
Physics Reports 965 (2022) 1–74

P
a

b

o
c

d
d

e

T

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Quantummagnonics:Whenmagnon spintronicsmeets
quantum information science
H.Y. Yuan a, Yunshan Cao b, Akashdeep Kamra c, Rembert A. Duine a,d,e,
eng Yan b

Institute for Theoretical Physics, Utrecht University, 3584 CC Utrecht, The Netherlands
School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University
f Electronic Science and Technology of China, Chengdu 610054, China
Condensed Matter Physics Center (IFIMAC) and Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma
e Madrid, E-28049 Madrid, Spain
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and
echnology, NO-7491 Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 28 December 2021
Received in revised form 10 March 2022
Accepted 23 March 2022
Available online 25 April 2022
Editor: Naoto Nagaosa

Keywords:
Magnon
Spintronics
Quantum entanglement
Cavity spintronics
Cavity magnomechanics
Superconducting qubit
Nitrogen-vacancy center
Quantum information
Many-body physics
Bose–Einstein condensation
Spin superfluid
Squeezed magnon
Schrödinger cat state
Quantum optics
EPR steering
PT symmetry

a b s t r a c t

Spintronics and quantum information science are two promising candidates for inno-
vating information processing technologies. The combination of these two fields enables
us to build solid-state platforms for studying quantum phenomena and for realizing
multi-functional quantum tasks. For a long time, however, the intersection of these two
fields was limited due to the distinct properties of the classical magnetization, that is
manipulated in spintronics, and quantum bits, that are utilized in quantum information
science. This situation has changed significantly over the last few years because of the
remarkable progress in coding and processing information using magnons. On the other
hand, significant advances in understanding the entanglement of quasi-particles and in
designing high-quality qubits and photonic cavities for quantum information processing
provide physical platforms to integrate magnons with quantum systems. From these
endeavours, the highly interdisciplinary field of quantum magnonics emerges, which
combines spintronics, quantum optics and quantum information science. Here, we give
an overview of the recent developments concerning the quantum states of magnons and
their hybridization with mature quantum platforms. First, we review the basic concepts
of magnons and quantum entanglement and discuss the generation and manipulation
of quantum states of magnons, such as single-magnon states, squeezed states and
quantum many-body states including Bose–Einstein condensation and the resulting spin
superfluidity. We discuss how magnonic systems can be integrated and entangled with
quantum platforms including cavity photons, superconducting qubits, nitrogen-vacancy
centers, and phonons for coherent information transfer and collaborative information
processing. The implications of these hybrid quantum systems for non-Hermitian physics
and parity-time symmetry are highlighted, together with applications in quantum
memories and high-precision measurements. Finally, we present an outlook on some
of the challenges and opportunities in quantum magnonics.
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1. Introduction

With the rapid accumulation of information and data in science, technology, economics and social activities, finding
fficient means to store and process big data is becoming important and urgent. The traditional transistor technologies
hat make use of the charge degree of freedom of electrons in semiconductor devices are encountering a bottleneck, and
uffer from problems such as Joule heating, and uncontrollable quantum effects, when the processing units scale down to
he nanoscale. To overcome these limitations and promote further developments of information processing, two promising
andidates, namely spintronics and quantum information science, stand out and have kept moving forward over the last
ew decades. Firstly, spintronics, emerged in the late 1980s, focuses on harnessing the spin of an electron, instead of its
harge exploited in conventional electronics. Information is coded in the spin orientation of an ordered magnet as well
s in the magnetic excitations of the ordered states, so-called magnons. Appealing features of spintronics include the
2
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tability of a large class of room temperature magnets, the high spin density of a magnet that allows for high density of
nformation storage, and the tunability of spin orientations by both electric current and external fields [1–3]. The subfield
f spintronics that focuses on the generation and manipulation of magnons is called magnonics or magnon spintronics [4].
n principle, information coded in magnons can propagate through a magnetic insulator over long distances due to the
mall dissipation, which may significantly reduce the energy consumption.
On the other hand, quantum computing and quantum information science manipulate the quantum nature of spins

nd utilize the basic principles of quantum mechanics, such as superpositions and entanglement, as resources to realize
omputing and communication tasks [5–8]. For example, a spin-1/2 system has two states (up and down) and can thus
epresent a bit which records binary information. The simultaneous and coherent manipulation of N spins would increase
he storage capability in an exponential way as 2N , and thus increase the storage limit as well as the processing speed
ompared with classical computers. It has been reported that a programmable 53 qubit processor could complete a series
f tasks in 200 s that would take a classical supercomputer approximately 1000 years [9]. The worldwide focus on, and
ast developments in, quantum science and technologies, have gradually put us in the age of the so-called second quantum
evolution [10], which may potentially shape our future lives.

In the early years, magnon spintronics and quantum information science developed independently. Recently, however,
hese two fields started to overlap, probably for the following reasons. (i) In modern quantum technologies, it is necessary
nd urgent to search for various hybrid platforms to achieve complementary functionalities and multitasking capabilities
uch as room temperature quantum computing and solid-state-based quantum simulations. With its long lifetime and
unability as information carrier, the magnon is an ideal choice to be integrated with the known quantum platforms,
.g., cavity photons and superconducting (SC) qubits; (ii) Spintronics mostly manipulates the classical magnetization
rientation at room temperature and thermal stability of magnetic elements at the nanoscale is an important challenge.
t this scale, quantum effects cannot be neglected any longer, and the interplay of spintronics and quantum mechanics
as to be taken into account in a consistent manner; (iii) Currently, a young branch of quantum information, called
ontinuous variable quantum information [11–18], has emerged, which manipulates quasi-particles, for example photons
nd phonons which have continuous spectrum as opposed to traditional qubits. Magnons, falling perfectly into this
ategory, can be strongly coupled to both photons and phonons, and thus provide a fertile platform to study both
undamental quantum physics and fruitful applications such as quantum transducers, quantum memories, high precision
easurements and logic gates. The interplay of magnon spintronics with quantum information science shapes the new

ield quantum magnonics, which covers the overlap between traditional spintronics, magnonics, quantum optics, quantum
omputing and quantum information science. In this review, we first introduce the language of quantum magnonics to
ake this field accessible to a general readership, and subsequently review its recent developments.
Horizon of quantum magnonics. The term ‘‘quantum magnonics’’ has been very frequently used in literature and at

onference talks, even when reporting on classical spin-wave physics. At the outset of this review, we first have to clarify
he horizon of quantum magnonics. Tabuchi [19] restricted the field of quantum magnonics to the interplay of magnons
ith SC qubits. Later, Bunkov referred to quantum magnonics in the study of magnon Bose–Einstein condensation (BEC)
nd spin superfluidity [20]. As we shall see, the field of quantum magnonics has developed explosively and has become
ore diverse in recent years. Kamra et al. [21] have emphasized the possibilities offered by magnon squeezing within
uantum magnonics. Pirro et al. [22] discussed entanglement of magnons with photons in the context of quantum
agnonics. Here, we use the following definition:

In general, any study of quantum states of magnons and the entanglement of magnons with other quantum platforms
is part of quantum magnonics. In a broader sense, quantum many-body states of magnons, including Bose–Einstein
condensation and its resulting spin superfluidity, are included in this field.

Following this definition, we schematically depict the interplay among the various branches of quantum magnonics in
ig. 1. The first direction concerns nonclassical states of magnons, including Fock states, squeezed states, Schrödinger cat
tates and so on. Quantum many-body states also fall into this class. The second direction integrates magnonic systems
ith known quantum platforms, including photons, phonons, and qubits. Here the photonic systems range from optical

requencies down to the microwave domain. These photons can be coupled to magnons through off-resonant or resonant
nteractions. Phonons represent the quantization of the collective lattice vibration as well as the oscillations of mechanical
scillators. The qubit systems mainly include the SC qubits working under cryogenic conditions and nitrogen-vacancy
NV) centers at room temperature. Here the two directions are not isolated from each other, but have strong connections.
or example, to detect the quantum states of magnons, one usually imprints the magnon state onto photons, which are
easured with mature light detection methods. To probe the superfluid state of magnons, one may utilize quantum

mpurities placed on top of the magnetic system to detect the magnetic noise. Furthermore, hybrid magnonic systems
rovide a natural and controllable platform to study non-Hermitian physics and parity-time (PT ) symmetry, which will
lso be covered in the current review.
Our review is organized as follows. In Section 2, we give a preliminary introduction to magnons and their classical and

uantum behaviors. Then, we introduce various measures to quantify the entanglement of discrete variables (qubit, qutrit)
nd continuous variables (magnon, photon, phonon). In Section 3, we discuss the developments concerning quantum
tates of magnons, including the single-magnon state, squeezed states, Schrödinger cat states, as well as quantum many-

ody states. In Section 4, we overview the developments in the hybrid ‘‘magnon+X’’ systems, where X includes cavity

3
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Fig. 1. Framework of quantum magnonics. Centered around magnons, four routes are being developed. The central route concerns quantum states
f magnons at low temperatures. The left route integrates magnons with phonons corresponding to the lattice vibrations within the magnet or
echanical vibrations of external oscillators. The top route entangles magnons with photons ranging from optical to microwave domains. The right

oute couples magnons to discrete variable systems including superconducting qubit and single-spin qubit (nitrogen-vacancy centers, silicon-vacancy
enters, etc.).

hotons, qubits, phonons and electrons. In Section 5, non-Hermitian physics and PT symmetry, particularly emerging in
ybrid magnonic systems are highlighted. After briefly summarizing the applications of quantum magnonics in Section 6,
e come to the conclusion and outlook in Section 7. If not stated otherwise, we decorate operators with a hat and set
he reduced Planck constant h̄ equal to one throughout the review.

. Preliminary knowledge

.1. Magnons

.1.1. Magnetization dynamics and spin wave
Spin waves (SWs) are the collective excitations of magnetic moments in ordered magnets. Generation, propagation,

anipulation and read-out of SW information have attracted significant attention over the past decade because of their
romising applications in information technology. One major advantage of SWs over electrons as information carriers is
hat they can propagate in insulating systems, which can, in principle, weaken the effect of Joule heating that hampers
raditional transistor technologies. Besides, there exist rich and mature knobs to manipulate the SWs, such as microwave,
erahertz and attosecond excitations [23–26], electric current through spin-transfer [27–32], spin–orbit effects [33–38],
emperature gradients [39–43], ultrafast laser pulses, [44–47], and mechanical strains [48–51]. To study and utilize SWs in
pintronic devices, it is essential to first describe the dynamics of spins under various perturbations. Generally, the average
pin angular momentum or magnetic moment in a unit volume of a magnet is represented by a magnetization vector and
he magnetization dynamics is governed by the phenomenological Landau–Lifshitz–Gilbert (LLG) equation [52,53]

∂m
∂t

= −γm × Heff + αm ×
∂m
∂t

+ τ(m), (1)

where m is the magnetization direction that is spatiotemporally dependent in general, γ > 0 is the magnitude of
gyromagnetic ratio, Heff is the effective field including exchange, anisotropy, and dipolar fields, and α is the Gilbert
damping constant. The first and second terms respectively describe the precessional and damped motion of the mag-
netization around and towards its equilibrium orientation, as shown in Fig. 2(a). The larger the damping is, the faster the
relaxation occurs. The term τ (m) is the spin torque caused by external drivings, for example, the thermal torque at finite
temperature [54], spin–transfer torque from electric current [27,28,30], and spin–orbit torque by spin current [33,34]. The
LLG equation was originally introduced by Landau and Lifshitz (LL) and extended by Gilbert on the dissipation term. In
4
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odern developments, this dynamic equation in both ferromagnets and antiferromagnets has been discussed based on
he Lagrangian formalism by properly constructing the dissipation functional [55,56]. The microscopic mechanism of the
ilbert damping include the spin–orbit coupling [57–61], spin pumping [62–64], two-magnon scattering [65,66], etc.
Based on the LLG equation, the dynamics of physically-separated spins is coupled together and may form a wave-

ike pattern as a result of short-range exchange and long-range dipolar fields, as shown in Fig. 2(b). If the exchange
nteractions dominate, the resulting SW has a short wavelength on the order of nanometer scale. It is sufficient to describe
uch exchange SW excitations and their spectrum by the LLG equation, as already presented in many textbooks and
eviews [67–69]. If dipolar interactions dominate, the resulting SW has a longer wavelength, and is termed a magnetostatic
W. To fully describe the SW spectrum, one needs to consider the magnetic fields both inside and outside the magnetic
ample, where Maxwell’s equations are required to match the boundary conditions at the interface [70–72]. A special
esonance mode with infinitely-long wavelength is the ferromagnetic resonance (FMR) [73], which corresponds to the
niform precession of all spins. This mode plays an important role when integrating magnonic systems with other
uantum systems, such as photons, phonons and qubits. A schematic picture of the complete SW spectrum is shown
n Fig. 2(c). As an example, the SW spectrum of the widely used magnetic sphere is plotted in Fig. 2(d). Here, the FMR
ode is labeled as the (1, 1, 0) mode [74,75], where all spins inside the sphere precess in phase around the equilibrium
agnetization direction defined by an external field.

.1.2. Quantization of spin wave: magnon
In a quantum-mechanical picture, the SW corresponds to the quasi-particle called magnon. It is a boson obeying Bose–

instein statistics, and, in the absence of fields and anisotropy, corresponds to a Goldstone boson. Magnons were originally
roposed by Bloch in a spin-1/2 system [76] to explain the reduction of magnetization with increasing temperature,
.e., the celebrated T 3/2 law. The extension to the higher spin case is due to Möller [77]. Holstein and Primakoff [78]
uantized the magnetic excitation based on the bosonic creation and annihilation operators and derived the Hamiltonian
f magnons with both quadratic and higher-order terms, which give the non-interacting magnon behavior and interaction
etween magnons, respectively. This approach has become a standard technique to study the quantum behavior of
agnons. Magnon theory was further developed by Dyson [79] to consider the influence of magnon interactions on the

ow temperature behavior of thermodynamic quantities. Here we briefly review the Holstein–Primakoff (HP) approach.
o describe a spin-S state in quantum mechanics [80], we consider the simultaneous eigenstates of the spin angular
omentum operator Ŝ2 and its component along the quantization axis (ez) Ŝz as

Ŝ2|S,m⟩ = S(S + 1)|S,m⟩, Ŝz |S,m⟩ = m|S,m⟩, m = −S,−S + 1, . . . , S − 1, S. (2)

However, with this approach it is difficult to treat the interaction between many spins and magnons. To overcome this
difficulty, Holstein and Primakoff noticed that [78] the possible values of m can be rewritten as m ≡ S−n, where the new
quantum number n takes only non-negative values n = 0, 1, 2, . . . , 2S, regardless of whether one deals with fermions
(half-integer S) or bosons (integer S). Transforming to this new basis |S, n⟩, we have Ŝz |S, n⟩ = (S−n)|S, n⟩. In comparison
with the quantization of the harmonic oscillator â†â|n⟩ = n|n⟩, we immediately have the second-quantization form of
Ŝz , i.e., Ŝz = S − â†â, where â (â†) is the annihilation (creation) operator of a spin quantum or a magnon. To make the
new representation complete, we need to find a representation of Ŝx and Ŝy by preserving the commutation relation
for angular momentum [Ŝi, Ŝj] = iϵijkŜk, where ϵijk is the Levi-Civita symbol. To this end, we recall the spin raising and
owering operators defined as, Ŝ±

= Ŝx ± iŜy. Based on the quantum theory of angular momentum, we have

Ŝ+
|S, n⟩ =

√
2S − (n − 1)

√
n|S, n − 1⟩ =

√
2S − â†ââ|S, n⟩. (3)

We therefore obtain Ŝ+
=

√
2S − â†ââ and, similarly, Ŝ−

= â†
√
2S − â†â, which allows us to express the excitation of a

single spin S in terms of magnon creation and annihilation operators. A real magnet involves many interacting spins and
is described by the general Hamiltonian [81,82]

Ĥ = −J
∑
⟨i,j⟩

Ŝi · Ŝj + Ĥan − µ0geµB

∑
i

Hi · Ŝi −
µ0(geµB)2

4π

∑
i<j

3(Ŝi · eij)(Ŝj · eij) − Ŝi · Ŝj
|rij|3

, (4)

where J is the exchange coefficient and the first sum is over nearest neighboring spins, Hi is the external magnetic field
on the ith spin, µ0 is vacuum magnetic permeability, ge is the Landé g-factor, µB is Bohr magneton, rij is the vector
between the ith and jth spin, and eij is the unit direction vector connecting sites i and j. On the right hand side of Ĥ,
he first term is the exchange coupling, the second term is the magnetocrystalline anisotropy that prefers spins to align
n particular directions, the third term is the Zeeman energy, and the last term is the long-range dipolar interaction.
epending on the competition of these interactions, the ground state of the system may be a collinear magnetic state,
uch as a homogeneous magnetic domain, or a noncollinear magnetic texture, such as a domain wall, vortex, skyrmion,
tc. [83–87]. To consider the magnon excitations above these magnetic states, one usually performs a HP transformation
n the ground state of the system and derives the effective Hamiltonian for magnons as [88–90]

Ĥ = Ĥ + Ĥ(2)
+ Ĥ(3)

+ Ĥ(4)
+ · · · , (5)
0

5
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Fig. 2. (a) Schematic of magnetic-moment precession and relaxation toward a magnetic field. (b) Spin-wave excitation in classical (wave-like) and
quantum (localized) picture. (c) Typical spin-wave dispersion of a finite ferromagnetic body. With the increase of wave number k, dipolar, dipolar-
xchange and exchange spin waves are classified. (d) Field dependence of the dipolar spin-wave frequency of a magnetic sphere as a function of
xternal field, and the wave profiles of typical modes involved. Here (l,m, q) labels the number of radial (q − 1), azimuthal (m) and polar modes
l − m), respectively. The (110) mode represents ferromagnetic resonance mode, where all spins precess in phase.
ource: Figure (d) is adapted from Ref. [75].

here Ĥ0 is ground state energy, Ĥ(2), Ĥ(3), Ĥ(4) denote the two-magnon processes contributed by exchange field, external
ield, anisotropy field and dipolar interactions, three-magnon processes from dipolar interactions for collinear ground
tate and from both exchange and dipolar interactions for noncollinear ground state, and four magnon processes from
xchange and dipolar interactions, respectively. If the magnon density of the system is very low, which typically holds
or weak perturbations well below the Curie temperature, the three- and four-magnon processes can be neglected. It is
hen sufficient to diagonalize the quadratic component Ĥ(2) to derive the eigenspectrum. Note that this approach works
or arbitrary magnetic textures [91–95].

For sufficiently large S, the quantum approach should give an identical prediction of the low energy SW dispersion
s starting from the LLG equation, because the diagonalization procedure of the Hamiltonian corresponds to solving the
igenvalues of the dynamic matrix of the quantum Heisenberg equation, which is equivalent to solving the linearized LLG
quation in the absence of damping. As an example, let us consider a soft magnetic film with magnetization aligned along
he in-plane field H = Hez . The Hamiltonian of the system is

Ĥ = −J
∑

Ŝi · Ŝj + Kx

∑(
Ŝi,x
)2

− Kz

∑(
Ŝi,z
)2

− µ0geµBH
∑

Ŝi,z, (6)

⟨i,j⟩ i i i

6
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here Kx and Kz are anisotropies along the x and z directions, respectively, with Kx > 0, Kz > 0. The classical ground
tate of the system is ⟨Ŝ⟩ = Sez . By keeping the linear terms of the HP transformation of the spin operators along this
round state, i.e.,

Ŝi,z = S − â†
i âi, Ŝi,x =

√
2S
2

(âi + â†
i ), Ŝi,y =

√
2S
2i

(âi − â†
i ), (7)

where âi (â
†
i ) is the magnon annihilation (creation) operator on the ith spin site, the effective Hamiltonian of magnon

excitations to the quadratic terms can be written as

Ĥ(2)
= −JS

∑
⟨i,j⟩

(âiâ
†
j + h.c.) +

∑
i

µiâ
†
i âi +

KxS
2

∑
i

(âiâi + h.c.), (8)

where µi = 2ZJS + µ0geµBH + 2KzS + KxS with Z being the coordination number. By switching to Fourier space and
diagonalizing the Hamiltonian, we obtain the bosonic Hamiltonian of the system as

Ĥ(2)
= const.+

∑
k

ωkâ
†
kâk. (9)

Here the eigenfrequency is

ωk =

√
[2JS(kd)2 + µ0geµBH + 2KxS][2JS(kd)2 + µ0geµBH + 2KzS + 2KxS], (10)

n the long wavelength limit with d the lattice constant. The same dispersion is obtained employing the LLG phenomenol-
gy.
The anisotropy may substantially alter the nature of the magnonic eigenmodes in a ferromagnet leading to squeezing,

s discussed in Section 3.2. Here and in the next section 2.1.3, we examine magnons in an isotropic ferromagnet. The
orresponding considerations in an anisotropic ferromagnet will be addressed in Section 3.2. For a magnetic sphere
ith negligible magnetocrystalline anisotropy (Kx = Kz = 0), i.e., an isotropic magnet, the resonance frequency ωk =

0geµBH + 2JS(kd)2. Employing Ŝi,z = S − â†
i âi from the HP approach, the total spin z-component in an eigenstate is

valuated as⟨
Ŝz
⟩
≡

⟨∑
i

Ŝi,z

⟩
= NS −

∑
k

⟨
â†
kâk
⟩
= NS −

∑
k

nk, (11)

here N is the total number of lattice sites and nk is the number of k magnons. Eq. (11) shows that excitation of each
agnon alters the total spin by unity, which is why each magnon carries one unit (h̄) of spin angular momentum along

z [90]. Within this linear approximation [Eq. (7)], magnons are non-interacting bosonic modes. Hence, without loss of
enerality, we may focus on the k = 000 mode addressed in typical ferromagnetic resonance experiments

Ĥ = ωr â†â, (12)

here ωr ≡ ωk→000 and we have further dropped the subscript 000 of the magnon ladder operators for convenience.

.1.3. Coherent states and classical dynamics
Now we wish to relate the magnonic quantum picture to the phenomenological LL description, considering the k = 000

mode in an isotropic ferromagnet [Eq. (12)]. Employing Eq. (7) and the properties of the number states, we evaluate the
expectation value⟨

Ŝx
⟩
≡

⟨∑
i

Ŝi,x

⟩
=

√
NS
2

⟨
â + â†⟩

= 0, (13)

n any eigenstate of the Hamiltonian Eq. (12). The expectation value of Ŝy ≡

⟨∑
i Ŝi,y

⟩
vanishes similarly. This is in

ontrast with typical experiments which find a finite value for the spin’s x and y components. What has gone wrong?
he equivalent question for harmonic oscillators bothered Schrödinger and led him to find the states that reproduce
he classically observed dynamics [96]. These are called coherent states [97–99] and are eigenstates of the annihilation
perator

â|β⟩ = β|β⟩, (14)

here β is a complex number. Using this property and Eq. (13), it is seen directly that the expectation values of Ŝx,y in a
oherent state do not vanish [99]. The coherent state can further be expressed in terms of Fock states |n⟩ [100]

|β⟩ =

∑
exp

(
−

|β|
2

2

)
βn

√ |n⟩, (15)

n n!

7
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rom which we see that a coherent state has a Poissonian distribution of the magnon number n. We further evaluate the
ean n̄ and uncertainty ∆n of magnon number

n̄ ≡ ⟨β|n̂|β⟩ ≡
⟨
n̂
⟩
= |β|

2, (∆n)2 ≡
⟨
n̂2⟩

−
(⟨
n̂
⟩)2

= |β|
2, H⇒

∆n
n̄

=
1

|β|
=

1
√
n̄
. (16)

he properties above clarify the classical-quantum correspondence that we have sought. It is not sufficient to consider a
igh magnon number alone, as one might guess at first, to recover classical dynamics from the quantum picture. This is
ecause the expectation values of Ŝx,y in any number state vanish [Eq. (13)]. On the other hand, the coherent state which
s a superposition of number states yields a finite expectation value [97–99]. Furthermore, in the limit of a large average
agnon number n̄, the relative fluctuations become small [Eq. (16)] giving rise to the classical picture of a spin precession
ith (nearly) constant amplitude [99,101].
Let us take one step further and establish the method to determine β . From a theoretical perspective, a coherent state

is generated by the ‘‘displacement operator’’ D̂(β)

|β⟩ = D̂(β)|0⟩, where D̂(β) ≡ exp
(
βâ†

− β∗â
)
. (17)

n certain ideal situations, the system’s time evolution under an external drive can be cast in the form of Eq. (17),
hich determines the generated coherent state [100] (see also Section 2.1.4). Furthermore, Eq. (17) provides a powerful
heoretical tool for deriving various properties of coherent states. We discuss an alternative method [102–104] which is
specially useful for studying spin dynamics. A more detailed analysis is presented in the next Section 2.1.4.
Accounting for a small microwave magnetic field h cos(ωdt) ex, the drive Hamiltonian becomes

Ĥd = µ0h cos(ωdt)geµBŜx = µ0h cos(ωdt)geµB

√
NS
2

(
â + â†)

≡ ϵrf(t)
(
â + â†) . (18)

orking in the Heisenberg picture, the equation of motion ˙̂a = i[Ĥ + Ĥd, â] yields [Eqs. (12) and (18)]

dâ
dt

= −iωr â − iϵrf(t). (19)

In steadily oscillating state, we may take the expectation value of the above equation defining
⟨
â
⟩
≡ β

dβ
dt

= −iωrβ − iϵrf(t) − αωrβ, (20)

here the last term on the right has been added to account for dissipation. This can be derived rigorously considering a
pecific bath [103,104], but can also be seen as a phenomenological dissipation term with α the Gilbert damping parameter
hat also enters the LLG phenomenology [53].

Eq. (20) is a powerful result for multiple reasons. First, its solution expressed in terms of the spin component
xpectation values is nothing but the linearized LLG equation [53,103,104]. Hence, it serves as a derivation of the
inearized classical spin dynamics from a microscopic quantum Hamiltonian. Second, it actually goes beyond the simplified
nderstanding that classical dynamics corresponds to a coherent state. A realistic system, which includes dissipation and
onideal fluctuating drives, is not described by a pure state and thus cannot be a simple coherent state. Nevertheless,
q. (20) accounts for such nonidealities. The explicit example of a bosonic dissipative bath is presented in the following
ection 2.1.4.
Finally, assuming that the influence of dissipation and drive nonideality is small, we may approximate the state of our

ystem by a coherent state

|ψ(t)⟩ = D̂(β(t))|0⟩, (21)

here β(t) is determined by Eq. (20). Furthermore, the quantum fluctuations in the coherent state are the same as in
acuum

∆Sx ≡

√
⟨β|Ŝ2

x |β⟩ −
(
⟨β|Ŝx|β⟩

)2
=

√
⟨0|Ŝ2

x |0⟩ −
(
⟨0|Ŝx|0⟩

)2
=

√
NS
2

= ∆Sy. (22)

hus, coherent states correspond to the minimum Heisenberg uncertainty, which is not the case for general states.1
oreover, they have an equal magnitude of quantum fluctuations in the two spin components.
Equipped with the analysis above culminating in Eqs. (21) and (22), we portray the spin dynamics, including quantum

luctuations, in its phase space comprised of Sx ∝ ℜ(β) and Sy ∝ ℑ(β). This has been depicted for the magnon vacuum
ground state of an isotropic ferromagnet) in Fig. 3(a) and ‘‘classical’’ spin precession in Fig. 3(b). To summarize, the
uantum spin dynamics follows the classical precession expected from the LLG description with a circular minimum
eisenberg uncertainty region around the classical trajectory [103,104]. This picture is an approximation valid when the
icrowave drive is in an ideal coherent state and the role of dissipation is negligible.

1 For example, the squeezed states with θ ̸= 0, π [Eqs. (55) and (56)] bear quantum fluctuations in Sx,y larger than the Heisenberg minimum
equirement.
8



H.Y. Yuan, Y. Cao, A. Kamra et al. Physics Reports 965 (2022) 1–74

i
o

2

T

w
o
J
e

e
i
m
k
f
t

w
l

w
[

c

Fig. 3. Phase space depiction of (a) isotropic ferromagnetic ground state, corresponding to the magnon vacuum, and (b) a magnon coherent state.
The shaded region represents the quantum fluctuations due to the Heisenberg uncertainty principle with its area ∝ h̄. In the coherent state, depicted
n (b), the uncertainty region center undergoes precession along a circular trajectory, shown as a dotted curve. For macroscopically large amplitude
f the precession, the Heisenberg uncertainty region appears as an infinitesimal point and the classical spin precession picture is recovered.

