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Microtubules are long hollow cytoskeletal tubes built 
from asymmetric subunits, dimers of α- tubulin and 
β- tubulin. Head- to- tail association of tubulin dimers 
leads to the formation of polarized microtubule poly-
mers that have two functionally distinct ends — the 
minus ends, which are often stabilized and anchored 
at specific cellular sites, and the plus ends, which can 
grow and shrink rapidly and account for the formation 
of most microtubule mass. Microtubules can be tens 
or even hundreds of micrometres long, spanning the 
length of an average animal cell. Kinesin and dynein 
motor proteins can walk along microtubules and 
transport different cargoes. Each motor typically moves 
on microtubules only in one direction — towards the 
plus or the minus end. Therefore, the geometry and 
directionality of microtubules determine the patterns of 
intracellular transport and guide organelle positioning. 
Moreover, growing and shrinking microtubules can 
exert forces that can displace subcellular structures, 
such as chromosomes during mitosis. Furthermore, 
bundles of microtubules can withstand compressive 
forces, and densely packed microtubules contribute to 
shaping long cell protrusions, such as those in neurons1, 
support the disc- like cell shape in platelets and non- 
mammalian red blood cells2 or counteract contraction, 

for example, in heart cells3. The shape and organiza-
tion of microtubule networks thus play a major role in  
controlling cell morphology, polarity, internal architecture  
and motility.

Most of our knowledge about microtubule organiza-
tion and function is derived from studying dividing cells 
in two- dimensional cultures. These cells form radial, 
centrosome- anchored microtubule networks during 
interphase. This led to the ‘textbook view’ of an animal 
cell with an aster- like centrosome- driven microtubule 
organization. However, even in cultured fibroblasts and 
cancer cells, a significant proportion of microtubules 
are not attached to the centrosome, and the majority of 
differentiated animal cells have non- centrosomal micro-
tubule arrays with geometries and densities adapted to 
the physiology of a particular cell type. For example, in 
epithelial cells many microtubules run from the apical to 
basolateral membranes to facilitate polarized transport. 
Similarly, the axon and dendrites of neurons display dif-
ferent microtubule organizations, with the former having  
a uniform network of microtubules with the plus ends 
pointing away from the cell body and the latter featuring 
many minus end- out microtubules.

The mechanisms underlying the formation and 
maintenance of such non- centrosomal microtubule 
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networks are still poorly understood, because micro-
tubule arrays in three- dimensional tissues are much 
more difficult to visualize and probe. Recent advances 
in light and electron microscopy and new methods to 
manipulate protein expression in tissues have made 
the cytoskeleton in differentiated animal cells acces-
sible to mechanistic studies. In addition, recent cell 
biological studies have provided key insights into the 
molecular mechanisms of microtubule nucleation, 
growth and stabilization. Together, these develop-
ments are beginning to reveal how microtubule net-
works with different geometry, density and stability 
can be generated by spatial control over microtubule 
nucleation, minus- end anchoring, plus- end dynam-
ics, severing, sliding, stabilization and bundling by 
microtubule- associated proteins (MAPs). Here, we 
review these developments, distil the key principles 
underlying the formation of specialized microtu-
bule arrays and, then, describe how these principles 
are used to build microtubule networks that support 
specific functions in the most abundant cell types in our 
body — epithelial, neuronal and muscle cells.

Microtubule nucleation and anchoring
The geometry of microtubule networks critically 
depends on the localization of the sites of microtubule 
nucleation and anchoring. These sites are traditionally 
called microtubule- organizing centres (MTOCs), in 
analogy with centrosomes that organize microtubules 
within interphase radial microtubule arrays or at the 
poles of a mitotic spindle4. In differentiated cells, how-
ever, MTOCs often lack typical centrosome components 
such as centrioles and may not have an appearance of 
‘centres’ but, rather, occupy large surfaces, for example, 
the nuclear envelope or areas of the cell cortex. MTOC 
function depends on microtubule nucleation factors 
and proteins that stabilize and capture microtubule 
minus ends.

Microtubule nucleation
Although microtubules can form from tubulin dimers 
spontaneously, microtubule formation occurs much 
faster in the presence of a template that can bring together 
and position tubulin dimers (Box 1). A template for 
de novo formation of microtubules used in most systems 

Box 1 | Microtubule nucleation and amplification

microtubules can be nucleated spontaneously, in solutions of purified tubulin in the presence of gtP (reviewed 
elsewhere5). If the concentration of αβ- tubulin dimers is sufficiently high, they can associate into oligomers that can 
increase in size and, eventually, form a tube (see the figure, part a), but the exact nature of intermediate structures is 
unknown5. Factors that can stabilize lateral or longitudinal interactions between tubulin dimers can promote the formation 
and growth of tubulin oligomers and, thus, stimulate spontaneous microtubule nucleation5. such factors include various 
microtubule- associated proteins (mAPs), microtubule- stabilizing agents such as taxol and the gtP analogue gmPCPP, 
which inhibits gtP hydrolysis by β- tubulin and the associated microtubule- destabilizing conformational changes in  
tubulin dimers.

An alternative, kinetically more favourable pathway of de novo microtubule formation is outgrowth from an existing 
template. the major player in this process is the γ- tubulin ring complex (γ- tuRC), which consists of 14 subunits of  
γ- tubulin that are held in a conical structure by γ- tubulin complex proteins (gCPs) and additional factors. γ- tuRC serves  
as a microtubule template by positioning tubulin dimers next to each other to initiate microtubule growth (see the figure, 
part b). A flurry of recent structural and biochemical studies revealed the detailed organization of this complex205–207.  
this work showed that γ- tuRC has an asymmetric structure that does not fully match the geometry of the microtubule, 
which might explain why purified γ- tuRCs are not very efficient microtubule nucleators. Different γ- tuRC- binding  
proteins and mAPs can increase γ- tuRC nucleation activity and, in this way, control where microtubules are formed in cells 
(reviewed in refs5,6). the mechanisms of γ- tuRC activation are currently unclear but may involve the adjustment of γ- tuRC 
conformation so that it would better fit the 13- protofilament microtubule structure.

Finally, pieces of pre- existing microtubules can serve as templates for microtubule outgrowth. therefore, microtubule 
severing by the enzymes spastin and katanin, followed by stabilization of the resulting microtubule fragments, provides  
an efficient way to increase microtubule numbers and, thus, microtubule density. New microtubule ends generated by 
severing enzymes can be stabilized by the enzymes themselves208–210, by incorporation of gtP- bound tubulin113 and  
by additional mAPs, such as the minus end- stabilizing proteins of the CAmsAP family, which can directly bind to katanin26 
(see the figure, part c).

γ-TuRC

a  Spontaneous nucleation b  Templated nucleation c  Amplification by severing
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Centrioles
Cylindrical structures with  
a core of nine microtubule 
triplets. A centrosome contains 
two orthogonally arranged 
centrioles, the mother and the 
daughter centriole. A mother 
centriole is assembled one cell 
cycle earlier than the daughter 
centriole.
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is the γ- tubulin ring complex (γ- TuRC) (Box 1). The abil-
ity of γ- TuRC to nucleate microtubules is modulated 
by γ- TuRC- binding proteins also known as tethering 
factors, and by MAPs (reviewed elsewhere5,6). Binding 
of γ- TuRC interactors, such as CDK5RAP2 and its 
homologue myomegalin, pericentrin, AKAP450 and  
HAUS (also known as augmin) (fig. 1a; TABle 1), can stim-
ulate the microtubule nucleation activity of γ- TuRC or 
position it at specific subcellular sites. γ- TuRC- binding 
proteins are abundant constituents of the pericentriolar 
material (PCM) — a proteinaceous matrix surrounding 

the centrioles in interphase and mitotic centrosomes in 
dividing cells6,7. In differentiated cells, some PCM com-
ponents are redistributed to other locations, converting 
them into MTOCs.

