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Abstract
Midlatitude atmospheric variability is dominated by the dynamics of the baro-
clinically unstable jet stream, which meanders and sheds eddies at the scale of
the Rossby deformation radius. The eddies interact with each other and with
the jet, affecting the variability on a wide range of scales, but the mechanisms of
planetary-scale fluctuations of the jet are not well understood. Here, we develop
a theoretical framework to explore the stability of planetary-scale motions in an
idealized two-layer model of the atmosphere. The model is based on a combi-
nation of vertical shear and the Sverdrup relation, providing the dynamic link
between the two layers, with meridional eddy heat fluxes parameterized as a dif-
fusive process with the memory of past baroclinicity of the jet. We find that a
planetary-scale instability exists if the vertical shear of the jet does not exceed a
particular threshold. The inclusion of the eddy-memory effect enables westward
or eastward propagation of planetary waves relative to the barotropic mean flow.
Importantly, we find growing planetary waves that propagate slowly westward
or are stationary, which could have important implications for the formation of
atmospheric blocking events. Our theoretical results suggest that, with ongoing
polar amplification due to global warming and the corresponding reduction of
the vertical shear of the mean wind, the background conditions for the growth
of planetary-scale waves via planetary-scale baroclinic instability are becoming
more favorable.
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1 INTRODUCTION

Planetary-scale waves, the time-scales of which are larger
than those of typical weather and smaller than a sea-
son (Ghil and Mo, 1991a; 1991b; Screen and Simmonds,
2014), are crucial to shape low-frequency variability in the

large-scale atmosphere. Recently, unusual planetary-scale
atmospheric motions in the Northern Hemisphere have
caused extreme weather events in the midlatitudes, which
is considered to be a consequence of ongoing global warm-
ing (Petoukhov et al., 2013). The impact of global warming
is not equally distributed in the world, but varies region by
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region (Cohen, 1990). In particular, the temperature has
risen twice as much in high latitudes as in other areas,
a phenomenon called Arctic Amplification (AA: Serreze
et al., 2009; Pithan and Mauritsen, 2014). AA induces a
decrease of baroclinicity in lower levels at midlatitudes in
the Northern Hemisphere. It has been suggested that the
decrease of baroclinicity is related to the amplified mean-
ders of midlatitude jets leading to extreme weather (Fran-
cis and Vavrus, 2012; 2015). However, fluid-dynamical
links between the warming of the Arctic region and the
weather in the midlatitudes are not revealed clearly, thus
one should be cautious to conclude that AA leads to
extreme weather in the midlatitudes (Wallace et al., 2014).

Large-scale atmospheric motion in the midlatitudes is
governed mainly by the dynamics of jets (Woollings et al.,
2010). On weather time-scales, the shear-induced baro-
clinic instability generates large-scale eddies, growing by
taking energy from the mean flow (Pierrehumbert and
Swanson, 1995). The growth rate of these synoptic eddies
is proportional to the baroclinicity determined by the
meridional temperature gradient (Charney, 1947). Tradi-
tional baroclinic instability theory, however, is unlikely
to explain the current extreme weather events associated
with the growth of planetary-scale disturbances. As a
matter of fact, AA is lowering the baroclinicity in lower
levels in the midlatitudes, which should decrease the
activity of synoptic eddies. A new dynamical feature in
the planetary-scale atmosphere should be presented to
rationalize the contrast between current observations of
planetary waves causing extreme weather and the tradi-
tional baroclinic instability. It is plausible to guess that the
planetary-scale atmosphere, the length-scale of which is
larger than synoptic scales, might be governed by differ-
ent physics, distinct from the major dynamic features of
synoptic-scale motions (Phillips, 1963).

Low-frequency variability of the large-scale atmo-
sphere is driven by planetary-scale dynamics, the
time-scales of which are larger than those of the weather
(Thompson and Wallace, 1998; Hurrell et al., 2003).
Planetary-scale motion exists together with synoptic-scale
motions in the large-scale atmosphere. It is called
“Geostrophic motion type 2” (Phillips, 1963). Several
articles introduce derivations of planetary geostrophic
motion from the primitive equations by scaling analysis
with representative length- and time-scales (Dolaptchiev
and Klein, 2009; Pedlosky, 2013; Moon and Cho, 2020).
The length-scale for planetary-scale motion is similar to
the radius of the Earth, thus various low-frequency phe-
nomena covering the whole hemisphere should be related
to planetary geostrophic motion.

An asymptotic approximation for planetary-scale
atmospheric motions is the heat equation, with basic
dynamical constraints including geostrophic and

hydrostatic balances and the Sverdrup relationship derived
from the continuity equation (Moon and Cho, 2020).
This is quite different on the synoptic scale, where the
main evolution equation is derived from a combination
of horizontal vorticity dynamics and the heat equation
(Pedlosky, 2013). The two scales coexist in the large-scale
atmosphere, implying that the governing dynamics in the
large-scale atmosphere can be represented by the mutual
interaction of the two scales via a multiple-scale analysis.
Moon and Cho (2020) emphasize that the contribution of
synoptic-scale motions at the planetary scale in the heat
equation is represented as the horizontal convergence of
the turbulent heat flux of synoptic eddies. According to
Phillips (1963), planetary-scale motions should be main-
tained by external forcing. Therefore, the turbulent heat
flux from the synoptic scale acting as one of the external
forcings is crucial to shape the overall variability on the
planetary scale.

One of the distinct phenomena caused by the inter-
action of the two scales is a quasi-oscillatory behavior
of the meridional heat flux in the Southern Hemisphere
(Moon et al., 2021). This variability is called the Baro-
clinic Annular Mode (BAM), the time period of which is
approximately 25 days (Thompson and Barnes, 2014). The
planetary-scale dynamics itself cannot explain the oscilla-
tory behavior of the meridional temperature gradient or
meridional heat flux, because the mathematical structure
of the heat equation is parabolic. Recently, it was suggested
that eddy-memory effects in wave–mean interaction in
the large-scale ocean could explain the quasi-oscillatory
behavior of ocean temperature (Manucharyan et al., 2017).
The eddy-memory effect is represented by a kernel integral
of the gradient of mean fields with respect to time, which
is distinguished from the Fickian approximation parame-
terizing the turbulent flux of tracers by the instantaneous
gradient of the mean field. In particular, if we introduce a
finite time integral kernel, the heat equation transforms to
a hyperbolic equation, which contains wave propagations
and oscillations. Recent work shows that a stochastic oscil-
lator model for the variability of the BAM can be derived
by using a finite-time kernel for the parameterization of
synoptic-scale turbulent heat flux (Moon et al., 2021).

The transformation of the heat equation into a hyper-
bolic wave equation by the eddy-memory effect represents,
in an approximated way, the generation of planetary-scale
waves by nonlinear influences of synoptic eddies on
planetary-scale motions. We need to investigate how the
planetary-scale waves induced by synoptic eddies are
behaving and propagating in the planetary-scale atmo-
sphere. In particular, it is necessary to investigate the exis-
tence of a fluid-dynamical instability of planetary-scale
waves due to the vertical shear of zonal mean winds.
If this instability exists, it might be closely related to
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the planetary-scale wiggles generating extreme weather
events under ongoing global warming.

In this article, we will adopt the finite-time
eddy-memory effect in the planetary heat equation to
parameterize the turbulent heat flux of synoptic scales
and then study the characteristics of planetary-scale
waves induced by the eddy memory. In particular, a ver-
tically sheared flow as a mean flow is considered, to
investigate the existence of instability causing the growth
of planetary-scale disturbances leading to the increased
meandering of the jet stream.

