Parietal 0.15 t = 5.18 (1724.39) < .0001 d = 0.25 

Right Frontal Right Parietal 0.15 t = 5.74 (1707.95) < .0001 d = 0.28 

Right Frontal Central 0.15 t = 5.35 (1723.18) < .0001 d = 0.26 

Right Frontal Occipital 0.16 t = 5.41 (1740.73) < .0001 d = 0.26 

Left Parietal Left Parietal 0.15 t = 5.23 (1721.07) < .0001 d = 0.25 

Left Parietal Right Parietal 0.15 t = 5.65 (1696.48) < .0001 d = 0.27 

Left Parietal Central 0.14 t = 5.06 (1722.69) < .0001 d = 0.24 

Left Parietal Occipital 0.17 t = 5.71 (1764.39) < .0001 d = 0.27 

Right Parietal Right Parietal 0.20 t = 6.94 (1707.56) < .0001 d = 0.34 

Right Parietal Central 0.17 t = 6.10 (1714.08) < .0001 d = 0.29 

Right Parietal Occipital 0.19 t = 6.30 (1776.24) < .0001 d = 0.30 

Central Central 0.15 t = 4.89 (1751.40) < .0001 d = 0.23 

Central Occipital 0.22 t = 7.30 (1750.73) < .0001 d = 0.35 

Occipital Occipital 0.21 t = 6.65 (1763.05) < .0001 d = 0.32 
* Bonferroni corrected 
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and social contrast was found. Additionally, tables and figures detailing 
this interaction effect were created. These can be found in the 
supplementary materials. Lastly, a figure was create showing the scalp 
topography of alpha and theta power in response to the social and toys 
videos. This figure can also be found in the supplementary materials. 
 
4.5 Discussion 
Our goal was to describe the relationship between the development of 
social capabilities and the development of the infant's brain. Since 
behavior is embedded within functioning networks in the human brain, 
and since there is considerable social cognitive development within the 
first year of life, we focused on the development of infant brain networks 
over this period. We described the development of alpha and theta 
networks in the infant's brain with its relationship to the processing of 
social stimuli. As a measure of the total synchronicity of the brain, we 
used global connectivity. We found that theta networks, but not alpha 
networks, show increased sensitivity in differentiating social versus non-
social videos, with an increase in global connectivity found when looking 
at social compared to non-social videos. Notably, this increase was only 
found in infants when they reached approximately 9-months of age. This 
period of time coincided with a striking reconfiguration of the theta 
network. This reconfiguration, in addition to the increased sensitivity to 
social videos, provides important evidence for the emergence of the social 
brain during infancy. 
 
4.5.1 Network development 
Both alpha and theta networks show a general increase in network 
strength. This indicates greater synchronicity between brain regions, 
which likely reflects increase neural communication between distant brain 
areas and is related to the global maturation of neural networks. 
Supporting this, Xie and colleagues (Xie et al., 2018) studied sustained 
attention in infants and found that global connectivity both in the alpha 
and in theta networks increased over the course of development during 
the first year of life. Maturation of global networks during infancy has also 
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been shown in fMRI studies (Gao et al., 2015; 2014). This is possibly 
caused by an increase in myelination, which progresses at a rapid pace 
during the first year of life (Keunen et al., 2017). Together with the 
strengthening of important connections, this could lead to increased global 
connectivity. It is important to note that increases in network strength do 
not necessarily indicate the optimization of networks. Increases in theta 
have been connected to immaturity (Orekhova et al., 2006), however, 
during the first year of life increases in theta communication appear to be 
related to typical development.  

Together with a global increase in synchronicity, theta networks also 
underwent considerable reconfiguration during the first year of life. Theta 
synchronicity evolved from a predominant occipitoparietal network to a 
more balanced pattern that included the addition of a frontoparietal 
network. Prior studies have found that frontoparietal brain networks are 
related to attention (Gao et al., 2015), working memory (Short et al., 
2013), and, noteworthy for this study, the social brain (C. D. Frith, 2007; 
U. Frith and C. Frith, 2010). Figure 4.3 shows this especially clear, with 
a clear increase in the synchrony in the triangle between the prefrontal 
cortex and the bilateral parietal cortex.  

The change in network configuration occurred quite rapidly. This 
supports the hypothesis of Johnson and colleagues (2005), who 
hypothesized that through the lens of the IS framework, networks should 
mature in unison rather than area by area. Note, however, that we did 
not study the infants consistently for all ages and that the sudden shift in 
configuration coincides with a 3-month hiatus between waves of data 
collection (between 6 and 9-months-old). Thus, we do not know how 
rapidly the theta network develops within this 3-month window of time. 
Future research is warranted to better understand the precise temporal 
characteristics and importantly, environmental factors that contribute to 
the functional network organization in the infant's brain.   

Per our hypothesis, the theta network showed a considerable 
reconfiguration of important connections in the whole brain network. The 
alpha network, however, did not show this reconfiguration. On average 
alpha showed the strongest synchronicity in the frontocentral areas of the 
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brain. As the infant developed, these frontocentral connections in the 
network strengthened and became an even more important focal point of 
the network. The alpha network did show a similar increase in global 
connectivity as the theta network. This underlines the uniqueness of the 
reconfiguration of the theta network during infancy. 

 
4.5.2 Social selectivity 
In addition to the considerable reorganization of the theta network in the 
infant's brain, we also showed that this reorganization coincided with an 
increase in global connectivity when watching social stimuli compared to 
non-social stimuli. This increase only was identified in the 10-month-old 
infants, and not in the 5-month-old infants, so after the reorganization 
took place. Increases in global connectivity are an important indication 
that areas in the brain increase in communication with each other when 
looking at social images. As global connectivity is also found to be a 
reliable brain network metric (van der Velde et al., 2019), this is important 
evidence that the theta network is connected to the development of the 
social brain. 

This is in agreement with earlier work from Jones and colleagues 
(2015), who studied EEG-power in response to similar videos as used in 
the current paper and found that theta power increased when looking at 
social videos versus non-social videos. However, contrary to their work, in 
our paper increases in synchronicity were found throughout the entire 
brain network (excepting frontal interconnectivity) and not specifically in 
parietal and frontal regions. A possible explanation for this is that the 
reorganized theta network has a strong backbone of frontal and parietal 
regions, these communications are projected throughout the brain, leading 
to significant differences in synchronicity in the whole-brain network. 
Extra evidence for this topography of theta power while watching social 
and non-social videos can be found in the current paper. As our spectral 
analysis yielded very similar results compared to Jones and colleagues’ 
(2015) work (supplementary materials). The alpha network did not show 
any selectivity for social versus non-social stimuli, with synchronicity 
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between signals remaining equal for both the 5-month-old and the 10-
month-old infants.  

 
4.5.3 Limitations and future directions 
The above-described work comes with some limitations. First, it is difficult 
to determine whether the network ‘comes online’ suddenly (as 
hypothesized by the IS framework, Johnson, 2011). We demonstrate that 
the reconfiguration of the core theta network takes place between 6 and 9 
months of age, but how rapidly within this period of time is not known. 
Additionally, infants in the current study were tested twice, limiting the 
ability to test non-linear trajectories of brain network development. Future 
studies, with greater temporal sampling, will shed light on these issues. 

Also, in our study, we did not find any relationship between alpha 
synchronicity and social development. What is important to note, 
however, is that studies that did find a relationship between alpha 
depression and social processing were using live conditions of social 
interaction (Jones et al., 2015). Future research is necessary to study in 
what way the development of alpha connectivity influences social brain 
processing during infancy, including the addition of live social interactions. 

Lastly, it is important to note that it is difficult to pull apart EEG 
power and EEG connectivity. As mentioned before, there is a clear 
relationship between functional connectivity measures and EEG power. 
This is also the case in our paper. Therefore, we have included spectral 
results for inspection. Both effect sizes and estimates are lower in the 
models based purely on power measurements compared to global 
connectivity measures, but it is currently unclear whether this means that 
connectivity measures tell us more than just the power measures. Related 
to this is the possibility of entrainment caused by speech during the social 
videos (Leong et al., 2017). This would cause EEG power to increase, but 
not due to connectivity. However, this should not be the case in our study, 
as we find similarly structured networks in both the social and the toys 
condition. Indicating that the measurement of communication in the social 
condition does not just arise due to entrainment. Additionally, 
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entrainment should cause brain waves to have the exact same phase, which 
should lower their measured PLI connectivity. 

 
4.6 Conclusion 
We showed that theta networks in the brains of infants undergo a large 
reconfiguration during the first year of life; from an on average parieto-
occipital network towards a frontoparietal network. This reconfiguration 
coincides with an increase in sensitivity for social versus non-social stimuli, 
which is represented by an increase in synchronicity of brain activity when 
looking at social videos compared to non-social videos. The alpha network 
neither shows this reconfiguration or this increase in sensitivity for social 
stimuli. This provides important evidence for the development of the social 
brain network during the first year of life and its probable relationship to 
theta communication. Also, this study provides evidence for the 
interactive specialization framework (Johnson, 2011), as the 
reconfiguration appears to develop in unison, rather than piecewise 
between different regions. Future studies can hopefully shed light on 
whether this theta network reconfiguration can be used to predict 
behavioral outcomes and whether enhancing these network connections in 
children with delayed social development can improve their social 
cognitive abilities. 
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Appendix I: Supplementary Materials 
 
Supplementary table 4.1. Linear mixed model interaction effect between the fixed effects of 
age and social vs toys with low alpha individual connections as the dependent variable 
Connectivity Pair Estimate Test (df) P* Effect size 

Frontal Frontal -0.03 t = -0.99 (1707.61) n.s d = -0.05 

 Left Frontal -0.02 t = -0.81 (1718.15) n.s d = -0.04 

 Right Frontal -0.04 t = -1.72 (1717.95) n.s d = -0.08 

 Left Parietal -0.02 t = -0.74 (1714.52) n.s d = -0.04 
 Right Parietal 0.00 t = -0.18 (1715.89) n.s d = -0.01 

 Central -0.02 t = -0.85 (1722.11) n.s d = -0.04 

 Occipital -0.01 t = -0.28 (1718.89) n.s d = -0.01 

Left Frontal Left Frontal 0.00 t = -0.08 (1724.86) n.s d = 0.00 

 Right Frontal -0.06 t = -2.43 (1726.34) n.s d = -0.12 

 Left Parietal -0.02 t = -0.89 (1725.70) n.s d = -0.04 

 Right Parietal -0.04 t = -1.43 (1716.22) n.s d = -0.07 

 Central -0.02 t = -0.83 (1728.30) n.s d = -0.04 

 Occipital -0.02 t = -0.97 (1729.56) n.s d = -0.05 

Right Frontal Right Frontal -0.02 t = -0.66 (1732.10) n.s d = -0.03 

 Left Parietal -0.02 t = -0.75 (1718.20) n.s d = -0.04 

 Right Parietal 0.00 t = -0.15 (1720.53) n.s d = -0.01 

 Central -0.02 t = -0.73 (1730.09) n.s d = -0.03 

 Occipital 0.00 t = 0.08 (1727.34) n.s d = 0.00 

Left Parietal Left Parietal 0.00 t = -0.15 (1706.78) n.s d = -0.01 

 Right Parietal -0.03 t = -1.15 (1711.05) n.s d = -0.06 

 Central -0.03 t = -1.10 (1727.66) n.s d = -0.05 

 Occipital 0.02 t = 0.92 (1716.71) n.s d = 0.04 

Right Parietal Right Parietal -0.02 t = -0.54 (1714.35) n.s d = -0.03 

 Central -0.01 t = -0.34 (1727.03) n.s d = -0.02 

 Occipital 0.05 t = 1.96 (1721.53) n.s d = 0.09 

Central Central -0.03 t = -1.16 (1724.31) n.s d = -0.06 

 Occipital 0.01 t = 0.58 (1729.93) n.s d = 0.03 

Occipital Occipital 0.13 t = 1.37 (1723.85) n.s d = 0.07 

* Bonferroni corrected 
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Supplementary table 4.2. Linear mixed model with age and social vs toys videos as the 
fixed effects and theta power as the dependent variable 
Parameter Estimate Test (df) p* Effect size 

Age 0.46 t = 31.51 (1836.63) <.0001 d = 0.81 
Social 0.17 t = 7.72 (1607.49) <.0001 d = 0.39 
Age ✕ Social 0.14 t = 5.82 (1608.03) <.0001 d = 0.29 

* Bonferroni corrected 

Supplementary table 4.3. Linear mixed model with age and social vs toys videos as the 
fixed effects and alpha power as the dependent variable  
Parameter Estimate Test (df) p* Effect size 

Age 0.59 t = 31.51 (1836.63) <.0001 d = 1.87 
Social -0.04 t = 7.72 (1607.49) n.s. d = -0.11 

