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Abstract In this paper, we study the origin of eddy-memory effects in a weakly nonlinear regime of a baroclinically unstable
zonal ocean flow in a zonal channel. In this weakly nonlinear regime, the memory kernel can be analytically derived in case of an
externally imposed time-dependent wind-stress forcing. Here, the memory arises because it takes a finite time for the nonlinear flow
to equilibrate and the memory kernel is a decaying (in time) exponential function. When there is no external forcing, eddy-memory
effects arise due to successive rectification of the background flow which is due to the self-interaction of the unstable modes. While
the memory kernel cannot explicitly be calculated in this case, it is also argued to be a decaying exponential function. In both cases,
the memory strength is inversely proportional to the growth rate of the instabilities at criticality.

1 Introduction

It has long been recognized that ocean mesoscale eddies modify the basin-scale flows, in particular western boundary currents such
as the Gulf Stream in the North Atlantic and the Kuroshio in the North Pacific [1]. This is most clearly seen when large-scale flows
are compared in ocean models where the horizontal grid spacing allows for an explicit representation of eddies and those where the
grid spacing is too coarse [2, 3]. The mechanisms of the large-scale flow modification are well known and are generally referred to
as rectification mechanisms. For example, eddies can give rise to up-gradient momentum transport, thereby enhancing velocities of
the background large-scale flows [4].

Parameterizations of the effects of eddies on tracer transports have been crucial for increasing the performance of non-eddying
climate models. One of the most implemented parameterizations is the GM scheme [5], which represents the effect of mesoscale
eddies on tracers as advection by an eddy overturning streamfunction. The strength of the streamfunction is proportional to the eddy
buoyancy fluxes, for which a diffusive closure is used as follows:

v′b′ � −Kb∇b̄ (1)

where v is the horizontal velocity field, b the buoyancy field and the prime and bar indicate anomalies and mean, respectively; the
parameter Kb is the GM diffusion coefficient. In a layer-thickness formulation [6], a parameterization more in line with diffusion
of potential vorticity [7] can be written as

v′h′ � −Kh∇h̄ (2)

where h now indicates the layer thickness and Kh the layer-thickness diffusion coefficient.
The role of eddies in the large-scale ocean circulation has been extensively studied, in particular in the Southern Ocean [8].

Simulations with strongly eddying ocean models demonstrated that new types of low-frequency variability can occur due to eddy-
mean flow or eddy–eddy interactions [9]. Examples are the multi-decadal variability in the Southern Ocean such as found in a
multilayer quasi-geostrophic model [10] and in global ocean models [11].

Several studies have proposed to explain low-frequency variability phenomena in strongly eddying ocean models by a ‘memory
effect’ of the eddies affecting the large-scale flow. In [12], it is shown that the response of an eddying model to wind forcing does not
conform to the GM behavior. There is a decadal timescale phase difference between the variation of the mean eddy-kinetic energy
and that of the mean buoyancy field. To explain this phase difference, a new parameterization of the form

v′h′ � −Km

∫ t

−∞
e− t−t ′

r ∇h̄ dt ′ (3)
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was suggested, representing an eddy-memory kernel with a memory timescale r and diffusion coefficient Km . This parameterization
can be also written as

v′h′ � −Km∇h̄∗ (4a)

dh∗

dt
� −h∗

r
+
h̄

r
(4b)

where h̄∗ carries the memory of h̄. The existence of such a memory component could help explain low-frequency variability
phenomena found in eddying ocean models, for example the turbulent oscillator in the midlatitude gyres [9] and the Southern Ocean
Mode [11, 13]. Viebahn et al. [14] also show that for a two-level quasi-geostrophic model, the eddy-forcing representation in terms
of energy modes improves when a delayed response of these modes is taken into account.

Based on the Mori–Zwanzig approach [15] to multi-scale dynamical systems, one can view representing the effect of the eddies
on the large-scale flow as a projection in the state space. Hence, it can introduce a memory kernel in the equations for the large
scales [16]. However, the expression in the memory kernel in (3), as suggested in [12], is ad hoc and not based on detailed analysis
of the processes giving rise to the memory.

Recently, the effects of eddy memory on the variability of baroclinic atmospheric flows were studied [17, 18]. Using a multiple-
scale analysis, the effect of the synoptic scale eddy-heat fluxes on the planetary scale temperature variability showed that the
eddy-memory effects modify the character of the planetary temperature equation from parabolic to hyperbolic. This modification
leads to an explanation of the dominant intraseasonal mode in the Southern Hemisphere, the baroclinic annular mode [17]. The
same modification also allows for new classes of midlatitude planetary waves. Such waves are considered to be relevant to explain
atmospheric blocking and/or the effect of polar amplification on the motion of the atmospheric jet [18].