.1.4. Quantum equation of motion
In this section, we discuss the quantum dynamics of magnons, now also accounting for anisotropies in our description.

he Heisenberg equation corresponding to the Hamiltonian (8) reads

i
dâi
dt

= [âi, Ĥ(2)
] = −2JS

∑
j

âj + µiâi + KxSâ
†
i . (23)

here the first sum is over neighboring spins of the ith spin. By reformulating these dynamic equations into the form
f spin operators, we obtain, ∂t Ŝi = −γ (Ŝi × Ĥi,eff), where the effective field is equal to Ĥi,eff ≡ (2J

∑
j Ŝj,x − 2KxŜi,x)ex +∑

j Ŝj,yey + (µ0geµBH + 2KzS + 2ZJS)ez and γ = geµB appears naturally. After taking the mean-field approximation, this
quation becomes the same as the classical LLG equation.
When the dissipation of spins is considered, recovering the classical dynamic equations from the quantum mechanical

volution is an ongoing research. The difference between various approaches lies in the way how dissipation is introduced
n the quantum models and how the damping of the classical magnetization is recovered [103–108]. In principle, all these
ethods, no matter quantum or classical, should give identical predictions for the low-energy spectrum of SWs. Two
nown methods to introduce dissipation in a quantum system are the master equation approach based on the Lindblad
ormalism [109,110], and the Heisenberg–Langevin approach based on the fluctuation–dissipation theorem [111]. Since
he latter will be frequently used in this review, we will briefly introduce it here.

The Hamiltonian of the total system including the magnon mode, a bath and their interaction is written as

Ĥ = Ĥs + Ĥb + Ĥint, (24)

here Ĥs, Ĥb, Ĥint are respectively the Hamiltonian for the magnon mode, bath and the mutual interaction. Without
oss of generality, we shall focus on the FMR mode, and the Hamiltonian for the magnons is Ĥs = ωr â†â, where
ωr = ω(k → 0). The general formalism involving many interacting bosonic modes can be found in Ref. [112]. Next,
Ĥb is the free Hamiltonian of the bath, which may be formulated as a collection of harmonic oscillators, i.e.,

Ĥb =

∑
i

ωib̂
†
i b̂i, (25)

here b̂†
i (b̂i) is the creation (annihilation) operator for the oscillators which satisfy the bosonic commutation relations

b̂i, b̂
†
j ] = δij. Since the bath usually has a large number of degrees of freedom, we may recast the Hamiltonian in the

ontinuum limit as

Ĥb =

∫
ωb̂†(ω)b̂(ω)dω, (26)
9
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ith the commutations [b̂(ω), b̂†(ω′)] = δ(ω − ω′). Ĥint is the interaction between the magnon modes and the bath

Ĥint =

∫
dω
[
g(ω)â†b̂(ω) + g∗(ω)âb̂†(ω)

]
, (27)

where g(ω) is the magnon-bath coupling strength.
The Hamiltonian (24) leads to the following Heisenberg equation of motion for the magnon mode and bath mode

dâ(t)
dt

= −i[â, Ĥs] − i
∫

dωg(ω)b̂(ω, t), (28a)

db̂(ω, t)
dt

= −iωb̂(ω, t) − ig∗(ω)â(t). (28b)

ccording to Eq. (28b), the equation for the bath mode can be explicitly solved as

b̂(ω, t) = b̂(ω, t0)e−iω(t−t0) − ig∗(ω)
∫ t

t0

dt ′â(t ′)e−iω(t−t ′). (29)

By substituting this solution into Eq. (28a), we obtain

dâ(t)
dt

= −i[â, Ĥs] − i
∫

dωg(ω)b̂(ω, t0)e−iω(t−t0) −

∫
dωg(ω)g∗(ω)

∫ t

t0

dt ′â(t ′)e−iω(t−t ′). (30)

Eq. (30) shows that the state of the magnon at time t depends on its evolution at earlier times, which makes it difficult
to handle. The Markov approximation is usually adopted to further simplify the dynamic equations. If the bath is a large
system maintained in thermal equilibrium, we expect that it quickly dissipates the information taken from the magnon
system and yields no feedback [113]. Mathematically, we now assume that g(ω) is independent of frequency such that
we define |g(ω)|2 ≡ κm/π , where the frequency-independent coefficient κm denotes the coupling strength between the
magnon mode and the bath. Then, Eq. (30) is reduced to

dâ(t)
dt

= −i[â, Ĥs] − κmâ(t) +

√
2κmζ̂ (t), (31)

here the noise operator is defined as ζ̂ (t) = −i/
√
2π
∫
dωb̂(ω)e−iωt . The damping rate is related to the Gilbert damping

arameter as κm = αωr as used in Eq. (20). It is straightforward to verify that the noise has zero mean and correlations
iven by [102]

⟨ζ̂ (t)ζ̂ †(t ′)⟩ = (nth + 1)δ(t − t ′), ⟨ζ̂ †(t)ζ̂ (t ′)⟩ = nthδ(t − t ′), (32)

here nth = 1/[exp(ωr/kBT ) − 1] with kB the Boltzmann constant and T being the temperature. Eq. (31) is also called
Heisenberg–Langevin equation. It shows that the evolution of magnons at time t depends only on the information of
modes at t , and is thus Markovian. The linearity of this equation together with the Gaussian nature of the noise implies
that the magnon mode will decay to a stationary Gaussian state.

Let us consider magnon dynamics under a periodic driving, Ĥs = ωr â†â + ξ (âeiωdt + â†e−iωdt ). In the rotating frame
with R = exp(−iωdâ†ât), the Hamiltonian becomes Ĥs = ∆â†â + ξ (â + â†), where ∆ = ωr − ωd is the detuning of the
magnon mode with respect to the driving. Then the Heisenberg–Langevin equation for the system is

dâ
dt

= −i(∆− iκm)â − iξ +

√
2κmζ̂ (t). (33)

y solving this equation for the steady value of ⟨a⟩ and ⟨a†a⟩, we have

⟨â⟩ = −
ξ

∆− iκm
, ⟨â†â⟩ =

ξ 2

∆2 + κ2
m

+ nth, ⟨ââ⟩ =
ξ 2

(∆− iκm)2
. (34)

ased on the HP transformation shown above, Ŝx =
√
2NS(â + â†)/2, Ŝy =

√
2NS(â − â†)/2i, we can readily evaluate the

uncertainty of the spin components

∆Sx = ∆Sy =

√
NS
2
(2nth + 1). (35)

t zero temperature (nth = 0), one immediately sees that

∆Sx = ∆Sy =

√
NS
2
, (36)

which recovers the uncertainty relation in Eq. (22). This implies that the quantum fluctuations of Ŝx and Ŝy are equal and
further satisfy the minimum uncertainty relation, which is a signature of a coherent state [97–99]. This indicates that the
magnons under strong driving will reproduce the classically observed dynamics [96], and justify the arguments in the
discussion of Eq. (22). At finite temperature, the thermal magnon will play its role, leading to a larger uncertainty of the
spin components.
10
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.2. Quantum entanglement

The quantum state of a physical system is represented by a state vector in Hilbert space. Depending on the dimension of
he Hilbert space, two types of states are classified. (i) If the dimension of the Hilbert space is finite, it is a discrete variable
ystem. The best-known example is the spin-1/2 system or qubit, with only two elements in the Hilbert space (±1/2, or
p and down, or 0 and 1). Effective qubits have been realized in various solid-state platforms, including superconducting
osephson junctions [114,115], photonic systems [116,117], NV centers [118], silicon-vacancy (SV) centers [119,120],
uclear spins [121], quantum dots [122], trapped ions [123] and topological states of matter [124]. Coherent control of
ubits has become the cornerstone of quantum information processing. (ii) If the dimension of the Hilbert space is infinite,
his is a continuous variable system. Examples are the position and momentum degrees of freedom of a particle. Besides
hotons, quasi-particle excitations in solid-state physics are also classified as a continuous variable system, for example,
honons and magnons, because the spectrum of these quasi-particles is continuous. The quantum states of quasi-particles,
uch as the antibunched state, squeezed state, cat state and so on, provide a promising alternative for quantum computing,
uantum communication and quantum key distribution [11,13] as we shall see below.
Entanglement corresponds to a nonclassical relation between two distant quantum systems and was first proposed

y Einstein, Podolsky, Rosen and Schrödinger in the 1930s [125–127]. Later, such non-local correlations were shown to
ield Bell inequalities [128] that have been experimentally tested since 1972 [129]. Nowadays, entanglement of two or
ore quantum systems has become an indispensable resource for quantum cryptography, quantum teleportation and
uantum computation [6]. A fundamental question in this field is how to quantify and manipulate the entanglement of
wo or more systems. A single answer to this question does not exist. In general, the problem of deciding whether a state is
ntangled or not is difficult and is considered as NP-hard under some reductions [130,131]. Only in low dimensions and for
ome special cases, one can quantify the entanglement based on a given density matrix of the joint system. Furthermore,
he existing criteria for entanglement for discrete and continuous quantum systems are quite different [132], as briefly
ummarized below. Because it is not our aim to extensively discuss entanglement measures in this review, we will focus
n the most important and widely used measures for quantum magnonics.

.2.1. Discrete variable system: qubit
Entanglement entropy. The most popular measure of entanglement for pure states is the von Neumann entanglement

ntropy [133]. Let us consider a physical system, that has been partitioned into two parts labeled 1 and 2, described by
he density matrix ρ12. We wish to examine the entanglement between these two parts. The von Neumann entanglement
ntropy is defined as E ≡ −tr(ρ̂1 ln ρ̂1), where ρ̂1 is the reduced density matrix of the subsystem, obtained by tracing

out the degrees of freedom of the other subsystem, i.e., ρ̂1 = tr2(ρ̂12). If the two systems are separable, ρ̂1 is the density
matrix of a pure state satisfying ρ̂2

1 = ρ̂1, thus the entropy E(ρ̂1) vanishes. On the other hand, if the two subsystems
are entangled, ρ̂1 will be a mixed state with finite entropy. The magnitude of E directly quantifies the strength of
entanglement. Considering two entangled qubits, the maximally entangled states are the four Bell states

1
√
2
(|01⟩ + |10⟩) ,

1
√
2
(|00⟩ + |11⟩) ,

1
√
2
(|01⟩ − |10⟩) ,

1
√
2
(|00⟩ − |11⟩) (37)

with entropy ln 2, which form a maximally entangled basis. For the two-qutrit case, one maximally entangled state is
|ϕ⟩ = (|11⟩ + |22⟩ + |33⟩)/

√
3 with entanglement ln 3 [134]. The von Neumann entanglement entropy has become a

standard theoretical tool for characterizing, for example, the topological ground states and excitations of quantum spin
liquids [135,136]. Its strength as an entanglement measure comes from its broad applicability to pure quantum states —
discrete or continuum. Furthermore, by partitioning the system of interest in different ways, it allows for revealing new
information about the quantum states [137,138].

Concurrence. In most cases, the von Neumann entanglement entropy is a good metric for pure states only. When the
two qubits are subject to relaxation and dephasing, the joint density matrix ρ̂12 represents a mixed state. In general, a
mixed state is called separable, if there exist convex weights pi and product states ρ̂1,i⊗ρ̂2,i such that ρ̂12 =

∑
i piρ̂1,i⊗ρ̂2,i

holds. Otherwise the state is called an entangled state [132].
Now the entropy cannot distinguish between classical and quantum correlations and it is no longer a good en-

tanglement measure, because the von Neumann entropy of a subsystem is not zero when the two subsystems are
separable [139]. Other metrics for entanglement quantification are now more useful, for example, the entanglement as
measured by Wooters’ concurrence [140]

C12 = max(0, λ1 − λ2 − λ3 − λ4), (38)

where λ1, λ2, λ3, λ4 are the square roots of the eigenvalues of ρ̂12[(σ̂ y
⊗ σ̂ y)ρ̂∗

12(σ̂
y
⊗ σ̂ y)] in the decreasing order, with

σ̂ ν (ν = x, y, z) being Pauli matrices and ρ̂∗

12 being the complex conjugate of the joint density matrix ρ̂12. The concurrence
is zero if and only if the two qubits are in a separable state. Concurrence has the merit of universal applicability to arbitrary
two-qubit states and a larger value of C12 indicates a stronger entanglement. Its generalization to high dimensional pure
states was reported in [141].

Peres–Herodecki criterion. Another important measure for entanglement is the Peres–Herodecki criterion or positive
partial transpose (PPT) [144,145]. It states that the partial transpose of the joint density matrix of a bipartite system being
11
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Fig. 4. Entanglement measures for a pure state (a) and mixed state (b). For PPT criteria, the minimum eigenvalue of ρ̂TB is plotted and its negativeness
ndicates the existence of entanglement. (c) Concurrence of neighboring spins in a ferromagnetic spin-1/2 chain as a function of the reduced external
ield λ. λ ≡ 2J/h. As the system size increases, the divergence of dC/dλ at the transition point λ = 1 becomes more pronounced. (d) Concurrence
f neighboring spins as a function of temperature in a magnonic system supporting Bose–Einstein condensation. TB and TC are respectively the
ondensation temperature and Curie temperature of the system.
ource: Figures (c) and (d) are adapted from Refs. [142,143].

ositive definite is necessary for the joint states being separable. In systems with 2 × 2 and 2 × 3 dimensional Hilbert
paces, this condition is also sufficient. This criteria can be extended to the infinite dimensional case as we shall see below.
s an example to illustrate the usefulness and relation between these measures, we first consider a two-qubit pure state,
ϕ⟩ = cos θ |01⟩ − sin θ |10⟩ and plot the entanglement between the two qubits using the measures that were introduced,
n Fig. 4(a). Here both concurrence and von Neumann entropy, though different in magnitude, consistently capture the
ntanglement as a function of θ . For a mixed state, we consider the Werner state [146,147] ρ̂12 = (1 − q)Î/4 + q|ϕs⟩⟨ϕs|,
here Î is a 4 × 4 identity matrix and |ϕs⟩ = (|01⟩ − |10⟩)/

√
2 is the spin singlet-state. The entanglement of such a

state is plotted in Fig. 4(b). Now the concurrence and PPT criteria give mutually consistent predictions of the amount of
entanglement, but the von Neumann entropy fails, as expected.

In a many-spin system, the entanglement between spins can behave as a measure for a quantum phase transition [142,
148–156]. Osterloh et al. [142] first studied a ferromagnetic spin-1/2 chain with an exchange coupling J and transverse
field h, described by the Hamiltonian

Ĥ = −
J
2
(1 + δ)

N∑
i=1

σ̂ x
i σ̂

x
i+1 −

J
2
(1 − δ)

N∑
i=1

σ̂
y
i σ̂

y
i+1 − h

N∑
i=1

σ̂z . (39)

hen 0 < δ ≤ 1, the system undergoes a quantum phase transition for N = ∞ from ordered to disordered phase at
he critical value λ ≡ J/2h = 1. The authors calculated the entanglement between neighboring spins as quantified by
oncurrence C as a function of λ, as shown in Fig. 4(c) and found a scaling behavior of the first-order derivative of C
t the transition point. This suggests that the entanglement can be a good indicator of the quantum phase transition,
nd thus provides a way to connect the theory of critical phenomena with quantum information. Yuan et al. [143]
tudied the entanglement of spins in a magnetic systems allowing for magnon BEC [see Section 3.4] and found that
he entanglement exhibits a distinct kink behavior near the condensation temperature, as shown Fig. 4(d). Below the
12
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ondensation temperature, there exists a finite entanglement between distant spins even when they are well separated
n space, which is due to the off-diagonal long-range order in the system [157]. Similar results were also reported by
ong et al. [158]. Besides, the entanglement of spins can also serve as a measure of the transition between collinear and
oncollinear magnetic structures [159]. Recently, Zou et al. [160] showed that the amount of entanglement of arbitrary
pins in a magnetic system is tunable by external magnetic fields.

.2.2. Continuous variable system: magnon, photon, phonon
A continuous variable system has an infinite dimensional Hilbert space, and therefore the dimension of the density

atrix to describe such a system is also infinite. Now, the entanglement measures that are obtained by directly evaluating
he properties of the density matrix become difficult to implement. It is under such circumstances that the von Neumann
ntanglement entropy becomes a powerful metric for characterizing entanglement of pure states [136–138,161,162]. We
efer the readers to other reviews [136–138] for further examples. Here, we confine our discussion to other entanglement
etrics that are more useful in the presence of dissipation. First, one has to find manageable representations to reduce

he amount of degrees of freedom in such systems [163]. A widely-used representation is based on the position and
omentum space of a quasi-particle, defined as q̂ ≡ (â + â†)/

√
2, p̂ ≡ (â − â†)/

√
2i, where â (â†) is the annihilation

(creation) operator of the quasi-particle excitation. Here â and â† satisfy the bosonic commutation relation [â, â†
] = 1,

which is a natural implication of the commutation relation between the position and momentum operators [q̂, p̂] = i. In
general, for a continuous variable system containing N types of excitations, the quantum state of the system is described
by a vector (q̂1, p̂1, q̂2, p̂2, . . . q̂N , p̂N )T with a reduced dimension of 2N . Here we focus on a bipartite system described by
a four dimensional state vector R̂ = (q̂1, p̂1, q̂2, p̂2)T , which satisfies the commutation relations

[R̂i, R̂j] = iΩij, Ω =

(
J 0
0 J

)
, J =

(
0 1

−1 0

)
. (40)

In this representation, the density matrix can be expressed via the Wigner function of the system

W (q, p) =
1
π2

∫
d2q′

⟨q − q′
|ρ̂|q + q′

⟩e2iq
′
·p, (41)

here q = (q1, q2) and p = (p1, p2). In 2000, Simon [164] generalized the PPT criterion presented in Section 2.2.1 to
bipartite continuous variable states as,

Theorem: If ρ̂ is separable, its Wigner distribution necessarily goes over into a Wigner distribution under the phase space
mirror reflection R̂ → ΛR̂ with Λ = diag(1, 1, 1,−1).

On the other hand, the commutation relations Eq. (40) and non-negativeness of the density matrix leads to the
ollowing uncertainty inequality [165]

V +
i
2
Ω ≥ 0, (42)

here V is the bipartite covariance matrix defined as Vij ≡ ⟨(R̂i −⟨R̂i⟩)(R̂j −⟨R̂j⟩)⟩. Note that the first moments ⟨R̂i⟩ can be
arbitrarily adjusted by displacement operations in phase space, which do not alter the entanglement properties. Therefore,
it is usually adjusted to be zero without loss of generality [163].

By combining the PPT criteria and the uncertainty inequality (42), Simon found a necessary condition for separability
of a bipartite quantum state

detA detB +

(
1
4

− det C
)2

− tr(AJCJBJCT J) ≥
1
4
(detA + detB), (43)

here detA(B) is the determinant of A(B) and the matrices A,B and C are defined by expressing the covariance matrix
n the following 2 × 2 block matrix

V =

(
A C
CT B

)
. (44)

he violation of this inequality implies a finite entanglement between the two particles. It was further proven that this
nequality is a necessary and sufficient condition for separability, for all bipartite Gaussian states. Here, a Gaussian state is
class of states whose Wigner distribution is a Gaussian function in phase space, such as thermal states, squeezed states,
nd coherent states [11]. An equivalent separability criterion for bipartite Gaussian states was independently derived by
uan, Giedke, Cirac and Zoller (DGCZ) [166], which is called the DGCZ inequality. Generalizations of the Simon criterion
o a wider class of multi-mode states without limiting oneself to two-mode Gaussian states were attempted in [167–170].

Logarithmic negativity. Besides checking the inequality, another widely-used measure to quantity the entanglement of
wo-mode Gaussian states is logarithmic negativity [171]. It is defined as

EN = max(0,− ln(2η−)),with η−
≡

1
√

√(∑
V
)2

−

√∑
V − 4 detV, (45)
2
13
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here
∑

V = detA + detB − 2 det C. Note that this measure is valid for both pure and mixed states, and it will be
epeatedly used below to quantify the entanglement among magnons, photons and phonons.

As an example to illustrate the meaning of continuous variable entanglement, let us consider a two-mode squeezed
tate defined as

|r⟩ = exp
[
r(â†

i â
†
j − âiâj)

]
|0⟩i ⊗ |0⟩j, r ∈ Reals, (46)

hose covariance matrix is

V =

(
A C
CT B

)
=

1
2

⎛⎜⎝ cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r

⎞⎟⎠ . (47)

We readily derive∑
V = detA + detB − 2 det C =

1
2
cosh 4r, det V =

1
16
, (48)

nd the smallest symplectic eigenvalue

η−
=

1
2

[
cosh 4r − (cosh2 4r − 1)

]1/2
=

1
2
e−2|r|. (49)

herefore the entanglement is quantified as EN = − ln(2η−) = 2|r|. On the other hand, by defining the two-mode position
nd momentum quadratures as X̂ = (âi + â†

i + âj + â†
j )/2

3/2 and P̂ = (âi − â†
i + âj − â†

j )/(2
3/2i), the uncertainties of

he quadratures are evaluated as ∆X = er/2 and ∆P = e−r/2. Given r > 0, we see that the larger the squeezing of the
omentum uncertainty is, the stronger the two modes are entangled. Hence the strength of entanglement for a two-mode
ontinuous variable system may be understood as how much the collective quadrature is squeezed below the quantum
imit.

EPR steering. Further, when two subsystems are entangled, one intriguing property is that one subsystem can steer
he state of the other by local operations within its own Hilbert space and by classical communication (LOCC). This
oncept is known as EPR steering and was originally proposed by Schrödinger [126,127]. The detection of the steering
as first proposed by Reid [172] and experimentally verified later [173–175]. Unlike entanglement, EPR steering is an
symmetric property between two subsystems, i.e., one subsystem may steer the quantum state of the other, but not
ice versa [12]. This makes EPR steering useful in realizing one-sided quantum key distribution [176,177]. More subtle
ifferences between entanglement and EPR steering can be found in Refs. [178–180]. To quantify the strength of EPR
teering, Kogias et al. [177] proposed a computable measure valid for arbitrary bipartite Gaussian states based on their
ovariance matrix (44) as

Ga→b
= max

{
0,

1
2
ln

det 2A
det 2V

}
, Gb→a

= max
{
0,

1
2
ln

det 2B
det 2V

}
. (50)

he magnitude of Ga→b (Gb→a) quantifies how much the joint state is steerable, by local measurements on the a (b) side.
he operational interpretation of this quantifier can be reduced to the seminal proposal by Reid [172].
So far, we have introduced magnons, the dynamic equations that describe the quantum behavior of magnons,

nd the language to describe the entanglement between two subsystems for both discrete and continuous variable
ystems. Equipped with these preliminary knowledge, we review the recent developments concerning the generation
nd manipulation of quantum states of magnons in the next section.

. Quantum states of magnons

It is known that the particle-like nature of light gave birth to the concept of photons, possessing many intriguing
uantum properties, such as the photoelectric effect, BEC, squeezing, antibunching, and entanglement. As bosonic
articles, magnons share many similarities to photons, but their quantum nature was not thoroughly studied until very
ecently. In such an infant stage, there still exist some controversial understandings in whether a phenomenon is quantum
r classical, such as magnon BEC. In this section, we would like to review the recent developments in this direction
ncluding single-magnon state in Section 3.1, squeezed states in Section 3.2, magnonic cat states in Section 3.3, and
uantum many-body states of magnons in Section 3.4.

.1. Single-magnon state

Magnons that are excited in a magnet will reach equilibrium with the environment in the absence of external driving
nd form a thermal magnon gas. Such a thermal state is usually described by a super-Poisson distribution in Fock space,
here the mean magnon occupation is smaller than the variance of the magnon number. Under a strong driving, for
xample by microwaves, the magnons will reach a coherent state, with mean magnon number equal to its variance [see
14
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Fig. 5. Illustration of the thermal state, antibunched state and coherent state of bosons. They are respectively characterized by super-Poissonian
g (2)(0) > 1), sub-Poissonian (g (2)(0) < 1) and Poissonian statistics (g (2)(0) = 1).
ource: The figures are adapted from Ref. [185].

q. (16)]. As discussed above in Section 2.1.3, coherent magnons behave classically as a wavepacket and can serve as carrier
or information processing. In quantum science and technology, it is meaningful to study nonclassical states of magnons
or the integration of magnons with other quantum platforms. In line with the single-photon state in quantum optics [181],
single-magnon state is a quantum state with large occupation probability of the first-excited state corresponding to a
ingle magnon. The excitation of two or more magnons should be negligible. The magnon population in Fock space then
beys sub-Poisson statistics, which is different from a thermal magnon gas and a coherently driven magnonic system.
athematically, these states can be characterized by a zero-delay second-order correlation function [111] defined as

g (2)(0) ≡
⟨â†â†ââ⟩
⟨â†â⟩2

= 1 +
⟨(∆n̂)2⟩ − ⟨n̂⟩

⟨n̂⟩2
, (51)

here â (â†) is the magnon annihilation (creation) operator, n̂ = â†â is number operator, ∆n̂ = n̂−⟨n̂⟩ and ⟨Â⟩ ≡ tr(ρ̂Â) is
the ensemble average of the observable Â. According to the value of g (2)(0) or statistics of the magnon gas, three regimes
are identified [182]: (i) When the magnon distribution is super-Poissonian, ⟨(∆n̂)2⟩ > ⟨n̂⟩, then g (2)(0) > 1. For example,
g (2)(0) = 2 is achieved by a thermal magnon gas, which is bunched due to its bosonic statistics [101,183]. (ii) When
the magnon distribution is Poissonian, for example, a coherent state, one has ⟨(∆n̂)2⟩ = ⟨n̂⟩ [see Eq. (16)] and thus
g (2)(0) = 1. The magnonic system under strong driving falls into this class, as already discussed in Sections 2.1.3 and 2.1.4.
(iii) When the magnon distribution is sub-Poissonian, ⟨(∆n̂)2⟩ < ⟨n̂⟩ and g (2)(0) < 1 implying antibunched magnons. This
is a purely quantum-mechanical state that cannot be captured by classical statistics [184]. The limiting case g (2)(0) = 0
indicates a perfect single-magnon source. Such case leads to a magnon blockade, i.e., the excitation of a second magnon is
blocked. The Fock distributions of a typical thermal state, antibunched state and coherent state are shown in Fig. 5. Bender
et al. [101] introduced a normalized spin current cross-correlation function c(2)(0) to quantify the quantum correlations
of spin currents injected into two metallic leads attached to a ferromagnetic insulator. This function approaches 1 and 2
when magnons are in a coherent and thermal states, respectively, resembling the behavior of g (2)(0).

