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Quantizing Lévy flights
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The Caldeira-Leggett model of quantum Brownian motion is generalized using a generic velocity-dependent
coupling. That leads to the description of a set of models able to capture Markovian and non-Markovian versions
of Brownian and Lévy statistics, depending on the functional form of the coupling and on the spectral function
of the reservoir. One specific coupling force is found that establishes a connection with Lévy statistics of cold
atoms in Sisyphus laser cooling. In the low-velocity limit, this also gives rise to additional inertia of the Brownian
particle, reproducing the Abraham-Lorentz equation from first principles for a superohmic bath. Through path-
integral quantization in Euclidean time, the environment is integrated out, leaving a set of nonlocal effective
actions. These results further serve as starting points for several numerical calculations, particularly decoherence
properties of nonohmic baths.
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I. INTRODUCTION

The description of open quantum systems is often a re-
markable challenge. A paradigmatic example is Brownian
motion, the random-walk behavior exhibited by a particle
when subjected to a bath composed of smaller particles. Its
classical trajectory is described by the Langevin equation,
which has a velocity-dependent term that makes direct canon-
ical quantization problematic since energy conservation is
violated. To solve this problem, Caldeira and Leggett [1,2]
modeled the bath as a collection of harmonic oscillators,
which allowed them to close the system and investigate quan-
tum aspects of Brownian motion to describe the quantum
flux dynamics in Josephson junctions and superconducting
quantum interference devices [2–4].

Many simple physical systems adhere to the random-walk
behavior of Brownian motion. Nevertheless, more complex
motions are also found in nature. A typical example is Lévy
motion, which corresponds to a random walk for most of the
time, but has occasional large “jumps,” the so-called Lévy
walks [5] (see Fig. 1). The Lévy distribution is a generaliza-
tion of the Gaussian distribution, characterized by power-law
tails and divergent moments. Lévy statistics is for example
applied to model turbulent flow [6], in hopping processes in
polymer physics [7], or in laser cooling experiments [8,9].
Lévy statistics is also connected to diffusion in a Sierpinski
fractal [10]. Recently, a quantum fractal has been experi-
mentally realized in the nanodomain and the electronic wave
functions were shown to experience the fractal dimension of
the Sierpinski gasket, d = 1.58 [11]. An important question
in this context is then how to model a quantum Lévy system.

Here we generalize the Caldeira-Leggett model to answer
this question. First, we change the interaction between the
Brownian particle and the bath to depend on the velocity
of the particle in a generic way. A second tool to describe

different types of processes is the specific form of the spectral
function J (ω), which characterizes the reservoir. In general,
J (ω) = ηωs, with s = 1 describing ohmic processes and s < 1
or s > 1 describing subohmic and superohmic baths, respec-
tively. As an application of our generic model we have chosen
a particular nonpolynomial coupling which, together with an
ohmic bath to describe a Markovian process, reproduces a
force that gives rise to Lévy walks as encountered in ultracold-
atom experiments, e.g., Sisyphus laser cooling [12,13]. In the
low-velocity regime, in contrast, we find an equation that
resembles the Abraham-Lorentz equation in the superohmic
regime, i.e., the equation for the self-interaction of an electron
with its own radiation field [14].

Further, we use path-integral quantization to construct
a quantum version for the generalized velocity-dependent
model. After tracing out the bath, it turns out to be possible to
find an effective action without a special choice for the form of
the coupling; hence it remains completely general. Reducing
to the linear-velocity case, we obtain an effective action that
can be interpreted as a bath-induced resistance to a change in
velocity of the Brownian system—on top of classical inertia
terms. These quantum models directly correspond to models

FIG. 1. Comparison between (a) Brownian motion and (b) Lévy
motion. For Lévy motion, long steps are more frequent and make the
dominant contribution to transport.
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of the generalized Langevin equation, i.e., the Brownian and
Lévy regimes, depending on the choice for the coupling force.

II. THE LÉVY DISTRIBUTION

In 1937, the French mathematician Lévy tried to find so-
lutions to the question [15] “When does the probability PN (x)
for the sum of N steps x = x1 + x2 + · · · + xN have the same
distribution (up to a normalization) as for the individual steps
pi(x), i = 1 . . . N?” The trivial solution is the Gaussian prob-
ability distribution

P(x) = 1√
2πσ 2

exp

(
1

2σ 2
x2

)
, (1)

for σ the standard deviation, since the sum of N Gaussian dis-
tributions is again a Gaussian. However, Lévy found that there
are additional solutions. These are called Lévy distributions,
which have the following form in Fourier space:

PN (k) = exp(−Na|k|β ), (2)

where N represents the total number of steps. For β = 2 and
a = σ 2/2, we have a Gaussian distribution. We calculate its
form in x space with an inverse Fourier transform, which
should return a Gaussian distribution:

PN (x) =
∫ ∞

−∞

dk

2π
exp

(−Nσ 2

2
|k|2 + ikx

)

= 1√
2πNσ 2

exp

(
− x2

2Nσ 2

)
, (3)

as anticipated. This results in the random-walk behavior char-
acteristic of Brownian motion. For β = a = 1, however, we
have the Cauchy-Lorentz or Lévy distribution, which, trans-
formed back to x space, reads

PN (x) =
∫ ∞

−∞

dk

2π
exp(−N |k| + ikx) = 1

π

N

N2 + x2
. (4)

A comparison between the Gaussian and the Lévy distribution
can be observed in Fig. 2. The Lévy distributions are the
generalization of the Gaussian distribution in the sum of large
numbers of independent variables in cases where the variances

FIG. 2. Sketch of the Gaussian distribution (red) and of the Lévy
distribution (blue). Because the support of the Lévy distribution is
decaying at a lower rate than that of the Gaussian curve, a property
called “heavy tails,” the probability for a step deviating much from
the mean is higher. Such a highly deviating step, then, corresponds
to an event occurring in the tails of Lévy distribution.

of the variables diverge, which is known as the generalized
central limit theorem. In contrast to the Gaussian-distributed
momentum of Brownian motion, the Lévy distribution has
“heavy tails,” which increase the probability for making long
jumps [16].