When γ- TuRC is depleted, both centrosomal and 
non- centrosomal microtubules can still form in some 
cell types8–11. Moreover, in some cell types, for exam-
ple in Drosophila melanogaster fat body cells and 
Caenorhabditis elegans embryonic intestinal epithelial 
cells, microtubules remain robustly organized when 
γ- TuRC is depleted12,13. γ- TuRC- independent nucleation 
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Fig. 1 | Microtubule-organizing centres found in differentiated animal 
cells. a | Key interactors of the γ- tubulin ring complex (γ- TuRC).  
b | Centrosome, the major microtubule- organizing centre (MTOC) in dividing 
animal cells, with a pair of centrioles surrounded by γ- TuRC- containing peri-
centriolar material (PCM). Major pathways of γ- TuRC recruitment to the 
centrosome are through a complex of CDK5RAP2 and pericentrin, through 
NEDD1 that binds to CEP192 or through ninein. c | Ciliary base as an MTOC 
found at dendrite tips in some neurons in Caenorhabditis elegans. Contains 
worm counterparts of pericentrin and CDK5RAP2. d | Golgi apparatus as an 
MTOC. Depends on the adaptor protein AKAP450, which is recruited by the 
Golgi matrix protein GM130. AKAP450 binds to γ- TuRC directly, or through 
CDK5RAP2 or its homologue myomegalin. The complex of AKAP450, 
myomegalin, EB1/EB3 and CAMSAP2 can also anchor and stabilize micro-
tubule minus ends independently of γ- TuRC at the Golgi. e | Endosome 
cluster as an MTOC found at dendrite tips in some neurons in C. elegans. 

Formed by Rab11- positive endosomes, which tether γ- TuRC and are 
clustered by cytoplasmic dynein. f | Nuclear envelope as an MTOC in muscle 
cells. γ- TuRC is recruited by a complex of CDK5RAP5 and AKAP450, which 
through the scaffolding protein AKAP6 interacts with nesprin 1a at the 
nuclear envelope. Ninein and pericentrin are also involved and also recruited 
by AKAP450. g | Cell cortex as an MTOC. At the cortex of epithelial cells in  
C. elegans, minus ends can be tethered with participation of γ- TuRC and 
ninein, which is recruited by Par6. An alternative pathway, present in 
different animal species, includes CAMSAP and spectraplakin, which is 
bound to the cortical actin–spectrin cytoskeleton. h | Microtubule minus- end 
anchoring at adherens junctions and microtubule attachment to desmo-
somes occurring via CAMSAP3 and ninein, respectively. i | Branching  
microtubule nucleation. The HAUS complex recruits γ- TuRC to the micro-
tubule surface to nucleate new microtubules, thereby increasing microtubule  
density. GCP, γ- tubulin complex protein.
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Table 1 | Main factors regulating microtubule nucleation and minus- end organization in differentiated animal cells

Human protein Function Paralogues 
in mammals

Alternative names in 
mammals

Counterpart in 
Caenorhabditis 
elegans

Counterpart 
in Drosophila 
melanogaster

CDK5 (cyclin- dependent 
kinase 5) regulatory 
subunit- associated protein 
2 (CDK5RAP2)

Activates γ- TuRC and 
tethers it to PCM and other 
structures through PCNT 
and AKAP450

CDK5RAP2

Myomegalin

Centrosomal protein of 
215 kDa (CEP215)

Spindle- defective 
protein 5 (SPD5)

Centrosomin (Cnn)

Myomegalin (MMG) CM- MMG isoform tethers 
γ- TuRC, EB- MMG isoform 
interacts with EB1/EB3 and 
CAMSAP2 and binds to MT 
plus and minus ends

CDK5RAP2

Myomegalin

Phosphodiesterase 
4D- interacting 
protein (PDE4DIP), 
cardiomyopathy- 
associated protein 2

SPD5 Centrosomin (Cnn)

Pericentrin (PCNT) Major PCM component, 
tethers γ- TuRC directly and 
indirectly

Kendrin Pericentriolar matrix 
deficient 1 (PCMD1)

Pericentrin- like 
protein (Plp)

A- Kinase anchor protein 
450 kDa (AKAP450)

Tethers γ- TuRC directly and 
indirectly, tethers MT minus 
ends through CAMSAP2, 
MMG and EB1/EB3

A- kinase anchor protein 
9 (AKAP9), AKAP350, 
CG- NAP, Hyperion, Yotiao

Not identified Centrosome 
protein of 309 kDa 
(CP309)

Neural precursor cell 
expressed developmentally 
downregulated protein 1 
(NEDD1)

Tethers and regulates 
γ- TuRC

γ- Tubulin complex 
protein with WD repeats 
(GCP- WD), GCP7

Not present γ- Ring protein 
with WD repeats 
(Dgp71WD)

Centrosomal protein of 
215 kDa (CEP192)

Major PCM component, 
indirectly tethers γ- TuRC

Spindle- defective 
protein 2 (SPD2)

Spd2

Ninein Tethers and stabilizes 
MT minus ends, possibly 
together with γ- TuRC

Ninein

Ninein- like 
protein

Nlp, ninein- like protein 
(NINL)

Non- centrosomal 
microtubule array 
protein 1 (NOCA1)

Blastoderm- specific 
gene 25D (Bsg25D)

Human augmin complex 
(HAUS)

Right- subunit complex, 
binds γ- TuRC and mediates 
branching MT nucleation

Not present Augmin

Calmodulin- regulated 
spectrin- associated protein 
(CAMSAP)

Stabilizes uncapped MT 
minus ends

CAMSAP1

CAMSAP2

CAMSAP3

Nezha (CAMSAP3)

Marshalin (CAMSAP3)

Patronin 
(microtubule- binding 
protein) homologue 
(PTRN1)

Patronin

Spectraplakin Cross- links MTs and actin, 
interacts with proteins that 
bind to plus and minus ends 
of microtubules

Microtubule 
actin 
cross- linking 
factor 1 
(MACF1)

MACF2

Actin cross- linking family 
protein 7 (ACF7,  MACF1)

Trabeculin- α (MACF1)

Dystonin (DST, MACF2)

Bullous pemphigoid 
antigen 1 (BPAG1, MACF2)

Variable abnormal 
morphology 10 
(VAB10)

Short stop (Shot)

Cytoplasmic linker protein 
(CLIP)- associated protein 
(CLASP)

Stabilizes dynamic MTs by 
preventing catastrophes 
and promoting rescues, 
promotes nucleation

CLASP1

CLASP2

Three paralogues 
of CLASP family of 
microtubule- binding 
proteins:

CLS1

CLS2

CLS3

Orbit/Mast 
(Chromosome bows 
(Chb))

Colonic and hepatic 
tumour overexpressed 
gene (chTOG)

Accelerates MT growth at 
the plus end, promotes MT 
nucleation

Cytoskeleton- associated 
protein 5 (CKAP5)

Often cited by the name 
of the Xenopus orthologue 
Microtubule- associated 
protein of 215 kDa 
(XMAP215)

Zygote defective 9 
(ZYG9)

Mini spindles (Msps)

End binding protein (EB) Binds to the GTP cap at 
growing MT ends, recruits 
numerous other proteins, 
participates in minus- end 
regulation

EB1

EB2

EB3

Microtubule- associated 
protein RP/EB family 
member 1 (MAPRE1, EB1)

RP1, MAPRE2, EB2

EBF3, MAPRE3, EB3

Three paralogues of 
microtubule EB:

EBP1

EBP2

EBP3

Eb1

Three additional 
related proteins 
(CG18190, 
CG15306, CG2955)

GCP, γ- tubulin complex protein; PCM, pericentriolar material; γ- TuRC, γ- tubulin ring complex.
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may rely on the ability of some MAPs, such as XMAP215 
(also known as chTOG) or TPX2, to promote spontane-
ous microtubule assembly by locally concentrating tubu-
lin, possibly through formation of protein condensates14,15, 
or by stabilizing early nucleation intermediates and pro-
moting their growth16,17. Good candidates for the latter 
function are doublecortin, which can stabilize tubulin 
oligomers17, and CLASP, a protein that helps convert 
different incomplete microtubule structures into com-
plete, growing tubes18. Altogether, γ- TuRC- independent 
pathways likely contribute to microtubule nucleation in 
certain cell types where γ- TuRC expression is low, such as 
fly fat body cells13, but γ- TuRC seems to be the kinetically 
dominant microtubule nucleator in most systems.

