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Modeling ultrafast demagnetization and spin transport:
The interplay of spin-polarized electrons and thermal magnons
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We theoretically investigate laser-induced spin transport in metallic magnetic heterostructures using an
effective spin-transport description that treats itinerant electrons and thermal magnons on an equal footing.
Electron-magnon scattering is included and taken as the driving force for ultrafast demagnetization. We assume
that in the low-fluence limit, the magnon system remains in a quasiequilibrium, allowing a transient nonzero
magnon chemical potential. In combination with the diffusive transport equations for the itinerant electrons, the
description is used to chart the full spin dynamics within the heterostructure. In agreement with recent experi-
ments, we find that in the case the spin-current-receiving material includes an efficient spin dissipation channel,
the interfacial spin current becomes directly proportional to the temporal derivative of the magnetization. Based
on an analytical calculation, we discuss that other relations between the spin current and magnetization may
arise in the case the spin-current-receiving material displays inefficient spin-flip scattering. Finally, we discuss
the role of (interfacial) magnon transport and show that, a priori, it cannot be neglected. However, its significance
strongly depends on the system parameters.
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I. INTRODUCTION

Rapidly heating magnetic heterostructures generates spin
currents on ultrashort time scales [1,2]. Their unique transient
dynamics lead to fascinating physics in magnetic multilayers.
For example, the spin current gives rise to the emission of
THz electromagnetic radiation in magnetic heterostructures,
resulting from the inverse spin Hall effect [3,4]. Additionally,
in noncollinear magnetic systems, THz standing spin waves
are excited by the spin-transfer torque [5,6]. Moreover, the
spin currents can play an assisting role in deterministic all-
optical switching [7–11]. In other words, optically induced
spin currents provide a versatile tool to manipulate magnetic
systems on ultrashort timescales and pave the way toward
future spintronic technologies.

Since the experimental proof of subpicosecond demagne-
tization in laser-excited magnetic thin films [12], the physical
origin of ultrafast spin dynamics remains a subject of heavy
debate. Locally, possible mechanisms that drive ultrafast de-
magnetization are the direct coherent interactions between
photons and spins [13,14], and local spin dynamics as trig-
gered by laser heating or excitation [12,15–28]. The latter
may involve an increased rate of various spin-flip scatter-
ing processes that eventually transfer angular momentum to
the lattice degrees of freedom [29,30]. Furthermore, nonlocal
mechanisms can play a role, since spin angular momentum
can be transported away from the ferromagnetic layer via the
generated spin currents [1,31,32]. Different mechanisms have
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been proposed, such as superdiffusive spin transport [31,33]
and the spin-dependent Seebeck effect [34,35].

In the last few years, multiple experimental and theoret-
ical studies have suggested that the local demagnetization
and spin-current generation have the same physical origin
[26,36–38]. The main observation is that the rate at which
spin-polarized electrons are generated is determined by the
demagnetization rate [36]. This can be understood as being
a result of electron-magnon scattering, which stems from the
s-d interaction that couples local magnetic moments to itiner-
ant spins [21,26,39–41]. Recent experiments support this view
and show a direct proportionality between the spin current in-
jected into a neighboring nonmagnetic layer and the temporal
derivative of the magnetization [42,43].

In this paper, we investigate the relation between demagne-
tization and spin-current injection in rapidly heated magnetic
heterostructures. We specifically address the role of ther-
mal magnons and their interaction with electrons, and use a
diffusive spin transport description that includes both spin-
current carriers. It is assumed that electron-magnon scattering
is the main driving force for ultrafast demagnetization. This
scattering channel has been extensively investigated in the-
oretical studies [17,21,24,26] and was phenomenologically
introduced as a spin source in the electronic spin diffusion
equation to model laser-induced spin transport [36–38]. Here,
we additionally include magnon transport and it is treated
on equal footing with spin-dependent electron transport. This
is achieved by allowing the magnon chemical potential to
be nonzero [44]. The description has many similarities with
the steady-state magnon transport calculations in magnetic
insulators [44–46] and metallic heterostructures [47,48]. Ref-
erence [47] suggested that for thermally injected steady-state
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spin currents at metallic interfaces, the magnonic contribution
cannot be neglected a priori. Here, we develop this insight
for the time-dependent scenario of rapidly heated magnetic
heterostructures. Furthermore, we show that the interfacial
spin current becomes directly proportional to the temporal
derivative of the magnetization in the case the receiving ma-
terial is an efficient spin sink. As we demonstrate analytically,
other behavior is found when the latter displays inefficient
spin-flip scattering.

This paper starts with an overview of the used model in
Sec. II, specifically discussing the underlying assumptions.
For a number of experimentally relevant cases, such as a
Ni/Pt bilayer, we present numerical calculations for the local
demagnetization and spin transport in Secs. III A and III B.
In Sec. III C, we analytically derive the different relations be-
tween the interfacial spin current and the magnetization for the
limiting cases of either efficient or inefficient spin dissipation
in the spin-current-receiving material. Finally, we investigate
the role of magnon transport and interfacial electron-magnon
scattering in more detail.

II. MODEL

This section gives an overview of the diffusive model we
use to investigate spin transport in rapidly heated magnetic
heterostructures. Although other authors already presented the
descriptions of spin-dependent electron transport [36–38,49–
51] and diffusive magnon transport [44,45] separately, we
here discuss them in a more integrated fashion. Readers fa-
miliar with these descriptions can skip this section and move
to Sec. III.

Here, we start with introducing the description of the ther-
mal magnon system.

A. Magnon density and magnon energy density

We define the magnonic system similar to Tveten et al.
[26]. The standard Heisenberg model for a lattice of lo-
cal spins, representing the relatively localized 3d electons,
is expressed in terms of bosonic creation and annihilation
operators using the Holstein-Primakoff tranformation [52].
Diagonalization by the use of Fourier transformations yields
the magnon dispersion relation, which is approximated as
being quadratic εq = ε0 + Aq2 [26]. Here, q is the magnitude
of the magnon wave vector, ε0 is the magnon gap and A is
the spin-wave stiffness. The corresponding density of states is
then given by D(ε) = √

ε − ε0/(4π2A3/2) [26,53].
In contrast to Ref. [26], we assume the magnon sys-

tem remains internally thermalized. As we only address the
low-fluence limit, we argue that after the laser pulse excites
the ferromagnet, the magnon distribution function remains
very similar to a Bose-Einstein function. On the ultrashort
timescales that we are interested in, which can potentially
be much shorter than the magnon lifetime, we should treat
the magnon number as a (quasi)conserved quantity. Then,
the magnon number and total magnon energy compose two
degrees of freedom. Hence, two parameters are needed to
describe this system, the magnon temperature Tm and the
magnon chemical potential μm. We stress that the chemical
potential and temperature used here correspond to effective

parameters, where effective refers to the fact that the magnon
distribution function might slightly deviate from a Bose-
Einstein distribution. The description is similar to Ref. [21],
with the extension that it allows a nonzero chemical potential.

The magnon number density nd and magnon energy den-
sity Ud are defined by the integrals [53]

nd =
∫ ∞

ε0

dεD(ε)nBE(ε, μm, Tm), (1)

Ud =
∫ ∞

ε0

dε(εD(ε))nBE(ε, μm, Tm), (2)

where nBE(ε, μm, Tm) corresponds to the Bose-Einstein distri-
bution:

nBE(ε, μm, Tm) = 1

e(ε−μm )/(kBTm ) − 1
. (3)

Note that in Eqs. (1) and (2), we extended the upper
boundary of the energy integration to infinity, which is valid
under the condition that the temperature remains much lower
than the Curie temperature Tm � TC . Now nd and Ud can be
expressed in terms of a polylogarithm [54]. We assume that
deviations in the magnon temperature are small compared
to the ambient temperature T0, i.e., (Tm − T0) � T0. Further-
more, we assume μm/(kBT0) � 1 and ε0/(kBT0) � 1. The
polylogarithm can be expressed in terms of a series expansion
for the given small factors. We eliminate the factors higher
than linear order, and we stress that the mathematical expres-
sions presented in the remainder of this section are only valid
for small perturbations. Details about this approximation are
given in Appendix A.