In this paper, our aim is to provide a more detailed view of eddy-memory effects in midlatitude ocean flows, using a model of the
weakly nonlinear development of baroclinic instability of a zonal midlatitude jet. Much is known on the linear stability of zonal jets
in a horizontally unbounded ocean in the quasi-geostrophic (QG) flow regime. Classical models, such as the Eady model [19] and
the Phillips model [20], have led to an understanding of the mechanism of baroclinic instability. Long waves destabilize a zonal jet
with maximum growth rates occurring for perturbations having wavelengths on the order of the internal Rossby deformation radius,
typically 50 − 100 km in the ocean at midlatitudes. In case linear friction is included, the neutral curve has a minimum at (kc, μc)
where kc is the critical wave number and μc the critical value of the control parameter (e.g., the maximum speed of the zonal jet).

The nonlinear development of these perturbations has been extensively analyzed in the weakly nonlinear case [21–24]. In the
regime |k − kc|� O(ε), ε � 1, and |μ − μc|� O(ε2), Van der Vaart and Dijkstra [25] showed that on a long timescale T � ε2t and
large spatial scale X � ε(x − cgt), where cg is the group velocity of the waves at criticality, the complex amplitude A of the wave
packet destabilizing the jet satisfies a Ginzburg–Landau equation (abbreviated from now as GLE)

∂A

∂T
� γ1A + γ2

∂2A

∂X2 − γ3A|A|2 (5)

where the γi ∈ C are constants. They also showed that the Stokes solution A(T ) of this equation can become unstable to sideband
instabilities. The GLE will play a key role in identifying the memory kernel induced by the instabilities of the background flow.

In Sect. 2, the quasi-geostrophic model, the linear stability problem and the weakly nonlinear theory is presented. Numerical
results for the reference case will be presented in Sec. 3 and will serve as the basis for the eddy-memory analysis in Sect. 4. Here,
we first derive the memory kernel in the case of a slowly varying wind stress (Sect. 4.1) and then provide a more heuristic analysis
in the case of constant wind forcing (Sect. 4.2). Section 5 provides a summary and a discussion of the results.

2 Formulation

2.1 Model

We consider two layers of homogeneous fluids, with an upper layer density ρ1 and lower layer density ρ2 (with ρ1 < ρ2) and with
equilibrium layer thicknesses H1 and H2, respectively. The reduced gravity is indicated by g′ � (ρ2 −ρ1)/ρ0, where ρ0 is a reference
density. These layers are located in a midlatitude β-plane channel with width 2L and with Coriolis parameter f � f0 + β0y. This
flow can be modeled by the two-layer QG model [22] using the geostrophic stream function ψi , i � 1, 2 and the vertical component
of the relative vorticity ζi , i � 1, 2 in each layer. The quantities ψi and ζi are non-dimensionalized by UL and U/L, respectively,
length with L and time with L/U, where U is a characteristic horizontal velocity.

To be compatible with the results in [25], the non-dimensional equations are written here explicitly as

D1

dt
(∇2ψ1 + βy + F(ψ2 − ψ1)) � − τw

∂τ x

∂y
− r0∇2ψ1 (6a)

D2

dt
(∇2ψ2 + βy − Fδ(ψ2 − ψ1)) � − τwα

∂τ x

∂y
− r0∇2ψ2 (6b)
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where τ x is the zonal wind stress at the surface and ατ x is the interfacial stress on the interface between the two layers, where
α � U2/U1 is the ratio of the maximal dimensional velocities in the layers. The latter term is needed to be consistent with having
linear friction terms in both layers [25]. The dimensionless parameters are the layer-thickness ratio δ � H1/H2, the Froude number
F � f 2

0 L
2/(g′H1) and the linear friction coefficient r0. Furthermore, β � β0L2/U is the planetary potential vorticity gradient and

τw is a measure of the wind-stress amplitude. The operators Di/dt, i � 1, 2 are the material derivatives in each layer.
We will consider the stability of a general zonal jet [25] with

ψ̄1 � −Ψ (y; ν); ψ̄2 � −αΨ (y; ν) � αψ̄1 (7)

on the domain y ∈ [−1, 1], The function Ψ (y; ν) defines the meridional profile of the jet and ν is a non-dimensional measure of its
width. By construction, this is a steady solution of the model equations (6b) when the background wind stress τ̄ x satisfies

∂τ̄ x

∂y
� r0

τw

∇2ψ̄1 (8)

from which it can be determined up to an additive constant; the explicit expression for τ̄ x is not important here.
By considering the perturbations φi � ψi − ψ̄i , i � 1, 2, we can write the non-dimensional equations governing the evolution

of the perturbations in the following operator form [25], using Φ � (φ1, φ2),

(M ∂

∂t
+ L)Φ + N (Φ)Φ � 0 (9)

Here M, L and N are the operators defined as

M �
(∇2 − F F

δF ∇2 − δF

)
(10a)

L �
(
ū ∂

∂x (∇2 − F) + �′
1

∂
∂x + r0∇2 ūF ∂

∂x
ūαδF ∂

∂x αū ∂
∂x (∇2 − δF) + �′

2
∂
∂x + r0∇2

)
(10b)

N (Φ) �
(

( ∂φ1
∂x

∂
∂y − ∂φ1

∂y
∂
∂x )(∇2 − F) F( ∂φ1

∂x
∂
∂y − ∂φ1

∂y
∂
∂x )