Age ✕ Social -0.02 t = 5.82 (1608.03) n.s. d = 0.01 

* Bonferroni corrected 

Supplementary figure 4.1. Smoothed connectome differences between social and non-
social videos. The difference in connectivity strength (in %) for the smoothed 
connectomes is depicted. Very little to no difference in connection strength between 
social and non-social stimuli can be detected in the low alpha frequency band and in 
the theta frequency band at 5-months-old. In the 10-month-old wave, however, large 
differences can be found across the entire connectome up to 8% difference in 
connectivity strength in the parietal areas. 
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Supplementary figure 4.2. Scalp topography of log power during social and non-social videos and the 
difference between the two conditions. This figure is a recreation of a figure of Jones and colleagues 
(2015). We replicate their findings in that theta power while watching social videos is higher in 
frontal and parietal areas compared to non-social videos. This is only true at 10-months-old. We 
find no differences in alpha power between social and non-social videos.  
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5.1 Abstract 
INTRODUCTION: Infant behavior becomes increasingly complex during 
the first year of life. Complex behavior likely requires a multitude of brain 
areas to communicate efficiently. Here, we used a prospective population-
based cohort to determine the longitudinal relationship between the infant 
brain network and infant behavior.  
METHODS: We studied nearly 1000 infants in two sessions during their 
first year of life. Networks were created from task EEG data, filtered into 
theta and alpha frequency bands. Global network strength and small-
worldness were compared over sessions. Social competence and infant 
temperament development were measured using the ASQ:SE and the IBQ-
SF questionnaires respectively. Cross-lagged panel models and linear 
mixed-effects models were used to describe the associations between 
behavioral and brain network measures.  
RESULTS: Brain networks showed expected patterns of maturation 
during the first year of life with increases in global connectivity and small-
worldness. Brain networks and behavior showed a complex relationship. 
Early brain connectivity predicted infant orienting/regulation later in life. 
However, early infant orienting/regulation was also related to higher 
network optimality later in life. Other behavioral measures yielded no 
significant relationships. 
CONCLUSIONS: We found evidence for the complex interaction between 
brain networks and infant regulation/orienting. This two-way relationship 
could cause a positive feedback loop. Where increasingly optimized brain 
networks allow for increasingly complex behaviors which in turn optimize 
brain networks.  
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5.2 Introduction  
The infant's brain develops strikingly during the first year of life, with the 
brain tripling in size (Gilmore, Knickmeyer, & Gao, 2018). This structural 
neural development coincides with the largest behavioral development in 
the human lifespan. The study of this relationship, between the 
development of brain and behavior during the first year of life, has been 
one of the focal points of developmental psychological research. Especially 
prominent are studies relating the development of certain skills to the 
development of certain brain areas (de Haan, Johnson, & Halit, 2003; 
Halit, de Haan, & Johnson, 2003; Mundy, Card, & Fox, 2000). However, 
during the first year of life infants start exhibiting increasingly complex 
behaviors. These types of behaviors need input from a wide variety of 
functionally specialized brain areas to be efficiently integrated into one 
unified construct to respond successfully (Adolphs, 2001; Miller, 2000; 
Pessoa, 2008). Unsurprisingly, in the past years, researchers have become 
increasingly interested in the infant brain network to explain behavior 
(Mundy & Jarrold, 2010; van der Velde, White, & Kemner, 2021).  

Two key developing behaviors during infancy – social behavior and self-
regulation - likely have a complicated relationship with developing brain 
networks. For successful social interaction, the infant needs to review and 
integrate many different cues, including - but not limited to - social cues 
(Alden & Wallace, 1995), emotional cues (Lopes, Salovey, Côté, Beers, & 
Petty, 2005), and sensory cues. Good communication between functionally 
distinct brain areas is therefore required for successful social interactions. 
Conversely, however, exhibiting these complex behaviors also optimizes 
the brain. Through experience and learning oft-used connections get 
strengthened and unused connections get pruned (Keunen, Counsell, & 
Benders, 2017). Social development is especially vital for this since most 
infant learning happens through social interactions (Grusec, 1994). 
Therefore, improved social skills will optimize brain functioning - not only 
between areas important for social interactions - but for the brain as a 
whole. So, this relationship between social competency and the brain 
network seems to be reciprocal: mature brain networks allow for social 
behavior, which in turn optimizes this whole-brain network. A similar 
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relationship between brain and behavior can be theorized for a behavior 
vital for successful social interaction: self-regulation (Adolphs, 2003; Nigg, 
2017). 

The relationship between brain networks and social and self-regulatory 
development has seen an increase in interest over the past decades. Yet, 
most prior research ignores this reciprocal relationship during 
development. The aim of this current study is therefore to investigate this 
two-way relationship between the development of social behavior and self-
regulation during the first year of life with the development of the infant 
brain network, using a longitudinal cross-lagged panel model. 
 
5.2.1 Development of the brain network 
Structurally, most of the macrostructures of the infant brain network are 
already present at birth (Ball et al., 2014; van den Heuvel et al., 2014). 
The neonate brain network is, however, still unoptimized. The first years 
of life are therefore mostly spend on optimization, through the selective 
pruning of rarely used connections and the strengthening of oft-used 
connections (Keunen et al., 2017). Functionally, a similar strive for 
optimization has been shown. Activity patterns in distinct brain areas 
become more focal and stronger during development, indicating an 
increase in specialization (Durston et al., 2006). This coincides with 
increased integration of brain information, through increased reliance on 
long-range connections in the developing connectome (Fair et al., 2009).  

To calculate this optimization of the brain network, a graph-theoretical 
framework is often used. In graph theory, networks consist of nodes (the 
centers of information) and edges (the connections between the nodes). A 
network structure consisting of many clusters (neigboring nodes are 
strongly interconnected) and a relative ease of going from one part of the 
network to another (small average path length) is generally seen as an 
optimal network, since it combines two key features of any network: 
specialization and integration. This optimality is captured in the small-
worldness index (Watts & Strogatz, 1998).  

While neonate brain networks do show some semblance of small-
worldness (Fransson et al., 2007), many studies have found evidence for 
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further optimization during childhood. In an EEG-network study, 
Boersma and colleagues showed that the clustering increases between the 
ages of 5 and 7 years (Boersma et al., 2011). Similar studies have found 
general decreases in the path length between the ages of 2 and 6 years 
(Bathelt, O'Reilly, Clayden, Cross, & de Haan, 2013; Power, Fair, 
Schlaggar, & Petersen, 2010). In infants, similar effects have been found, 
with the clustering coefficient increasing and average path length 
decreasing between 6 and 12 months old (Xie, Mallin, & Richards, 2018). 
In short, while the infant brain already shows some small-worldness, the 
brain network further optimizes during development.  
 
5.2.2 The current paper  
In this study, we set out to research the link between changes in the infant 
brain network and behavior. To increase the generalizability of this study, 
a large population-based sample of infants was tested multiple times to 
quantify individual changes in the brain network. For this, we used the 
population-based YOUth project, whose sample measures the typical 
Utrecht child (Onland-Moret et al., 2020). To study large groups of infants 
a relatively non-intrusive neuroscientific method is needed. EEG can be 
used to study functional networks, both in adults and infants. EEG signals 
acquired from different electrodes on the scalp can be filtered into separate 
frequency bands and in these frequency bands networks can be created 
based on the likelihood of areas under the scalp communicating. In a 
previous cross-sectional study with 10-month-old infants and testing the 
network characteristics of path length, clustering coefficient, and small-
worldness showed that in alpha and theta frequency bands, we found 
reliable metrics over sessions (van der Velde, Haartsen, & Kemner, 2019). 
Additionally, both theta and alpha networks have been related to social 
(Orekhova et al., 2014; van der Velde et al., 2021) and self-regulation 
development (Bell, 2012; Broomell, Savla, & Bell, 2019; Swingler, 
Willoughby, & Calkins, 2011).  

To study this two-way relationship, this study will use cross-lagged 
panel models to analyze the relationship between behavior and the 
connectome (Hamaker, Kuiper, & Grasman, 2015). A cross-lagged panel 
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model is a type of structural equation model that specifically determines 
the pathway in a relationship between two variables, i.e. whether one 
variable drives change in the other or vice versa. This model could 
therefore explain whether more complex behaviors in session one will 
explain more optimized brain network functioning in session two or vice 
versa. 
 

5.3 Methods and materials 
5.3.1 Participants 
The YOUth study is a longitudinal cohort study consisting of two large 
cohorts differing in age range. The YOUth Baby & Child cohort follows 
infants from 20-24 weeks gestational age until the age of six. Both 
behavioral and cognitive development is tracked through numerous tasks 
and methods (e.g., eye-tracking, EEG, MRI, questionnaires). The YOUth 
study was approved by the Medical Research Ethics Committee of the 
University Medical Center Utrecht and all participants’ parents provided 
written informed consent. A brief overview of the YOUth study including 
the measurements conducted at each timepoint is available from 
https://www.uu.nl/en/research/youth-cohort-study (Onland-Moret et al., 
2020). 

In total, 1008 5-month-old and 758 10-month-old infants were included. 
Table 5.1 shows the demographic and attrition information for our study, 
for the EEG and ERP paradigms, respectively. Attrition due to fussiness 
was counted when the infant was excluded from the analysis for having 
too little (or no) data due to the infant being too tired or inattentive, 
started crying or moving too much, or refused to wear the cap. Attrition 
due to experiment(er) error was counted when logged or when the 
resulting data file was corrupted. Attrition rates are 27% or lower, which 
is somewhat below the expected range (Stets, Stahl, & Reid, 2012). For 
more information on the EEG-data quality in the YOUth project please 
refer to an earlier paper by van der Velde and Junge (van der Velde & 
Junge, 2020). 
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5.3.2 EEG Acquisition 
EEG was recorded using a cap with 32 electrodes (ActiveTwo system, 
BioSemi) positioned according to the international 10/20 system, at a 
sampling rate of 2048 Hz. A Common Mode Sense (CMS) and Driven 
Right Leg (DRL) electrode were used to provide an active ground.  
 
Table 5.1 Demographic and attrition information 

Wave Gender Tested Attrition Analyzed Age (in days) 

  N N % N mean sd 

5m  1008 270 26.8 738 167.0 23.3 

 Boy 493 128 26 365 167.7 23.0 

 Girl 515 142 27.6 373 166.4 23.7 

10m  758 197 26 561 316.4 25.2 

 Boy 374 96 25.7 278 317.5 25.2 

 Girl 384 101 26.3 283 315.3 25.2 

 

5.3.3 EEG Analysis 
EEG data was analyzed exclusively using MATLAB, using the FieldTrip 
toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). The original 2048 
Hz data was downsampled to 512 Hz, using chip interpolation and band-
pass filtered at .1-70 Hz with a two-way Butterworth filter. Artifacts were 
removed from the continuous EEG. Artifacts were defined as the absence 
of signal, clipping, muscle artifacts, and excessive noise. Channels were 
removed if more than 40 percent of the signal in a channel contained 
artifacts. Bad channels were removed for both sessions of a subject. If no 
more than two bad channels were found in a single subject, the two 
channels were interpolated utilizing weighted averaging of neighboring 
channels. If more than two bad channels were found, the subject was 
removed from further analysis. The cleaned data was used for further 
analysis.  

 
5.3.4 Connectivity calculation 
The cleaned data for each subject was bandpass filtered into 6 bands: delta 
(.1-3 Hz), theta (3-6 Hz), alpha1 (6 – 9 Hz), alpha2 (9 – 12 Hz), beta (12 
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– 25 Hz), and gamma (25 – 45 Hz). Since individual theta and alpha peaks 
are influenced by development, alpha1 and theta bands were chosen to 
encompass all theta and alpha peaks +/- 1 Hz. The resulting data was cut 
into 3s. epochs. For each epoch, connectivity between pairs of electrodes 
(32*31/2 = 496) was calculated with the phase lag index (PLI) and the 
debiased weighted PLI, both relying on the same principle of phase locking 
or phase synchrony (Tass et al., 1998).  

The phase lag index (PLI), proposed by Stam and colleagues, (Stam, 
Nolte, & Daffertshofer, 2007), describes the asymmetry of the distribution 
of phase differences between pairs of signals: 

 

   PLI = %〈𝑠𝑖𝑔𝑛+sin/Δ𝜑(𝑡𝑘)67〉%	 ,  
 

where Δ𝜑 is the instantaneous phase difference between signals at time 
point t for k = 1 … N per epoch (N = 5*512 = 2560), determined using 
the Hilbert transformation. || stands for absolute values, <> for the mean 
values, and the sign for a signum function (phase difference is either -1, 0, 
or 1). The resulting PLI can range from 0 to 1. Volume conductance, the 
effect that multiple electrodes register activity from the same source, plays 
a minimal role in the PLI. Activity from a single source will appear in 
both electrodes as having a phase difference of exactly zero. Since the PLI 
indexes the stability of phase leaping or lagging, a phase difference of zero 
will lead to a PLI of zero. 

 
5.3.5 Graph Analysis 
Several graph measures were calculated using the acquired individual 
connectivity matrices. The following graph measures were calculated using 
the brain connectivity toolbox (Rubinov & Sporns, 2010) (table 5.1): 
global connectivity, average clustering coefficient (Cw), characteristic 
(average shortest) path length (Lw); and small-worldness. To calculate 
network small-worldness, the small-world propensity (SWP) is used. This 
recently developed measure for small-worldness is in general more 
applicable to weighted brain networks, due to the incorporation of 
weighted estimates for clustering coefficient and path length. Additionally, 
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it is density-independent, whereas with previous definitions of small-
worldness a decrease of small-worldness could be seen as the density 
increased. Since weighted non-thresholded networks were used in this 
paper, the use of SWP is preferred. Networks with a SWP of .4 or higher 
are considered small-world networks. For more technical information, 
please refer to the paper 
 of Muldoon and colleagues (Muldoon, 2016). 