Following this procedure, the temporal derivative of the
magnon density and the magnon energy density are expressed
as

∂nd

∂t
= Cn,μμ̇m + Cn,T Ṫm, (4)

∂Ud

∂t
= CU,μμ̇m + CU,T Ṫm. (5)

The definitions of the prefactors are given in Table I. The
prefactor Cn,μ requires special attention, since it depends on
the magnon chemical potential. As explained in Appendix A,
the latter is essential to describe the correct behavior as a
function of chemical potential and is a direct consequence
of the bosonic nature of magnons. As the chemical poten-
tial approaches the magnon gap, the magnon density grows
increasingly strong, corresponding to the divergence of Cn,μ.
For physically relevant values of the magnon gap, this effect
is nonnegligible. Therefore, the model includes one nonlinear
term arising from Cn,μ.

B. Spin and energy transfer rate by electron-magnon scattering

Here we give expressions for the spin transfer and energy
transfer between the magnonic system and the itinerant elec-
tron system, which are driven by electron-magnon scattering.
Starting from the s-d Hamiltonian [26], the electron-magnon
scattering rate is calculated using Fermi’s golden rule
[21,26,54]. It is assumed that the itinerant electron system
is instantaneously thermalized and parametrized by the spin
accumulation μs and electron temperature Te. In the limit that
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TABLE I. Model coefficients expressed in terms of the magnon
transport timescale τtr,m, spin-wave stiffness A, and the bulk electron-
magnon scattering rate coefficient �0 [44]. The interfacial scattering
rate coefficients can be found by the substitution �0 → g↑↓/(πs).

Symbol Expression

Cn,μ
(kBT0 )1/2�(3/2)

4π2A3/2 (�(1/2)( ε0−μm
kBT0

)−1/2 + ζ (1/2))

Cn,T
(kBT0 )1/2�(3/2)

4π2A3/2 (3/2)ζ (3/2)kB

CU,μ
(kBT0 )3/2�(5/2)

4π2A3/2 ζ (3/2)

CU,T
(kBT0 )3/2�(5/2)

4π2A3/2 (5/2)ζ (5/2)kB

σm
e2τtr,m (kBT0 )3/2�(3/2)ζ (3/2)

2π2 h̄2A1/2

L τtr,m (kBT0 )5/2 (5/2)�(5/2)ζ (5/2)
3π2 h̄2A1/2

κm
τtr,m (kBT0 )5/2 (7/2)�(7/2)ζ (7/2)

3π2 h̄2A1/2 kB

gn,μ
�0 (kBT0 )3/2�(5/2)ζ (3/2)

4π2A3/2

gn,T
�0 (kBT0 )3/2�(5/2)(5/2)ζ (5/2)

4π2A3/2 kB

gU,μ
�0 (kBT0 )5/2�(7/2)ζ (5/2)

4π2A3/2

gU,T
�0 (kBT0 )5/2�(7/2)(7/2)ζ (7/2)

4π2A3/2 kB

the Fermi energy is the largest energy scale in the model, the
angular momentum transfer rate Isd (in units of h̄) and energy
density transfer rate Usd can be expressed as [26,53,54]

Isd =
∫ ∞

ε0

dε
�(ε)

h̄
D(ε)(ε − μs)

× (
nBE

(
ε, μF

s , Te
) − nBE(ε, μm, Tm)

)
, (6)

Usd =
∫ ∞

ε0

dε
�(ε)

h̄
(εD(ε))(ε − μs)

× (
nBE

(
ε, μF

s , Te
) − nBE(ε, μm, Tm)

)
. (7)

For simplicity, the energy-dependent scattering rate coef-
ficient �(ε) is assumed to be constant and replaced by the
dimensionless effective coefficient �0. The constant �0 can
be directly related to the effective Gilbert damping [53]. We
note that the presented expressions for the scattering rate, such
as Eqs. (6) and (7), require the electronic density of states to
be approximately constant in the vicinity of the Fermi level.
This approximation is not generally valid and may affect the
dynamics [55]. However, in the linear regime, corrections can
be adopted in the effective prefactors and therefore do not alter
the dynamics discussed in this paper.

Following the same procedure as simplifying the magnon
densities, the transfer rates can be expressed as

Isd = gn,μ

h̄
(μs − μm) + gn,T

h̄
(Te − Tm), (8)

Usd = gU,μ

h̄
(μs − μm) + gU,T

h̄
(Te − Tm). (9)

The coupling constants are summarized again in
Table I, which are all expressed in terms of the scattering
rate coefficient �0, the spin-wave stiffness A and the ambient
temperature T0. The factors ζ (z) and �(z) correspond to the
Riemann zeta function and gamma function, respectively.

C. Diffusive magnon transport

Here we discuss the description of diffusive magnon trans-
port. We follow exactly the same steps as the model for
diffusive magnon transport in magnetic insulators [44,45].
As discussed below, applying this in ferromagnetic metals
requires some extra comments [47].

To treat the magnons within a local-density approximation,
it is needed that the characteristic length scale of the system,
which in this case is the thickness of the ferromagnetic layer,
is much larger than the thermal de Broglie wavelength. Up to a
numerical prefactor, the latter wavelength is of the order λth ∼
(A/(kBT0))1/2 [44]. For Ni, this estimate gives λth ∼ 0.4 nm
at room temperature, using the numerical values listed in
Table II. Second, to be able to describe the transport as dif-
fusive, the magnon mean-free path λmfp ∼ (AkBT0)1/2τtr,m/h̄
should be much smaller than the thickness of the ferromag-
netic system. The magnon momentum relaxation time τtr,m is
discussed below. For Ni, we estimate that the mean-free path
is of the order λmfp ∼ 1.5 nm. Despite these requirements be-
ing only weakly satisfied for an ultrathin ferromagnetic layer,
we assume that the qualitative behavior is predicted correctly
by the diffusive magnon transport description.

Within these limits, the magnon current density and the
magnon heat current density can be expressed as [44]

jm = −σm

e2

∂μm

∂x
− L

T0

∂Tm

∂x
, (10)

jQ,m = −L
∂μm

∂x
− κm

∂Tm

∂x
, (11)

where σm is the magnon conductivity, L is the spin Seebeck
coefficient [45,56], and κm is the magnon heat conductivity.
The transport coefficients are given in Table I. To a good ap-
proximation, all transport coefficients are linear in the magnon
transport timescale τtr,m, which corresponds to the magnon
momentum relaxation time. This timescale is at least as short
as the electron-magnon scattering time, which is naturally
related to the observed demagnetization timescale. Therefore,
the latter is an upper bound for τtr,m. Since other contributing
scattering processes are expected to be less efficient, we as-
sume in the remainder of this paper that the timescale τtr,m

is of the same order of magnitude as the demagnetization
time. For instance, we use τtr,m = 0.1 ps, corresponding to
the typical order of magnitude of the demagnetization time
in ferromagnetic transition metals.

To clarify the notation, we give the continuity equation for
the magnon density and magnon energy density

∂nd

∂t
+ ∂ jm

∂x
= Isd , (12)

∂Ud

∂t
+ ∂ jQ,m

∂x
= Usd . (13)

Filling in Eqs. (4) and (5), (8) and (9), and (10) and (11)
gives the full expressions that are used in the calculations
presented in the later sections of this paper. Now we move
on to the electronic system.

