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Abstract

Altered climate, nutrient enrichment and changes in grazing patterns are important environ-

mental and biotic changes in temperate grassland systems. Singly and in concert these fac-

tors can influence plant performance and traits, with consequences for species competitive

ability, and thus for species coexistence, community composition and diversity. However,

we lack experimental tests of the mechanisms, such as competition for light, driving plant

performance and traits under nutrient enrichment, grazer exclusion and future climate. We

used transplants of Silene latifolia, a widespread grassland forb in Europe, to study plant

responses to interactions among climate, nutrients, grazing and light. We recorded trans-

plant biomass, height, specific leaf area (SLA) and foliar carbon to nitrogen ratio (C:N) in

full-factorial combinations of future climate treatment, fertilization, grazer exclusion and light

addition via LED-lamps. Future climate and fertilization together increased transplant height

but only in unlighted plots. Light addition increased SLA in ambient climate, and decreased

C:N in unfertilized plots. Further, transplants had higher biomass in future climatic conditions

when protected from grazers. In general, grazing had a strong negative effect on all mea-

sured variables regardless of added nutrients and light. Our results show that competition

for light may lead to taller individuals and interacts with climate and nutrients to affect traits

related to resource-use. Furthermore, our study suggests grazing may counteract the bene-

fits of future climate on the biomass of species such as Silene latifolia. Consequently, graz-

ers and light may be important modulators of individual plant performance and traits under

nutrient enrichment and future climatic conditions.

Introduction

Grasslands are increasingly exposed to concurrent impacts of climate change, nutrient enrich-

ment and changes in grazing practices [1]. Singly and in concert these global change drivers

can affect plant community composition and diversity [2–4]. In a changing environment,
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plant communities should harbor species which are able to tolerate direct and interactive pres-

sures of these drivers [5,6]. To predict and understand overall community responses, it is

therefore essential to identify how abiotic and biotic changes interactively influence plant per-

sistence and competitive ability. One approach to assess plant vulnerability to current global

change drivers is measuring intraspecific trait responses which can relate to plant performance

[7,8]. However, while some studies have examined individual species’ traits and performance

in response to different land-use types [9,10], studies examining the combined impacts of

nutrient enrichment, grazing and climate change are scarce [but see 8,11], particularly in tem-

perate systems. In addition, not much is known about the mechanisms driving these trait-

based plant responses.

Nutrient enrichment directly increases plant available nutrients and can thus increase plant

growth and biomass accumulation [12,13] and lead to larger SLA and higher relative foliar N

content [14,15]. Fertilization-induced enhanced plant growth and leaf enlargement can reduce

light availability in the understory [16,17], disfavoring small-statured species with resource-

conservative traits (i.e., small SLA, high foliar C:N) [18]. Consequently, tall-statured species

with resource-acquisitive traits (i.e., large SLA, low foliar C:N) should perform better and

dominate in nutrient-rich conditions [15,19–21]. In a study conducted in forest understory

[22], plant height increased and SLA decreased in response to light addition, but were unaf-

fected by fertilization, suggesting that light was more limiting than nutrients for trait manifes-

tation [23]. However, results from other systems, such as grasslands, might differ, because they

lack shade created by trees and plant species inhabiting grasslands might be less well adapted

to shaded conditions [24]. However, little is known about grassland plant responses to light,

and how light interacts with other factors to control plant performance and traits, as no field

studies have directly added light. Many grassland systems are also intensively grazed by mam-

malian herbivores that can further alter resource availability and plant responses to resource

availability.

Grazing can reduce fertilization-induced light limitation which has, on the community

level, a beneficial effect for biodiversity [16]. On the individual plant level, the direct effect of

grazing on plant growth depends on grazing intensity [25] and plant traits (i.e., stature, leaf

size, leaf nutritional composition) that affect vulnerability to herbivory [11,26–28]. In general,

grazing affects plant growth by decreasing height and biomass which can reduce plant perfor-

mance [26,29,30], but grazing can also stimulate plant growth in a density-dependent manner

[31] and eventually lead to overcompensation [32,33]. However, abiotic conditions such as soil

fertility can alter grazing effect on plants [34,35] by allowing greater compensation for grazing

damage in resource-rich conditions [36,37]. This emphasizes that the net effect of grazing on

plant biomass and trait manifestation is likely dependent on resource availability (i.e., light

and nutrients). Furthermore, the interaction of herbivory and resources on plant responses

may be altered by changing climate.