 
5.3.6 Behavioral measures 
Infant temperament was assessed using the Dutch translation of the Infant 
Behavior Questionnaire Short Form (IBQ-SF) (Putnam, Helbig, 
Gartstein, Rothbart, & Leerkes, 2014). In this questionnaire, 94 items are 
rated on a Likert-type scale of 1 to 7. A not applicable option is present 
for when parents have not observed the behavior in the child. The items 
can be subdivided into 15 categories of child temperament: Activity Level, 
Distress to Limitations, Approach, Fear, Duration of Orienting, Smiling 
and Laughter, Vocal Reactivity, Sadness, Perceptual Sensitivity, High 
Intensity Pleasure, Low Intensity Pleasure, Cuddliness, Soothability, and 
Falling Reactivity. These categories are commonly grouped into three 
factors. Surgency/Extraversion (Activity, Approach, Vocal Reactivity, 
High Intensity Pleasure, Smiling and Laughter, and Perceptual 
Sensitivity) generally measures impulsiveness and positive affect; Negative 
Affect (Sadness, Distress to Limitations, Fear, and Falling Reactivity) 
refers to the predisposition of the child to experience negative feelings; and 
Orienting/Regulation (Low Intensity Pleasure, Cuddliness, Duration of 
Orienting, and Soothability) with refers to the ability of the infant to 
regulate attention and behavior.  

To assess social competence, we used the ages and stages – social 
emotional questionnaire (ASQ:SE). Information from the 5-month-old 
infants was obtained using the 6 months ASQ:SE (19 items) and 10-
month-old infants' information was obtained using the 12 months ASQ:SE 
(19 items). Parents were required to indicate per item whether their child 
does the item “Most of the Time”, “Sometimes”, or “Never/Rarely”. 
Responses are coded as 0, 5, or 10 points respectively, with higher total 
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points being indicative of problems in social-emotional development, while 
low scores suggest less problem behavior.  

 
5.3.7 Statistical analysis 
To test our hypothesis regarding the development of the network and 
possible sex differences, linear mixed effect models are used. A major 
difficulty in assessing longitudinal effects is the problem of missing data 
(Ibrahim & Molenberghs, 2009). Analyzing longitudinal data with missing 
values using an ANOVA (rmANOVA) forces the researcher to exclude 
subjects with missing data in one session, due to the rmANOVA 
requirement of MCAR (Missing Completely at Random). A linear mixed 
model (LMM), in contrast, assumes missing at random (MAR). This 
means, in practice, that even if a single session is missing, we can still use 
the participant’s data points that were observed in other sessions for the 
analysis. Additionally, rmANOVAs assume sphericity and require 
independent variables to be categorical. Therefore, rmANOVAs are an 
effective procedure, easy to implement with statistical software, but only 
if the above assumptions are met, the variances between repeated 
measures are relatively equal, and complete data of all subjects are 
available. Since missing data is not MCAR in our study and additionally 
we include participant age (which is a continuous variable) as an 
independent variable, using a rmANOVA is not possible. Lastly, an 
ANOVA assumes normality. Likert scales and yes/no questionnaires rarely 
yield normal data. Therefore, we opt to use LMMs to test these 
hypotheses. 

To test the development of network characteristics during the first year 
of life, a linear mixed model was built for each of these network 
characteristics in each frequency band with age and gender as dependent 
variables and participant as a random intercept. Both age and the 
dependent variables were centered and scaled. The formula for all models 
was: network characteristic ~ age * gender + (1|Subject). The Akaike 
information criterion (AIC) for the models was as follows; alpha strength: 
3457.0, alpha SWP: 383.4, theta strength: 2835.5, and theta SWP: 337.2. 
Similarly, to test the development of the behavioral characteristics, a 



CHAPTER 5 | RELATING THE INFANT BRAIN NETWORK TO BEHAVIOR 
 

 143 

5 

linear mixed model was built for each of these behavioral characteristics 
with age and gender as dependent variables and participant as a random 
intercept. Both age and the dependent variables were centered and scaled. 
The formula for all models was: behavioral characteristic ~ age * gender 
+ (1|Subject). The Akaike information criterion (AIC) for the models was 
as follows; surgency: 2721.5, regulation/orienting: 2881.125, negative 
affect: 2904.145, and ages and stages social emotional: 2928.9. 

Analyses were performed using the lmer4 package in R (Bates, Mächler, 
Bolker, & Walker, 2014). Relative effect sizes were computed according to 
Brysbaert and Stevens (Brysbaert & Stevens, 2018) and can be seen as 
analogous to Cohen’s d. Effect sizes of d < .2 were deemed small, .2 < d 
< .5 were deemed small-medium, .5 < d < .8 were deemed medium-large, 
and d > .8 were deemed large.  

To test our hypotheses relating behavior to brain development, we 
made use of cross-lagged panel models (CLPMs) using Mplus 8.4 (Muthén 
& Muthén, 2009) which tests which extend network characteristics and 
behavioral characteristics in session 1 predicted these characteristics in 
session 2. Since the data was non-normally distributed, maximum 
likelihood with robust standard errors (MLR) was used to estimate all 
CFAs. The SEM, which also included categorical variables, was estimated 
with a robust weighted least square estimator using a diagonal weight 
matrix (WLSMV) with theta parameterization.  

Several issues needed to be taken into account when creating the cross-
lagged panel models. First, age varied between subjects both in the first 
session and in the second session. Parents were allowed to come in with 
their infants at 4, 5, or 6 months old for the first session and at 9, 10, and 
11-months old during the second session. Therefore, age at session 1 was 
added as a predictor for the variables at session 1, and age at session 2 
was added as a predictor for the variables at session 2. Additionally, due 
to sex differences in the development of the infant brain network and 
infant behavior, our CLPMs might not be similar across sex. Based on 
earlier analyses, we assumed no differences between sexes and, therefore, 
constrained the model across sex. This yielded a good model fit for the 
theta network characteristics (AIC = 24645.6, χ2/df = 1.2, CFI = .9770, 
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RMSEA = .02 [0-.032], SRMR = .07) and the alpha network 
characteristics (AIC = 24177.8, χ2/df = 1.1, CFI = .994, RMSEA = .01 
[0-.027], SRMR = .06). Since two separate models were run, p-values of 
both models were Bonferroni corrected. Note that this correction is too 
strict since the models are not independent. To test for the spuriousness 
of the relationships, the relationships were tested using 10000 bootstrap 
samples. For this, the recommended bias-corrected bootstrap was used 
(Shrout & Bolger, 2002), which does not assume normally distributed 
parameter estimates.  
 
5.4 Results 
The results are divided into three subsections: first describing the 
development of the infant brain network followed by the development of 
infant temperament and social competency. Lastly, the relationship 
between the infant brain network development and infant behavior is 
described. 
 
 

Table 5.2. Theta - LMM theta network characteristics 
Dependent Variable Parameter Estimate Test (df) p* Effect size 

Strength 

Age .33 t = 12.37 (724) <.0001 d = .81 

Sexgirl -.13 t = -2.88 (834) .004 d = -.20 

Age * Sexgirl -.03 t = -.82 (714) n.s. d = -.06 
      

SWP 
Age .22 t = 6.43 (730) <.0001 d = .47 
Sexgirl -.01 t = -.20 (805) n.s. d = -.01 

Age * Sexgirl -.05 t = 1.09 (719) n.s. d = -.08 
* Bonferonni corrected 

 

 

Table 5.3 Alpha - LMM for alpha network characteristics     
Dependent Variable Parameter Estimate Test (df) p* Effect size 

Global Strength 
Age .51 t = 12.37 (672) <.0001 d = 1.15 
Sexgirl .04 t = .66 (817) n.s. d = .05 
Age * Sexgirl -.08 t = -1.59 (662) n.s. d = -.12 

      

SWP 
Age .34 t = 8.25 (751) <.0001 d = .60 
Sexgirl .00 t = -.05 (821) n.s. d = -.01 
Age * Sexgirl -.09 t = -1.54 (741) n.s. d = -.08 

* Bonferonni corrected 
 



CHAPTER 5 | RELATING THE INFANT BRAIN NETWORK TO BEHAVIOR 
 

 145 

5 

5.4.1 Development of the infant brain network 
Three core characteristics were calculated for every participant for both 
their theta and alpha networks: Strength (average connectivity) and small 
worldness propensity (SWP). Linear mixed models were built with age 
and gender as dependent variables. Table 5.2 shows the results for the 
theta networks. For both characteristics, a main effect was found for age. 
Both strength (ß=.33, p<.0001, d=.81) and SWP (ß=.22, p<.0001, d=.47) 
showed increases over the course of the first year of life. A main effect for 
gender was only found for strength with girls showing lower strength 

Fig 5.1 Spaghetti plots of development of network characteristics. Both small-worldness 
propensity (left) and network strength (right) can be seen increasing throughout the 
first year of life for both the theta and alpha brain networks. A smoothed LOESS curve 
is added as visual aid.  
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compared to boys (ß=-.13, p=.004, d=-.20). No significant interaction 
effects between age and sex were found. 

Table 5.3 shows the results for the alpha1 networks. Once again, for 
both characteristics, a main effect was found for age. Both strength 
(ß=.51, p<.0001, d=1.15) and SWP (ß=.34, p<.0001, d=.60) showed 
increases over the course of the first year of life. No significant main effects 
for gender or interaction effects between age and gender were found. 
Figure 5.1 shows a spaghetti plot of the development of network 
characteristics during the first year of life.   
 
Table 5.4. Behavior - LMMs          

Dependent Variable Parameter Estimate Test (df) p* Effect size 

Surgency 
Age .43 t = 12.43 (449) <.0001 d = 1.17 
Sexgirl .01 t = .18 (677) n.s. d =.01 
Age * Sexgirl -.08 t = -1.59 (462) n.s. d = -.15 

      

Regulation  
Age -.15 t = -3.93 (505) <.0001 d = -.37 
Sexgirl .09 t = 1.33 (694) n.s. d = .10 
Age * Sexgirl -.04 t = -.73 (519) n.s. d = -.07 

      

Neg. Affect 
Age .12 t = 3.18 (505) .001 d = .28 
Sexgirl .03 t = .37 (694) n.s. d = .03 
Age * Sexgirl .06 t = 1.04 (519) n.s. d = .09 

      

ASQ 
Age .23 t = 5.81 (506) <.0001 d = .52 
Sexgirl -.13 t = -1.94 (694) n.s. d = -.15 
Age * Sexgirl -.03 t = -1.17 (519) n.s. d = -.10 

*Bonferonni corrected 

 
5.4.2 Development of infant behavior 
Similar to the creation of linear mixed models for network characteristics, 
we also built linear mixed models for the behavioral development tested 
using the infant behavior questionnaire (IBQ) and the ages and stages: 
social-emotional questionnaire. We used the IBQ subscales (regulation, 
negative affect, and surgency) and the ASQ scores as dependent variables. 
For all questionnaires, a main effect was found for age. Surgency (ß=.43, 
p<.0001, d=1.17), negative affect (ß=.12, p=.001, d=.28), and ASQ 
(ß=.23, p<.0001, d=.52) all significantly increased during the first year of 
life. Regulation (ß=-.15, p<.0001, d=-.37) significantly decreases during 
the first year of life. No main effects for gender or interaction effects 



CHAPTER 5 | RELATING THE INFANT BRAIN NETWORK TO BEHAVIOR 
 

 147 

5 

between age and gender were found. See Table 5.4 for an overview of the 
LMMs for behavior and figure 5.2 for the spaghetti plots of the 
development of behavior during the first year of life. 
 

5.4.3 The relationship between the developing infant brain network and infant 
behavior 

Fig 5.2. Spaghetti plots of development of behavioral characteristics. Both negative affect 
and surgency increase in the first year of life. Regulation decreases during the first year of 
life. Lastly, social development clearly shows the effect of age standardization. Different 
questionnaires were used for the 5 and 10-month-old infants. Therefore, the younger infants 
in both sessions scored higher (lower social competency). 
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The development of the network characteristics small-worldness 
propensity and network strength for both alpha and theta networks were 
related to behavioral development using cross-lagged panel models. The 
results are summarized in tables 5.5 & 5.6 and visualized in figure 5.3. 
Table 5.5 shows the lagged regressions for the theta network 
characteristics with the behavioral characteristics. All latent variables at 
session 1 predicted themselves significantly at session 2 (.26 < ß < .48, 
with p<.0001 for all). Of extra note are the lagged regressions between the 
brain measures SWP and strength and the behavioral measure regulation. 
Theta network strength negatively predicted regulation in session 2 (ß=-
.121, p<.05). Opposingly, regulation in session 1 had a negative 
relationship with small-worldness propensity in session 2 (ß =-.157, 
p<.05). Within-session regressions were also calculated. Nearly all latent 
variables for behavioral scores were significantly related to each other 
relation except for surgency and negative affect 1 (-.428 < ß < .435). In 
session 2, all the standard errors for the latent variables for behavioral 
scores showed significant relationships (-.18 < ß < .22). For exact values, 
see supplementary materials and results.  
 