D. The continuity equations for the electronic system

We assume that the out-of-equilibrium spin density δns in
the itinerant electron system can be parametrized by δns =
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ν̃Fμ
F
s , where ν̃F = 2ν↑ν↓/(ν↑ + ν↓) is the spin-averaged den-

sity of states evaluated at the Fermi energy [57]. Expressed in
terms of the spin accumulation, the continuity equations for
the spin and energy in the ferromagnetic layer are given by
[26,37]

ν̃F
∂μF

s

∂t
+ ∂ jF

s,e

∂x
= − ν̃Fμ

F
s

τs,F
− 2Isd , (14)

Ce
∂T F

e

∂t
+ ∂ jF

Q,e

∂x
= gep

(
T F

p − T F
e

) − Usd + P(t, x). (15)

The spin current jF
s,e and electronic heat current jF

Q,e are
given below. The term proportional to τ−1

s,F , which is in-
troduced phenomenologically [26], represents the additional
spin-flip scattering processes. The latter includes Elliott-Yafet
spin-flip scattering processes and is the main spin dissipation
channel for the combined electronic and magnonic system
[26]. Ce corresponds to the electron heat capacity, gep cor-
responds to the electron-phonon coupling constant, and T F

p
corresponds to the phonon temperature. The function P(t, x)
represents the laser-excitation profile, which will be further
specified when the calculations are presented.

Imposing that there is no charge transport, the electronic
spin current jF

s,e and heat current jF
Q,e can be expressed as

[37,50]

jF
s,e = − σ̃

e2

∂μF
s

∂x
− σ̃

e2
Ss

∂T F
e

∂x
, (16)

jF
Q,e = − σ̃

2e2
s

∂μF
s

∂x
− κe

∂T F
e

∂x
, (17)

where σ̃ = 2σ↑σ↓/(σ↑ + σ↓) is the spin-averaged electrical
conductivity, Ss is the spin-dependent Seebeck coefficient
[50], s is the spin-dependent Peltier coefficient (s = T0Ss),
and κe is the electronic heat conductivity. The expressions for
the dynamics of the electronic system within the nonmagnetic
layer can be found by replacing all indices F → N and remov-
ing the spin-dependent quantities (including Isd and Usd ).

Finally, for the phonon system, we take a highly simpli-
fied approach. For convenience, phonon heat transport is not
included. Furthermore, in the description for the local phonon
temperature, a heat sink is included that dissipates energy out
of the phonon system within a timescale of 20 ps. The latter
is introduced to make sure the system relaxes to its initial
temperature on a reasonable timescale. We stress that the exact
description of the phonon system does not play a direct role in
the discussions presented in this paper.

E. Boundary conditions and system specifications

Finally, we have to specify the boundary conditions. We
define the ferromagnetic layer on the domain x ∈ [−dF, 0],
where dF is the thickness of the ferromagnetic layer. At the left
end of the system, we impose insulating boundary conditions,
setting all currents to zero:

jm(−dF) = jQ,m(−dF) = 0, (18)

jF
s,e(−dF) = jF

Q,e(−dF) = 0. (19)

Second, at the interface, which is positioned at x = 0, the
total spin current and total heat current should be continuous,

jF
s,e(0) + 2 jm(0) = jN

s,e(0), (20)

jF
Q,e(0) + jQ,m(0) = jN

Q,e(0), (21)

where the superscript N indicates the quantities in the non-
magnetic layer. The factor of 2 arises from the fact that a
magnon carries twice as much spin angular momentum as an
electron. We write the interfacial electronic spin current and
heat current as

jF
s,e(0) = g1

h̄

(
μF

s − μN
s

) + g1

h̄
Si

s

(
T F

e − T N
e

)
, (22)

jF
Q,e(0) = g1

h̄

T0Si
s

2

(
μF

s − μN
s

) + κ i
e

(
T F

e − T N
e

)
, (23)

where the prefactor g1 is determined by the interfacial electri-
cal conductance [38] and all variables are evaluated at x = 0.
The interfacial electronic heat conductivity is given by κ i

e. The
factor Si

s corresponds to the spin-dependent Seebeck coeffi-
cient of the interface.

The interfacial magnon current and magnon heat current
are determined by the interfacial electron-magnon scattering
rate [26,47]. The linearized expressions for the scattering rate
can be found by replacing �0 → g↑↓/(πs) in Eqs. (8) and
(9) [26,53,54], where g↑↓ is the real part of the spin-mixing
conductance and s is the saturation spin density. In other
words, the interfacial magnon current jm(0) and magnon heat
current jQ,m(0) are expressed as

jm(0) = gi
n,μ

h̄

(
μm − μN

s

) + gi
n,T

h̄

(
Tm − T N

e

)
, (24)

jQ,m(0) = gi
U,μ

h̄

(
μm − μN

s

) + gi
U,T

h̄

(
Tm − T N

e

)
. (25)

The second term in Eq. (24), proportional to gi
n,T , corre-

sponds to the interfacial spin Seebeck effect [58].
Finally, the nonmagnetic layer is defined on the domain

x ∈ [0, dN], where dN is the thickness of the nonmagnetic
layer. At the outer interface x = dN, we impose the boundary
conditions

jN
s,e(dN) = g2

h̄
μN

s (dN), (26)

jN
Q,e(dN) = 0. (27)

For convenience, we assume that this interface is a heat
insulator. In contrast, we allow the interface to be permeable
for spins. The latter is parametrized by the constant g2. In
case g2 
= 0, spins are allowed to leak out of the bilayer. It
is assumed that the interface is connected to an ideal spin
sink, which corresponds to a vanishing μs for x > dN and
yields Eq. (26). The latter could, for example, be realized by
a secondary magnetic layer that is perpendicularly oriented
to the other magnetic layer, as is the case in noncollinear
magnetic heterostructures [43].

In the following, we will start with discussing the situation
where g2 = 0, corresponding to completely insulating bound-
ary conditions. Later, we will investigate the situation g2 
= 0
in more detail.
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III. RESULTS

In this section, we present the numerical solutions to the
equations discussed in the previous sections. Specifically,
Eqs. (12) and (13) are solved for the magnonic system in the
ferromagnetic layer, and Eqs. (14) and (15) are solved for the
electronic system throughout the complete heterostructure.
Furthermore, the boundary conditions as discussed in Sec. II E
are imposed. First, we investigate the dynamics of the local
thermodynamical parameters: temperatures, chemical poten-
tials, and the magnetization.

A. Temperature, chemical potential and
magnetization dynamics

We start with calculating the laser-induced response of a
Ni(5 nm)/Pt(3 nm) bilayer with insulating boundary condi-
tions at the outer interfaces. Specifically, we first investigate
the dynamics of the local thermodynamical parameters within
the Ni layer. To model laser heating, we assume that the spatial
and temporal profile of the laser pulse can be approximated by

P(t, x) = P0

σ
√

π
exp

[
− x + dF

λ̃

]
exp

[
− t2

σ 2

]
, (28)

where P0 is the absorbed laser pulse energy density and σ

determines the pulse duration, which is set to 70 fs. The laser
pulse penetration depth is given by λ̃ and set to a typical value
of λ̃ = 15 nm. For simplicity, we assume that the laser pulse
absorption in the Ni and Pt layer is equally efficient and we
use P0 = 0.15 × 108 Jm−3. All other system parameters are
given in Tables II and III.

Figures 1(a)–1(c) show the response of the magnetic bi-
layer to laser heating. All plotted variables are spatially
averaged over the range of the ferromagnetic (Ni) layer. Fig-
ure 1(a) shows the rapid increase of the electron temperature
T F

e and the response of the magnon temperature Tm driven
by electron-magnon scattering. This transient behavior of the
magnon temperature yields a rapid increase in the magnon
density. Figure 1(b) displays the laser-induced dynamics of
the spin accumulation (blue) and magnon chemical poten-
tial (red). The spin accumulation shows the typical bipolar
behavior, in analogy with previous calculations and experi-
mental observations of the generated spin-polarized electrons
[36–38,41]. The magnon chemical potential shows different
behavior—it can be shown that this is related to the equili-
bration of the chemical potentials playing a minor role and
the magnon chemical potential opposing the dynamics of the
magnon temperature.