Minus- end stabilization and anchoring
In addition to nucleation, another important function 
of an MTOC is stabilization and anchoring of micro-
tubule minus ends. This function can be carried out by 
γ- TuRC, which caps microtubule minus ends, together 
with γ- TuRC activation factors discussed above. An addi-
tional protein with a specific role in minus- end anchor-
ing in a broad variety of systems is ninein, which works 
in conjunction with γ- TuRC through still unclear bio-
chemical mechanisms11–13,19–23. An alternative minus- end 
stabilization pathway is mediated by the members of the 
CAMSAP/Patronin family (TABle 1). These proteins bind 
and stabilize uncapped microtubule ends in a minus end 
polymerization- dependent manner24–26. CAMSAP, similar 
to other MAPs such as tau27, can promote de novo micro-
tubule assembly in vitro when its concentration is suffi-
ciently high to form condensates28. However, it is unclear 
whether such concentrations are encountered in cells, and 
most of the cell biological evidence points to a function of  
CAMSAPs in stabilizing and tethering the minus ends 
of microtubules released from the nucleation sites, for 
example at the Golgi membranes or the cell cortex24,29–32 
(reviewed elsewhere33). Importantly, CAMSAPs directly 
interact and cooperate with the microtubule- severing 
enzyme katanin26. Synergistic action of these proteins can 
lead to the amplification of acentrosomal microtubules 
through their detachment from nucleation sites, which 
can be followed by local capture of stabilized microtubule 
minus ends34,35 (Box 1, see the figure, part c).

γ- TuRC- dependent and CAMSAP- dependent mecha-
nisms of microtubule minus- end stabilization and organ-
ization can work in parallel, for example, on the Golgi 
membranes29 or the apical membranes in epithelial cells11. 
Interestingly, the relative importance of the different 
pathways is very cell type- dependent — in worms, either 
the CAMSAP orthologue PTRN1 or the ninein- related 
protein NOCA1 must be present for proper development 
of larval epidermis11, yet in intestinal epidermis, simul-
taneous loss of PTRN1, NOCA1 and a γ- TuRC compo-
nent has no strong effect on microtubule organization12. 
It is thus likely that additional pathways of microtubule 
minus- end organization exist in some tissues.

Cell type- specific MTOCs
The most canonical type of MTOC is the centrosome 
(fig. 1b), which can generate microtubules that may 
be either retained or released, followed by transport 

and capture elsewhere. During cell differentiation, 
centrosomes are often inactivated through the loss of 
PCM components36,37. This can occur due to altera-
tions in protein expression or cyclin- dependent kinase 
signalling38, or, in the case of ninein in neuronal cells, 
by switching from a centrosomal to a non- centrosomal 
splice isoform39. Differentiated cells adopt diverse 
non- centrosomal microtubule configurations, which 
rely on the formation of a broad variety of MTOCs.

Cells that can move, contract or change their shape 
typically employ organelle- associated MTOCs, some of 
which, such as the Golgi membranes or endosomes, can 
cluster through dynein- mediated minus end- directed 
transport40,41. Such MTOCs can support polarized 
but dynamic microtubule organization, which can be 
adjusted during development or cell movement. In static 
cells, such as epithelia, microtubules are often attached 
to the cell cortex and generate microtubule networks that 
are polarized by external cues. At the molecular level, 
MTOCs display a remarkable diversity, with almost 
every differentiated cell type studied in some depth 
demonstrating some original features, as highlighted 
below, although this view may partly stem from the 
incomplete understanding of MTOC composition in 
most systems.

Ciliary base and basal bodies. Whereas the centrosome 
is often inactivated during cell differentiation, in cells 
with motile or primary cilia, the mother centriole is 
repurposed as the ciliary basal body. At the early stages 
of ciliogenesis, the centrosome retains its MTOC func-
tion to facilitate the transport of ciliary components 
(reviewed elsewhere42) or promote formation of the 
microtubule bundle that repositions the centrosome to 
the cell surface in order to initiate cilia formation43. An 
interesting case of a cilia- associated MTOC is presented 
by the sensory neurons of C. elegans, which contain a 
single non- motile cilium at the distal tip of the dendrite: 
the basal body of this cilium is degraded, but the ciliary 
base accumulates PCM that extends from the luminal 
side of the axoneme and nucleates dendritic microtubules 
that grow towards the nucleus (fig. 1c). The function 
of this PCM depends on γ- TuRC as well as the worm 
counterparts of CDK5RAP2 and pericentrin44,45.

In multiciliated cells, centrioles are amplified and 
these newly produced centrioles form basal bodies for 
ciliary axonemes46. Basal bodies, through their append-
ages called basal feet, organize microtubules at the apical 
side of the cell47. A subcortical microtubule network sur-
rounding and interconnecting the basal bodies ensures 
their polarized orientation and synchronous beating47,48. 
PCM can participate in centriole formation in such 
cells49 and likely also contributes to cortical microtubule 
nucleation. Both γ- TuRC and the minus end- stabilizing 
protein CAMSAP3 associate with the basal bodies in 
a polarized manner, and CAMSAP3 is required for 
organizing the apical microtubule network50,51.

Golgi complex and Golgi outposts. In many types of 
cycling as well as differentiated cells, the Golgi complex 
serves as a major MTOC (fig. 1d), which is required for 
cell polarization, for organization of secretory trafficking 

Condensates
Membraneless structures 
which can form by the physical 
process of liquid–liquid phase 
separation, whereby a 
well- mixed solution of 
macromolecules such as 
proteins or nucleic acids 
spontaneously separates into 
two phases, a dense phase and 
a dilute phase.

Axoneme
A microtubule- based 
cytoskeletal structure that 
forms the core of a cilium or a 
flagellum; it contains nine 
microtubule doublets, and in 
motile cilia also a central pair 
of microtubules
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and also for dynein- driven self- assembly of the Golgi 
ribbon40,52. In cultured mammalian cells, the central 
player in microtubule organization at the Golgi is the 
scaffolding protein AKAP450, which binds to the cis- 
Golgi matrix component GM130 and can recruit γ- TuRC  
both directly and indirectly, through CDK5RAP2 and 
myomegalin29,53,54. In a separate pathway, AKAP450  
acting together with myomegalin and end binding proteins 
(EBs) binds CAMSAP2- stabilized microtubule minus 
ends29,55. Another important player in Golgi microtubule 
organization is CLASP, which interacts with the Golgi 
membranes through the trans- Golgi protein GCC185 
(ref.56), but may also promote γ- TuRC- mediated nucle-
ation and stabilization of CAMSAP2- bound microtu-
bule minus ends directly29. Whether these pathways are 
conserved is unclear: in D. melanogaster, γ- tubulin was 
shown to be present on Golgi in the soma of neurons, 
where it participates in generating axonal microtubules, 
but this process does not depend on the orthologues of 
pericentrin, AKAP450 or CDK5RAP2 (ref.57).

In addition to a centrally located Golgi complex, 
smaller, distally located membrane compartments 
bearing Golgi markers, termed Golgi outposts, can 
serve as MTOCs to organize complex and branched 
microtubule networks in large cells such as neurons, 
muscle and glia cells (reviewed elsewhere58). In mus-
cles, Golgi outposts supporting orthogonal microtubule 
grids contain γ- tubulin, AKAP450 and pericentrin59,60. 
In fly dendritic arborization neurons, Golgi outposts were 
proposed to nucleate dendritic minus end- out microtu-
bules in a manner dependent on γ- tubulin and the fly 
orthologues of AKAP450 and CDK5RAP2 (refs61,62). 
However, subsequent work showed that elimination of 
the two latter proteins does not affect dendritic micro-
tubule polarity63, and motor- driven relocation of Golgi 
outposts from dendrites did not remove γ- tubulin 
from dendrite branch points64. These data indicate that 
alternative pathways of γ- TuRC regulation exist in fly 
dendrites (see below).

In the extended processes of radial glial cells, out-
growth of microtubules organized in antiparallel arrays 
occurs from varicosities that are not enriched in γ- TuRC 
but contain Golgi compartments and CAMSAPs. 
This suggests that Golgi membranes might capture 
CAMSAP- stabilized microtubule minus ends that 
could be generated by severing microtubules nucle-
ated in other cell regions30. In oligodendrocytes, Golgi 
outposts show no γ- tubulin enrichment either, but 
instead accumulate the protein TPPP that might auton-
omously promote microtubule nucleation65 (see Box 1 
for potential mecha nisms), illustrating the diversity of 
Golgi- associated microtubule organization pathways.

