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Summary

Many environmental conditions fluctuate and organisms need to respond effectively. This is

especially true for temperature cues that can change in minutes to seasons and often follow a

diurnal rhythm. Plants cannotmigrate andmost cannot regulate their temperature. Therefore, a

broadarrayof responseshaveevolved todealwith temperature cues fromfreezing toheat stress.

A particular response tomildly elevated temperatures is called thermomorphogenesis, a suite of

morphological adaptations that includes thermonasty, formation of thin leaves and elongation

growth of petioles and hypocotyl. Thermomorphogenesis allows for optimal performance in

suboptimal temperature conditions by enhancing the cooling capacity.When temperatures rise

further, heat stress tolerance mechanisms can be induced that enable the plant to survive the

stressful temperature, which typically comprises cellular protection mechanisms and memory

thereof. Inductionof thermomorphogenesis, heat stress tolerance and stressmemorydependon

gene expression regulation, governed by diverse epigenetic processes. In this Tansley reviewwe

update on the current knowledge of epigenetic regulation of heat stress tolerance and elevated

temperature signalling and response,with a focus on thermomorphogenesis regulation andheat

stressmemory. Inparticularwehighlight theemerging roleofH3K4methylationmarks indiverse

temperature signalling pathways.

I. Introduction

Plants are sensitive to environmental perturbations and adjust to
changing conditions continuously. This occurs especially for
temperature cues that can change rapidly over the day and fluctuate
in diurnal and seasonal rhythms (Chinnusamy et al., 2007;
Penfield, 2008; Legris et al., 2016a; Quint et al., 2016; Casal &

Balasubramanian, 2019; Praat et al., 2021). At the organism level,
plant responses to temperature can be roughly separated into
tolerance responses (ensure survival) and acclimation responses,
associated with growth and physiological development, that
facilitate optimal performance under suboptimal conditions. In
general, tolerance responses are observed when plants are exposed
to extreme temperatures such as heat stress (HS) and freezing stress.
Acclimation responses are typically displayed upon exposure to
milder temperature changes, such as chilling and high ambient*These authors contributed equally to this work.
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temperatures (Thomashow, 1999; Sung et al., 2003; Wahid et al.,
2007; Penfield, 2008; van Zanten et al., 2014a; Hayes et al., 2021;
Praat et al., 2021). Chilling stress for instance typically leads to
reduced and compact growth, stimulating insulation (Hasdai et al.,
2006). Upon exposure to subzero temperatures, cryoprotective
mechanisms such as accumulation of ice-binding proteins and
plasmamembrane thickening is induced to tolerate cellular damage
resulting from ice crystals (Bredow &Walker, 2017). Conversely,
HS can result in irreversible damage through protein denaturation
and accumulation of reactive oxygen species (ROS), that can cause
malfunctioning of organelles and the photosynthesis apparatus
(Kotak et al., 2007; Wahid et al., 2007; Liu et al., 2015). Typical
symptoms of HS include growth inhibition, leaf senescence and
abscission, sterility, and impaired seed vigour and germination
(Kotak et al., 2007). In general, two distinct tolerance mechanisms
are discerned. The first one concerns the intrinsic capacity to
withstand HS and is usually referred to as basal thermotolerance.
Conversely, pre-exposure to mild HS can induce tolerance to a
strong(er) HS event that would otherwise be lethal, in a process
called acquired thermotolerance or HS priming. The latter implies
memory of the previous HS episode (Yeh et al., 2012; B€aurle,
2016).

The definition of mildly elevated temperature and HS depends
on the natural habitat of the species under consideration (Yeh et al.,
2012). For Arabidopsis thaliana, mildly elevated temperature is
loosely defined as a surpass of about 5–7°C (c. 27–29°C) above the
standard growth temperature used in laboratories world-wide (20–
22°C), a temperature above c. 30°C is referred to asHS and above c.
36°C as severe HS (Wahid et al., 2007). Mildly elevated temper-
atures in general trigger acceleration of development, early
flowering, and alter immunity (Hua, 2013; Verhage et al., 2014;
Capovilla et al., 2015; Gangappa et al., 2017). In diverse species
such as tomato and Arabidopsis, a suite of morphological
adaptations, collectively termed thermomorphogenesis, are
induced to withstand suboptimal temperatures (Quint et al., 2016;
Casal & Balasubramanian, 2019). Typical thermomorphogenic
responses are hypocotyl elongation, upward leaf movement
(thermonasty), petiole elongation, reduced stomatal density and
formation of smaller and thinner leaves (Koini et al., 2009;
Crawford et al., 2012; van Zanten et al., 2014a; Iba~nez et al., 2017;
Casal&Q€uesta, 2018). The open rosette structure that results from
thermomorphogenesis contributes to the cooling capacity through
transpiration and allows avoidance of solar heat flux (Crawford
et al., 2012; Bridge et al., 2013; Park et al., 2019).

In recent years, great progress has been made in our under-
standing of the molecular factors involved in thermosensing and
signalling. The bHLH transcription factor PHYTOCHROME
INTERACTING FACTOR 4 (PIF4) is considered a core
thermomorphogenesis-signalling hub on which diverse tempera-
ture signalling pathways converge (Koini et al., 2009; Sun et al.,
2012; Quint et al., 2016; Gangappa et al., 2017; Casal &
Balasubramanian, 2019). However, PIF4-independent signalling
pathways are now emerging (Vu et al., 2021). Among many other
responses, PIF4, and PIF7 alike (Chung et al., 2020; Fiorucci et al.,
2020) directly stimulate auxin biosynthesis by binding and
activating promoters of rate-limiting auxin biosynthesis genes

(Franklin et al., 2011; Sun et al., 2012) that trigger thermomor-
phogenesis in a brassinosteroid-dependent manner (Martins et al.,
2017; Iba~nez et al., 2018).

Warm temperature is perceived through the photoreceptor
phytochrome B (phyB) by the highly temperature-sensitive ‘dark’
reversion of active Pfr to the inactive Pr conformation. The rapid
nuclear extrusion of phyB-Pr uponwarmth releases PIF4 inhibition
that subsequently initiates thermomorphogenesis (Jung et al.,
2016; Legris et al., 2016b; Qiu et al., 2019), a process that is
attenuated at lower temperature conditions. Temperature also
provides direct input to the PIFs, as translation of PIF7 mRNA is
enhanced by warmth through relaxation of the PIF7 mRNA
hairpin structure, resulting in PIF7 protein accumulation (Chung
et al., 2020). In addition, the temperature-dependent phase
separation of the transcriptional repressor EARLY FLOWERING
3 (ELF3) into inactive condensates at warm temperatures also
contributes to temperature sensing and thermomorphogenesis
(Jung et al., 2020).

Transcription of some heat shock protein (HSP) genes is
regulated by mild warm temperatures and can even serve as a
‘molecular thermometer’ (Kumar&Wigge, 2010).However, these
molecular chaperones andmembers of the heat shock transcription
factors (HSFs) alike, are mostly associated with HS responses. In
control temperature conditions HSPs bind to HSFs, maintaining
them in an inactive state. During HS, HSPs are recruited to
damaged proteins, facilitating their repair or removal (Scharf et al.,
2012; Li et al., 2017; Ohama et al., 2017). The consequent release
of HSFs allows for their multimerisation and binding to heat shock
elements (HSE) in the promoters of HSPs and other target genes.
This activation boosts the production of evenmoreHSPs to protect
the cells. Simultaneously, the HSF–HSP balance is restored, which
dampens the response.