2 LINEAR PLANETARY-SCALE
ATMOSPHERIC MOTION
WITH EDDY-MEMORY EFFECTS

Large-scale atmospheric motion contains two asymp-
totic limits: one due to quasigeostrophic motion, the
length-scale of which is determined by the internal
Rossby deformation radius (L ∼ 1,000 km), and a plane-
tary geostrophic one characterized by the external Rossby
deformation radius (LD ∼ 3,000 km) (Moon and Cho,
2020). The external Rossby deformation radius LD is
defined by

√
gH∕f , where g is the acceleration due to grav-

ity, H is a height scale of the atmosphere, and f is the
Coriolis parameter.

The planetary geostrophic motion is represented by
geostrophic and hydrostatic balances, the Sverdrup rela-
tion derived from the continuity equation, and the
heat-flux balance:

uL = −𝜕PL

𝜕Y
,

vL = 𝜕PL

𝜕X
,

𝜌L = − 1
𝜌s

𝜕

𝜕z
(𝜌sPL),

1
𝜌s

𝜕

𝜕z
(𝜌swL) − 𝛽LvL = 0,

𝜕ΘL

𝜕𝜏
+ uL

𝜕ΘL

𝜕X
+ vL

𝜕ΘL

𝜕Y
+
(
𝜕ΘL

𝜕z
+ 1
𝜖LΘs

dΘs

dz

)
wL = QL,

(1)

where all variables are nondimensionalized using repre-
sentative scales (Moon and Cho, 2020). Here, X and Y
are planetary-scale horizontal coordinates, z is a vertical
one, and the time 𝜏 represents planetary-scale time scaled
by U∕LD. Here, U is a horizontal velocity scale. The sub-
script L implies planetary-scale variables. uL, vL, and wL
are X , Y , and z direction velocities, respectively, and PL and
ΘL represent planetary-scale pressure and potential tem-
perature. 𝛽L = (LD∕a) cos 𝜃0, where a is the radius of the
Earth and 𝜃0 is a representative midlatitude. 𝛽L ∼ (1) on
the planetary scale, while 𝛽 ∼ (𝜖) on the synoptic scale,

where 𝜖 is the Rossby number, defined as U∕fL, and 𝛽 is
defined as (L∕a) cos 𝜃0. The average vertical profile of the
potential temperature is

1
ΘS

dΘS

dz
∼ (𝜖L),

where 𝜖L ≡ U∕(fLD) and ΘS is the hemispheric average
vertical profile of the potential temperature. 𝜌s is a hemi-
spheric average of air density, thus 𝜌s = 𝜌s(z). QL rep-
resents the planetary-scale thermal forcing driving the
heat-flux balance.

Large-scale atmospheric dynamics can be represented
by the mutual interactions of the two scales in a multi-
scale analysis. Hence, the planetary geostrophic motion
is influenced by synoptic-scale eddies and, in particular,
the synoptic-scale eddies contribute to horizontal turbu-
lent heat fluxes in the planetary-scale heat equation. On
the other hand, the planetary-scale velocities uL, vL, and
wL provide a mean flow for quasigeostrophic vorticity
dynamics.

The planetary-scale heat equation with the contribu-
tion of synoptic eddies (Moon et al., 2021) is

𝜕ΘL

𝜕𝜏
+ uL

𝜕ΘL

𝜕X
+ vL

𝜕ΘL

𝜕Y
+ wL

(
S + 𝜕ΘL

𝜕z

)

= − 𝜕

𝜕x
u0𝜃0 −

𝜕

𝜕y
v0𝜃0 + QL, (2)

where x and y are synoptic-scale horizontal coordi-
nates and the subscript 0 represents synoptic-scale
leading-order variables. S is the static stability, defined by
[1∕(𝜖LΘS)]dΘS∕dz. Here, we assume that S is a constant
for simplicity. The contribution of synoptic eddies to the
planetary-scale heat equation is represented by the hor-
izontal heat flux convergence −(𝜕∕𝜕x)u0𝜃0 − (𝜕∕𝜕y)v0𝜃0
and the planetary-scale external heat flux QL is assumed
to be zonally symmetric. The governing equation is con-
structed based on a dry atmosphere, ignoring the effects
of moisture.

To represent the heat equation only by planetary-scale
variables, it is required to parameterize the synoptic-scale
heat flux using planetary-scale potential temperature.
First, we have to do fast-time (synoptic-scale) averaging
and spatial averaging over the heat equation. In particular,
the spatial derivative in the synoptic scale 𝜕∕𝜕y is con-
verted to 𝜖1∕2(𝜕∕𝜕Y ) by the spatial average, where L∕LD ≃
𝜖1∕2 is used. Here, L is the internal Rossby deformation
radius, the basic length-scale for the synoptic motions.
Equation 2 becomes

𝜕ΘL

𝜕𝜏
+ uL

𝜕ΘL

𝜕X
+ vL

𝜕ΘL

𝜕Y
+ wL

(
S + 𝜕ΘL

𝜕z

)

= −𝜖1∕2 𝜕

𝜕X
u0𝜃0 − 𝜖1∕2 𝜕

𝜕Y
v0𝜃0 + QL, (3)
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812 MOON et al.

where 𝜕∕𝜕x and 𝜕∕𝜕y are converted to 𝜖1∕2𝜕∕𝜕X and
𝜖1∕2𝜕∕𝜕Y by the spatial averaging (Moon et al., 2021).
The zonally symmetric thermal forcing QL = QL(𝜏,Y ) pro-
vides a zonally symmetric mean flow that does not depend
upon X . Hence, vL = wL = 0 and there is no advection of
potential temperature in the heat equation. The planetary
geostrophic motion defined by the zonal wind uS

L, the pres-
sure field PS

L, and the potential temperature ΘS
L induced by

the zonally symmetric forcing QL satisfies

uS
L = −

𝜕PS
L

𝜕Y
,

ΘS
L =

𝜕PS
L

𝜕z
,

𝜕ΘS
L

𝜕𝜏
= QL. (4)

A steady-state solution can be obtained from QL(ΘS
L) =

0. QL represents thermal forcing, consisting mainly of
shortwave and longwave radiative fluxes. When we
include local convective processes, QL = 0 implies a con-
vective radiative equilibrium leading to ΘS

L = ΘE, where
ΘE is the radiative convective equilibrium temperature
(Manabe and Strickler, 1964). The basic balances, uS

L =
−𝜕PS

L∕𝜕Y and ΘE = 𝜕PS
L∕𝜕z, can be used to construct a bal-

anced zonal symmetric zonal wind uS
L, which can be the

initial velocity field for an idealized global climate model
(GCM) dynamic core simulation (Held and Suarez, 1994).

We consider a perturbative potential temperature
field 𝜂L around the mean potential temperature ΘS

L.
Let ΘL ≃ ΘS

L + 𝜖1∕2𝜂L, which is put into Equation 3.
The leading-order (1) equation becomes the same as
Equation 4 and the velocities vL and wL are (𝜖1∕2). Hence,
the heat equation to (𝜖1∕2) is

𝜕𝜂L

𝜕𝜏
+ uS

L
𝜕𝜂L

𝜕X
+ vL

𝜕ΘS
L

𝜕Y
+ wLS = − 𝜕

𝜕X
u0𝜃0 −

𝜕

𝜕Y
v0𝜃0, (5)

where we assume that ΘS
L is not dependent on the vertical

coordinate z, for simplicity.
A closure of Equation 5 requires that the synoptic-scale

heat-flux convergence should be parameterized by
planetary-scale variables. The meridional temperature
gradient 𝜕𝜂L∕𝜕Y is dynamically linked with the heat-flux
convergence, thus the synoptic-scale heat-flux conver-
gence can be parameterized by a functional form of
the meridional potential temperature gradient. In other
words, the poleward synoptic heat fluxes act as the
primary control of the planetary-scale meridional temper-
ature gradient. Previously, it has been suggested that the
meridional heat flux is the result of accumulating baro-
clinicity during a finite time-scale, which is referred to as
the eddy-memory effect (Manucharyan et al., 2017). The

eddy-memory effect is used as a mechanism to explain
quasi-oscillatory behavior of the large-scale atmosphere
and ocean, characterizing subseasonal and multidecadal
variability in the atmosphere and ocean, respectively
(Jüling et al., 2020; Moon et al., 2021). Following this
idea, we can parameterize the meridional heat flux due to
synoptic scales as

u0𝜃0 = −K 𝜕

𝜕X ∫
𝜏

−∞

𝜂L

r
exp

(
−𝜏 − 𝜏

′

r

)
d𝜏′,

v0𝜃0 = −K 𝜕

𝜕Y ∫
𝜏

−∞

𝜂L

r
exp

(
−𝜏 − 𝜏

′

r

)
d𝜏′,

(6)

where K is an eddy diffusivity measuring the intensity of
synoptic-scale poleward heat fluxes and r is the time-scale
of the eddy memory during which the baroclinicity ∇𝜂L
accumulates to determine the present heat flux by synoptic
eddies (Moon et al., 2021).