Climate change can alter plant-herbivore interactions through direct effects on herbivores

but also directly affecting plants [38]. Likewise, climate change may modify plant-resource

interactions, for example, due to accelerated nutrient cycling in response to warmer tempera-

tures [39]. For temperate grasslands in Central Germany, climate change forecasts predict

warmer temperatures throughout the growing season, increased spring and autumn precipita-

tion, and reduced precipitation and increasing risk of drought spells during summer [40–42].

Warmer temperatures and water surplus at the beginning of the growing season can stimulate

plant growth, increasing height and biomass [43,44], and in general promoting traits of fast

resource-use [45]. Herbivores, by targeting taller plants [28,46], can dampen the effect of

warming on plant traits and thus alter plant performance in response to warmer temperatures

[8,11]. On the other hand, reduced precipitation during summer can cause physiological stress
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with impacts on plant performance [47–49]. To cope with drought induced stress, plants may

profit from traits that minimize water loss such as smaller SLA [7,50–52]. Some studies have

examined the interactive effects of climate change and nutrient enrichment in grassland sys-

tems [53–55], but only a few have investigated how climate change and nutrient enrichment

interact with herbivory [56].

We used transplants of a widely distributed and well-studied European grassland species,

Silene latifolia [57,58; hereafter Silene], to study plant responses to interactions among climate,

nutrients, grazing and light. We chose Silene as our representative of typical forbs in temperate

grasslands because, besides being common and widely distributed, it is palatable to herbivores

[59,60], important for pollinators [61], and has also been shown to respond to environmental

changes [62] and substantially contributes to the local recruitment from seed in our study sys-

tem (Jessen & Eskelinen, personal observation). We therefore expect this species to be highly

responsive to resource manipulations and herbivory, and changes in its performance should

reflect to community dominance relationships. We grew Silene individuals under full-factorial

combination of nitrogen, phosphorus and potassium (NPK) fertilization, light addition and

herbivore (sheep) exclusion, and replicated these treatments under ambient and future cli-

matic conditions. We directly manipulated light in the field, using modern LED lamps that

mimic natural sun light. Our future climate of seasonally altered temperature and precipitation

mimicked projected climate for Central Europe [63]. We measured two common traits (SLA

and foliar C:N) linked to resource-use strategies [64–66], competitive ability [19], and palat-

ability to herbivores [46,67]. As a measure of performance, we collected data on plant above-

ground biomass and plant height. We asked the following questions: 1) Are the effects of

nutrient and light additions, future climate, or their interactions on Silene performance greater

in the absence of grazers? 2) Does increased nutrient and light availability, future climate, or

their interactions affect Silene foliar traits? We made the following predictions: 1a) Nutrient

and light additions will increase Silene height and biomass more in the absence of grazers,

because competition for these resources is greater under dense vegetation (i.e., without graz-

ing). 1b) This pattern will further depend on future climate which can either amplify or reduce

competition for nutrients and light, depending on whether it increases or decreases the bio-

mass of surrounding vegetation. 2a) Light addition will dampen the effect of nutrient addition

on Silene SLA and foliar C:N since fertilization-induced light limitation is relaxed. 2b) Future

climate will interact with fertilization and light addition on Silene SLA and foliar C:N, because

it can either amplify or reduce competition for light, depending on whether it increases or

decreases the biomass of surrounding vegetation.