While the direct transcriptional regulation of high temperature
responses bymeans of regulators (e.g. PIFs, ELF3, phyB,HSFs and
many others) is now well understood, increasing evidence supports
a prominent role for epigenetic regulation in plant temperature
signalling and response. The term epigenetics was first introduced
in modern-day biology by embryologist Conrad Waddington in
1942, who defined epigenetics as ‘the branch of biology which
studies the causal interactions between genes and their products,
which bring the phenotype into being’ (Waddington, 1942). For a
brief history please refer toDeichmann (2016). Later, a community
consensus definition of the term epigenetics was reached at a Cold
Spring Harbor meeting in 2008: ‘An epigenetic trait is a stably
heritable phenotype resulting from changes in a chromosome
without alterations in the DNA sequence’ (Berger et al., 2009). In
the broader sense, the term epigenetics is often used to describe
‘chromatin modifications’, that is chemical modifications of DNA
or histone proteins placed around DNA that do not change
the base sequence (Deichmann, 2016). As these modifications
may or may not be stable and transmitted through cell division and
subsequent generations, they do not necessarily need to conform to
the narrow definition given above.

Typically, epigenetic mechanisms involve the regulation of gene
transcription via different pathways including, but not limited to,
DNA methylation, small RNAs, ATP-dependent chromatin
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remodelling, histone variants, histone modifications, histone
chaperones and long noncoding RNAs. Some of these epigenetic
modifications andmodifying proteins modulate expression of high
temperature-responsive genes and function to prevent heat-related
damage and/or to promote subsequent adaptation (He & Li,
2018). In addition, epigenetic processes are involved in priming
and memory of HS, which promotes tolerance to recurring HS
events within the same or in a subsequent generation (trans-
generational memory).

In this review we provide a update on the current knowledge of
epigenetic regulation of HS and mildly elevated temperature
signalling and define topics for future research. We will focus
primarily on thermomorphogenesis regulation and HS memory.
We do acknowledge that epigenetic processes are a prominent
component of many other temperature effects, including flowering
time regulation, cold responsiveness (especially during vernalisa-
tion) and pollen development. Here, we do not cover these aspects
as these have been the topic of excellent recent reviews (e.g.Hereme
et al., 2021; Pandey et al., 2021; Luo & He, 2020; Chang et al.,
2020; Y. Chen et al., 2016).

II. Epigenetic regulation of thermomorphogenesis

1. Histone variant H2A.Z is evicted at warm temperatures

Chromatin remodelling represents an important level of regulation
in temperature sensing and response mechanisms. In eukaryotes,
the DNA is organised within nucleosomes where it is wrapped
around histone proteins. Canonical histones and histone variants
are highly conserved globular proteins whose N-terminal tails are
exposed on the surface of the nucleosome octamer for chemical
modifications, including methylation and acetylation (Kouzarides,
2007). In addition, ATP-dependent chromatin remodellers can
modify histone–DNA interactions, providing accessibility to
transcriptional regulators (Ho & Crabtree, 2010). Histone
proteins are usually deposited into nucleosomes during the
S-phase of the cell cycle (Liu et al., 2015). Together with the
incorporation of canonical histones, nonallelic histone variants can
also be integrated during the entire cell cycle (Kamakaka&Biggins,
2005). Histone variants can alter nucleosome stability and
structure, thereby affecting chromatin accessibility and transcrip-
tion.

The first solid evidence of histone variants regulating thermore-
sponsiveness was presented by the Wigge laboratory (Kumar &
Wigge, 2010). They identified ACTIN-RELATED PROTEIN 6
(ARP6) as mediator of temperature responses in Arabidopsis
(Fig. 1). Arp6mutants display elongated hypocotyls already at low
temperatures, indicative of a constitutive warm temperature
phenotype. ARP6 is a subunit of the Snf2 ATPase remodelling
complex SWR1-C, responsible for the exchange of the permissive
canonical histone variant H2A with repressive H2A.Z. The arp6
mutant showed higher HSP70 expression and de-repression of
many other thermo-responsive genes due to the inability to include
H2A.Z nucleosomes at temperature-regulated loci primarily at the
+1 site. Chromatin immunoprecipitation (ChIP) followed by real-
time PCR revealed depletion of H2A.Z occupancy at the HSP70

locus in the arp6mutant, indicating that higherHSP70 expression
is correlated with changes in chromatin structure (Fig. 1). Further
analyses showed that H2A.Z depletion scaled with temperature, as
at 17°C H2A.Z occupancy at theHSP70 locus was greater than at
27°C, when HSP70 expression is increased (Kumar & Wigge,
2010).

Later, H2A.Z eviction at elevated temperatures was observed for
a specific cluster of environment-responsive genes, occurring at
different chromatin regions and not exclusively around transcrip-
tion start sites (Cortijo et al., 2017). To investigate whetherH2A.Z
depletion was required for transcriptional activation or was instead
a consequence, H2A.Z occupancy was measured at different
timepoints during high temperature exposure. H2A.Z occupation
was lost within minutes from activation, suggesting that H2A.Z-
containing nucleosomes may be required to maintain gene
repression during moderate temperature conditions. Furthermore,
binding of the HSFA1a transcription factor to heat-responsive
genes, including HSP70, appeared critical to promote H2A.Z
eviction and hence gene expression (Cortijo et al., 2017) (Fig. 1).
Altogether, this indicates that H2A.Z-containing nucleosomes are
not temperature sensors per se, but that their occupancy depends on
the presence/absence of transcriptional regulators, allowing a
switch-like chromatin re-organisation in response to environmen-
tal cues to induce appropriate, timely and specific (transcriptional)
responses to cope with the changing temperature conditions.

In line with H2A.Z, other variants like H2A.W, which controls
heterochromatin organisation and coordinates DNA methylation
levels together with the histone linkerH1, are promising subjects of
future studies on plant temperature responses (Yelagandula et al.,
2014; Bourguet et al., 2021).

2. Role of histone (de)methylation in responses to elevated
temperatures

Histone epigenetic modifications occur at specific histone tails
residues that extrude from the nucleosomes, primarily on lysine (K)
and arginine (R). The position and timing of placement or removal
of these covalent modifications are essential for appropriate
responsiveness to environmental cues and cause either an increase
or decrease in transcription (Perrella & Kaiserli, 2016).

FLOWERING CONTROL LOCUS A (FCA) is an RNA
binding protein that is involved in chromatin silencing by
promoting histone demethylation of FLOWERING LOCUS C
(Tian et al., 2019). Interestingly, fca mutants display hyperelon-
gated hypocotyls when exposed to 28°C (Lee et al., 2014). FCA
directly interacts with PIF4 and, at 28°C, PIF4 recruits FCA to the
chromatin of growth-promoting target genes, including YUCCA8
(YUC8) (Lee et al., 2014). YUC8 encodes a rate-limiting enzyme in
auxin biosynthesis that is critical for thermomorphogenesis
(Franklin et al., 2011; Sun et al., 2012) (Fig. 2a). FCA binding
triggers histone H3K4me2 demethylation (an activating mark). In
addition, FCA modulates PIF4 dissociation from the YUC8 locus
and attenuates YUC8 expression (Lee et al., 2014). Thereby, high
temperatures-induced hypocotyl elongation seizes (Fig. 2a).