The equation then becomes

𝜕𝜂L

𝜕𝜏
+ uS

L
𝜕𝜂L

𝜕X
+ vL

𝜕ΘS
L

𝜕Y
+ SwL = K∇2

H𝜂
∗
L, (7)

where 𝜂∗L satisfies

d𝜂∗L
d𝜏

= −
𝜂∗L

r
+ 𝜂L

r
. (8)

Instead of the original integral kernel (Equation 6), we
use the differential Equation 8 in further stability analysis
(Manucharyan et al., 2017). Here, the time derivative d∕d𝜏
should be interpreted as the material derivative including
the horizontal advection uS

L, thus

d
d𝜏

≡ 𝜕

𝜕𝜏
+ uS

L
𝜕

𝜕X
, (9)

where uS
L represents the barotropic zonal mean wind,

defined as the vertical average of the zonal mean zonal
wind, uS

L ≡ ∫ 1
0 uS

Ldz. The last equation needed is the Sver-
drup relation connecting the vertical velocity wL to the
meridional velocity vL due to the planetary beta effect,

𝜕wL

𝜕z
− 1

H
wL = 𝛽LvL, (10)

where
1
H

= − 1
𝜌S

d𝜌S

dz

(Moon and Cho, 2020; Moon et al., 2021). Here 𝜌S is the
hemispheric mean vertical profile of atmospheric density,
which is only dependent upon z; we also assume that H is
a constant.
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MOON et al. 813

Taking the z-derivative of Equations 7,8, and 10, we
obtain

𝜕

𝜕𝜏

𝜕𝜂L

𝜕z
+ uS

L
𝜕

𝜕X
𝜕𝜂L

𝜕z
+ S𝜕wL

𝜕z
= K∇2

H
𝜕𝜂∗L

𝜕z
, (11)

𝜕2wL

𝜕z2 − 1
H
𝜕wL

𝜕z
= 𝛽L

𝜕𝜂L

𝜕X
, (12)

d
d𝜏
𝜕𝜂∗L

𝜕z
+ 1

r
𝜕𝜂∗L

𝜕z
= 1

r
𝜕𝜂L

𝜕z
, (13)

where Equation 11 is obtained using the thermal wind
balance,

𝜕uS
L

𝜕z
= −

𝜕ΘS
L

𝜕y
,

𝜕vL

𝜕z
= 𝜕𝜂L

𝜕X
, (14)

leading to

𝜕uS
L

𝜕z
𝜕𝜂L

𝜕X
+ 𝜕vL

𝜕z
𝜕ΘS

L

𝜕Y
= 0. (15)

Next, we will convert the above equations
(Equations 11–13) to a two-layer model with the bound-
ary conditions wL = 0 at z = 0 and z = 1, where z = 1
implies the top layer, where synoptic baroclinic waves
break and momentum flux is dominant. It is a hypothet-
ical situation, assuming that the tropopause is a fixed
surface. The baroclinic instability problem on the f -plane
in quasigeostrophic motion also used this boundary con-
dition (Eady, 1949; Dolaptchiev and Klein, 2009). Taking
the z-derivative is critical to construct a two-layer model.
Without the z-derivative, the main variable is the anoma-
lous pressure 𝜓L satisfying 𝜕𝜓L∕𝜕z = 𝜂L, in which case
we need at least three layers. For simplicity in the further
analytical approach, it is desirable to rely on the two-layer
model. However, if we want to include nonlinear terms,
taking the z-derivative does not lead to more simplicity.

3 TWO-LAYER LINEAR
PLANETARY-SCALE ATMOSPHERIC
MODEL

Layer models have been widely used in large-scale atmo-
spheric and oceanic dynamics (Pedlosky, 2013). Layer
models in the vertical coordinate have major dynamic fea-
tures in sheared flows in the large-scale atmosphere and
ocean (Figure 1). This means one can avoid dealing with
complicated special functions in eigenvalue problems in

F I G U R E 1 The schematic of the two-layer model. The
surface and top of the atmosphere are represented as z = 0 and
z = 1, respectively. The two layers are applied at z = 1∕4 and
z = 3∕4, where the zonal mean winds are specified as U1 and U2.
Potential temperature anomalies at z = 0, z = 1∕2, and z = 1 are 𝜂0

L,
𝜂1

L, and 𝜂2
L, respectively. Boundary conditions are imposed on the

vertical velocity wL, hence wL = 0 at z = 0 and z = 1. The vertical
velocity at the middle level z = 1∕2 is 1

4
w0

the vertical coordinate, such as the confluent hypergeo-
metric function used in the original baroclinic instabil-
ity theory(Charney, 1947). In particular, two-layer models
have been applied in many directions for quasigeostrophic
motions in the atmosphere including baroclinic instability
(Phillips, 1951).

Here we introduce a two-layer model for the linear
planetary geostrophic motion represented by Equation 7.
The vertical coordinate z goes from z = 0 to z = 1, repre-
senting the surface and top of the atmosphere, respectively.
The main equations in Equation 7 are approximated at
two levels z = 1∕4 and z = 3∕4. Imposed boundary con-
ditions are wL = 0 at z = 0, 1. The potential temperature
anomaly 𝜂L is represented by 𝜂0

L at z = 0, 𝜂1
L at z = 1∕2,

and 𝜂2
L at z = 1. The zonal mean wind U is U1 at z = 1∕4

and U2 at z = 3∕4. The existence of vertical shear means
U2 − U1 = ΔU is positive, in agreement with observations
at midlatitudes.

3.1 Sverdrup relationship

The Sverdrup relationship (Equation 8) connects the ver-
tical velocity wL to the potential temperature anomaly 𝜂L.
First of all, for a simple expression of the vertical veloc-
ity wL, let us assume that wL = w0(X ,Y )z(1 − z), which
satisfies the boundary conditions at z = 0 and z = 1. This
could be understood as a minimal expression of the ver-
tical structure of wL. Hence, 𝜕wL∕𝜕z = w0 − 2w0z and
𝜕2wL∕𝜕z2 = −2w0. Now, Equation 12 at z = 1∕4 is approx-
imated by

−2w0 −
1

2H
w0 = 1

2
𝛽L

𝜕

𝜕X
(
𝜂1

L + 𝜂0
L
)
. (16)
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814 MOON et al.