δF( ∂φ2
∂x

∂
∂y − ∂φ2

∂y
∂
∂x ) ( ∂φ2

∂x
∂
∂y − ∂φ2

∂y
∂
∂x )(∇2 − δF)

)
(10c)

with ū � Ψ ′ and where the potential vorticity gradients �′
i are given by

�′
1 �β + F(1 − α)ū − ū′′ (11a)

�′
2 �β − δF(1 − α)ū − ū′′ (11b)

2.2 Linear stability analysis

The linear stability problem (where nonlinear interactions of the perturbations are neglected) is formulated as(
M ∂

∂t
+ L

)
Φ̃ � 0 (12)

for infinitesimally small perturbations Φ̃.
As the x-direction is unbounded, traveling wave solutions of (12) exist with wave number k and complex growth factor σ , i.e.,

Φ̃(x, y, t) � Φ̂(y)eikx+σ t + c.c. (13)

where c.c. indicates complex conjugate. Substitution of (13) into (12) gives a boundary value problem for the eigenpair (σ, Φ̂), i.e.,

(M̂(k)σ + L̂(k))Φ̂ � 0 (14)

with appropriate boundary conditions. Here the operators M̂ and L̂ are the Fourier transforms of the original operators M and L in
the x-direction, respectively.

The eigenvalue is written as σ � λ + iω and considered as a function of the wave number k and the control parameter μ. The
neutral curve λ(k, μ) � 0 provides sufficient conditions for instability, and in the examples considered below, the neutral curve has
a minimum at (kc, μc) at which

λ(kc, λc) � 0;
∂λ

∂k
(kc, μc) � 0;

∂2λ

∂k2 (kc, μc) < 0 (15)

Below we will use the notation ωc � ω(kc).
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2.3 Weakly nonlinear analysis

Assume now conditions just above criticality, i.e.,

μ � μc + mε2, (16)

where ε � 1 and m � O(1). As the neutral curve can be approximated by a parabola μ − μc ∼ (k − kc)2, this implies that
|k − kc|� O(ε). The unstable traveling waves are hence limited to a narrow band around kc which can be interpreted as a wave
packet with central wave number kc. This wave packet evolves on a timescale which is large compared to typical wave periods 2π/ω

and is characterized by scales

T � ε2t ; X � ε(x − cgt) (17)

where cg � ∂ω/∂k is the group velocity. The long spatial variable X is a slowly moving coordinate, traveling with the group velocity
of the growing wave packet.

The scaling leads to transformations for Φ(x, X (x, t), y, t, T (t)) as

∂

∂t
→ ∂

∂t
− εcg

∂

∂X
+ ε2 ∂

∂T
(18a)

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
(18b)

The final amplitude of the perturbations will be small compared to that of the background state, for μ close to μc, so the solution
vector is expanded in terms of the small parameter ε and Fourier modes of the marginally stable wave E � exp(i(kcx + ωct)), i.e.,

Φ � εΦ(11)E + ε2(Φ(02) + Φ(12)E + Φ(22)E2) + ε3Φ(13)E + · · · + c.c. (19)

where the Φ(i j) � Φ(i j)(X, y, T ) depend on the slow timescale and long spatial scale.
Substitution of (19) into (9) and collecting terms of the same order (in ε and E) give at O(εE) the linear stability problem

(iωcM̂(kc) + L̂(kc))Φ
(11) � 0 (20)

As the left-hand side does not operate on the large scales X and T , we can write Φ(11) � A(X, T )Ψ , where Ψ � Φ̂(y) is the
eigenvector at k � kc from (14). The weakly nonlinear analysis eventually (see Appendix) leads to a GLE for the scalar (but
complex) amplitude A(X , T ), i.e.,

∂A

∂T
� γ1A + γ2

∂2A

∂X2 − γ3A|A|2 (21)

where the γi , i � 1, 2, 3 are three (in general) complex numbers.
The solutions of the GLE capture the weakly nonlinear interactions just above criticality in the flow. The weakly nonlinear

problem, including determining the coefficients of the GLE, is solved by expanding the functions φi , i � 1, 2 into Chebyshev
polynomials and the procedure is described in detail in [25]. The only numerical parameter in this approach is the number of
Chebyshev polynomials taken into account, which we will indicate below by nC .

3 Results: weakly nonlinear flow development

The weakly nonlinear flow development consists of two basic processes: (i) initial (in general oscillatory) exponential growth of
the critical mode (the eigenvector at criticality) on a timescale t and (ii) a nonlinear equilibration on a long timescale T � ε2t .
In addition, secondary instabilities such as Benjamin–Feir (or sideband) instabilities [25] may occur, which we will not consider
below. The value of nC � 121 was taken in all results presented here, which was shown in [25] to give sufficient accuracy in all
quantities computed.