How to generate and manipulate antibunched magnons has started to attract attention recently. The conventional
method to generate a single-magnon state is to enhance the nonlinearities in the magnonic system, which induces
anharmonicity of the energy levels of the system. Kerr-type nonlinearities (â†â)2 have been widely used to study photon
blockade in quantum optics [186–189]. Wang et al. [190] experimentally demonstrated the magnon Kerr effect in a
small yttrium–iron–garnet (YIG) sphere, which induced a perceptible shift of the magnon frequency. Yuan et al. [185]
studied the magnon excitation in a nanometer-sized magnet as shown in Fig. 6(a) and investigated the role of Kerr-type
nonlinearities on the magnon correlations. In particular, they considered a biaxial magnet described by the Hamiltonian
(6) and considered the Hamiltonian up to the fourth order

Ĥ = ωaâ†â + w(â†â†
+ ââ) + v(â†â)2 + u(â†âââ + â†â†â†â) + ξ (âeiωt + â†e−iωt ), (52)

where ωa = 2Kz + Kx + µ0geµBH , w = KxS/2, v = −Kz/N − Kx/2N , u = −Kx/4N , with N the number of spins in
the magnet. Here, ξ is driving term produced by an external microwave. The nonlinear terms caused by four-magnon
interactions may come from either shape or magnetocrystalline anisotropy and are inversely proportional to the number
of spins [185,191]. Therefore, as the magnet becomes smaller, the interaction causes significant nonuniform spacing of
the energy levels as shown in Fig. 6(b). When the input microwave driving matches the frequency of the first excited level
(n = 0 → 1), it will efficiently pump the magnons to the level n = 1, but cannot excite them further due to the frequency
mismatch. Therefore, magnon antibunching may be realized in a small nanomagnet and the required size of magnet is
estimated to be below 10 nm, which is accessible within current fabrication techniques [192,193]. A full phase diagram
in the (KxS/2γ , Kz/γN) plane is show in Fig. 6(c). To study the classical-quantum transition in the presence of thermal
fluctuations, nonlinearities and external drivings, the authors further simulated the steady-state correlations of magnons,

the results of which are shown in Fig. 6(d). In the weak driving regime, thermal effects dominate the steady state such that
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f

Fig. 6. (a) Schematic of a nanomagnet. (b) Anharmonic energy-level distribution of the system with strong nonlinearity. The excitation of a magnon
rom n = 1 to 2 by a microwave with frequency ω1 −ω0 will be suppressed due to frequency mismatch. (c) Second-order correlation function g (2)(0)
of magnons as a function of KxS/2γ and Kz/γN . The orange balls sketch typical magnetic spheres with bunched and antibunched behaviors. (d)
Correlation function g (2)(0) as a function of driving strength for N = 104 (black squares), 103 (red dots) and 5 × 102 (blue triangles), respectively.
Source: The figures are adapted from Ref. [185]

the steady-state correlations are close to 2. In the opposite limit of strong driving, the steady state approaches a coherent
state with g (2)(0) = 1. Only in the regime of intermediate driving, the nonlinearity generates an antibunched state. At
temperatures below 1 K, this magnonic quantum state survives. To detect the antibunched magnons, it was proposed to
couple the magnonic system to photons and encode the magnon correlations onto the photons. By measuring the photon
intensity correlations through a Hanbury Brown–Twiss interferometer [194], one could probe the magnon antibunching.

Another way to induce anharmonicities for magnons is to couple the magnon mode to an ancillary mode. Liu et al. [195]
considered a hybrid magnet–qubit system inside a cavity [Fig. 7(a)], where the magnet and cavity are coupled in a coherent
way and are driven by microwaves with strengths ξp and Ω , respectively. They found that the qubit mode can change the
energy level diagram of the magnons to an anharmonic form, as shown in Fig. 7(b), where |n, g⟩ are the dressed states
of the hybrid system with magnon number n and the qubit in its ground state. Here, the transitions from the ground
state |0, g⟩ to |1,±⟩ are allowed when the driving matches the frequency difference, but the transitions from |1,±⟩ to
|2,±⟩ are suppressed due to a frequency mismatch, where ± denote the splitting of the qubit’s energy level. By carefully
manipulating the detuning between the driving and the intrinsic magnon frequency (∆), and the driving amplitudes of
the qubit (Ω) and magnon (ζp), a nearly perfect magnon blockade with g (2)(0) < 0.001 is realized, as shown in Fig. 7(c).
Similar results were independently obtained by Xie et al. [196].

Besides the method to generate magnon blockade by modifying their energies, Wang et al. reported unconventional
blockade in the absence of nonlinearities, by playing with the magnon–photon coupling strength, the gain of the cavity
and loss of the magnet to generate a PT symmetric system [197]. In such a case, different channels interfere which leads
to a significant occupation of the single-magnon energy level.

Lachance-Quirion et al. [198] have experimentally verified that one can detect the single-magnon state by coupling
the magnonic system to a superconducting qubit. The details shall be discussed in Section 4.2. Bittencourt et al. [199]
proposed a magnon-heralding protocol in a cavity optomagnonic setup. They first prepared the magnon state in vacuum.
Then they sent a write pulse to generate an entangled photon–magnon state, and subsequently sent a second pulse to
16
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Fig. 7. (a) Schematic illustration of a hybrid magnet–qubit system inside a cavity. (b) Anharmonic energy level diagram of the system induced by
the qubit–magnon coupling gqm . (c) Steady-state second-order correlation as a function of the frequency detuning (∆) between intrinsic magnon
frequency and driving frequency, the qubit–magnon coupling strength (gqm), the driving amplitude of the qubit (Ω) and magnon (ζp).
ource: The figures are adapted from Ref. [195].

ead the information of the photons. By measuring the statistical properties of the output photons, the magnon state
ollapses into a single-magnon Fock state. Hence the read photon is a witness of the heralding. This heralding protocol is
ensitive to the initial state of the magnons and cooling of the magnons before the write pulses is preferred to reduce the
nitial mean number of magnons. The phononic counterpart of this proposal was reported by Galland et al. [200]. On the
pplication side, the single-magnon excitation may be entangled to photons for Bell tests [201] and it can also be used
s a quantum memory to store information from an incoming photon [202]. The realizations of single-magnon detectors
s important to make use of magnetic states for quantum information processing [203].

.2. Squeezed states

The Heisenberg uncertainty principle states that the product of quantum fluctuations in two noncommuting observ-
bles has a minimum value determined by h̄. Nevertheless, it is possible to realize states with reduced quantum noise
n one observable at the expense of increased fluctuations in the other [204]. Such states, generally called ‘‘squeezed
tates’’, have been the subject of intense research in the field of quantum optics [100,204–210]. Considering a single
lectromagnetic or photon mode, its associated electric and magnetic fields become two such noncommuting observables.
hese are proportional to the two ‘‘quadratures’’ ∼ (ĉ†

± ĉ), where ĉ is the annihilation operator for the photon
ode [100,210]. While a graphic and intuitive picture is provided by this squeezing of the quantum fluctuations, the
ide range of quantum phenomena (such as entanglement) embodied by these states can be appreciated best via their
ave functions.
Such squeezed states and related phenomena carry over to other bosonic systems, such as mechanical resonators or

honons [211–214], in a natural way. In optical and mechanical systems, squeezed states are nonequilibrium in nature and
re generated via external drives, for example. Magnets, in contrast, host robust squeezed magnonic states in equilibrium,
s shown by Kamra and Belzig in 2016 [103,104,215]. This equilibrium squeezing results from energy minimization and
orms the primary focus of the present subsection. A physically intuitive discussion, avoiding formalism, of this niche
dmitted by magnons and an overview have been presented in Ref. [21]. Here, we follow a complementary approach and
larify some key aspects of these phenomena by introducing formalism and analyzing single-mode squeezing of the k = 000
ode in ferromagnets [103,215]. This also provides us tools to appreciate the key ideas in a wide range of recent studies,
hich are briefly discussed below. In this process, we also review some important insights from quantum optics [100,210],
ut using our magnon language. The latter turns out to be particularly convenient as the two noncommuting observables
or quadratures) simply become the spin components transverse to the equilibrium order direction. The discussion below
orrows heavily from Refs. [100,103,104,216] which should be consulted for further details. Further, Section 2.1.3 serves
s a prelude to the following discussion.
Squeezed coherent state of magnon. We first consider the k = 000 magnon mode in an isotropic ferromagnet represented

by Eq. (12), since it pertains to the transverse components of the total spin Sx,y [Eq. (13)]. Can we accomplish a reduction
of quantum noise in, say Sy? The Heisenberg principle cannot be violated. Hence, such a reduction should accompany an
increase in quantum fluctuations of Sx. The so-called squeezed vacuum state |η⟩ is defined as [100,204,210]

|η⟩ = Ŝ(η)|0⟩, Ŝ(η) ≡ exp
[
1
2

(
η∗â2 − ηâ†2)] , (53)

with η = reiθ , where Ŝ(η) is called the squeeze operator, r > 0 is known as the squeeze parameter, and θ determines the
squeezing direction as clarified below. Employing the unitarity of Ŝ(η) and the identities [100]

Ŝ†(η) = Ŝ(−η), Ŝ†(η)âŜ(η) = â cosh r − â†eiθ sinh r, (54)
17
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Fig. 8. Phase space depiction of (a) squeezed vacuum state and (b) squeezed coherent state. (a) The squeezed vacuum is constituted by superposition
of even magnon number states, schematically depicted in the lower panel [21]. (b) Time evolution of the squeezed coherent state prepared at t = 0
ith squeezing in Sy [100]. Circular trajectory of the uncertainty region center represents a classical property. Phase-dependent quantum fluctuations
ue to squeezing of the uncertainty region is a quantum feature.

e evaluate the quantum fluctuations in Sx,y as

∆Sx =

√
NS
2

√
cosh2 r + sinh2 r − 2 sinh r cosh r cos θ =

√
NS
2

er (taking θ = π) , (55)

∆Sy =

√
NS
2

√
cosh2 r + sinh2 r + 2 sinh r cosh r cos θ =

√
NS
2

e−r (taking θ = π) . (56)

he Heisenberg uncertainty region has thus been squeezed from a circle [Fig. 3(a)] into an ellipse [Fig. 8(a), upper panel]
hile maintaining its area. The squeezing of quantum fluctuations takes places along the direction making an angle of
/2 with the x-axis. Further insight into the squeezed vacuum is gained by expressing it using the magnon number states

â|0⟩ = 0, H⇒ Ŝ(η)âŜ†(η)Ŝ(η)|0⟩ = 0, H⇒
(
â cosh r + â†eiθ sinh r

)
|η⟩ = 0, (57)

which yields the desired expansion

|η⟩ =
1

√
cosh r

∞∑
n=0

(−1)n einθ
√
(2n)!
2nn!

(tanh r)n |2n⟩. (58)

hus, the squeezed vacuum state is comprised of even magnon number states [schematically depicted in Fig. 8(a), lower
anel] with the corresponding probabilities decreasing with increasing n, but independent of θ .
Eq. (58) shows that the squeezed vacuum is, strictly speaking, not a vacuum at all. It consists of all even magnon

umber states, including the true vacuum |0⟩. This also provides a hint regarding generation of such a squeezed vacuum in
xperiments. We need to create correlated magnon pairs on top of the true vacuum (isotropic ferromagnet ground state),
or example via parametric pumping [217,218]. Such states, although commonplace in optical [205] and mechanical [211–
14] systems, have not been experimentally observed in ferromagnets thus far. However, two-mode squeezed states
beyond the scope of ongoing discussion) in antiferromagnets have been achieved [161,219–221]. Such states will also be
riefly discussed in the context of magnon–magnon entanglement below in Section 4.1.3.
Often, the quantum nature of phenomena is tested via mathematical inequalities on observables. For example,

he violation of Bell’s inequality proves quantum entanglement [128]. We thus briefly mention one mathematical
nequality that is used to characterize ‘‘nonclassical’’ states and ascertains squeezed vacuum to be such a state. The
lauber–Sudarshan [97,98] P-function P(β) for a general state is defined via [100]

ρ̂ =

∫
P(β)|β⟩⟨β|d2β, (59)

here ρ̂ is the system density matrix, and the integral is over the complex β plane (which is also proportional to the
hase space). The P-function acts as a probability distribution in the phase space and observables can often be written
18
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s P(β)-weighted integral over the β plane. Since a classical probability distribution assumes only nonnegative values, a
tate is nonclassical if its P-function becomes negative in some part of the phase space. Evaluating quantum fluctuations
Eqs. (55) and (56)] in terms of P(β), it is seen that squeezing necessitates P(β) becoming negative in at least some part of
the phase space [100]. This makes the squeezed vacuum a nonclassical state and we can expect various quantum features
from it, as discussed further below.

So, coherent states are classical and squeezed states are quantum. Having both in one sounds like an oxymoron.
Nevertheless, squeezed coherent state is generated (theoretically) as

|β, η⟩ = D̂(β)Ŝ(η)|0⟩. (60)

e wish to examine dynamics of this squeezed coherent state. A full derivation becomes too lengthy for us to reproduce
ere [100,210]. Hence, we directly depict the phase-space picture of this dynamics in Fig. 8(b). Here, we assume that
he state |β, η⟩ is realized using certain drives that are switched off at t = 0. Thereafter, the state undergoes its natural
volution due to the single-mode Hamiltonian Eq. (12). As shown in Fig. 8(b), the uncertainty region center undergoes
ircular precession. The quantum fluctuations squeezing in Sy at t = 0 appears in Sx after a quarter of the cycle. Thus,
he state harbors phase and time dependent quantum noise [100]. Generally, the quantum nature of this state is due to
he Heisenberg uncertainty region squeezing while the circular precession is a classical property. The coherent state can
hus be seen as a classical carrier or amplifier of the quantum features allowing the latter to be exploited in macroscopic
ystems [205].
Squeezed-magnons in anisotropic ferromagnets. We now include magnetic anisotropy in describing our ferromagnet,

hich has a ground state configuration of spins pointing along −ez due to the applied magnetic field Hez . The anisotropy
ay result from dipolar interaction and/or magnetocrystalline contributions [103,215]. In order to keep our discussion
eneral while focusing on the k = 000 mode, we consider [216]

Ĥan =

∑
i

[
Kx

(
Ŝix
)2

+ Ky

(
Ŝiy
)2

+ Kz

(
Ŝiz
)2]

, (61)

hich results in the following magnon Hamiltonian

Ĥ = Aâ†â + B
(
â2 + â†2)

= ωr b̂†b̂, (62)

ith A ≡ µ0geµBH + KxS + KyS − 2KzS and B ≡ S(Kx − Ky)/2. We assume B < 0 for the following discussion. The
amiltonian above has been diagonalized via a Bogoliubov transform [222]: â = b̂ cosh r − b̂†eiθ sinh r . We continue to
enote the eigenmode energy by ωr , which now becomes ωr =

√
A2 − 4B2. Further, r and θ are governed by the relations:

sinh r = 2|B|/
√
(A + ωr )2 − 4B2 and θ = π , due to B < 0.

Magnons, represented by â, are no longer the eigenmodes, which are annihilated by b̂ [Eq. (62)]. To gain insight into
the new ground state and eigenexcitations, we exploit the relations

b̂ = â cosh r + â†eiθ sinh r = Ŝ(η)âŜ†(η), â|0⟩a ≡ â|0⟩ = 0, (63)

and typical properties of ladder operators in demonstrating [103]

|n⟩b = Ŝ(η)|n⟩a ≡ Ŝ(η)|n⟩, (64)

where |n⟩b denotes the number state for the new eigenmodes annihilated by b̂. This implies that our new vacuum |0⟩b
is the same squeezed magnon vacuum that we have discussed earlier [Eq. (53)], with the important difference that it
occurs naturally as the ground state of the anisotropic ferromagnet [21,103,160]. This can be intuitively understood as
follows. When Ky > Kx such that B < 0, it costs the system more energy to have a nonzero Sy as compared to Sx. Thus,
the quantum fluctuations in Sx − Sy phase space due to the Heisenberg uncertainty deform to reduce their component
along y direction (and hence, energy), while maintaining the uncertainty region area [21,160,215]. Thus, the new ground
state is squeezed magnon vacuum and adequately represented by Fig. 8(a). On account of Eq. (64) for n = 1, the new
eigenmode is termed ‘‘squeezed-magnon’’ [103] and expressed in the magnon number state basis as

|1⟩b = b̂†
|0⟩b =

(
cosh râ†

+ e−iθ sinh râ
)
|η⟩ =

1
√

cosh3 r

∞∑
n=0

(−1)n einθ
√
(2n + 1)!
2nn!

(tanh r)n |2n + 1⟩, (65)

whence we see that squeezed-magnon is a composite quasi-particle formed by a superposition of odd magnon number
states [96,215,223]. This composite nature underlies various quantum properties that it imbibes as discussed below. It
also implies that the average spin carried by squeezed-magnon is larger than 1 [103,215], measurable via magnon spin
shot noise [103,104]. The squeezed-magnon spin of 1 + 2 sinh2 r is evaluated as the expectation value of the magnon
number operator â†â using Eq. (65). Alternately, the same result is obtained more easily by expressing Sz in terms of
squeezed-magnon number (⟨b̂†b̂⟩) [103,104], similar to our analysis in Eq. (11).

Such an increase in the magnon’s magnetic moment was already discussed (indirectly) in the seminal Holstein–
Primakoff paper [222] using the thermodynamic definition of magnetic moment z-component

mz = −
1 ∂ω

, (66)

µ0 ∂H

19



H.Y. Yuan, Y. Cao, A. Kamra et al. Physics Reports 965 (2022) 1–74

i
s
e

w
a
p
s
w
i

i
B
a
A
p
m

Fig. 9. (a) Phase space representation of spin dynamics and quantum fluctuations in an anisotropic ferromagnet. This is directly analogous to the
sotropic ferromagnet case depicted in Fig. 3(b). (b) Squeezed magnon is a composite excitation formed by superposition of odd magnon number
tates [Eq. (65)]. Thus, it can excite, for example, 3 qubits synchronously thereby generating Greenberger–Horne–Zeilinger and related maximally
ntangled states: (|ggg⟩ ± |eee⟩) /

√
2.

Source: The figure (b) is adapted from Ref. [216].

where ω ≡ ω(H) is the magnon energy in an applied field Hez . It has later been noted that this value is larger than what
one expects from a spin-1 magnon [224], alluding to lack of understanding. Hence, this change in the magnetic moment
has typically been absorbed into the effective gyromagnetic ratio, treating the magnon spin as fixed. Only recently,
with experimental developments in spintronics and theoretical understandings based on squeezing [103,215], spin and
magnetic moment can be clearly separated (e.g., via spin shot noise [103]) and the magnetic moment increase has been
attributed to the aforementioned squeezed-magnon spin larger than 1 [Eq. (65)].

To complete our understanding of the ground state and excitations in an anisotropic ferromagnet, we express the spin
components in the eigenbasis [using Eq. (7)]

Ŝx =

√
NS
2

(
â†

+ â
)

= er
√

NS
2

(
b̂†

+ b̂
)
, (67)

Ŝy =
1
i

√
NS
2

(
â†

− â
)

=
e−r

i

√
NS
2

(
b̂†

− b̂
)
, (68)

hence we conclude that the entire spin operators have been squeezed, and not just the quantum fluctuations. This result
llows us to understand various phenomena in anisotropic ferromagnets by simple axes-squeezing of the isotropic case. In
articular, classical spin dynamics plus quantum fluctuations in an anisotropic ferromagnet can be depicted in the phase
pace as shown in Fig. 9(a). As discussed previously, the classical trajectory is traced by the uncertainty region center
hile the quantum features are encoded in and due to its squeezed shape. A more detailed analysis of this dynamics

ncluding a dissipative bosonic bath has been presented in Section 2.1.4.
Equilibrium squeezing. The emergence of squeezed-magnons and the corresponding vacuum in anisotropic ferromagnets

s an equilibrium effect caused by energy minimization [21,103,160,215]. Mathematically, it is a consequence of the
ogoliubov transform, making it general to any bosonic system that invokes such transformations. This also gives magnets
niche over other bosonic systems [21], since their excitations are often described via such Bogoliubov transforms.
s compared to the nonequilibrium squeezing discussed in isotropic ferromagnets (or typically realized with optical
latforms [204,205]), equilibrium squeezing is robust against decay. To distinguish the two, we call it a squeezed state of
agnon (represented by â above) for the nonequilibrium case and squeezed-magnon (b̂) for equilibrium situations and

normal excitations [161]. This squeezing formalism has allowed us to obtain the wave functions and quantum properties
of the ground states and excitations in magnets. See, e.g., Refs. [225–228] and references therein for analysis beyond our
linearized dilute magnon gas limit.

Entanglement. An insight from the obtained wave functions is that the magnetic excitations and ground states are found
to harbor entanglement between spatially separated spins [21,160,161,229]. Various metrics, such as von Neumann en-
tropy [161,162] and concurrence [160,229,230], have been employed in quantifying this entanglement content [138,231],
as introduced above in Section 2.2. Special focus has been on antiferromagnets [161,229,230,232,233] which manifest very
large squeeze parameters, and entanglement, due to exchange interaction causing the squeezing [21,161]. In contrast,
relatively weak anisotropy leads to squeezing in ferromagnets. Further, Wuhrer and coworkers [233] have theoretically
demonstrated the violation of DGCZ inequalities [166] in antiferromagnets, which are continuous variable analogs of
the Bell’s inequality [128]. In this sense, a determination of the wave function for antiferromagnets in the magnon
approximation gives insights into their generic entangled nature, which has been well-established in the context of their
spin liquid states [135,234,235]. A more detailed discussion of magnon–magnon entanglement in antiferromagnets is
presented in Section 4.1.3.

Coupling modification. Since the magnets typically interact with the outside world via their spin, the composite

and high-spin nature of the squeezed-magnon amplifies its coupling via the squeezing effect [21,161]. This has been
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larified in the context of magnon-mediated superconductivity enhancement [236,237] and magnon–magnon ultrastrong
oupling [238–240], among several others [241–244]. The nonequilibrium equivalent of this amplification was proposed
arlier for squeezed states of light [245–247] and has been accomplished recently using ion trap systems [248]. The
ffect has also been proposed to underlie transient enhancement of phonon-mediated superconductivity [249]. However,
queezing can also reduce the magnon coupling with other excitations. Haigh and coworkers [250] recently found the
queezing effect to suppress the amplitude for certain optomagnonic transitions in their experiments.
Exploiting nonclassical properties. The squeezed-magnon vacuum is the magnetic ground state. Thus, extracting en-

anglement from it is not as straightforward as it is from a squeezed vacuum of light [173,251]. The latter being an
xcited state can be absorbed by another system thereby transferring its quantum features. To address this issue, several
roposals have focused on coupling two qubits with entangled spins of the magnetic ground state [160,161,230,252]. In
his protocol, the qubits need to be decoupled from the magnet after achieving the desired entanglement. On the other
and, a squeezed-magnon is itself highly nonclassical due to its composite nature [Eq. (65)]. This excitation can thus
ransfer its nonclassical features more easily to, for example, 3 qubits that jointly absorb it [216], as depicted in Fig. 9(b).
enerally, an intuitive and not very precise way of understanding the entanglement embodied by squeezed-magnons and
heir vacuum is as follows. When a wave function is constructed by a superposition of different magnon number states,
t involves coherent action of multiple spin flips (each flip corresponding to one magnon) leading to spin entanglement.
hus, this composite nature is fundamental to nearly all the quantum features.

.3. Schrödinger cat states

In 1935, Schrödinger proposed a thought experiment according to which a cat should exist in a quantum superposition
f being dead and alive, because its state is assumed to be linked to that of an atom, which is itself in a superposition [253].
is goal was to argue against the concept of quantum superposition altogether because ‘‘classical’’ objects (like a cat)
annot possibly be in two states at once. Here, we consider so-called Schrödinger cat states [253,254]

|cat⟩ =
1√

2 + 2 cosΦ exp
(
−2|β|

2) (|β⟩ + eiΦ |−β⟩
)
. (69)

he two coherent states (|±β⟩) that superpose to form the cat state are themselves classical, as we have discussed
efore. For large enough |β|, the two constituent states are macroscopically distinguishable as the ‘‘dead’’ and ‘‘alive’’ cats.
at states do not only play a fundamental role in discussions concerning the difference between classical and quantum
hysics [255], but also serve as an indispensable resource for quantum computing [256–258], quantum teleportation [259]
nd high-precision measurements [260]. Until now, cat states have been realized in optical systems [261–264], but the
eneration of magnonic cat states has just started to attract interest. Among various applications of such states [260,
65,266] is their ability to emulate Schrödinger’s thought experiment and characterize quantum decoherence in the
ystem [267,268], i.e., to show how fast the quantum superposition reduces to a classical statistical mixture. Furthermore,
larger |β|, corresponding to the constituents (|±β⟩) being more classical, gives a faster decay of the quantum

uperposition [269], consistent with Schrödinger’s expectation of a completely classical cat loosing the superposition
mmediately. The Glauber–Sudarshan P-function for the cat states is more singular than a delta function [270]. This is
ot allowed for a classical probability distribution and indicates that the cat states are nonclassical.
The even and odd cat states are obtained when Φ = 0 and π , respectively,

|cat⟩e =
1√

2 + 2 exp
(
−2|β|

2) (|β⟩ + |−β⟩) , |cat⟩o =
1√

2 − 2 exp
(
−2|β|

2) (|β⟩ − |−β⟩) . (70)

Employing Eq. (15), we see that the even (odd) cat state contains even (odd) number states only

|cat⟩e =

2 exp
(
−

|β|
2

2

)
√
2 + 2 exp

(
−2|β|

2)
∞∑

m=0

β2m

√
2m!

|2m⟩, |cat⟩o =

2 exp
(
−

|β|
2

2

)
√
2 − 2 exp

(
−2|β|

2)
∞∑

m=0

β2m+1

√
(2m + 1)!

|2m + 1⟩. (71)

In this sense, the even and odd cat states are somewhat similar to the squeezed vacuum [Eq. (58)] and squeezed magnon
[Eq. (65)], which also contain only even and odd number states, respectively. This similarity further provides a convenient
method to generate magnonic cat states, as proposed recently by Sharma and coworkers [271,272].

The basic idea of the method [271,272] is that an approximate odd cat state is achieved by adding a single magnon
to the squeezed-magnon vacuum [Eq. (58)], such that the resulting state contains odd-magnon number states only.
This magnon addition is accomplished by projecting the combined ground state of an anisotropic magnet–photon cavity
ensemble [Fig. 10(a)] to a one-photon state, achieved via measurement of the photon number. The system Hamiltonian
is [Eq. (62)] [272]

Ĥ = Aâ†â + B
(
â2 + â†2)

+ ω ĉ†ĉ + g
(
ĉâ†

+ ĉ†â
)
, (72)
t c
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Fig. 10. Generation of a magnonic cat state by adding a magnon to a squeezed-magnon vacuum. (a) An anisotropic magnet is placed in an optical
avity. Measurement of the one photon state in the cavity projects the magnetic state onto the magnon odd cat state. (b) The left panel depicts
he squeezed-magnon vacuum in phase space. The right panel shows the generated cat state. The insets show the corresponding situation for an
sotropic magnet, visibly devoid of the cat.
ource: The figures are adapted from Ref. [272].

here ĉ annihilates the photon and g parameterizes the photon-magnon coupling mediated by the Zeeman interaction.
For small g , the ground state is approximated by

|G⟩ ≈

(
1 +

√
P

â†ĉ†

cosh r

)
Ŝ(r)|0a0c⟩ = Ŝ(r)|0a0c⟩ +

√
P

cosh r
â†Ŝ(r)|0a1c⟩, (73)

where P (≪ 1) is the probability of finding the cavity in its one-photon state, and |0a0c⟩ (|0a1c⟩) denotes the state with no
magnons and (one) photon. The squeeze operator Ŝ(r) and parameter r are approximately determined by the squeezed-
magnon vacuum as discussed earlier [Eq. (62)]. |G⟩ is predominantly the squeezed-magnon vacuum plus zero photons,
with small contributions from other entangled magnon–photon states. As soon as a one-photon state is detected in the
cavity, the squeezed-magnon vacuum is eliminated and |G⟩ is projected onto the state with one photon

|C⟩ =
1

cosh r
â†Ŝ(r)|0a1c⟩. (74)

he ensuing state adds one magnon to the squeezed-magnon vacuum and is approximately a magnonic odd cat state
(|βcat⟩ − |−βcat⟩) with [272]

|βcat| ≈

√
2B
ωr
, (75)

here ωr is the squeezed-magnon energy [Eq. (62)]. In obtaining the relatively simple expressions presented here,
, ωc ≫ ωr ≫ g has been assumed. A more general analysis appears in Ref. [272]. The Husimi Q-function [273], defined
s Q (β) ≡ ⟨β|ρ̂|β⟩/π , for a state described by the density matrix ρ̂ is particularly convenient in visualizing cat states in
hase space. The Q-function for |G⟩ [Eq. (73)] and |C⟩ [Eq. (74)] are shown in Fig. 10(b).
There are several other methods to generate cat states [266,274]. In the context of optomagnonic systems, Sun and

olleagues [275] have suggested a method that does not require equilibrium magnon squeezing. Instead, they suggested a
onequilibrium two-mode squeezing between already generated magnon and photon coherent states. Subsequent remote
anipulation and projective measurements on the optical beam enable converting the original magnon coherent state to
ven or odd cat state. In the near future, the experimental generation and detection of such magnonic cat states will help
o determine the potential of low-damping magnetic insulators for quantum information applications.