Correspondingly, binding of Jumonji C (JmjC) demethylases
JMJ14 and JMJ15 to target geneswas enhanced at 27°C, suggesting
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active recruitment of these H3K4me3 (considered an activating
mark) demethylases at high temperatures (Cui et al., 2021)
(Fig. 2b). However, in apparent contradiction to fca mutants, in
a jmj14 mutant combined with a mutation in its cofactor-
producing enzyme cytosolic isocitrate-dehydrogenases (cICDH),
expression of several auxin-related genes, such as YUC8, was
suppressed and, accordingly, thermomorphogenesis capacity was
reduced as well. This suggest that opposite to a suppressive role for
FCA, JMJ14 and the redundant JMJ15 and JMJ18 act as positive
regulators of high temperature-mediated changes in gene expres-
sion and thermomorphogenesis (Cui et al., 2021) (Fig. 2b).

Another histone methylation mark that correlates with an
increase in temperature (from 15°C to 25°C) is H3K36me3. In
particular, H3K36me3 enrichment was associated with Differen-
tially Spliced (DiS) events upon temperature changes (Pajoro et al.,
2017). DiS regions involve transcripts previously reported to
undergo temperature-induced Alternative Splicing (AS), such as
FLOWERING LOCUSM,MADS AFFECTING FLOWERING 2,

as well as clock components such as PSEUDO-RESPONSE
REGULATOR 3 (PRR3) and PRR7. Transcriptome analyses of
mutants of the histoneH3K36methyltransferases SETDOMAIN-
CONTAININGGROUP 8 (SDG8) and SDG26 revealed thatmost
DiS events were diminished in these mutants, suggesting that
H3K36me3 is indeed required for such events. In addition,
measurement of transcription rates in Arabidopsis seedlings
subjected to various temperatures revealed that H2A.Z gene body
occupancy and H3K27me3 levels were associated with a more
thermostable transcription rate (Sidaway-Lee et al., 2014).

3. Histone deacetylases affect responsiveness to elevated
temperatures

Histone acetylation and deacetylation are characterised by the
addition and removal of acetyl groups to lysine residues on H3 and
H4 histone tails. This is catalysed by histone acetyltransferases
(HATs) and histone deacetylases (HDACs), respectively, which
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Fig. 1 HDA9-dependent H2A.Z eviction at
high ambient temperatures. (Left) At control
temperatures, the SWR1 multiprotein
complex (SWR1-C) containing ACTIN-
RELATEDPROTEIN6 (ARP6) is responsible for
the incorporation of the histone variant H2A.Z
(pink) that suppresses thermo-responsive
genes. (Right) At high temperatures, HEAT
STRESS TRANSCRIPTION FACTOR A1a
(HSFA1a) is involved in H2A.Z eviction. In
addition, the POWERDRESS-HISTONE
DEACETYLASE 9 (PWR-HDA9) complex
deacetylates H3K9K14Ac at the YUCCA8
(YUC8) and HEAT SHOCK PROTEIN 70

(HSP70) loci, thereby proposedly impeding
ARP6-dependent H2A.Z incorporation. As a
result, these loci contain relatively high levels
of permissive H2A (blue) and relatively low
levels of suppressive H2A.Z. This chromatin
state facilitates the binding of promoter
regions by PHYTOCHROME INTERACTING
FACTOR 4 (PIF4) and possibly PIF7, resulting
in transcriptional activation of genes required
for thermomorphogenesis responses (e.g.
YUC8 to stimulate auxin biosynthesis) such as
hypocotyl elongation and thermonasty. How
HDA9 is recruited by transcription factors (TF)
to its target genes in response to elevated
temperatures remains to be investigated.
Black dashed and solid arrows, respectively,
indicate positioning/removal of the indicated
molecular factoror stimulationof the indicated
process.
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ultimately modulate chromatin accessibility for transcription
factors, other regulatory proteins and the transcription machinery.
This ‘opening’ and ‘closure’ of specific chromatin regions byHATs
and HDACs can affect gene expression in response to environ-
mental stimuli (Asensi-Fabado et al., 2017).

Early work from the Luschnig laboratory showed that the
reactivation of a b-GLUCURONIDASE transgene after HS was
correlated with an increase in H3K9K14ac. This reactivation was
more pronounced in the HISTONE DEACETYLASE 6 (hda6)
mutant (Lang-Mladek et al., 2010). More recently, a connection
between histone deacetylation and H2A.Z has been revealed
(Fig. 1). In a forward genetics screen for mutants displaying
impaired thermomorphogenesis a mutation in POWERDRESS
(PWR), a SANT domain protein known to interact with HDA9,
was identified (Tasset et al., 2018). Pwr and hda9 mutants display
similar temperature-dependent phenotypic traits, such as impaired
hypocotyl elongation in response to warmth and a compact rosette
morphology. However, some responses were retained in hda9

compared with pwr. For instance, hda9mutant seedlings displayed
a wild-type-like HSP70 induction at high temperature, while in
pwr this temperature marker gene was not induced (Tasset et al.,
2018; van derWoude et al., 2019; de Rooij et al., 2020). Similarly,
unlike PWR, HDA9 is seemingly not involved in PIF4 transcrip-
tional induction in response to elevated temperatures. Strikingly,
HDA9 functions independently of phyB thermosignalling and
light quality signalling (van derWoude et al., 2019), setting it apart
from the shade avoidance syndrome, a suite responses similar to
those induced by warmth (Ballar�e & Pierik, 2017). Transcriptome
analyses demonstrated that induction of auxin-related genes,
including YUC8, was hindered in hda9 and pwr mutants at warm
temperatures. Subsequent ChIP-PCR analysis revealed that the
YUC8 locus was indeed hyperacetylated in these mutants at 27°C,
thereby hinting that histone deacetylation is necessary for YUC8
induction. Interestingly, hda9 mutants displayed high levels of
H2A.Z occupancy at theYUC8 locus and a reduced ability for PIF4
binding at warm temperatures. Altogether, this suggests that
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Fig. 2 Histone modification regulation
associated to thermomorphogenesis. (a) High
temperature triggers the expression of
transcription factor PIF4. Accumulated PIF4
protein activates transcription of genes
required for thermomorphogenesis responses,
such as YUC8, to stimulate
thermomorphogenesis. PIF4 also directly
interacts with FLOWERING CONTROL
LOCUS A (FCA) that is recruited to the
chromatin where it allows H3K4me2
demethylation of the YUC8 promoter region
and triggers PIF4 dissociation from the DNA,
thereby reducing YUC8 expression to
attenuate thermomorphogenesis. (b) In a
different scenario, high temperature triggers
the recruitment of the histone demethylases
Jumonji (JMJ) 14 and 15 that mediate the
removal of H3K4me3 marks that could affect
the expression of a negative regulator. In
addition, YUC8 transcript level is increased,
causing hypocotyl elongation. Black dashed
and solid arrows indicate, respectively,
positioning/removal of the indicated
molecular factoror stimulationof the indicated
process.
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HDA9-dependent histone deacetylation is required for net H2A.Z
eviction from YUC8’s nucleosomes at warm temperatures, which
subsequently allowed PIF4 binding to the YUC8 promoter,
followed by YUC8 transcriptional activation, auxin accumulation
and thermomorphogenesis (Fig. 1). Whether PIF7 binding to
chromatin is also modulated by HDA9-dependent histone
deacetylation and H2A.Z eviction remains to be studied (Fig. 1).