We discuss the reference case [25] in quite detail in this section, as it is central for the eddy-memory analysis in the next section.
The background jet for the reference case is:

ū1(y) � − Ψ ′(y; ν) � 1 − tanh2( y
ν

)

tanh2( 1
ν

)
(22a)

ū2(y) � αū1(y) (22b)

where ν � 0.3 and α � 0.22. A plot of this background zonal velocity is shown on the domain y ∈ [0, 1] in Fig. 1 with maximal
velocities occur in the jet center.

Just as in [25], we take μ � β−1 as the control parameter and fix the other parameters as F � 13.2, δ � 0.22 and r0 � 0.4.
The neutral curve, resulting from the linear stability analysis of (22) is plotted in Fig. 2a and shows that the minimum is obtained at
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Fig. 1 Background zonal jet in
both layers for the reference case
[25] with parameters ν � 0.3 and
α � 0.22

(a) (b)

Fig. 2 a Neutral curve from the linear stability analysis of the zonal jet in the reference case, where k is the wave number and μ � β−1 is used as a control
parameter. b Frequency and group velocity of the marginally stable mode versus the wave number k

(kc, μc) � (2.38, 2.67). The frequency ω and group velocity cg along the neutral curve are shown in Fig. 2b and are monotonically
increasing with k; the critical frequency ωc � 0.52.

The real and imaginary parts of the zonal (uR
j and uI

j ) and meridional (vR
j and v I

j ) velocity perturbations at each layer j of the
critical mode are plotted in Fig. 3. Note that the zonal velocity perturbations are odd functions (with respect to y � 0) in y and those
of the meridional velocity perturbations are even functions in y. The patterns of the actual (dimensionless) velocity perturbations
can be obtained from (with R indicating the real part)

u j (x, y, t) � 2R((uR
j + iu I

j )e
i(kcx+ωct)) (23a)

v j (x, y, t) � 2R((vR
j + iv I

j )e
i(kcx+ωct)) (23b)

and give the typically ‘banana’-shaped patterns in both layers (not shown here) characteristic for baroclinic instability [25].
The weakly nonlinear analysis provides the coefficients of the GLE (56) for the reference case, resulting in

γ1 � 0.060669 − i 0.10058 ; γ2 � −0.047020 − i 0.11880 ; γ3 � 5.9721 − i 59.420 (24)

and hence

α1 � 2
γ I

2

γ R
2

� 2.52 ; α2 � γ I
3

γ R
3

� −9.9496 (25)

which is in agreement with the results in [25], who calculated α1 � 2.51 and α2 � −9.76. The small difference is due to the slightly
different singular value decomposition routine used here compared to that in [25].
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(a) (b)

Fig. 3 a Distributions of the real and imaginary parts of the zonal velocity of the critical mode in both layers. b Distributions of the real and imaginary parts
of the meridional velocity of the critical mode in both layers

A special solution of the Ginzburg–Landau equation is the so-called Stokes solution, where the amplitude A is only a function of
T and hence has no spatial dependence. This solution is given by

A(T ) � Ase
iΩT (26)

and we find from (5)

|As |2� γ R
1

γ R
3

(27a)

Ω � γ I
1 − γ I

3 |As |2 (27b)

Hence, when starting from an arbitrary initial condition and a parameter regime with a stable Stokes solution, then the equilibrium
solution will oscillate with a frequency Ω and approach a steady amplitude with value |As |. Such behavior is, for example, shown
in Fig. 13a of Van der Vaart and Dijkstra [25].

In fact, the evolution equation for the amplitude |A|2 can be written as

d|A|2
dT

� 2γ R
1 |A|2−2γ R

3 |A|4 (28)

where γ R
i � R(γi ). This is a Bernoulli equation having a solution

|A|2(T ) � (
γ R

3

γ R
1

(1 − e−2γ R
1 T ) +

1

|A0|2 e
−2γ R

1 T )−1 (29)

where A(T � 0) � A0. The solution |A|2(T ) is shown for the reference case in Fig. 4 for three values of A0. There is exponential
growth on short timescales T , proportional to the second term in (29), i.e., |A|2(T ) ∼ |A0|2e2γ R

1 T , which is followed by equilibration

for larger T according to the first term, where |A|2(T ) ∼ γ R
1

γ R
3

(1 − e−2γ R
1 T )−1, independent of A0. For T → ∞, the solution

|A|2(T ) → γ R
1 /γ R

3 � |As |2 (∼ 0.01 for the reference case).
The weakly nonlinear theory provides a way to determine nonlinear equilibrium solutions due to the interaction of instabilities

with the background state. To determine how far one can go from the critical point, the growth rate near the critical point is expanded
as

λ(k, μ) ∼ λ(kc, μc) + (μ − μc)
∂λ

∂μ
(kc, μc) � mε2 ∂λ

∂μ
(kc, μc) (30)

Since growth rates of O(ε2) are only able to balance the weakly nonlinear interactions on the long timescale T , we choose, with the
notation λcμ � ∂λ/∂μ(kc, μc),

m � (λcμ)−1 (31)
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Fig. 4 Solution of |A|2(T ) for the
Stokes solution of the
Ginzburg–Landau equation for
three different values of A0 and
parameters of the reference case