Finally, Fig. 1(c) shows the normalized magnetization as a
function of time. The magnetization requires special attention.
In this paper, it is assumed that the magnetic signal measured
in the experiments is determined by the total spin density. The
magnetization is defined as

m = s − 〈nd〉 − 〈δns〉/2

s
= s − 〈ntot〉

s
, (29)

which is normalized with respect to the saturation spin density
s = S/a3, where S is the spin per atom (in units of h̄) and
a the lattice constant. The bracket notation indicates spatial
averaging over the ferromagnetic layer.

FIG. 1. Laser-induced dynamics of the temperatures, chem-
ical potentials, and magnetization within the Ni layer of a
Ni(5 nm)/Pt(3 nm) bilayer. The quantities are plotted as a function
of t after laser-pulse excitation at t = 0 and are spatially averaged
over the ferromagnetic (Ni) layer. (a) The electron temperature (blue)
and magnon temperature (red). (b) The spin accumulation (blue) and
magnon chemical potential (red). (c) The normalized magnetization.
The solid green line indicates the changes of the total spin density.
The dashed green line indicates the case that only changes in magnon
density are taken into account. The thin gray line represents the
magnetization in case of an isolated Ni layer, in the absence of a
neighboring Pt layer.

The solid green curve in Fig. 1(c) shows the typical ul-
trafast demagnetization behavior and critically depends on
the spin-flip scattering rate τs,F. Upon excitation, electron-
magnon scattering generates a net change of the magnon
density and spin density in the itinerant spin system. However,
electron-magnon scattering conserves the total spin angular
momentum. The Elliott-Yafet spin-flip processes originating
from spin-orbit coupling enable changes of the total spin
density and therefore demagnetization of the combined spin
system [24,26,59,60]. In the end, spin is efficiently transferred
to the lattice, as was recently demonstrated experimentally
[29,30].

We stress that this interpretation of the magnetization re-
mains a point of discussion and its relation to the magnetic
signal in the experiments strongly depends on the probing
method. Therefore, we have plotted the dynamics of the
magnon density 〈nd〉 separately. The latter is normalized with
respect to the saturation spin density s and indicated by the
dashed green line in Fig. 1(c), emphasizing the subpicosecond
generation of magnons [61]. As will be discussed in the next
section, the used interpretation of the magnetization, as being
determined by the sum of the magnon density and the itinerant

144420-5



M. BEENS, R. A. DUINE, AND B. KOOPMANS PHYSICAL REVIEW B 105, 144420 (2022)

FIG. 2. Laser-induced spin transport in a Ni(5 nm)/Pt(3 nm) bi-
layer with insulating boundary conditions. (a) The interfacial spin
current (blue) as a function of time t after laser-pulse excitation at
t = 0. The dashed red line indicates the temporal derivative of the
magnetization, scaled by a prefactor that is fitted to the amplitude of
the spin current. (b) Distinct spin current contributions as a function
of spatial coordinate x, evaluated at t = 0.05 ps. Blue indicates the
electronic contribution, red the magnonic contribution, and green the
total. (c) Schematic overview of the system.

electron spin density, is strongly supported by the investiga-
tion of the relation between the interfacial spin current and
the demagnetization rate.

Finally, the thin gray line in Fig. 1(c) represents the calcula-
tion of the magnetization in the case the Pt layer is absent and
spin can not be transported out of the Ni layer. The latter em-
phasizes that the demagnetization is primarily driven by local
spin dissipation. However, in the presence of a nonmagnetic
layer (solid green curve), interfacial spin transfer significantly
contributes to the demagnetization rate.

B. Spin transport in magnetic heterostructures

In this section, we calculate the spin current that arises
from laser exciting the magnetic heterostructure correspond-
ing to the results of Fig. 1. As given by Eq. (20), we define
the total interfacial spin current at x = 0 as jint

s = jF
s,e(0) +

2 jm(0), where jF
s,e(0) is the spin current carried by the conduc-

tion electrons and jm(0) is the interfacial magnon current. We
again focus on a Ni(5 nm)/Pt(3 nm) bilayer with insulating
boundary conditions, as schematically depicted in Fig. 2(c).

The blue line in Fig. 2(a) shows the results from calculating
jint
s by numerically solving the set of equations as presented

in Sec. II. The material parameters and description of the laser
pulse are identical to the previous section. The result clearly
shows the bipolar behavior of the interfacial spin current,
yielding a transient oscillation within the THz regime. The red

dashed curve indicates the temporal derivative of the magne-
tization, scaled by a prefactor that is fitted to the amplitude
of the spin current. The comparison indicates a qualitative
agreement with the experiments [42,43], as a close relation is
expected between the spin current injected into the nonmag-
netic layer and the temporal derivative of magnetization. The
visible phase shift is interesting in itself, but smaller than the
temporal resolution of 40 fs in the experiment in Ref. [42].

Figure 2(b) shows the different contributions to the spin
current as a function of position x, calculated at t = 0.05 ps.
The figure suggests that for the used parameters, magnon
transport and spin-polarized electron transport comparably
contribute to the total spin current within the bulk of the
ferromagnet. One should keep in mind that their ratio strongly
depends on the specific time instance and system parameters.
The spin transport by electrons is mainly driven by bulk
electron-magnon scattering, which generates negatively po-
larized spins that are transferred toward the receiving layer
via spin diffusion. The negative magnon current in Fig. 2(b)
indicates thermal magnons being created at the interface by
electron-magnon scattering. Consequently, a flow of magnons
toward the negative x direction is generated. The magnon cur-
rent jm(0) is mainly determined by the temperature difference
Tm − T N

e at the interface, which corresponds to the interfacial
spin Seebeck effect [58]. In contrast to our paper, the latter is
typically neglected in the models for spin transport in metallic
magnetic heterostructures [37,38].

In the following section, we investigate the relation be-
tween the interfacial spin current and the magnetization
analytically, and specifically address the role of (interfacial)
magnon transport.

C. Relation between the interfacial spin current
and demagnetization

In this section, we analytically investigate the relation be-
tween the interfacial spin current and the demagnetization.

Integrating Eqs. (12) and (14) over the thickness of the
ferromagnetic layer and adding up the results yields an ex-
pression for the interfacial spin current,

jint
s (t ) = −2dF

d〈ntot〉
dt

− dF
〈δns〉
τs,F

, (30)

where the brackets indicate spatial averaging over the fer-
romagnetic layer. Equation (30) simply follows from spin
angular momentum conservation, as the total spin density
〈ntot〉 can only be changed by either spin transport or local spin
dissipation. In the limit where the latter is absent, τs,F → ∞,
spin transport and demagnetization couple trivially. For the
systems of interest, where we have a subpicosecond τs,F, a
more cumbersome calculation is required to eliminate the
local spin dissipation term from Eq. (30).