Table 5.5. Theta – Lagged regressions - ß matrix 

 
Similar results were found for the alpha networks. All latent variables 

at session 1 predicted themselves significantly at session 2 (.269 < ß < 
.496, with p<.0001 for all). Of extra note is the lagged regression between 
the brain measures SWP and the behavioral measure regulation. 
Regulation in session 1 had a negative relationship with alpha 1 small-
worldness propensity in session 2 (ß =-.142, p<.05). Nearly all latent 

  Session 2 

  Strength SWP ASQ Surgency Neg. Reg 

Session 1 

Strength .452*** -.003 .071 -.008 .062 -.121* 

SWP .033 .258*** .003 -.023 -.017 .041 

ASQ .014 -.039 .326*** -.006 -.021 -.053 

Surgency .070 .023 -.124 .480*** .088 .027 

Neg. Affect .020 -.028 .005 -.074 .412*** -.094 

Regulation -.002 -.157* -.117 .051 -.061 .443*** 
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variables for behavioral scores showed within-session relationships - except 
for surgency and negative affect - showed significant relationships in 
session 1  (-.428 < ß < .435). In session 2, all residuals of the latent 
variables for behavioral scores showed significant relationships (-.18 < ß 
< .22). These results are visualized in figure 5.3.  
 
Table 5.6. Alpha – Lagged regressions - ß matrix 

 

 
5.5 Discussion 
Determining how infant behavior is related to infant brain functioning is 
of key importance to better understand typical and atypical development 
of infant cognition. Complex behaviors, like social competence or 
regulation, certainly require input from multiple brain areas. Thus, 
approaches that assess distributed networks, especially at a period of life 
of rapid brain development, are optimal. How these brain areas 
communicate, and work together is extremely informative. Thus, here we 
related the development of infant functional brain network characteristics 
to the development of two key facets of infant behavior: infant 
temperament and social competency.  

There are two important things to consider when analyzing the 
relationship between brain networks and behavior. First, the relationship 
between the development of brain networks and the development of 
behavior is two-way: complex behaviors occur once areas in the brain start 
efficiently communicating, however, communication in the brain is 
optimized under the influence of experience. Thus, to study this bi-
directional relationship we used cross-lagged panel models. Second, to 
study the effect of relatively small individual differences in brain 

  Session 2 
  Strength SWP ASQ Surgency Neg Reg 

 
 
 

Session 1 

Strength .373*** .017 -.022 .013 .006 .044 

SWP .058 .271*** .014 -.037 -.037 .074 

ASQ -.043 .004 .331*** -.004 -.025 -.052 

Surgency -.012 .016 -.139 .482*** .085 .031 

Neg. Affect -.027 -.086 .003 -.076 .416*** -.103 

Regulation -.106 -.161* -.115 .057 -.057 .439*** 
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functioning and infant behavioral development, large samples are required. 
Therefore, in this study, we followed more than 750 infants longitudinally 
during their first year of life.  

  This paper focused on three topics: First, we looked into the 
development of functional brain networks during the first year of life, by 
comparing EEG networks at 5-months-of-age with EEG networks at 10-
months-of-age using graph theory to characterize and compare networks. 
We focused on theta and alpha networks, which have been shown to be 
critical during infancy (Hoehl, Michel, Reid, Parise, & Striano, 2014; 
Orekhova et al., 2014; Orekhova, Stroganova, Posikera, & Elam, 2006; van 
der Velde et al., 2021), with the hypothesis that functional brain networks 
both increased in connectivity during the first year of life and becomes 
increasingly optimized. Second, we looked into the development of infant 
behavior (temperament and social competency) during the same time 
period. We hypothesized that infant temperament, as measured with the 
Infant Behavior Questionnaire Short Form (IBQ-SF), would follow a 
similar developmental trajectory as in earlier studies, the subscales 
surgency and negative affect increasing and orienting/regulation 
decreasing. Lastly, we looked into the relationship between the 
development of the brain networks and behavior using cross-lagged panel 
models. Here we expected to find a complex relationship with both 
behavior affecting brain development later in infancy and brain 
development affecting behavioral development later in infancy. Here we 
first discuss the main findings concerning these three critical questions. 
Subsequently, we will discuss the limitations and future directions of this 
study. 
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5.5.1 The development of the infant brain network 
Both alpha and theta brain networks saw considerable changes during the 
first year of life. Firstly, alpha and theta global connectivity significantly 
increased over time. Other studies, including our own, into the 
development of the infant brain network, have found similar results (Tóth 
et al., 2017; van der Velde et al., 2021). Similarly, studies into the 

Figure 5.3. Cross-lagged panel models with only significant paths depicted.  Both theta 
(left) and alpha (right) models network strength and small worldness (SWP) is related 
to social development (ASQ), surgency (SUR), negative affect (NEG), and regulation 
(REG) at an older age and vice versa. In both models, regulation at 5 months predicts 
brain network optimization (SWP) at 10 months. Additionally, theta network strength 
at 5 months predicts regulation at 10 months 
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development of alpha and theta power (which is related to, but not the 
same as, brain networks) show marked increases during the first year of 
life (Gabard-Durnam et al., 2019; Jones, Venema, Lowy, Earl, & Webb, 
2015; Sankupellay et al., 2011). This provides insight into the neurobiology 
of infant development, as increases in functional connectivity indicate that 
brain areas becomes more in sync as the infant develops, and thereby 
communication between brain areas is improved (Keunen et al., 2017). 
This is likely caused by increases in structural connectivity, probably 
mostly through myelination (Dubois, Hertz-Pannier, Dehaene-Lambertz, 
Cointepas, & Le Bihan, 2006). 

Both theta and alpha networks also showed distinct increases in small-
worldness propensity during the first year of life. This is an indication that 
the infant brain network not only strengthens its communication between 
brain areas but also that the topology of brain areas involved in these 
brain networks becomes more optimized. Our results mirror earlier 
findings in infant fMRI studies (Batalle et al., 2012; De Asis-Cruz, 
Bouyssi-Kobar, Evangelou, Vezina, & Limperopoulos, 2015; Fransson et 
al., 2007; Gao et al., 2011; Huang et al., 2015),  

Additionally and perhaps most encouragingly, we also found relatively 
high stability of these measures over the two sessions. Infants who showed 
high global network strength and/or high small-worldness at 5-months-
old were also more likely to show high global network strength and/or 
high small-worldness at 10-months-old, thus remaining relatively stable in 
their developmental trajectory in relation to other infants. Previous work 
has already shown that global network measures can be reliably measured 
in 10-month-old infants (Haartsen, van der Velde, Jones, Johnson, & 
Kemner, 2020; van der Velde et al., 2019). However, to our knowledge, 
this is the first time this stability over an extensive period during infancy 
has been reported. This is evidence that these measures are distinct across 
subjects and relatively stable across lengthy periods of time. This 
underlines the usefulness of these measures to study brain development, 
explain individual differences in behavior, and identify changes related to 
environmental factors or emerging psychopathology.  
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5.5.2 The development of infant social and temperament behavior 
In our study, we measured infant temperament using the IBQ:SF 
(Gartstein & Rothbart, 2003). Our findings mirror findings of earlier infant 
temperament studies (Gartstein & Rothbart, 2003; Putnam et al., 2014), 
with the subscales surgency and negative affect increasing during the first 
year of life and the subscale regulation/orienting decreasing during the 
first year of life. Additionally, we found that infant social competency 
decreased during the first year of life. However, this might be caused by 
the questionnaire used to determine social competency. This ASQ:SE 
questionnaire is normalized according to infant age. In this study, we used 
the 6-month-old and the 12-month-old versions of the questionnaire. Since 
the 6-month-old questionnaire was used for infants between 4 and 6-
months-old and the 12-month-old questionnaire was used for infants 
between 9 and 11-months-old, it makes sense that on average infants 
showed lower social development at 10-months-old compared to 5-months 
old.  

 
5.5.3 The relationship between the developing brain network and infant 
behavior 
In short, clear developmental patterns of both behavior and brain 
networks emerged in our dataset, but how do these relate to each other? 
We studied this question using cross-lagged panel models, in which the 
paths between session 1 and session 2 (the so-called cross-lagged paths) 
are of special interest. Does the brain mostly influence behavior later in 
infancy, or does persisting in certain behaviors influence the brain later in 
infancy or both? The aforementioned behaviors measurements are modeled 
with two core brain characteristics: 1) Global network strength, as a 
general measure of brain network maturation due to myelination and 
increases in the synchronicity of communication, and 2) small-worldness, 
as a measure of optimality of brain networks. 

We found that brain networks influence behavior later in infancy, but 
also that behavior also influences the later development of brain networks. 
We found that theta network strength at 5-months-of-age predicts 
orienting/regulation at 10-months. Conversely, we found that 
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orienting/regulation at 5-months-of-age predicts theta network small-
worldness at 10 months. Therefore, it seems that the total amount of theta 
network communication predicts the complexity of later behavior, but 
that the early complexity of behavior predicts later optimality of brain 
network structure. Global strength is a measure of total communication 
in a network. Therefore, an increase in global strength could indicate 
certain communication pathways becoming available, allowing for more 
complex behaviors to be exhibited. These new experiences, allowed for by 
the new pathways, in turn, will provide ‘practice’ for the network, and 
optimize its functioning. The alpha network saw similar relationships. 
However, only a lagged path from behavior to brain optimization was 
found with orienting/regulation predicting brain optimization later in life.  
Why the path alpha brain network global strength to orienting/regulation 
is present in the theta network later in infancy, but not in the alpha 
network is not fully understood. It is, however, possible that small-
worldness tells us more about the general topology of the brain and that 
theta and alpha small-worldness are therefore inextricably linked. Global 
theta or alpha strength, however, tells us more about what type of 
communication the brain uses to convey messages. This might therefore 
have a more specific relationship with what the brain is doing during the 
measurement.    

Interestingly, no lagged relationships between brain networks and social 
competency were found. This is surprising since previous work from our 
group found that the theta network reorganized during the first year of 
life and that with this reorganization came an increased (EEG) sensitivity 
to social stimuli  (van der Velde et al., 2021). Therefore, we expected to 
find a relationship between the theta function brain network and social 
behavior. There are several possible explanations for this. First, EEG is 
an indirect measure of brain structure, with a low spatial resolution. This 
forces the researcher to focus on the global workings of the brain. More 
detailed brain optimization characteristics like the rich-club coefficient 
(Ball et al., 2014; van den Heuvel & Sporns, 2011) cannot be detected. 
Perhaps more detailed brain network descriptions are better matched to 
describe the relationship between the brain and these specific behaviors.  



CHAPTER 5 | RELATING THE INFANT BRAIN NETWORK TO BEHAVIOR 
 

 155 

5 

Additionally, measuring behavior through the use of parent-filled 
questionnaires is not ideal. Parent biases might creep in, and 
questionnaires do not always provide a valid representation of child 
behavior. This has been shown on countless occasions. For example, 
Parade & Leerkes (2008) showed that the gender effects were large when 
using the infant behavior questionnaire, with fathers interpreting fear 
differently compared to mothers. Additionally, they found that emotional 
state of mind, like depression, strongly influenced eventual scoring (Parade 
& Leerkes, 2008). Future studies, with objective or multi-informant 
measures for social competence and infant temperament, might be 
required to better understand the exact relationship between infant brain 
networks and infant behavior.   

To our knowledge, this is the first study of bi-directional relationships 
between brain networks and behavior in a large, longitudinal sample of 
infants. This study can therefore be seen as a starting point for future 
work. For example, we have described several relationships between brain 
networks and typical behavior. Can these relationships also be found to 
detect and explain atypical behavior? Additionally, extra sessions would 
offer the opportunity to better detect non-linear longitudinal trends during 
development (i.e., U-shaped, exponential, logarithmic). with greater than 
two-time points, random intercept cross-lagged panel (RI-CLPM) models 
can be applied instead of the here used regular cross-lagged panel model. 
This RI-CLPM better represents the actual within-person relationships 
over time (Hamaker et al., 2015; Mulder & Hamaker, 2021). It would be 
interesting to study a limited population of infants regularly (for example 
weekly) to better assess developmental spurts and to allow for better non-
linear model fits. This is, of course, intensive for infants and parents, but 
it could yield invaluable results in much greater details regarding the 
relationship between brain and behavior.  