Lévy statistics is now recognized as a good tool for
studying many anomalous diffusion problems where stan-
dard statistics fail. There are plenty of experiments per-
formed in the ultracold atoms community which allow us
to study the anomalous diffusion with samples displaying
non–Boltzmann-Gibbs statistics [17–20]. The signature of
anomalous diffusion is given by the presence of a power-law
tail in the atomic momentum distribution, which can be veri-
fied through the absorption image of the free expanding atom
cloud after being released from the confinement trap.

Here, we will discuss the technique of Sisyphus laser cool-
ing (sometimes called polarization gradient cooling), which
is a type of laser cooling that allows atoms to reach temper-
atures below the Doppler cooling limit [21]. This technique
consists of a one-dimensional optical lattice formed by two
counterpropagating laser beams with linear perpendicular
polarization. The cooling and confinement rely on velocity-
dependent or position-dependent absorption of laser photons
followed by spontaneous emission. The complexity in the
absorption-emission process can, theoretically, be quantita-
tively understood in terms of nonergodic random processes
dominated by a few rare events, such as the recoil after spon-
taneous emission; Brownian as well as anomalous diffusion
such as Lévy walks can be observed, depending on the heat
bath implemented by the field of the lattice lasers, which
determines both damping and fluctuations in the transport
equation [22]. In the context of the Lévy walks in Sisyphus
cooling, the following momentum-dependent force was re-
cently proposed:

f (p) = p

1 + p2/p2
c

, (5)

with a momentum cutoff pc [22,23]. This is the force that we
shall discuss and reproduce in Sec. IV.

III. THE CALDEIRA-LEGGETT MODEL: BILINEAR
COORDINATE-COORDINATE COUPLING

The framework for Brownian motion makes it difficult to
find a theory of quantum Brownian motion via conventional
quantization techniques. The reason is that either the La-
grangian (for path-integral quantization) or the Hamiltonian
(for canonical quantization) will have an explicit time depen-
dence in order to reproduce the velocity-dependent friction
term of the Langevin equation. Hence, energy is not conserved
and, although the nonconservation of energy is natural for
open systems, this makes direct quantization impossible. In
addition, this framework is a phenomenological one, i.e., the
diffusion constant or the viscosity can only be determined
experimentally for different materials that the environment
can consist of. This is to be expected, since a microscopic
description of the environment was absent in the first place.
To go beyond phenomenology, one needs a theory where the
origin of the viscosity of a particular medium can be explained
on a theoretical basis. Yet there is no action principle that
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allows for the derivation of the phenomenological Langevin
equation solely in terms of the Brownian particle. Thus, we
will have to look for a microscopic description of the bath.

The gap between phenomenological modeling and precise
microscopic formulation is bridged by the Caldeira-Leggett
model [1]. It describes both the system and the bath, and
their interaction by one Lagrangian, while the physical origin
of this interaction is initially kept unspecified for generality.
The bath is modeled as a collection of harmonic oscillators,
linearly coupled to the system of interest. This is a minimal
model, since every perturbation of the bath can be approx-
imated by a harmonic potential. Hence, the validity of this
model is restricted to weak perturbations of the bath. Note that
this does not imply that the induced dissipation is necessarily
weak: the large number of environmental degrees of freedom
guarantees that we can describe strongly dissipative systems.
The Lagrangian reads

L = LS + LB + LI + LCT, (6)

where the abbreviations stand for “system,” “bath,” “interac-
tion,” and “counterterm,” respectively.

For simplicity, we let the system be described by one
generalized coordinate Q. In one dimension, the Lagrangian
of a particle of mass M, subject to an external potential V (Q),
reads

LS = 1
2 MQ̇2 − V (Q). (7)

The bath is modeled as a collection of N harmonic oscillators,
labeled by an index k, with masses mk , coordinates qk , and at
natural frequencies ωk:

LB = 1

2

N∑
k=1

mkq̇2
k − 1

2

N∑
k=1

mkω
2
k q2

k . (8)

In principle, the number N of harmonic oscillators is very
large, such that we can safely work within the thermodynamic
limit, i.e., we can let N → ∞ at the end of the calculation.

The interaction is of the coordinate-coordinate type, which
means that the system coordinate Q is linearly coupled to each
oscillator coordinate qk , as if attached to a spring, with “spring
constants” Ck:

LI = Q
N∑

k=1

Ckqk . (9)

This interaction is the simplest one to write down (remember
this is a minimal model), but it turns out to be quite general
[1]. In principle, the Ck should be seen as negative constants,
since springs tend to restore extensions. Caldeira and Leggett
also include a counterterm:

LCT = −1

2
Q2

N∑
k=1

C2
k

mkω
2
k

, (10)

which depends on the parameters of the environment, but not
on its dynamical variables. This renormalization term ensures
that the minimum of the effective potential remains centered
about the bare potential V (Q).

Having discussed the individual components of the La-
grangian, we can write the Caldeira-Leggett Lagrangian:

L = 1

2
MQ̇2 − V (Q)︸ ︷︷ ︸

System

+ 1

2

N∑
k=1

mk
(
q̇2

k − ω2
k q2

k

)
︸ ︷︷ ︸

Bath

+ Q
N∑

k=1

Ckqk︸ ︷︷ ︸
System/bath-int.

− 1

2
Q2

N∑
k=1

C2
k

mkω
2
k︸ ︷︷ ︸

Counterterm

. (11)

From this Lagrangian, one can derive the equation of motion
for the system, which reproduces the Langevin equations after
the bath coordinates are eliminated.

To successfully describe the bath, one needs to spec-
ify a continuous frequency density distribution, instead
of the discrete oscillator distribution. This is called the
“spectral function” J (ω), which should arise from the addi-
tional information specified by the microscopics of the bath
constituents [24]:

J (ω) = π

2

∑
k

C2
k

mkωk
δ(ω − ωk ), (12)

where the factor π/2 is put in for later convenience. This form
follows from the Kubo formula of linear response theory, and
it models the linear response of the bath coordinates qi to
a perturbation. The form of the spectral density in Eq. (12)
allows one to convert discrete sums over oscillators into con-
tinuous integrals over frequency:∑

k

C2
k

mkω
2
k

cos[ωk (t − t ′)] = 2

π

∫ ∞

0
dω

J (ω)

ω
cos[ω(t − t ′)].