In the same way, at z = 3∕4, we have

−2w0 +
1

2H
w0 = 1

2
𝛽L

𝜕

𝜕X
(
𝜂2

L + 𝜂1
L
)
. (17)

Here, we approximate 𝜂L at z = 1∕4 (z = 3∕4) as an
average of 𝜂0

L and 𝜂1
L
(
𝜂1

L and 𝜂2
L
)
. Subtracting Equation 16

from Equation 17 gives

w0 = 1
4
𝛽LH 𝜕

𝜕X
(q1 + q2), (18)

where

q1 = 𝜕𝜂L

𝜕z
|z=1∕4 ≃ 2

(
𝜂1

L − 𝜂0
L
)
,

q2 = 𝜕𝜂L

𝜕z
|z=3∕4 ≃ 2

(
𝜂2

L − 𝜂1
L
)
. (19)

3.2 Linear heat equation

The Sverdrup relationship tells us that 𝜕wL∕𝜕z = 1
2

w0 at
z = 1∕4 and 𝜕wL∕𝜕z = − 1

2
w0 at z = 3∕4. Equation 11 is

approximated at both z = 1∕4 and z = 3∕4, yielding

𝜕

𝜕𝜏
q1 + U1

𝜕

𝜕X
q1 + p 𝜕

𝜕X
(q1 + q2) = K∇2

Hq∗
1, (20)

𝜕

𝜕𝜏
q2 + U2

𝜕

𝜕X
q2 − p 𝜕

𝜕X
(q1 + q2) = K∇2

Hq∗
2, (21)

where p = 1
8
𝛽LSH is a measure of static stability and q∗

1 and
q∗

2 satisfy

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)
q∗

1,2 =
q1,2

r
, (22)

where U ≡ 1
2
(U1 + U2) represents the mean barotropic

zonal wind velocity. Equation 22 is inserted into
Equations 20 and 21. Finally, we have

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)(
𝜕

𝜕𝜏
+ U1

𝜕

𝜕X

)
q1

+ p 𝜕

𝜕X

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)
(q1 + q2) =

K
r
∇2

Hq1, (23)

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)(
𝜕

𝜕𝜏
+ U2

𝜕

𝜕X

)
q2

− p 𝜕

𝜕X

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)
(q1 + q2) =

K
r
∇2

Hq2.

(24)

It should be emphasized that the eddy-memory effect
represented in Equation 22 changes the mathematical
structure of the main Equations 20 and 21. Without the
eddy-memory effect, Equations 20 and 21 are parabolic

partial differential equations, the solutions of which show
diffusion from an initial source with advection. The inclu-
sion of a finite-size eddy memory transforms the main
equations from parabolic to hyperbolic ones. This is crit-
ical to generate planetary-size eddies propagating against
the mean westerlies. Now, we can introduce the barotropic
mode q = 1

2
(q1 + q2) and the baroclinic mode Δq = 1

2
(q2 −

q1) and obtain

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X

)
q

+ 1
2
ΔU 𝜕

𝜕X

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)
Δq = K

r
∇2

Hq, (25)

1
2
(ΔU − 4p) 𝜕

𝜕X

(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)
q(

𝜕

𝜕𝜏
+ U 𝜕

𝜕X
+ 1

r

)(
𝜕

𝜕𝜏
+ U 𝜕

𝜕X

)
Δq = K

r
∇2

HΔq, (26)

where ΔU = U2 − U1.

4 NORMAL MODE ANALYSIS

Assume that the horizontal domain is a channel bounded
in the Y -direction with the boundary condition q1,2 = 0
at Y = 0 and Y = 1. Let {q,Δq} = {Q,ΔQ}e𝜎𝜏eikX sin(lY ),
where Q and ΔQ are the amplitudes of the barotropic
and baroclinic modes, respectively, k and l are X and Y
direction wave numbers, and 𝜎 is a growth rate of barotrop-
ic/baroclinic modes. This leads to

(
x2 − 1

4r2 + K
r
(k2 + l2)

)
Q + 1

2
ikxΔUΔQ = 0, (27)

1
2

ikx(ΔU − 4p)Q +
(

x2 − 1
4r2 + K

r
(k2 + l2)

)
ΔQ = 0,

(28)

where x = 𝜎 + ikU + 1∕2r. For nontrivial solutions,

(
x2 − 1

4r2 + K
r
(k2 + l2)

)2
= k2

(
pΔU − 1

4
ΔU2

)
x2. (29)

Here the sign of the term pΔU − 1
4
ΔU2 is quite impor-

tant to characterize the solutions. We have to consider two
cases, depending on the sign of this term.

4.1 Low wind shear case (0 ≤ 𝚫U ≤ 4p)

This range of the ΔU implies that pΔU − 1
4
ΔU2 > 0. Let

b2 ≡ pΔU − 1
4
ΔU2, which leads to

x2 − 1
4r2 + K

r
(k2 + l2) = ±1

2
bkx, (30)
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MOON et al. 815

where x = 𝜎 + ikU + 1∕2r. There are four solutions rep-
resenting dispersion relationships containing the growth
and phase of planetary waves:

𝜎1,2 = 1
4

bk − 1
2r

− ikU ±
√

1
4r2 + 1

16
b2k2 − K

r
(k2 + l2),

(31)

𝜎3,4 = −1
4

bk − 1
2r

− ikU ±
√

1
4r2 + 1

16
b2k2 − K

r
(k2 + l2),

(32)

where Re(𝜎) is the growth rate of waves and −Im(𝜎)∕k is
the x-direction phase speed Cx.

Furthermore, the sign of the term inside the square
root is important to determine the characteristics of waves.
When the sign is positive, the waves have a phase veloc-
ity the same as the mean wind U and the square-root term
contributes to the growth rate. On the other hand, when
the sign is negative, the square-root term contributes to
the phase velocity, thus the waves propagate westward or
eastward with respect to the mean wind.

When
K
r
(k2 + l2) < 1

4r2 + 1
16

b2k2,

the growth rates of the waves are

Re(𝜎1,2) =
1
4

bk − 1
2r

±
√

1
4r2 + 1

16
b2k2 − K

r
(k2 + l2),

(33)

Re(𝜎3,4) = −1
4

bk − 1
2r

±
√

1
4r2 + 1

16
b2k2 − K

r
(k2 + l2),

(34)

and the x-direction phase velocities are

C1,2,3,4
x = U. (35)

The waves represented by 𝜎1,2 grow in time due to
the contribution of 1

4
bk overcoming the decay controlled

by the eddy memory −1∕(2r). The square-root term con-
tributes to the growth rate positively (𝜎1) or negatively
(𝜎2). The waves described by 𝜎3,4 have a dominant negative
contribution from − 1

4
bk, implying that these waves decay

quickly.
However, when

K
r
(k2 + l2) > 1

4r2 + 1
16

b2k2,

the growth rates are

Re(𝜎1,2) =
1
4

bk − 1
2r
, (36)

Re(𝜎3,4) = −1
4

bk − 1
2r
. (37)

The magnitude of the waves 𝜎1,2 increases when k is
larger than 2∕(br), but the waves 𝜎3,4 decay in time for all
k. The phase velocities are

C1,3
x = U − 1

k

√
K
r
(k2 + l2) − 1

4r2 − 1
16

b2k2, (38)

C2,4
x = U + 1

k

√
K
r
(k2 + l2) − 1

4r2 − 1
16

b2k2. (39)

Here, C1,3
x (C2,4

x ) represent waves propagating westward
(eastward) with respect to the mean wind. In particu-
lar, with a proper choice of r and K, C1,3

x can represent
stationary waves with certain k values, in which case 𝜎1
implies a perturbation growing in time while being almost
stationary.

Figure 2 shows the growth rates (top panel) and the
phase speeds (bottom panel) dependent on the wavenum-
ber k when the memory r is equal to (a) 0.25 and (b) 2.
Except for the memory r, other parameters are the same
for the two cases. First of all, when the memory is short
(r = 0.25), waves with lower k propagate with the mean
wind (U = 1.0), but no waves grow in time. As k increases
and becomes larger than ∼ 3, the waves 𝜎1,2 become unsta-
ble and grow in time. While the wave 𝜎2 moves eastward
faster than the mean wind, the wave 𝜎1 is almost station-
ary or moving westward very slowly. The other waves 𝜎3,4
decay more quickly with higher wavenumbers. On the
other hand, when the memory is long (r = 2.0) (Figure 2b),
even for long waves (small wavenumber) there are waves
growing in time (𝜎1,2). One of them, 𝜎1, moves eastward
but more slowly than the mean wind, and the other, 𝜎2,
moves faster than the mean wind. As the wavenumber
increases, the waves 𝜎1,2 grow even faster, but the phase
speed becomes equal to the mean wind.