To do this, we solve the spin diffusion equation for the full
heterostructure. In the frequency domain, we write

∂2μF
s (ω, x)

∂x2
= κF(ω)2μF

s (ω, x) + 2τs,FIsd (ω, x)

ν̃Fl2
s,F

, (31)

∂2μN
s (ω, x)

∂x2
= κN(ω)2μN

s (ω, x), (32)
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where we use the parameter κF(ω) = l−1
s,F

√
iωτs,F + 1 for

the ferromagnetic layer and κN(ω) = l−1
s,N

√
iωτs,N + 1 for the

nonmagnetic layer [62]. ls,F and ls,N correspond to the spin
diffusion length of the ferromagnetic and nonmagnetic layer,
respectively. The boundary conditions are identical to Sec. II E
but now expressed in the frequency domain. For convenience,
we neglect the spin-dependent Seebeck effect (Ss and Si

s) in
this analytical calculation. The goal is to express the Fourier
transform of the interfacial spin current

jint
s (ω) = g1

h̄
(μs,F(ω, 0) − μs,N(ω, 0)) + 2 jm(ω, 0), (33)

in terms of the electron-magnon scattering rates, specifically,
the bulk contribution Isd (ω, x) and interfacial contribution
jm(ω, 0). The resulting expression is given by

jint
s (ω) = 2A(ω) jm(ω, 0) − 2dFB(ω)Isd (ω), (34)

where Isd (ω) is given by

Isd (ω) =
∫ 0

−dF

dx′ κF(ω) cosh[(dF + x′)κF(ω)]

sinh[dFκF(ω)]
Isd (ω, x′).

(35)
Furthermore, the function A(ω) is given by

A(ω) =
1 + h̄ν̃FdF

g1τs,F

( l2
s,FκF (ω)

dF

)
tanh[κF(ω)dF]

1 + h̄ν̃FdF
g1τs,F

( l2
s,FκF (ω)

dF

)
tanh[κF(ω)dF]GN(ω)

, (36)

which can deviate from one [compared to Eq. (34)], indicating
that the spin current driven by electron-magnon scattering
at the interface is modified by spins flowing back into the
ferromagnetic layer. Second, the bulk contribution depends on
the function B(ω)

B(ω) =
(

1
dFκF (ω)

)
tanh[κF(ω)dF]

1 + h̄ν̃FdF
g1τs,F

( l2
s,FκF (ω)

dF

)
tanh[κF(ω)dF]GN(ω)

. (37)

The function GN(ω) includes all the parameters that
describe the properties of the nonmagnetic layer and the in-
terfaces

GN(ω) = 1 +
g1 + g1g2τs,N

h̄ν̃Nl2
s,NκN(ω)

tanh[κN(ω)dN]

g2 + h̄ν̃Nl2
s,NκN(ω)
τs,N

tanh[κN(ω)dN]
. (38)

What remains is simplifying Eq. (34) and expressing it
in terms of the total spin density 〈ntot (ω)〉 and thereby the
normalized magnetization m. For convenience, we first focus
on the situation that interfacial electron-magnon scattering is
absent.

1. Bulk electron-magnon scattering

Here we set jm(ω, 0) → 0. Hence, the interfacial spin cur-
rent is given by the second term in Eq. (34). As is discussed
in Appendix B, a relevant approximation is that the function
Isd (ω) closely resembles the spatial average 〈Isd (ω)〉. To elim-
inate 〈Isd (ω)〉 from Eq. (34), we make use of the continuity
equations for nd and δns spatially averaged over the ferro-
magnetic layer. In the absence of interfacial electron-magnon

scattering this yields

iω〈nd (ω)〉 = 〈Isd (ω)〉, (39)

iω〈δns(ω)〉 = −2〈Isd (ω)〉 − 〈δns(ω)〉
τs,F

− jint
s (ω)

dF
. (40)

Using these equations, the interfacial spin current can be
expressed in terms of the Fourier transform of the total spin
density

jint
s (ω) = −2dFB̃(ω) × (iω〈ntot (ω)〉), (41)

where the new function B̃(ω) is given by

B̃(ω) = B(ω)(iωτs,F + 1)

iωτs,F B(ω) + 1
. (42)

The function B̃(ω) carries all information about the relation
between the temporal evolution of the magnetization and the
interfacial spin current. We investigate the Taylor expansion

B̃(ω) = B(0) + iτω + O(ω2), (43)

where we introduced the timescale τ = −iB̃′(0). We focus
on a Ni(3.4 nm)/Cu(2.5 nm) bilayer, which is similar to the
system used in the experiments of Ref. [43].

When the interface at x = dN is permeable for spins
(g2 
= 0) and connected to an ideal spin sink, we estimate
τg2 
=0 ∼ 5.1 × 10−16 s when using the constants for Ni/Cu
as presented in Tables II and III. For frequencies up to the
THz regime, it satisfies τg2 
=0 ω � B(0) ∼ 0.52, implying that
B̃(ω) is approximately independent of frequency and given by
B(0). Inverse Fourier transforming Eq. (41) yields

jint
s (t ) = −2dFB(0) × d〈ntot〉

dt
. (44)

By definition, −(1/s)d〈ntot〉/dt = dm/dt . Using this sub-
stitution, the interfacial spin current in terms of the normalized
magnetization m is

jint
s (t ) = ε × (2dFs)

dm

dt
, (45)

where we defined the efficiency parameter ε = B(0). This
expression is identical to the relation as reported in Ref. [43].

Contrasting behavior is found when we switch to g2 = 0,
when all spins are blocked at x = dN. A critical role is played
by the function GN(ω), which under these conditions shows
GN(0) � 1 and dominates the frequency dependence of B̃(ω).
Using that the Cu nonmagnetic layer satisfies dN/ls,N � 1, it
follows that

τg2=0 ≈ B(0)2 ν̃FdFτ
2
s,N

ν̃NdNτs,F
∼ 7.0 fs. (46)

In combination with B(0) ∼ 4 × 10−4, it typically satisfies
τg2=0 ω � B(0). Hence, in this specific case, the first-order
term of B̃(ω) dominates. The spin current is now given by

jint
s = τg2=0 × (2dFs)

d2m

dt2
. (47)

Rather than being proportional to dm/dt , the interfacial
spin current is now approximately proportional to the second
derivative of m. This behavior is a direct consequence of
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FIG. 3. Laser-induced spin transport in a Ni(3.4 nm)/
Cu(2.5 nm) bilayer for two types of boundary conditions at
x = dN. (a) The interfacial spin current (blue) as a function of time
t after laser-pulse excitation at t = 0, for an interface at x = dN

that is permeable for spins (g2 
= 0) and connected to an ideal spin
sink. The dashed red line indicates the temporal derivative of the
magnetization, scaled by a prefactor that is fitted to the amplitude of
the spin current. (b) The interfacial spin current (blue) for insulating
boundary conditions (g2 = 0). The dashed red line indicates the
second derivative of the magnetization, scaled to have the same
amplitude as the spin current.

the large spin-flip scattering time τs,N = 17 ps of Cu [38].
In this case, an efficient spin dissipation channel is absent,
resulting in an altered response of the spin accumulation in
the nonmagnetic layer which affects the temporal behavior of
the interfacial spin transport.

The clear distinction between the dynamics predicted by
Eqs. (45) and (47) for a Ni(3.4 nm)/Cu(2.5 nm) bilayer is
depicted in Figs. 3(a) and 3(b). We here assumed that the
laser pulse is only absorbed by the Ni layer and used P0 =
0.2 × 108 Jm−3. The absorption by the Cu layer is neglected,
since Cu has a relatively small imaginary component of the
dielectric constant [37]. All remaining parameters are given
in Tables II and III. Figure 3(a) shows the correspondence
between the spin current (blue solid line) and the temporal
derivative of the magnetization (red dashed line) in the case
where the bilayer is connected to an ideal spin sink. There
is no significant phase shift present, which is in agreement
with the experiments in Ref. [43]. In Fig. 3(b), the spin sink
is absent and a close relation between the spin current (blue
solid line) and the second derivative of the magnetization (red
dashed line) is found. Note that the scaling factors given in
the figure do not match the values calculated in the text, as
the calculations presented in the figures include magnon trans-
port, the spin-dependent Seebeck effect, and the full frequency
dependence.