Endosomes. Although the role of Golgi outposts in 
organizing minus end- out microtubules in neuronal 
dendrites in D. melanogaster is contested, recent evi-
dence points to the involvement of the endosomal 
compartments. In dendrites of fly neurons, γ- TuRC was 
shown to localize to early, Rab5- positive endosomes 
with participation of the components of the Wnt sig-
nalling pathway66. Furthermore, during development of 
certain sensory neurons of C. elegans, Rab11- positive 

endosomes form a γ- TuRC- containing MTOC in the 
dendritic growth cone41 (fig. 1e). This MTOC is formed 
by dynein- mediated clustering and moved to the den-
dritic tip by kinesin 1 (ref.41). The ability of recycling, 
Rab11- positive endosomes to associate with γ- TuRC 
is conserved in vertebrate cells, where these endo-
somes contribute to spindle formation and pericentrin 
accumulation at the centrosome67,68.

Mitochondria. An interesting example of an organelle- 
based MTOC is provided by D. melanogaster spermatids. 
Here, γ- TuRC is bound to giant mitochondria through 
a testes- specific isoform of the CDK5RAP2 orthologue 
centrosomin (TABle 1), organizing microtubules that sup-
port elongation of sperm cells69. Whether mitochondria 
contribute to microtubule nucleation in other contexts 
is currently unknown.

Nuclear envelope. Nuclei can serve as robust MTOCs to 
generate microtubules that control nuclear positioning 
as well as overall cell architecture. In mammalian heart 
and skeletal muscle cells, and in osteoclasts, this func-
tion relies on a specific isoform of the nuclear envelope 
protein Nesprin 1, which acts together with the spectrin 
repeat- containing adaptor AKAP6 to recruit AKAP450 
and pericentrin that, in turn, bind to γ- TuRC to nucle-
ate microtubules60,70 (fig. 1f). The AKAP6–AKAP450 
interaction also leads to a tight association between 
the nucleus and Golgi membranes, which act together 
in microtubule organization with the participation of 
ninein70, whereas no function for CAMSAPs has been 
reported in muscle cells or osteoclasts. A different type 
of nuclear MTOC is assembled in D. melanogaster 
fat body cells: it contains an orthologue of nesprin, a 
spectraplakin (a microtubule and actin cross- linking 
protein with multiple spectrin repeats) and the fly coun-
terparts of CAMSAP, ninein and XMAP215, but not 
γ-TuRC13. In this system, microtubule nucleation seems 
to occur in a γ- TuRC- independent manner.

Cell cortex. In polarized epithelial cells, microtubules are 
typically organized vertically, with the plus ends directed 
towards the basal side, and the minus ends linked to the 
apical cortex or to cell–cell junctions. Apical microtubule 
organization depends on the major polarity regulators, 
PAR3, PAR6 and aPKC71–73. Recent work showed that in 
C. elegans epidermis cells, Par6 directly binds the ninein 
orthologue NOCA1 (ref.74) (fig. 1g). NOCA1 participates 
in the formation of apical MTOCs together with γ- TuRC, 
but their exact contribution depends on the cell type and 
the NOCA1 isoform11,12,74. In worm epidermis, Par6 
also regulates the CAMSAP orthologue PTRN1 (ref.74), 
which acts in a γ- TuRC- independent pathway of api-
cal minus- end organization11. Similarly, in mammalian 
epithelia, apical MTOCs contain the CAMSAP family 
member CAMSAP3, ninein and γ- TuRC20,31,75; whether 
PAR proteins directly associate with these factors in 
mammals is unclear. Binding of CAMSAP3- decorated 
microtubule minus ends to the apical cortex depends 
on its interaction with spectraplakin31. This complex is 
conserved in flies, where it was shown to involve spec-
trin, a large actin- binding binding cortical scaffold32,76. 

End binding proteins
(eBs). Conserved proteins that 
specifically bind to growing 
microtubule ends because they 
preferentially associate with 
the microtubule lattice in which 
β- tubulin is bound to gTP.

Dendritic arborization 
neurons
Neurons of a larval sensory 
type in Drosophila with specific 
dendritic morphologies.

Radial glial cells
Progenitor cells responsible for 
producing neurons of the 
cerebral cortex.

Oligodendrocytes
Myelinating glia cells of the 
central nervous system.

Growth cone
An actin- supported extension 
of a developing or regenerating 
axon or dendrite.

Fat body
An insect organ distributed 
throughout the body that has 
an essential role in energy 
storage and utilization.
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In fly salivary glands, the orthologues of CAMSAP, 
spectraplakin and the severing enzyme katanin act 
together to release microtubules from the centrosome 
and promote their capture at the apical cortex35. The ort-
hologue of spectraplakin as well as a conserved protein 
WDR62, which regulates katanin during mammalian 
cell division77,78, also participate in the formation of api-
cal MTOCs in worm intestine73. Furthermore, mamma-
lian CAMSAP3 can also directly link microtubule minus 
ends to adherens junctions24, whereas ninein can connect 
microtubules to desmosomes in skin cells by binding 
to desmoplakin22 (fig. 1h). Altogether, CAMSAP and 
ninein define two key pathways of cortical minus- end 
attachment in epithelial tissues throughout the animal 
kingdom.

Microtubule branches. Microtubules can serve as plat-
forms for nucleating new microtubules: the γ- TuRC- 
binding protein complex HAUS, acting together with 
TPX2, leads to formation of microtubule ‘branches’ 
that emerge at very shallow angles, resulting in ampli-
fication of parallel microtubule arrays79 (fig.  1i). 
Branching nucleation is important for the formation 
of both axonal and dendritic microtubule arrays in 
mammalian and fly neurons61,80,81 and contributes to 
neuronal activity- dependent microtubule nucleation  
in presynaptic boutons82. Whether augmin participates in  
microtubule nucleation in differentiated cells other than 
neurons is unclear.

Cytokinetic bridges and mid- body remnants. During 
cytokinesis, the central spindle is transformed into a 
mid- body with two antiparallel overlapping bundles 
of densely packed microtubules, which, together with 
associated vesicles, guide abscission of daughter cells to 
complete cell division. However, during early stages of 
mouse embryonic development, the cytokinetic bridge 
is retained and, through the minus end- stabilizing 
activity of CAMSAP3, is converted into an acentriolar 
MTOC. This MTOC is required for polarized transport 
of adhesion molecules and establishment of polarity in 
the daughter cells83. The mid- body remnant, which is 
asymmetrically inherited by one daughter cell, can also 
participate in primary cilia formation by promoting 
concentration and trafficking of ciliary components in 
polarized epithelial cells (reviewed elsewhere84).

Microtubule dynamics and stabilization
Whereas the distribution and activity of MTOCs define 
the overall geometry of microtubule networks, processes 
that control microtubule dynamics, stabilization, bun-
dling and sliding further determine microtubule length, 
density and organization.

Microtubule growth and shrinkage
Microtubules can grow from their plus and minus ends 
by adding tubulin dimers. Both α- tubulin and β- tubulin 
bind GTP, and whereas the GTP molecule bound to 
α- tubulin is not hydrolysed, the GTP bound to β- tubulin 
is hydrolysed after the dimer is incorporated into the 
microtubule lattice. As a result, a cap of subunits con-
taining GTP- bound β- tubulin (GTP- tubulin) is present 

at the growing microtubule ends, whereas the rest of the 
microtubule shaft contains GDP- tubulin85–87 (fig. 2a). 
GTP hydrolysis and subsequent phosphate release, 
which is thought to occur with some delay, trigger con-
formational changes in tubulin that lead to complex, 
still incompletely understood, structural transitions that 
destabilize the microtubule structure88–90. Therefore, if 
the GTP cap at the microtubule tip is lost, a microtubule 
switches to shrinkage85–87. Growth of microtubule plus 
ends (the ends where β- tubulin is exposed) is intrinsi-
cally faster than growth of the minus ends, and is there-
fore responsible for generating most of the microtubule 
mass. Microtubule plus- end growth is specifically accel-
erated by the microtubule polymerase XMAP215 (ref.91). 
Microtubule minus- end polymerization can also be 
physiologically important, because CAMSAP- mediated 
stabilization of minus ends depends on their growth26. 
Interestingly, robust minus- end elongation was observed 
in fly and zebrafish neurons, where the fly orthologue 
of CAMSAP was shown to be required for populating 
neuronal dendrites with microtubules that point with 
their minus ends away from the cell body92.