.4. Quantum many-body states

In this section we review some aspects of the many-body physics of magnons, in particular the concepts of magnon
EC and spin superfluidity. For definiteness, we restrict ourselves to solid-state magnets and do not discuss similar physics
n liquid helium [276]. We start out with a brief intermezzo on BEC of interacting particles. This intermezzo is intended
o bring the reader up to speed with this topic and may be skipped by the readership that is already familiar with the
ean-field description of interacting BEC. Readers who would like to explore more background on these topics may
onsult, for example, Refs. [277,278]. After this intermezzo we review equilibrium and quasi-equilibrium magnon BEC
nd spin superfluidity. Throughout, we emphasize the classical versus the quantum aspects of these phenomena. We end
his section with some remarks on strongly-correlated many-body states of magnons.
22



H.Y. Yuan, Y. Cao, A. Kamra et al. Physics Reports 965 (2022) 1–74

3

I
i
g

f

w
T

a

w
i
n

i
v
a

F

.4.1. Intermezzo: Bose–Einstein condensation of interacting particles
Bose–Einstein condensation is the occupation of the single-particle ground state by a macroscopic fraction of particles.

ts textbook version occurs in a system comprised of conserved identical bosons. The simplest model for BEC that includes
nteractions starts from the Hamiltonian for N identical bosons in a box that interact via short-range interactions. It is
iven by

Ĥ =

N∑
i=1

(
−h̄2

∇
2
i

2m

)
+

1
2

∑
i̸=j

gδ(xi − xj). (76)

Here, the bosons have mass m, and the short-range interaction is modeled with a delta-function interaction potential as
a function of the particle coordinates xi with strength g .

At zero temperature, the bosons are expected to occupy the same single-particle ground state ψ(x), i.e., the many-body
wave function will be given by

ΨN (x1, x2, . . . , xN ) ∝ ψ(x1)ψ(x2) · · ·ψ(xN ). (77)

To find the ground state and its energy, one has to minimize the expectation value of the Hamiltonian for the above
many-body wave function. This expectation value is given by

⟨ΨN | Ĥ |ΨN⟩ =

∫
dxψ∗(x)

[(
−h̄2

∇
2

2m

)
+

g
2

|ψ(x)|2
]
ψ(x), (78)

or N ≫ 1. Minimizing the above energy yields the Gross–Pitaevskii equation [279,280][(
−h̄2

∇
2

2m

)
− µ+ g |ψ(x)|2

]
ψ(x) = 0, (79)

here the chemical potential µ enters as the Lagrange multiplier that enforces the constraint of fixed norm of ψ(x).
he Gross–Pitaevskii equation yields ψ(x) =

√
nceiθ̄ for µ > 0, corresponding to the BEC phase of the system. Here,

nc = µ/g is the density of particles in the condensate, which, at zero temperature and within the mean-field description
developed here, is nc =

√
N/V , with V the total volume. Furthermore, θ̄ is the phase of the condensate wave function

nd is chosen randomly upon each realization of the condensate, corresponding to spontaneous breaking of the U(1)
symmetry of Eq. (78). For µ < 0 we have that ψ(x) = 0, so that there is no macroscopic fraction of particles in the
ground state and therefore no BEC. Hence, the condensate wave function ψ(x) is the order parameter for the transition.

The same conclusion is reached by starting from the second-quantized version of Eq. (76), i.e.,

Ĥ =

∫
dxψ̂∗(x)

[(
−h̄2

∇
2

2m

)
+

g
2

⏐⏐⏐ψ̂(x)
⏐⏐⏐2] ψ̂(x), (80)

here ψ̂(x) is a bosonic annihilation operator. After insertion of the mean-field approximation ψ̂(x) = ⟨ψ̂(x)⟩ ≡ ψ(x)
nto the above, we recover the result in Eq. (78), yielding again the Gross–Pitaevskii equation. In this case, the particle
umber is fluctuating and the state is a coherent state that was introduced in Section 2.1.3.
The mean-field approximation within the context of second quantization makes it most clear that the BEC for

nteracting particles at zero temperature is essentially a classical state, albeit one that is described by a complex-
alued field. Neglecting the non-commuting character of ψ̂(x), and, hence, neglecting the quantum aspects, is a good
pproximation in the BEC phase because[

ψ̂(x)ψ̂†(x) − ψ̂†(x)ψ̂(x)
]
|ΨN⟩ =

(√
N

√
N + 1 − N

)
|ΨN⟩ ≈ 0, (81)

for N ≫ 1.
At finite temperature T , quantum mechanics becomes relevant. In this case, the number of particles at the single-

particle energy ϵ is given by the Bose–Einstein distribution function

nB(ϵ − µ) =
1

e(ϵ−µ)/kBT − 1
. (82)

or energies smaller than the thermal energy, i.e., for ϵ ≪ kBT , we have that nB(ϵ − µ) ≫ 1 so that these modes
are essentially classical. The Bose–Einstein distribution function approaches the Rayleigh–Jeans distribution function
kBT/(ϵ − µ) in this limit. For energies larger than the thermal energy, i.e., ϵ ≫ kBT , we have that nB(ϵ − µ) ≪ 1, so
that quantum-mechanical effects cannot be neglected. On the contrary, quantum-many body effects are essential for BEC
at finite temperature. Namely, the nature of the high-energy part of the Bose–Einstein distribution function is such that
for a given negative chemical potential and temperature there is a certain maximum number of particles that can be
accommodated by the states with energy ϵ > 0. Keeping temperature fixed, this number reaches its maximum when
µ → 0, at which point BEC occurs. Upon increasing the total number of particles at fixed temperature, the chemical
potential thus increases until it becomes zero (measured from the single-particle ground state energy). At this point, the
thermal cloud, i.e., the part of the system composed of the particles with energy ϵ > 0, is saturated and all particles that
23
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re added increase the number of particles in the ground state, i.e., lead to growth of the BEC. At fixed particle number,
ecreasing the temperature leads to an increase in chemical potential until the latter becomes zero, leading again to
ose–Einstein condensation. The requirements of low temperature and high density are usually expressed in terms of
he phase-space density via the dimensionless number NΛ(T )3/V , which should be of order one for BEC to occur. Here,
(T ) ∼

√
2π h̄2/mkBT is the thermal de Broglie wavelength [281].

The proper description of interacting BEC requires the inclusion of interactions between the particles in the thermal
cloud with the particles in the condensate. Within the Popov approximation, these are described by mean-field shifts of
the single-particle energies. This yields the modified Gross–Pitaevskii equation[(

−h̄2
∇

2

2m

)
− µ+ g |ψ (x)|2 + 2 gn′

]
ψ(x) = 0, (83)

here n′ is the density of particles in the thermal cloud that is given by

n′
=

∫
dk

(2π )3
nB
(
ϵk + 2 g|ψ |

2
+ 2 gn′

− µ
)
, (84)

here the single-particle dispersion is ϵk = h̄2k2/2m. The critical temperature for BEC is now found as follows. From
he modified Gross–Pitaevskii equation it follows that condensation occurs when µ = 2 gn′. At the critical temperature,

= 0, so that the equation for the density of the thermal cloud becomes
µ

2g
=

∫
dk

(2π )3
nB (ϵk) . (85)

arrying out the integral on the right-hand side of the above, yields the critical temperature

TBEC ∼
h̄2

kBm

(
µ

g

)2/3

, (86)

hich is valid for µ > 0 only. Hence, at zero temperature BEC occurs when µ = 0, in agreement with our previous
iscussion.
In the above, we have expressed the critical temperature as a function of the chemical potential, rather than the usual

xpression in terms of the total density. As we shall see in the next section, this discussion is convenient for the treatment
f equilibrium magnon BEC.

.4.2. Equilibrium magnon Bose–Einstein condensation
The simplest example of equilibrium magnon BEC occurs in systems that are described by the Hamiltonian in Eq. (6),

or the case that Kz < 0 and Kx = 0. These are so-called easy-plane magnets. At zero temperature and at the classical level,
his system has a spin-reorientation transition whereby the spin reorients from pointing fully along the external field for
arge fields, to having a nonzero component in the x–y-plane. This reorientation transition may be found by minimizing
he Hamiltonian after the mean-field ansatz Ŝi = ⟨Ŝi⟩. This ansatz yields in the first instance

Ĥ = −J
∑
⟨i,j⟩

⟨Ŝi⟩ · ⟨Ŝj⟩ + |Kz |
∑

i

(
⟨Ŝi,z⟩

)2
− µ0geµBH

∑
i

⟨Ŝi,z⟩, (87)

which is minimized by ⟨Ŝi⟩ = Sez for H > 2|Kz |S/(µ0geµB), and by

⟨Ŝi⟩ = S

(√
1 −

µ0geµBH
2|Kz |S

cosϕ,

√
1 −

µ0geµBH
2|Kz |S

sinϕ,
µ0geµBH
2|Kz |S

)
(88)

or H < 2|Kz |S/(µ0geµB). Here, the angle ϕ is the angle that the magnetization makes in the x–y-plane, which is chosen
pontaneously during the reorientation transition, in analogy to the phase of the condensate that was discussed in the
revious section. Here, the difference is that the absolute phase of a condensate of particles is not directly observable,
hereas the magnetization is of course directly observable.
The reorientation transition that occurs at the field H = 2|Kz |S/(µ0geµB) can be interpreted as BEC of interacting

agnons. To this end, we use the HP transformation for Si,z and use the mean-field ansatz ⟨âi⟩ = φ, where we anticipate
that the ground state is homogeneous. Up to a constant, this yields the energy per lattice site

Ĥ/N = (µ0geµBH − 2|Kz |S) |φ|
2
+ |Kz ||φ|

4, (89)

hich, upon minimization, leads to the Gross–Pitaevskii Eq. (83) with µ = 2|Kz |S − µ0geµBH and g = 2|Kz |. The
analogy with BEC is understood as follows. For the HP transformation that is used here, that is, using the z-direction
as the quantization axis, the creation of a magnon in the single-magnon ground state corresponds semi-classically to
the magnetization tilting away from the z-axis. A macroscopic number of magnons therefore corresponds to a classical
reorientation of the magnetization away from the z-direction for this specific setup. A caveat here is in the definition
of the magnon itself. The interpretation of the reorientation transition as magnon BEC relies on the HP transformation
24
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hat uses the z-direction as quantization axis. If one, instead, defines the magnon as a linearized excitation around the
eoriented ground state for H < 2|Kz |S/(µ0geµB), the interpretation of the reorientation transition in terms of magnon
EC is lost [282]. Furthermore, as the tilt of the magnetization away from the z-axis increases, the density of magnons
ecomes too large to be described by the truncated HP transformation. Regardless of one’s opinion on whether or not this
s BEC of magnons, the analogy with BEC allows one to immediately conclude that: i) there will be gapless excitations for
< 2|Kz |S/(µ0geµB), in analogy to phonons in the BEC, and (ii) that at finite temperature the reorientation transition

ccurs at Tc ∝ J(2S − µ0geµBH/|Kz |)2/3/kB. Here, we used Eq. (86). Finally, we remark that, though the easy-plane
erromagnet is a somewhat academic system as anisotropies will always pin the easy-plane magnetization direction,
here are several experiments on materials which realize this type of transition, albeit that the magnetic excitations
n these experiments are more complicated than the Holstein–Primakoff magnons that we have introduced in this
eview [283–285].

.4.3. Quasi-equilibrium magnon Bose–Einstein condensation
Notwithstanding the above-mentioned example of equilibrium condensation, BEC is often a quasi-equilibrium phe-

omenon and requires thermalization to occur before particles or excitations decay away. Even BEC in cold-atom systems
n a trap is of this kind, as e.g., three-particle collisions will cause one atom to escape from the trap that holds the
toms, leaving one molecule behind. The most well-known type of experiments is on quasi-equilibrium magnon BEC
n YIG in which pairs of magnons are excited by parametric pumping [217]. This saturates the magnon gas and leads to
large occupation of the lowest magnon modes. Because the magnons are pumped at energies that are much smaller

han kBT , this situation does not involve the Bose–Einstein distribution function and has been dubbed Rayleigh–Jeans
ondensation [286]. This is different from other types of pumped condensates, such as exciton–polaritons [287] and
hotons [288], in which the pumping is at energies on the same order or larger than kBT . Other regimes of magnon
EC have been reached by heating with a current pulse and subsequent fast cooling, and involves all magnons at
hermal energies [289]. The so-called spin-caloritronic nano-oscillator [290], in which thermal magnons are injected into a
agnetic insulator via the spin Seebeck effect, may be interpreted as quasi-equilibrium magnon BEC [291]. Very recently,
agnon BEC by electric spin injection was reported [292]. Finally, we remark that in quasi-equilibrium magnon BEC the
ondensate is dynamic and leads to time-dependent magnetization dynamics, for example the nano-oscillator mentioned
bove. An equilibrium magnon BEC, on the other hand, corresponds to a static situation.

.4.4. Spin superfluidity
Magnon condensation may underlie spin superfluidity.2 In particular, the magnetization dynamics of the easy-plane

erromagnet, discussed above may — in the condensed phase — in the continuum limit be recast in terms of superfluid
ydrodynamic equations. That is, inserting the ansatz ⟨Ŝ⟩ = S(

√
nc/s cosϕ,

√
nc/s sinϕ, 1 − nc/s), with s = S/d3 the spin

density and d the lattice constant, into the LLG equation yields the equations

∂ϕ

∂t
= µ0geµBH − 2|Kz |S + 2|Kz |Snc/s,

∂nc

∂t
= −∇ · js, (90)

or nc ≪ s. Here we have neglected the Gilbert damping. The spin supercurrent js = nc∇ϕ is proportional to the
radient of the angle ϕ that plays the role of phase of the condensate. The influence of damping and anisotropies on
pin superfluidity have been discussed extensively by Sonin [294,295]. Recent research has focused on spin superfluidity
n devices in which heavy metallic leads serve as spin injectors and detectors [296] and the first experimental results
ave been reported [297–299].

.4.5. Strongly-correlated magnon states
In addition to the states relevant for BEC, magnons may enter more exotic quantum-many body states. The Hamiltonian

or the easy-plane magnetic insulator, for example, features a zero-temperature Mott-insulator-to-superfluid transi-
ion [300] for large enough |Kz | [95]. That is, for |Kz | ≫ J , the magnons are localized on each lattice site because of
he interactions and the system has a gap ∼ |Kz |. This state is approximated by

|ΨMI⟩ ∝

N∏
i=1

[(
â†
i

)Nf
]

|0⟩, (91)

here N is the number of lattice sites and Nf is the filling of the Mott insulator, i.e., the number of magnons that are
ocalized on-site, which is tuned by the external field. This state should be contrasted with the superfluid, i.e., BEC, phase

2 The connection between BEC and superfluid is a subtle issue. It is possible to have superfluid (BEC) without the presence of BEC (superfluid).
More detailed discussion can be found in Ref. [293].
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n which all particles are in the zero momentum state, and which occurs for J ≫ |Kz |. This state reads for the same
number of magnons

|ΨSF⟩ ∝

(
N∑
i=1

â†
i

)Nf

|0⟩. (92)

ther examples of quantum many-body states are that of pair condensation of magnons, i.e., states with ⟨â⟩ = 0 while
ââ⟩ ̸= 0. This situation corresponds to condensation of pairs or BCS-like state for magnons. Examples of the above states
ay be found in compounds studied within the field of quantum magnetism [301,302]. For example, the Mott insulator
entioned above is an example of a gapped quantum paramagnet. It should be noted, however, that in actual quantum
agnets the excitations are often more complicated than the HP magnons that we consider here.
This ends our review of the quantum states of magnons. In the next section, we introduce the developments concerning

oupling magnons to various quantum platforms, including photons, qubits, phonons, and electrons. Note that the
etection of the quantum states of magnons may also require the coupling of magnons with other quantum systems.
or example, by counting photons when they are coupled to magnons, one is able to deduce the statistics of magnon
istribution [198]. By detecting the photoluminescence spectrum of a NV center coupled to the magnetic system, the BEC
tate of magnons may be measured [303]. It would also be meaningful to study the influence of magnon–photon coupling
n the phase diagram of the quantum many-body states, which may resemble the situation of a bosonic atomic gas inside
cavity [304].

. Magnon + X

As information carriers, a great advantage of magnons is that there are various knobs to efficiently control their
eneration, propagation and detection. For example, magnons are generated by microwaves, spin–orbit torques [33–
7], thermal gradients [44–47], and mechanical strains [49], and can be detected by optical means [305], microwave
ntennas [306], heavy metals through inverse spin Hall effect [307] and even spin qubits [198]. When we integrate
magnonic system with other quantum systems (denoted as X) such as cavity photons, superconducting qubits, NV
enters and mechanical oscillators, it is desirable that the hybrid system benefits from the manipulation tools that have
een and are developed in magnon spintronics, which extend the horizon of the coupled quantum systems. At the same
ime, the introduction of X helps to study quantum states of magnons and push magnonics to the quantum regime. For
xample, the entanglement between magnons and qubits enables the detection of single-magnon states [198]. The hybrid
latforms have already generated multiparticle entanglement among magnons, photons and phonons for continuous
ariable quantum information and have found inspiring applications to design quantum transducers, quantum memories
nd high precision measurements. Following this line of mutual benefit between magnons and other quantum systems, we
hall review the recent developments concerning hybrid magnon–photon systems in Section 4.1, magnon–qubit systems
n Section 4.2, magnon–phonon systems in Section 4.3, and magnon–electron systems in Section 4.4. The field that focuses
n the magnon–photon interaction is also dubbed cavity magnonics or spin cavitronics.

.1. Hybrid magnon–photon system

.1.1. Overview
People’s interests in coupling magnets to microwaves can be traced back to the 1960s, where mode splitting from the

oupling of the magnetic mode and the microwave mode was observed in ferrimagnet-loaded cavity resonators [308–310].
ne popular theory to explain this coupling is coupled-mode theory [308]. This theory separates the magnetic fields into
superposition of a rotational and irrotational parts, and then expands the hybrid fields in terms of both electromagnetic
nd magnetostatic modes. This treatment leads to coupled equations for all mode amplitudes, whose solution yields the
oupled spectrum. The coupling strength of magnet and microwave is proportional to the overlap of the electromagnetic
ave with the magnetostatic mode inside the magnet as, −µ0

∫
V H·Md3r , where the integral is performed over the whole

agnetic body. This coupling phenomenon is purely classical, and is well described by classical electromagnetism.
After a half century of dormancy, this topic was revisited by Soykal et al. in 2010 [311]. The interaction of magnon

nd photon is rewritten in second-quantized form as Ĥint = gmc(â + â†)(ĉ + ĉ†), after performing a HP transformation
on the magnetization and quantizing cavity’s electromagnetic waves. In the rotating wave approximation, the coupling
takes the coherent form Hint = gmc(â†ĉ + âĉ†). It was found that the interaction between a YIG sphere and a microwave
cavity can reach the strong-coupling regime and that the spin-photon hybrid state has a long spin dephasing time of
roughly 14 s. In 2013, Huebl et al. [312] experimentally observed the strong coupling between the uniform magnon mode
in YIG and a superconducting coplanar microwave resonator, and found that the energy level splitting is larger than the
dissipation of the system. Since then, more experiments demonstrated such a coherent and strong coupling between
magnons and photons, using various types of cavities and probing techniques [313–319]. Such strong coupling was also
observed in antiferromagnetic systems [320–323]. In 2018, Vahram et al. [324] theoretically studied the interaction of
two electromagnetic waves with one magnet and found that the resulting spectrum displays energy level attraction by
tuning the relative phases of the two electromagnetic waves. Such an anomalous spectrum was observed in experiments
26
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y Harder et al. in a Fabri–Perot cavity [325], Bhoi et al. in an inverted pattern of split-ring resonator [326] and
oventer et al. in a reentrant cavity resonator [327]. For a consistent understanding of the energy level repulsion and
ttraction, Yu et al. [328] highlighted the role of traveling-wave modes with strong dissipation in the open cavity.
ere the traveling-wave modes couple to both standing-wave photon and magnons and produce an effective complex
oupling between magnons and photons. When the coupling is purely real (imaginary), the spectrum displays energy
evel repulsion (attraction). Yao et al. [329] also identified the role of the traveling-wave mode for the energy level
pectrum. The various coupled spectra at room temperature are still mostly classical, and are well described by classical
lectromagnetism [244,314,328,330–334]. This explains why the numerical solution of the coupled Maxwell and LLG
quations, for example, by COMSOL Multiphysics, is sufficient to recover the spectrum observed in the experiments [328].
he use of quantum model that results from quantizing the magnetic excitations and the cavity electromagnetic waves
rovides an alternative angle to understand the essential physics, but it is not enough to claim quantum aspects of the
hysics.
Here, we mention some recent reviews on cavity spintronics [335–337]. Li et al. [335] outline the potential of hybrid

agnetic systems for transformative applications in devices, circuits and information processing. Harder et al. [336]
ocused on the coherent and dissipative coupling characterized by level repulsion and attraction respectively. Rameshti
t al. [337] reviewed the coupling of magnons with photons at frequencies ranging from microwaves to optical regimes.
n particular, they present a semiclassical approach to model cavity spintronics and further briefly address the coupling
f magnons with superconducting qubits. Here, we shall follow the framework sketched in Fig. 1 to review the
ecent progress concerning quantum phenomena in the hybrid systems. In particular, we shall focus on the quantum
ntanglement between magnons and photons. The various energy spectra of the hybrid systems as already reviewed by
ameshti et al. [337] will not be covered in this section.

.1.2. Magnon–photon entanglement
Li et al. studied steady-state magnon–photon entanglement in a hybrid magnet-cavity system in 2018 [338]. Because

he methodology used in this work has wide applicability, we introduce the essential details here. The authors studied
he hybrid system shown in Fig. 11(a) that is described by the Hamiltonian

Ĥ = ωc ĉ†ĉ + ωr â†â +
ωb

2
(q̂2 + p̂2) + gmbâ†âq̂ + gmc(â + â†)(ĉ + ĉ†) + iΩ(â†e−iω0t − âeiω0t ), (93)

where ĉ (ĉ†) and â (â†) are respectively the annihilation (creation) operators for the cavity photons and magnons.
Furthermore, q̂ and p̂ are the position and momentum operators for the mechanical oscillations of the magnetic sphere
and gmb and gmc are the magnon-phonon and magnon–photon coupling strengths, respectively. Detailed justification of
the magnon-phonon coupling term in the Hamiltonian can be found in Ref. [339] and is briefly introduced when we
review the magnon-phonon interaction in Section 4.3. Typically, the phonon frequency corresponding to the mechanical
deformation of YIG is much smaller than the magnon frequency, i.e., ωb ≪ ωc,a, such that a strong driving Ω of the
magnon mode is required to induce a sizeable coupling between magnons and phonons. In the rotating frame at the
driving frequency ω0, the quantum Heisenberg–Langevin equations are written as

dĉ
dt

= −i(∆c − iκc)ĉ − igmc â +

√
2κc ĉ in, (94a)

dâ
dt

= −i(∆a − iκa)â − −igmc â − igmbâq̂ +

√
2κmâin, (94b)

dq̂
dt

= ωbp̂,
dp̂
dt

= −ωbq̂ − γbp̂ − gmbâ†â + ζ̂ , (94c)

where the detunings ∆c = ωc − ω0,∆a = ωa − ω0, κa, κm and γb are the dissipation coefficients of photon, magnon and
honon, respectively. c in, ain and ζ denote the respective Gaussian noises associated with these dissipation coefficients.

The noise has zero mean and nonzero second-order correlations given by

⟨ν̂ in(t)ν̂ in†(t ′)⟩ = (nν + 1)δ(t − t ′), ⟨ν̂ in†(t)ν̂ in(t ′)⟩ = nνδ(t − t ′), (95a)

⟨ζ̂ (t)ζ̂ (t ′) + ζ̂ (t ′)ζ̂ (t)⟩ = (2nb + 1)γbδ(t − t ′), (95b)

where ν̂ = ĉ, b̂, nc , nb, and na are respectively the Bose–Einstein distributions for the photons, phonons and magnons,
which depend on temperature.

Since the magnons are strongly driven and are strongly coupled to photons, i.e., |⟨â⟩| ≫ 1, |⟨ĉ⟩| ≫ 1, the magnon
and photon states can be expanded around their mean-field values Ô = ⟨Ô⟩ + δÔ (Ô = ĉ, â, q̂, p̂). The linearized
form of Eq. (94) that describes the evolution of the quadrature fluctuations is written as, dû/dt = A · û + n̂, where
û = (δX̂, δŶ , δx̂, δŷ, δq̂, δp̂)T , n̂ = (

√
2κc X̂ in,

√
2κc Ŷ in,

√
2κmx̂in,

√
2κmŷin, 0, ζ̂ )T is the vector of input noises, and A is

he drift matrix of the system. The quadrature operators are defined as δX̂ = (δĉ + δĉ†)/
√
2, δŶ = (δĉ − δĉ†)/

√
2i,

x̂ = (δâ + δâ†)/
√
2, δŷ = (δâ − δâ†)/

√
2i. The Gaussian nature of noise guarantees that the steady-state solution to this

set of linearized equations is a Gaussian state and thus is completely characterized by a 6 × 6 covariance matrix V, as
introduced in Section 2.2.2. The covariance matrix is derived by solving the Lyapunov equation AV + VA = −D, where
27
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Fig. 11. (a) Schematic of the hybrid magnet-cavity system. A YIG sphere is placed at the position with maximum cavity magnetic field and an extra
tatic magnetic field is applied to tune the magnon frequency. The bottom panel shows the frequencies and linewidth of magnon mode (â), cavity
ode (ĉ) and phonon mode (b̂). (b) Entanglement of magnon–photon Eac , (c) magnon-phonon Eab and (d) photon-phonon Ecb degrees of freedom
ersus detunings ∆c and ∆a . (e) Magnon–photon entanglement versus ∆c and Gmb/gmc .
ource: The figures are adapted from Ref. [338].

= diag{κc(2nc +1), κc(2nc +1), κm(2na+1), κm(2na+1), 0, γb(2nb+1)} is the diffusion matrix [340]. From the tripartite
ovariance matrix, one can trace one part and quantify the entanglement between the remaining two parts. In principle,
ne can also solve the master equation [109] of the system numerically to get the steady density matrix, based on which
e can also evaluate the covariance matrix by Vij = 1/2tr[ρ(uiuj + ujui)]. Using this approach, a proper truncation of the
ilbert space has to be taken to guarantee the convergence of the evolution.
Figs. 11(b-d) show the steady entanglement among magnons and photons using the experimentally feasible parame-

ers [339] while the temperature is taken 10 mK to suppress the decoherence of quantum states. There exists a parameter
egime (∆a ≈ ωb,∆c ≈ −ωb), where all the degrees of freedoms, i.e., magnon–photon, magnon–phonon and photon–
honon, are entangled. Here the nonlinear magnon–phonon interaction (Gmb = i

√
2gmb⟨m⟩) plays a key role to mediate

the indirect entanglement between magnons and photons. Without this interaction, the beam-splitter type of interaction
between magnons and photons does not generate any finite entanglement, as shown on the bottom of Fig. 11(e) (Gmb = 0).
Besides bipartite entanglement, a parameter regime of finite tripartite entanglement is also identified. In follow-up works,
the authors showed that two cavity photons can be prepared in a stationary entangled state if they are respectively
resonant with two mechanical side bands of the system [341]. Again, the nonlinearity caused by the magnetostrictive
interaction between magnons and phonons is crucial to maintain the robustness of this entangled state. The authors
also showed that magnons in a setup similar to Fig. 11(a) can be prepared in a squeezed state via the beam-splitter
interaction of magnons and photons, when the cavity is driven by a squeezed vacuum field [218]. Tan [342] identified
both bipartite and tripartite EPR steering in such a hybrid system and found that continuous measurement of the cavity
fields significantly enhances the bipartite steering.