(a) (b)

Fig. 5 a Change in the coefficients kc and μc with T . b Change of γ R
1 and γ R

3 with the forcing (33) for Tm � 20, ω0 � π/Tm and η � 0.01

With δ � (μ − μc)/μc, we find that ε is determined from

ε �
√

δμcλcμ (32)

For a value δ � 0.1, we find for the reference case that ε � 0.047, and for δ � 1, we find for this case that ε � 0.15. Note that
time T is scaled with L/(Uε2), so one unit T for δ � 1 corresponds to about 50 days (with L � 105 m and U � 1 ms−1). The
dimensionless growth timescale in (29) hence corresponds to Te � 1/(2γ R

1 ) � 8.3 which is about 420 days for the reference case.

4 Eddy memory

Having found the nonlinear equilibrium solution just above criticality, we can now turn to determining the eddy-memory kernel.
We will consider two cases: (i) through an external time-dependent forcing in the wind stress (Sect. 4.1) and (ii) by considering the
rectification of the background flow without time-varying external forcing (Sect. 4.2).

4.1 External forcing

We consider the wind stress τ x to vary on the slow timescale T according to

τ x (y, T ) � τ̄ x (y)(1 + η f (T )) (33)

where f (T ) describes the time-dependent part and η is a small parameter. According to (8), this time-dependent wind stress will give
a time-dependent zonal velocity field ū1 and ū2 with the same time dependence, i.e.,

ū1(y, T ) � ū B
1 (y)(1 + η f (T )) (34a)

ū2(y, T ) �αū1(y, T ) � ū B
2 (y)(1 + η f (T )) (34b)

where the superscript B refers to the time-independent background velocity used in the previous section.
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Fig. 6 Different approximations
of the solution of the
non-autonomous
Ginzburg–Landau equation (35)

As the timescale of the forcing is much larger than that of the growth rate of the instabilities, the time dependence will lead to
slowly varying coefficients γ R

1 (T ) � γ̄ R
1 +ηg1(T ) and γ R

3 (T ) � γ̄ R
3 (T )+ηg3(T ) following the weakly nonlinear analysis of Sect. 2.

For small η, this leads to the following equation for the amplitude |A|2(T )

d|A|2
dT

� 2γ R
1 (T )|A|2−2γ R

3 (T )|A|4 (35)

which describes the case where small modulations in the forcing on the long timescale T modify the growth and equilibration of the
amplitude of the unstable mode. The solution of the equation (35) can be explicitly written as

|A|2(T ) � e−h(T )

A−2
0 + 2

∫ T
0 e−h(T ′)γ R

3 (T ′)dT ′ (36a)

h(T ) � − 2
∫ T

0
γ R

1 (T ′)dT ′ (36b)

This shows that the amplitude |A|2(T ) in general will depend on the history of the forcing through the coefficients γ R
i . We can make

this more explicit by considering a specific example f (T ) � sin ω0T with η � 0.01 over the interval T ∈ [0, Tm]. The variation in
kc, μc and the γ R

i with T is shown in Fig. 5.
The variation in γ R

1 with respect to γ̄ R
1 is relatively small (0.6%) compared to that in γ R

3 with respect to γ̄ R
3 (2.2%) and g3(T ) is

in phase with f (T ). Under the approximation that γ R
1 ∼ γ̄ R

1 , the solution |A|2(T ) can be written as

|A|2(T ) � (A−2
0 e−2γ̄ R

1 T + 2
∫ T

0
e−2γ̄ R

1 (T−T ′)γ R
3 (T ′)dT ′)−1 (37)

and using γ R
3 (T ) � γ̄ R

3 (1 + ξ f (T )) we eventually find

|A|2(T ) � | Ā|2(T )

1 + 2ξ γ̄ R
3 | Ā|2(T )

∫ T
0 e−2γ̄ R

1 (T−T ′) f (T ′)dT ′ (38)

where | Ā|2(T ) is the solution for the constant γ̄ R
i . The last expression explicitly shows (in this limit) the memory integral involving

the forcing.
With the further simplification that η (and hence ξ ) is so small that the second term in the denominator is much smaller than 1,

the final expression becomes

|A|2(T ) − | Ā|2(T ) ∼ −2ξ γ̄ R
3 | Ā|4(T )

∫ T

0
e−2γ̄ R

1 (T−T ′) f (T ′)dT ′ (39)

which shows that the deviation from the reference case can be written as a convolution integral over the forcing. The memory
strength is given by r � 1/2γ̄ R

1 . In the special case that f (T ′) � sin ω0T ′, the explicit expression becomes

|A|2(T ) − | Ā|2(T ) ∼ −2ξ γ̄ R
3 | Ā|4(T )

e−2γ̄ R
1 Tω0 + 2γ R

1 sin ω0T − ω0 cos ω0T

4(γ R
1 )2 + ω2

0

(40)