Material and methods

Study site

Our experiment is embedded in the Global Change Experimental Facility (GCEF) at Bad

Lauchstädt Research Station (51˚22060 N, 11˚50060 E), Germany. In this area the long-term

mean annual precipitation is 489 mm and the mean annual temperature is 8.9˚C [63]. The

soils are fertile Haplic Chernozems [63,68]. The GCEF combines research on different land-

use types with ambient and future climate regimes in a split-plot design [63]. For this study we

used ten extensively grazed pastures within the GCEF which represent species-rich grassland

vegetation of dryer regions of Central Germany [63]. These pastures are grazed two to three

times a year by a herd of about 20 German black-headed sheep, depending on the amount of

vegetation biomass [63]. In 2018, 2019 and 2020 grazing was limited to two grazing events per

year because of extreme drought conditions [69,70]. Each pasture has a size of 16 x 24 m and is

grazed by the sheep with high intensity for 24 hours [63]. This short term, high intensity
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grazing is a common practice to maintain open grasslands in Germany [71]. To prevent other

larger, naturally occurring grazing animals such as deer from entering the experimental site,

the entire area was fenced. Small mammalian herbivores such as the European hare (Lepus
europaeus) can enter the experimental area.

Five of the pastures were randomly assigned to the ambient climate, the other five to the

future climate scenario. For the climate manipulation, pastures under future climatic condi-

tions are equipped with metal roof structures with foldable roof and side covers, as well as with

a controllable irrigation system [63]. To control for any effect of the roof structure, pastures in

ambient conditions have similar structures but with non-foldable roof and side covers. The

intent of the climate treatment is to increase temperatures and to simulate decreasing precipi-

tation in the summer and increasing precipitation in the spring and fall, consistent with pre-

dictions for this region [63]. The future climate treatment increases air and soil temperature

using passive night warming for which the roof and side covers are automatically closed during

the night. The amount of temperature increase varies over season and years; on average the

daily minimum temperature increased by 1.14˚C [63]. To simulate increasing spring and

autumn precipitation the weekly precipitation at ambient blocks is used as a reference to

which ten percent is added to simulated the increase in precipitation in future blocks [63]. To

simulate decreasing summer precipitation, future blocks receive 80 percent of the weekly pre-

cipitation that falls on ambient blocks [63].

Experimental design

We established our experiment in 2017 using a full factorial design of herbivore (sheep) exclu-

sion and nutrient enrichment in each of the ten pastures (ambient and future climate). In each

of the ten pastures, we established four 1.4 × 1.4 m plots that were randomly assigned to the

following treatment combinations: 1) unfertilized and grazed (e.g. control), 2) fertilized and

grazed, 3) unfertilized and fenced, 4) fertilized and fenced. This resulted in 40 experimental

plots, arranged in four-plot groups (called “blocks” in the statistical analyses), half of which

received ambient climate and the other half future climate treatment. In later March-May and

June we added a slow-release NPK fertilizer mixture (Haifa Multicote 2 M 40-0-0 (40% N),

Super Triple Phosphate TPS (45% P205), potassium sulfate fertilizer (50% K2O, 45% SO3)) to

each plot assigned to fertilization treatment. This corresponds to an addition of 10 g N, 10 g P

and 10 g K m-2 [see the protocol of 72] per growing season to experimentally relax nutrient

limitation. The fertilization treatment started in May 2017, while the herbivore exclusion treat-

ment started three months later, at the end of August. We used rectangular, mobile metal

fences of 1.8 × 1.8 m size, 82 cm height and 10 cm mesh size to exclude the sheep from plots

assigned to the herbivore exclusion treatments. The fences allowed small rodents like mice and

voles (mainly Apodemus sylvaticus and Microtus arvalis), abundant in the experimental area,

to pass [Jessen & Eskelinen, personal observation,73]. In 2019, one plot originally intended for

herbivore exclusion only was accidentally fertilized and one plot originally intended for herbi-

vore exclusion and fertilization treatment was not fertilized. Both plots were treated as fertil-

ized in the data analysis.