Yuan et al. [201] found an alternative way to entangle magnons and photons without including nonlinear magnon-
phonon interactions in the Hamiltonian explicitly. They considered dissipative coupling between magnons and photons,
as already realized in several experiments [325–327]. This hybrid system is usually described by the non-Hermitian
Hamiltonian

Ĥ = ωr â†â + ωc ĉ†ĉ + g
(
ĉ†â + eiΦ ĉâ†) , (96)

here â (â†) and ĉ (ĉ†) are respectively, annihilation (creation) operators of magnons and photons. ωr is the magnon
requency, which can be tuned by external magnetic field, g is the effective coupling strength between magnons and
hotons, and Φ is a tunable phase factor due to backaction effects. Such an effective Hamiltonian (96) describes the
nergy level repulsion and attraction which are observed in experiments very well [325–327].
Fig. 12(a) shows a typical spectrum corresponding to energy level attraction with Φ = π . As the detuning between

the magnon frequency and the cavity frequency (∆ ≡ ωr − ωc) changes, the system evolves from a PT exact phase
with purely real eigenvalues to a PT broken phase with complex eigenvalues. In the transition between these two
phases, two exceptional points (EPs) located at ∆ = ±1 are identified. To study the dynamics of magnons and photons
in both PT exact and PT broken phases, one decouples the non-Hermitian Hamiltonian into a Hermitian component
ĤH ≡ (Ĥ + Ĥ†)/2) and an anti-Hermitian component (ĤA ≡ (Ĥ − Ĥ†)/2). Here the Hermitian part and anti-Hermitian
part characterize the unitary evolution, and gain/loss of the system, respectively. The master equation governing the
28
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Fig. 12. (a) Level attraction of a hybrid magnet-cavity described by Eq. (96) for Φ = π . The solid and dashed lines represent the real and imaginary
arts of the eigenvalues, respectively. (b) Evolution of the entanglement and the fidelity of the temporal state to the Bell state as a function of time.
c) Robustness of the steady Bell state against dissipation with different coupling strengths between magnons and photons (g). (d) Evolution of the
ntanglement for the coherent coupling between magnons and photons without (left) and with (right) dissipations. (e) Magnon–photon entanglement
s a function of the detuning between magnons and photons.
ource: The figures are adapted from Ref. [201].

volution of the joint density matrix of the system (ρ̂) may be written as [343–345]

∂ρ̂

∂t
= −i[ĤH , ρ̂] − i{ĤA, ρ̂} + 2itr(ρ̂ĤA)ρ̂, (97)

here the brackets [ ] and { } refer to commutator and anticommutator of two operators, respectively. The third nonlinear
erm on the right-hand side of Eq. (97) is added to preserve tr(ρ̂) = 1 and thus guarantees the stability of the system.
q. (97) preserves the total probability of the system (tr(ρ(t)) = 1). A more detailed discussion of this master equation
as been presented by Brody et al. [345]. Physically, the nonlinear effects in a magnonic system may come from the
agnon–magnon interactions caused by exchange and dipolar interactions, which will suppress the divergence of the
agnon density [346–349]. A similar approach was adopted in a single quantum system with PT symmetry [350].
By solving the quantum master Eq. (97), it is found that the hybrid system evolves to a steady state with entanglement

n 2, which is the maximum amount of entanglement of two qubits. To understand the structure of this steady state, the
uthors analytically derived the evolution of the density matrix and found that the eigenstate |φs⟩ = (|10⟩+ eiϕs |01⟩)/

√
2

f the Hamiltonian eventually dominates the steady state, with ϕs = arccos(∆). Note that the state |φs⟩ is a Bell state and
hat it has maximum entanglement EN (|φs⟩⟨φs|) = ln 2 as shown in Fig. 12(b). One can check the fidelity of the density
atrix with respect to the Bell state (F ≡ tr

√
⟨φs|ρ̂|φ1⟩) as a function of time, showing that it indeed approaches one

n the steady case. This clearly proves that the steady Bell state is generated in the hybrid system. Furthermore, such a
tate is robust against dissipation (κm) as long as κm < g , as shown in Fig. 12(c). Using the experimental parameters that
correspond to a millimeter-sized YIG sphere inside a Fabry–Perot cavity [325], the fidelity of the generated Bell state is
97.85%. For comparison, in the PT exact phase, the system keeps oscillating and no steady Bell states are generated, as
illustrated in Fig. 12(d). This result can also be viewed as Rabi oscillations and it applies to the original proposal put forth
in Ref. [311], where the real beam-splitter type interaction cannot generate a steady entanglement between magnons and
photons. A complete phase diagram of the system is found in Fig. 12(e). Xie et al. recently proposed a Bell test using the
hybrid magnet-cavity system [351].

4.1.3. Magnon-magnon entanglement
Besides magnon–photon entanglement, magnon–magnon entanglement is another interesting topic because of its

fundamental importance to understand macroscopic quantum phenomena and the classical-quantum transition in
magnetic systems, and their potential applications in continuous variable quantum information. Depending on whether
the two magnons are excited in the same or two separate magnets, the study of magnon–magnon entanglement is
progressing towards two directions. The first direction deals with the entanglement between magnons excited in two
29
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q

Fig. 13. (a) Schematic of two distant magnetic YIG spheres inside a cavity entangled through the cavity field. (b-c) Two-dimensional plots that
uantify magnon–magnon entanglement (b) and magnon–photon entanglement (c). Here G = 2vRe⟨âs⟩2 , F = 2vIm⟨âs⟩2 , v1 = v2 ≡ v, ⟨âs⟩ is the

steady-state magnon amplitude.
Source: The figures are adapted from Ref. [356].

distant magnetic systems through their simultaneous interaction with a third subsystem, for example, a cavity. Here we
will not cover the magnon–magnon coupling in hybrid nanostructures contain two magnetic layers, which can be well
understood in the classical regime [352–355]. The second direction concerns the entanglement of magnons in ferri/anti-
ferromagnets, where the two types of magnons are excited on the two sublattices of a magnet. The two directions are
similar in that parametric interactions (or squeezing interactions) between the magnons are essential to generate a finite
steady-state entanglement. As briefly discussed in Section 3.2, the ground state and magnon modes in an anisotropic
ferromagnet were demonstrated to be related to spin-flips in the magnet via single- and two-mode squeeze operators in
2016 [103,104]. Similar considerations in ferri- and antiferromagnets have been presented in 2017 [215]. However, while
commenting on the relation between squeezing and entanglement [104], the authors did not study the entanglement, a
task having received increasing attention in recent years as discussed further below.

Zhang et al. [356] studied the entanglement of two distant magnets in a hybrid magnet-cavity system as shown in
Fig. 13. Here the cavity field mediates the coupling of two well-separated magnets and the effective Hamiltonian of the
hybrid system is

Ĥ = ωc ĉ†ĉ +

2∑
j=1

[
ωjâ

†
j âj + gj(ĉâ

†
j + ĉ†âj) + vjâ

†
j âjâ

†
j âj
)

+ iΩ(ĉ†e−iωdt − ĉeiωd t), (98)

where â1 and â2 are the magnon operators on the first and second magnets, respectively, ĉ is the cavity photon mode, vj is
the nonlinearity coming from the magnetocrystalline anisotropy of the system, similar to nonlinearity that is featured in
the discussion in Section 3.1, and Ω is the driving strength. In the strong driving limit, one can expand the magnon and
photon operators around their mean-field values and derive the effective Hamiltonian for the magnonic and photonic
fluctuations, as introduced in Section 4.1.2. Then the covariance matrix (V6×6) is numerically obtained by solving the
linearized Langevin equation with Gaussian noise. The entanglement between magnons and photons as quantified by log-
negativity is calculated and shown in Fig. 13(b). Firstly, in the absence of Kerr nonlinearities (v1 = v2 = v ≡ 0,G = F = 0),
there is no entanglement among magnons and photons, because all the remaining interactions between magnons and
photons are of the beam-splitter type, which cannot generate any steady-state entanglement. With Kerr nonlinearities
(GF ̸= 0), the entanglement of magnons appears, because these interactions generate an effective parametric interaction
between magnons and thus create a squeezed state of the two distant magnons with finite entanglement. In addition, it is
identified that a finite entanglement emerges between magnons and photons as shown in Fig. 13(c), which is understood
in a similar manner.

Li et al. [357] considered a setup similar to the one depicted in Fig. 13(a), but focused on the nonlinearity coming
from the magnetostrictive interaction in the form â†

1â1q̂, where q̂ is the mechanical displacement of the first magnet. The
magnetostrictive interaction in the second magnet is not activated upon properly choosing its magnetization direction.
They showed that such a nonlinearity generates a finite entanglement between the two distant magnets, which is robust
against thermal fluctuation below 0.2 K. Furthermore, the magnon–magnon entanglement can be transferred to the
magnon–photon system through beam-splitter type of interactions between magnons and photons. Simon et al. [358]
considered an optical resonator loaded with two laser-cooled atomic ensembles and showed that the optical mode of
the resonator can help to generate magnon-number entanglement between the two ensembles. In particular, they first
generated a single-magnon state in ensemble A with certain probability and then transferred it to ensemble B with the
assistance of photons. At the same time, they suppressed the population of the photonic state using the technique of
adiabatic dark-state transfer, and thus a partial transfer of a single magnon between these two atomic ensembles is
realized. This results in a superposition in which the two atomic ensembles share one magnon. The photons, as described
by the authors, play the role of a bus to entangle the two atomic ensembles.
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Besides amplifying the nonlinearity in the magnetic system under strong driving to induce the entanglement of
agnons, Nair et al. [359] presented a scheme to entangle two macroscopic magnets in the absence of nonlinearities. They
roposed to place two YIG spheres in a single cavity and to drive the cavity using a quantum field with strong squeezing.
hey found that the squeezing property of the driving can be transferred to the cavity field [360] and thus mediates
ntanglement of two magnetic modes by producing an effective parametric interaction between them. In summary, the
ffective parametric interaction between two magnons is essential to generate steady-state entanglement of magnons,
hile the methods to generate such a parametric interaction differ between these proposals. Following a different chain of
rguments, Kamra et al. previously demonstrated that the dipolar interaction generates equilibrium squeezing of magnons
n a ferromagnetic film [103,104]. Similarly, if we look at two or more sublattice ferrimagnets and antiferromagnets, the
agnons excited on each sublattice are naturally exchange-coupled by a parametric interaction because of the antiparallel
lignment between the two sublattice magnetizations. It is thus expected that they will form squeezed states with strong
ntanglement. This idea is illustrated in detail as below.
Yuan et al. [229] and Kamra et al. [161] independently discussed the squeezing and entanglement properties of

he antiferromagnetic ground state. To illustrate these ideas, let us consider an anisotropic two-sublattice ferrimagnet,
escribed by the Hamiltonian

HFiM = J
∑
l,δ

Ŝl · Ŝl+δ −

∑
l

[
Ka

(
Ŝzl
)2

+ Kb

(
Ŝzl+δ

)2]
− µ0geµB

∑
l

H · Ŝl, (99)

here J > 0 and Ka,b > 0 denotes the antiferromagnetic exchange coupling between the two sublattices and anisotropy
oefficients, respectively, and H = Hez is an external magnetic field acting on the magnetization, which is assumed to be
along the z-axis. Following the standard quantization procedures using the HP transformation around the classical ground
state Sl = Saez and Sl+δ = −Sbez , the effective Hamiltonian of the magnon excitations is written as

Ĥ = ωaâ
†
1â1 + ωbâ

†
2â2 + gab(â

†
1â

†
2 + â1â2), (100)

where â1 and â2 are the magnon operators on the two sublattices of an antiferromagnet, ωa = Hex,b+Han,a+µ0geµBH, ωb =

Hex,a + Han,b − µ0geµBH , Hex,µ = 2ZJSµ, Han,µ = 2KµSµ (µ = a, b), Sµ is the magnitude of spin vector, Z is the
coordination number, and gab =

√
Hex,aHex,b is the coupling strength of magnon modes on the two sublattices. The

parametric interaction between the two types of magnons is understood as follows. The antiferromagnetic interaction
between the two sublattices tends to align the spins antiparallel to each other, for example, in the +ez and −ez directions.
he motion of S1 (S2) towards the +ez (−ez) direction will each annihilate one magnon, i.e., â1â2. The inverse process
ill each generate one magnon on the two sublattices, i.e., â†

1â
†
2.

By solving the Heisenberg–Langevin equation for this Hamiltonian (100) in the antiferromagnetic limit (Sa = Sb ≡

S, Ka = Kb ≡ K ), the covariance matrix of the system is found to be

V =

(
A C
CT B

)
=

⎛⎜⎝ Λa 0 Λc Λd
0 Λa Λd −Λc
Λc Λd Λb 0
Λd −Λc 0 Λb

⎞⎟⎠ , (101)

with

Λa = Λb =
1
2

(
1 +

g2
ab

(Hex + Han)2 − g2
ab + γ 2

m

)
,

Λc = −
1
2

gab(Hex + Han)
(Hex + Han)2 − g2

ab + γ 2
m
,Λd = −

1
2

gabγm
(Hex + Han)2 − g2

ab + γ 2
m
,

here γm is the dissipation coefficient of each sublattice. Then the entanglement of the sublattice magnons is quantified
s

EN = − log(2η−) = ln

(
1 +

gab√
(Hex + Han)2 + γ 2

m

)
. (102)

his result suggests that the magnons excited on the two sublattices are always entangled, and the amount of entangle-
ent approaches the value ln 2 since gab ∼ Hex ≫ Han, γm in a typical crystalline antiferromagnet. In a van der Waals
agnet, the anisotropy field can be comparable to and even larger than the exchange field [361], hence the amount of
ntanglement between sublattice magnons will be reduced. Kamra et al. [161] quantified the entanglement of spatially
niform magnon modes by the entanglement entropy a system described by Eq. (99) and found it increases monotonically
ith the squeezing parameter. Hartmann et al. [162] calculated the ground-state entanglement entropy by including the
ontribution from magnons with finite wavevectors by partitioning the antiferromagnet into two sublattices as shown in
ig. 14(a) and found it scales with the system size in the thermodynamic limit as

SEE = Nυ
(1 + 2υ−1K/J)υ/2
−υ/2−1 υ/2 I

(
υ,

K
)
, (103)
2 π Γ (υ/2) J
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Fig. 14. (a) An antiferromagnetic system is divided into two sublattices by alternating sites (red and blue) to characterize the intersublattice
entanglement (top). The system is partitioned through the middle for the central cut entanglement (bottom). (b) A schematic of magnet-cavity
system to measure the entanglement of the magnon modes. The EPR function ∆0 quantifies the entanglement of magnons in the ground state
and it can be inversely deduced by measuring the transition frequency between acoustic magnons and photons (fk) in the cavity. λk is the scaled
wavenumber.
Source: The figures are adapted from Refs. [162,232].

where υ is the dimension of the system and I is a special integral function. With this special partition [Fig. 14(a), upper
panel], the area law becomes a volume law while the density of entanglement entropy becomes an intensive property.
The entanglement density is evaluated to be a universal dimensionality-dependent constant when K ≪ J . This result
was further corroborated by the density matrix renormalization group (DMRG) calculations for a one dimensional spin
chain. Wuhrer et al. [233] derived the full statistics of the sublattice magnon number with wave number k in the ground
state. They showed that magnons with opposite wave vectors are always created in pairs and their entanglement, as
quantified by the DGCZ inequality [166], decreases at the corners of Brillouin zone. Mousolou et al. [232] identified the
relation between bipartite magnon entanglement and the EPR function and proposed a measurement setup based on the
interaction of light and antiferromagnets, as shown in Fig. 14(b). Here the strength of magnon entanglement is quantified
by the EPR function ∆0 and it depends sensitively on the magnon–photon transition frequency fk in the cavity, which can
e measured directly. It has also been shown that the Dzyaloshinskii–Moriya (DM) interaction enhances the entanglement
or all k modes [362].

In reality, one may wish to manipulate the entanglement. Zou et al. [160] demonstrated that the entanglement of spins
an be controlled by external fields. This is not easily done in a crystalline antiferromagnet as the entanglement between
agnons does not depend on the external field as shown by Eq. (102). To overcome this challenge, Yuan et al. [229]
onsidered placing the antiferromagnet in a cavity and found that a circular-polarized cavity photon could be coupled to
he magnon state as

Ĥ = ωaâ
†
1â1 + ωbâ

†
2â2 + gab(â

†
1â

†
2 + â1â2) + ωc ĉ†ĉ + gac

(
â†
1c

†
+ â1c

)
+ gbc

(
â†
2ĉ + â2ĉ†

)
. (104)

Here only when the magnetization m2 is pointing along the −ez direction does the system absorb the photon’s angular
momentum h̄ to excite one magnon, resulting in a beam-splitter type interaction â†

2ĉ + â2ĉ†. The interaction of photons
with m1 does not conserve the total angular momentum, and is of the parametric-type â†

1ĉ
†

+ â1ĉ. Following similar
procedures as above, the magnon–magnon entanglement is quantified by log-negativity and its dependence on external
field is shown in Fig. 15(a). Clearly, the entanglement of magnons is enhanced by photons and it is maximal at a particular
field, at which the photons and acoustic magnons (lower magnon branch) reach resonance as shown in Fig. 15(b). To
understand the enhancement of this magnon–magnon entanglement, the authors rewrote the effective Hamiltonian in
the dressed basis α̂ = cosh θ â1 − sinh θ â†

2, β̂ = − sinh θ â†
1 + cosh θ â2, where tanh 2θ = −2gab/(ωa + ωb)

Ĥ = ωαα̂
†α̂ + ωβ β̂

†β̂ + ωc ĉ†ĉ + gαc(α̂†ĉ†
+ α̂ĉ) + gβc(β̂ ĉ†

+ β̂†ĉ), (105)

where α̂ and β̂ are respectively the optical and acoustic modes of the magnons. The beam-splitter type of coupling
between acoustic magnons and photons (gβc) will cool the magnons towards their ground state. Note that the ground state
is a two-mode squeezed state |θ⟩ = Ŝ(θ )|0a1 , 0a2⟩ [161] with entanglement EN = 2|θ | ≈ arctanh(1 + Han/Hex)−1

≈ 2.41,
which is larger than the steady-state entanglement ln 2 in the absence of light. Therefore, this cooling mechanism will
enhance the entanglement of two magnons. On the other hand, the optical mode α is a dark mode which is non-resonant
with the photons, hence its role in the cooling process is negligible. The change of magnon and photon population near
the resonant field is shown in Fig. 15(c), which confirms this argument. By extending this result to a two-sublattice
ferrimagnet, Zheng et al. [363] found that EPR steering of the two types of magnons is asymmetric, even when they have
identical dissipation. The essential physics is understood to be due to the unbalanced population of acoustic and optical
magnons under the cooling effect of cavity photons. Alternatively, Sharma et al. studied the cooling of a magnetic sphere
by a monochromatic laser source and found that the magnon distribution in the steady state is controlled by the light
intensity through inelastic magnon–photon scattering [364].
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Fig. 15. (a) Entanglement of magnons in a two-sublattice antiferromagnet as a function of external field. (b) Energy spectrum of the two-sublattice
antiferromagnet coupled to cavity photons. The acoustic mode ωβ is hybridized with the photon mode ωc with an anticrossing structure near
resonance, while the optical mode ωα is left unchanged. (c) Magnon and photon population as a function of external field. (d) Schematic of a bilayer
van der Waals magnet. An in-plane field is applied to tilt the magnetization. (e) Entanglement (red line) and squeezing (green line) of magnons
in the ground state of magnons as a function of external field. (f) Physical picture of the non-monotonic field dependence of the magnon–magnon
entanglement.
Source: The figures are adapted from Refs. [229,230].

An alternative way to tune the entanglement of magnons is to utilize the van der Waals magnets [230]. Van der
Waals magnets are a class of magnetic materials with only one to a few magnetic monolayers, and the neighboring
layers are coupled through van der Waals interactions [365–368]. Depending on the stacking order of layers and the
external electric field, the interlayer coupling can be either ferromagnetic or antiferromagnetic [369]. Compared with
bulk crystalline magnets, van der Waals magnets have the advantage of tunable exchange and anisotropy fields by gate
voltage, where the exchange and anisotropy can be comparable in strength such that the magnetic ground state can be
altered by either electric or magnetic fields. For a canted magnetic state induced by an in-plane magnetic field, as shown
in Fig. 15(d), the effective magnon excitation is described by the following Hamiltonian [230]

Ĥ =

2∑
i=1

[
ω0â

†
i âi +

1
2
g(â†

i â
†
i + âiâi)

]
+ gc(â

†
1â2 + â1â

†
2) + gp(â

†
1â

†
2 + â1â2), (106)

where ω0 = (J + K )S cos 2θ + KS cos2 θ + µ0geµBH sin θ, g = KS sin2 θ, gp = JS cos2 θ, and gc = JS sin2 θ , with J and K
being the interlayer exchange and anisotropy coefficients, respectively. As the external magnetic field increases above a
critical value Hcm = 2(J + K )S/(µ0geµB), the system reorients magnetically from a canted state (θ < π/2) to a collinear
state (θ = π/2).

Now, both the two-mode squeezing (gp) and single mode squeezing (g) interactions will contribute to the quantum
correlations between the two magnons, and generate an anomalous field-dependence of the magnon–magnon entan-
glement. Even when the squeezing of the magnons decreases gradually (green solid line) when the field approaches the
magnetic reorientation field, the magnon–magnon entanglement does not change monotonically (red solid line), as shown
in Fig. 15(e). The essential physics is understood from the schematics of the energy levels as shown in Fig. 15(f). The key
influencer on the magnon–magnon entanglement is the occupation of the state |11⟩, because it determines the difficulty to
separate the joint wave function into a cross product of the wave function of each sublattice magnon. Here the two-mode
squeezing gp contributes positively to the occupation of |11⟩, while the combined effect of coherent processes gc and
single mode squeezing reduces the occupation of this energy level. Then these two channels will interfere to result in a
local minimum of magnon–magnon entanglement before the transition field. This competition between the two channels
is still there when the dissipation of magnons is taken into account. A sudden death of entanglement was observed upon
33
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uning the exchange and anisotropy field by a gate voltage. On the application side, this tunable entanglement channel
by both electric and magnetic means — may serve as a bridge to entangle distant qubits, placed on the top and bottom

ides of the bilayer system.

.1.4. Bistability
Several works reviewed above have shown that the hybrid magnet-cavity system provides a promising platform to

tudy the entanglement among magnons, photons and phonons. Nonlinear effects usually play a crucial role to generate
on-vanishing steady-state entanglement. On the other hand, nonlinearities often cause dynamic systems to have two,
hree or even more stable solutions under exactly the same conditions. This is called bistability, tristability or, more
enerally, multi-stability. Which state the system evolves to depends on the initial conditions and past dynamics. Note that
istability itself is not a quantum phenomenon exclusively and exists in various physical systems, including optical [370],
coustic [371,372], electronic [373,374], and magnetic systems [375]. Manipulation of bistable states may find promising
pplications in data storage and memory devices [376–379]. Here we review the developments of this direction in hybrid
agnet-cavity systems.
Wang et al. [380,381] studied the influence of Kerr nonlinearities on the stability of magnon–polaritons in cavity–

agnet systems as shown in Fig. 16(a). To demonstrate nonlinear effects, a microwave with frequency ωd (Port 3) is
pplied to the magnetic sphere to drive the magnon mode, while an external static field was tuned to let magnons get
nto resonance with photons (Position A in the lower branch of the anticrossing spectrum). Fig. 16(b) first shows the
requency shift of the lower energy branch∆LP as a function of the driving power Pd at different driving frequency detuning
δLP = ωLP −ωd). Clearly, a hysteretic behavior of the frequency shift is identified in both forward and backward scanning
f the driving frequency. This suggests bistability of the magnon polariton. Moreover, when the frequency detuning is
canned at a given driving power, a hysteresis loop is also observed, where the loop area decreases when reducing the
riving power Pd.
To understand the essential physics, the authors considered the Hamiltonian of the hybrid system as [190]

Ĥ = ωc ĉ†ĉ + ωr â†â + v(â†â)2 + g(ĉ†â + ĉâ†) +Ωd(ĉ†e−iωdt + ĉeiωdt ), (107)

here â and ĉ are the magnon and photon operators, respectively, v is the Kerr nonlinearity caused by magnetocrystalline
nisotropy of the system, so that v is inversely proportional to the volume of the magnet, which is consistent with the
odel we discussed in the context of magnon antibunching (Section 3.1). Ωd is the driving strength. Following a quantum
angevin approach, the authors derived a cubic equation for the frequency shift of the magnon–polariton∆LP in the steady
tate as[

(∆LP + δLP)2 +

(γLP
2

)2]
∆LP − ϱPd = 0, (108)

where γLP is the damping rate of the lower energy branch of the polariton and ϱ is a fitting parameter that characterizes the
coupling strength between the driving microwave and the polariton. Eq. (108) has two stable solutions, which correspond
to the bistability of the system. The prediction of the frequency shift ∆LP fits well with the experimental observations,
as shown by the red dashed lines in Fig. 16(b). Furthermore, the authors demonstrated the appearance of bistability
for off-resonant conditions [Points B and C in the energy spectrum Fig. 16(a)]. A follow-up work by Hyde et al. [382]
studied the bistability of the magnon–polariton by driving the cavity mode instead of the magnon mode with a high-power
microwave, as shown in Fig. 16(c). They identified several types of bistability including (counter-)clockwise, (reversed)
butterflylike, and clockwise hysteresis loops, as shown in Fig. 16(d), which depend on the driving frequency as well as
the magnon frequency. Tuning the bistable behavior by external field and driving power may have potential applications
in designing low-energy switching devices. In a recent follow-up work [379], the authors experimentally observed the
tristability in a three-mode hybrid magnet-cavity system, which is composed of two YIG spheres strongly coupled to a
microwave cavity. The three separable stable states can be used to build a logic gate with zero, moderate and high driving
powers.

Recently, Bi et al. [383] further considered the nonlinearity of photons and found that their interplay with the magnon
density saturation under strong driving induces tristability of the magnon polariton. Nair et al. [384] proposed to place
two YIG spheres into a single cavity and to drive one of them to study the spin excitation of the other undriven sphere.
They found that the spin excitation in the driven sphere can migrate to the undriven one. The indirect coupling channel
is engendered by the cavity photons and shows multistable behaviors. They [385] also found that the threshold power
to induce the bistability can be reduced by a factor of 5, when both the magnon and photon modes are connected to a
common thermal bath and dissipation effects dominate the coherent coupling. Yang et al. [386] evaluated the magnon–
photon entanglement in the nonlinear regime of this hybrid system and found that the entanglement can jump from one
state to the other near the switching points of the bistable regime.

4.2. Hybrid magnet–qubit system

A qubit is a two-state quantum-mechanical system and it is the basic information carrier in quantum information
science and technology. Various types of qubits have been implemented to realize quantum information tasks, including
34
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Fig. 16. (a) Schematic diagram of a 3D cavity with a YIG sphere embedded and the energy spectrum of the hybrid system. Ports 1 and 2 of the 3D
avity are used for transmission spectroscopy and port 3 is for driving the magnetic sphere. (b) The detuning ∆LP as a function of driving power
d (left) and as a function of frequency detuning δLP . The red dashed lines are the theoretical prediction based on Eq. (108). Here the [100] axis of
IG is aligned parallel to the static field and the cavity mode TE102 is in resonance with magnons. (c) Schematic diagram of a follow-up experiment
ith driving on the cavity modes. (d) Phase diagram of the hysteresis loops, where the gray color indicates the different types of the bistability
foldover). Hr is the resonance field and ωc is the cavity frequency.
ource: The figures are adapted from Refs. [380,382].

uperconducting qubits [114,115], photonic qubits [116,117], atoms [121], trapped ions [123], NV centers [118], SV
enters [119,120], and anyons [124], among others. Magnons have been successfully integrated with the superconducting
ubit and NV center either by direct dipolar coupling or mediated by cavity photons. On the one hand, qubit systems are
ble to help to detect and image magnetic textures through magnetorelaxometry, where the spins are coupled with the
ubit by dipolar interactions. Moreover, the qubits are capable of detecting the magnonic quantum state in both collinear
nd noncollinear magnetic structures, since it is very sensitive to magnetic noise. On the other hand, magnons are able to
ontrol the qubit state via dipolar interaction and further mediate the entanglement of two or more distant qubits. This
akes advantage of the long lifetime of magnons in magnetic insulators and the high tunability of magnonic systems by
lectric and magnetic means. In this section, we will discuss these two sides and review the recent developments.