(13)
Now, one assumes a specific form of the spectral func-

tion, which falls apart into three classes, namely, the ohmic,
subohmic, and superohmic cases, which are linear, sublinear,
or higher polynomials in frequency, respectively [1]. Also,
the spectral density vanishes for ω > �, i.e., a certain high-
frequency cutoff �, which fixes the timescale of the problem
and is therefore inversely proportional to the relaxation time
τ−1. Hence, one writes

J (ω) = ηωs

⎧⎨
⎩

subohmic, if s < 1
ohmic, if s = 1
superohmic, if s > 1

(14)

where η is a proportionality constant, which plays a phe-
nomenological role here. As indicated in the above, this
phenomenological input is necessary to reproduce the (phe-
nomenological) Langevin equation of the open system
approach. The next step that we take is to generalize the model
even further, namely, to a generic velocity coupling.

IV. GENERALIZED CALDEIRA-LEGGETT MODEL:
VELOCITY COUPLING TO THE BATH

In this section, we will generalize the Caldeira-Leggett
model from a coordinate-coordinate coupling to a coupling
that is a general function of the velocity of the Brownian
particle multiplied by the coordinates of the bath oscillators.
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The motivation to choose such a velocity-dependent cou-
pling is to reproduce the force p/(1 + p2) in the approach
to Lévy motion in Sisyphus cooling of Marksteiner, Ellinger,
and Zoller [22]—as explained in Sec. II. Realizing that the
general-coordinate coupling would not give us the desired re-
sult, we chose to proceed with a completely general coupling
to velocity. It turns out that such an approach allows one to
reproduce the desired force in terms of velocity by choosing
a specific coupling that will give us the intended result and,
hence, to construct a closed effective model exhibiting Lévy
behavior.

As a first step, we expand upon the coordinate-coordinate
coupling of the Caldeira-Leggett model [1] and replace it
with a coupling of a general function of the velocity of the
Brownian particle F [Q̇] to each of the coordinates of the
bath, assuming a separable interaction Fi[Q̇] = C̃iF [Q̇]. In this
case, the coupling constants C̃i are not interpreted as spring
constants, but have a dimension depending on the particular
realization of F [Q̇]. The counterterm will also acquire a differ-
ent physical interpretation. For linear-velocity coupling, e.g.,
it will renormalize the mass of the Brownian particle.

The Lagrangian of the model then reads

L = 1

2
MQ̇2 − V (Q) + 1

2

N∑
k=1

mk
(
q̇2

k − ω2
k q2

k

)

+ F [Q̇]
N∑

k=1

C̃kqk −
N∑

k=1

C̃2
k

2mkω
2
k

F 2[Q̇], (15)

where M is the mass of the particle, Q is its coordinate, and
the reservoir is characterized by harmonic oscillators with
mass mk , frequency ωk , and coordinates qk , and dots denote
time derivatives. The last term in Eq. (15) is a counterterm,
analogous to Eq. (11), which arises from the renormalization
of the potential due to the coupling with the bath.

The general nature of the F [Q̇] coupling constitutes a set
of theories, each with its own physics. We should note that,
to have time-reversal symmetry, we should choose F [Q̇] such
that it is odd in the particle velocity Q̇. The corresponding
equation of motion is now a generalized Langevin equation,

MQ̈ + V ′[Q] + F ′′[Q̇(t )]Q̈(t )
∫ t

0
dt ′ ∑

k

C̃2
k

mkωk
sin [ωk (t − t ′)]F [Q̇(t ′)] + F ′[Q̇(t )]

∫ t

0
dt ′ ∑

k

C̃2
k

mk
cos [ωk (t − t ′)]F [Q̇(t ′)]

= −ξ (0)(Q̇(t ); t )Q̈(t ) − ζ (0)(Q̇(t ); t ) +
∑

k

C̃2
k

mkω
2
k

{F ′[Q̇(t )]2 + F [Q̇]F ′′[Q̇(t )]}Q̈(t ), (16)

for the velocity-dependent, amplitude-driven, fluctuation forces,

ξ (0)(Q̇(t ); t ) = F ′′[Q̇(t )] f (0)(t ), (17)

ζ (0)(Q̇(t ); t ) = F ′[Q̇]
df (0)(t )

dt
, (18)

where we have defined the bath-driven fluctuation force

f (0)(t ) =
∑

k

C̃k

(
q(0)

k cos(ωkt ) + q̇(0)
k

ωk
sin(ωkt )

)
. (19)

The microscopic coupling parameters C̃k are related to a phenomenological spectral function of the bath by the same relation
given by Eq. (12), with J replaced by J̃ and Ck by C̃k . After partial integration and algebraic manipulations (see Appendix A),
one can rewrite Eq. (16) in terms of the spectral function J̃ , substituting the discrete sums over oscillators by the continuous
integrals over frequency as defined in Eq. (13). We then obtain our first general result as

MQ̈ + V ′[Q] −
∫ t

0
dt ′

∫ ∞

0

dω

π

J̃ (ω)

ω
cos[ω(t − t ′)]{2F ′′[Q̇(t )]Q̈(t )F ′[Q̇(t ′)]Q̈(t ′) − 2F ′[Q̇(t )]F [Q̇(t ′)]ω2}

= −ξ̄ (0)(Q̇(t ); t )Q̈(t ) − ζ (0)(Q̇(t ); t ) + 2
∫ ∞

0

dω

π

J̃ (ω)

ω
F ′[Q̇(t )]2Q̈(t ), (20)

where

ξ̄ (0)(Q̇(t ); t ) = F ′′[Q̇]
∑

k

C̃k

{[
qk (0) + C̃k

mkωk
F [Q̇(0)]

]
cos(ωkt ) + q̇k

ωk
sin(ωkt )

}
. (21)

This is as far as one can go without either specify-
ing the coupling or the spectral function. It is clear
that this generalized Langevin equation is usually non-
Markovian, allowing for memory dependence. This is similar
to many known nonlinear systems. To note, it is of-

ten possible that, even though a system has memory, it
still has some memoryless subsystems [25]. Below, we
will specify these general results under suitable assump-
tions about the coupling function and the properties of the
bath.
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FIG. 3. The coupling function of Eq. (23). One can see that in
both the high- and the low-velocity limits, F ′′[Q̇] is consistently
negligible.

V. LÉVY STATISTICS IN SISYPHUS COOLING

To gain some insight into the problem, it is convenient
to analyze some limiting cases. A natural way to simplify
Eq. (20) is to assume that the second derivative of the coupling
is very small compared to the other terms, i.e., F ′′[Q̇] ∼ 0.