Growth and shrinkage of microtubule plus ends are 
regulated by a plethora of factors that specifically bind 
to microtubule tips and either promote their growth 
and prevent depolymerization (such as XMAP215 or 
CLASP) or trigger microtubule shrinkage and pausing 
(such as members of the kinesin 4, 8 and 13 families)  
(reviewed elsewhere87,93). Robust growth increases 
microtubule density and allows microtubules to sup-
port cell protrusions94 or remodel intracellular mem-
branes such as the endoplasmic reticulum95. Inhibition 
of microtubule growth can be used to ensure that micro-
tubules terminate at the cell margin96, and depolymerase- 
controlled microtubule disassembly is needed to suppress  
or remove cell protrusions, for example, to inhibit axonal 
branching and promote axonal pruning during neuronal 
development97,98.

Some isoforms of microtubule plus- end regulators 
are specifically expressed in differentiated cells. For 
example, among the three mammalian members of the 
EB family, EB1 predominates in dividing cells whereas 
EB3, the member with the highest affinity for micro-
tubule tips, is upregulated in differentiated cells99,100. 
Another example is the kinesin 4 KIF21B, which is spe-
cifically expressed in neurons and immune cells, where 
it restricts microtubule growth101,102. In immune cells, 
KIF21B keeps microtubules short, so that the whole 
microtubule network can be quickly relocated during 
the formation of immunological synapse (see also section 
Microtubule network diversity in cells)101. However, the 
majority of factors controlling microtubule dynamics 
and local microtubule density are present in both divid-
ing and differentiated cells, and the spatial and temporal 
control of their activities is often achieved through phos-
phorylation (for interesting examples from neuronal 
development, see ref.103).

Microtubule stabilization and bundling
Because microtubules are often highly dynamic  
and undergo frequent transitions between growth and  
shrink age (catastrophes), as well as reverse transitions 

Adherens junctions
Protein assemblies at cell–cell 
junctions in epithelial and 
endothelial cells; they contain 
transmembrane proteins called 
cadherins and are linked to the 
actin cytoskeleton.

Desmosomes
Adhesive protein complexes 
localized to intercellular 
junctions, responsible for 
maintaining the mechanical 
integrity of tissues.

Presynaptic boutons
Neurotransmitter- producing 
knoblike enlargements at  
the end of an axon involved  
in forming a synapse with 
another neuron.

Immunological synapse
The interface between an 
antigen- presenting cell or a 
target cell and a lymphocyte, 
such as a B cell or T cell, or a 
natural killer cell.

Catastrophes
Abrupt transitions from 
microtubule growth to 
shortening associated with  
loss of a gTP cap; they can 
occur spontaneously or be 
triggered by obstacles to 
microtubule growth or different 
cellular factors.
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(rescues), most microtubule mass turns over rapidly. As 
indicated above, growing microtubules are stabilized by 
their GTP caps, which are lost when microtubules switch 
to shrinkage85. Some microtubules can live longer than 
others, and these are often called stable microtubules. 
Importantly, there are multiple ways to define micro-
tubule stability104. A microtubule that does not undergo 
catastrophes maintains its GTP cap and could be consid-
ered a stable microtubule, because its lattice has a long 
lifetime. However, microtubules that grow and shrink, 
and thus acquire and lose GTP caps, can also acquire 
long- lived segments if the average length gained during 
growth is greater than the length lost during shrinkage 
(fig. 2b). In both cases, the stable, long- lived nature of 
the microtubule lattice depends on the behaviour of the 
microtubule plus end.

In a more stringent and widely used definition of 
stability, stable microtubules should persist also when 
the GTP cap is lost, for example, during depolymeri-
zation induced by cold or by small molecules, such 
as nocodazole, or after severing (fig. 2c,d). In many 
cases, such GTP cap- independent microtubule sta-
bility depends on the presence of lattice- associated 
post- translational modifications (see the next section) 
or MAPs. In particular, MAP6 (or STOP, stable tubule 
only) is well known for protecting microtubules from 

cold or drug- induced depolymerization. Recent work 
revealed that MAP6 accumulates in a periodic pattern 
in the lumen of microtubules, which could contribute to 
stabilization, and induces them to coil105. Besides MAP6, 
many other MAPs can contribute to microtubule stabil-
ity (for a recent review, see ref.106). Some of these MAPs 
also cause microtubule bundling, which explains why 
microtubule bundles are often more stable than individ-
ual microtubules106. An interesting example is TRIM46, 
a bundler of parallel microtubules that has a low affinity 
for individual microtubules (fig. 2e). When this protein 
was added to a reconstitution experiment with dynamic 
microtubules, no shrinkage was detected in micro-
tubules cross- linked by TRIM46 (ref.107). Recent work in 
Drosophila suggested that the fly orthologue of TRIM46, 
Trim9, has a similar role in neuronal dendrites in the 
fly, although in this case microtubule stabilization addi-
tionally requires cooperation with EB1 and the kinesin 5 
KLP61F (ref.108).

Next to the ability to resist drug, protein or temperature- 
induced depolymerization, microtubule stability could 
be reflected in the response to mechanical stresses, such 
as compression or bending. Whereas forces exerted on 
microtubules can induce their depolymerization109 or 
even breakage110, the presence of MAPs or modifica-
tions can make microtubules more resilient and, thereby, 
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Fig. 2 | Regulation of microtubule growth and stabilization. a | Two 
representations of a growing microtubule with a cap of GTP- bound tubulin. 
Older parts of a microtubule can accumulate post- translational 
modifications, which can contribute to regulation of microtubule stability. 
Stability can also be achieved by binding of microtubule- associated 
proteins (MAPs). b–d | Definitions of microtubule stability: a microtubule 
segment can become long- lived even if its end is very dynamic if the 
depolymerization episodes are short and followed by regrowth, resulting in 
net extension of the microtubule (part b); some microtubules are stable and 
do not depolymerize even though they lack the stabilizing GTP cap (this 

typically occurs due to the action of specific MAPs) (part c); microtubules 
with stable microtubule lattices do not depolymerize after breakage or 
severing (part d). e | Some MAPs specifically bind to two or more 
microtubules to form bundles, which prevents shrinkage of microtubules.  
f | Loss of GDP- tubulin dimers from microtubule lattice (‘damage’) can lead 
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increase their lifetime110. Furthermore, when micro-
tubules do break upon bending or get severed by sever-
ing enzymes, newly generated ends could either quickly 
depolymerize or remain stable over time (fig. 2d), and 
this stability likely correlates with the ability to resist 
other challenges. Nonetheless, it is important to dis-
criminate the different aspects of microtubule stability 
discussed above, because this might help explain how a 
subset of microtubules becomes stabilized.

A recently proposed mechanism for microtubule sta-
bilization is the incorporation of GTP- tubulin in existing 
lattices after the removal of GDP- tubulin — a process 
referred to as microtubule repair (reviewed elsewhere111) 
(fig. 2f). In vitro experiments have shown that free tubu-
lin can become incorporated into microtubules damaged 
by bending, severing enzymes or motor proteins112–115. 
The GTP- tubulin patches that result from this repair 
process could contribute to lattice stabilization, for 
example by providing rescue sites that halt depolymeri-
zation and promote growth116,117. For long- lasting effects 
this would require that the GTP does not get readily 
hydrolysed in those repair patches. Another potential 
mechanism for lattice stabilization is the conversion 
of GDP- tubulin from a compacted state to a slightly 
more expanded GTP- like state. Recent work has shown 
that kinesin 1 can induce this transition118,119 (fig. 2g). 
Remarkably, sub- stoichiometric decoration with these 
motors already results in microtubule elongation that 
would require conformational changes to the expanded 
state in the majority of tubulin dimers. This suggests that 
the kinesin- induced axial extension of individual tubulin 
dimers can be propagated to neighbouring subunits to 
induce more global changes in the lattice configuration. 
This, in turn, could promote the recruitment of addi-
tional motors and MAPs that preferentially bind micro-
tubules with an expanded- type lattice and lead to further 
stabilization and modification.

Microtubule–cell cortex interactions
Both microtubule tips and shafts can be specifically 
tethered to the cell cortex through a large variety of 
molecular links that direct microtubule- based trans-
port towards specific cortical sites or that control the 
mobility and positioning of microtubule arrays by pro-
moting or counteracting motor- based sliding (see sec-
tion Microtubule sliding and reorientation). In neurons, 
interactions of microtubules with the cortex can restrict 
microtubule mobility and promote polarized micro-
tubule organization120. By providing a stable protein 
delivery route, these stabilized microtubule networks 
can generate positive feedback that promotes the for-
mation and maintenance of membrane domains, such 
as the axon initial segment107.