In addition to the fertilization and herbivore exclusion treatment we implemented a light

addition treatment using modern LED lamps (C65, Valoya, Finland). For this purpose, the

1.4 × 1.4 m plots were divided into two 0.7 × 1.4 m subplots, one of which was randomly

assigned to light addition treatment resulting in total 80 experimental subplots. Each lighted

subplot was equipped with two 120 cm long and 3.5 cm wide high intensity LED lamps that

were installed horizontally to the ground and parallel to each other. The light addition treat-

ment started at the same time than fertilization treatment, i.e., at the end of May 2017. In the
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beginning of the growing season (February–April) the lamps were installed about 10 cm above

the smallest plants and uplifted as vegetation grew. We set the lamps to switch on two hours

after sunrise and switch off two hours before sunset, and they automatically switched off when

the temperature exceeded 28˚C to prevent overheating. In 2020, we switched on the lamps

March 16. The light addition treatment added light throughout the active growing season and

lamps were only removed during the grazing to prevent the sheep from damaging the lamps.

Lamps in the fenced plots were switched off during the grazing. At the end of each growing

season (October-November), the lamps were removed to prevent frost damage. Using LED

lamps that have a wavelength spectrum corresponding to natural sunlight we mimicked

increased sunlight availability in a vegetation gap in a natural grassland, and were therefore

able to test the role of light limitation.

The sheep grazing on the pastures where our experiment is located are owned by a private

shepherd and do graze the pastures freely. We are not taking any kind of measurements from

the sheep nor do we or our experimental set up manipulate the sheep. Since no animal testing

is involved in our experiment there was no need for approval by Institutional Animal Care and

Use Committee (IACUC) or other relevant ethics board.

Planting of Silene
In August 2019 we added seeds of Silene (local seeds from Saale-Saaten Stolle, Germany) in

cultivation trays in a glasshouse. When the plants had grown for four months they were trans-

located into a cold house to allow them to adapt to outside conditions. In November 2019,

when the plants had grown for five months, we planted one similar-sized individual into each

experimental subplot. As Silene is a dioicous species and its genders have been found to differ

in size [74], we allowed the transplants to grow relatively large before planting (i.e., they

already had adult-sized large leaves and a flowering stalk). We then selected individuals that

had similar-sized leaves and were equal in height, and randomly allotted these to the treat-

ments. We are therefore convinced that gender differences should not affect our results and, if

something, they could only weaken detecting significant responses to the treatments. In lighted

subplots we made sure the transplant was planted directly under the LED lamp. After trans-

planting we watered the plants. By planting five-month-old relatively large individuals we also

reduced the risk of vole/mice herbivory as smaller/younger plants are often eaten by voles and

mice [75,76]. During winter, we further protected the transplants with round cylinders of

green mesh (Netzhülle Bestklima, best4forst, Germany) with a height of 18 cm, a diameter of

12 cm and a mesh size of 3 × 3 mm. The mesh was attached to the ground to prevent voles/

mice going in below the mesh. The protective mesh was removed in April 2020 when the

growing season and plant growth started.

Performance and trait sampling

To determine growth of Silene transplants, we measured vegetative height (cm) from the

ground to the highest point of each plant. Height was measured after the plants have been

grazed, but had the chance to regrow and compensate since harvesting took place two months

after the last grazing event. Measuring height of grazed and ungrazed individuals two months

after the last grazing allowed us to specifically test for the net effect of grazing, i.e., how much

transplants compensated and were able to recover from grazing, under the combination of

light addition, nutrient enrichment and climate change. We chose to measure trait variation in

SLA and foliar C:N ratio because these have been shown to be associated with slow/fast

resource uptake, responsiveness to light availability and attractiveness to herbivores

[28,46,64,67]. For data on SLA (mm-2 mg dry mass) we collected a maximum of three healthy
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looking and well-developed leaves on each Silene transplant. SLA was measured directly after

harvesting following the standard protocol [77,78] and averaged per transplant for the statisti-

cal analysis. We only sampled leaves that did not show any grazing or other damage. Since

most of the leaves on transplants outside the fences were completely eaten, we could not mea-

sure foliar traits in grazed plots. Foliar traits were therefore only sampled from transplants

inside the fences (i.e., from 40 individuals) and we could not test for a main nor interactive

effect of grazing on the foliar traits. For the foliar C:N analysis we pooled the leaf material of

each transplant and the chemical analysis was run with a VarioEL CNHS analyzer (Elemental