.2.1. Magnon-superconducting qubit inside one cavity
Tabuchi et al. first experimentally demonstrated a hybrid magnet–qubit–cavity system that consists of a ferromagnetic

nsulator (YIG sphere) and a superconducting qubit, as shown in Fig. 17(a) [387]. The state of the qubit is well described
y a two-level system while the magnon excitations in the magnet form a continuous variable system. Here the magnon
nd qubit are magnetically and electrically coupled to the cavity photons (TE102 mode), and hence there is an indirect

coupling between magnons and photons by exchange of a virtual photon. This leads to an interaction of the form
Ĥint = gmqσ̂

+â + g∗
mqσ̂−â†, where σ̂± describes the qubit state, gmq = gmgq/∆ is the effective magnon-qubit coupling

strength, with gq and gm respectively the coupling strength of cavity photons to qubit and magnons, and ∆ is the detuning
between the qubit (magnon) and cavity mode. To demonstrate the magnon-qubit coupling, the authors read the qubit
35



H.Y. Yuan, Y. Cao, A. Kamra et al. Physics Reports 965 (2022) 1–74

b
m
m
S

s

l
a
q
i
g
t

r
w

Fig. 17. (a) Schematic of a hybrid magnet–qubit–cavity system. (b) Rabi splitting due to the indirect coupling between magnons and qubits mediated
y cavity photons. (c) Energy level distribution of the hybrid system to explain the off-resonant manipulation of the coupling strength between
agnons and qubits. (d) Procedure for single-magnon detection using superconducting qubits. (e) Detection probability of magnons as a function of
agnon population.
ource: The figures are adapted from Refs. [198,387].

tate by another cavity mode (TE103 mode) and found that the transmission spectrum takes the typical form of energy
level repulsion as shown in Fig. 17(b), which is a manifestation of the coherent coupling between magnon and qubit. The
effective coupling strength gmq/2π = 10 MHz is consistent with the theoretical estimate of 11.8 MHz, and it is much
arger than the dissipation of either magnons or qubits, such that the coupling falls into the strong coupling regime. The
uthors further showed that parametric driving applied to the qubit effectively tunes the coupling strength between the
ubit and magnons. Now, the hybrid system oscillates between the ground state |g, 0⟩ and excited state |e, 1⟩ as shown
n Fig. 17(c), where |g⟩, |e⟩ are the qubit ground and excited states and |n⟩ are the magnonic Fock states. The effective
ap between these two states is manipulated by the driving power as well as by the detuning between the driving and
he average of the magnon and qubit frequency.

Based on the strong coupling of magnon and qubit, Lachance-Quirion et al. tuned the system into a strongly dispersive
egime, where the detuning between the qubit and magnon is much larger than their coupling, i.e., |ωq − ωm| ≫ gmq,
hich produces an effective nonlinear interaction between magnons and photons in the form of Ĥint = χqmâ†âσ̂z [198,388,

389]. This implies that the excitation probability of the qubit sensitively depends on the number of excited magnons. The
higher the number of magnons, the larger the frequency shift of the qubit frequency. Therefore, the number of magnons
can be deduced by measuring the shift of the qubit frequency. On the other hand, by measuring the probability of the
qubit to be in the excited states, one determines the excitation probability of the magnons. Fig. 17(d) shows the procedure
for single-magnon detection. First, a coherent state of magnons was prepared. Second, a conditional excitation X0

π pulse
is applied on the qubit system to entangle the qubit and magnons. Finally, the qubit state is read out by using a high-
power technique [390]. Fig. 17(e) shows the detection probability of magnons as a function of magnon number, where
the detection probability is given by pg (nm) = η̄(1 − e−nm ) + pg (0), with η̄ and pg (0) being respectively the quantum
efficiency and the dark-count probability, which can be obtained by fitting the experimental data. When the magnet is in
the vacuum state, the probability of the detector click is pg (0). When the magnonic system is in the first excited state |1⟩,
the detector clicks with a probability η̄+p (0). Then one can readily detect single-magnon state by counting and analyzing
g
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he detector clicks. To guarantee the efficiency of detection, the measuring time has to be lower than the decoherence
ime of qubit, which is around 200 ns. This proof-of-concept experiment establishes the qubit state as single-magnon
etector, which has promising applications to detect weak magnon excitation with high precision. The highest fidelity of
ingle-magnon detection realized in this experiment corresponds to a precession of the magnetization with an angle of
0−17 degree in a millimeter-sized YIG sphere.
Following these experimental works, Liu et al. [391] studied the steady-state behavior of the hybrid magnet–qubit–

avity system and found that the dispersive coupling between magnons and qubits induces bistability of the system. Wu
t al. [392] considered a model with the superconducting qubit replaced by a three-level fluxonium qubit and found that
oth single and multi-magnon blockade is achieved and interchanged by properly choosing the parameters. Luo et al. [393]
howed that nonlocal entanglement between two remote magnet–qubit–cavity systems can be realized. Janssønn et al.
heoretically demonstrated the propagation of superconducting signatures to a distant ferromagnet mediated by their
utual coupling to a cavity electromagnetic mode [394].

.2.2. Manipulating one or more qubits by magnons
Trifunovic et al. [395] first proposed to couple two spin qubits separated by a relatively larger distance (several µm)

hrough magnonic excitations in a ferromagnet with a magnon gap. Here the two qubits are coupled to the ferromagnet
hrough dipolar interactions, hence the qubit has to be placed close to the magnets, i.e., on the order of several tens
f nanometers, to guarantee the coupling strength is sufficiently strong. The on-and-off switching of the qubit–qubit
nteraction is achieved by tuning the qubits on and off resonance with the ferromagnets. The decoherence time of the
ubit T2 depends sensitively on kBT/∆F , where ∆F is the magnon gap. Hence it is desirable to choose materials with a
mall magnon gap and to perform the operations at low temperature. Neuman et al. [396] considered a nanomagnet to
ediate the long-range coupling of two qubits as shown in Fig. 18(a). Here each qubit is coupled to the magnon mode

nside the nanomagnet and their detunings relative to the magnon frequency are brought out of resonance to enhance
heir mutual coupling via the transfer of a virtual magnon. They found population exchange between the two qubits,
hich clearly demonstrates the indirect coupling of the two qubits. The effective coupling strength is three to four orders
f magnitude larger than the direct coupling strength.
The generation of quantum entangled states of two or more qubits via magnons was recently theoretically proposed.

kogvoll et al. [216] theoretically showed that three qubits simultaneously coupled to a squeezed magnon mode can jointly
bsorb the latter and robustly generate a 3-qubit Greenberger–Horne–Zeilinger (GHZ) state [397]. Here the squeezed
agnon state is a superposition of odd magnon-number excitations only [Eq. (65)]. Taking the case of three qubits as an
xample, this feature enables the system to transition from 1 squeezed magnon and 3 ground-state qubits |1, ggg⟩ to 0

squeezed magnons and 3 excited qubits |0, eee⟩ via a set of virtual states, as shown in Fig. 18(b). The generated GHZ and
related states may be useful for implementing Shor’s algorithm [398] for quantum error correction. Ramos et al. [399]
designed a chiral quantum network, where the interactions between spins are mediated by magnon excitations in a 1D
XX spin chain. Fukami et al. [400] theoretically showed that two qubits that are separated by 1 − 2 µm can become
ntangled due to exchange of magnons in a ferromagnetic YIG bar. The estimated cooperativity exceeds 104 under on-

resonance conditions and the ratio of the effective qubit–qubit interaction to the decoherence rate of the qubit is around
103 away from resonance, which may be useful to implement entangling gate protocols. Zou et al. [401] showed that the
two qubits can be entangled via dissipative coupling to a magnetic medium, in the absence of any coherent coupling.
A proper measurement and post-selection can produce the maximally entangled Bell states of the two qubits. Xiong
et al. [402] showed how distant quantum information tasks including two-qubit iSWAP gates and charger-battery devices
can be potentially realized in such a hybrid system.

Besides using magnonic excitation of a collinear magnetic structure as illustrated above, Flebus et al. [252] theoretically
showed that an antiferromagnetic domain wall is able to mediate a tunable coherent coupling between two qubits
separated by around a micrometer as shown in Fig. 18(c). Here the planar rotation of the staggered order parameter,
i.e., the spin superfluid mode, is excited and simultaneously coupled two qubits placed above the domain wall. We note
that the experimental demonstration of qubit–qubit coupling through magnon modes is still lacking. Nevertheless, current
studies have already enabled the coupling between a single qubit and a magnon [403–406] as briefly described below.

Andrich et al. [403] developed a hybrid YIG-nanodiamond (ND) system as shown in Fig. 19(a). Here each ND contains
hundreds of NV centers, which can be viewed as a qubit bus at room temperature. They showed that the surface SW
mode, which is excited using a micro-strip line in the YIG film, strongly interacts with the NV center ensembles in NDs.
Specifically, the authors detected the photoluminescence spectrum change of the NV center by a nano-particle, located
40 µm away from the antenna. The results at driving power of 40 µW are shown in Fig. 19(b). At such low power, the
ntenna’s microwave field is negligible at the ND’s location. Then, the observed discrete modes of the NV centers are likely
o come from the coherent coupling between the propagation of SWs and NV centers. To strengthen this conclusion, the
uthors measured the Rabi oscillation signal of the NV centers as shown in Fig. 19(c). Here, the larger the driving power,
he larger the SW amplitude, and thus the faster the Rabi oscillation. Quantitatively, the frequency oscillation scales with
he square root of the driving power. Finally, the authors studied the enhancement of coherent microwave fields by
omparing the Rabi frequencies in the low-field regime (antenna microwave dominates, no significant coupling between
W and NV) and high-field regime (SW dominates the coupling with NV centers), and found that the magnetic field can
e enhanced by two orders of magnitude as shown in Fig. 19(d). Similar SW mediated excitation of NV centers was also
eported by An et al. [404].
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Fig. 18. (a) (Top) Schematic of two qubits coupled by a magnon mode in a nanometer-sized magnetic sphere. (Bottom left) The population of
the two qubits as a function of time. (Bottom right) Effective coupling strength of two qubits mediated by magnons as a function of the distance
between the two qubits and its comparison with the direct coupling in the absence of magnets. (b) Schematic of the squeezed magnon with only
odd number occupation and the transition |1, ggg⟩ to |0, eee⟩ mediated by a set of virtual states. (c) Schematic of the coupling of two qubits via the
magnon mode in an antiferromagnetic insulator. Here QI is the abbreviation of quantum impurity.
Source: The figures are adapted from Refs. [216,252,396].

Fig. 19. (a) Schematic of the hybrid magnet-NV center system. Surface spin-waves are excited from the microstrip lines and propagate toward the
nanodiamonds. Each nanodiamond contains hundreds of NV centers. (b) Optically detected magnetic resonance spectra as a function of the external
magnetic field and driving frequency at microwave power 40 µW. (c) Spin-wave mediated Rabi oscillations of NV centers at a fixed field 120 G. (d)
Microwave magnetic field enhancement as a function of the nanodiamond’s distance from the antenna.
Source: The figures are adapted from Ref. [403].

Wolf et al. [405] experimentally showed that the magnetic fields produced by an oscillating magnetic vortex core can
coherently manipulate the Rabi oscillation of NV centers placed above the magnetic film at a distance of a few nanometers.
Here, the vortex core is moved and repositioned on a time scale of 100 ns, which is the same scale as the coherence
time of the NV centers and thus allows a coherent operation of the qubits. Using similar principles, Yuan et al. [407]
theoretically showed that an electric field can drive the breathing motion of magnetic skyrmions by periodically changing
the anisotropy of the system. The breathing skyrmions generate oscillating dipolar fields outside the magnetic film that
can manipulate an NV center located a few nanometers above the magnetic film.

4.2.3. Detecting magnetism by single-spin qubits
Besides manipulating the state of spin qubits by magnons excited in a ferromagnetic system, spin qubits in quantum

impurities, including NV centers and SV centers, can serve as a sensor to image magnetic textures, such as magnetic vor-
tices [408], domain walls [409,410], skyrmions [411], and noncollinear antiferromagnets [412]. Furthermore, spin qubits
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Fig. 20. (a) (Top) Schematic of the single-spin magnetometry technique for imaging magnetism in van der Waals magnets CrI3 with even and
dd number of stacking layers. Strong and weak stray fields in the magnetic stray-field map emerge from trilayer and bilayer flakes, respectively.
Bottom) The corresponding magnetization distribution is recovered by the reverse propagation method. (b) Magnetic domain evolution of a CrBr3
ilayer upon increasing the magnetic field. The solid and dashed yellow circles represent two pinning sites.
ource: The figures are adapted from Refs. [418,419].

an detect magnonic excitations above these magnetic textures [413] and the spin chemical potential of magnons [414].
p to now, most of these efforts involve NV centers and a systematic review was presented in the early 2018 by Casola
t al. [415], while SC centers draw little attention [416]. In the last few years, this field has been continuing to develop,
eaturing the detection of magnetic states in 2D van der Waals magnets and the study of SWs and spin current transport
ia spin qubit relaxometry. We will focus on the most recent developments of this field.
Ever since the discovery of ferromagnetic order in 2D materials CrI3 and Cr2Ge2Te6 [365,366], 2D magnetism has gained

ignificant research interest and the characterization of the magnetization in these 2D materials is an important issue.
ompared to the traditional techniques to characterize 2D magnetism, including Kerr microscopy and magnetic circular
ichroism, a sensor based on a quantum impurity has a high spatial resolution of a few tens of nanometers, which enables
n accurate measurement of the magnetic-moment distribution [417]. Thiel et al. [418] imaged the magnetic moments of
he van der Waals magnet CrI3 by sensing the magnetic stray fields generated by the 2D magnet, as shown in Fig. 20(a).
sing reverse-propagation protocols, the magnetic-moment distribution in the van der Waals magnet is recovered from
ts stray field distribution. The authors found that the total magnetization of an odd number of layers is 16 µB/nm2,
while the magnetization of an even number of layers is nearly zero. These findings corroborated the antiferromagnetic
nature of the interlayer coupling in layered CrI3. Sun et al. [419] improved the magnetic field sensitivity by using a pulsed
measurement scheme and successfully imaged the domain reversal in few layer CrI3 samples, as shown in Fig. 20(b).
A wide field NV-microscope with lower resolution (∼ 500 nm) was used to detect magnetization reversal by external
magnetic field [420]. Such techniques can track the domain structure of individual flakes, while it sacrifices the spatial
resolution.

In addition to the sensitivity of spin qubits to static magnetic fields, the relaxation process of the qubit is influenced
considerably by magnetic noise of the environment. By measuring the relaxation rate of the qubit, one is able to gain
information on the dynamic excitation of magnetic textures which induce magnetic noise nearby. The magnetic noise
generated by the magnetic system with a magnon gap lower than the resonance frequency of the qubit was addressed
in Refs. [409,414,415]. To address the applicability of the technique to a wider class of ferromagnets with large magnon
gap caused by strong anisotropy or external field, Flebus et al. [303,421] theoretically generalized this method to the
detection of magnetic noise using a qubit with subgap frequencies. In particular, as shown in Fig. 21(a), the two-magnon
process contributes to the qubit relaxation rate, which is different from the one-magnon process in the normal case. Note
that the two-magnon process contributes to the longitudinal noise of the magnetic field, which can be seen from the
HP transformation Ŝz = S − m̂†m̂. By evaluating the longitudinal susceptibility of the system, the authors derived the
ongitudinal noise’s influence on the qubit’s relaxation rate (Γ ) as

Γ ∼
16µ4

B

A3β2 ln
A

d2q(∆F − µ)
, (109)

here A is the exchange coefficient, β = 1/(kBT ), dq is the distance of the qubit from the magnetic sample, ∆F is the
agnon gap, and µ is magnon chemical potential. In the equilibrium state, µ = 0, and the relaxation time Γ −1

∼ 10 ms
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Fig. 21. (a) Quantum-impurity relaxation via one and two-magnon scattering processes. When the quantum impurity splitting ω is larger than the
spin-wave gap ∆F , one magnon process dominates the relaxation rate of the quantum impurity. When ω < ∆, two magnon process dominates the
relaxation. (b) Imaging of a magnetic domain wall in a synthetic antiferromagnet (Co/Ru/Pt/Co) by a scanning-NV magnetometer. The overview of
he domain and domain wall structures is obtained by measuring the photoluminescence of NV center.
ource: The figures are adapted from Refs. [303,424].

or parameters of YIG, while near BEC, Γ −1
∼ 100 µs, which is much shorter than the intrinsic relaxation time of the NV

enter. Therefore, magnon BEC may be probed via two-magnon noise through spin qubit relaxometry. Similar ideas apply
o BEC in antiferromagnets, and were extended to propose the detection of magnon modes in antiferromagnetic domain
alls [422]. One advantage of this method is that it can image magnetic structures with zero magnetization, such as a
ompensated antiferromagnet.
Finco et al. [423] experimentally demonstrated this proposal by successfully imaging various spin textures in synthetic

ntiferromagnets, including domain walls, spin spirals, and skyrmions as shown in Fig. 21(b). Rustagi et al. [424] further
ddressed the influence of chiral magnetic noise on the qubit relaxation. In particular, the left-moving and right-moving
agnons produce unequal magnetic noise and they are respectively coupled to the ms = 0 → −1 transition (Γ−) and
s = 0 → +1 transitions (Γ+) in an NV center. When the chiral symmetry of SWs is broken, for example by surface

SWs, the magnitudes of the magnetic noise for left-moving and right-moving SWs are different, hence the relaxation rate
Γ− and Γ+ are unequal. The authors proposed a general formalism to evaluate this difference and verified the prediction
xperimentally. Furthermore, it has been experimentally demonstrated that the NV center spins can effectively probe
oherent SW transport driven by microwaves, spin torques, and thermal gradients [425–428].

.3. Hybrid magnon-phonon system

The coupling between magnon and the quanta of mechanical oscillations is another interesting direction. The
raditional approaches mainly address the interplay of magnons and phonons and their influence on magnon transport
roperties, for example, excitation of hybrid magnon-phonon polarons [429–431], magnon Seebeck effect driven by a
hermal gradient [41], phonon-mediated spin transport [432], and surface acoustic waves mediated coherent magnon
xcitation [48,51,433–435]. A review of recent developments is performed by Bozhko et al. [436]. For quantum magnonics,
he entanglement of magnons with phonons is manipulated. In particular, here, phonons are not limited to the deforma-
ion of the magnetic system itself, and the coupling of magnetic modes to the oscillations of a distinct mechanical system
s discussed as well.

Coupling of magnons with deformation of magnets. Zhang et al. [339] studied a hybrid cavity–magnet system by placing a
YIG sphere into a copper cavity, as shown in Fig. 22(a). The magnetization oscillation of the YIG sphere induces mechanical
deformation via magnetostrictive interactions of the form [61]

Ĥint = b1

∫
d3r

[
m̂2

xϵxx + m̂2
yϵyy − (m̂2

x + m̂2
y)ϵzz

]
=

b1Ms

V
â†â

∫
d3r(ϵxx + ϵyy − 2ϵzz), (110)

here b1 is magnetoelastic constant, ϵij ≡ (∂jui + ∂iuj)/2 are the components of the strain tensor, u is the atomic
isplacement, and V is the volume of the magnet. In this model, the magnon-phonon interaction is dispersive, as the
agnon frequency is shifted by the phonons. After quantizing the phonon operators, the effective coupling between the
agnon and phonon modes is written as Ĥint = gmbâ†â(b̂ + b̂†), where b̂ (b̂†) is the annihilation (creation) operator for
honons. This justifies the magnon-phonon interaction that was used to study magnon-photon-phonon entanglement in
ection 4.1.2.
When the magnon frequency is tuned to be close to the photon frequency, two hybrid magnon–photon modes at

nergy ω± with eigenvectors Â+ = cos θ ĉ + sin θ â and Â− = − sin θ ĉ + cos θ â are found as shown in Fig. 22(b). Here,
he magnon component of the hybrid mode is determined by the magnon–photon coupling gmc and the magnon–photon
etuning ∆mc as, tan 2θ = 2gmc/∆mc . The phonon mode does not play a role here because its MHz frequency is far below
he magnon frequency, which is in GHz regime. To bring the magnon and phonon frequencies closer, a parametric driving

d is applied to drive the cavity field. In the dressed basis, the interaction component of the Hamiltonian is rewritten as
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Fig. 22. (a) Schematic device containing a three-dimensional copper cavity and a YIG sphere. (b) The reflection spectrum when the magnon is on
esonance with the cavity photon. (c) Measured reflection spectra with a red-detuned driving between pump and probe photons near the lower
ybrid mode A− . A Fano-like lineshape is identified, accompanied by a transparency peak when ∆sd = ωb , where ωb is the phonon frequency. (d)

The magnonmechanical cooperativity as a function of bias magnetic field. The red and blue lines refer to the red and blue detunings between the
pump and probe frequency, respectively.
Source: The figures are adapted from Ref. [339].

Ĥint = gmb(b̂+ b̂†)
(
sin2 θ Â†

+Â+ + cos2 θ Â†
−Â−

)
. Now both the beam-splitter-type interaction (Â†

±b̂+ Â±b̂†) and parametric

interaction (Â†
±b̂†

+ Â±b̂) between the phonon and the hybrid magnon–photon modes are realized and the coupling
strength can be manipulated by the detuning between magnon and photon (∆mc or angle θ ). For red-detuned driving, the
driving field only strongly interacts with the lower branch ω− and a typical Fano lineshape is observed with a transparent
mode at the resonance, as shown in Fig. 22(b). In the blue-detuned case, the driving is strongly coupled with the higher
energy branch (ω+), yielding a dip in the reflection spectra. By tuning the external magnetic field or magnon frequency,
one is able to achieve the transition between these two situations, as shown in Fig. 22(c). This is a distinct advantage of
this hybrid system.

Based on this accessible platform, various theoretical proposals have come up to study the interplay between magnons,
phonons and photons. Sarma et al. [437] proposed a stimulated Raman adiabatic passage-like coherent transfer between
the cavity mode and phonon mode, by properly tuning the driving and frequency detuning between cavity photon and
magnon. The phonon mode with lower damping may be used to store the quantum state for a long time. Moreover, as
introduced in Section 4.1.2, nonlinear magnon–phonon interactions enable the existence of steady-state entanglement
among magnons, photons, and phonons at low temperature. Huai et al. [438] implemented gain to the magnonic system
and constructed a PT symmetric-like system with a passive cavity and active magnon modes. Lu et al. [439] studied the
role of EPs in the hybrid system and showed flexible on–off optical transmission and slow-to-fast light switching near
the EPs.

Coupling between magnons and external mechanical oscillators. Alternatively, Gonzalez-Ballestero et al. [440,441] con-
sidered a spherical micromagnet (for example, YIG) trapped in a harmonic potential, as shown in Fig. 23(a). The magnetic
sphere experiences an external static field B0 = B0ez and an oscillating gradient field Bd = bg (−xex + zez) cos(ωdt).
The static field tunes the magnon frequency while the inhomogeneous oscillatory field induces a coupling between the
magnon mode and the center-of-mass motion of the magnet. The hybrid system is described by the Hamiltonian

Ĥ = ωxb̂†b̂ + ωr â†â + ωpĉ†ĉ + g(â†ĉ + ĉ†â) + Gx cos(ωdt)(â + â†)(b̂ + b̂†), (111)

where b̂, â, ĉ are respectively the bosonic operators for the center-of-mass motion along the x-axis, the magnon mode and
the acoustic mode with frequency close to the magnon mode. The coupling strength Gx is proportional to the amplitude
of the oscillating field bg . To study how the hybrid magnon-phonon mode couples with the center-of-mass motion, this
Hamiltonian is partially diagonalized in the subspace of magnon and phonon through a Bogoliubov transformation and
the result reads

Ĥ = ωxb̂†b̂ +

2∑
α=1

∆α d̂†
α d̂α + (b̂†

+ b̂)
2∑
α=1

(Gxα d̂†
α + h.c.), (112)

where d̂α (α = 1, 2) is a superposition of the magnon (â) and acoustic (ĉ) mode, ∆α is the detuning between ith
eigenmode and the driving frequency, and the reduced couplings are G = G /(2λ) and G = −χG , with χ =
x1 x x2 x1
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Fig. 23. (a) Schematic illustrations of a micromagnet trapped by a mechanical potential. (b) Power spectral density of the system at different
acoustic–mechanical couplings (bg ). (c) Schematic representation of the magnetometer, containing a microsphere, a ferromagnetic YIG film and a
icrostrip waveguide. (d) Spectral response of a microsphere excited by applying an oscillating field of 2.3 µT at 206 MHz (red line). The black
urve is the response when the sphere is lifted from the YIG film. SNR is short for signal-to-noise ratio of the measurement.
ource: The figures are adapted from Refs. [440,442].

2g/(∆ −

√
∆2 + 4g2) and λ =

√
1 + χ2. To maximize the interaction between the acoustic mode and the center-

of-mass motion, the detuning of the magnon frequency with respect to the driving frequency is adjusted (∆2 = ωx)
o guarantee that the d̂2 mode is 99.99% acoustic. In this way, an effective acoustomechanical system is realized. The
uthors further showed that this strong and tunable acoustomechanical coupling helps to probe the acoustic magnon
xcitation by measuring the mechanical displacement of the magnet. As shown in Fig. 23(b), without acoustic magnon
oupling (bg = 0), the power spectrum of the magnet has a single peak at the intrinsic frequency ωx. A strong enough
oupling (larger bg in the figure) splits the peaks into two subpeaks. Such a tunable quantum platform can be realized
sing micromagnets levitated or deposited on a clamped nanomechanical oscillator, and it may open new possibilities for
sing acoustic phonons as a quantum memory and to study out-of-equilibrium quantum mesoscopic physics in a levitated
article.
Later, Colombano et al. [442] experimentally realized a hybrid magnet–mechanical system, by depositing a glass

icrosphere optical cavity on top of a YIG thin film, as shown in Fig. 23(c). When an oscillating field acting on the magnet
xcites the magnon mode in YIG, it will also excite a deformation of the YIG sphere through magnetostrictive interactions.
uch a deformation will immediately couple to the mechanical breathing mode of the microsphere. By detecting the
echanical motion of the sphere, the oscillating magnetic field can be indirectly recovered. Fig. 23(d) shows the typical

esponse of the system under an oscillating field of 2.3 µT at 206 MHz. Clearly, a sharp peak response (red line) is observed,
hich disappears once the microsphere is levitated from the YIG film (black line), which demonstrates the mechanical
rigin of the signal. The authors estimated the field sensitivity of this technique at a few nT Hz−1/2 at 206 MHz, which
s close to the highest sensitivity of known magnetometers. The working frequency of this proposal can be extended to
he GHz regime, by tuning the magnon frequency with an external field. This finding provides exciting opportunities to
esign a high-performance magnetometer.
Furthermore, Li et al. [443] considered a hybrid cavity–magnet–mechanical oscillator system and showed that both

lassical and quantum states of magnons can be transferred to and stored in a distant long-lived mechanical resonator,
hrough the assistance of optical pulses. The nonlocal entangled state of magnons and mechanical modes can also be
repared in this setup. Tan et al. [444] considered such a hybrid system and proposed a scheme to establish EPR steering
hannel between the magnon and phonon modes. Proskurin et al. [445] studied the coupling of magnetic domain walls
inned by a potential well with the cavity photons through magneto–optical interactions and found that the oscillating
otion of the domain wall can be effectively coupled with the cavity photons in a nonlinear way as Ĥint = ig(b̂− b̂†)â†â,
here b̂ (b̂†) is the quantization of the oscillating motion of the domain wall. This type of nonlinear interaction resembles
he magnon-phonon coupling in Eq. (110) and thus most of the physics presented there can be translated to such a system.
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his extension may generate nonclassical states of domain walls, which will significantly enrich current research efforts
oncerning the classical dynamics of domain walls.

.4. Hybrid magnon-electron systems

Finally, we discuss the coupling of magnons with electrons. We restrict ourselves to magnetic insulators because the
agnetic quality of these materials, in particular, that of YIG, is much larger than that of metallic magnets. Magnons in
agnetic insulators interact with electrons in adjacent normal metals via an interfacial exchange coupling ∝ Ŝ · ŝ, where Ŝ
orresponds to the spin density in the insulator and ŝ to that of the metal. After rewriting the latter in terms of electronic
reation and annihilation operators ψ̂σ and ψ̂†

σ , with σ ∈ {↑,↓} labeling the electronic spin state, and performing a
P transformation on Ŝ, we find that the interface coupling becomes ∝ âψ†

↑
ψ↓ + h.c.. Here, we restrict ourselves to

the linearized version of the HP transformation and focus on terms that exchange spin between metal and insulators. The
exchange of spin is clear from the fact the interface coupling describes that a spin flip in the normal metal is accompanied
by the creation or annihilation of a magnon in the magnetic insulator, thereby leading to the exchange of one quantum
of spin angular momentum between metal and insulator.