All variables are nondimensionalized. The length-scale
is the external Rossby deformation radius LD, which is
around 3,000 km in the midlatitudes, and the horizontal
velocity scale U is around 10 m⋅s−1. Thus, the unit time is
set up as the advective time-scale LD∕U, which is around
3 days. Hence, the short memory r = 0.25 implies around
0.75 days and the long memory r = 2 around 6 days. The
eddy memory r may vary case by case, even though the
average value is close to 4 days in the Southern Hemisphere
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F I G U R E 2 The growth rate of four waves 𝜎1,2,3,4 (top panel) and the x-direction phase velocities C1,2,3,4
x (bottom panel) when (a)

r = 0.25 and (b) r = 2. p = 0.8, ΔU = 1.5, U = 1.0, l = 1, and K = 0.5 are commonly applied to both cases [Colour figure can be viewed at
wileyonlinelibrary.com]

(Moon et al., 2021). Here, we investigate the behavior of
normal modes with various values of r around the aver-
age value in the Southern Hemisphere, where ΔU = 1.5
implies dU∕dz = 3 m⋅s−1 ⋅km−1 when we use a verti-
cal length-scale H = 5 km. Phillips (1954) uses the quasi-
geostrophic equation in a two-level model to investigate
the barolinic instability in the midlatitudes. According
to his result, when dU∕dz = 3 m⋅s−1 ⋅km−1, the fastest
growing wave reaches twice its original magnitude in 1.5
days, which is equivalent to Re(𝜎) ≃ 1.4. The two cases in
Figure 2 show similar or smaller growth rate compared
with that of synoptic eddies when k is smaller than 4.

4.2 High wind shear case (𝚫U > 4p)

If the vertical shear is above the threshold 4p, the right side
of Equation 29 becomes negative. Let d2 = −pΔU + 1

4
ΔU2

and then we obtain

x2 − 1
4r2 + K

r
(k2 + l2) = ±1

2
idkx. (40)

The following dispersion relations are

𝜎1,2 = − 1
2r

− ikU + i 1
4

dk ±
√

1
4r2 − 1

16
d2k2 − K

r
(k2 + l2),

(41)

𝜎3,4 = − 1
2r

− ikU − i 1
4

dk ±
√

1
4r2 − 1

16
d2k2 − K

r
(k2 + l2).

(42)

The determination of growth rate and phase speed is
also dependent upon the sign of the term inside the square
root. When

K
r
(k2 + l2) < 1

4r2 − 1
16

d2k2,

the growth rates are

Re𝜎1,3 = − 1
2r

+
√

1
4r2 − 1

16
d2k2 − K

r
(k2 + l2), (43)

Re𝜎2,4 = − 1
2r

−
√

1
4r2 − 1

16
d2k2 − K

r
(k2 + l2), (44)

and the following phase velocities are

C1,2
x = U − 1

4
d, (45)

C3,4
x = U + 1

4
d. (46)

According to the phase velocities, there are waves
propagating westward (C1,2

x ) and eastward (C3,4
x ) with
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F I G U R E 3 Same as Figure 2, except for p = 0.25, thus 4p − ΔU < 0. We also consider (a) a short memory case (r = 0.25) and (b) a long
memory case (r = 2) [Colour figure can be viewed at wileyonlinelibrary.com]

respect to the mean wind (U). The growth rates show
that the four waves decay in time, mainly due to the
eddy-memory effect represented by −1∕(2r).

Similarly, when

K
r
(

k2 + l2) > 1
4r2 − 1

16
d2k2,

all four waves have the same growth rate −1∕(2r), repre-
senting the effect of finite eddy memory. The following
phase velocities are

C1,2
x = U − 1

4
d ± 1

k

√
K
r
(k2 + l2) + 1

16
d2k2 − 1

4r2 , (47)

C3,4
x = U + 1

4
d ± 1

k

√
K
r
(k2 + l2) + 1

16
d2k2 − 1

4r2 , (48)

representing various waves propagating westward or east-
ward with respect to the mean wind.

Figure 3 shows the growth rates and phase velocities
of four waves when the memory is (a) short (r = 0.25) and
(b) long (r = 2). Short memory implies faster decay for all
waves. In terms of propagation, two kinds of waves exist.
One type propagates eastwards faster than the mean wind
(C2,4

x ) and the other is almost stationary or moves west-
ward slowly (C1,3

x ). Long memory implies slow decay. All

waves decay with the same rate controlled by the finite
eddy-memory effect. There are also two kinds of waves in
terms of propagation, similar to the short memory case.
Two waves (C2,4

x ) propagate eastwards faster than the mean
wind and the other two (C1,3

x ) propagate eastward more
slowly than the mean wind.

5 DISCUSSION

5.1 Role of the eddy memory

Above, we considered the case in which the poleward
heat flux of synoptic eddies is the result of the finite
eddy memory. To investigate the role of the eddy memory
for westward-propagating unstable waves, let us consider
the case with no eddy memory. No memory follows from
the limit r → 0 in Equation 22, which leads to q∗

1,2 =
q1,2. This means the recovery of the Fickian approxi-
mation. The two-layer equations (Equations 20 and 21)
become

𝜕

𝜕𝜏
q1 + U1

𝜕

𝜕X
q1 + p 𝜕

𝜕X
(q1 + q2) = K∇2

Hq1, (49)

𝜕

𝜕𝜏
q2 + U2

𝜕

𝜕X
q2 − p 𝜕

𝜕X
(q1 + q2) = K∇2

Hq2. (50)
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A normal mode analysis setting q1,2 =
q̂1,2e𝜎𝜏eikX sin(lY ) leads to

(𝜎 + ikU1 + ikp + K(k2 + l2))q̂1 + ikpq̂2 = 0, (51)

− ikpq̂1 + (𝜎 + ikU2 − ikp + K(k2 + l2))q̂2 = 0, (52)

where the characteristic equation is

(𝜎 + ikU + K(k2 + l2))2 = k2
(
−1

4
ΔU2 + pΔU

)
. (53)

For 0 < ΔU < 4p, we find

𝜎 = −K(k2 + l2) ± bk − ikU, (54)

where b2 = − 1
4
ΔU2 + pΔU. This dispersion relationship

represents waves with phase speeds U and growth rates
−K(k2 + l2) ± bk. If bk > K(k2 + l2), the waves grow in
time, but if the diffusion is larger, the waves decay expo-
nentially in time. The phase speed is the same as the mean
wind, which implies that the waves are advected by the
mean wind. When ΔU > 4p,

𝜎 = −K(k2 + l2) + ik(U ± d), (55)

where d2 = − 1
4
ΔU2 + pΔU. Here the two waves decay in

time. Without the eddy memory, it is impossible to find
unstable or almost neutral waves propagating against the
mean wind. The eddy-memory effect is hence crucial to
generate planetary-scale unstable waves propagating west-
wards or eastwards with respect to the zonal mean wind.

This situation can be understood more easily from a
simple flux equation:

𝜕C
𝜕t

= −∇ ⋅ u′C′, (56)

where C is the mean of a tracer C, C′ is the deviation from
the mean, and u is the velocity of the flow. The Fickian
approximation implies that u′C′ ≃ −K∇C with diffusivity
K. This leads to a parabolic partial differential equation,

𝜕C
𝜕t

= K∇2C, (57)

where the solution C diffuses away from an initial source.
If a linear advection U∇C is included in the above
parabolic equation, the initial source follows the mean
wind U and diffuses away. This represents the case without
eddy memory.