This choice will be justified below in the context of subrecoil
cooling. The general Eq. (20) is then considerably simplified
and we obtain

MQ̈+2
∫ t

0
dt ′

∫ ∞

0

dω

π
ωJ̃ (ω) cos[ω(t −t ′)]F ′[Q̇(t )]F [Q̇(t ′)]

+V ′[Q] ≈−ζ (0)(Q̇(t ); t )+ 2
∫ ∞

0

dω

π

J̃ (ω)

ω
F ′[Q̇(t )]2Q̈(t ).

(22)

This is one of the main results of this paper. The generic
kernel in Eq. (22) can describe both Markovian processes
like Brownian and Lévy motion as well as non-Markovian
processes like fractional Brownian motion and fractional Lévy
motion (see Ref. [26]).

Now, we can establish a connection with Lévy behavior
in ultracold atoms and try to reproduce the friction force
from Ref. [22], f [Q̇] = Q̇/[1 + (Q̇/v0)2], also stated above
by Eq. (5) in terms of (canonical) momentum p. The constant
v0 contains the mass of the particle and the specifics of the
physical setup, e.g., the experimental properties of the laser
during Sisyphus cooling [12]. During Sisyphus cooling, indi-
vidual atoms in a cooling cloud exhibit Lévy statistics as a
result of the recoil caused by spontaneous photon emission.
It turns out that in this context an appropriate choice for the
coupling is

F [Q̇] = sgn

(
Q̇

v0

)
v0

√
log[1 + (Q̇/v0)2], (23)

where the sign function sgn(x) is included to ensure both a
smooth transition of the first derivative at Q̇ = 0 and a unique
value for F [Q̇] for every value of Q̇ (see Fig. 3 for a sketch of
the coupling).

To connect this to earlier work on Lévy statistics in optical
lattices, we must calculate the derivative of this coupling term.
We then obtain for the friction force term in the Langevin

equation (see Appendix B)

F [Q̇]F ′[Q̇] = Q̇

1 + (Q̇/v0)2 , (24)

which coincides with Eq. (5), which is the same as Eq. (37)
of Ref. [22] and Eq. (5) of Ref. [23]. This nonlinear friction
force is called the “cooling force,” as it acts to bring back the
momentum of the atom to p = 0: the minimum-energy state.
As in Ref. [23], we note that similar friction forces with a 1/p
momentum dependence, like Eq. (24), are common in other
fields of research also, for example for an atomic tip on a
surface at cryogenic temperatures, Eq. (3) in Ref. [27].

It can be promptly verified that the second derivative of
the force F ′′[Q̇] is consistently negligible in both the high-
velocity limit Q̇ � v0 and the low-velocity limit Q̇ 	 v0, as
can be seen in Fig. 3. Thus, the approximation is justified.
Considering the particular coupling given by Eq. (23), for
dimensional reasons we have to choose C̃k = Ck/ωk . From
the definition in Eq. (13), it is easy to see that this implies
the relation J̃ (ω) = J (ω)/ω2. Now, depending on the choice
of the spectral function J (ω), the processes will be Marko-
vian (ohmic) or non-Markovian (subohmic and superohmic).
Choosing an ohmic bath, we get a similar Langevin equa-
tion as shown in [23] [see Appendix B for further details in
how to get the memory-free kernel for the drift coefficient in
Eq. (22)].

VI. THE LINEAR-VELOCITY APPROACH
FOR A SUPEROHMIC BATH

We proceed by analyzing the limit Q̇ 	 v0 in more detail.
In this case, the denominator of Eq. (24) reduces to unity and
the force term is simply linear in the velocity Q̇. We now
assume a superohmic (cubic) spectral function:

J (ω) =
{
λω3 if ω < �

0 if ω > �
, (25)

where � corresponds to a high-frequency cutoff and the diffu-
sion coefficient is denoted by λ. The equation of motion then
reduces to (see Appendix C)

MQ̈(t ) + V ′[Q] − 2λ˙̇Q̇(t ) = −ζ̄ (0)(t ). (26)

The spectral properties of the bath are in analogy with [14],
where the Caldeira-Leggett model for cubic baths was used to
describe the dissipation of an electron interacting with its own
radiation field. Classically, such an electron is described by
the Abraham-Lorentz equation:

−2e2

3c3
˙̇Q̇ + M∗Q̈ + V ′[Q] = f (0), (27)

with the fluctuation force given by

f (0)=
∑

k

Ck f (0)
k =

∑
k

Ck

(
q(0)

k cos(ωkt ) + q̇(0)
k

ωk
sin(ωkt )

)
,

(28)
for ωk = ck, for wave number k and speed of light c—
the dispersion relation for the photon. The Abraham-Lorentz
equation has important problems of its own, for example,
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preacceleration, where the acceleration at time t depends on
the value of the radiation force at earlier times t ′, which is,
therefore, a memory effect.

Would we have chosen J (ω) to be ohmic in this low-
velocity limit approximation, then we would have retrieved
the usual Markovian Brownian motion. Notice that in the op-
posite limit Q̇ � v0 we will obtain either Lévy motion in the
Markovian limit or fractional Lévy motion when the kernel
retains memory [26]. In this low-velocity regime, the Lévy
behavior is not visible. Yet, the models specified by Eqs. (15)
and (23) provide a connection between Lévy behavior and
an equation analogous to the Abraham-Lorentz Eq. (27).
This is not unexpected for a Caldeira-Leggett model: Barone
and Caldeira reproduced the Abraham-Lorentz equation from
first principles for a superohmic bath. They started with the
Lagrangian

L = LS + LB + LI (29)

where the system Lagrangian is generic, the bath consists of
the electrodynamic field associated with the self-field of the
electron:

LB = 1

8π

∫
dx

[
1

c

∂A
∂t

+ ∇φ

]2

− (∇ × A)2, (30)

and the system-bath interaction is given by

LI =
∫

dx
[

1

c
J · A − ρφ

]
, (31)

where A and φ are the vector and scalar potentials, and ρ and
J are the charge and current densities. Note that there is no
counterterm explicitly assumed in this model.