Analyse Systeme GmbH, Hanau, Germany). After measurements of height measurements and

collection of leaves, we harvested the aboveground biomass of Silene. Overall, 78 out of 80 indi-

viduals were still present at the point of harvest (i.e., after one year). The harvested plants were

oven dried at 60˚C for 48 hours and then weighed to obtain data on aboveground biomass

allocation as a surrogate for plant performance [7,11]. As with height measurements, we

recorded biomass in grazed and ungrazed plots to assess how the net effects of grazing on

Silene performance depended on nutrient and light addition and future climate. Contrary to

Silene leaves, which we could not sample outside the fences, we could still obtain biomass data

from Silene outside the fences. Both the trait sampling and the harvesting took place from the

beginning to the middle of August 2020.

Statistical analysis

To assess the net effect of grazing under nutrient and light addition, future climate, and their

interactions on Silene growth and performance, we applied linear mixed effects models with

height and biomass as response variables, both in their own models, and fencing, fertilization,

light addition, climate treatments and their interactions as explanatory variables (fixed fac-

tors). Plot was nested within block as a random factor to account for the split-plot experimen-

tal design. To examine how nutrients, light addition, future climate and their interactions

affected foliar traits of Silene, we applied similar linear mixed effect models, where SLA and

foliar C:N were response variables, both in their own models, and fertilization, light addition,

climate treatments and their interactions as explanatory variables (fixed factors), using similar

random variable as in models above. Overall, we ran four different models. All models were

restricted to three-way interactions to prevent the models from overfitting. The significance of

the single factors and their interactions was tested with F-test. We used model diagnostic plots

to check the homogeneity of variances and the normality of errors [79]. Height and biomass

were log transformed to meet these assumptions.

We used the ‘lme4’ package [80] to run linear mixed effect models, the ‘car’ package for

assessing the significance of the treatments effects [81], the ‘tidyverse’ package for data manip-

ulation [82], the ‘ggplot2’ package [83] and the ‘patchwork’ package [84] for plotting in R sta-

tistical software [85, version 4.0.3].

Results

The responses of Silene performance to grazing, nutrient and light

additions, and future climate

Silene grew tallest under future climate and when fertilized but not lighted (significant F x C x

L interaction on height, Table 1, Fig 1A). This effect, as many other treatment effects, was espe-

cially pronounced inside fences, although there was no significant interaction with fencing

(Table 1). Fertilization increased Silene height by 52% (* 12 ± 4.4 cm) and aboveground bio-

mass by 89% compared to unfertilized conditions (Table 1). Silene also attained greater
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Table 1. Main and interactive treatment effects on Silene performance.

Source of variation Heighta Biomassa

df F p df F p

Exclosure 1,24 103.76 < .001 1,24 132.21 < .001

Fertilization 1,25 5.61 0.026 1,25 5.51 0.027

Climate 1,8 1.83 0.214 1,8 2.28 0.171

Light 1,33 0.33 0.572 1,32 3.79 0.060
E x F 1,25 1.12 0.296 1,25 < .1 0.948

E x C 1,24 < .1 0.813 1,24 4.28 0.049

E x L 1,33 < .1 0.966 1,32 1.00 0.326

F x C 1,25 2.43 0.132 1,25 1.50 0.232

F x L 1,33 < .1 0.856 1,32 0.45 0.507

C x L 1,33 < .1 0.824 1,32 < .1 0.797

E x F x C 1,25 1.36 0.254 1,25 < .1 0.795

E x F x L 1,33 2.34 0.136 1,32 0.77 0.388

E x C x L 1,33 1.91 0.176 1,32 2.52 0.122

F x C x L 1,33 6.67 0.014 1,32 0.56 0.461

Results of linear mixed effect models testing the effects of grazing (exclosure), fertilization, climate and light addition on Silene performance (height and total

aboveground biomass). Significant results (p < .05) are printed in bold, marginally significant results (p < .1) are printed in italic.
a data are log transformed.