The finite memory effect is represented by

𝜕

𝜕t
u′C′ = −K∇C − u′C′

r
, (58)

where r is the eddy-memory strength. Combining it with
the main Equation 56, we have

𝜕2C
𝜕t2 + 1

r
𝜕C
𝜕t

= K∇2C. (59)

This is a damped wave equation describing the propa-
gation of fluctuations with damping. The inclusion of the
memory changes the mathematical structure of the main
equation from parabolic to hyperbolic. Propagation against
a mean wind is possible, which is essential to observe
growing stationary planetary-scale waves overcoming the
mean westerlies.

5.2 Growth mechanism

5.2.1 Vertical shear and the Sverdrup
relationship

The time growth of a perturbation should be explained
by the combination of the baroclinic mean field and the
Sverdrup relationship. We can investigate the dynamic
role of the two processes systematically in the two-layer
model.

Consider a pure shear flow without any other physical
process. Here, U1 = − 1

2
ΔU and U2 = 1

2
ΔU. The governing

equations in the two-layer model are then

𝜕

𝜕𝜏
q1 −

1
2
ΔU 𝜕

𝜕X
q1 = 0,

𝜕

𝜕𝜏
q2 +

1
2
ΔU 𝜕

𝜕X
q2 = 0, (60)

which is equivalent to

𝜕

𝜕𝜏
q − 1

4
ΔU 𝜕

𝜕X
Δq = 0,

𝜕

𝜕𝜏
Δq − ΔU 𝜕

𝜕X
q = 0, (61)

where q = 1
2
(q1 + q2) and Δq = q1 − q2. This leads to

𝜕2

𝜕𝜏2 q − 1
4
ΔU2 𝜕2

𝜕X2 q = 0, (62)

The final equation represents a wave equation with
wave solutions propagating with the velocity ± 1

2
ΔU.

The equations with the contribution of the Sverdrup
relationship p 𝜕

𝜕X
(q1 + q2) are

𝜕

𝜕𝜏
q − 1

4
ΔU 𝜕

𝜕X
Δq = 0,

𝜕

𝜕𝜏
Δq − (ΔU − 4p) 𝜕

𝜕X
q = 0, (63)
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which leads to

𝜕2

𝜕𝜏2 q +
(
−1

4
ΔU2 + pΔU

)
𝜕2

𝜕X2 q = 0. (64)

Compared with Equation 62, the term pΔU slows
down the propagation of planetary waves. The interaction
between the two layers hinders the propagation of pertur-
bations forced by the vertical shear. However, only when
− 1

4
ΔU2 + pΔU < 0 do the wave characteristics remain as

the main feature; when − 1
4
ΔU2 + pΔU > 0, that is, ΔU <

4p, Equation 64 changes its dynamic characteristics from
the propagation of waves to the growth of perturbations.
The Sverdrup relationship, which describes the interac-
tions between the vertical layers, provides a way to use the
available potential energy stored in the vertical shear of
the mean wind for the growth of a perturbation when the
shear is below the threshold.

Figure 4 describes the mechanisms of the behavior
of wave perturbations using a schematic. The evolution
equation,

𝜕q
𝜕𝜏

= −U
𝜕q
𝜕X

− S𝜕wL

𝜕z
,

tells us that q is temporarily updated by the horizon-
tal advection −U(𝜕q∕𝜕X) and the contribution from the
Sverdrup relation −S(𝜕wL∕𝜕z). The horizontal advection
has opposite effects on the two levels, due to the vertical
shear, and the Sverdrup relation provides a dynamical link
between the two levels through the vertical velocity wL.
The temporal change of q is determined by the competi-
tion between the two contributions. Hence, determining
which process is more dominant is crucial to determine
the overall growth of a given perturbation. We will describe
below how an initial disturbance q2 at the upper level
evolves due to the Sverdrup relation and horizontal advec-
tion. It starts from an initial disturbance given as q2 ≠ 0
and q1 = 0. Hence, the barotropic mode q ≡ 1

2
(q1 + q2) is

equal to 1
2

q2. The barotropic mode can be interpreted as
the estimation of q at the middle level z = 1

2
. Dynamically,

q is understood as part of the planetary potential vortic-
ity, which is 𝜕𝜂∕𝜕z − 𝜂∕(SH). Thus q = 𝜕𝜂∕𝜕z contributes
to the planetary-scale vorticity at each layer (Figure 4a).
Positive (negative) perturbation of q generates cyclonic
(anticyclonic) motion in the middle (z = 1∕2) of the verti-
cal domain, which induces a meridional velocity v, which

(a)

(b) (c)

F I G U R E 4 A description of the instability generated by the combination of vertical shear and the Sverdrup relation in the
planetary-scale atmosphere. Here, red (blue) circles represent positive (negative) q, which can be understood as the planetary-scale vorticity.
Thus, a red (blue) circle describes cyclonic (anticyclonic) motion. (a) First, there exists an initial perturbation, q2 ≠ 0 and q1 = 0. Hence, the
barotropic mode 1

2
(q1 + q2) has a nonzero value ( 1

2
q2). The barotropic mode can be interpreted as the q at z = 1

2
. (b) Between the positive

(negative) q and the negative (positive) q, positive (negative) meridional velocity v is induced. Due to the Sverdrup relation, the positive
(negative) v leads to a negative (positive) w at z = 1∕2. Considering that 𝜕q∕𝜕𝜏 ∝ −𝜕w∕𝜕z and w = 0 at z = 0, 1, the negative (positive) w at
z = 1∕2 induces negative (positive) q1 and positive (negative) q2. On the other hand, the effect of the vertical shear, which can be seen as the
horizontal advection by 1

2
ΔU at the upper level (z = 3∕4) and by − 1

2
ΔU at the lower level (z = 1∕4), induces positive q1 and negative q2 at the

same horizontal position with the negative w from the Sverdrup relation. Thus the two processes, the Sverdrup relation and the vertical shear,
are opposite each other. Here, the comparison between ΔU and 4p determines which process is more dominant. (c) When ΔU < 4p
(ΔU > 4p), the Sverdrup relation (the shear effect) is larger. With advection by the vertical shear, the perturbation field induced by the
Sverdrup relation (the shear effect) amplifies exponentially (propagates as a wave) [Colour figure can be viewed at wileyonlinelibrary.com]
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820 MOON et al.

is positive (negative) between the positive (negative) q and
negative (positive) q. The Sverdrup relation at z = 1∕2 is
simplified as −w∕H = 𝛽Lv, because 𝜕w∕𝜕z = 0 at z = 1∕2.
Thus, positive (negative) v relates to negative (positive) w.

The negative w at z = 1∕2 implies 𝜕w∕𝜕z > 0 at z = 3∕4
and 𝜕w∕𝜕z < 0 at z = 1∕4, considering the two boundary
conditions w = 0 at z = 0, 1. Because 𝜕q∕𝜕𝜏 ∝ −𝜕w∕𝜕z, the
negative w at z = 1∕2 induces a baroclinic mode showing
negative vorticity in the upper layer and positive in the
lower layer. Similarly, the positive w at z = 1∕2 leads to
a baroclinic mode that has positive vorticity in the upper
layer and negative vorticity in the lower layer. On the other
hand, there is another effect to induce baroclinic modes
by the vertical shear of the mean wind. Here, the upper
layer velocity is 1

2
ΔU and the lower layer one − 1

2
ΔU. Fol-

lowing the baroclinic wind, the initial disturbance induces
a baroclinic mode that is opposite to the one from the
Sverdrup relation (Figure 4b). Now, we have to ask which
process is larger, which determines the condition for insta-
bility. WhenΔU < 4p, the overall induced baroclinic mode
is similar to the one from the Sverdrup relation. The
induced baroclinic mode is again advected by the baro-
clinic wind, where positive (negative) anomalies are added
to the existing positive (negative) ones. This describes the
amplification of the initial barotropic disturbance. On the
other hand, when ΔU > 4p, positive (negative) anomalies
move toward negative (positive) ones owing to the baro-
clinic wind and push them away, which generates wave
propagation (Figure 4c).