By changing to the Hamiltonian formalism, writing the ex-
pressions in terms of conjugated momenta of the coordinates
Q and A, and assuming a superohmic cubic spectral density of
the form (25), they were able to derive the equation of motion

−λ˙̇Q̇ + M∗Q̈ + V ′[Q] = f (t ), (32)

for

λ = 2e2

3c3
, (33)

and with the renormalized mass given by

M∗ = M + 2λ�

π
, (34)

for the bare electron charge e, bare electron mass M, and
speed of light c. Here, we also see that the dissipation term
is proportional to the jerk, which is a direct consequence of
the low-frequency behavior of the spectral distribution in a
cavity [2]. The renormalized mass has the usual interpretation
of a mass renormalization in terms of the screening of the bare
electron mass by the one-loop-and-higher Feynman diagrams
of the electron propagator—which is simply what the electron
self-interaction is in quantum-electrodynamical language.

The merit of having written down the Lagrangian (29) in
terms of the fundamental constants of electrodynamics is that
Barone and Caldeira can now estimate how large the cutoff-
dependent terms in the equations of motion are. The cutoff

itself is given by

� = 2πc

r0
, (35)

where r0 is the characteristic electronic dimension. It is the
classical electron radius in the classical limit, while it is the
deBroglie wavelength of the electron in the quantum case.
The effective mass depends on the cutoff �, but since the
numerical values in Eq. (34) are known, we can conclude
M∗ ∼ M.

Coming back to our result Eq. (26), we see that it has
exactly the same form as the Abraham-Lorentz equation.
This verifies the consistency of our general result in the low-
velocity limit and connects our findings of superdiffusion
to other semiclassical models [20,23,28]. However, whereas
Caldeira and Barone assumed a specific electrodynamical
model to derive Eq. (32), for our result we did not assume any
fundamental physics. Hence, in our case, this could be seen as
a self-interaction of a general physical system—as long as the
coupling is not too strong.

Furthermore, Barone and Caldeira note that the “countert-
erm is not imposed as in the formulation of the quantum
Brownian motion [...]” [14]. The reason is that the coun-
terterm appears naturally from the microscopic setup of the
model. This remark is important, since in our model we have
also not included a counterterm as in Eq. (10) for quantum
Brownian motion.

VII. QUANTIZING THE GENERALIZED MODEL

The next aim is to construct a quantum version of the
extended Caldeira-Leggett Lagrangian in terms of the generic
velocity coupling that we have introduced. We will use the
path-integral formalism to calculate the propagator for the
Lagrangian (15). Since we are only interested in the stochastic
particle, we use the reduced density operator strategy and
integrate out the bath from the full density operator to obtain
an effective dynamics for the system of interest. As a first
step, we write down the Euclidean action corresponding to the
Lagrangian (15). Then, we evaluate the influence functional F
in Euclidean time, after performing a Wick rotation, and find
(see Appendix D)

F =exp

[
N∑

k=1

Ak

∫ h̄β

0
dτ

∫ τ

0
dσGk (τ − σ )F [Q̇(τ )]F [Q̇(σ )]

]

(36)

where Ak = C̃2
k /2h̄mkωk and the kernel Gk (h̄β − τ ) = Gk (τ )

cosh [ωk (h̄β/2 − τ )]/ sinh (h̄βωk/2) is a periodic function.
The bath particles have now been successfully integrated

out. Their presence is seen through the double integral and
the occurrence of the forces F . This term contains nonlocal
interactions, which express the influence of the bath on the
dynamics of the stochastic particle.

We are now in a position to write the reduced density
operator of the system:

ρ̂R(Q, Q′) =
∫ Q

Q′
DQ exp

(
−SE

eff[Q]

h̄

)
(37)
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where the effective action has the form

SE
eff =

∫ h̄β

0
dτ

(
1

2
MQ̇2 + V (Q) −

N∑
k=1

C̃2
k

2mkω
2
k

F [Q̇]2

)

+
N∑

k=1

C̃2
k

2mkωk

∫ h̄β

0
dτ

∫ τ

0
dσGk (τ − σ )

× F [Q̇(τ )]F [Q̇(σ )]. (38)

Using known manipulations [29,30], we split the domains of
integration and use the counterterm to complete the square,
such that the effective action becomes SE

eff = SE
S + SE

D , with

SE
S =

∫ h̄β

0
dτ

{
1

2
MQ̇2 + V (Q)

}
,

SE
D = 1

4π

∫ h̄β

0
dτ

∫ ∞

−∞
dσ

∫ ∞

0
dωJ̃ (ω)e−ω|τ−σ |

× [F [Q̇(τ )] − F [Q̇(σ )]]2. (39)

This is the second main result of this paper. For “ohmic”
dissipation, J̃ (ω) = λω, which corresponds to superohmic
dissipation J (ω), after performing the integral over ω for
� → ∞, one finds the final result for the dissipation term in
the effective Euclidean action:

SE
D[Q(τ )] = λ

4π

∫ h̄β

0
dτ

∫ ∞

−∞
dσ

{F [Q̇(τ )] − F [Q̇(σ )]}2

|τ − σ |2 .

(40)
This term is entirely induced by the bath. It is analogous to the
“Caldeira-Leggett” kernel, but it is more general. If we replace
the generic coupling by Eq. (23), the quantum version of the
model that gives rise to Lévy behavior in the semiclassical
limit results for Q̇ � v0.

In our case, the coupling is not linear, but generic, and
in terms of velocity. If we would have started out with a
coordinate-coordinate coupling and counterterm such as in
the original Caldeira-Leggett model, the result would be ex-
actly Eq. (39) with F replaced by Q. In that case, it could
be promptly understood that the Caldeira-Leggett kernel de-
scribes friction: for |τ − σ | ∼ 0, the term diverges unless the
relative position of the Brownian particle at different times
Q(τ ) − Q(σ ) goes to zero, which is physically interpreted as
the tendency to oppose motion.

Let us now investigate the generalized equation Eq. (40)
for F [Q̇] given by Eq. (23) in the low-velocity limit, Q̇ 	 v0.
We then find that the integrand of the dissipation term in
the action reduces to (λ/4π )[Q̇(τ ) − Q̇(σ )]2

/|τ − σ |2. This
term is nonlocal, since it exclusively depends on the relative
velocity of the Brownian system at different times. The inter-
pretation of this modified term can be made in a similar way as
for the original Caldeira-Leggett model. For successive times
close together, i.e., |τ − σ | ∼ 0, this term diverges unless the
relative velocity of the Brownian system at different times,
Q̇(τ ) − Q̇(σ ), also tends to zero. Hence, it is energetically bet-
ter for the particle to resist acceleration, and we can interpret
this bath-induced effect as that of inertia on top of the mass
M in the local part of the action.