 
5.6 Conclusions 
In this study, we followed for the first time a large population of infants 
to describe the development of network characteristics during the first 
year of life. We used an EEG-based analysis method of functional networks 
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to determine the development of several graph characteristics. Both theta 
and alpha functional networks showed an increased optimization, through 
an increase in small-worldness and an increase in general network strength. 
Network characteristics increased in variability across sessions but 
remained relatively stable over time, indicating individual differences in 
the network topology followed a relatively stable development during 
infancy. The individual differences showed some predictive value in 
predicting behavioral development, with theta global network strength 
predicting infant regulation/orienting later in infancy and 
regulation/orienting predicting later network optimization. The current 
study shows the potential to explain behavior by studying the 
development of infant brain networks with EEG. In the future, we could 
use this information to detect biomarkers for typical and non-typical 
behavior, which could aid us in predicting and treating behavioral 
outcomes.  
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In this dissertation, we aimed to explore the relationship between the 
development of networks in the infant's brain and infant behavior. 
Ultimately, asking the question whether differences in characteristics of 
infant brain networks could explain differences in social competency and 
behavioral control. This dissertation specifically focused on social 
competence and self-regulation during infancy, since both types of 
behavior develop considerably during the first year of life. Importantly, 
both behaviors likely have a two-way relationship with networks in the 
human brain. For example, complex social behavior cannot exist without 
a wide variety of brain areas communicating effectively. On the other 
hand, however, the ability to exhibit more complex social behaviors opens 
new avenues to experience new stimuli through social learning (Bandura 
& Walters, 1977; Grusec, 1994). A similar thing can be said for self-
regulation. Additionally, atypical development of these behaviors has been 
commonly related to brain network dysfunction in older children and 
adults (f.e. Autism (Barttfeld et al., 2011; Belmonte et al., 2004; 
HansonCatherine, José, RamseyJoseph, GlymourClark, 2013; Orekhova et 
al., 2014) or ADHD (Ahmadlou, Adeli, & Adeli, 2012; Beare et al., 2017; 
Furlong et al., 2020; Murias, Swanson, & Srinivasan, 2007)). All these 
elements underline the importance of shedding light on the relationship 
between the development of these behaviors and the development of the 
infant brain network. 

To study these relationships, however, we realized some methodological 
issues needed solving first. Most importantly, infant EEG data notably 
differs from adult EEG data. For example, infants cannot be instructed to 
watch the screen or to sit still. This, therefore, requires different tasks to 
be used and requires dealing with noisy data. Consequently, reliability of 
network measures needed to be checked for infant EEG. An additional 
methodological issue is related to the study of individual differences, 
relating individual differences in brain development to behavioral 
development requires a considerable sample size. This sample size makes 
it difficult to keep the environment steady across measurements. 
Therefore, understanding infant EEG data quality and what external 
factors influence it are of vital importance.  
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This chapter is divided into two sections. In the first section (Infant 
EEG data quality and its reliability), we will discuss our papers on the 
reliability of infant network characteristics and the quality of infant EEG 
data, integrating our findings into other existing studies. In the second 
section (Relating infant behavior to their brain networks), we will discuss 
the relationship between infant behavior and their brain networks, by first 
delving into how networks in the brain are used to process behavior 
inducing stimuli and later directly relating the development of behavior 
to the development of these networks.  

 
6.1 Infant EEG data quality and its reliability  
Infant EEG data cannot be equated to adult EEG data. Infants get fussy 
easily and do no heed instructions. Therefore, the resulting data is often 
noisy, task setups differ greatly and are often shorter in length to 
accommodate the need of the infant. The influence of these issues is 
exacerbated when testing large samples of infants, since keeping external 
factors constant is nearly impossible. In our studies, we wanted to related 
individual differences in the development of behavior to brain network 
characteristics, which requires large samples of infants. Therefore, we first 
set out to answer two core questions: 1) Are brain network characteristics 
calculated with infant EEG data reliable? And 2) Which external factors 
influence infant EEG data quality?  

 
In chapter 2, we tried to answer the first question. We found that global 

metrics, metrics that are averaged over the entire brain, are generally 
highly reliable in both the theta and the low alpha frequency bands. 
Measures tested were global strength (average of all connections in the 
network), characteristic path length (average of all the shortest paths in 
the network), averaged clustering coefficient, and small-worldness. This 
finding is similar to several findings in the reliability of adult EEG brain 
networks (Deuker et al., 2009; Hardmeier et al., 2014). Local metrics were 
less reliable. This could be seen in individuals' adjacency matrices showing 
poor similarity over sessions, but also in the reliability of individual 
connections. Stronger connections did show higher reliability compared to 
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on average weaker connections, lending credence to the oft-used 
thresholding of adjacency matrices to analyze brain networks. It does 
show, however, that we should be careful in trying to relate individual 
connections in the infant's brain to infant behavior.  

 
In chapter 3, we showed that there is a wide array of factors influencing 

data attrition in one large-scale study. These factors can vary between 
subjects, possibly changing outcome measures and results, which may lead 
to biased conclusions. The factors influencing data attrition described in 
this study can be broadly divided into three groups: child-related factors, 
testing-related factors, and longitudinal (study-specific) factors. Three 
child-related factors were found to influence data loss: gender, age, and 
head shape. Four testing-related factors were found to influence data loss: 
time of testing, the season of testing, research assistant present during the 
experiment, and task length all had considerable influence on data. Lastly, 
data attrition rates of the first session of testing were found to be related 
to the second session of testing, underlining possible longitudinal biases in 
terms of data loss. 

These findings serve as a sneak preview to hopefully entice the reader 
to do their own analyses of these and other external factors possibly 
influencing infant EEG data quality. These findings must be replicated in 
other labs all around the world. Only then can we come up with 
standardized testing methods for all infant EEG studies. Additionally, it 
is important to understand in what way these results generalize to other 
age groups. Are these findings just applicable to young infants or is there 
a large amount of overlap with older age groups?  
 
6.1.1 Future directions and open questions 
This above-described findings do not mean that we should be satisfied 
with our current knowledge in how to study the infant connectome using 
EEG. There are still a lot of open questions. One important example: what 
is the minimum amount of data required to calculate reliable EEG 
networks. In an fMRI study, White and colleagues (2014) showed that the 
calculation of several core networks in the child brain stabilized after 5½ 



CHAPTER 6 | GENERAL DISCUSSION 
 

 169 

6 

minutes and therefore suggested an acquisition time of at least 5½ minutes 
for children. Similar studies are also necessary for infant EEG. Previous 
studies into infant ERP have found that testing longer does not necessarily 
increase the quality of the outcome (Stets & Reid, 2011). Is the same true 
for infant brain networks? Or is it similar to adult fMRI brain networks, 
where more data is better? And if so, what is the minimum amount of 
required data to get to these stable brain networks?  

Additionally, it is important to understand the influence of infant EEG 
data quality on the reliability of these metrics. Contrasting the 
recommendation for adult EEG brain network data to use less, but cleaner 
data (Fraschini et al., 2016), in our studies, we purposefully did not deep 
clean the EEG data. Most importantly because deep cleaning EEG 
increases the change of inducing biases in your infant population. Harshly 
cleaning your EEG data will result in higher amount of attribution due to 
lack of remaining data in subjects. Since it is very likely that certain 
character traits in infants increase the likelihood of getting clean data, you 
will induce a bias in your eventual population towards these infants. 
Additionally, requiring completely cleaned limits the applicability of these 
methods to detect biomarkers for atypical development. Therefore, it was 
important to us that reliable network metrics could be found even with 
slightly noisy data. This is not to say that we should not be interested in 
what the effect is of noisy data on reliability. We found reliable global 
metrics, but could intense cleaning increase the reliability of local metrics? 
Future studies are required to determine the exact relationship between 
EEG data cleanliness and reliability. 

In addition to poor local metrics, small-worldness also shows low 
reliability. Are there ways of increasing reliability for these metrics? Or 
could we use different metrics for network optimality that show higher 
reliability? For an alternative of small-worldness, we could focus our 
attention on the analysis of the minimum spanning tree. The minimum 
spanning tree is a subgraph constructed from a weighted network, in which 
all nodes are connected in such a way that the connection cost is 
minimized without forming cycles (Boersma et al., 2013; Tewarie, van 
Dellen, Hillebrand, & Stam, 2015). This is a method to overcome the 
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subjective thresholding of networks. Tree hierarchy (Boersma et al., 2013), 
a metric calculated using this method, shows high similarities with small-
worldness. Could these metrics prove more reliable? Future studies are 
necessary to better understand the limits and the possibilities of using 
graph metrics in infants. 

Lastly, so far, we have only discussed the relationship between EEG 
data quality and reliability. However, in chapter 3 of this dissertation we 
discuss several external factors that influence data loss. What this chapter 
does not tackle, however, is how these external factors influence outcome 
measures (either through data loss or not). Is it possible that time of day 
can influence global network strength? Could season of testing influence 
clustering coefficient? It is of the utmost importance that we improve our 
understanding on the effects of certain external factors on outcome 
measures, since unwittingly biases might creep into your dataset through 
these external factors when working with very young children. For 
example, when working with infants, the infant (in combination with the 
parent) decides when we can test. This could lead to older infants – who 
are more likely to be awake according to a strict schedule – to mainly 
come in at certain hours of the day (most likely early in the morning). If 
this is the case, it might be very difficult to disentangle whether the 
development causes differences in network measures or environmental 
factors are the culprit. Future studies testing these (and other) 
environmental factors is therefore vital to better estimate the validity of 
our results. 
 
6.2 Relating infant behavior to infant brain networks 
So, now we knew that a wide array of brain network metrics can be 
calculated reliably in a large sample of infants using EEG. Additionally, 
we knew some of the external factors – possibly biasing our outcomes – to 
look out for. With this information in mind, we tried to answer the core 
questions of this dissertation in chapter 4 and 5. In these chapters, we 
related the development of key infant behaviors to the development of 
brain network characteristics. As mentioned before, we were especially 
interested in the development social competence due to the possible two-
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way relationship: 1) increases in communication efficiency allow for more 
complex social behaviors, and 2) increases in more complex social 
behaviors allow for better functioning social learning, which in turn 
increases experience and optimizes brain network communication.  
 

In chapter 4 we investigated the functional connectome of infants 
during social and non-social processing. During EEG measurement, the 
infants were watching social and non-social videos. Using this EEG data, 
we calculated individual whole-brain networks at 5-months-old and 10-
months-old. We noted a striking reorganization in the theta whole-brain 
network, changing – on average – from a parieto-occipital network towards 
a fronto-parietal network at 10-months-old. No such change was found in 
the alpha whole-brain network. Both networks did show a considerable 
increase of average network strength over that period of time. Strikingly, 
however, only the development of the theta network coincided with an 
increase in selectivity for social versus non-social stimuli. While watching 
social videos, the theta network in the infant brain showed a marked 
increase in synchronicity. This was only the case from 9-months onwards 
(once the network on average was reorganized) and not the case with alpha 
networks at any point in time. 

This study provides evidence for the involvement of theta 
communication in the processing of social cues. This fits in nicely with 
earlier studies finding theta power to be related to social processing (Jones, 
Venema, Lowy, Earl, & Webb, 2015; Orekhova, Stroganova, Posikera, & 
Elam, 2006). Additionally, this study shows a seeming requirement for the 
reorganization of the theta network before it becomes sensitive towards 
social versus non-social stimuli. This fits nicely with the interactive 
specialization theory (Johnson, 2000; 2011; Johnson, Grossmann, & Cohen 
Kadosh, 2009), which hypothesizes that the switch from an infant being 
able to not do something to them being able to do that thing is not being 
caused by individual areas becoming mature, but by networks of brain 
areas coming online. Note that these results do not tell us anything about 
an individual’s switch from a parieto-occipital network towards a 
frontoparietal network. Only that, on average in our population, this 
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switch takes place somewhere between 6 and 9-months old. It might be 
very difficult to detect these changes in individuals and at least multiple 
sessions are needed to confirm reconfigurations in sole participants.   

 
So, in short theta communication in the infant brain seems to be related 

to the processing of social cues. However, this leaves out an important 
piece of the puzzle: how does this development relate to the development 
of actual infant behavior? In chapter 5, we aimed to answer this question 
by following the infant’s connectome during the second half of the first 
year of life and relating its characteristics to the stark development in 
social behavior and self-regulation.  

We first just looked at the brain and found that infant brain networks 
showed increases of alpha and theta communication as the child grew 
older. However, not only was there more communication, but it also 
seemed that pattern of communication was better optimized, with 
increases of small-worldness found over the course of the first year of life. 
Lastly, as the child grew older, the brain seemed to increase its reliability 
on long-range connectivity. All these findings fit nicely within the existing 
body of literature done in smaller populations of infants, both in EEG 
(Gao, Alcauter, Smith, Gilmore, & Lin, 2015; Gao et al., 2009; Huang et 
al., 2015) and (f)MRI (Fransson, Åden, Blennow, & Lagercrantz, 2011; 
Smyser, Snyder, & Neil, 2011), where increases in global connectivity and 
communication optimization are commonly found over the course of the 
first year of life and the brain reorganizes from a local towards a global 
organization (Smyser et al., 2011). 

This development of brain network characteristics was then related to 
the development of infant behavior using a special type of structural 
equation modelling: cross-lagged panel models. Cross-lagged panel models 
are useful tools to better understand two-way interactions. Of especial 
interest to us where the cross paths between brain and behavior measures. 
That is to say: does the behavior outcome at session 1 predict brain 
outcome at session 2 and vice versa. Our results showed, both in theta 
and alpha networks slight relationships between brain network 
characteristics and self-regulation. Theta network strength at session 1 
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predicted self-regulation at session 2. Conversely, self-regulation at session 
1 predicted theta small worldness at session 2. Similar results were found 
in the alpha networks, with self-regulation at session 1 predicting alpha 
small worldness at session 2. These results might be viewed as evidence 
for a complex relationship between brain networks and behavior with both 
behavior influencing the optimization of the network and the existence of 
the network influencing complexity of behavior. It is important to note, 
however, that these relationships are very slight, which could limit the 
applicability of these findings on the level of the individual. 
 