The numerical solution to (35) for A2
0 � 0.01 is shown as the drawn curve in Fig. 6 and as expected displays a small oscillation

around the equilibrium solution for constant γ R
i � γ̄ Ri (dashed curve in Fig. 6). The approximate solution (40) is shown as the

dash-dotted curve and coincides with the dotted curve displaying the solution (38). The solution (40) is a good approximation to the
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(a) (b)

Fig. 7 a Meridional pattern of the thickness flux Φ � v
(11)
1 h(11)

1 , i.e., φ̄(y) � R(ikcφ1(φ1 − φ2)∗ − (ikcφ1)∗(φ1 − φ2)) and of ū B1 − ū B2 . b Coefficient

K (y) � ε2φ̄(y)/(ū B1 (y) − ū B2 (y))

full solution, but differs mostly because γ R
1 is not a constant. The phase difference between forcing and solution is caused by the

nonlinear interactions (through the term ξ γ̄ R
3 ) and also proportional to ω0.

To connect to the eddy-thickness flux response to the time-dependent basic state zonal velocity field (which is directly linked to
changes in the forcing), we choose the eddy-thickness flux in the first layer Φ ≡ Φ1 as observable. This eddy-thickness flux can be
directly computed from the Stokes solution, i.e.,

Φ(y, T ) � v
(11)
1 h(11)

1 � ε2|A(T )|2φ(y) (41)

with φ(y) � R(v1h∗
1 +v∗

1h1)(y), v1 � ikcφ1 and h1 � φ1−φ2, where all these functions are computed at criticality. For the reference
case, the spatial structure of φ(y) is plotted in Fig. 7a together with the vertical shear ū1 − ū2 in the reference case, showing that
they have a similar shape. The function φ(y) is maximal at the midaxis of the jet as is the vertical shear of the background flow.

In the eddy-memory representation, the eddy-thickness fluxes which arise through the interaction of the perturbations with the
mean flow can be written as

Φ(y, T ) � −K
∂

∂y

∫ T

−∞
κ(T − T ′)h̄1(y, T ′)dT ′ � K

∫ T

−∞
κ(T − T ′)(ū1 − ū2)(y, T ′)dT ′ (42)

where κ is the memory kernel with κ(T ) � 0 for T < 0 due to causality. Furthermore, h̄1 is the background layer thickness and K a
‘diffusion’ constant. This implies that the current eddy-thickness fluxes (at time T ) depend on the past behavior of the background
layer thicknesses.

Under the external forcing, the functions φ(y) at criticality only vary marginally, and hence (like γ R
1 ), we assume that they are

equal to that at the reference case φ̄(y), as shown in Fig. 7a. When considering the additional thickness flux due to the oscillatory
component in the time-dependent forcing, i.e.,

ΔΦ(y, T ) � ε2(|A(T )|2−| Ā(T )|2)φ̄(y) (43)

we see that K(y) is actually a function defined by

K (y) � Cε2 φ̄(y)

ū B
1 − ū B

2

(44)

where ū1 − ū2 is the velocity difference of the steady-state background flow (hence for η � 0) and C is a constant; this expression
(forC � 1) is plotted in Fig. 7b. The functionK(y) is fairly constant at the middle of the jet but falls off sharply toward the boundaries.
In this interpretation of eddy-memory effects in the weakly nonlinear limit, the background flow varies over a long timescale T , and
because the instabilities also equilibrate over this timescale, the eddy-thickness flux depends on the history of the background flow.

4.2 Eddy memory: rectification

We next consider the case that the wind stress does not change, but eddy memory can still occur because the stability behavior of
the jet changes when it is corrected by instabilities due to rectification.
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Fig. 8 Rectification patterns

u(02)
j (y) for j � 1, 2 of the

background zonal velocity due to
self-interactions of the critical
mode for the reference case. Note
that the rectification of the
meridional background velocity is
zero

Fig. 9 Sketch of the procedure to
determine the memory kernel.
a Change of the jet due to
nonlinear self-interactions of the
instabilities. b Evolution of the
amplitude function |A�(T )|2 over
the long timescale T

As is shown in Appendix, the weakly nonlinear analysis leads to a correction to the background zonal flow according to (51cb),
with

ucj (X, y, T ) � ε2|A|2(X, T )u(02)
j (y) (45)

and the fields u(02)
j (y) at criticality are plotted for the reference case in Fig. 8; note that v

(02)
j (y) � 0. The correction to the jet in the

upper layer has its maximum further away from the central axis compared to that in the lower layer. In the upper layer, the jet is
weakened in the center and amplified near y � 0.4 which leads to less horizontal shear in the background state. In the lower layer,
the jet is strengthened over the whole domain. Hence, this influences the vertical shear of the background flow.

The zonal velocity of the total (weakly nonlinear) Stokes solution at the long timescale T is hence given by

Ū j (x, y, t ; T ) � ū j (y) + εA(T )u(11)
j (y)ei(kcx+ωct) + ε2|A(T )|2u(02)

j (y) (46)

and there is also a component which varies on the short space and fast timescales. However, this component averages to zero
when zonally averaged and hence is not expected to influence the subsequent secondary instabilities of the jet. The subsequent
modifications of the background state (and hence of the background thicknesses h̄ j ) will determine the eddy-thickness fluxes at the
current time.