The physics that results from this coupling has been extensively studied in heterostructures with YIG as the magnetic
insulator and Pt as the normal metal. Here, Pt is used because of its ability to convert spin current into charge current (and
vice versa) via the (inverse) spin Hall effect that results from its large spin–orbit coupling. In setups consisting of a single
Pt electrode on top of YIG, the so-called spin Seebeck effect, a magnon spin current that is driven by a thermal gradient
and that is injected from YIG into Pt, was discovered [446]. In nonlocal setups with two Pt leads, electric actuation and
detection of magnon spin current were achieved [447], and it was shown that the spin diffusion length of magnons is on
the order of 10 µm in YIG at room temperature. As discussed in Section 3.4, such nonlocal setups were used to probe
signatures of spin superfluidity.

Both the spin Seebeck and nonlocal transport experiments probe thermal magnons for which quantum properties —
other than quantum statistics — are not relevant. Kamra and Belzig [103] and Bender et al. [101] proposed to probe
quantum properties, squeezing and temporal correlations, respectively, of magnons via spin-current noise in setups of
normal metals on top of magnetic insulators. These theoretical proposals are waiting to be followed up experimentally.
In a parallel development, spin current injection from insulating materials into normal metals has been used to probe
various properties — such as the magnetic phase diagram — of quantum materials, in addition to the spin current itself.
For a recent review, see Ref. [448].

To conclude, we have reviewed recent developments concerning the coupling between magnons with other quantum
platforms. These hybrid platforms provide an avenue to study non-Hermitian physics, and suggest applications in quantum
memories, high precision measurements, and quantum logic gates, as we shall introduce in the following two sections.

5. Non-Hermitian physics and PT symmetry

In recent years, non-Hermitian physics and PT symmetry have attracted considerable attention. It was first discovered
by Bender and Boettcher in 1998 [449] that non-Hermitian Hamiltonians allow for an entirely real spectrum as long as
the combined parity (P) and time (T )-reversal symmetries are respected. PT symmetry has been studied in optics [450–
452], microwaves [453], acoustics [454], mechanics [455], electric circuits [456] and, recently, in magnonics [457,458]
and magnon-polaritonics [459,460]. Physical systems respecting PT symmetry demonstrate exotic features. For example,
a PT symmetric ferromagnetic bilayer structure displays either a real spectrum or complex conjugate eigenfrequency
pairs [457]. In the real-spectrum regime (termed as the PT exact regime), the eigenstates respect PT symmetry and are
equally distributed over both loss and gain ferromagnetic layers, and the whole system displays ferromagnetic behavior.
In the latter case (termed as the PT broken regime), the eigenstates deviate from equilibrium and the intensity is more
concentrated either in the loss or gain layer associated with a phase transition from ferromagnet to antiferromagnet.
The phase transition point has degenerate eigenvalues and eigenstates and is called an exceptional point (EP). Operating
systems in different PT phases or around EPs leads to new dynamics and unusual phenomena, with most achievements
being reported in optics, such as unidirectional invisibility [450], loss-induced laser suppression [461], laser mode
selection [462], and EP enhanced sensing [463–465]. Notably, the property that non-Hermitian Hamiltonian has real
eigenvalues is not limited to PT symmetry, but belongs to a larger class of ‘‘pseudo-Hermitian’’ systems. EPs generally
stand for degeneracy points of any non-Hermitian system, like anti-PT symmetric systems [466–468]. New physics and
mechanisms in this emerging field are expected to be explored, for both fundamental interest and practical innovations.

5.1. Preliminary knowledge of PT symmetry

PT symmetry in quantum mechanics requires that the potential satisfies V (r̂) = V ∗(−r̂) [449], where r̂ is the position
operator. The parity operator P̂ reverses the sign of r̂ → −r̂ and the time reversal operator T̂ changes i → −i. The
operator P̂ is unitary and T̂ is anti-unitary, and they commute with each other. As an example, we consider a two-level
system describing two coupled sites with gain and loss

Ĥ =

(
ω1 − iκ1 g

)
, Ĥ|φ1,2⟩ = E1,2|φ1,2⟩, (113)
g ω2 + iκ2
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here ω1,2 is the single site energy, κ1,2 is the loss/gain parameter of the two sites, and g is the coupling strength.
hen κ1,2 = 0, the Hamiltonian is Hermitian and the eigenvalues are real. For general κ1,2, the Hamiltonian becomes

non-Hermitian, and the eigenvalues are complex. To satisfy the PT symmetry, we first define the parity operator as

P̂ =

(
0 1
1 0

)
= P̂†, (114)

nd the time-reversal operator corresponds to complex conjugation. Then, the Hamiltonian respects PT symmetry,
.e., satisfies [P̂T̂ , Ĥ], if ω1 = ω2 = ω0 and κ1 = κ2 = κ . We therefore obtain the eigenvalues and eigenstates

E1,2 = ω0 ±

√
g2 − κ2, φ1,2 =

(
−iκ ±

√
g2 − κ2

g
, 1

)
. (115)

In the PT exact regime, i.e., when the non-Hermiticity parameter κ < g , the eigenvalues are completely real.
ymmetry-breaking happens at κ = g , beyond which the eigenvalues become complex (PT broken). The phase transition
oint occurs, as mentioned before, at an EP. The eigenstates are no longer orthogonal, ⟨φ1|φ2⟩ ̸= 0, but follow a
iorthogonal relation ⟨φ∗

1 |φ2⟩ = 0 [469]. In the PT exact regime, the probability density of the eigenstates is equally
distributed on the two sites because |(−iκ ±

√
g2 − κ2/g)|

2
= 1. However, at the EP, φ1 = φ2 = [−i, 1]T . In the PT

roken regime, two probability density of the eigenstates is unevenly distributed on site 1 and site 2.
Exceptional point. The non-Hermitian degeneracy point or the EP is not limited to PT symmetry. The order N of the EP

s determined by the number of degenerate eigenstates. The lifting of the non-Hermitian degeneracy is a sub-linear effect:
he eigenvalue splitting for an external perturbation ϵ at the EP is proportional to |ϵ|1/N , which thus provides a way to
ignificantly enhance the sensitivity. This feature was recently confirmed in PT symmetric optical laser system [463–465].
he very presence of the EP would strongly affect the wave dynamics, by causing non-reciprocal energy transfer [470],
igenmode switching when encircling the EP [471,472].
Anyonic-parity-time symmetry. Another type of interesting symmetry in non-Hermitian systems is the counterpart

f PT symmetry, called anti-parity-time (APT ) symmetry. A Hamiltonian respecting APT symmetry anti-commutes
ith the combined parity and time-reversal operators, i.e., {P̂T̂ ,H} = 0. For simplicity, we consider the following APT
amiltonian

ĤAPT =

(
ω0 − iκ ig

ig −ω0 − iκ

)
. (116)

n APT -symmetric system is lossy in all sites with imaginary coupling. The eigenvalues of the APT -symmetric
amiltonian are E1,2 = −iκ ±

√
ω2

0 − g2. In contrast to the PT case, when ω0 > g , the system is in the regime of
APT symmetry, two eigenvalues are complex with the same imaginary parts. When ω0 < g , the system is turned into
the APT broken regime, and the eigenvalues become purely imaginary.

In the general case, the complex coupling between the two sites can be tuned in phase, and the system respects an
anyonic-PT symmetry [473]. The PT symmetry and APT -symmetry are special cases when the coupling strengths are
purely real and imaginary, respectively. The anyonic-PT Hamiltonian satisfies

P̂T̂ Ĥ = e−2iφĤP̂T̂ . (117)

When φ = 0 or π , the Hamiltonian is PT symmetric and satisfies bosonic commutation relations, while φ = ±π/2
corresponds to the APT symmetry and the Hamiltonian fulfills the fermionic commutation relation. An anyonic-PT
symmetric (laser) system is realized by manipulating the complex coupling from purely dispersive to dissipative [473].
The anyonic-PT Hamiltonian is written as

ĤAnyonic−PT =

(
δ geiφ

geiφ −δ

)
, (118)

where δ = ∆ω− i∆κ , with the frequency detuning ∆ω and the loss difference ∆κ of each laser (relative to their average
values). One can easily verify that the Hamiltonian satisfies the commutation relation (117) if tanφ = ∆ω/∆κ . For the
PT symmetric case φ = 0 or π , the EP is located at ∆κ = ±g,∆ω = 0, while for APT symmetric one φ = ±π/2, the EP
rotates π in ∆ω −∆κ plane, at ∆ω = ±g,∆κ = 0. By dynamically changing the coupling phase, the EP itself can move
along a circle in parameter space, which corresponds to the relative dynamics of encircling the EP [470–472].

5.2. PT symmetry in spintronics

Despite that PT symmetry was originally developed in quantum mechanics, this concept has been employed in
classical systems, such as photonic crystals, then extended to mechanical membranes and electrical circuits. As we have
mentioned in this review, SWs have many properties analogous to electromagnetic waves, such as BEC [283,291], squeezed
states [161,219], frequency combs [348], and quantum entanglement [185]. The success of exploring PT symmetry and

non-Hermiticity in optics stimulates these research activities in magnonic systems. We shall first review the studies of
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Fig. 24. Two exchange-coupled ferromagnetic thin films in an external magnetic field with two geometries: (a) out-of-plane and (b) in-plane. (c) Real
and imaginary parts of eigenvalues of the hybrid system as a function of the Gilbert damping. (d) The ratio of y-components of the magnetization
n the two layers Rn

y and their relative phase difference ∆ψn
y versus the Gilbert damping.

ource: The figures are adapted from Ref. [474].

T symmetry in coupled magnets in Section 5.2.1. The physics here is mostly classical and it is included as a relevant
nd additional feature of the coupled magnets system discussed in Section 4.1.3. Then we shall proceed to discuss the PT
ymmetry in hybrid magnon–photon system in Section 5.2.2. We expect purely quantum effects to manifest themselves
s one goes to the low temperature regime or reduces the number of spins in the system, as discussed below.

.2.1. PT symmetry in coupled magnets
PT symmetric magnetic bilayers. Two coupled ferromagnetic films, one with loss and the other with a balanced gain,

atisfy PT symmetry. Interesting dynamics for the magnetization emerges in both PT symmetry exact and broken
egimes. The coupled dynamics are described by the LLG equations, as introduced in Section 2.1.1,

∂m1

∂t
= −γm1 × H1 − γ Jm1 × m2 + αm1 ×

∂m1

∂t
, (119)

∂m2

∂t
= −γm2 × H2 − γ Jm2 × m1 − αm2 ×

∂m2

∂t
, (120)

here the second layer has magnetic gain by reversing the sign of the Gilbert damping constant α. Here, m1,2 are
the normalized magnetizations, H1,2 are the local effective magnetic fields (considering only the external field and the
demagnetizing field H1,2 = Hext − 4π N̂Msm1,2 with N̂ the demagnetizing tensor), Ms is the saturation magnetization,
nd J is the exchange coupling constant. The two equations are invariant under combined parity P̂ and time reversal T̂
perations, which means they are unchanged by interchanging 1 ↔ 2 together with t ↔ −t . In the linear approximation,
aking m1,2 = ez + δm1,2, and considering identical effective magnetic fields H1 = H2 = Hez , as shown in Fig. 24(a) and
b), one obtains the eigenvalues in the out-of-plane geometry as

ω1,2 =

ωH + ωJ ±

√
ω2

J − α2ωH (ωH + 2ωJ )

1 + α2 , (121)

where ωH = γH and ωJ = γ JMs. The real and imaginary parts of the eigenvalues as a function of the Gilbert damping α
are plotted in Fig. 24(c). The EP emerges at the critical Gilbert damping constant and frequency

αcr =
ωJ√

ωH (ωH + 2ωJ )
, ωcr =

ωH (ωH + 2ωJ )
ωH + ωJ

. (122)

The ratio of the y-components of magnetization R(n)
y = |δm(n)

1y /δm
(n)
2y | (n = 1, 2 denote the two eigenmodes) at

ωJ = 0.4ωH as a function of the Gilbert damping is plotted in Fig. 24(d), and so is the phase difference ∆ψ (n)
y . For α = 0,

the phase differences are 0 and π , indicating a symmetric mode δm1 = δm2 and an antisymmetric one δm1 = −δm2,
respectively. The two modes coalesce at the EP. A new type of steady-state magnetization dynamics is thus found: the
precessional polar angle is bounded and neither attenuates (as in the case of loss) nor amplifies (as in the case of gain).

The notion of PT symmetry in magnetic structures has been introduced by assuming a negative Gilbert constant.
Pursuing a smaller Gilbert damping corresponds to a higher quality of the magnetic solid. How to realize a Gilbert damping
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Fig. 25. (a) Schematic plot of a bilayer ferromagnet with balanced gain and loss. The magnetization of all spins is initially along the x-direction.
b) Evolution of ω1,2 as a function of Gilbert damping α for two representative spin-wave modes k = [π/6d, π/4d] (blue curves) and [π/6d, π/6d]
(red curves). (c) Contour plot of the mode dependence on the critical damping αc . PT symmetry is never broken in the white region.
Source: The figures are adapted from Ref. [457].

arbitrarily close to zero or even across the border (negative damping) is an interesting and challenging problem [475]. It
could effectively be implemented by injecting spin current via a spin–transfer torque. This latter scenario was used by
Flebus et al. [476] to propose an array of coupled spin–torque oscillators that displays non-Hermitian topological phases
and edge-state lasing.

Magnonic EPs. Magnonic EPs are non-Hermitian degeneracies of SWs, which were first considered in ferromagnetic
bilayers respecting PT symmetry [457], as sketched in Fig. 25(a). Different from the macrospin case, the intralayer
exchange coupling energy −

∑
⟨ij⟩ Jmi ·mj is considered with lattice constant d, on top of interlayer exchange −

∑
i λJmi ·

m′

i , and the interfacial DM interaction −
∑

⟨ij⟩ Dij · (mi × mj). One then derives the dispersion relation of SWs

ω1,2(k) = λ+ 2ζ̄ (k) ±

√
λ2 − 4α2ζ̄ (k)

[
λ+ ζ̄ (k)

]
, (123)

where ζ̄ (k) = 2−cos kxd−cos kyd+(D/J) sin kyd. For any k, the two eigenfrequencies approach each other as the gain–loss
arameter α increases, and coalesce at a critical value αc, i.e., at the second-order magnonic EP,

αc(k) =
λ

2
√
ζ̄ (k)

[
λ+ ζ̄ (k)

] , ωc(k) =
γ J

µ0Msa3
λ+ 2ζ̄ (k)
1 + α2

c (k)
, (124)

and then bifurcate into the complex plane [Fig. 25(b)]. In the PT broken regime, an antiferromagnetic state appears in
the gain layer. We point out that for PT symmetric SW modes, a parameter region −λ ≤ ζ (k) ≤ 0 exists in which the
T symmetry is never broken in the framework of linear SW theory. This is in contrast to conventional PT symmetric
ystems that always suffer from a symmetry breaking at the EP.
Higher-order magnonic EPs are found as well in the PT symmetric multilayer ferromagnetic systems. To illustrate

he principle, Yu et al. [458] considered a ferromagnetic trilayer structure, consisting of a gain, neutral, and loss spin
ferromagnetic layer), as shown in Figs. 26(a) and (b). The Hamiltonian contains Zeeman energy, magnetic anisotropy,
nd interlayer exchange coupling, and is given by

Ĥ = −µ0

3∑
n=1

H · Mn −
1
2

3∑
n=1

Kn(mx
n)

2
− λµ0M2 · (M1 + M3), (125)

here Mn(mn = Mn/Mn) is the classical spin vector, with n = 1, 2, 3 labeling the layer. The external field is along the
x-axis H = Hex, Kn > 0 is the uniaxial anisotropy, and λ > 0 is the ferromagnetic exchange coupling strength. The coupled
magnetization dynamics is described by the LLG equations

∂m1

∂t
= −γm1 × Heff,1 − αm1 ×

∂m1

∂t
, (126)

∂m2

∂t
= −γm2 × Heff,2, (127)

∂m3

∂t
= −γm3 × Heff,3 + αm3 ×

∂m3

∂t
, (128)

ith the local effective magnetic fields Heff,n = −µ0∂Ĥ/∂Mn. In the linear approximation, the above equations yield
igenmodes and frequencies. The evolution of eigenfrequencies as a function of the gain–loss parameter α is plotted in
ig. 26(c), where the solid and dashed lines represent the real and imaginary parts of the eigenfrequencies respectively.
t shows that EP2 and EP3 separately emerge at different critical α. In the vicinity of the non-Hermitian degeneracy
t the EPs, a sub-linear response to external perturbations is displayed as ∝ ϵ1/N , with N the order of the EPs. One
onsiders a perturbation ϵ being added on the top macrospin by a small external magnetic field. The separation between
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Fig. 26. (a) Three exchange-coupled macrospins consisting of a gain (red), neutral (gray), and (balanced-)loss (blue) spin. (b) Schematic plot of a
ferromagnetic heterostructure with a gain, neutral, and loss layer, denoted by red, gray, and blue colors, respectively. The magnetizations of all
layers are initially along the x-direction. Eigenvalues of the hybrid system versus Gilbert damping constant for (c) macrospin and (d) spin-wave
ith respect to wave vector (kx, ky) = (π/30d, 0). (e) The splitting of eigenfrequencies vs the perturbation follows linear, ϵ1/2 and ϵ1/3 responses,
espectively, at FMR, EP2, and EP3.
ource: The figures are adapted from Ref. [458].

he eigenfrequencies as a function of the strength of the perturbation is shown in Fig. 26(e). One observes a linear,
1/2 and ϵ1/3 responses, respectively, for FMR, EP2 and EP3. To investigate the effect of fluctuations on the sensing
erformance [477,478], one considers a Gaussian distribution of the perturbation signal with a noise level σ , i.e.,

P(ϵ − ϵ0) =
1

√
2πσ

exp

[
−

1
2

(
ϵ − ϵ0

σ

)2
]
, (129)

here the signal ϵ0 is to be detected. One calculates the ensemble-averaged sensitivity and find the sensor performs well
hen ϵ0/σ > 1. The estimated magnetic sensitivity at EP3 is about 3× 10−14 T/Hz1/2 for a typical FMR frequency 5 GHz
nd the FMR linewidth 5 MHz. This value is three orders of magnitude higher than than that for a conventional magnetic
ensor based on a magnetic tunnel junction [479].
The SW solution can be obtained by considering intralayer exchange coupling, as shown in Fig. 26(b). The evolution of

he eigenfrequencies for wavevector (kx, ky) = (π/30d, 0) with respect to the gain–loss parameter α is shown in Fig. 26(d).
agnonic EP2 and EP3 emerge at different critical Gilbert constant. The sublinear response at the higher-order EP leads

o an outstanding magnetic sensitivity. Hence, higher-order magnonic EPs in all-magnetic structures are promising for
esigning ultra-high-sensitive magnetometers.

.2.2. PT symmetry in cavity magnonics
Cavity magnonics—the emerging interdiscipline of cavity quantum electrodynamics and magnonics—has been rapidly

eveloping in recent years [312,313,315–317,480–482]. An archetypal setup of the field consists of a YIG sphere placed
n a microwave cavity, see Fig. 27(a). As discussed in Section 4.1, a new type of bosonic quasi-particles, called cavity
agnon–polaritons (CMPs), have been detected and characterized via the anticrossing transmission spectrum, as shown

n Fig. 27(b), which results from the hybridization of magnons and cavity photons. The polaritonic eigenmodes are usually
roduced due to the strong light–matter interaction, that lies at the heart of cavity quantum electrodynamics and quantum
nformation science. The entangled spin orientation and photon number state in CMPs enables an efficient quantum
nformation transfer between photon and magnon via Rabi oscillation, which is promising for quantum computing.
ecently, non-Hermitian singularities [325,483,484] have been experimentally observed in cavity–magnonic systems. PT
ymmetric CMPs and, generally, non-Hermitian CMPs, offer exciting opportunities from the point of view of both scientific
uriosity and new technological innovations.
Non-Hermitian CMPs. Conventional CMPs have a finite lifetime due to the intrinsic losses of photons and magnons.

umping the cavity to compensate this dissipation may extend the coherent time and lead to a dynamical equilibrium.
uch a pumped system is described by a non-Hermitian Hamiltonian, with the special features as discussed in previous
ections. These features may significantly modify the properties of the polaritonic modes and the transmission spectrum.
he experiment setup is sketched in Fig. 28(a), where a YIG sphere is inserted into a 3D rectangular cavity. The essential
hysics is modeled by an archetypical two-level PT symmetric Hamiltonian

Ĥ = (ω + iγ )ĉ†ĉ + (ω − iγ )â†â + g (ĉâ†
+ ĉ†â), (130)
CPA 0 m 0 m mc
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Fig. 27. (a) A typical setup for detecting CMPs consists of a YIG sphere placed inside a 3D-microwave cavity. (b) Observation of CMPs in the
nticrossing output spectrum.
ource: The figures are adapted from Ref. [313].

here the subscript CPA denotes polaritonic coherent perfect absorption, and ĉ†(ĉ) and â†(â) are the creation (annihila-
tion) operators of a microwave photon and magnon, respectively. Both magnon and cavity photon are tuned on resonance
with each other at the frequency ω0, gmc is the coupling strength, and the photon gain is balanced with the magnon loss
γm. Fig. 28(b) shows that the cavity has two ports for both measurement and feeding microwaves into the cavity. The
total output spectrum is the sum of outputs from both ports. The Hamiltonian commutes with the combined parity and
time-reversal operator, i.e., [P̂T̂ , ĤCPA] = 0, and hence satisfies PT symmetry. The corresponding eigenvalues are solved
as ω1,2 = ω0 ±

√
g2
m − γ 2

m. When gm > γm, the system is in the PT exact regime with two entirely real eigenvalues, which
results in two dips at zero in the output spectrum corresponding to the CPA frequencies. For gm < γm, a pair of complex
conjugate eigenvalues appear. The symmetry is spontaneously broken and the CPA then disappears in this regime. The
measured output spectrum is shown in Fig. 28(c) versus the displacement of the YIG sphere in the cavity (the coupling
strength gmc depends linearly on the displacement), which is consistent with the simulation shown in Fig. 28(d). In the
output spectrum, two real eigenvalues are located at zero output signal and coalesce at the EP when gm = γm. The central
regime located around x = 0 in the spectrum without any zero dips represents the PT broken phase.

Pseudo-Hermiticity and higher-order EPs. A cavity magnonic system without PT symmetry but obeying pseudo-
Hermiticity supports higher-order (e.g., third-order) EPs. As an example, Zhang et al. [485] considered a system consisting
of two lossy YIG spheres coupled to a gain microwave cavity, as shown in Fig. 29(a). The non-Hermitian Hamiltonian of
the hybrid system reads

Ĥeff =

(
ωc + iκg g1 g2

g1 ω1 − iγ1 0
g2 0 ω2 − iγ2

)
, (131)

in which the Kittel frequencies of the YIG spheres are denoted by ω1,2, and their losses with parameters γ1,2 > 0. The gain
cavity has resonant frequency ωc and a gain coefficient κg > 0. Such a ternary system does not respect PT symmetry
but can exhibit a real spectrum as well as second- and third-order EPs [see Figs. 29(b)–(e)]. The eigenfrequencies of
the system are obtained by solving the determinant Det(Ĥeff − ΩI) = 0. According to the spectrum property of the
pseudo-Hermitian Hamiltonian, the complex-conjugate equation Det(Ĥ∗

eff −ΩI) = 0 should have the same solutions. By
comparing the corresponding coefficients of these two polynomial equations, one can derive the following constraints

κg − γ1 − γ2 = 0, (132a)

∆1γ1 +∆2γ2 = 0, (132b)
(∆1∆2 − γ1γ2)κg + g2

1γ2 + g2
2γ1 = 0, (132c)

where ∆1(2) = ω1(2) − ωc is the frequency detuning. Requiring pseudo-Hermiticity means ensuring that the total gain
and loss are balanced in the whole system as indicated by Eq. ((132)a). For convenience, one can introduce the ratio of
losses and couplings η = γ1/γ2 and δ = g2/g1. It is found that the detunings should satisfy ∆2 = −η∆1 according to Eq.
((132)b). The last constraint Eq. ((132)c) leads to a minimal coupling strength gmin to achieve an entirely real spectrum of
the system. The emergence of the third-order EP thus does not require identical cavity–magnon couplings and magnon
losses.
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Fig. 28. (a) Sketch of the experimental setup, where a YIG sphere is glued on a wooden rod that is inserted into a 3D rectangular cavity. (b) The
cavity has 2 ports for both measurement and feeding microwaves into the cavity. The total output spectrum is the sum of outputs from both ports.
The output spectrum has zero dips at zero when the system is in the unbroken-symmetry regime, corresponding to the coherent perfect absorption
frequencies, which disappears in the broken-symmetry regime. Measured (c) and calculated (d) output spectrum versus displacement of the YIG
sphere in the cavity.
Source: The figures are adapted from Ref. [483].

Fig. 29. (a) Two YIG spheres with losses coupled to a microwave cavity with gain. Real and imaginary parts of eigenvalues of the hybrid system
ersus the coupling g1 for the symmetric case (b) and (d), as well as the asymmetric case (c) and (e).
ource: The figures are adapted from Ref. [485].

For the symmetric case, two Kittel modes have the same damping rates γ1 = γ2 (η = 1). One then analytically obtains
he condition to realize the third-order EP as

g1 = g2 = gEP3 =
2

√ γ2, ∆1 = −∆2 = ∆EP3 =
1

√ γ2. (133)

3 3
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Fig. 30. (a) Schematic illustration of photon scattering by two magnons with balanced gain and loss in a microwave cavity. (b-c) Evolution of
eigenfrequencies as a function of the gain–loss parameter P , where the solid and dashed curves respectively represent the real and imaginary part
of the eigenfrequencies. The detuning parameters are chosen to be (b) ∆ = −0.3 and (c) ∆ = 0. The cavity frequency is set as ωc/g = 5.
d) PT symmetric phase transition diagram. Transmission spectrum for different gain–loss parameters: (e) P = 0.5, (f) P =

√
2, and (g)

P = 2. (h) Transmission spectrum of a bare cavity. The right panels in (e)–(h) show the zero-detuning spectrum. (i) Linewidth of CMP modes
κCMP ∈ {κs, κo, κEP3, κp} as a function of the gain–loss parameter P at the zero detuning point. Symbols are numerical results and solid curves are the
asymptotic formulas (140). The dashed area is not accessible because of the strong overlap between modes. (j) Sensitivity at P = PEP3 . Symbols denote
numerical results and the blue curve represents the analytical formula (141). (Inset) Transmission spectrum as a function of the mode frequency at
detuning ∆ = 0.1. The calculations use κc/g = 0.1.
Source: The figures are adapted from Ref. [487].

The corresponding three eigenvalues read ωc, ωc ±

√
3g2

1 − 4γ 2
2 and their real and imaginary parts versus the coupling g1

are plotted in Figs. 29(b) and (d). The green regime, i.e., g1 < gmin, was not considered. This result shows that gEP3 > gmin

is experimentally accessible in the symmetric case.
For the asymmetric case, the magnonic losses γ1 ̸= γ2 (η ̸= 1). One can similarly obtain the parameters according to

Eq. (132)

g1 = gEP3 =

[
1 + ηδ2

(1 + η)η
+

3(1 + δ2)
1 + η + η2

]−1/2

2γ2, ∆1 = ∆EP3 =

[
1 + ηδ2

(1 + η)η
g2
EP3 − γ 2

2

]1/2
. (134)

umerical results for the spectra for γ1 = 2γ2 are plotted in Figs. 29(c) and (e), respectively, for the real and imaginary
arts versus the coupling strength g1. One observes the second- and third-order EPs separately at gEP2 = 3.600 MHz and

gEP3 = 3.394 MHz.
We note that such exotic spectra can be experimentally detected via a transmission measurement as long as the cavity

quality is high enough [102,210,486]. This provides a route to study pseudo-Hermiticity and higher-order EPs in a hybrid
spincavitronic system.

PT symmetric CMP and exceptional magnetic sensitivity. The ternary system with PT symmetry can be implemented by
a lossless cavity and balanced gain and loss magnonic modes. A setup consisting of two magnetic bodies with balanced gain
and loss placed inside a microwave cavity [Fig. 30(a)], has been proposed to realize an ultrahigh sensitivity magnetometer,
based on the higher-order EP [487]. The system is described by the following non-Hermitian bosonic Hamiltonian

Ĥ = ωcĉ†ĉ + (ωs + iβ̄)ŝ†1ŝ1 + (ωs − iβ̄)ŝ†2ŝ2 + g
[
ĉ†(ŝ1 + ŝ2) + h.c.