We observe that in case the receiving layer is an efficient
spin sink or is connected to an efficient spin sink, the in-
terfacial spin current is directly proportional to the temporal
derivative of m, as described by the relation Eq. (45). This is
in agreement with the results of the previous section because
Pt has a very short spin-flip scattering time of τs,N ∼ 0.02 ps
[63,64]. In the opposite case, if the receiving material displays
inefficient spin-flip scattering, other relations may arise. We
stress that the behavior predicted by Eq. (47) strongly depends
on the exact components of the heterostructure. As shown by
the calculation, a Ni/Cu bilayer is an ideal system to demon-
strate the latter limiting case, mainly because Cu has a very
large spin-flip scattering timescale and a Ni/Cu interface has
a relatively large electrical conductance [38]. To demonstrate
this experimentally, two methods can potentially be used to
probe the spin-current generation into the nonmagnetic layer.
First, probing the THz electromagnetic radiation that results
from the inverse spin Hall effect yields the temporal profile
of the spin current [42]. However, due to the small spin
Hall angle of Cu, the signal is expected to be very small
[65]. A second method is using the magneto-optical Kerr
effect. In that case, the spin accumulation is probed instead
of the spin current [36]. For insulating boundary conditions,
the spin density that builds up in the nonmagnetic layer is
given by

〈δns(ω)〉N = 1

dN

jint
s (ω)

iω + τ−1
s,N

. (48)

Here the brackets indicate spatial averaging over the non-
magnetic layer. For Cu, with large τs,N, the interfacial spin
current and the build-up spin density differ by a factor of ∼iω,
indicating that the optically probed signal will replicate the
first derivative of the magnetization. Despite the difficulty of
observing the behavior of Eq. (47), the analysis emphasizes
that by modifying the properties of the nonmagnetic mate-
rial, the bandwidth of the spin current can be tuned [3,63].
Although compositions other than Ni/Cu might not yield the
ideal comparison as in Figs. 3(a) and 3(b), performing experi-
ments for various nonmagnetic materials and probing both the
magnetization and the spin current simultaneously will yield
valuable information.

In the analytical calculation presented in this section, we
left out the interfacial electron-magnon scattering. In the
following section, we specifically address its contribution
to spin current injection and discuss the role of magnon
transport.

2. Interfacial electron-magnon scattering and magnon transport

Magnon spin transport and magnon heat transport are di-
rectly coupled, which makes them complex to investigate
analytically. Hence, this section presents a numerical analy-
sis of the role of interfacial electron-magnon scattering and
magnon transport.

The results are shown in Figs. 4(a)–4(d), and correspond
to a Ni(3.4 nm)/Cu(2.5 nm) bilayer connected to an ideal
spin sink. The calculations include bulk electron-magnon
scattering, interfacial electron-magnon scattering, and the
spin-dependent Seebeck effect. The used system parameters
are presented in Tables II and III. The phase diagram in
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FIG. 4. Phase diagrams that characterize the interfacial spin current in a Ni(3.4 nm)/Cu(2.5 nm) bilayer connected to an ideal spin sink.
(a) Phase diagram of the amplitude of the interfacial spin current as a function of the spin-mixing conductance g↑↓ [made dimensionless by
dividing it by (πsdF )] and the magnon transport timescale τtr,m. (b), (d) Phase diagrams as a function of the spin-mixing conductance g↑↓ and
the bulk electron-magnon scattering rate coefficient �0, where τtr,m = 0.1 ps is set constant. (b) The amplitude of the interfacial spin current.
The red star indicates the values used in Fig. 3(a). (c) The amplitude of (−2edFs)dm/dt . (d) The efficiency parameter ε, as defined in Eq. (45).

Fig. 4(a) indicates the amplitude of the spin current, deter-
mined by its maximum value, as a function of the spin-mixing
conductance g↑↓ and the magnon transport timescale τtr,m.
The spin-mixing conductance, which is made dimensionless
by dividing it by a factor (πsdF), determines the strength
of the interfacial electron-magnon scattering and thereby the
magnon spin current near the interface. The timescale τtr,m

determines the effectiveness of magnon transport in the bulk.
To have interfacial electron-magnon scattering significantly
contribute to the total spin current, it is required to have
efficient magnon transport in the bulk, as indicated by the light
region in Fig. 4(a).

Figures 4(b)–4(d) compare the contributions by bulk and
interfacial electron-magnon scattering. These phase diagrams
are plotted as a function of the spin-mixing conductance and
the bulk electron-magnon scattering rate coefficient �0. Here,
the magnon transport time scale is set to τtr,m = 0.1 ps, similar
to the calculations presented in the previous sections. The
color scheme in Fig. 4(b) indicates the amplitude of the in-
terfacial spin current. The figure emphasizes that including
interfacial electron-magnon scattering boosts the amplitude
of the spin current, however, the significance of the in-
crease depends on the efficiency of the bulk electron-magnon
scattering.

Figure 4(c) indicates the amplitude of dm/dt , given in
the same units as the spin current. Intuitively, the demag-
netization favors a simultaneously large interfacial and bulk
electron-magnon scattering rate, since both contribute to the
generation of thermal magnons. This does not linearly trans-
late to a maximized spin current, as the relation between the
spin current and demagnetization depends on which contri-
bution dominates. The color scheme in Fig. 4(d) indicates
the efficiency ε, as defined in Eq. (45). Keeping in mind the
analytical calculation, the range of ε is approximately related
to the values of prefactors A(0) and B(0) [see Eqs. (36) and
(37)]. In the case only interfacial electron-magnon scattering
is present, this yields ε ∼ A(0) ∼ 0.79, whereas for the pure
bulk scenario ε ∼ B(0) ∼ 0.52. A small deviation compared
to Fig. 4(d) arises as the numerical calculation includes the

spin-dependent Seebeck effect and the full frequency depen-
dence.

All calculations presented here imply that spin transport by
magnons, which is typically neglected in the calculations of
laser-induced spin transport in metallic magnetic heterostruc-
tures [37,38], is relevant to include in the analyses [26]. Since
magnon transport is driven by electron-magnon scattering at
the interface, the ratio of �0 and g↑↓/(πsdF) plays a deci-
sive role [26]. Furthermore, constants that parametrize either
bulk magnon transport or spin-polarized electron transport are
essential. Their coupled dynamics complexifies the character-
ization of bulk spin transport, including the modification of
the diffusion length scales [48]. On top of that, nonmagnetic
system parameters that correspond to the thermal properties of
the system do strongly affect the importance of magnon trans-
port. For instance, the interfacial magnon current is mainly
determined by the temperature difference Tm − T N

e , which
critically depends on the thermal and optical properties of
the nonmagnetic layer. Further theoretical work is required
to chart the essential dependencies on the properties of the
heterostructure.

Hence, we state that the role of interfacial electron-magnon
scattering and, consequently, bulk magnon transport cannot
be neglected a priori [26]. It may play a significant role
dependent on the specific system components and proper-
ties. Nevertheless, bulk electron-magnon scattering always
remains essential, as ultrafast demagnetization is observed in
magnetic thin films regardless of the presence of a neighbor-
ing nonmagnetic metallic layer [66].

IV. CONCLUSION AND OUTLOOK

In conclusion, we modeled ultrafast demagnetization and
spin transport in rapidly heated magnetic heterostructures, ad-
dressing the interplay of thermal magnons and itinerant spins.
Within this model, the magnetization is determined by the
total spin density of the two populations and ultrafast demag-
netization is driven by the combination of electron-magnon
scattering and additional spin-flip scattering processes
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originating from spin-orbit coupling. Second, electron-
magnon scattering is a driving force of nonlocal spin transfer,
for which we calculated the resulting spin transport by
magnons and spin-polarized electrons within a diffusive de-
scription. It is shown that, in the case the receiving material
is an efficient spin sink, the interfacial spin current becomes
directly proportional to the temporal derivative of the magne-
tization. Furthermore, we have discussed the role of interfacial
electron-magnon scattering and magnon transport and showed
that they cannot be neglected a priori. However, their signif-
icance strongly depends on the material properties of the full
magnetic heterostructure.