6.2.1 Future directions and open questions 
One of the key facets in understanding the development of the infant brain 
network is to zoom in on the role of infant experience. There are multiple 
ways to tackle this issue, but one interesting approach could be to shine a 
light on the development of motor skills in infancy. The milestones of 
motor development have always been an important guide for parents to 
track their infant’s development. However, the impact the reaching of 
these milestones has on other key skills, like social development, has not 
always been appreciated. Increased motor skill allows the infant to act on 
the world and interact with it in increasingly complex ways (Hofsten, 
2004).  

Studying motor development with a connectivity perspective makes 
sense. Motor development milestones create a sudden burst in new 
experiences in other key skills. These new skills also become increasingly 
motor-dependent. Especially the skills that pertain to the locomotion of 
the child influence social behavior strongly (Campos et al., 2000). This 
evidence extends to atypical social development, in which motor 
development is commonly affected as well (Leonard & Hill, 2014). Motor 
skill milestones could therefore be used as an important indicator for 
experiencing more complex social situations. Therefore, future studies 
could relate motor skill development and social competence longitudinally 
over the first year of life, with a mediating role of the infant brain network.  

Extra care should be given towards understanding the order of 
development of these core features of infant cognition. Motor development 
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is linked to optimization of infant brain networks (Marrus et al., 2018), 
social competence can be linked to the infant brain network (this 
dissertation), and social competence and motor development in infancy 
are inextricably linked (Leonard & Hill, 2014). However, it is currently 
unknown what (if any) is the main driver of these parallel processes. Does 
motor development drive further optimization of the infant brain network 
and with-it social competence? Does the optimization of the infant brain 
network drive motor skill milestones and social competence? Does motor 
development allow for more complex social experiences, and both increase 
optimization in the infant's brain? Or is the development of these skills 
and their underlying neural mechanisms more dynamic, consistently 
switching roles between driver and passenger.  

The relationship between the infant brain, motor skills, and social 
behavior could also be studied more directly. Most studies, researching the 
infant's brain, do their best in ensuring the immobility of the infant. 
Motion creates artifacts in all our known imaging methods to be used in 
infants. This shuts off an important area of research into the social 
development of the child. Older infants rarely exhibit social behavior in 
absence of movement and not allowing for this movement during brain 
measurements limits our understanding of social behavior. Designing 
setups that include approaching and playing behavior while measuring 
EEG is therefore vital. Not because of increased ecological validity, 
because it is difficult to determine what real-world behavior is and whether 
or not there is such a thing as getting closer to this behavior in a lab 
setting (Holleman, Hooge, Kemner, & Hessels, 2020), but because the 
behaviors exhibited by infants become in such a setting become more 
complex and therefore require the input of more distinct brain areas. This 
would lead to a better understanding of how these brain areas distinct in 
function communicate during these complex tasks.  

Unfortunately, this requires considerable methodological advances. 
Infants need to be able to move freely while being measured and artifacts 
caused by this motion should be minimal. However, there are possibilities 
on the horizon making this possible. Both from a hardware and a software 
perspective. The EEG hardware advancement most promising for these 
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types of studies is the increase in the use of wireless EEG machines (f.e. 
the F1 EEG headset, the B-alert, or the Enobio). Not only do these 
headsets improve the possibility of moving around, but the removal of 
wires also removes an important inducer of motion artifacts. Early 
comparison studies between regular EEG headsets and wireless headsets 
show promising results (Debener, Minow, Emkes, Gandras, & De Vos, 
2012; Hinrichs et al., 2020; Kam et al., 2019; Ratti, Waninger, Berka, 
Ruffini, & Verma, 2017). One key problem these wireless headsets do not 
fix is the muscle artifacts which will become more plentiful during motion. 
Here, advances in software, driven by the research into brain computer 
interfaces, could play an important role, to actively filter out muscular 
artifacts while measuring EEG (Elsayed, Zaghloul, & Bayoumi, 2017; Song 
& Sepulveda, 2018). If these issues are fixed, even to a limited extent, we 
could devise more complex social tasks, in which the child could move 
freely. This will allow us to better describe in what way the brain 
communicates during these complex social behaviors.   

The influence of experience on the social brain network could also be 
studied from a different perspective. One that likely captures the 
imagination right now. The COVID-19 pandemic has affected the lives of 
many people on earth. One group of people, however, has the curious 
distinction of never having lived outside of the pandemic: young infants. 
While health-wise many infants will come out of the pandemic unscathed, 
changes in their social experiences will be numerous. Visits by friends and 
family have become less frequent and for extended periods of time, infant 
daycare was impossible for many infants in The Netherlands. This has 
undoubtedly influenced the heterogeneity of social experiences an infant 
faced in 2020. Studying the social brain network of these infants, paying 
extra attention to the optimized structure of these networks, and increases 
or decreases in synchronicity between social brain areas during the 
processing of social cues could shed light on the importance of variety in 
social experiences during the first year of life for the development of a 
healthy social brain.  
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I.1. Aanleiding 
Het babybrein ontwikkelt zich razendsnel gedurende het eerste levensjaar. 
Dit is van groot belang aangezien een baby gebombardeerd wordt met 
steeds complexer wordende informatie. Een groot gedeelte van het 
leerproces van kinderen verloopt sociaal en wordt aangeleerd door of via 
personen in de omgeving van het kind. Het is dus begrijpelijk dat het 
verwerken van deze sociale informatie een belangrijke functie is van het 
jonge brein. Dit is een zeer complex proces, waarbij een persoon zich vele 
dingen kan afvragen. Wat is de emotie van de persoon naar wie ik kijk? 
Wat is de relatie van de persoon met zijn/haar omgeving? Praat de 
persoon tegen mij? Wijst de persoon iets aan? Veel verschillende gebieden 
in het brein zijn met deze onderdelen van sociaal gedrag bezig. Voor een 
optimale en snelle beslissing is goede communicatie tussen deze gebieden 
is vitaal. Gebieden in het brein die met elkaar verbonden zijn en 
communiceren noemen we ook wel brein netwerken. Als we willen weten 
hoe complex gedrag – zoals sociaal gedrag – zich ontwikkelt, is het 
begrijpen van de ontwikkeling van deze netwerken in het brein van groot 
belang.  

Het bestuderen van netwerken in een babybrein is om verscheidene 
redenen niet gemakkelijk. Ten eerste is het meten van een babybrein 
ingewikkeld. Baby’s zijn niet te instrueren, zitten niet stil, en kunnen maar 
beperkt hun aandacht ergens op vestigen. Als gevolg worden babybreinen 
vaak slapend of post-mortem bestudeerd. Hoewel dit tot interessante 
inzichten kan leiden op het gebied van de structuur van het brein, staat 
dit ver af van het brein onderzoeken terwijl het kind bepaald gedraag laat 
zien. Een tweede probleem van het bestuderen van netwerken in het brein 
is dat het vergelijken van netwerken zeer complex is. Er wordt niet 
gekeken naar een enkel gebied, maar vaak naar tientallen gebieden 
tegelijkertijd en naar de verbinding tussen deze gebieden. Het is zo erg 
lastig om vast te kunnen stellen wanneer netwerken fundamenteel 
verschillen van elkaar.  

Het eerste probleem wordt vaak opgelost door EEG te gebruiken. Bij 
EEG worden elektrodes bevestigt op het hoofd van de proefpersoon die 
hersenactiviteit kunnen meten. EEG is relatief resistent tegen beweging, 
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makkelijk te gebruiken met korte taken, en is relatief non-invasief. De 
perfect methode voor baby’s dus. EEG heeft nog een ander bijkomend 
voordeel van het meten van breinactiviteit: EEG heeft een zeer goede 
temporele resolutie. Waar fMRI op het snelst een meting per second kan 
doen, kan EEG meer dan 2000 keer per seconde meten. Dit zorgt ervoor 
dat we beter onderzoek kunnen doen naar breinprocessen die een zeer korte 
tijdspanne in beslag nemen. Door deze goede temporele resolutie zijn we 
goed in staat de oscillaties van het brein te meten. Populaties van 
neuronen in het brein vuren vaak in oscillerende patronen. De frequentie 
van deze oscillaties kunnen verschillen. In het brein praten we vaak over 
de volgende frequentiebanden, geordend van traag naar snel: delta, theta, 
alfa, beta, en gamma oscillaties. De hypothese is dat het brein gebruikt 
maakt van deze verschillende frequentiebanden om optimaler te 
communiceren. Verschillende frequentiebanden worden dan ook 
toegeschreven aan andere cognitieve processen. Zo wordt alfa vaak gezien 
als inhiberend en theta en beta juist als exciterend. Dit wordt extra 
interessant bij het bestuderen van netwerken in het brein. Er wordt ervan 
uitgegaan dat op hetzelfde moment verschillende netwerken in het brein 
met elkaar communiceren in andere frequentiebanden om interferentie te 
voorkomen. 

Voor het oplossen van het tweede probleem – het onderzoeken en 
vergelijken van netwerken is complex - wordt vaak gebruik gemaakt van 
graph theory (West, 2001). In graph theory worden netwerken 
gerepresenteerd als nodes (in het geval van het brein zou dit onze brein 
gebieden zijn) en edges (de verbindingen tussen de nodes, zie ook figuur 
1). Met deze wiskundige benadering van een netwerk kunnen we 
verschillende karakteristieken van een netwerk berekenen.  

Een belangrijke karakteristiek van een netwerk is hoe makkelijk het is 
om van een kant van het netwerk naar de andere kant van een netwerk te 
komen. Als deze karakteristiek, ook wel karakteristiek pad lengte of globale 
efficiëntie genoemd (Dijkstra, 1970), laag is dan is het makkelijk om van 
de ene kant naar de andere kant van het netwerk te komen en spreekt 
men van hoge integratie. Dit is zeer belangrijk voor het brein om goed te 
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functioneren. Gebieden die ver van elkaar liggen moeten goed kunnen 
communiceren, informatie uitwisselen, en samenwerken om zo tot snelle 
beslissingen te kunnen komen. 

Een tweede belangrijke karakteristiek van een netwerk is hoeveel 
clusters er zitten in het netwerk. Een cluster is een groep nodes die 
allemaal zeer sterk met elkaar verbonden zijn. Als deze karakteristiek, ook 
wel cluster coëfficiënt of lokale efficiëntie genoemd, hoog is zijn er relatief 
veel clusters aanwezig in het brein en wordt er gesproken van een hoge 

Figuur 1 Netwerken en grafentheorie.  
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segregatie. Ook hiervan is het goed te verklaren waarom dit belangrijk zou 
zijn voor een menselijk brein. Gebieden die dicht bij elkaar liggen kunnen 
door sterke interconnectiviteit een specialistische taak uitvoeren. Als 
netwerken zowel een relatief hoge cluster coëfficiënt als een lage 
karakteristiek pad lengte hebben wordt er gesproken van een small-world 
netwerk (Watts & Strogatz, 1998) en dit wordt vaak de optimale 
organisatie van een netwerk genoemd. 

Dus we hebben een veelgebruikte tool om het brein te meten – EEG – 
en een veelgebruikte tool om de netwerken te kwantificeren en te 
vergelijken – graph theory. Opvallend genoeg, echter, wordt er op dit 
moment nog weinig onderzoek gedaan naar de relatie tussen ontwikkelende 
breinnetwerken en de ontwikkeling van gedrag in het eerste levensjaar. 
Waarom is dit het geval? Dit komt voornamelijk, omdat er een aantal 
fundamentele problemen opgelost dienen te worden.  

Ten eerste is het onduidelijk hoe betrouwbaar deze maten zijn. Als 
netwerken in het babybrein meerdere keren gemeten worden, zijn de 
uitkomstwaardes voor de fundamentele karakteristieken van het netwerk 
dan elke keer hetzelfde? En zijn deze waardes (relatief) uniek voor een 
baby? Alleen als aan deze twee eisen wordt voldaan, kun je op een zinnige 
manier, met de gemeten netwerken, gedrag voorspellen. 

Ten tweede is het niet volledig duidelijk hoe EEG-data het beste 
afgenomen kan worden bij baby’s. Er zijn veel aannames, veelal op basis 
van ervaring, maar deze aannames zijn niet uitvoerig getest. Het is van 
groot belang dat hier onderzoek naar gedaan wordt, want baby-onderzoek 
is kostbaar. Er is relatief veel uitval en data heeft veel ruis door baby’s 
die niet stil zitten en niet hun aandacht vast kunnen houden. Duidelijk 
krijgen welke externe factoren van belang zijn om zo goed mogelijk EEG 
af te nemen is dus van groot belang. 