In another study, hda15, hda9 and hda19mutantswere shown to
have partly opposite temperature responses, as hda15 mutant
seedlings displayed longer hypocotyls than the wild-type at 27°C,
while hda9 and hda19 hypocotyls were shorter (Shen et al., 2019).
HDA15, HDA9 andHDA19, therefore, have distinct functions in
temperature signalling.Gene expression analysis of hda15 seedlings
revealed upregulation of temperature-dependent genes including
YUC8, HSP20, INDOLE-3-ACETIC ACID INDUCIBLE 3
(IAA3), IAA19 and IAA29. Furthermore, HDA15 was found to
interact with LONG HYPOCOTYL IN FAR-RED (HFR1) to
downregulate gene expression. Because HFR1 interacts with PIF4
and antagonises its activity (Hornitschek et al., 2009), HDA15
proposedly controls thermomorphogenesis by repressing PIF4
activity (Shen et al., 2019). Moreover, HDA15 interacts with PIF1
and PIF3 to repress phyB-dependent seed germination, chloro-
phyll biosynthesis and photosynthetic genes in etiolated seedlings
(Liu et al., 2013; Xu et al., 2017). Together, this hints that HDA15
– and possibly other HDAC’s alike – have a role in governing
transcriptional networks that translate environmental cues in
appropriate functional responses, in whichHDA9 apparently has a
more specific role in temperature signalling, because hda9mutants
are not disturbed in responsiveness to light quality cues (van der
Woude et al., 2019).

Interestingly, hda9 and hda19 mutants, despite exhibiting
similar high temperature phenotypes, displayed little overlap in
differentially expressed genes. This suggests that these related
HDAC proteins might function in different pathways leading to
thermomorphogenesis. ChIP-PCRs indicated that both HDA15
and HDA19 directly bind to promoters of stress responsive genes,
while no direct DNA binding was detected for HDA9 (Shen et al.,
2019). Whether HDA15 and HDA19 also regulate H2A.Z
occupancy of their target genes remains to be determined.

4. The role of the INO80 complex in responses to elevated
temperatures

A recent report demonstrated that the Snf2 ATP-dependent
chromatin remodelling complex INO80–EIN6 ENHANCER
(EEN) is required for thermomorphogenesis by mediating H2A.Z
eviction (Xue et al., 2021) (Fig. 3a). INO80 and EEN directly
associate with PIF4 to activate transcription of auxin-related genes,
including YUC8, under elevated temperatures. In addition,
constitutive induction of PIF4 target genes by PIF4 overexpression
was suppressed in the ino80mutant background.Moreover, PIF4 is
required for INO80 complex (INO80-C) recruitment to PIF4
target loci, to facilitate local H2A.Z eviction at warm temperatures
and H2A.Z eviction was compromised in both pif4 and ino80
mutants. Yeast-two-hybrid screening and subsequent confirma-
tions indicated that INO80-C interacts with the H3K4me3

deposition complexCOMPASS-like core componentWDR5a and
the SPT4-1 and SPT4-2 transcription elongation factors. These
modulate RNAPol II elongation to facilitate efficient transcription
and H3K4me3 deposition, an epigenetic mark mainly associated
with active transcription. Indeed, H3K4me3 levels were elevated at
PIF4 targets at warm temperatures and this was lost in the pif4
mutant. This suggests that INO80-C is required for warm
temperature-induced H3K4me3 deposition and transcription
elongation at PIF4 target genes (Fig. 3a). Moreover, mutants in
diverse transcription elongation factors exhibited impaired ther-
momorphogenesis phenotypes and had elevated H2A.Z levels,
similar to ino80 and pif4mutants. This demonstrates that efficient
Pol II elongation facilitates thermomorphogenesis and is seemingly
required for H2A.Z removal at PIF4 targets, and therefore that
H2A.Z eviction and active transcription are associated together
(Xue et al., 2021). Given the requirement of HDA9 and PWR1 for
PIF4-mediated induction of auxin biosynthesis under warm
temperatures (Tasset et al., 2018; van der Woude et al., 2019),
and because hda9 mutants display enhanced H3K4me2/3 levels
under salt stress (Zheng et al., 2020), it seems possible that HDA9
and PWR1 also associate with INO80-C.

In an independent study,Willige et al. (2021) demonstrated that
PIF7 binding to promoters is required for local H2A.Z removal
within minutes after exposure to a low ratio of red to far-red light
(Willige et al., 2021) (Fig. 3b). PIF7 was proposed to mediate
H2A.Z removal through its interaction with the EEN subunit of
INO80-C. Therefore, similar to warm temperature conditions
(Xue et al., 2021), PIFs are seemingly needed for H2A.Z removal
and simultaneous activation of their target genes under shade
(Willige et al., 2021). Given the involvement of HDAC activity in
H2A.Z incorporation/eviction dynamics (van der Woude et al.,
2019) on the one hand, and the demonstrated HDA15 interaction
with PIF1 and PIF3 (Liu et al., 2013; Xu et al., 2017) and the light
signalling components HFR1 (Hornitschek et al., 2009), on the
other hand, it would be interesting to test for possible contributions
by HDA15 to H2A.Z dynamics in both shade and high
temperature conditions. This possibility is further supported by
the observation that HDA15 interacts with NUCLEAR
FACTOR-Y, subunit C (NF-YC) proteins (Tang et al., 2017) that
induce H2A.Z deposition in a light-dependent manner to inhibit
photomorphogenesis (Zhang et al., 2021).

5. Integrating the role of histone modifications and
modifying enzymes

Combined with the observation that PIF7 mRNA functions as a
thermosensor (Chung et al., 2020), it is tempting to propose the
existence of a short temperature signalling cascade. When temper-
atures rise, PIF7 expression is induced and translation of PIF7
mRNA is enhanced through mRNA hairpin relaxation (Chung
et al., 2020). PIFs then bind to the G-box element of their target
genes and mediate H2A.Z depletion in concert with the INO80–
EEN complex, possibly in association with PWR andHDA9. This
net H2A.Z removal then possibly relieves target gene repression,
followed by transcriptional activation and induction of thermo-
morphogenesis. Despite being a tempting hypothesis, some
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apparent conflicting findings emerge that may point to divergence
of high temperature and light signalling at the level of H2A.Z
occupancy regulation. First, PIF7 binding to G-boxes triggers
H3K9 hyperacetylation of regulatory regions under low red to far-
red light exposure (Willige et al., 2021) (Fig. 3b). No involvement
of PIF4 was however observed in global (genome-wide) hyper-
acetylation under warmth (van der Woude et al., 2019). Second,
whereas HDA9 is required for warm temperature signalling, it is
not clearly involved in light signalling (van derWoude et al., 2019).
Furthermore, whereas HDA9-mediated histone deacetylation
(H3K9K14Ac) associates with H2A.Z eviction from YUC8
nucleosomes at warm temperature conditions, the opposite was
found during low red to far-red light signalling, in which enhanced
H3K9 acetylation of PIF7 target genes correlates with H2A.Z
removal and target gene induction (Willige et al., 2021). Whether
PWR also regulates nucleosome exchange in response to light
quality signals remains to be determined. However, as also
indicated above, PWR has a more pleiotropic role than HDA9

(de Rooij et al., 2020). Moreover, PWR affects thermo-inhibition
of seed germination bymediatingH3K9 deacetylation andH2A.Z
deposition at the SOMNUS (SOM) locus, a negative regulator of
phyB-dependent seeds germination (Yang et al., 2019).HDA9 also
has a role in establishing seed dormancy, seed longevity and
germination (van Zanten et al., 2014b). It would therefore be
interesting to study whether HDA9 confers the temperature
dependency of these processes.