In this paper, we focused on ultrathin magnetic heterostruc-
tures. To explore the role of bulk temperature gradients and
identify characteristic length scales, a quantitative analysis
over a larger range of thicknesses is required. Second, it will
become interesting to go beyond the assumptions that the
phononic system plays a minor role and behaves as an ideal
spin sink. As recent experiments show that during the ultrafast
demagnetization spin is transferred to the lattice [29,30], and
specifically circularly polarized phonons [30], it becomes ob-
vious that a more complete description of the phononic system
is needed. Moreover, it was already proposed that a cou-
pling between magnons and phonons should be implemented
within a three-temperature description [67]. Nevertheless, it
is expected that the dominant physical concepts are captured
within the assumptions of the presented model.
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APPENDIX A: EXPANSION OF THE POLYLOGARITHM

To evaluate the integrals that are needed for the descrip-
tion of the magnonic system, we make use of the following
expression for the polylogarithm [54]:

Lis(e
x ) = 1

�(s)

∫ ∞

0
dt

t s−1

et/ex − 1
. (A1)

As mentioned in Sec. II A, we assume parameter x remains
small. The polylogarithm can be written as a series expansion
[46]:

Lis(e
x ) = �(1 − s)(−x)s−1 +

∞∑
k=0

ζ (s − k)

k!
xk . (A2)

Since x remains small, we truncate this series for k � 2,
which is the basis for the calculation of all coefficients pre-
sented in Table I. As an example, we calculate the magnon
density from Eq. (1):

nd = (kBTm)3/2

4π2A3/2
�(3/2)Li3/2

(
e(μ−ε0 )/(kBTm )

)
. (A3)

Applying the expansion up to first order in
μm/(kBTm), ε0/(kBTm) � 1, we have

nd = (kBTm)3/2

4π2A3/2
�(3/2)

[
�(−1/2)

(
ε0 − μm

kBTm

)1/2

+ ζ (3/2) − ζ (1/2)

(
ε0 − μm

kBTm

)]
. (A4)

If we now impose that we only have small changes
of the magnon temperature compared to room temperature,
(Tm − T0)/T0 � 1, and only collect the terms up to first order
in small parameters, we find

nd = (kBT0)3/2

4π2A3/2
�(3/2)

×
[
�(−1/2)

(
ε0 − μm

kBT0

)1/2

+ ζ (3/2)

− ζ (1/2)

(
ε0 − μm

kBT0

)
+ (3/2)ζ (3/2)

(Tm − T0)

T0

]
.

(A5)

Evaluating this expression at the maximum tempera-
ture and chemical potential of the calculation in Sec. III A
(Fig. 1), it only differs approximately 1% from the exact value
Eq. (A3).

Taking the temporal derivative of nd yields

∂nd

∂t
= (kBT0)3/2

4π2A3/2
�(3/2)

×
[(

�(1/2)

(
ε0 − μm

kBT0

)−1/2

+ ζ (1/2)

)
μ̇m

kBT0

+ (3/2)ζ (3/2)
Ṫm

T0

]
, (A6)

which determines the coefficients Cn,μ and Cn,T , as defined
in the main text and given in Table I. When μm approaches
the magnon gap ε0, the first term in Cn,μ diverges, which
originates from Bose-Einstein statistics. It is essential to in-
clude this nonlinear term in Cn,μ as otherwise we would find
time traces of the magnon chemical potential that may largely
exceed the magnon gap.

For all remaining coefficients in Table I, the first term in
the expansion Eq. (A2) will only yield higher order contribu-
tions. In that case, the coefficients follow equivalently from
first-order Taylor expansion [the second term in Eq. (A2)],
where in the prefactors it is used that for sufficiently small ε0

we approximate Lis(exp(−ε0/(kBT0))) ∼ ζ (s). We stress that
all expansion methods we use here remain a rough estimate.
To retrieve valuable quantitative results from the magnonic
calculation, it is essential to implement the full polylogarithm.

APPENDIX B: NOTES ON THE APPROXIMATIONS IN THE
ANALYTICAL CALCULATION

In Sec. III C, the bulk electron-magnon scattering rate,
which is implemented in the spin diffusion equation as a
source of spins, is simplified using the following consider-
ations. We express the source Isd (ω, x) in terms of a cosine
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TABLE II. Parameters that characterize the magnonic system in Ni.

Symbol Meaning Estimate

T0 (K) Ambient temperature 295
TC (K) [68] Curie temperature 628
τtr,m (ps)a Magnon momentum relaxation time 0.1
A (meVÅ2)b Spin-wave stiffness 400
a (nm) [69] Lattice constant 0.35
Sc Spin per atom (in units h̄) 0.6 × (1/2)
�0

d e-m scattering rate coefficient 2 × 0.038
ε0 (meV)e Magnon gap 0.05

aDiscussed in the main text.
bTypical order of magnitude estimated by A ∼ 2kBTCSa2.
cEstimated from atomic magnetic moment given in Ref. [19].
dUsing relation �0 = 2α [53] and α of Ni [15].
eTypical order of magnitude from FMR frequency of ∼10 GHz.

expansion

Isd (ω, x) = Isd,0(ω)

2
+

∞∑
n=1

Isd,n(ω) cos

(
nπx

dF

)
, (B1)

where the coefficients Isd,n(ω) are given by

Isd,n = 2

dF

∫ 0

−dF

dxIsd (ω, x) cos

(
nπx

dF

)
. (B2)

Note that the zeroth mode corresponds to twice the spatial
average Isd,0(ω) = 2〈Isd (ω)〉. The higher-order modes are a
measure of the spatial inhomogeneity of the source term. We
want to express the function Isd (ω), as given in Eq. (35), in
terms of the coefficients Isd,n(ω). By performing the spatial
integration, we find

Isd (ω) = 〈Isd (ω)〉 +
∞∑

n=1

Isd,n(ω)(
nπ

dFκF (ω)

)2 + 1
. (B3)

Hence, the n � 1 modes of Isd (ω, x) are truncated by the
denominator. In combination with the inhomogeneous modes

TABLE III. Parameters for the electronic system of Ni, Pt, and
Cu. Parameters that characterize the interface correspond to Ni/Cu
and Ni/Pt.

Symbol Ni Pt Cu Refs.

γ (Jm−3 K−2) 1077 721 100 [37,38,67]
Cp (106 Jm−3 K−1) 3.6 2.85 3.45 [37,67]
gep (106 Jm−3 ps−1) 0.855 0.29 0.07 [37,67]
2ν̃ (eV−1 nm−3)a 272 137b 26 [38,51,63]
2σ̃ (106 Sm−1)a 7.1 6.6 39 [37,38]
κe (Wm−1 K−1) 50 50 300 [37,38]
Ss (10−24 JK−1)c −0.3
g1 (1019 m−2)d 0.3 1.0 [37,38]
g2 (1019 m−2) 1.0
κ i

e (109 Wm−2 K−1)e 10 40 [37,38]
Si

s (10−24 JK−1)f −0.3 −0.3
g↑↓ (1019 m−2) 0.3 1.0 [62,70]
τs (ps) 0.1 0.02 17 [38,63,64]

aWe assume that the spin-averaged quantities ν̃ and σ̃ are approxi-
mately given by the (total) electrical quantity divided by two.
bCalculated from the ratio of the conductivity and diffusion coeffi-
cient in Ref. [63].
cUsing that the Seebeck coefficient scales as (π 2/3)kB(T0/TF ), with
Fermi temperature TF ∼ 104 K, the polarization Ps ∼ 0.2, and sign
of the spin-dependent Seebeck effect [50].
dEstimated from the electrical conductance given for Ni/Cu in
Ref. [38] and [Co/Ni]/Pt in Ref. [37].
eEstimated from the electrical conductance and the Wiedemann-
Franz law [38].
fAssumed to be equal to the bulk value.

remaining relatively small compared to the homogeneous
mode, it turns out to be a relevant approximation to neglect
all the terms in the summation in Eq. (B3).