5.2.2 Activity of synoptic eddies

The diffusivity K is introduced to parameterize the activ-
ity of synoptic eddies on the planetary scale. For growing
waves (𝜎1,2), the larger diffusivity induces wave propa-
gation that differs from the mean wind (U). In partic-
ular, when the memory is not too large (r = 0.5) and
the diffusivity is large, the growing wave described by
𝜎1 becomes almost stationary or moves slowly westward.
We can see that the activity of synoptic eddies is crucial
to generate counter-propagating waves against the mean
wind. Previous research (Colucci, 1985; Nakamura and
Wallace, 1993; Nakamura et al., 1997) suggests that the
effect of synoptic-scale baroclinic eddies is crucial for the
development of planetary-scale blocking patterns. Recent
research describing atmospheric blocking as a traffic jam
also emphasizes the role of cyclogenesis in increasing
local wave activity in the large-scale atmosphere (Naka-
mura and Huang, 2018). The complex behavior of synop-
tic eddies is parameterized by the diffusivity K and the
memory time-scale r. A growing mode opposing the zonal
mean wind is required to have large K, which is consistent

with previous observations and numerical simulations
emphasizing the role of synoptic eddies on the develop-
ment of planetary-scale waves.

The influence of large K also induces unstable
eastward-propagating waves that are faster than the
mean wind. Along with stationary unstable waves, there
are travelling waves when a background field with an
optimal wind shear is unstable. The existence of travel-
ling planetary-scale waves during blocking has been sug-
gested in several previous studies based on reanalysis data
(Hansen and Chen, 1982; Lejenas and Doos, 1987; Lejenäs
and Madden, 1992). The current research suggests an
elegant way to explain the generation of planetary-scale
waves propagating eastward with respect to the mean
wind.

5.3 Comparison with observations
and numerical simulations

There are numerous articles suggesting that the origin of
the low-frequency variability of the large-scale atmosphere
is due to nonlinear interactions between planetary-scale
waves and synoptic-scale ones (Gall et al., 1979; MacVean,
1985; Robinson, 1991). The linearization of the primitive
equations leads to the Laplace tidal equation, the main
time-scale of which is half a day, determined by the Earth’s
rotation rate (Lindzen, 1967), which is not adequate to
explain the major time-scales of planetary-scale waves.
Gall et al. (1979) suggests that planetary-scale waves grow
due to the interaction of synoptic-scale waves with the
local mean flow instead of wave–wave interactions. Using
a hemispheric spectral model with no external forcing,
long wave growth and low-frequency variability is gen-
erated (MacVean, 1985; Robinson, 1991). Furthermore, a
spectral energetic analysis of atmospheric blocking shows
that the Atlantic block is caused by the nonlinear inter-
action of baroclinic cyclone-scale waves with ultralong
waves (Hansen and Chen, 1982). Stationary and travelling
planetary-scale waves are observed with larger magnitude
during Northern Hemisphere blocking (Lejenas and Doos,
1987).

Our article includes the nonlinear contribution of
synoptic-scale eddies through eddy-memory effects in
the horizontal heat flux acting as a consequence of
wave–mean flow interaction. The time accumulation of
the baroclinicity in the delay integral makes it possible to
generate propagating waves in the heat equation by trans-
forming the parabolic structure to a hyperbolic one. The
resulting wave equation contains planetary-scale waves
propagating westward and eastward with respect to the
mean westerly wind. With the increase of diffusivity K, the
fastest growing mode could be almost stationary or move
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MOON et al. 821

westward slowly, which could block the mean wind even-
tually. At the same time, eastward-propagating waves can
grow in time, possibly leading to planetary-scale wiggles.

5.4 Weakening baroclinicity
and atmospheric blocking

The most important factor of midlatitude weather is the
meridional temperature gradient, because it controls the
structure of midlatitude jets, including their speed and
vertical shear. Thus, the way global warming changes mid-
latitude weather is strongly associated with the relation-
ship between global warming and the meridional temper-
ature gradient. Recent research argues that the increase
of extreme weather is closely related to a decrease of the
meridional temperature gradient, caused mainly by Arc-
tic amplification under global warming (see Francis and
Vavrus, 2012, which, in particular, focuses on levels below
500 mb). In contrast, the meridional temperature gradi-
ent in the upper atmosphere turns out to increase under
global warming, which can be explained by upper tropo-
spheric warming in tropical areas (Shaw et al., 2016; Lee
et al., 2019). At the same time, it is hard to make a concrete
conclusion on the impact of global warming in the mid-
latitudes, due to the nonstationarity of the climate system
and the non-negligible magnitude of background noise
(Barnes and Screen, 2015; Blackport and Screen, 2020).
Based on a finite length of observation data, it might be
hard to obtain a consensus conclusion of how global warm-
ing influences midlatitude jets without a solid dynamical
theory (Wallace et al., 2014).

The characteristics of synoptic eddies in the midlati-
tudes are summarized by poleward heat flux and momen-
tum flux (Simmons and Hoskins, 1978). Interestingly,
poleward heat flux generated by synoptic eddies is maxi-
mized at lower levels, but momentum flux at upper lev-
els (Edmon et al., 1980). Furthermore, the two turbulent
fluxes are dynamically separated, thus their correlation is
weak (Thompson and Woodworth, 2014). In the South-
ern Hemisphere, the SAM (Southern Annular Mode),
which is strongly associated with upper-level momen-
tum flux, and the BAM, related to poleward heat flux,
show different variability (Thompson and Barnes, 2014).
The planetary geostrophic equation in the current arti-
cle focuses mainly on the role of the poleward heat flux
induced by synoptic eddies as a thermal forcing, and hence
the two-layer model describes fluid dynamics in lower
levels. Here, it is reasonable to consider a weakening
of the meridional temperature gradient near the surface
where the poleward heat flux is maximized. The main
question is how the lower-level weakening of meridional
temperature gradient in the midlatitudes can influence

synoptic eddies, planetary geostrophic motion, and their
interactions.

However, the growth of planetary-scale waves can-
not be explained by traditional baroclinic instability
theory, which requires the meridional temperature gra-
dients to be larger than a threshold. The observation
that the intensification of a planetary-scale fluctuation is
related to a decrease of the meridional temperature gra-
dient is against our understanding of classical synoptic
baroclinic instability. It suggests that a different mech-
anism is required to rationalize the recent increase of
planetary-scale fluctuations causing extreme weather in
the midlatitudes.

The instability found here in planetary-scale motions
is a potential candidate to explain the observations.
Planetary-scale instability needs the vertical shear of the
mean wind to be no larger than a threshold. Without ver-
tical shear, there is no instability, but a strong shear also
prevents instability. An optimal shear exists for the growth
of planetary-scale waves. According to our normal-mode
analysis, the threshold is represented by the combina-
tion of the vertical static stability and the planetary 𝛽

effect. The threshold is proportional to p = 1
8
𝛽LSH, where

larger p provides a better condition for instability. The
factor (SH) is proportional to the vertical static stability.
Recent research shows that global warming leads to an
increase of bulk measures of dry static stability (Frierson,
2006), even though it varies regionally (Simmonds and
Li, 2021). Therefore, under global warming, the merid-
ional temperature gradient in high latitudes decreases and
the dry static stability increases. The threshold p increases
and the baroclinicity ΔU decreases under global warm-
ing. Thus, global warming provides better conditions for
planetary-scale instability to occur (ΔU < 4p). However,
global warming induces poleward shifts of tropospheric
zonal jets (Lorenz and DeWeaver, 2007; Lu et al., 2008),
which contributes to a decrease of the 𝛽 effect in the
center of jets.