At the protein level HDA9 accumulates shortly after germina-
tion in response to warmth (Fig. 1), mainly in the root and root–
hypocotyl junction, while becoming less abundant during seedling
establishment. This suggests that HDA9 should be considered an
early regulator of seedling responsiveness to temperature and that
this function is ‘replaced’ by phyB-mediated thermosignalling
when the cotyledons develop and become photoautotrophic
(Stavang et al., 2009; Bellstaedt et al., 2019). PIF7-mediated
histone modifications might occur temporarily after HDA9’s task
has been fulfilled. Furthermore, the functional characterisation of
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Fig. 3 The role of the INO80-C complex in
elongation responses. (a) At high
temperatures PIF4 and PIF7 transcription is
induced. The INO80 complex (INO80-C) can
directly associate with PIF4 protein to induce
the downstream expression of auxin-related
genes (e.g. YUC8). INO80-C also interacts
with members of the H3K4me3 deposition
complex COMPASS-WDR5a, which triggers
H3K4me3 methylation and with RNA
POLYMERASE II (POLII) elongation factors
SPT4-1 and SPT4-2, which in turn are
responsible forH2A.Z removal and initiationof
transcription. Whether PIF7 plays a role in this
elevated temperature signalling mechanism,
remains to be elucidated. However, (b) upon
exposure to a low red/far-red light ratio, PIF7
interacts with the INO80-C remodelling
complex and binds to the G-box elements of
target genes. This interaction mediates H2A.Z
eviction and induces expression of ATHB2. In
addition, PIF7 binding to the G-box allows an
increase of histone acetylation marks. Black
dashed and solid arrows indicate, respectively,
positioning/removal of the indicated
molecular factoror stimulationof the indicated
process.
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HDA9 as transcriptional activator (by facilitating H2A.Z eviction)
during thermomorphogenesis induction revealed a very unusual
role for a HDAC, as these enzymes are typically considered
transcriptional co-repressors (Fig. 1). In support of this, HDA9
preferentially associates with transcriptionally active regions and its
binding to chromatin is required for gene expression initiation
(Kang et al., 2015; Kim et al., 2016; X. Chen et al., 2016; Mayer
et al., 2019; van der Woude et al., 2019).

6. Involvement of chromatin remodelling factors in
thermomorphogenesis

SEUSS (SEU) is a homologue of LGN-binding domain (LBD)
proteins in mammals in which they recruit transcription factors
to form higher-order complexes (Agulnick et al., 1996).
Together with LEUNIG (LEU), SEU forms a complex to
transcriptionally repress a subsets of plant genes (Fig. 4).
Through T-DNA insertion line screening, a specific mutant
for SEU, named enhanced photomorphogenic2 (epp2) was iden-
tified that displayed short hypocotyls in response to red, far-red
and blue light, as well as at elevated temperatures (Huai et al.,
2018). Genetic analysis of pif4 seu double mutants indicated that
PIF4 acts via SEU to respond to temperature stimuli (Fig. 4).
Furthermore, SEU and PIF4 proteins interact and activate
expression of growth-promoting genes, including IAA19 and
YUC8, by binding to their promoters. In addition, H3K4me3
levels at both loci were greatly reduced in seu mutants.
Therefore, SEU-PIF4 activates auxin biosynthesis and integrates
environmental cues to influence plant growth (Fig. 4). SEU can
also interact with phyB and SUMO E3 ligase SAP AND MIZ1
DOMAIN-CONTAINING LIGASE1 (SIZ1) (Zhang et al.,
2020). Posttranslational modifications, particularly SUMOyla-
tion, knowingly regulate environmental responses (Sadanandom
et al., 2015) and SUMOylation of SEU, via interaction with
SIZ1, is essential for its function. Site-directed mutagenesis of
putative SEU SUMOylation sites greatly affected histone
methylation levels at the IAA19 locus and henceforth gene
expression. Interestingly, the SEU–PIF4 interaction is partially
affected by SUMO modifications, therefore affecting PIF4
degradation in the light (Zhang et al., 2020).

The CHD-chromatin remodelling factor PICKLE (PKL)
modulates the interaction between DNA and the histone octamer,
allowing the transcriptional complex to position correctly (Kwon
& Wagner, 2007). Mutations in PKL affect H3K27me3. More-
over, PKL interacts with transcription factors such as HY5, PIF3,
andDELLAs to regulate the expression of growth-promoting genes
(Jing et al., 2013; Zhang et al., 2014). PKL expression is induced in
response to elevated temperatures, while pkl mutant seedlings
display much shorter hypocotyls than the wild-type at 28°C (Zha
et al., 2017) (Fig. 4). Interestingly, in vitro assays revealed that
circadian clock components such as CIRCADIAN CLOCK
ASSOCIATED1 (CCA1) can associate with the PKL promoter
and induce its expression. Furthermore, cca1 mutant and overex-
pression lines displayed a thermomorphogenesis phenotype,
placing the clock at the verge of ambient temperature responses
(Zha et al., 2017).

In addition to PKL, also members of the SWI/SNF complex are
crucial components of temperature-mediated transcriptional reg-
ulation. In particular, SWI/SNF factor BAF60 negatively regulates
hypocotyl elongation under light and temperature conditions (J�egu
et al., 2017). BAF60 represses gene expression by binding G-box
motifs of growth-promoting genes. In darkness BAF60 competes
with PIF4 over the same regulatory regions (J�egu et al., 2017).

Altogether this shows that different chromatin remodelling
factors convene tomodulate active and repressive histone marks on
key temperature-responsive genes. How the dynamics of these
modifications take place remains an open question.

High temperature

YUC8
IAA19

K4Me3K4Me3

K27Me3

K4Me3

PKLPIF4

PIF4 SEU

LEU

PKL

Promoter

K4Me3

Fig. 4 The role of SEUSS, LEUNIG and PICKLE in promoting
thermomorphogenesis. High temperature induces the expression of PIF4
and PICKLE (PKL) genes. Accumulated PIF4 protein can then interact with
the SEUSS (SEU)–LEUNIG (LEU) complex and activates the expression of
growth-promoting genes such as YUC8 and INDOLE-3-ACETIC ACID

INDUCIBLE 19 (IAA19) by promotingH3K4me3methylation. The induction
of these transcripts is correlated with the PKL–dependent removal of the
repressive mark H3K27me3, leading to enhanced hypocotyl elongation.
Black dashed and solid arrows indicate, respectively, positioning of the
indicated molecular factor or stimulation of the indicated process. Blunted-
end dashed line indicates inhibition of the indicated process.
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7. Roles of DNA methylation and RNAs in elevated
temperature signalling

Exposure of plants to high temperature, either in the short term or to
prolonged heat, can lead to the reactivation of silenced transgenes,
endogenous DNA repeats and heterochromatic genomic regions.
Intriguingly these changes ingeneactivationdonot require alteration
of the DNA methylation status (Lang-Mladek et al., 2010; Pecinka
et al., 2010; Tittel-Elmer et al., 2010). Conversely, post-
transcriptional gene silencing (PTGS) of the chimeric receptor-like
kinase NOVEL RESISTANCE GENE 1 (NRG1) causes a dwarfed
phenotype that can be alleviated by exposing the plants to 30°C
(Zhong et al., 2013).This radical change inmorphologywas due to a
release of PTGS, associatedwith changes inDNAmethylation of the
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) locus (Zhong et al.,
2013).However, correlation betweenDNAmethylation andPTGS,
at least for this locus, was not clear nor consistent. Further evidence
supporting a putative role forDNAmethylation in responsiveness to
HS came from a study in which different epigenetic mutants were
tested for tolerance to HS. In particular, plants deficient inNRPD2,
the second-largest subunit of RNApolymerases IV andV and part of
the RNA-dependent DNA methylation pathway, were hypersensi-
tive toHS (42°C) (Popova et al., 2013).The effect ofmildly elevated
temperature on the above-mentioned mutants remains to studied.