To determine the response of the eddy-thickness fluxes to the changing background state over the interval [T0, T1], one proceeds
as follows (Fig. 9):

(1) Divide the interval [T0, T1] into N discrete intervals with dT � (T1 − T0)/N .
(2) At T0 � 0, determine γ 1

1 , γ 1
2 , γ 1

3 and the Stokes solution |A(T )|2, with initial conditions |A(0)|2. Start with � � 1.
(3) Over the interval [(� − 1)dT, �dT ], the eddy-thickness fluxes Φ and the background state correction ū�

j , j � 1, 2 can be
computed.

(4) At time T� � �dT , the stability of the new background state at that time is determined, giving new values of γ �+1
1 , γ �+1

2 , γ �+1
3 .

Increase � by 1 and go to step (3) until � � N .
(5) At time TN � τ � NdT , determine the ΦN (y) in which the memory arises through the variation of the Stokes solution

amplitude and the pattern of the background state with time.
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Due to the successive modifications of the background state, one can also determine the eddy memory just due to these modifications.
Indicate the eddy-thickness fluxes at T � T� as Φ�

j . Next, we focus only on the upper layer eddy-thickness flux Φ1 � Φ (at T � T1),

h̄ � h̄1 and ū � ū1. First, Φ1 can only depend on h̄0 � ψ̄1 − ψ̄2 (e.g., the thermocline of the background zonal flow) through

Φ1 � −K
∂ h̄0

∂y
(47)

At T � T2, the background jet in the upper layer has been corrected as

ū � ū0 + ε2|A1(T1)|2ū1 ; ū1 � u(02)
1 ,

and hence,

Φ2 � −K
∂

∂y
(h̄0 + ε2|A1(T1)|2h̄1)

The difference with the previous section is now that the modification of the background state is proportional to A1(T ) ∼ e2γ R
11T and

hence, the stability of the background has already changed before this amplitude has equilibrated. Hence, one needs to consider the
early stages of growth of the instability where A1(T ) ∼ e2γ R

11T , and γ R
11 is the value of γ R

1 found during the first step. In this case,
we can approximate Φ2 as

Φ2 ∼ e2γ 1R
1 T1

∂

∂y
(h̄0e−2γ 1R

1 T1 + ε2h̄1)

which shows already the memory component of the background state. At T � T1, the background gets corrected again by the Stokes
wave and becomes

ū � ū0 + ε2|A1(T1)|2ū1 + ε2|A2(T2)|2ū2,

and hence, Φ3 can be written as (using γ 2R
1 as the next value of γ R

1 )

Φ3 ∼ e2γ 2R
1 T2

∂

∂y
(h̄0e−2γ 2R

1 T2 + ε2(e2γ 1R
1 T1−2γ 2R

1 T2 h̄1 + h̄2))

which reduces when γ 2R
1 ∼ γ 1R

1 to

Φ3 ∼ e2γ 1R
1 T2

∂

∂y
(h̄0e−2γ 1R

1 T2 + ε2(e−2γ 1R
1 (T2−T1)h̄1 + h̄2))

In general, we find for � ≥ 1 that

Φ�+1 ∼ e2γ �R
1 T�

∂

∂y
(h̄0e−2γ �R

1 T� + ε2
�∑

k�1

e−2(γ �R
1 T�−γ kR

1 Tk )h̄k)

which is an approximate expression of the eddy memory. The memory arises here because of the successive corrections of the mean
state determine the instabilities and hence the thickness fluxes. With the assumption that the γ kR

1 do not vary much, we can take
r � 1/(2γ 1R

1 ) and the memory function can be approximated as

κ1(T − T ′) � e−(T−T ′)/r

where r measures the memory strength which is the same as in the previous section. The memory strength depends directly on the
growth rate of the instability at criticality which in turn is affected by the zonal background state.

5 Summary and discussion

In this paper, we provided a specific example of the weakly nonlinear eddy-memory effect [12] through an analysis of the stability
of a zonal jet in a two-layer quasi-geostrophic model. For the case that the background linear friction is high enough such that the
k � 0 mode is damped, the jet becomes unstable for a certain value of the control parameter μc at a critical value kc Due to the
instability, an eastward propagating traveling wave packet is amplified and the (in general complex) amplitude A of the envelope of
this wave packet can be determined from a Ginzburg–Landau equation. To explain the eddy memory in the thickness flux, we focus
on the Stokes solution of the Ginzburg–Landau equation which is spatially homogeneous.

When the background wind stress varies in time, we showed (under several approximations) that the memory kernel in the
thickness flux (when related to the forcing variation) is a decaying exponential and the memory timescale is inversely proportional
to the growth factor of the instability. The explicit form of the kernel is obtained under the approximation that the instability growth
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and the associated spatial patterns do not vary much with the forcing (because both kc and μc do not vary much) and that most of
the variation is controlled by the nonlinear term in the Ginzburg–Landau equation.