Similar to the mechanisms of cortical minus- end 
attachment described above, cortical tethering of micro-
tubule shafts or plus ends can be achieved by direct cou-
pling to the actin–spectrin cytoskeleton, for example, 
by microtubule–actin cross- linking proteins such as 
spectraplakin (reviewed elsewhere121). Furthermore, 
a cortical microtubule stabilization complex, which 
contains CLASP and several scaffolding proteins and 
is present in mesenchymal and epithelial cells, attaches 

microtubule plus ends to the vicinity of focal adhesions 
and coordinates adhesion with secretory trafficking to 
promote epithelial polarity or cell motility (reviewed 
elsewhere122) (fig. 2h). This CLASP- containing complex 
is also present on the muscle side of neuromuscular 
junctions, where it controls delivery and organization of 
acetylcholine receptors123. Another large protein assem-
bly present in muscle cells, the dystrophin- associated 
protein complex (DAPC), connects the Z- discs of the 
contractile units, sarcomeres, to the extracellular matrix 
as well as to subcortical microtubules and intermedi-
ate filaments; it serves as a hub for mechanotransduc-
tion and protects muscle cells from exercise- induced 
injury124. Dystrophin can bind to microtubules directly 
but also controls microtubule organization indirectly125, 
and some additional components, such as liprin- α1, are 
shared between DAPC and the cortical microtubule sta-
bilization complex126. Membrane localization of DAPC 
requires ankyrins, scaffolding proteins interacting with 
β- spectrin127. Ankyrins can connect to microtubules in 
other ways — for example, through EBs128 or through the 
microtubule- binding protein CRMP120.

Another major player in microtubule attachment to 
the cortex is the minus end- directed motor cytoplasmic 
dynein together with its accessory complex dynactin. 
For example, in cardiomyocytes, microtubule plus- end 
tethering through the complex of dynactin with EB1 was 
reported to guide transport of gap junction components to 
N- cadherin- positive adherens junctions129. However, the 
most important function of the cortical dynein–dynactin  
complex is to slide microtubules along the cortex or pull 
on their outermost plus ends and, in this way, centre or 
relocate microtubule networks (see section Microtubule 
sliding and reorientation).

Post- translational modifications
After polymerization, tubulin dimers within the micro-
tubule lattice can undergo various post- translational 
modifications, including acetylation, detyrosination and 
polyglutamylation (for recent reviews, see refs130,131). 
This creates a new dimension of biochemical microtu-
bule heterogeneity and allows cells to diversify their net-
work by creating different microtubule subsets that serve 
different functions. Post- translational modifications are 
strongly enriched in specialized compartments, such as 
cilia or axons. Naively, this suggests that the activity of 
the modifying enzymes is restricted to certain compart-
ments and will result in a homogeneous modification 
of microtubules within that compartment. Nonetheless, 
high- resolution microscopy has revealed that differ-
ent subsets of microtubules often coexist in the same 
compartment132, which raises many questions about 
how these different microtubule subsets are established 
and maintained.

Because many tubulin modifications accumulate 
slowly and are not generally reversed within the micro-
tubule lattice, they accumulate on older microtubules 
(fig. 2b,c), and stable microtubules are therefore often 
highly modified131. Furthermore, some modifica-
tions also promote microtubule stability. Acetylation 
makes microtubules more resistant against mechanical 
wear, and thereby promotes microtubule longevity110. 
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membrane- associated 
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Detyrosination reduces microtubule disassembly by 
kinesin 13 family members133. Increased levels of poly-
glutamylation promote binding of the severing enzymes 
spastin and katanin but reduce their activity134. As a 
result, severing is initially promoted upon increasing 
polyglutamylation, but inhibited for heavily polyglu-
tamylated microtubules, such as those in cilia and cen-
trioles. As such, highly polyglutamylated microtubules 
could also be protective for neighbouring microtubules, 
because they serve as a sink for severing enzymes.

The existence of different microtubule subsets also pro-
vides opportunities to create specialized transport routes 
for different cargoes. For example, kinesin 1 preferen-
tially interacts with microtubules that are acetylated and 
detyrosinated135,136, whereas kinesin 3 prefers dynamic,  
tyrosinated microtubules136,137. However, given the lim-
ited effects of microtubule modifications in experiments 
with purified components138, these strong preferences 
are most likely not directly caused by these modifica-
tions but mediated by MAPs or microtubule lattice 
configurations118,139.

The most direct evidence for important functional 
roles of microtubule modifications comes from study-
ing genetic diseases caused by mutations in modifying 
enzymes or from mouse models in which these enzymes 
have been removed (see ref.140 for a recent review). For 
example, hyperglutamylation of α- tubulin caused by 
depletion of the deglutamylase CCP1 results in reduced 
motility of many different microtubule- based cargoes 
in mouse model and infantile- onset neurodegenera-
tion in humans141–144. Furthermore, knockout of the two 
enzymes that initiate tubulin glycylation (TTLL3 and 
TTLL8) causes male infertility in mouse because the 
lack of glycylation in the sperm tail axonemes perturbs 
sperm swimming, most likely through impaired dynein 
activity145.

Microtubule sliding and reorientation
Microtubules can be redistributed or redirected in order 
to promote a specific organization of the cytoskeleton 
and allow its adaptation to dynamic cell processes and 
behaviours. In many cases, this involves the use of motor 

proteins that move entire microtubules, focus micro-
tubule minus ends or redirect growing plus ends. In all 
these cases, the specific directionality of motors helps 
form a microtubule network with a well- defined organ-
ization. Motor- driven sliding of entire microtubules 
along each other contributes to the formation of bipolar 
mitotic spindles by pushing apart spindle poles (fig. 3a), 
whereas dynein- dependent focusing of minus ends 
organizes the spindle poles. Moreover, dynein- mediated 
sliding of microtubules along the cortex (fig. 3b) or 
pulling on their plus ends (fig. 3c) is crucial for mitotic 
spindle positioning, which determines the cell division 
plane and thus directs the choice between proliferation 
and differentiation during tissue development (reviewed 
elsewhere146). Dynein- driven pulling at the plus ends 
also participates in centring147 or relocation of interphase 
centrosomes. The latter process is important for the for-
mation of immunological synapse in immune cells148. 
The molecular details of cortical dynein machinery in 
mitosis have been studied in great detail146, and the cor-
responding interphase complexes are also starting to be 
revealed. For example, in fly axons, dynein- dependent 
sliding moves minus end out- oriented microtubules 
back to the cell body and thereby promotes a uniform 
plus end out- oriented microtubule array149,150. In this 
case, dynein is cortically anchored through the dynein 
adaptor Spindly151.

Apart from driving cargo transport, the major plus 
end- directed motor, kinesin 1, can also drive motility 
of the microtubules themselves, either by cross- linking 
microtubules (sliding, reviewed elsewhere152) or, perhaps, 
by attaching to static structures (gliding) (fig. 3a,b). This 
process causes cytoplasmic streaming in fly oocytes and 
promotes neurite initiation in fly neurons153,154. At branch 
points of fly dendrites, the uniform minus end- out 
microtubule orientation of dendrites is maintained by 
another member of the kinesin family, kinesin 2, which 
associates with growing plus ends to bias their growth 
towards the plus ends of pre- existing microtubules so 
that they would all point in the same direction155 (fig. 3d). 
In the cell body, kinesin 2 motors furthermore ensure 
that microtubule plus ends are biased towards the axon57.

Cytoplasmic streaming
intracellular movement of the 
fluid substance (cytoplasm), 
transporting nutrients, 
macromolecules and 
organelles.
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In addition to motor- driven guidance, microtubule 
growth can be directed along existing microtubules  
or other cytoskeletal elements through passive cross- 
linkers. For example, the penetration of microtubules 
into dendritic spines, which is important for controlling 
neuronal activity from the post- synaptic side, requires 
bending of polymerizing microtubules along actin fibres 
emerging from the spines156,157 (fig. 3e). In a similar fash-
ion, actin bundles can guide microtubules in the axonal 
growth cone during axonal pathfinding158–160.

Microtubule network diversity in cells
The combinations of molecular mechanisms described 
above can generate microtubule networks with widely 
different geometries and densities. Below, we describe 
the microtubule organization in the best- studied cell 
types of our body — fibroblasts, immune, epithelial and 
muscle cells and neurons. These different organizations 
are uniquely related to specific cell functions as high-
lighted below. For a more general discussion on how dif-
ferent microtubule network geometries control transport 
patterns, see ref.161.