https://doi.org/10.1371/journal.pone.0276789.t001

Fig 1. Treatment effects on Silene performance. Height (a, n = 80) and biomass (b, n = 78) responses of Silene latifolia to combinations of grazing,

fertilization, ambient and future climate and light addition. The data are means ± SE. Note, that two transplants were not harvested for biomass determination

because they were grazed to a few millimeters from the ground.

https://doi.org/10.1371/journal.pone.0276789.g001
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biomass in future climatic conditions compared to ambient conditions, however, only in the

absence of grazing (significant E x C interaction, Table 1, Fig 1B). Grazing also showed a

strong main effect and reduced plant height by 83% (* 39 ± 3.6 cm) and total aboveground

biomass by 95% compared to fenced plots (Table 1, Fig 1A and 1B).

The responses of Silene foliar traits to nutrient and light additions, and

future climate

Foliar leaf traits inside fences responded to resources additions. C:N ratio increased (i.e., the

relative C content increased) with light addition in fertilized plots, while light addition had no

effect on it in unfertilized plots (significant F × L interaction, Table 2, Fig 2A). Furthermore,

SLA increased with light addition, but only under ambient climate (significant C × L interac-

tion, Table 2). In addition, this effect was greater in fertilized plots although the interaction

with fertilization was not significant (Fig 2B and Table 2). Light addition alone increased SLA

Table 2. Main and interactive treatment effects on Silene foliar traits.

SLA_fenced Foliar CN_fenceda

df F p df F p

Fertilization 1,8 0.23 0.644 1,11 5.84 0.034

Climate 1,7 < .1 0.805 1,7 1.75 0.225

Light 1,11 7.01 0.023 1,16 < .1 0.918

F x C 1,9 2.22 0.169 1,11 0.35 0.567

F x L 1,10 < .1 0.861 1,16 5.96 0.027

C x L 1,11 5.56 0.038 1,16 1.35 0.262

F x C x L 1,11 1.71 0.218 1,16 0.90 0.357

Results of linear mixed effect models testing the effects of fertilization, climate and light addition on Silene leaf traits (SLA and foliar C:N). Significant results (p < .05)

are printed in bold, marginally significant results (p < .1) are printed in italic.
a data are log transformed.

https://doi.org/10.1371/journal.pone.0276789.t002

Fig 2. Treatment effects on Silene foliar traits. Foliar C:N (a, n = 36) and SLA (b, n = 32) responses of Silene latifolia
to combinations of fertilization, ambient and future climate and light addition. The data are from inside the fences and

represent means ± SE. Note, that there are less than 40 samples per trait, because some transplants did not have healthy

and undamaged leaves.

https://doi.org/10.1371/journal.pone.0276789.g002

PLOS ONE Transplant performance and trait responses to abiotic and biotic changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0276789 November 8, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0276789.t002
https://doi.org/10.1371/journal.pone.0276789.g002
https://doi.org/10.1371/journal.pone.0276789


by 12.8% (Table 2, S1 Fig) and fertilization alone decreased foliar C:N (i.e., increased relative

foliar N content) by 21.9% (Table 2, Fig 2). Future climate had no main effect on Silene SLA

and foliar C:N (Table 2).

Discussion

Testing how single plant species respond to joint effects of nutrients and lights in combination

with changes in grazing patterns and climate is important to better understand changes in

plant community composition and diversity. We found that Silene grew taller under fertilized

and future climatic conditions without additional light than when light was added. This find-

ing demonstrates that competition for light is an important mechanism affecting plant invest-

ment into height under densely vegetated conditions, which has not been previously shown

using direct manipulation of light in the field. Light was also an important modulator affecting

SLA and C:N responses to climate and nutrients, highlighting that competition for light affects

trait expression. In addition, future climate increased Silene biomass but this impact was con-

ditional on the absence grazers, highlighting that individual species’ responses to climate

change can strongly depend on grazing. In general, strong responses to grazing highlight the

important role of grazing animals for performance and traits of highly palatable forbs in grass-

land systems, especially under future climatic conditions.