Elevated temperatures can also affect a small subset of short
interfering RNAs (siRNAs) (21–24 nt) and long noncoding RNAs
(lncRNAs) (Gyula et al., 2018; Severing et al., 2018). In this
context, pioneering work was done in the Paszkowski laboratory,
where an siRNA pathway responsible for the response to HS was
discovered. They showed that a copia-like retransposon (named
ONSEN after the Japanese ‘hot spring’) became transcriptionally
active in response to heat and was able to pass on heat-
responsiveness to neighbouring genes (Ito et al., 2011). The
responsiveness, however, was not transmitted to the progeny of
plants treated with HS, highlighting the importance of resetting
mechanisms in the next generation.

Recently, high-throughput sequencing of sRNAs from different
Arabidopsis tissues allowed for the identification of c. 50
temperature-dependent microRNAs (miRNAs). Another 48 were
discovered using degradome libraries (Gyula et al., 2018). Inter-
estingly, the miRNA family miR169 was found to target NF-Y
transcription factors that bind to the promoters of the flowering
regulator FLOWERING LOCUS T (FT) as well as YUCCA2
(YUC2) that is involved in petiole elongation under warm
temperature conditions (Gyula et al., 2018). Further analysis
revealed the presence of siRNAs and DNA methylation upstream
of the YUC2 promoter, which was diminished in response to
elevated temperature. This suggests that different epigenetic
mechanisms converge at YUC2.

LncRNAs are noncoding RNA molecules longer than 200 bp
(Statello et al., 2021). Of the different lncRNAs currently identified
by genomewide studies, only a handful have been characterised
(Csorba et al., 2014). Recently, FLOWERING LONG
INTERGENIC NON CODING RNA (FLINC) expression has been
reported to decrease responsiveness to high temperatures (Severing
et al., 2018).Mutant flinc seedlings showed amore pronounced early

flowering phenotype when cultivated at 25°C, pointing to a role for
FLINC in flowering time control in response to high temperatures.
However, its putative function in this pathway and whether it
contributes to thermomorphogenesis is yet to be confirmed.

III. Epigenetic regulation of HS memory

Plants respond to HS with acute acclimation to high temperatures,
referred to as acquired thermotolerance, or HS priming (Yeh et al.,
2012; B€aurle, 2016; Ohama et al., 2017). HS also has prominent
effects on nuclear organisation. As indicated above, long-term HS
can result in the alleviation of transcriptional gene silencing (TGS)
(Lang-Mladek et al., 2010; Pecinka et al., 2010; Tittel-Elmer et al.,
2010). This loss of TGSwas accompanied by a severe heat-induced
decompaction of chromocentres (Pecinka et al., 2010). Chromo-
centres are subnuclear structures that contain condensed hete-
rochromatin, consisting of the (peri)centromeric part of the
chromosomes rich in repeats and transposable elements (Fransz &
de Jong, 2011). Although the biological role of chromocentre
decondensation and its connection with TGS in HS responses is
not entirely clear, it appears to be critical for basal heat tolerance in
Arabidopsis, as mutants that are disturbed in HEAT-
INTOLERANT 4 (hit4-1) do not exhibit heat-induced chromo-
centre decondensation and display impaired basal (but not
acquired) thermotolerance. Moreover, HIT4 associates with
chromocentres in the nucleus and is required for heat reactivation
of various silenced loci (Wang et al., 2013).

For HS-induced changes in chromatin organisation and non-
coding RNAs, it is often unknown whether they persist after they
return to normal growth temperatures. Therefore, it remains
unclear whether they conform with the narrow definition of
epigenetics given in the Introduction. The involvement of
chromatin organisation factors during heat signalling and the
effects of extremely high temperatures on epigenetic modifications
have been reviewed extensively, and not covered here (Liu et al.,
2015; Ohama et al., 2017; Zhao et al., 2020).

1. Two types of transcriptional memory after HS

In addition to acquisition of thermotolerance per se, a genetically
separable mechanism maintains the duration of acquired thermo-
tolerance after a HS event seizes. This is referred to as maintenance
of acquired thermotolerance or HS memory (Charng et al., 2006,
2007; Yeh et al., 2012; Stief et al., 2014). Events of extremely high
temperatures in the natural environment are often temporally
clustered, and HS memory is therefore considered an adaptive
mechanism allowing plants to respond more rapidly to recurrent
HS events. Emerging research from the last few years indicated that
HS memory is partly based on epigenetic mechanisms. In
Arabidopsis, at the whole plant level, HS memory lasts for up to
5 d and results in increased survival after aHS that is lethal to a na€ıve
(nonprimed) plant (Charng et al., 2006; Stief et al., 2014; Friedrich
et al., 2021). At the level of gene expression, this is reflected by two
types of transcriptional memory (Fig. 5a) (Oberkofler et al., 2021).
Type I describes sustained induction of a set of HS-induced genes
that exceeds the duration of HS by several days (Stief et al., 2014).
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Type II describes enhanced re-induction of a subset of HS-induced
genes upon a recurrent HS event after a stress-free period, during
which the expression of HS-induced genes returned to baseline
levels (L€amke et al., 2016). This type II enhanced re-induction was
caused by faster transcriptional reactivation (Fig. 5a), suggesting
that the locus remained in a state of elevated transcriptional
competence without being transcriptionally active (Liu et al.,
2018). In Arabidopsis, the sets of genes that showed type I and type
II memory are partially overlapping. Examples of type I genes
include HEAT SHOCK-ASSOCIATED32 (HSA32) and
ACORBATE PEROXIDASE2 (APX2), examples of type II genes
includeHSP22.0 as well as APX2. The quantification of un-spliced
transcripts confirmed that both types of transcriptionalmemory are
likely to operate at the level of transcription. This is in line with
recent findings that, globally, transcript stability is in the range of
minutes to hours (Hetzel et al., 2016; Crisp et al., 2017; Chan-
tarachot et al., 2020; Szabo et al., 2020) and further supports the
notion that HS memory effects occur at the level of transcription,
rather than stabilisation of existing RNAs molecules. As detailed
below, the mechanisms that mediate both types of transcriptional
memory are partially but not fully overlapping.