APPENDIX C: SYSTEM PARAMETERS

The system parameters that are used in the calculations
presented in the main text are summarized in Tables II and
III. Table II shows the estimated parameters that characterize
the magnonic system in Ni. Table III presents the parameters
of the electronic system in Ni, Pt, and Cu. Furthermore, it
includes the parameters that correspond to the interfaces.

[1] G. Malinowski, F. Dalla Longa, J. H. H. Rietjens, P. V. Paluskar,
R. Huijink, H. J. M. Swagten, and B. Koopmans, Nat. Phys. 4,
855 (2008).

[2] A. Melnikov, I. Razdolski, T. O. Wehling, E. Th. Papaioannou,
V. Roddatis, P. Fumagalli, O. Aktsipetrov, A. I. Lichtenstein,
and U. Bovensiepen, Phys. Rev. Lett. 107, 076601
(2011).

[3] T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold,
S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel,
M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg,
Nat. Nanotechnol. 8, 256 (2013).

[4] T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski,
J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik,
S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M.
Münzenberg, S. T. B. Goennenwein, G. Woltersdorf, B.
Rethfeld, P. W. Brouwer, M. Wolf, M. Kläui, and T. Kampfrath,
Nat. Commun. 9, 2899 (2018).

[5] I. Razdolski, A. Alekhin, N. Ilin, J. P. Meyburg, V. Roddatis, D.
Diesing, U. Bovensiepen, and A. Melnikov, Nat. Commun. 8,
15007 (2017).

[6] M. L. M. Lalieu, P.L.J. Helgers, and B. Koopmans, Phys. Rev.
B 96, 014417 (2017).

144420-11

https://doi.org/10.1038/nphys1092
https://doi.org/10.1103/PhysRevLett.107.076601
https://doi.org/10.1038/nnano.2013.43
https://doi.org/10.1038/s41467-018-05135-2
https://doi.org/10.1038/ncomms15007
https://doi.org/10.1103/PhysRevB.96.014417


M. BEENS, R. A. DUINE, AND B. KOOPMANS PHYSICAL REVIEW B 105, 144420 (2022)

[7] S. Iihama, Y. Xu, M. Deb, G. Malinowski, M. Hehn, J. Gorchon,
E. E. Fullerton, and S. Mangin, Adv. Mater. 30, 1804004
(2018).

[8] J. Igarashi, Q. Remy, S. Iihama, G. Malinowski, M. Hehn, J.
Gorchon, J. Hohlfeld, S. Fukami, H. Ohno, and S. Mangin,
Nano Lett. 20, 8654 (2020).

[9] Q. Remy, J. Igarashi, S. Iihama, G. Malinowski, M. Hehn, J.
Gorchon, J. Hohlfeld, S. Fukami, H. Ohno, and S. Mangin,
Adv. Sci. 7, 2001996 (2020).

[10] Y. L. W. van Hees, P. van de Meugheuvel, B. Koopmans, and R.
Lavrijsen, Nat. Commun. 11, 3835 (2020).

[11] S. Iihama, Q. Remy, J. Igarashi, G. Malinowski, M. Hehn, and
S. Mangin, J. Phys. Soc. Jpn. 90, 081009 (2021).

[12] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys.
Rev. Lett. 76, 4250 (1996).

[13] G. P. Zhang and W. Hübner, Phys. Rev. Lett. 85, 3025 (2000).
[14] J.-Y. Bigot, M. Vomir, and E. Beaurepaire, Nat. Phys. 5, 515

(2009).
[15] B. Koopmans, J. J. M. Ruigrok, F. Dalla Longa, and W. J. M. de

Jonge, Phys. Rev. Lett. 95, 267207 (2005).
[16] N. Kazantseva, U. Nowak, R. W. Chantrell, J. Hohlfeld, and A.

Rebei, Europhys. Lett. 81, 27004 (2008).
[17] E. Carpene, E. Mancini, C. Dallera, M. Brenna, E. Puppin, and

S. De Silvestri, Phys. Rev. B 78, 174422 (2008).
[18] M. Krauß, T. Roth, S. Alebrand, D. Steil, M. Cinchetti, M.

Aeschlimann, and H. C. Schneider, Phys. Rev. B 80, 180407(R)
(2009).

[19] B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M.
Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, Nat. Mater.
9, 259 (2010).

[20] U. Atxitia and O. Chubykalo-Fesenko, Phys. Rev. B 84, 144414
(2011).

[21] A. Manchon, Q. Li, L. Xu, and S. Zhang, Phys. Rev. B 85,
064408 (2012).

[22] B. Y. Mueller, A. Baral, S. Vollmar, M. Cinchetti, M.
Aeschlimann, H. C. Schneider, and B. Rethfeld, Phys. Rev. Lett.
111, 167204 (2013).

[23] B. Y. Mueller and B. Rethfeld, Phys. Rev. B 90, 144420 (2014).
[24] M. Haag, C. Illg, and M. Fähnle, Phys. Rev. B 90, 014417

(2014).
[25] P. Nieves, D. Serantes, U. Atxitia, and O. Chubykalo-Fesenko,

Phys. Rev. B 90, 104428 (2014).
[26] E. G. Tveten, A. Brataas, and Y. Tserkovnyak, Phys. Rev. B 92,

180412(R) (2015).
[27] K. Krieger, J. K. Dewhurst, P. Elliott, S. Sharma, and E. K. U.

Gross, J. Chem. Theory Comput. 11, 4870 (2015).
[28] W. Töws and G. M. Pastor, Phys. Rev. Lett. 115, 217204 (2015).
[29] C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J.

Neugebauer, E. Abreu, L. Huber, G. Lantz, C. A. F. Vaz, H.
Lemke, E. M. Bothschafter, M. Porer, V. Esposito, L. Rettig,
M. Buzzi, A. Alberca, Y. W. Windsor, P. Beaud, U. Staub, S.
Song, J. M. Glownia, and S. L. Johnson, Nature (London) 565,
209 (2019).

[30] S. R. Tauchert, M. Volkov, D. Ehberger, D. Kazenwadel, M.
Evers, H. Lange, A. Donges, A. Book, W. Kreuzpaintner, U.
Nowak, and P. Baum, arXiv:2106.04189.

[31] M. Battiato, K. Carva, and P. M. Oppeneer, Phys. Rev. Lett. 105,
027203 (2010).

[32] E. Turgut, C. La-o-vorakiat, J. M. Shaw, P. Grychtol, H. T.
Nembach, D. Rudolf, R. Adam, M. Aeschlimann, C. M.

Schneider, T. J. Silva, M. M. Murnane, H. C. Kapteyn, and
S. Mathias, Phys. Rev. Lett. 110, 197201 (2013).

[33] M. Battiato, K. Carva, and P. M. Oppeneer, Phys. Rev. B 86,
024404 (2012).

[34] G.-M. Choi, C.-H. Moon, B.-C. Min, K.-J. Lee, and D. G.
Cahill, Nat. Phys. 11, 576 (2015).

[35] A. Alekhin, I. Razdolski, N. Ilin, J. P. Meyburg, D. Diesing,
V. Roddatis, I. Rungger, M. Stamenova, S. Sanvito, U.
Bovensiepen, and A. Melnikov, Phys. Rev. Lett. 119, 017202
(2017).

[36] G.-M. Choi, B.-C. Min, K.-J. Lee, and D. G. Cahill, Nat.
Commun. 5, 4334 (2014).

[37] J. Kimling and D. G. Cahill, Phys. Rev. B 95, 014402 (2017).
[38] I.-H. Shin, B.-C. Min, B.-K. Ju, and G.-M. Choi, Jpn. J. Appl.

Phys. 57, 090307 (2018).
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