(Semi-)Radial networks in motile cells
Motile differentiated cells often contain radial, centrosome- 
anchored microtubule networks, likely because they 
allow quick alterations in cell polarity. For example, 
immune cells can reorient their centrosome within 
a few minutes and dock it at the site of immune syn-
apse to create a focal point for trafficking and secre-
tion (fig. 4a), allowing target killing or immune cell 
activation162. This rapid reorientation requires micro-
tubules to be short and sparse101. As the microtubule 
density in immune cells is typically low, microtubules 
do not provide direct mechanical support but can still 
promote cell integrity. They can prevent large, branched 
cells, such as dendritic cells, from breaking into pieces 
during migration, because local microtubule depolym-
erization in cell protrusions remote from the MTOC 
triggers actomyosin contractility and retraction of 
these remote protrusions163. Microtubules in immune 
cells are predominantly centrosomal, and during an 
immune response, microtubule nucleation at the cen-
trosome can be increased by enhanced recruitment of 
PCM components164.

Motile epithelial and endothelial cells as well as 
fibroblasts have a semi- radial microtubule system cen-
tred around the centrosome and the associated Golgi 
complex40,52 (fig. 4b). The activity of the Golgi as the sec-
ondary MTOC can play an important role in increasing 
microtubule density and promoting microtubule- based 
transport to the leading cell edge (reviewed elsewhere40). 
The synergy between the Golgi MTOC in the cell centre 
and microtubule plus end- stabilizing complexes at the 
cell cortex allows generation of dense and stable micro-
tubule arrays facing the direction of cell migration40,165. 
Such microtubule architecture is needed for directional 
vesicle trafficking, control of cell adhesion and, pos-
sibly, also for providing mechanical support to large 
cell protrusions, which are particularly important in 
soft three- dimensional environments where adhe-
sion is insufficient to support cell shape94,166. Because 

dynamic microtubule rearrangements are important 
for cell migration, both stabilizing and destabiliz-
ing microtubule- targeting agents can modulate cell 
movements, for example, during angiogenesis167.

Microtubule networks in epithelia
Columnar epithelial cells form sheets that serve as 
barriers and display a different intracellular organiza-
tion towards their apical versus their basolateral sides. 
To establish and maintain this polarized organization, 
these cells build a polarized microtubule network that 
facilitates direct transport routes to both sides168 (fig. 4c). 
As discussed above (in the section Microtubule nucle-
ation and anchoring), the formation of this network is 
driven by the enrichment of microtubule- nucleating 
and anchoring complexes at the apical cortex or, in the 
case of multiciliated cells, the basal bodies of the cilia 
(fig. 4d). This results in a uniform microtubule array that 
grows towards the basolateral surface. Beyond trans-
port, this longitudinal microtubule array may also serve 
other functions, such as shape control and morpho-
genesis, as reducing its density results in decreased 
actomyosin- driven apical constriction during epithelial 
tube formation35,169.

Many epithelial cells, furthermore, feature a dense 
microtubule network underneath the apical surface. 
These microtubules are believed to contribute to planar 
cell polarity, which is the uniform polarization within 
the plane of a sheet of cells (for a review, see ref.170).  
In the fly wing, key planar cell polarity proteins, such 
as Frizzled and Dishevelled, have been shown to move 
over apical microtubules to achieve their correct local-
ization (that is, proximal or distal)171,172. In the multi-
ciliated ependymal cells that line the ventricles of the 
mouse brain, CAMSAP3 mediates the formation of 
an apical microtubule network that is important for 
broadening their apical domain and proper ventricle 
formation, possibly through the positioning of lyso-
somes that mediate mTorC1 activation, which, in turn, 
regulates cell morphology173. Apical microtubules, 
furthermore, contribute to the proper positioning 
and coordinated beating of cilia in the apical plane of  
multiciliated cells47,48,174.

Microtubule networks in muscle cells
Differentiated muscle cells contain both longitudinally 
arranged microtubules that run parallel to myofibrils 
(interfibrillar microtubules) and orthogonal cortical 
microtubule grids3,59,175 (fig. 4e). Increased microtubule 
density is found around the nuclei and associated Golgi 
membranes, which serve as major MTOCs and are 
located centrally in cardiomyocytes, but extruded to the 
cell periphery in skeletal muscles60,70. Cortical microtu-
bule grids are organized by Golgi outposts (fig. 4e), and 
the organization of microtubules running parallel to 
Z- discs depends on the DAPC59,125,175. Similar to other 
large cells, microtubules in muscle cells are important 
for organelle positioning (for example, distribution of 
nuclei, sarcoplasmic reticulum and mitochondria) and 
for trafficking of transmembrane proteins (reviewed 
elsewhere3). By serving as transport highways, micro-
tubules participate in organizing specialized membrane 

Dendritic spines
Membranous protrusions from 
a neuronal dendrite that 
receive input from an axon at 
the synapse.

Dendritic cells
Antigen- presenting cells that 
form an important role in the 
adaptive immune system.

mTORC1
(Mammalian (or mechanistic) 
target of rapamycin complex 1). 
A protein complex that 
functions as a nutrient, energy 
and redox sensor and controls 
protein synthesis.
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domains, such as neuromuscular junctions in skeletal 
muscles123 and the cardiomyocyte intercalated discs, 
intercellular contact sites containing gap junctions and 
desmosomes3.

Recent work showed that desmin intermediate fila-
ments located at the Z- discs of sarcomeres in cardio-
myocytes specifically interact with stable, detyrosinated 
microtubules176 (fig. 4e) and also serve as sites of micro-
tubule stabilization and rescue177. Whereas the molecular 
basis of these interactions still needs to be uncovered, 
their physiological importance has been convincingly 
demonstrated: they increase cardiomyocyte stiffness 

and inhibit relaxation3,176. Increased microtubule den-
sity, MAP- driven stabilization and detyrosination impair 
cardio myocyte contractility and are associated with heart 
failure of different aetiology178–180. Control of micro tubule 
dynamics and post- translational modifications thus 
emerges as a promising therapeutic route for treating  
heart disease178–180.

Microtubule organization in neurons
Because of their extreme dimensions, neurons heavily 
depend on long- range transport along microtubules. Not 
only do microtubule- based motors help deliver proteins, 
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mRNA and organelles across the enormous length 
of the axon, they also contribute to the sorting of the  
different cargoes to either axons or dendrites161,181,182. 
The organization of the neuronal microtubule cytoskel-
eton facilitates both of these processes. Microtubules 
in neurons are more abundant and stable than in most 
other cell types, likely due to the presence of numerous 
neuron- specific MAPs1,104. Interestingly, to organize 
and stabilize their microtubules, neurons also use some 
MAPs that in dividing cells act specifically in mitotic 
spindle assembly, such as kinetochore proteins, which 
provide an additional set of tools to shape microtubule 
arrays183–186.

Axons display a uniform microtubule array where all 
plus ends are oriented distally, which facilitates straight-
forward division of labour between plus and minus 
end- directed motors in driving anterograde and retro-
grade transport, respectively (fig. 4f). Importantly, the 
axonal microtubule network is a mosaic of many differ-
ent microtubules, because axonal microtubules are typi-
cally much shorter than the axon itself187. Careful analysis 
of axonal transport and microtubule organization in 
C. elegans revealed that the distance travelled by cargoes 
before pausing is determined by microtubule length 
and that cargoes often pause at microtubule ends188. 
Axonal microtubules are often heavily modified and 
stabilized (reviewed in refs104,181), which could ensure 
long- term stability of axonal transport. Nonetheless, 
dynamic microtubules are still present throughout the 
axon. Recent work has shown that growing microtubule 

ends are enriched near en passant synapses (synapses 
that are not located at axon terminals). The growing 
microtubule ends contribute to proper delivery of syn-
aptic vesicle precursors by promoting the detachment 
of the plus end- directed kinesin KIF1A, which has a 
reduced affinity for the GTP- tubulin at the plus end189. 
Conversely, proteins enriched at dynamic plus ends, 
such as CLIP-170, promote the loading of dynein motors 
onto microtubules to initiate retrograde transport of 
different cargoes190,191.