The hypothesis that the decrease of the meridional
temperature gradient Ty leads to more frequent occur-
rence of atmospheric blocking was tested in an idealized
GCM by Hassanzadeh et al. (2014). In particular, they
focused on the relationship between reducing Ty and the
frequency of blocking. Despite the decrease of the zonal
mean wind, the model results show a decline of atmo-
spheric blocking occurrence. According to the dispersion
relation (Equation 31), planetary-scale waves propagate
westward with respect to the mean wind when

K
r
(k2 + l2) > 1

4
r2 + 1

16
b2k2.

Large K implies that strong synoptic wave activity is
required. The activity of synoptic waves in the midlatitudes
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is strongly related to the traditional baroclinic instabil-
ity, which requires strong baroclinicity measured by the
meridional temperature gradient Ty. Barry et al. (2002)
suggest a scaling of the poleward heat flux v′T′ pro-
portional to T8∕5

y , which implies that K ∝ T3∕5
y under

our parameterization of the meridional heat flux. Thus,
stationary or westward-propagating planetary-scale waves
need a certain degree of meridional temperature gradient.
Two opposing effects coexist. The unstable background for
planetary-scale waves requires a lower meridional tem-
perature gradient, which hinders provision of enough
synoptic wave activity to the planetary-scale atmosphere.
Therefore, the relative magnitude of both effects will deter-
mine whether Arctic amplification leads to more frequent
occurrence of atmospheric blocking.

5.5 Limitations

The normal-mode analysis based on the planetary-scale
heat equation has its limitations. The memory kernel cho-
sen in this research is a finite memory one, 𝜅(t − t′) =
exp

[
−(t − t′)∕r

]
. It is an approximation of the nonlinear

interactions between synoptic waves and planetary-scale
motions. The choice of the finite-time kernel was tested
in numerical simulations of ocean eddies to explain
the quasi-oscillatory behavior of the ocean mean field
(Manucharyan et al., 2017) and the large-scale atmo-
spheric heat flux known as BAM can be explained by a
stochastic oscillator derived by the finite eddy memory
(Moon et al., 2021). It is known that the midlatitude jet
is self-maintained by eddy–mean interactions (Robinson,
2000; 2006). The generation of synoptic eddies is achieved
by destabilizing the jets, but saturated eddies give their
energy back to the jets to recover the original status of
the jets. The eddy life cycle in the midlatitudes has a
finite time-scale. Thus, the eddies inherited by the time
evolution of jets should have a finite time-scale. How-
ever, the self-maintenance of the jets is based on a zon-
ally averaged field. We apply the same kernel in every
local area. The memory kernel is an approximation of the
nonlinear behavior of synoptic eddies, which could vary,
depending on the area and the temporal change of the
mean state. We might need a more complicated integral
kernel for a more detailed description of the nonlinear
interactions between synoptic eddies and planetary-scale
motions.

When the baroclinicity ΔU is smaller than 4p,
planetary-scale instability can induce the growth of waves.
The growth rate increases with the zonal wavenumber
k (De Verdiere, 1986). There is no shortwave cutoff in
terms of the growth rate, which might be unrealistic.
Even though we can find the conditions for instability,

we cannot identify the dominant spatial pattern emerging
as a consequence of the instability. It is expected that a
more complicated and realistic integral kernel could indi-
cate more realistic growth rates and aid the identification
of dominant spatial scales.

In this article, we provide conditions for
planetary-scale instability under zonally symmetric con-
ditions. In the Northern Hemisphere, the large-scale
atmospheric dynamics is influenced by zonally asymmet-
ric thermal and orographic forcing (Brayshaw et al., 2011;
Garfinkel et al., 2020) and atmospheric blocking shows
regional characteristics. Specific areas are preferred for
the development of atmospheric blocking (Barriopedro
et al., 2006). Our model is not able to capture this dynam-
ics, hence it is hard to apply the current theoretical results
to situations in the Northern Hemisphere. We need to
introduce local instability theory with zonally asymmet-
ric thermal forcing to be closer to a realistic situation in
the Northern Hemisphere (Pierrehumbert, 1984). Fur-
thermore, atmospheric blocking and related phenomena
contain various scales and their nonlinear interactions
lead to coherent structures (Haines and Marshall, 1987).
In particular, synoptic-scale waves can induce resonance
(Petoukhov et al., 2013) and evolve due to nonlinear
dynamics (Luo et al., 2019; Luo and Zhang, 2020). The
current model does not contain all of these features. How
planetary-scale backgrounds are associated with the non-
linear development of synoptic waves is a topic for future
research.

We rely on the simplest treatment of the vertical
structure of planetary-scale motions necessary for sim-
ple analytical expressions. In reality, the simple two-layer
model is not enough to describe the vertical structure and
movement of planetary-scale waves. According to Char-
ney and Drazin (1990), only long waves generated in the
lower troposphere can propagate into the stratosphere.
The current research is not able to describe the verti-
cal movement of planetary-scale waves. In the future,
instead of layered models, a vertically continuous model
should be considered to investigate the vertical propa-
gation of planetary waves. Here, the planetary waves do
not originate from a linear response to boundary thermal
forcing. They are generated from nonlinear interactions
between synoptic waves and planetary-scale motions. A
continuous model in the vertical domain could provide
insight into how the nonlinear activity of synoptic eddies
can induce planetary-scale waves propagating towards the
stratosphere (Scinocca and Haynes, 1998).

Finally, the current theoretical research would bene-
fit from a determination of the eddy-memory scale r and
the turbulent diffusivity K from observations or numerical
simulations. The dynamic features of synoptic eddies are
parameterized as two coefficients r and K. Considering the

 1477870x, 2022, 743, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4232 by U
trecht U

niversity L
ibrary, W

iley O
nline L

ibrary on [15/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MOON et al. 823

complicated and turbulent nature of synoptic eddies, r and
K can depend on numerous factors. At the same time, the
analysis is performed for specific values of r and K. Further
research should consider a parameter sweep along, with
a nonlinear analysis of the reduced set of equations, and
how to deduce r and K and trace the spatial and temporal
variability of the two coefficients using observations and
numerical simulations.

6 CONCLUSION

Planetary-scale fluctuations in the large-scale atmosphere
are quite crucial for many important phenomena, includ-
ing atmospheric blocking and eastward-propagating
planetary-scale waves. Previous research suggests that
these phenomena are the result of interactions between
synoptic and planetary-scale waves.

Here we consider a parameterization of the
synoptic-scale heat flux through the planetary-scale baro-
clinicity based on the eddy-memory effect. Instead of an
instantaneous relationship, the synoptic-scale poleward
heat flux is assumed to be the result of past accumulations
of the planetary-scale baroclinicity. The planetary-scale
motions are approximated by a forced heat equation with
classical dynamic balances, which means that there is
only one time derivative in the governing equations. Thus,
the linear dynamics cannot induce wave propagation. A
perturbation is only advected by the mean velocity. The
introduction of a finite-time kernel for the eddy-memory
effect transforms the heat equation into a damped wave
equation, which admits propagating waves.

The introduction of a vertical shear proportional to
the meridional temperature gradient allows the interac-
tion of vertical layers and then develops conditions for
planetary-scale instability. In a two-layer model, the sim-
plest representation of the sheared flow, the condition
for instability is represented by a threshold of vertical
shear, which is determined by the combination of the
planetary beta effect and static stability. Interestingly, a
smaller shear invokes two unstable waves, one of which
is almost stationary and the other eastward-propagating.
In particular, the growth of the stationary wave may be
relevant to the onset of atmospheric blocking. Even in
a highly simplified setting, several observations support
this result. The current global warming, causing Arctic
amplification and an increase in dry static stability, pro-
vides more preferable conditions for the instability, which
is consistent with recent planetary-scale fluctuations caus-
ing extreme weather in many areas. However, we have
to be cautious, as the overall planetary-wave changes due
to climate change will be affected by other processes
as well.
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