We found that Silene transplants grew tallest under future climate when fertilized but not

lighted. These effects were clearest in unfenced plots, as transplants were almost completely

eaten when exposed to grazing. In these plots, general vegetation biomass was high and light

levels low (S2A and S2B Fig, Eskelinen et al., submitted). This suggests that Silene invested in

height in densely vegetated and shaded conditions (S3A and S3B Fig) as tall stature can

increase the plant’s ability to compete for light [13,86]. Because our experiment directly adds

light into nutrient-enriched, fenced and climate-manipulated grassland communities, where

light levels are low, we suggest that tall stature is a direct response to increased competition for

light (S4 Fig). We also found that the increase in transplant height in fertilized and unlighted

plots was limited to future climatic conditions. Increased spring precipitation and warmer

temperatures in the future climate treatment may have promoted transplant growth during

the early growing season and life stage [87,88] due to more favorable growing conditions than

under ambient climate. Our finding suggests that changes in seasonal precipitation and tem-

perature patterns can be a decisive factor for species’ ability to grow tall and compete for light

under altered nutrient and grazing conditions [56,89].

We also found that the addition of light increased SLA especially in fenced plots. This effect

also depended on the climate treatment such that the positive response of SLA to light addition

was prevalent in ambient climate only. Future climate with lower summer precipitation and

higher temperature may have caused the transplants to invest less on expanding leaves during

the summer months, resulting in lower SLA due to water scarcity [52]. Nevertheless, the

observed increase in SLA in response to light addition seems counterintuitive, as plants are

expected to increase SLA in response to light limitation [86]. However, also other factors than

direct light intensity could have driven SLA responses which is supported by the fact that we

did not find a significant relationship between light intensity and SLA (S5A Fig). Instead, SLA

was positively related to percentage total vegetation cover (S5B Fig), suggesting that dense veg-

etation with high competition for space can be a decisive factor for foliar SLA manifestation.

Competition for water, nutrients or space due to increased abundance of species with low SLA

and leaf water content (LWC) (Eskelinen et al. submitted) may also contribute to explain the

tendency of Silene total biomass to decrease in lighted plots. In addition, plants growing tall in

dense vegetation may also grow thinner and thus produce less biomass [90]. Furthermore, also
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foliar C:N responded to light addition and this effect was contingent on fertilization such that

the positive effect of light addition on foliar relative carbon content was prevalent only in fertil-

ized but not in unfertilized plots in the absence of grazers. This shows that high levels of nutri-

ents and light can jointly promote foliar carbon investment. In a meta-analysis, Poorter,

Niinemets [20] found that foliar carbon content increased in response to increasing light

intensity and suggested that this was due to an increase of structural components such as lignin

which are rich in carbon.

In addition, we found that future climate had a positive effect on the biomass of Silene; how-

ever, this positive effect was only evident in ungrazed plots as transplants were partly or

completely eaten when not protected by fencing. Finding that herbivores can modulate plant

responses to climate change is in line with previous studies in tundra which identified grazing

as a key factor for mitigating climate warming effects on plant growth [11,91]. In particular,

grazers have been found to limit the establishment of warm-adapted species [11,92], prevent

upward shifts of treeline [93] and buffer diversity loss under warmer climate [94–96]. Overall,

these findings provide evidence that the effect of grazing can have stronger implications on

individual plant and plant community performance than climate change. To date, most of

these studies have been from high latitude or high elevation systems. Our results extend the

important role of herbivores as climate response modulators to temperate grasslands. This is

especially important as natural grazing systems in temperate grasslands (e.g. in Central Ger-

many) are declining, while climate change effects are increasing [97].

Grazing had the strongest effect on Silene height and biomass in our study. This finding is

in line with previous research showing that grazers have strong short- and long-term effects on

individual species traits and performance [8,11,26,56,98]. Reduced height and biomass are a

direct consequence of plants being eaten. Addition of light and nutrients did not help plants to

recover from grazing, suggesting that highly palatable plants to grazers, such as Silene [59,60],

suffer from grazing regardless of resource supply and may not be able to compensate for the

lost biomass at least during the same growing season. In our study, plants were harvested two

months after the last grazing, which should have given some time to compensate. As a result,

heavily grazed systems may lose species that are attractive to herbivores, especially if they do

not enter the reproductive phase [99], as found in our study with only one flowering Silene
individual in grazed plots.