When there are no external variations in the wind-stress forcing, the eddy-memory in the thickness flux–background state relation
is caused by successive modification of the background state that lead to modifications of the instabilities on this background state.
In the frame of the traveling waves, the self-interaction of this wave packet produces a correction to the background flow. The
amplitude of this correction is determined by a Ginzburg–Landau equation and develops over a much longer timescale than the
oscillatory part of the instability. Hence, the eventual eddy-thickness flux depends on the slow development of the background state
generated by successive self-interactions of the instability.

In all these results, we kept the distance between the parameter value and the critical value constant, although the critical value
slightly varies with the background state. While this is not important for the explanation of the exponential memory kernel here,
it may lead to an oscillatory component in kernel function when the mean state adjustment is such that it first amplifies and then
damps the growth of perturbations. We also did not consider non-normal growth of the perturbations, which in principle could also
contribute to the eddy memory.

The memory kernel result can in principle also be obtained by linear response theory [26, 27] where the equilibrium attractor
is just the zonal background jet state at criticality. This method can actually also be used to study the memory in a full statistical
equilibrium state and hence can shed light on what memory is caused by eddy–eddy interactions [12]. The presence of eddy memory
in the ocean may also lead to more detailed explanations on low-frequency variability phenomena in ocean models, such as the
turbulent oscillator [9] in the midlatitude gyres and the Southern Ocean Mode [11] and we hope that this paper will stimulate work
in this direction.
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Appendix: Derivation of the Ginzburg–Landau equation

This derivation is fairly standard and was already presented in detail in [25], but is repeated here for convenience. The equations of
the linear stability analysis were determined at O(εE). At a next order O(ε2E), the equations are

(iωcM̂(kc) + L̂(kc))Φ
(12) � −(iωcM̂k(kc) + L̂k(kc) − cgM̂(kc)

∂Φ(11)

∂X
) (48)

where the subscript k indicates differentiation to k. At O(ε2) and O(ε2E2), one finds

L̂(0)Φ(02) � −2R(N (Φ(11))Φ(11)∗) (49a)

(2iωcM̂(2ikc) + L̂(2ikc))Φ
(22) � −N (Φ(11))Φ(11) (49b)

where R indicates real part and ∗ again complex conjugate. Using the relation Φ(11) � A(X, T )Ψ in the Eqs. (48) and (49b) leads
to

Φ(12) � ∂A

∂X
Ψ (12) ; Φ(02) � |A|2Ψ (02) ; Φ(22) � A2Ψ (22) (50)

where the vectors Ψ (12), Ψ (02) and Ψ (22) satisfy

(iωcM̂(kc) + L̂(kc))Ψ
(12) � −(iωcM̂k(kc) + L̂k(kc) − cgM̂(kc))Ψ (51a)

L̂(0)Ψ (02) � −2R(N (Ψ )Ψ ∗) (51b)

(2iωcM̂(2ikc) + L̂(2ikc))Ψ
(22) � −N (Ψ )Ψ (51c)

and these equations are complemented with the appropriate boundary conditions at each order of the expansion.
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Differentiation of the eigenvalue problem (14) to k and use of the group velocity at criticality gives Ψ (12) from (51a) as

Ψ (12) � −i
∂Ψ

∂k
(52)

evaluated at criticality. The left-hand sides of (51b, c) are non-singular and hence can be solved for Ψ (02) and Ψ (22). At O(ε3E2), a
singular problem is obtained for Ψ (13), i.e.,

(iωcM̂(kc) + L̂(kc))Ψ
(13) � −(M(kc)Ψ

∂A

∂T
+ m�A + �

∂2A

∂X2 + �A|A|2) (53)

where

� � (L̂μ(kc) − iωcM̂μ(kc))Ψ (54a)

� � 1

2
(iωcM̂kk(kc) − L̂kk(kc) − 2cgM̂k(kc))Ψ

+ i(iωcM̂k(kc) − cgM̂(kc) − L̂k(kc))Ψ k (54b)

� � N (Ψ )Ψ (02) + N (Ψ (02))Ψ + N (Ψ (22))Ψ ∗ + N (Ψ ∗)Ψ (22) (54c)

In general, the right-hand side of (53) is not contained in the range of the linear operator on the left-hand side. Since the kernel of
the operator iωcM̂(kc) + L̂(kc) has dimension 1, it is spanned by one vector, here indicated by Ω; this implies that

ΩH (iωcM̂(kc) + L̂(kc))W � 0 (55)

where W is the right-hand side of (53) and the superscript H indicates Hermitian transposed. The resulting amplitude equation from
(53) becomes the Ginzburg–Landau equation

∂A

∂T
� γ1A + γ2

∂2A

∂X2 − γ3A|A|2 (56)

with

γ1 � m
ΩH�

ΩHM̂(kc)Ψ
; γ2 � ΩH�

ΩHM̂(kc)Ψ
; γ3 � − ΩH�

ΩHM̂(kc)Ψ
. (57)
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