Als laatste zijn verschillen in  
breinnetwerken veelal klein – globaal gezien is praktisch elk brein 

hetzelfde. Dus om iets zinnigs te zeggen over de relatie tussen de 
ontwikkeling van het brein en gedrag dienen grote groepen baby’s getest 
te worden. Dit neemt de nodige problemen met zich mee, zowel op het 
vlak van meten als analyseren. In ons geval zijn we specifiek geïnteresseerd 
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in de ontwikkeling van gedrag en het brein. Dat maakt dit probleem nog 
groter. Niet alleen is een grote populatie baby’s nodig, maar deze baby’s 
moeten ook nog eens meerdere keren getest worden. Dit laatste probleem 
is opgelost door het opzetten en uitvoeren van het YOUth onderzoek (door 
Prof.dr Chantal Kemner, vele andere onderzoekers, en alle 
onderzoeksassistenten). Het YOUth onderzoek is een groot onderzoek wat 
loopt in de regio Utrecht waarin 3000 kinderen worden gevolgd vanaf nog 
voor dat ze geboren zijn totdat ze zes jaar oud zijn. In dit proefschrift 
wordt niet gebruik gemaakt van de volledige sample, maar in de meeste 
hoofdstukken wordt weldegelijk gewerkt met ongewoon grote populaties. 

Dit proefschrift gaat in eerste instantie over het oplossen van probleem 
1 en 2 beschreven in de alinea’s hierboven. Daarna wordt er over gegaan 
op een toepassing van de netwerkanalyse in baby’s om babygedrag te 
kunnen verklaren.  
 
I.2. Methodologische problemen en oplossingen 
In hoofdstuk 2 beantwoorden we de eerste vraag hierboven beschreven: 
kunnen we netwerken bij baby’s betrouwbaar meten? Mijns inziens zou 
dit altijd het begin van onderzoek moeten zijn. Kan ik datgeen wat ik 
meet wel vertrouwen?  

Om dit te onderzoeken, werden 77 baby’s van 10 maanden oud twee 
keer getest met precies een week ertussen. Tijdens beide testsessies werd 
er EEG afgenomen terwijl het kind naar een scherm aan het kijken was. 
Op het scherm werden twee verschillende video’s afgebeeld. De eerste 
video was van zingende vrouwen, de tweede van bewegend speelgoed. De 
afgenomen EEG werd na elke sessie geschoond en gecontroleerd. Te ruisige 
proefpersonen (proefpersonen die te veel hadden bewogen of waarvan de 
meting om andere redenen niet was gelukt) werden verwijderd. Van de 
overblijvende 60 baby’s werden de breinnetwerken geanalyseerd. 

Breinnetwerken werden berekend voor de verschillende 
frequentiebanden (delta, theta, laag alfa, hoog alfa, beta, en gamma). Dit 
werd gedaan aan de hand van de Phase Lag Index (PLI) (Stam, Nolte, & 
Daffertshofer, 2007). Bij de PLI wordt gekeken hoe stabiel het faseverschil 
is tussen twee signalen. Des te hoger de stabiliteit, des te hoger de 
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verwachting dat deze twee signalen met elkaar aan het communiceren zijn. 
Deze faseverschil stabiliteit werd voor het volledige experiment berekend 
tussen alle elektrodes die gemeten werden. In totaal gebruikten we 32 
elektrodes, dus er werden per proefpersoon 32*31/2 = 496 connecties 
berekend. Met het resulterende netwerk berekenden we de volgende graaf 
karakteristieken: netwerksterkte (gemiddelde sterkte van het hele 
netwerk), karakteristiek pad lengte, cluster coëfficiënt, en small-worldness. 

Onze bevindingen lieten zien dat in de theta en alfa frequentiebanden 
we betrouwbare netwerken konden meten. De netwerksterkte was 
betrouwbaar (ICC>0.8), de clustering coëfficiënt was betrouwbaar 
(ICC>0.8), karakteristiek pad lengte was betrouwbaar (ICC>0.8), en de 
small-worldness was redelijk betrouwbaar (ICC>0.6). Ook vonden we 
voldoende variantie tussen proefpersonen. Deze twee elementen: 
betrouwbare, maar variërende, netwerken zorgen ervoor dat we kunnen 
concluderen dat netwerken in baby’s goed te meten zijn met EEG en dat 
de beschreven uitkomstmaten bruikbaar zijn om eventueel gedrag te 
verklaren.  

 
Kortom, EEG-netwerken in de theta en alfa frequentiebanden zijn 

betrouwbaar, maar de andere frequentiebanden zijn een stuk minder 
betrouwbaar. Hoe komt dit? Het zou wel eens zo kunnen zijn dat de data 
te ruisig is. Dit is vooral een probleem in de hogere frequentiebanden. 
Daarom zijn we in hoofdstuk 3 op onderzoek uitgegaan om EEG-
datakwaliteit te maximaliseren en data verlies te minimaliseren. In dit 
hoofdstuk proberen we dus een antwoord te geven op het tweede probleem 
hierboven beschreven: Welke externe factoren zijn van invloed op de 
kwaliteit van EEG-data? 

Voor dit onderzoek maakten we gebruik van de YOUth dataset. In 
totaal includeerden we 1278 5 maanden oude baby’s, 1046 10 maanden 
oude baby’s, en 104 3 jaar oude peuters. Vergelijkbaar met hoofdstuk 2 
werd de EEG-data gemeten terwijl de baby’s en peuters naar verschillende 
video’s aan het kijken waren. De verkregen data werd automatisch 
opgeschoond. Dat wil zeggen, slechte stukken EEG werden gedetecteerd 
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en verwijderd. Per proefpersoon werd er berekend hoeveel procent van de 
data verwijderd werd.  

Hierna konden we kijken of verschillende externe factoren invloed 
hadden op hoeveel data er werd weggegooid. We vonden verschillende 
interessante resultaten. Zo had de onderzoeksassistent die de EEG afnam 
een zeer grote invloed op het uiteindelijke dataverlies. Andere externe 
factoren die een invloed hadden op dataverlies waren leeftijd (ouder 
minder data verlies), geslacht (vrouwen meer dataverlies dan mannen), 
tijd van testen (hoe eerder, hoe beter), en hoofdvorm (atypische 
hoofdvormen leiden tot dataverlies). Het meest verrassend was het effect 
van seizoen: in de wintermaanden werd meer dataverlies vastgesteld dan 
in de zomermaanden (zie ook figuur 2).  

Ook keken we naar het effect van lengte van de taak op data verlies. 
Hier zag je (niet geheel verrassend) dat naarmate de taak langer duurde, 
er meer data verlies was. Wat zeker wel interessante was, was het 
gelimiteerde effect van een pauze. Na de pauze schoot het dataverlies 
omlaag, maar binnen 1 à 2 seconden was het dataverlies weer terug op het 
originele punt. Als laatste werden baby’s vergeleken over meerdere sessies. 

Figuur 2. Data verlies gedurende de hele studie. Hier afgebeeld is de hoeveelheid data 
verlies gedurende de hele studie (vanaf 2016). Elk stipje in een losse proefpersoon. Een 
gemiddelde lijn is getekend om de resultaten beter zichtbaar te maken. Een duidelijk 
jaarlijks ritme is te zien met pieken in de wintermaanden (meer dataverlies). Dit effect 
is te zien voor alle leeftijden. 
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Hier vonden we kleine verbanden, waarbij baby’s die eerder een slechte 
meetsessie hadden gehad een iets grotere kans hadden op nog een slechte 
sessie de tweede keer.  
 
I.3. De relatie tussen gedrag en het babybreinnetwerk  
Nu we wisten dat bepaalde netwerkmaten betrouwbaar waren, maar ook 
zicht hadden wat voor externe factoren invloed konden hebben op onze 
data, konden we aan de slag met de toepassing van de netwerkanalyse bij 
baby’s. Zoals eerder vermeld wilden we graag weten hoe de ontwikkeling 
van sociaal gedrag gerelateerd was aan de ontwikkeling van het babybrein. 
Er zijn verschillende facetten aan sociaal gedrag. Een belangrijke 
tweescheiding kan gemaakt worden tussen het interpreteren en verwerken 
van sociale stimuli en het zelf daadwerkelijk uitvoeren van sociaal gedrag. 
In hoofdstuk 4 & 5 werden deze twee verschillende onderdelen onderzocht. 
In beide gevallen wordt de ontwikkeling van sociaal gedrag gerelateerd aan 
de ontwikkeling van het babybreinnetwerk. 
 

In hoofdstuk 4 wordt de ontwikkeling van theta en alfa netwerken 
beschreven en wordt er onderzocht of deze netwerken anders reageren op 
sociale stimuli dan op niet-sociale stimuli. De resultaten van deze studie 
zijn zeer interessant. Theta netwerken laten namelijk een duidelijk 
ontwikkelingspatroon zien. Waar we bij jonge baby’s vooral communicatie 
zien tussen de pariëtale en visuele gebieden, herconfigureert zich dit tot 
een netwerk waar vooral frontale en pariëtale gebieden met elkaar 
communiceren. Deze verandering is niet te zien in het alfa netwerk. Er 
lijkt dus een totale reconfiguratie van het theta breinnetwerk plaats te 
vinden tussen 5 en 10 maanden oud.  

Tegelijkertijd met deze reconfiguratie begint het netwerk ook gevoeliger 
te worden voor sociale stimuli. De synchronisatie binnen dit netwerk 
verhoogd namelijk bij het zien van de sociale video’s vergeleken met de 
niet-sociale video’s. Dit gebeurt alleen bij de theta netwerken van 10-
maanden-oude baby’s. Deze verhoogde gevoeligheid is niet te zien binnen 
het alfa netwerk. Deze studie lijkt dus bewijs te hebben gevonden voor het 
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ontstaan van een frontopariëtaal sociaal brein netwerk in de tweede helft 
van het eerste levensjaar. 

Dus we weten nu dat babybreinnetwerken betrouwbaar zijn en dat ze 
gebruikt kunnen worden om het verwerken van bepaalde stimuli te 
verklaren. Het voornaamste stuk van de puzzel wat nu nog mist is hoe 
deze netwerken en de ontwikkeling daarvan nu precies gerelateerd zijn aan 
de ontwikkeling van gedrag. Hier gingen we verder op in, in hoofdstuk 5.  

In deze studie volgde we zowel de gedrags- als de breinontwikkeling van 
800 baby’s gedurende hun eerste levensjaar. Qua gedrag waren we vooral 
geïnteresseerd in sociale ontwikkeling en regulatie (belangrijk voor 
emotie). We zijn vooral zo geïnteresseerd in sociaal gedrag, omdat een 
toename in sociaalheid baby’s in staat stelt meer van de wereld te beleven. 
Leerprocessen zijn – zeker in de eerste levensjaren – veelal sociaal: ouders 
laten hun kind wat zien of kinderen willen samen met 
ouders/broertjes/zusjes iets doen.  

De ontwikkeling van dit sociale gedrag zorgt er dus direct voor dat het 
kind meer ervaring krijgt met haar/zijn omgeving. Deze toename in 
ervaring heeft dan weer invloed op het brein van het kind. Hoe meer een 
kind bepaalde dingen ervaart, hoe optimaler gebieden in het brein gaan 
samenwerken. Echter het tegenovergestelde is ook waar. Zonder een 
(relatief) optimaal presterend breinnetwerk is complex gedrag niet 
mogelijk. Het is daarom waarschijnlijk dat er een wisselwerking ontstaat 
gedurende het eerste levensjaar waar complex gedrag het brein 
optimaliseert, maar het optimaliseren van het brein ervoor zorgt dat er 
meer complex gedrag uitgevoerd kan worden. 

De hypothese vinden we terug in onze data. De sterkte van zowel theta 
als alfa netwerken bij 5 maanden oude kinderen voorspelt hun regulatie 
op 10 maanden oude leeftijd. Andersom voorspelt regulatie op 5 maanden 
oude leeftijd, small-worldness bij 10 maanden. Dus de ontwikkeling van 
het brein maakt complexer gedrag mogelijk en het complexere gedrag 
optimaliseert het brein. Belangrijk is wel om aan te geven dat deze relatie 
klein, doch significant, is en dat we geen relaties hebben gevonden tussen 
sociale ontwikkeling en het brein (dus alleen tussen regulatie een het 
brein). 
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I.3. Conclusies 
In dit proefschrift onderzochten we de relatie tussen de ontwikkeling van 
sociaal gedrag en de ontwikkeling van het babybreinnetwerk. Voordat we 
deze vraag konden beantwoorden werd echter al snel duidelijk dat er eerst 
een en ander nodig was op methodologisch vlak. Daarom hebben we eerst 
de methode onderzocht en getracht te optimaliseren.  
 
Door hoofdstuk 2 & 3 zouden onderzoekers beter in staat moeten zijn 
keuzes te maken met betrekking tot het uitvoeren en analyseren van baby 
EEG-data om netwerken te meten. Hoofdstuk 4 & 5 geven een eerste 
aanzet van alles wat mogelijk is om te bestuderen vanuit een breinnetwerk 
perspectief in baby’s. Hierin werd duidelijk dat theta communicatie 
gedurende het eerste levensjaar steeds belangrijker wordt voor het 
verwerken van sociale informatie. Ook werd er een wederkerige relatie 
gevonden tussen het babybreinnetwerk en gedrag, waarin complex gedrag 
gerelateerd is met een optimaler brein later in het eerste levensjaar. Het 
tegenovergestelde was echter ook waar, een meer ontwikkeld brein 
voorspelde complexer gedrag later in het eerste levensjaar. 
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Dit proefschrift had nooit gemaakt kunnen worden zonder de tomeloze 
inzet en ondersteuning van een hele grote groep mensen.  
 