2. The role of HSFA2 in HS memory

The transcription factor HSFA2 is a key regulator of HS memory
and is required for both types of transcriptional memory (Charng
et al., 2007; L€amke et al., 2016; Liu et al., 2018) (Fig. 5a,b).HSFA2
expression is strongly induced by HS through HSFA1 isoforms
(Liu & Charng, 2013). In hsfa2 mutants HS priming is largely
normal, however, these mutants are specifically defective in the
sustained induction of a set of genes that are initially activated by
HSFA1s (type I). Accordingly, hsfa2 mutants are unable to
maintain acquired thermotolerance and are highly susceptible to a
strong HS after a recovery of 2 d following a priming HS event
(Charng et al., 2007). At the molecular level, the separation of HS
priming and HS memory is explained by the regulation of these
processes by different HSF family members (HSFA1s vs HSFA2/
HSFA3). This allowed chromatin features that are induced by the
acuteHS response andbyHSmemory to be investigated separately.
Such comparative analyses pinpointed histone modifications that
are linked to HS memory, but do not depend on the initial
transcriptional activation (L€amke et al., 2016). Most importantly,
type I memory genes displayed histone H3K4 hypermethylation
that lasted for at least 3 d after seizing ofHS (L€amke et al., 2016; Liu
et al., 2018). By contrast, HS-induced genes that did not show type
I memory/sustained induction (such asHSP70,HSP101), did not
display H3K4 hypermethylation. In hsfa2 mutants, the H3K4
hypermethylation of HS memory genes is lost, despite the initial
transcriptional activation being intact (which is mediated by
HSFA1s). Both H3K4 dimethylation (H3K4me2) and trimethy-
lation (H3K4me3) were induced with slightly different dynamics.
H3K4me2 increased after H3K4me3, while H3K4me3 started to
decline earlier than H3K4me2, after c. 2 d (L€amke et al., 2016).
The later peak accumulation may indicate that H3K4me2 plays a
role in transcriptional memory (Fig. 5b). Whether both marks are
equally active in the induction and maintenance of memory, or

whether there is a functional difference, remains to be investigated.
Histone acetylation is more tightly connected with transcription
than H3K4 methylation. H3K9Ac levels increase after HS
priming, and similarly in HS-induced genes and HS memory
genes (L€amke et al., 2016).

As described above, HSFA2 is required for H3K4 hypermethy-
lation at HS memory genes. Simultaneously, HSFA2 binds to its
target loci in a hit-and-run mode (L€amke et al., 2016), meaning
that the strongest binding was observed shortly after HS and
decreased rapidly thereafter. The induction of a histone modifi-
cation that is maintained in the absence of the transcription factor
provides a tentative mechanism for the sustained gene induction
memory. Indeed, in various organisms, increased H3K4 methy-
lation has been proposed to act as amarker of recent transcriptional
activation that may mediate enhanced transcriptional reactivation
(Ng et al., 2003;D’Urso et al., 2016). A recent example comes from
yeast, in which transcriptional memory of the Inositol-3-phosphate
synthase (INO1) gene was correlated with enhanced H3K4
methylation and stalled RNA polymerase II (D’Urso et al., 2016).

Interestingly, a positive feedback loop between HSFA2 and the
H3K27me3 Jumonji histone demethylaseRELATIVEOFEARLY
FLOWERING 6 (REF6)mediated a transgenerational memory of
HS that drove early flowering, while dampening pathogen
responses (Lu et al., 2011; Liu et al., 2019). A recent publication
also reported a further connection between HS memory and
H3K27methylation (Yamaguchi et al., 2021). The authors showed
that the removal ofH3K27me3 after a primingHS event of theHS-
induced HSP22 and HSP17.6C genes prepared these genes for
faster reactivation after a recurrent HS. H3K27me3 was actively
removed at these loci in a HS-dependent manner by a set of JMJ
histone demethylases. It remains to be investigated how JMJ
proteins are recruited to these two specific loci.

3. Role of other HSF proteins in HS memory

While the role of HSFA2 in promoting HS memory has long been
known, it remained unclear whether any of the additional 20 HSF
familymemberswere also involved inHSmemory (Scharf et al., 2012;
Ohama et al., 2017). HSFA1 isoforms contribute to type II
transcriptional memory, but on their own they are not sufficient to
promote enhanced transcriptional re-induction upon recurrent HS
(Liu et al., 2018) (Fig. 5b). Very recently, it was shown that HSFA1a,
HSFA1b andHSFA1d interacted with HSFA2, providing a tentative
mechanism for their involvement in HS memory (Friedrich et al.,
2021). HSF transcription factors act as trimers or even hexamers
(Chan-Schaminet et al., 2009; Li et al., 2017), but the in vivo
composition remained unclear. A forward genetic screen for expres-
sion modifiers of the type I memory gene HSA32 has identified a
second HSF; FORGETTER 3 (FGT3), in addition to HSFA2, that
was specifically required for the sustained induction of gene expression
after a priming HS (Friedrich et al., 2021). These forgetter 3 (fgt3)
mutants are deficient in the sustained induction of several type II
memory genes, resembling hsfa2mutants. FGT3 is allelic to HSFA3
and was found to interact with HSFA2 and HSFA1s (Fig. 5b). Like
HSFA2, but different from HSFA1 isoforms, HSFA3 is specifically
required for sustained induction, but not initial transcriptional
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activation after HS. This suggests that only complexes that contain
bothHSFA2 andHSFA3 are fully memory active/competent and are
able to facilitate sustained H3K4 hypermethylation. This also
indicated that certain unidentified structural properties of theHSFA2
and HSFA3 proteins contribute to placing H3K4 hypermethylation
onHSmemory genes loci and that these features are absent inHSFA1
proteins. As HSFA3 is activated by DEHYDRATION-
RESPONSIVE ELEMENT-BINDING PROTEIN 2A (DREB2A)
(Fig. 5b), which in turn is activated also by HSFA1s (Sakuma et al.,
2006; Schramm et al., 2008; Yoshida et al., 2008), the combinatorial
action of both transcription factors may ensure that HS memory is
activated only in certain environments.

4. Nucleosome occupancy during HS memory

Similar to their role in thermomorphogenesis (see previous section),
positioning and overall occupancy of nucleosomes has emerged as a
determinant of gene expression regulation during HS (Teves et al.,

2014; Lai & Pugh, 2017). In addition to H3K4 hypermethylation,
nucleosome positioning regulates type I transcriptionalmemory after
HS. From themutagenesis screenmentioned above, FORGETTER1
(FGT1) was identified and found to be required for sustained
induction of HS memory genes (Brzezinka et al., 2016) (Fig. 5b).
FGT1 encodes a protein with two helicase domains and a PHD
domain that ensures binding to histone H3. FGT1 interacts directly
with chromatin remodelling proteins of the SWI/SNF and ISWI
families. Like FGT1, the SWI/SNF chromatin remodeller
BRAHMA (BRM) and the ISWI remodellers CHR11 and CHR17
(Bezhani et al., 2007) are required for physiological HS memory
(Brzezinka et al., 2016). Moreover, FGT1 mediates reduced nucle-
osome occupancy atHSmemory loci throughout thememory phase.
This suggests that low nucleosome occupancy promotes sustained
induction of HS memory genes, likely by removing obstacles to
transcribing RNA polymerase II in the body of FGT1 target genes.

An additional link between priming, H3K4 hypermethylation
and nucleosome positioning was provided by the finding that
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mutants in the chromatin assembly factor 1 (CAF-1) histone
chaperone are constitutively primed against pathogen responses
(Mozgova et al., 2015). This priming was associated with elevated
H3K4 methylation levels and low nucleosome occupancy. CAF-1
is required for depositing H3H4 tetramers onto newly replicated
DNA (Kaya et al., 2001; Hoek & Stillman, 2003). This may hint
towards a mechanism for inheritance of priming-related histone
modifications over cell divisions.