In addition, we found that Silene individuals increased in height and biomass and their

foliar C:N decreased in response to fertilization. This aligns with other studies investigating

the effects of fertilization on individual species performance and traits [14,15]. In contrast to

foliar C:N, SLA was unresponsive to fertilization. This is in line with Siefert and Ritchie [100]

who found that the responsiveness of SLA to nutrient addition decreases with plant height and

argue that tall-statured species are less adapted to shady conditions and therefore can be less

plastic in their leaf traits [101]. This can explain why the SLA of Silene, which is a rather tall

species, did not increase in fertilized plots.

In conclusion, our study highlights the role of light limitation on growth (i.e., height) allo-

cation of individual plants in highly competitive (i.e., densely vegetated) environments. Our

results also underscore that light availability interacts with climate and nutrients to affect plant

foliar traits. Although we only studied one species, and not the overall community, Silene is

representative of a common and palatable grassland forb, and may therefore provide insights

in the growth and performance of similar grassland forbs. Our study also provides evidence

that future climate is likely to boost plant growth, but only if plants are not exposed to grazing

and therefore emphasizes the important role of grazers as modulators of plant performance

under future climate. This knowledge is particularly important in an era of rapidly advancing

climate change and concurrent decline in natural grazing systems, not only at high latitudes
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but also at temperate latitudes [97], and ideally can support grassland management that incor-

porates grazing measures.

Supporting information

S1 Fig. Light addition effect on Silene SLA. SLA under control and lighted conditions. The

data are means ± SE from the leaves collected from inside the fences.

(TIF)

S2 Fig. Treatment effects on vegetation and litter cover. (a) Percent total vegetation cover

and (b) percent litter cover in grazed (sheep) and ungrazed (exclosure), unfertilized and fertil-

ized plots under ambient and future climate conditions. Data are means ± SE. Total vegetation

cover and litter cover were assessed by visual estimation on the experimental plots in June

2020.

(TIF)

S3 Fig. Regression of Silene height and vegetation and litter cover. Regression of the visually

estimated (a) total vegetation cover and Silene height and (b) litter cover and Silene height. The

line represents a regression line with a 95% CI. The regressions are significant (a) F1,74 = 7.58,

P = 0.007 (b) F1,56 = 21.74, P < 0.001. Note that the regression equations are based on log-

transformed height values, while the y-axis shows not transformed values. Rm (marginal)

refers to the amount of variance explained by the fixed effects only, Rc (conditional) refers to

the amount of variance explained including the random effects (i.e. plot nested in block).

(TIF)

S4 Fig. Regression of Silene height and light intensity. Regression of the light intensity mea-

sured approximately 7–10 cm under the lamps and 15–20 cm above ground level and Silene
height. The line represents a regression line with a 95% CI. The regression is significant F1,67 =

5.30, P = 0.024. Note that the regression equation is based on log-transformed height values,

while the y-axis shows not transformed values. Rm (marginal) refers to the amount of variance

explained by the fixed effects only, Rc (conditional) refers to the amount of variance explained

including the random effects (i.e. plot nested in block).

(TIF)

S5 Fig. Regression of Silene SLA and light intensity and litter cover. Regression of (a) the

light intensity measured approximately 7–10 cm under the lamps and 15–20 cm above ground

level and Silene SLA and (b) the visually estimated percentage litter cover and Silene SLA. The

lines represent regression lines with a 95% CI. The dashed regression line is not significant

(F1,29 = 0.38, P = 0.544), the solid regression line is significant (F1,44 = 13.67, P< 0.001). Rm

(marginal) refers to the amount of variance explained by the fixed effects only, Rc (condi-

tional) refers to the amount of variance explained including the random effects (i.e. plot nested

in block).

(TIF)
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