Allereerst, natuurlijk mijn promotor Chantal. Dank voor de hele prettige 
samenwerking. Je hebt een erg veel tijd in mij gestoken. Ik zat een tijdje 
zonder dagelijkse supervisor, maar die rol nam jij moeiteloos over. Waar 
ik vooral blij mee was in onze wekelijkse discussies was dat je me 
motiveerde om anders over mijn uitkomsten na te denken. Ik kan zelf 
behoorlijk halsstarrig zijn, zowel in mijn manier van onderzoek doen en in 
de interpretatie van uitkomsten, maar jij kwam altijd weer met een 
opmerking waarvan ik dacht: "Oh ja, dat kan natuurlijk ook!". Wat ik 
ook erg op prijs heb gesteld is dat je me vrij hebt gelaten om onderzoek te 
doen naar wat ik interessant vond. Natuurlijk was er altijd een rode draad 
van netwerken en babybreinen, maar hoe ik deze breinen moest 
onderzoeken en welke vragen ik daarbij moest stellen dat liet je in eerste 
instantie altijd bij mij. Dit heeft ervoor gezorgd dat ik nooit het gevoel 
had iets oninteressants of onbelangrijks te doen en zorgde voor een flinke 
dosis motivatie. Dat ik het prettig vind om met je samen te werken blijkt 
ook wel uit dat ik het maar een al te goed idee vind om van mijn nieuwe 
baan een duobaan te maken en een soort brug te worden tussen mijn 
nieuwe werk en mijn oude werk. Ik hoop op deze manier nog heel lang met 
je samen te blijven werken! Chantal, heel erg bedankt! 
 
Dan mijn copromotor, Tonya, thank you so much for your supervision 
during the last years of my PhD. Covid-19 made meeting up in person 
problematic, but I always enjoyed our Zoom meetings. These meetings 
really deepened my understanding as to what it means to do rigorous 
science. We thoroughly discussed possible analyses and the outcomes of 
these analyses. I know for sure that the papers we have published together 
increased in quality immensely due to your insight. I hope that we can 
keep working together in the coming years. 
 
De overige leden van de promotiecommissie, prof. dr. A.L. Van Baar, prof. 
dr. D.J.L.G. Schutter, prof. dr. M.J.N.L. Benders, prof. dr. H.E. Hulshoff 
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Pol, prof. dr. C.J. Stam, en prof. dr. J.L. Kenemans, wil ik graag bedanken 
voor het beoordelen van mijn proefschrift en de bereidheid zitting te 
nemen in mijn promotiecommissie.  
 
Dan wil ik natuurlijk ook nog heel graag mijn collega's en oud-collega's 
van het KinderKennisCentrum en het YOUth onderzoek bedanken: Elysia, 
Lilli, Gwen, Juliette, Jolien, Marieke, Femke, Mark, Ron, Marije, Coosje, 
Jacobine, en al mijn andere collega's en assistenten die de afgelopen jaren 
onmisbaar zijn geweest voor de vergaring van onze data. Naast het 
vergaren van de data gebruikt in dit proefschrift, hebben jullie er ook 
direct voor gezorgd dat mijn PhD een hele prettige tijd werd. Jullie waren 
open, enthousiast en we hebben vele malen The Basket op vrijdag 
afgesloten om daarna toch nog maar even de binnenstad van Utrecht in 
te gaan. Ontzettend bedankt voor alles! 
 
Verder wil ik mijn coauteurs op mijn papers ook bedanken. Caroline, dank 
voor de vele discussies die we over datakwaliteit hebben gehad. Je was ook 
onmisbaar in het behapbaar houden van de vraagstelling. Het paper wat 
we samen hebben gemaakt is waarschijnlijk mijn favoriete paper uit deze 
dissertatie en jij hebt daar een enorme bijdrage aan geleverd. Marissa, ik 
weet nog dat je in mijn derde jaar een keer bij mij op bezoek kwam om te 
bespreken wat ik deed en of we misschien konden samen werken. Dat leek 
mij leuk en als snel lag er een project idee van jou in mijn inbox. 
Uiteindelijk is hier een mooi paper uitgekomen en de samenwerking 
smaakte naar meer, dus we zijn alweer met iets nieuws aan de slag.  
 
Vervolgens zijn mijn collega's van de Universiteit Utrecht ook van vitaal 
belang geweest. Gijs, bedankt voor je gezelligheid en hulp de afgelopen 
jaren. Als kamergenoot heb je me meermaals geholpen om niet gillend gek 
te worden van vervelende analyses, papers, of van die idiote studenten. 
Roy, dank voor je nuttige input tijdens meetings en het aanwakkeren van 
mijn vuur voor gedegen onderzoek. Carlijn, bedankt voor de ondersteuning 
en gesprekken als ik vastliep of problemen had met een van mijn vakken 
of studenten. Ignace, bedankt voor de inspirerende gesprekken over 
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onderwijs en onderzoek. Je kritische blik zorgde ervoor dat ik het altijd 
iets beter wilde doen. Albert, bedankt voor de samenwerking bij het 
coördineren van Spatial Cognition. Van onze samenwerking leerde ik niet 
alleen ongelooflijk veel over onderwijs, maar je was ook een ware 
kennisbaak op het gebied van onderzoek doen. Verder wil ik nog alle 
andere (ex-)leden van het Neurocognitive Development Lab Utrecht 
bedanken: Yentl, Niilo, Zsofia, Renata, Rianne, Pascal, Dienke, Tess, 
Matthijs en Iris, voor hun gezellige en inspirerende gesprekken. En 
natuurlijk dank aan al mijn andere collega's van de afdeling psychologische 
functieleer en mede-docenten van de vakken die ik heb gegeven, jullie 
zorgen allemaal voor een heerlijke werksfeer! 
 
Natuurlijk zijn niet alleen mensen die op de universiteit werken van belang 
geweest voor dit proefschrift. Er loopt (of liepen) een hele rits mensen rond 
in Amsterdam zonder wie ik dit echt niet had kunnen doen. Timo - mijn 
studiemaatje en mede-onderzoeker - bedankt voor alles. Het was heerlijk 
om soms even bij jou uit te razen over problemen met werk of voetbal. 
Bryce en Wout (ik neem jullie even samen, kan wel toch?), zonder jullie 
had ik echt nooit genoeg kunnen ontstressen om deze baan aan te kunnen. 
Hoe vaak we wel niet op feestjes hebben gestaan en om 7 uur om ons heen 
keken en doorkregen dat we toch weer de laatsten waren. Barend, dank 
voor het zijn van een fijne kamergenoot en de gezamenlijke vakanties. De 
discussies met bier op de Grote Markt in Den Haag en de potjes Donkey 
Kong Country heb ik ook altijd hard nodig gehad. En natuurlijk ook nog 
Coen, Eva, Myrte, Rik, Olivier, Bonnie, en Sven. Jullie hebben me 
gigantisch geholpen bij het opzoeken van ontspanning. Lekker naar 
festivals, gestoord doen op Koningsdag, maar vooral heel veel lullen met 
een biertje. Dat is echt wat ik nodig had de afgelopen tijd.  

En als we het hebben over gezelligheid dan kunnen natuurlijk Bryan, 
Tom, Leon, Pijpie, en Jur niet ontbreken. Wat hebben we veel avonden 
Ajax gekeken. Jullie waren dan eindelijk de groep die doorkreeg dat ik 
alleen maar onzin praat. Dat had ik wel even nodig om te horen. En als 
we bij die laatste mannen Ken en Brink toevoegen hebben we onze 
mattieboot ook direct compleet. Bedankt voor het bedenken en uitvoeren 
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van een van de mooiste tradities. Hopelijk kunnen we nog jarenlang de 
havens van Friesland onveilig maken.  
 
Lieve Bob, Beppie, Maarten, Willemijn, en mijn lieve nichtje Nine. Ruim 
10 jaar geleden kreeg ik een relatie met mijn prachtige vrouw, maar wat 
ik nooit had durven dromen is dat ik er een fantastische familie bij zou 
krijgen. Vaak hoor je mensen zeuren over hun schoonfamilie, maar dat zal 
bij mij nooit gebeuren. Jullie hebben me direct opgenomen in jullie familie 
en ik heb jullie ondersteuning en liefde en natuurlijk ook van de vakanties 
naar Nieuw-Zeeland, de VS, en Australië altijd op prijs gesteld. Bob en 
Beppie, ook heel erg bedankt voor het vele oppassen dit jaar op onze 
nieuwe kleine. Die momenten waren van groot belang om niet compleet in 
te storen van het slaaptekort in combinatie met werkstress.  
 
Lieve Janneke, René, Sytske, Wobke, Vincent, Stijn, en Mees, ik ben zo 
onwaarschijnlijk blij met jullie. Mam en pap (zo noemen we jullie al een 
tijdje niet meer, maar het voelt gek om jullie hier anders te noemen), jullie 
zijn echt de perfecte ouders. Jullie zijn de meest begripvolle en warme 
mensen die ik ken. Jullie zorgden ervoor dat mijn jeugdjaren zo zorgeloos 
waren dat kon ik mij focussen op belangrijkere dingen. Zonder jullie steun 
was ik hier echt never nooit niet gekomen. Als ik in mijn nieuwe 
vaderschap ook maar half zo goed ben als jullie weet ik dat het goed komt 
met Kees. Mam, heel erg bedankt voor de laatste jaren. Dat pappa 
overleed is voor ons allemaal een enorm verlies, maar jij bent zo 
ongelooflijk sterk geweest en hebt me er echt doorheen gesleept. Ik kon 
heel erg genieten van onze gesprekken in de ochtend als ik in Leiden was 
blijven slapen. Over onderwijs vooral - onze gezamenlijke liefde - maar ook 
over pappa natuurlijk of als ik vastzat met werk. Ik kon en kan over alles 
bij jou terecht. Pap, je bent er al een tijdje niet meer, maar ik vond het 
gek om je niet toch nog even te noemen. Ik heb me nooit moeten afvragen 
hoe je je als persoon moest gedragen, ik kon namelijk alles van je afkijken. 
Van hoe je was thuis, hoe je omging met je kinderen (zowel thuis als in de 
klas), omging met vreemden, hoe je in het werkende leven stond en hoe 
gepassioneerd je was over muziek en sport. In alles was en ben je een 
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voorbeeld voor mij. Ook leuk om te bedenken dat we nu beide boeken 
hebben geschreven J. Al worden die van jou vast een stuk beter gelezen. 
Syts en Wob, mijn superlieve zussen, bij wie ik met al mijn problemen 
terecht kan. Het is altijd heerlijk om met jullie te praten over wat er in 
jullie levens gebeurt. Jullie staan ook altijd paraat om steun te geven en 
gaan echt door het vuur voor mij. Ik hou van jullie! 
 
Lieve Anouk en Kees, jullie horen hier natuurlijk, op het allerbelangrijkste 
plekje van dit proefschrift. Lieve Anouk, Ik had nooit gedacht - toen ik als 
puberaal jongetje voor het eerst doorkreeg dat vrouwen best interessant 
waren - dat ik zo een perfecte vrouw zou vinden om mijn leven samen mee 
te mogen doen. Jij bent zo ongelooflijk belangrijk voor mij. Je kan omgaan 
met al mijn eigenaardigheden. Als ik weer eens iets niet super heb gepland 
en lange avonden moet werken, kook jij heel lief en doet de andere 
verplichtingen in het huis. Dat ik zo nodig elke dinsdag, woensdag, zondag 
(en het liefst ook donderdag, vrijdag, zaterdag) voetbal wil kijken vind je 
uiteraard wat overdreven (is het ook), maar je laat me altijd gaan. Je helpt 
me uit mijn cynische buien, helpt me door mijn stressvolle periode, en 
weet vaak precies wat je moet zeggen om me beter te laten voelen. Dat is 
ongelooflijk belangrijk voor mij geweest de afgelopen jaren. En dan nog 
niet te vergeten dat we tijdens mijn PhD getrouwd zijn (eigenlijk heet ik 
nu officieel Bauke van der Velde - Post), een prachtig huis in de 
Amsterdamse Pijp hebben gekocht en dat we afgelopen december eindelijk 
het nieuwste lid van ons gezin mochten verwelkomen. En wat blijkt? Je 
bent ook nog eens de allerliefste mama.  

En daarmee komen we bij de laatste, mijn lieve Kees, je bent nog niet 
zo oud (maandje of 8) en een kind krijgen tijdens het laatste jaar van je 
PhD wordt over het algemeen niet aangeraden. Het klopt dat het 
slaaptekort af en toe wat pittig is, maar dat neem ik op de koop toe. Ik 
kan nu precies in het echte leven kan zien waar ik normaal alleen maar 
onderzoek naar doe. Je schaterlach, je oneindige brabbelen (ba-ba-ba-ba-
ba-ba), het klauteren over mijn benen heen, en vooral je oerinstinct om 
naar alles onderzoek te willen doen. Dit alles zorgt ervoor dat ik nu elke 
dag zoveel zin heb om weer naar huis te gaan. Je bent de beste ontstresser! 
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Lieve Kees en Anouk ik hou zoveel van jullie en ik hoop dat we samen nog 
heel veel fijne dingen gaan meemaken in de toekomst, dat kan haast niet 
anders. 
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