VIII. CONCLUSION AND OUTLOOK

The goal of this paper was twofold. The first goal was
to construct a closed Lagrangian model that could repro-
duce Lévy motion. The motivation for this was largely to
account for a description of Lévy statistics during Sisyphus
cooling. The second goal was to construct a quantum ver-
sion of such a system via path-integral quantization. To reach
these goals, we modified the Caldeira-Leggett model to gen-
eral velocity-dependent coupling. With this choice, we left
other possibilities behind, e.g., trying to construct a stochastic
Schrödinger equation in the style of Kostin [31] and Nelson
[32], using a modified quantization scheme [33], or entering
the Lindblad formalism [34]. One advantage of our approach
is the ability to describe non-Markovian systems, which is
absent from the Lindblad formalism.

Through Lagrangian (15), we modified the interaction
between the system and the bath. The resulting modified gen-
eralized Langevin equation is given by Eq. (20).

For the occurrence of Lévy walks in ultracold-atom ex-
periments like Sisyphus cooling, we were able to reproduce
the friction force from Ref. [22], which gives rise to Lévy
statistics for Q̇ � v0. Here, individual atoms in a cooling
cloud exhibit Lévy walks as a result of the recoil caused by
spontaneous photon emission. It turns out that the choice of
Eq. (23) yields exactly this expression. We have also shown
that the approximation F ′′ ∼ 0 holds in the low- and high-
velocity limits, but further research should be undertaken to
interpolate in between these extremes, where the approxima-
tion fails and non-Markovian memory effects start playing a
larger role. This will involve a numerical investigation.

Under the approximation F ′′[Q̇] ∼ 0, we have worked out
a concrete realization of the coupling function F [Q̇]. For
the linear-velocity case, obtained in the low-velocity limit,
we derive the equation of motion Eq. (26). Without assum-
ing any fundamental physical picture, this equation bears an
exact resemblance to the Abraham-Lorentz equation of a self-
interacting electron. Adapting the counterterm accordingly,
we do not find a mass renormalization because the new coun-
terterm adds precisely that amount of mass to the kinetic part
of the system of interest.

It is important to bear in mind that we found this under
the assumption that the spectral function J̃ is linear in the fre-
quency, and that this corresponds to an ohmic bath in terms of
coupling constants C̃k , but that for coupling constants Ck , the
bath is cubic, J ∝ ω3, and hence superohmic. Therefore, the
term “ohmic bath” is ambiguous when one does not explicitly
specify the dimension of the coupling constants.

Finally, we have discussed the path-integral formulation of
quantum mechanics and used the Feynman-Vernon influence-
functional method in Euclidean time to integrate out the bath
particles and derive an effective action for our modified La-
grangian (15). The result, for an ohmic bath in terms of
coupling constants C̃k , is given by Eq. (40). It has the same
form as the original Caldeira-Leggett term.

This final result should be seen as a scaffolding for further
research: it is a collection of different models, where each
model is specified by a particular coupling. Analogous to
the interpretation of friction in the original Caldeira-Leggett
term [1], the modified term in the low-velocity limit is that of
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inertia, resisting acceleration. The classical equation of mo-
tion corresponding to this is the Abraham-Lorentz Eq. (26).

In addition to the above-mentioned numerical work to be
done for several coupling functions, one can also look at
the decoherence properties of the Lévy-walk coupling (23)
and/or the linear-velocity case. For further calculation, one
can specify a particular form for the external potential V (Q).
In that case, one can, in principle, determine the effective
dynamics of the system of interest by performing the path
integral over all paths Q(τ ).
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APPENDIX A: GENERALIZED
CALDEIRA-LEGGETT MODEL

We consider the Lagrangian

L = 1

2
MQ̇2 − V (Q) + 1

2

N∑
k=1

mk
(
q̇2

k − ω2
k q2

k

)

+ F [Q̇]
N∑

k=1

C̃kqk −
N∑

k=1

C̃2
k

2mkω
2
k

F 2[Q̇]. (A1)

From Eq. (A1) we derive the system equation of motion

MQ̈ + V ′(Q) + F ′′[Q̇]Q̈
∑

k

C̃kqk + F ′[Q̇]
∑

k

C̃kq̇k

=
∑

k

C̃2
k

mkω
2
k

[F ′[Q̇]2 + F [Q̇]F ′′[Q̇]]Q̈, (A2)

where the right-hand side is entirely due to the counterterm.
The bath equation of motion is a driven harmonic oscillator
equation,

miq̈i + miω
2
i qi = C̃iF (Q̇), (A3)

with solution

qi(t ) = f (0)
i (t ) + C̃i

miωi

∫ t

0
dt ′ sin[ωi(t − t ′)]F [Q̇(t ′)], (A4)

and its time derivative:

q̇i(t ) = df (0)
i (t )

dt
+ C̃i

mi

∫ t

0
dt ′ cos[ωi(t − t ′)]F [Q̇(t ′)]. (A5)

Let us now plug Eqs. (A4) and (A5) into the system equation
(A2), such that we obtain a differential equation analogous to
the generalized Langevin equation. We obtain then

MQ̈ + V ′[Q] + F ′′[Q̇(t )]Q̈(t )
∫ t

0
dt ′ ∑

k

C̃2
k

mkωk
sin[ωk (t − t ′)]F [Q̇(t ′)] + F ′[Q̇(t )]

∫ t

0
dt ′ ∑

k

C̃2
k

mk
cos[ωk (t − t ′)]F [Q̇(t ′)]

= −ξ (0)(Q̇(t ); t )Q̈(t ) − ζ (0)(Q̇(t ); t ) +
∑

k

C̃2
k

mkω
2
k

[F ′[Q̇(t )]2 + F [Q̇]F ′′[Q̇(t )]]Q̈(t ), (A6)

for the velocity-dependent and amplitude-driven fluctuation forces, ξ (0)(Q̇(t ); t ) = F ′′[Q̇(t )] f (0)(t ) and ζ (0)(Q̇(t ); t ) =
F ′[Q̇]df (0)(t )/dt . Next, we integrate by parts the third term on the left-hand side of Eq. (A6), which then becomes

− F ′′[Q̇(t )]Q̈(t )
∫ t

0
dt ′ ∑

k

C̃2
k

mkω
2
k

cos [ωk (t − t ′)]F ′[Q̇(t ′)]Q̈(t ′)

+
∑

k

C̃2
k

mkω
2
k

F ′′[Q̇(t )]Q̈(t )F [Q̇(t )] −
∑

k

C̃2
k

mkω
2
k

F ′′[Q̇(t )]Q̈(t )F [Q̇(0)] cos(ωkt ). (A7)

Now, the first boundary term will cancel one of the counterterms [the last term on the right-hand side of Eq. (A6)]. The other
boundary term depends on the initial value Q̇(0), which can be incorporated into ξ (0)(Q(t ); t ) as follows:

ξ̄ (0)(Q̇(t ); t ) = F ′′[Q̇]
∑

k

C̃k

{[
qk (0) + C̃k

mkωk
F [Q̇(0)]

]
cos(ωkt ) + q̇k

ωk
sin(ωkt )

}
.