Interestingly, ANTI-SILENCING FUNCTION 1 (ASF1)
histone chaperone was implicated in transcriptional activation

after HS of a subset of HS-responsive genes, includingHSFA2 and
several of its target genes (Weng et al., 2014). Recruitment of ASF1
to target gene chromatin correlated with low nucleosome occu-
pancy, high RNA polymerase II occupancy and histone acetylation
(Weng et al., 2014). Another hint for the open question of howHS-
induced histone modifications are inherited across replication,
came from the finding that the BRUSHY1 (BRU1)/TONSOKU/
MGOUN3 protein was required for HS memory at the physio-
logical and gene expression levels (Guyomarc’h et al., 2004; Takeda
et al., 2004; Suzuki et al., 2005; Brzezinka et al., 2019). Previously,
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BRU1 was found to be involved in the faithful inheritance of
chromatin states over DNA replication and cell division. Origi-
nally, BRU1 was identified as a factor required for copying
repressive chromatin states during transcriptional silencing
(Takeda et al., 2004; Suzuki et al., 2005). The bru1 mutant has
similar developmental phenotypes as mutants in CAF-1 compo-
nents.However, caf-1mutantswere not required forHSmemory at
the physiological level (Brzezinka et al., 2019). BRU1 orthologues
from mammals bind to single-stranded DNA and newly incorpo-
rated nucleosomes after replication, allowing postulation of the
exciting hypothesis that BRU1 is directly involved in copying
epigenetic marks onto newly replicated DNA (Saredi et al., 2016;
Huang et al., 2018).

The role of chromatin organisation inmarking loci for sustained
induction and altered re-induction after recurrent HS has been
shown in several studies (Brzezinka et al., 2016; L€amke et al., 2016;
Friedrich et al., 2021; Olas et al., 2021). Other work suggested that
a component of HS memory may be mediated by mechanisms
independent of chromatin and transcription, such as protein
stability (Sedaghatmehr et al., 2016) and membrane dynamics
(Urrea Castellanos et al., 2022). It remains to be investigated
whether and how diverse cellular mechanisms are integrated to
produce a coherent outcome.

IV. Conclusions and outlook

If high temperatures persist, plants need to make a ‘decision’ on
how to balance costs (e.g. energy and resource investments) with
benefits (e.g. growth, life-cycle completion and stress memory) to
respond swiftly to the current stress and its possible recurrence. For
instance, an elongated (thermomorphogenic) phenotype to
enhance evaporative cooling may be beneficial when temperatures
remain high, but not necessarily during the cooler period that may
follow. This may relate to fitness costs that come with tissue
weakening, such as increased risk of pathogen infection and
potential lodging of elongated stem. In Arabidopsis, HS memory
has benefits at the physiological level that last for c. 5 d (Friedrich
et al., 2021). Type II transcriptional memory lasts for c. 6 d (Liu
et al., 2018) and therefore is an example of somatic stress memory
(L€amke & B€aurle, 2017) (Fig. 5a). The limited duration agrees
with the idea that it provides an adaptation against recurrent HS,
rather than a long-term memory that extends throughout the life
cycle or even into the next generation. The mechanisms that limit
the duration ofHSmemory remain to be investigated but may very
well involve epigenetic mechanisms.

In nature, plants are exposed to assaults from several stresses with
different levels of severity. It thereforemay be beneficial to limit the
duration of memory against individual stressors to compromise
negative effects on, for example, growth and to be able to allocate
energy and resources to face future – or simultaneous occurring –
stresses during their life cycle. Even if priming provides a smaller
fitness cost than constitutive acclimation, itmay ultimately bemore
advantageous to re-acclimate after a certain stress-free period.
Whether there is a truly transgenerational HS memory with
physiological benefits that is active over at least one intermittent
stress-free generation, and what epigenetic mechanisms are

involved, remains to be investigated. Also, whether transgenera-
tional inheritance of thermomorphogenesis traits exists is, to the
best of our knowledge, not known. In any case, both transgener-
ational HS memory and possible thermomorphogenesis memory
would most likely follow a different mechanism than the somatic
HS memory mechanisms summarised in this review. The general
feasibility of transgenerational effects that are induced byHS can be
seen from the transgenerational activation of retrotransposition of
the ONSEN copia-like transposable element (Ito et al., 2011).
Here, lack of DNA polymerase IV generates a sensitised back-
ground inwhich sustained activation ofONSEN retrotransposition
can be triggered by HS. The long terminal repeats of ONSEN and
related elements contain binding sites for HSFA2 and HSFA1s,
therefore enabling a mechanism in which new insertions of
ONSEN conferHS responsiveness to nearby genes (Ito et al., 2011;
Cavrak et al., 2014; Baduel et al., 2021).

While DNA methylation changes in response to HS events are
relatively well understood, we are still beginning to discover the
putative function of DNA methylation during mildly elevated
temperature events. We therefore recommend detailed high-
throughput bisulfite or MSAP sequencing approaches, preferably
on the organ- and single cell-specific level, at which plants undergo
thermomorphogenesis. From a more generalising perspective,
detailing the genome-wide landscape of different epigenetic marks
in response to mildly elevated temperatures would contribute to a
better understanding of thermomorphogenesis regulation and
fitness benefits and costs. Of particular interest would be a
systematic assessment of the H3K4 epigenome landscape. As
detailed above, this residue appears important for many temper-
ature signalling pathways (Fig. 6). First, PIF4 dissociation from the
YUC8 locus is mediated by H3K4me2 demethylation through
FCA, to supress hypocotyl elongation (Lee et al., 2014) and JMJ14
and JMJ15 demethylases are recruited to remove H3K4me3 under
warm temperature conditions to trigger gene expression and
thermomorphogenesis (Cui et al., 2021) (Fig. 2a,b). Second,
H3K4me3 levels increased at PIF4 target genes under elevated
temperatures, which depended on INO80-C interaction with the
H3K4me3 deposition complex COMPASS-like component
WDR5a (Xue et al., 2021) (Fig. 3a). Third, hda9 mutants display
enhanced H3K4me2/3 levels under salt stress (Zheng et al., 2020).
Given the intricate role HDA9 plays in thermomorphogenesis
regulation via auxin biosynthesis (Tasset et al., 2018; van der
Woude et al., 2019; de Rooij et al., 2020) (Fig. 1) a(n) (indirect)
role for HDA9 in regulating H3K4me2/3 levels under elevated
temperature conditions seemsplausible. Fourth, PIF4 acts via SEU;
H3K4me3 levels at the IAA19 and YUC8 loci were reduced in the
seu mutant (Huai et al., 2018) (Fig. 4), thereby supporting that
regulation of H3K4me3 levels is important for auxin biosynthesis.
DuringHS, type I memory genes exhibit high histoneH3K4 levels
that persist for at least 3 d after HS diminishment (L€amke et al.,
2016) (Fig. 5b), suggesting a recent event of transcriptional
activation (Ng et al., 2004; D’Urso et al., 2016). Moreover, H3K4
hypermethylation contributes to the priming of gene expression in
HS and to pathogen defence responses (Jaskiewicz et al., 2011;
Mozgova et al., 2015; Friedrich et al., 2021). Strikingly, H3K4
methylation has a role in cold signalling and vernalisation as well

New Phytologist (2022) 234: 1144–1160
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

Review Tansley review
New
Phytologist1156

 14698137, 2022, 4, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.17970 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(reviewed in Luo & He, 2020; Pandey et al., 2021). Therefore,
H3K4 is seemingly at the nexus of temperature signalling networks
across the temperature spectrum from freezing to HS (Fig. 6).
Studying H3K4 methylation on a genome-wide level, under a
range of temperature conditions, is therefore an important next step
to improving the understanding of temperature signalling mech-
anisms and functional responses in an integrated manner.
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