The dendrites of flies and worms also display uni-
form microtubule orientations, but here all minus ends 
are pointing outward192,193. This difference in orientation 
facilitates straightforward sorting of cargoes between 
axons and dendrites by activating either plus or minus 
end- directed motors, respectively194. By contrast, den-
drites of mice and rat neurons feature both minus and 
plus end out- oriented microtubules195,196 (fig. 4f). As 
a result, various motors can drive bidirectional trans-
port over this microtubule network197,198. Nonetheless, 
microtubules with the same polarity often cluster 
together (fig. 4f), so that motors that switch to neigh-
bouring microtubules are likely to continue moving in 
the same direction137. Furthermore, in rat hippocampal 
neurons, oppositely oriented microtubules have different 
properties137. Nocodazole- resistant stable microtubules 
are predominantly oriented minus end out, whereas the 
majority of dynamic microtubules are oriented plus end 
out. This organization is believed to exclude kinesin 1  
(which prefers stable microtubules) from dendrites, 
while ensuring that kinesin 3 (which prefers dynamic 
microtubules) can drive long- range anterograde trans-
port within dendrites. Thus, microtubule organization 
within dendrites supports motor selection to regulate 
transport between dendrites and the soma.

As discussed in earlier sections, parallel bundling 
and stabilization of microtubules by TRIM46 and other 
MAPs, directed nucleation by the HAUS complex and 
motor- based sorting all contribute to the uniform orien-
tation of axonal microtubules80,107,149,150,199–201. The mecha-
nisms that underlie the selective stabilization of minus 
end- oriented microtubules in mammalian dendrites 
with mixed orientations are less clear. Important players, 
such as CAMSAP2 and the kinesin 14 KIFC1, have been 
identified in recent years202,203, but an integrated model 
for microtubule organization in mammalian dendrites 
is still missing.

Outlook
Microtubule organization is well understood in cycling 
cells cultured on flat surfaces, but imaging micro tubules 
in three- dimensional differentiated cells, particularly 
within intact tissues, has proven to be much more chal-
lenging due to the small cell sizes, high microtubule 
density and poor accessibility of such samples to con-
ventional microscopy. Recently, major progress has been 
made in manipulating and imaging the cytoskeleton in 
tissues, and further progress is expected due to advances 
in high- resolution three- dimensional microscopy, such 
as expansion microscopy and cryo electron tomography  
(Box 2). Combined with increasingly effective ways to 
knockout genes and tag endogenous proteins in specific 

Fig. 4 | Microtubule organization in major mammalian cell types. a | Immune cells 
have a sparse and dynamic centrosomal microtubule network that can be rapidly 
reoriented during formation of immunological synapse to facilitate polarized secretion 
of cytokines towards the antigen- presenting cell or lytic molecules towards a cell 
targeted for cytotoxic killing. b | In fibroblasts and other mesenchymal cells, a radial 
microtubule network formed by the centrosome with the closely associated Golgi 
apparatus can be reoriented depending on the direction of cell migration to control 
polarized transport of vesicles and macromolecules, such as focal adhesion components, 
to and from the leading and trailing cell edges. c | In some epithelial cells, microtubule 
minus ends are tethered at the apical cortex whereas the plus ends extend to the basal 
side to create a polarized array. These microtubules control polarized transport and 
organization of the epithelial cell. In addition, a microtubule meshwork present at the 
apical side can help shape the apical cell. d | In multiciliated epithelial cells, basal feet 
(appendages of the basal bodies) organize the apico- basal microtubule network, 
required for polarized cell organization and transport, whereas an apical cortical 
meshwork participates in regulating planar cell polarity (coordinated alignment of cells 
across the tissue plane) and ensures uniform orientation of cilia. e | In cardiomyocytes, 
microtubule minus ends are tethered to the nuclear envelope with closely apposed  
Golgi membranes; Golgi outposts form additional microtubule- organizing centres 
(MTOCs). Cortical microtubules form an orthogonal grid, with transversal microtubules 
positioned along Z- discs. Interfibrillar microtubules run parallel to actomyosin fibres and 
perpendicular to Z- discs. Cardiomyocytes feature a population of stable, detyrosinated 
microtubules; these interact with desmin at Z- discs and buckle during cell contraction. 
Similar to other cell types, microtubules in muscle cells guide membrane transport and 
control organelle positioning. In addition, microtubules play mechanical roles in these 
cells, whereby buckling microtubules resist the load of contraction and stiffen the cell.  
f | In mammalian neurons, axons have a microtubule array with uniform plus end- out 
polarity, whereas dendrites feature microtubules of both orientations. These microtubules 
organize into polarized bundles that differ in stability and composition (that is, minus- end 
microtubules are more stable than plus end- out microtubules) and serve as rails for long- 
range transport and as a scaffold for organelle positioning and mechanical support  
of neurites. In addition, signalling complexes at microtubule plus ends have local 
regulatory roles.
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tissues and organs, these approaches bear great promise 
to reveal complete three- dimensional maps of microtu-
bules and the functions of their regulators, for example 
in small transparent animals, such as worms or zebraf-
ish. Detailed understanding of cytoskeletal architecture 
and function in cells within mammalian tissues also 
becomes increasingly feasible, particularly through 

improvements of intravital imaging and the broad use of 
cultured genetically tractable tissue models such as orga-
noids. Such understanding is essential, because it will 
provide a much clearer view on how microtubule- based 
processes contribute to organism development and 
organ physiology. Moreover, imaging of microtubules 
and their regulators in their native tissue environment 

Box 2 | Technologies for mapping dense microtubule networks

Individual microtubules are easy to visualize by fluorescence microscopy in both live and fixed cells. However, achieving  
a complete quantitative description of dense, three- dimensional microtubule networks present in most differentiated cells 
represents a major challenge. Advances in electron tomography and focused ion beam milling combined with scanning 
electron microscopy (FIB- sem) (see the figure, part a, top), in principle, allow very thorough analysis of microtubule 
networks211,212. For example, the entire microtubule network of insulin- producing β cells was reconstructed at high 
resolution (see the figure, part a, bottom; reprinted from ref.212, CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0/)), revealing microtubule geometry and interactions with different membrane organelles212. Although the resolution 
of electron microscopy is very high, it is also extremely laborious, making the throughput low. Furthermore, whereas 
electron microscopy- based analyses allow exploring microtubule interactions with surrounding organelles, they are more 
difficult to combine with detection of specific molecules or post- translational modifications.

these problems can be addressed by super- resolution fluorescence microscopy. earlier super- resolution techniques, such 
as single- molecule localization microscopy or stimulated emission depletion microscopy, yield a tenfold increase in the 
lateral resolution as compared with conventional light microscopy, and current developments focus mostly on optimizing 
the fluorescent probes to increase labelling density and brightness or reduce probe size to limit linkage errors213. A variant 
of single- molecule localization microscopy, motor- PAINt, allows one to determine both the position and orientation of 
single microtubules. this is achieved by detergent- based cell extraction followed by fixation to preserve the cytoskeleton, 
addition of fluorescent kinesins, single- molecule imaging and subsequent trajectory reconstruction137 (see the figure,  
part b, top; adapted from ref.137, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/); and bottom; reprinted from 
ref.137, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)). However, these techniques are currently insufficient for 
resolving dense three- dimensional microtubule networks in tissues. Among the available techniques, the most promising 
for addressing this challenge is expansion microscopy, where samples stained with fluorescent probes are embedded in a 
gel that is isotropically swollen before imaging214 (see the figure, part c; bottom image, derived from the data in ref.215,  
is a courtesy of Hugo Damstra). Recent advances in expansion microscopy allow tenfold expansion, and combination  
of antibody staining for specific cellular components with more general stains for proteins and membranes that provide 
cellular context216. As all techniques have their advantages and drawbacks, one can expect that, in the future, correlative 
approaches combining different imaging modalities will be needed to obtain full descriptions of microtubule networks, 
including microtubule localization, number, length, orientation, modifications and the composition of the associated 
microtubule- associated proteins (mAPs).
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is important from a medical perspective — it will open 
up the possibilities to optimize the activity and reduce 
the toxicity of microtubule- targeting agents, such as 
Taxol or colchicine. These compounds have been used 
for decades to treat cancer and inflammation, but we 
still lack the information on the dynamic changes they 

exert on the cytoskeleton within tissues. Recent inter-
est in targeting microtubules to treat cardiovascular 
disease3 and neurodegeneration204 makes such studies 
increasingly relevant.
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