Hence, we can rewrite the Langevin equation as

MQ̈ + V ′[Q] − F ′′[Q̇(t )]Q̈(t )
∫ t

0
dt ′ ∑

k

C̃2
k

mkω
2
k

cos [ωk (t − t ′)]F ′[Q̇(t ′)]Q̈(t ′)

+F ′[Q̇(t )]
∫ t

0
dt ′ ∑

k

C̃2
k

mk
cos [ωk (t − t ′)]F [Q̇(t ′)]

= −ξ̄ (0)(Q̇(t ); t )Q̈(t ) − ζ (0)(Q̇(t ); t ) +
∑

k

C̃2
k

mkω
2
k

F ′[Q̇(t )]2Q̈(t ). (A8)
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APPENDIX B: LÉVY WALKS: A NONPOLYNOMIAL
COUPLING

In Sec. V we eliminate direct memory terms assuming that
the second derivative of the coupling is very small compared
to the other terms in the Langevin Eq. (20), i.e.,

F ′′[Q̇] ∼ 0. (B1)

This simplifies the generalized Langevin equation (20) con-
siderably. Note that Eq. (B1) does not necessarily imply that
we must choose the linear-velocity case, for which it is triv-
ially satisfied. This is where we establish a connection with
Lévy statistics in ultracold atoms. As explained in the main
text, to reproduce Marksteiner, Ellinger, and Zoller’s friction
force that we saw in Sec. II, we choose

F [Q̇] = sgn

(
Q̇

v0

)
v0

√√√√log

[
1 +

(
Q̇

v0

)2
]

(B2)

(see Fig. 3 in the main text).
To see the connection to the force (5), we must calculate

the derivative of this coupling term. It is

F ′[Q̇] = sgn

(
Q̇

v0

)
v0

Q̇√
log

[
1 + ( Q̇

v0

)2][
1 + ( Q̇

v0

)2]
= Q̇

F [Q̇]
[
1 + ( Q̇

v0

)2] . (B3)

We then obtain for the force term in the Langevin
equation (22)

F [Q̇]F ′[Q̇] = Q̇

1 + ( Q̇
v0

)2 , (B4)

which coincides with Eq. (5).
For the drift coefficient [second term in the left side of

Eq. (22)], considering the relation J̃ (ω) = J (ω)/ω2, for an
ohmic bath J (ω) = ηω we will have

2
∫ t

0
dt ′

∫ ∞

0

dω

π

J (ω)

ω
cos [ω(t − t ′)]F ′[Q̇(t )]F [Q̇(t ′)]

= 2η

∫ t

0
dt ′

∫ ∞

0

dω

π
cos [ω(t − t ′)]F ′[Q̇(t )]F [Q̇(t ′)]

= 2ηF ′[Q̇(t )]F [Q̇(t )] = 2ηQ̇(t )

1 + ( Q̇(t )
v0

)2 , (B5)

where the delta distribution δ(t − t ′) resulting from the fre-
quency integral gives us the local-time drift coefficient.

APPENDIX C: POLYNOMIAL COUPLING
AND THE LINEAR-VELOCITY APPROACH

FOR A SUPEROHMIC BATH

Now we will discuss the generalized Langevin equation for
a system of linear-velocity coupling:

C̃kF [Q̇] = Ck

ωk
Q̇, (C1)

where we related the general-velocity coupling constant
(where we had a “tilde”) with that from the original Caldeira-
Leggett model [24] for the linear-velocity case we will
use now.

For the coupling (C1), the generalized Langevin equation
(20) simplifies considerably, since the first derivatives of the
coupling become unity, whereas the second derivatives vanish.
The result is

MQ̈(t )+V ′[Q]+2
∫ t

0
dt ′

∫ ∞

0

dω

π

J (ω)

ω
cos [ω(t − t ′)]Q̇(t ′)

= −ζ (0)(t ) + 2
∫ ∞

0

dω

π

J (ω)

ω3
Q̈(t ), (C2)

for the force

ζ (0) = d

dt

∑
k

Ck

ωk

(
q(0)

k cos(ωkt ) + q̇(0)
k

ωk
sin (ωkt )

)
. (C3)

To show that ζ (0)(t ) is really a fluctuation force, one
needs to calculate the average of the fluctuation force and
its two-point correlation function. For that we use the initial
conditions for an equilibrium bath at temperature T , which,
through the equipartition theorem, states that every quadratic
oscillator degree of freedom will contribute with kBT/2 to the
total energy:

〈qi(0)〉 = 〈q̇i(0)〉 = 0 = 〈qi(0)q̇ j (0)〉,
1
2 mi〈q̇i(0)q̇ j (0)〉 = 1

2 kBT δi j,

1
2 miω

2
i 〈qi(0)q j (0)〉 = 1

2 kBT δi j, (C4)

where the averages are taken over the initial values with
respect to the classical equilibrium density matrix of the
unperturbed bath. Then, the average of Eq. (C3) vanishes,
since

〈ζ (0)(t )〉 = − d

dt

∑
k

Ck

ωk

[
�
���

0〈
q(0)

k

〉
cos(ωkt ) +�

���
0〈

q̇(0)
k

〉 sin(ωkt )

ωk

]
= 0. (C5)

For the two-point correlation function of the force, the nonvanishing terms are

〈ζ (0)(t )ζ (0)(t ′)〉 = d

dt

d

dt ′
∑

k

∑
k′

Ck

ωk

C′
k

ω′
k

[〈
q(0)

k q(0)
k′

〉
cos(ωkt ) cos(ωk′t ′) +

〈
q̇(0)

k q̇(0)
k′

〉
ωkωk′

sin(ωkt ) sin(ωk′t ′)

]
, (C6)

which becomes, after performing the derivatives to t and t ′,

∑
k

∑
k′

CkCk′

[〈
q(0)

k q(0)
k′

〉
sin(ωkt ) sin(ωk′t ′) +

〈
q̇(0)

k q̇(0)
k′

〉
ωkωk′

cos(ωkt ) cos(ωk′t ′)

]
. (C7)
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Now, applying Eq. (C4), and performing the sum over k′,
this reduces to

〈ζ (0)(t )ζ (0)(t ′)〉 = kBT
∑

k

C2
k

mkω
2
k

cos[ωk (t − t ′)]

= 2kBT
∫ ∞

0

dω

π

J (ω)

ω
cos[ω(t − t ′)], (C8)

which indeed coincides with the memory kernel in Eq. (C2).
Thus, the fluctuation-dissipation theorem holds for linear-
velocity coupling.

Coming back to the equation of motion Eq. (C2), to evalu-
ate the frequency integral in the friction term (last term on the
left-hand side), we first perform two successive partial-time
integrations for the friction term:

∫ t

0
dt ′

∫ ∞

0

dω

π

J (ω)

ω
cos [ω(t − t ′)]Q̇(t ′) =

∫ t

0
dt ′

∫ ∞

0

dω

π

J (ω)

ω2
sin [ω(t − t ′)]Q̈(t ′) +

∫ ∞

0

dω

π

J (ω)

ω2
sin(ωt )Q̇(0)

= −
∫ t

0
dt ′

∫ ∞

0

dω

π

J (ω)

ω3
cos [ω(t − t ′)]˙̇Q̇(t ′)

+
∫ ∞

0

dω

π

J (ω)

ω3
Q̈(t ) −

∫ ∞

0

dω

π

J (ω)

ω3
cos(ωt )Q̈(0) +

∫ ∞

0

dω

π

J (ω)

ω2
sin(ωt )Q̇(0).

(C9)

The ˙̇Q̇ term, i.e., the change in acceleration, is called the “jerk.” We also recognize that the second term exactly cancels the
counterterm in Eq. (C2). Then, we assume the “superohmic bath”

J (ω) =
{
λω3 if ω < �

0 if ω > �
. (C10)

The generalized Langevin equation becomes

MQ̈(t ) + V ′[Q] − 2λ

∫ t

0
dt ′

∫ �

0

dω

π
cos [ω(t − t ′)]˙̇Q̇(t ′) = −ζ̄ (0)(t ), (C11)

where we included both t = 0 boundary terms, depending on Q̇(0) and Q̈(0) into the fluctuation force, similar to what we have
done before. Thus, we have

ζ̄ (0)(t ) =
∑

k

Ck

ωk

[
−

(
q(0)

k − Ck

mkω
3
k

Q̇(0)

)
ωk sin (ωkt ) +

(
q̇(0)

k − Ck

mkω
3
k

Q̈(0)

)
cos(ωkt )

]
, (C12)

which does not alter the fluctuation-dissipation theorem if we take the ensemble average with respect to bath and interaction.
Now we can evaluate the integral over ω and find the Dirac-delta distribution; hence

MQ̈(t ) + V ′[Q] − 2λ˙̇Q̇(t ) = −ζ̄ (0)(t ). (C13)

We did include a counterterm to the Lagrangian that, in the linear-velocity coupling case, is proportional to the square of the
velocity. Since this canceled a term in Eq. (C9), this gives us the equation of motion (C13) without mass renormalization.

APPENDIX D: COMPLETING THE SQUARE FOR THE INFLUENCE FUNCTIONAL

To perform the Gaussian integral over the bath coordinates, we need to complete the square for the bath variable qk . We can
write the action as

S(k)E
cl = mkωk

sinh(ωkt )
[cosh(h̄βωk ) − 1][qk − q∗

k ]2 − mkωk

sinh(h̄βωk )

1

cosh h̄βωk − 1

C2
k

2mkωk
...

×
{{

...

∫ h̄β

0
dτ

∫ τ

0
dσ sinh(ωkτ ) sinh[ωk (h̄β − σ )] + sinh(ωkσ ) sinh[ωk (h̄β − τ )]

+ · · · · · · + sinh(ωkτ ) sinh(ωkσ ) sinh[ωk (h̄β − τ )] sinh[ωk (h̄β − τ )]

}
F [Q̇(τ )]F [Q̇(σ )]

}

− C2
k

mkωk sinh(h̄βωk )

∫ h̄β

0
dτ

∫ τ

0
dσ sinh(ωkσ ) sinh[ωk (h̄β − τ )]F [Q̇(τ )]F [Q̇(σ )], (D1)

where

q∗
k = Ck

2mkωk

∫ h̄β

0
dτ

sinh(ωkτ ) + sinh[ωk (h̄β − τ )]

cosh(h̄βωk )
F [Q̇(τ )]. (D2)
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The second term in Eq. (D1) (comprising the two lines in the middle) is q(0)
n , which has to be subtracted in order to complete

the square; note that a factor 2 results from adjusting the range of the σ integral from {0, h̄β} to {0, τ }. The last term is unchanged
with respect to the Euclidean action.

Then, we add the terms appearing under the double integrals in Eq. (D1). To do this, we use the following trigonometric
relation:

cosh[a/2 − x + y]

2 sinh(a/2)
= 1

2 sinh(a)[cosh(a) − 1]
{[sinh(x) sinh(y) + sinh(a − x) sinh(a − y)]

+ [sinh(x) sinh(a − y) + sinh(y) sinh(a − x)]} + sinh(a − x) sinh(y)

sinh(a)
, (D3)

for a = h̄βωk , x = ωks, and y = ωku.
The result, then, is

S(k)E
cl = mkωk

sinh(ωkt )
[cosh(h̄βωk ) − 1][qk − q∗

k ]2 − C2
k

2mkωk

∫ h̄β

0
dτ

∫ τ

0
dσGk (τ − σ )F [Q̇(τ )]F [Q̇(σ )], (D4)

for

Gk (τ − σ ) = cosh
[
ωk

( h̄β

2 − (τ − σ )
)]

sinh
( h̄βωk

2

) . (D5)
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