]
, (135)

where ĉ†(ĉ) and ŝ†1,2(ŝ1,2) are the photon and magnon creation (annihilation) operators, respectively, ωc is the cavity’s
resonance frequency, ωs denotes the Zeeman splitting, β̄ > 0 describes the energy dissipation/amplification rate, and g
represents the magnon–photon coupling strength. Under the combined operation of parity P̂ (ŝ1 ↔ ŝ2) and time reversal
T̂ (i → −i, ŝ1(2) → −ŝ1(2), and ĉ → −ĉ), it is straightforward to find that Eq. (135) is invariant and thus respects PT
symmetry. The direct exchange coupling between magnons is assumed to be absent in the present model.
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One considers single particle processes, so that the three states
{
ĉ†

|0⟩, ŝ†1|0⟩, ŝ†2|0⟩
}
constitute a complete basis, where

|0⟩ represents the vacuum state. The Hamiltonian can therefore be expressed in the following matrix form

Ĥ =

⎛⎝ ωs + iβ̄ 0 g
0 ωs − iβ̄ g
g g ωc

⎞⎠ . (136)

By solving Ĥ|φ⟩ = ω|φ⟩, we obtain the following cubic equation for the eigenvalues(
Ω2

+ P2) (Ω +∆)− 2Ω = 0, (137)

with Ω = (ω − ωs)/g , ∆ = (ωs − ωc)/g the frequency detuning, and P = β̄/g being the balanced gain–loss parameter.
The evolution of the three eigenvalues is demonstrated in Figs. 30(b) and (c), where the solid and dashed lines

correspond to real and imaginary parts, respectively. The third-order EP appears in the case of resonance between photon
and magnon, i.e., ∆ = 0. The phase diagram [plotted in Fig. 30(d)] is determined by the sign of the discriminant

Λ = P2∆4
+ (2P4

+ 10P2
− 1)∆2

+ (P2
− 2)3 (138)

of Eq. (137). Λ < 0 gives the PT exact phase, in which all three eigenvalues are real and the eigenvectors satisfy the
so-called biorthogonal relation ⟨φ∗

i |φj⟩ = δij with i, j = 1, 2, 3. For Λ > 0, only one real eigenvalue survives and the other
two become complex conjugates to each other, which corresponds to the PT broken phase. EP2 occurs along the critical
curve Λ = 0 but with ∆ ̸= 0 [see the gray curve in Fig. 30(d)]. EP3 emerges when both P = PEP3 =

√
2 and ∆ = 0 are

simultaneously satisfied [see the red star in Fig. 30(d)].
For a conventional CMP system, strong coupling is usually identified from the gap of the transmission spectrum at the

resonance point. From input–output theory [210], the scattering coefficient is analytically obtained as

S21 =
κc

i(ω − ωc) − κc +Σ(ω)
, (139)

where the total self-energy Σ(ω) = Σgain(ω) + Σ loss(ω) from the magnon–photon coupling includes two parts:
Σgain/loss(ω) = g2/[i(ω − ωs) ± β] for gain (+) and loss (-), respectively. One notes that Σ(ω) now is purely imaginary,
leading to a fully transparent transmission at resonance.

Figs. 30(e)–(g) show the transmission spectrum |S21|2 as a function of the mode frequency ω and the cavity detuning∆,
for different gain–loss parameters P . As a reference, one plots the bare-cavity spectrum in Fig. 30(h). For P < PEP3, one finds
that the transmission spectrum displays a novel ‘‘Z’’-shape [see Fig. 30(e)], instead of the conventional level anticrossing.
Furthermore, the authors observed three peaks in the strong-coupling region (∆ ∼ 0), in which the ultranarrow central
mode corresponds to the dark-state CMP, besides two sideband abnormal Rabi-splitting modes. An increasing P leads to
a coalescence of the peaks. For P = PEP3, three eigenvalues merge together at ωc, and form a flat and wide transparent
window shown in Fig. 30(f). When P further increases, i.e., P > PEP3, the dark-state CMP mode still survives, with its
linewidth however being significantly broadened as plotted in Fig. 30(g). This is a Purcell-like effect [488] induced by the
PT symmetry breaking. The authors paid special attention to the P-dependence of the linewidth of the spectrum at zero
detuning, and derived the following asymptotic formulas [solid curves in Fig. 30(i)]

P → 0 : κs/κc ≃ (P2
+ 2)/4, κo/κc ≃ P2/2, (140a)

P ≫ PEP3 : κp/κc ≃ P2/(P2
− 2), (140b)

which agree well with the numerical results [symbols in Fig. 30(i)].
The sensitivity is conventionally defined as the splitting of the eigenfrequencies perturbed around the EP. However,

this becomes unfeasible due to the significant spectrum broadening near the EP as shown in Fig. 30(f). In the present
model, there always exists a real central mode no matter whether the PT symmetry is broken or not. A more appropriate
definition of the sensitivity is the separation between the always-real central mode and the constant cavity mode. At
P = PEP3,

δωEP3/g = −sgn(∆)δθ, with δθ = 21/3
|∆|

1/3, (141)

hich is consistent with the numerical results in the small detuning regime, as plotted in Fig. 30(j). For detuning
∆| < 0.06 (corresponding to the magnetic field |δB| < 2 mT for g ∼ 1 GHz), exceptional sensitivity on the order
∆|

1/3 is still present. Considering the cavity frequency resolution |δωEP3| ∼ κc, the magnetic sensitivity is expressed as

|δB| ≈
κc

2γ C
, (142)

where C ∼ g2/κ2
c is the strong coupling cooperativity ranging from 103

∼ 107 [312,313,315]. For a microwave cavity
working at GHz with a MHz resolution and a (sub-)MHz noise, the sensitivity is estimated as ∼ 10−15 T Hz−1/2, which
is two orders of magnitude higher than that of the state-of-the-art magnetoelectric sensors [489]. Hopefully, the EPs
discussed here are promising candidates for designing high-precision sensing devices.
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Fig. 31. (a) Two YIG spheres with losses coupled to a strongly dissipative microwave cavity. (b) Real and (c) imaginary parts of the eigenfrequencies
as a function of the cavity dissipation rate κ . The shadowed area is the APT broken phase. The dots and solid lines represent the experimental
data and theoretical prediction, respectively.
Source: The figures are adapted from [467].

APT symmetry in CMPs. The concept of PT symmetry has been extended to other contexts. APT symmetry represents
uch a generalization. Its difference with PT symmetry lies in that PT symmetry requires the presence of gain to
ompensate the loss of the system, while APT symmetry can be realized in all-lossy systems. Zhao et al. [467] considered
he example sketched in Fig. 31(a), in which two YIG spheres with nearly equal losses γm are placed in a large dissipative
icrowave cavity. Two YIG spheres are working in the low excitation regime and the magnon excitations of the YIG sphere
re simply regarded as harmonic oscillators (Kittle modes only). The two magnons are directly coupled to the microwave
hoton. By eliminating the photonic degree of freedom, one obtains the effective APT magnon Hamiltonian

Ĥeff =

(
Ω − i(γm + Γ ) −iΓ

−iΓ −Ω − i(γm + Γ )

)
, (143)

here iΓ is the dissipative coupling-rate of the two magnets mediated by the cavity mode andΩ is the effective frequency
etuning between the two magnons. In the regime of κc ≫ γm, we have Γ = g2/κc with g the direct coupling strength
etween magnons and photons and κc the cavity dissipation rate. The eigenvalues are plotted as solid lines in Figs. 31(b)
nd (c). The eigenvalues are purely imaginary in the APT exact regime, and bifurcate into complex values with the same
maginary parts in the APT broken regime.

In the experiments, the magnon states (frequencies) are detected from the output photon spectrum. Experimental
easurements of the hybridized magnon modes can be achieved from magnon-read out methods, by exacting the dips
nd linewidth from the transmission and reflection spectrum. The cavity dissipation rate can be tuned by solely changing
he pin length of antenna 3. The measured data shown in Figs. 31(b) and (c) correspond, respectively, to the output
requency dips and the linewidth, and are in good agreement with the theoretical analysis.

Purely quantum effects. In principle, the corresponding physics such as exceptional point is valid in both classical and
uantum systems. To study purely quantum effects in a hybrid system, one may go to the low temperature regime to
inimize the detrimental influence of temperature on the quantum superposition and entanglement. The magnon–photon
ntanglement in the PT exact regime of hybrid magnon–photon system discussed in Section 4.1 is an example along this
oute. Along this line, Lu et al. [439] showed that the mechanical mode of a cavity magnomechanical system can be
erfectly cooled to the ground state when the system approaches the EP. This may open up a possibility to engineer
he purely quantum effects. By delicately designing the gain of cavity mode and loss of the magnon mode into the PT
ymmetric regions, one can also generate single-magnon states even in the absence of Kerr nonlinearities [197]. The
econd approach to manifest the quantum effects is to reduce the size of magnets, such that the quantum fluctuations
f spins cannot be neglected any longer. Recently, Wu et al. [350] experimentally observed PT symmetry breaking in a
ingle-spin system. Here the authors studied the PT symmetric Hamiltonian of the form Ĥs = ir σ̂z + σ̂x corresponding
o ω1 = ω2 = 0, κ1 = κ2 = −r, g = 1 in Eq. (113), which governs the dynamics of a single electron spin. To generate
uch an effective Hamiltonian, the electron spin was coupled to a nuclear spin system as shown in Fig. 32(a), and the
ilated Hermitian Hamiltonian Ĥs,a was delicately designed by shining two selective microwave pulses on the system.
opulation of the electron spin state P0 was measured at different control parameter r , as shown in Fig. 32(b). When r < 1,
he system falls into PT exact phase and the real eigenvalues of Ĥs determine an oscillating behavior of the population.
When r > 1, the PT symmetry as well as the oscillation behavior break down.
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Fig. 32. (a) Quantum circuit of the experiment to construct PT symmetric Hamiltonian and to measure the state evolution of a single spin system.
X (Y ) represents the nuclear spin rotation around the x-axis (y-axis). (b) Observed evolution of the single spin population in ground state (P0) when
the control parameter r is tuned from PT exact (r < 1) to the PT broken phase (r > 1). The blue dots and red lines denote experimental and
heoretical prediction, respectively.
ource: The figures are adapted from Ref. [350].

. Applications

In the last few sections, we have reviewed some of the recent developments in quantum magnonics, including
he quantum states of magnons and the hybridization of magnons with other quantum platforms, such as microwave
hotons, superconducting qubits, phonons and electrons. These studies are driven by fundamental interest as well as their
romising applications in quantum information science and technologies. Strictly speaking, part of the proposals work in
he classical regime as well, such as non-reciprocal wave propagation [490], microwave-light conversion mediated by
agnons [491], microwave circulators [492], gradient memories [459], and coherent gate operations [493]. They are,
owever, expected to work in the quantum regime at low temperature because these applications are mainly based
n linear interactions between magnoic system and other systems. Some of the proposals for applications, such as
uantum memories based on magnons excited in atomic ensembles [202], single-magnon detection by superconducting
ubits [198], and weak field sensors for dark matter searches [494] are already in the quantum regime, and require
ryogenic conditions to suppress the thermal noise. In this section, we review a few already existing application directions
f quantum magnonics, including quantum memories, high-precision sensors for temperature calibration, weak-field
etection for dark matter searching, and coherent gate operations for signal processing.

.1. Memory devices

Tanji et al. [202] demonstrated a heralded single-magnon quantum memory for photon polarization states in a
esonator containing two types of atomic ensembles as shown in Fig. 33(a). To store a photon state with arbitrary
olarization, i.e., |ϕ⟩ = cos θ |R⟩+ sin θeiφ |L⟩, the authors used two spatially overlapping atomic ensembles A and B inside

an optical resonator, where each ensemble consists of approximately 8000 atoms cooled to a temperature of 30 µK. Here
|L⟩ and |R⟩ represent left and right circularly polarized photons, respectively. The energy levels of the atomic ensembles are
delicately designed such that the A (B) atoms only absorb R-polarized (L-polarized) photons, and both atomic ensembles
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Fig. 33. (a) Schematics of an atomic ensemble containing two types of oppositely polarized atoms. (top) A write pulse with arbitrary polarization
is fed into the ensemble and generates an entangled magnon state and a heralding photon state. (bottom) A read pulse converts the atomic state
into a single photon and is then detected. (b) Magnon bright and dark modes of two YIG spheres in a single cavity. (c) Reflection spectrum of a
cavity including 8 YIG spheres and (d) working procedure of the gradient memory in such a hybrid cavity.
Source: The figures are adapted from Refs. [459,495].

emit photons with the same polarization (π ). The working procedures of the memory are sketched in Fig. 33(a). The
authors first apply a write pulse that maps the polarization state of photon |ϕ⟩ into a superposed magnon state |Φ⟩ as

|Φ⟩ = cos θ |1⟩A|0⟩B + eiφ sin θ |0⟩A|1⟩B, (144)

here |n⟩ν represents the n-magnon state of the ensemble ν (ν = A, B). With a proper delay, a read pulse (red arrows) is
applied to the ensemble to stimulate emission of the π photons by both atomic ensembles. The successful detection of one
photon indicates the mapping of the light polarization state onto a magnon state. In the experiments, the stored photon
is recreated with sub-Poissonian statistics [g (2)(0) = 0.24] and efficiency as high as 50%. The original photon polarization
is restored with fidelity larger than 0.9.

Zhang et al. [459] considered N identical YIG spheres loaded in a microwave cavity. This system is described by the
following Hamiltonian

Ĥ = ωc ĉ†ĉ +

N∑
j=1

(
ωjâ

†
j âj + gĉ†âj + g∗ĉâ†

j

)
, (145)

here ĉ and âj are the annihilation operators of photon mode and jth magnon mode, respectively. The magnon frequency
f each YIG sphere ωi is controlled by a small coil underneath and the frequencies are tuned to be evenly distributed
s ωj = ωc + [j − (N + 1)/2]∆ωm, with ∆ωm the frequency interval. Typically, the frequency spectrum contains N + 1
esonant modes with equal spacing ∆ωm, as shown in Fig. 33(c) with N = 8. Among these modes, there are N − 1 dark
odes of magnons D̂n (n = 1, 2, . . . ,N − 1) which are not coupled to the cavity mode, while only one bright mode B̂ is

coupled to the cavity, i.e.,

B̂ =
1

√
N

N∑
j=1

âj, D̂n =
1

√
N

N∑
j=1

âje2π i(j−
N+1
2 )n/N . (146)

Since these modes are uniformly distributed in frequency space, the dark modes and bright modes can dynamically
onvert from one to another in a period of T = π/(N∆ω) with ∆ω ≈ ∆ωm for large N . The proposed gradient memory
ncluding a storing process and a readout process works as follows: In the storing process, a pulsed microwave at
requency ω is injected into the cavity and converted into the bright mode of magnons via their coherent coupling.
a
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he bright mode temporally transfers into the dark mode, which avoids radiative losses. After one period, the dark mode
volves back to the bright mode and the information coded in magnons is retrieved back by converting to photons. The
ynamic output of the memory is found in Fig. 33(d). To improve the signal of the retrieved pulse, the coaxial probe is
uned to meet the critical coupling condition κa,1 = κa,0+πg2/∆ω (red peak in the figure), where κa,1 is the coupling rate
of cavity photons to the probe pulse and κa,0 is the intrinsic damping rate of the cavity mode. Compared with the proposals
of memory based on spin ensembles, this approach takes advantage of the high spin-density and strong magnon–photon
coupling in magnetic insulators, and it avoids the issue of inhomogeneous broadening in the dilute spin ensembles.

Sarma et al. [437] proposed to transfer the information from cavity mode to phonon mode in a hybrid cavity–magnet
setup with strong magnon–photon–phonon interaction as introduced in Section 4.3. Due to the lower damping of the
phonon mode compared with magnons and photons, the information coded in the phonon mode may stay available for
a longer time. Lai et al. [496] studied the indirect coupling of a superconducting flux qubit and a NV center assisted by
magnons excited in YIG and proposed a scheme to transfer and store the state of a superconducting qubit to the spin of a
NV center with fidelity higher than 0.9 and long storage time of 10 ms. Compared with the direct coupling between the
flux qubit and NV center, the magnetic mediator enhances the coupling strength and thus suppresses the decoherence
of the qubits. Simon et al. [358] demonstrated that cavity photons can serve as a bus to connect two magnon quantum
memories.

6.2. Precision measurements

6.2.1. Magnetometers and thermometers
As introduced in Section 4.3, Colombano et al. [442] studied the coupling of a breathing microsphere with a magnetic

film and demonstrated a magnetometer to detect magnetic fields as low as µT with a peak sensitivity of nT Hz−1/2

up to gigahertz. This finding may be used to build a high-speed sensor of oscillating magnetic fields. The NV center
magnetometer is an accomplished application as discussed in Section 4.2.3.

Potts et al. [497] proposed a thermometer working below 1 K based on cross-correlation measurements of a hybrid
cavity–magnon–phonon system, where the magnon mode is coupled with the phonon mode through magnetostrictive
interactions. Specifically, the authors considered the Hamiltonian

Ĥ = ωc ĉ†ĉ + ωbb̂†b̂ + ωr â†â + gmc(â + â†)(ĉ + ĉ†) + gmbâ†â(b̂ + b̂†) + iϵd
√
κP (ĉeiωdt − ĉ†eiωdt ), (147)

where κP is the coupling rate of the cavity mode to a single external port. By solving the quantum Langevin equation of
this Hamiltonian, the cavity field fluctuations are written in terms of the mechanical displacement (δẑ ≡ δb̂ + δb̂†)

δĉ = −Λam

(
gcmGmbχmδẑ + igcmχm

√
γmδη̂m −

√
κξ̂P

)
, (148)

here χm is the magnetic susceptibility, γm is the magnon dissipation rate, and δηm and ξP are, respectively, the fluctuation
of the magnons and cavity photons. This result implies that the thermal mechanical fluctuations (δẑ) are imprinted onto
the cavity microwave mode (δĉ) through the assistance of the magnon mode (gmc). Making use of the input–output
relations δĉout = ξ̂P−

√
κPδĉ , the cavity fluctuations together with the corresponding quadratures X̂δĉ,θ = cos θ X̂δĉ+sin θ P̂δĉ

an be read out. In particular, they calculated the correlation spectrum of the output fields and found that the biased
hermal metric relation of the system is

Sπ/2,π/2(ω)
S0,π/2(ω)

≡

∫
∞

−∞
dω′

⟨
{
Xδc,π/2(ω), Xδc,π/2(ω′)

}
⟩∫

∞

−∞
dω′⟨

{
Xδc,0(ω), Xδc,π/2(ω′)

}
⟩

=
4 coth(ω/2kBT )

2nth + 1
. (149)

his expression is independent of experimental parameters and it directly determines the temperature of the phonons
ia the measured correlation spectrum. Note that the above-mentioned thermal metric relation increases with phonon
emperature and reaches a plateau for T > h̄ωc,r/kB. Therefore, this proposal is most accurate at low temperatures,
ypically below 1 K, corresponding to the magnon frequency in GHz regime. Compared with existing proposals using high
nergy optical photons, microwave photons can reduce heating and thus are compatible with cryogenic temperatures.

.2.2. Searching for dark matter
Dark matter is a hypothetical form of matter that plays an important role in modern cosmology. It is believed to make

p 85% of the matter of our Universe and 27% of the Universe’s total mass–energy density. However, its composition
emains a mystery [500]. It is generally believed that the known elementary particles of the Standard Model are not
ark matter, and thus one has to extend the standard model. Axions, originally proposed to solve the strong-CP problem
n quantum chromodynamics [501,502], are a leading dark-matter candidate. The detection of the axion mass and
ts coupling with normal matter is challenging. The detection of axions using magnons was originally proposed by
arbieri et al. [503]. Using recent developments from cavity spintronics, it becomes achievable to search for axions using
ybrid magnet–light systems because of the sensitivity of the output spectrum of the hybrid system to external small
ields [494,498,499,504,505]. Such a hybrid system is called a magnetic axion haloscope.

To understand the working principle of magnetic axion haloscopes, we start from the Hamiltonian

Ĥ = ω ĉ†ĉ + ω â†â + g(ĉ†â + ĉâ†) + Ĥ , (150)
c r aee
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Fig. 34. (a) A typical experimental setup to detect axionic dark matter using a hybrid cavity–magnet system at low temperature. (b) Overview of
the exclusion plot at a 95% confidence level of the axion–electron coupling and axion mass. The DFSZ axion line is at gaee ∼= 10−15 .
ource: The figures are adapted from Refs. [494,498,499].

here ĉ and â denote cavity photon and magnon mode, respectively. Here the first three parts of the Hamiltonian take a
amiliar form describing the hybridization of magnons with photons, while the last term Ĥaee = −VM · B is the coupling
etween the magnetization M and the pseudo-magnetic field B generated by the axions, where B is proportional to the
oupling strength between axion and electron spin gaee and the mass of axions ma [498]. Under a HP transformation, the
nteraction term is quantized as, Ĥaee = −Baee

√
S/2 sinφ(âe−iθ

+ â†eiθ ), where θ and φ parameterize the orientation of the
axion field and Baee = |B|. By solving the quantum Langevin equation corresponding to Hamiltonian (150) in the rotating
frame, one can derive the cavity field in terms of the axion field as, ĉ(ω) = ig

√
S/8Bace sinφeiθ/(κcκm∆c∆a − g2), where

c and κm are the dissipation rate of the cavity photons and magnons, respectively, with ∆c = (ω − ωc)/κc + i/2, and
a = (ω − ωr )/κm + i/2. Using input–output relations, we solve the output power of the system as

Pout (ωc) ≡ ωc⟨ĉ
†
out ĉout⟩ =

ωcκ
ext
c g2SB2

aee sin
2 φ

8|κcκm∆c∆a − g2|
2 , (151)

here κext
c is the cavity dissipation caused by the coupling of the cavity field to the probe field. Based on this result,

ne can detect the existence of an axion field by measuring the output power of the hybrid magnet-cavity system, and,
urthermore, obtain information on the axion massma and its coupling strength with the electron spin gaee. Since the axion
ield is expected to be very weak, it is crucial to increase the sensitivity of the detectors. One can increase the effective
oupling strength of spins and photons g by choosing a proper cavity with large magnetic field, and magnetic materials
ith high spin density, such as YIG. Cryogenic conditions are required to reduce the influence of thermal fluctuations.
A typical experimental setup is shown in Fig. 34(a) and the comparison of three available experimental results is

ummarized in Fig. 34(b). Crescini et al. [499] first set an upper limit on the coupling of axions to electrons at gaee <
.9 × 10−10 for a mass of 58 µeV with 95% confidence. Flower et al. [498] set limits on gaee > 3.7 × 10−9 for a mass

range 33.79 µeV < ma < 33.94 µeV. By further reducing the noise temperature below 1 K and placing 10 YIG spheres to
increase the magnetic volume, Crescini et al. [494,506] performed a wide axion-mass scanning and set the coupling limit
to gaee < 1.7 × 10−11 in the mass range 42.4 − 43.1 µeV. Such a sensitivity corresponds to a 1 − σ field sensitivity of
.5 × 10−19 T, which is a record value. Nevertheless, all these results are orders of magnitude away from the theoretical
rediction of gaee ∼= 10−15 predicted by the DFSZ model [507]. Further upscaling of the hybrid system by using high-quality
uperconducting cavities and by improving the detector sensitivity to single magnon or photon is on going to test this
heoretical value. The sensitivity can also be improved by using long-lived nuclear spins as preamplifier [508]. Recently,
ollowing a similar principle, hybrid cavity–magnet system was proposed to detect gravitational waves [509].

.3. Gate operation for signal processing

Gate operation is the basic element required for practical signal processing. Xu et al. [493] demonstrated a series
f coherent gate operations using hybrid magnet–light systems, including Landau–Zener transitions, Rabi oscillations,
amsey interference, and mode swap operations. The schematic of the system is shown in Fig. 35(a), where a YIG sphere
s placed underneath the dielectric resonator while a probe antenna is placed on top of the resonator to excite and read
ut the information coded in the cavity photons. A novel feature of this device is that a gate antenna is wrapped around
he YIG sphere, which tunes the magnon frequency dynamically via a DC voltage. This system is described by the known
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Fig. 35. (a) Schematic illustration of the device containing a YIG sphere placed under a cylindrical dielectric resonator inside a copper housing.
The gate loop wrapping around the YIG allows for a desirable tuning of the magnon frequency with a DC current. (b) Schematic plot of the pulse
sequence to measure Landau–Zener transitions and the measured amplitude of the cavity photon as a function of the rise time tLZ of current pulse.
c) Schematic plot of the pulse sequence for measuring the Rabi oscillation and the comparison of measured (red circles) and calculated (black line)
ime dependence of the cavity reflection signal. The evolution of the system at 56 ns and 111 ns serves as a π/2 pulse and π pulse, respectively.
ource: The figures are adapted from Ref. [493].

amiltonian Ĥ = ωc ĉ†ĉ + ωr â†â + g(ĉ†â + ĉâ†). Here the magnon and photon modes hybridize to form an anticrossing
tructure [bottom panel of Fig. 35(a)]. The authors first realized an analogue Landau–Zener transition [510] using the pulse
equence shown in Fig. 35(b). Starting from an off-resonant condition (V = −5 V), the photon component dominates the
pper branch of the eigenstate. When the field is swept slowly to +5 V, the hybrid state will stay in the upper branch
path P1), while the cavity photons slowly convert to the magnon mode in this sweeping process. On the other hand, when
he field is swept fast, the initial state will jump from the upper branch to the lower branch (path P2), while the hybrid
tate remains in the photon mode. In the intermediate case, these two paths will interfere and the photon has a certain
robability to keep its initial state unchanged, i.e., Pc = exp(−πg2tLZ/∆ωm), where tLZ is the rising time of the current
ulse and ∆ωm is the detuning between magnon and photon in the final state. Furthermore, by carefully choosing the
ulse length of the DC current, the authors showed that the hybrid system evolves from the initial photon state |α⟩c |0⟩a
o the superposed state |α/

√
2⟩c |α/

√
2⟩a on a time scale of π/4g , which corresponds to a π/2 rotation of the state on

the Bloch sphere, while a pulse length π/2g will transform the state to |0⟩c |α⟩a, which corresponds to a π rotation on
the Bloch sphere, as shown in Fig. 35(c). Therefore, both π/2 and π pulses can be realized in this hybrid system, based on
which the authors further demonstrated the design of more complex logic gates, for example, using Ramsey interference.
It is expected that these gate operations can be applied to low-temperature quantum measurements.

Skogvoll and coworkers [216] theoretically proposed a method for generating 3-qubit GHZ states [397] required for
quantum error correction [398] using a single-shot gate operation involving the qubits and a squeezed magnon. Such
states have previously been generated using multiple two-qubit gate operations [511,512] which are slower than that in
the single-shot proposal and are limited by qubit decoherence. As introduced in Section 4.1.4, bistable and multi-stable
states in magnet–cavity systems may be used to design logic gates and memory devices, too.

7. Conclusions and outlook

In conclusion, we have clarified the scope of quantum magnonics and reviewed the recent developments and fruitful
applications in the quantum technologies including quantum memories, high-precision sensors and coherent logic gates.
These developments have witnessed quantum magnonics as the intersection of spintronics, quantum optics and quantum
information, which not only makes the magnonic system a promising platform to study quantum physics, but also
significantly extends the horizon of traditional spintronics. Despite great success, the progress of this field is far from
saturation. For example, quite a few nonclassical states of magnons and their usefulness in quantum technologies remain
to be verified in the lab. Thanks to the interdisciplinary nature of this field, it has already attracted the interests
of very diverse communities, from spintronics to quantum optics, from magnonics to continuous variable quantum
information, from condensed matter physics to astrophysics, from theorists to experimentalists and engineers. Therefore,
we optimistically believe that quantum magnonics will continue its rapid developing pace in the next few decades and
it will synergize all fields involved. Below, we give an outlook over the potential directions of this field in the future.

• Experimental verification. The experimental realization of nonclassical states of magnons and the technical
applications of hybrid ‘‘magnon+X’’ systems have seen considerable advances. However, there remain some non-
classical magnon states that are yet to be realized, for example, single-magnon states caused by nonlinearities and
interference effects, Schrödinger cat states, and entangled state of magnons and photons. The utilization of these
states for testing basic inequalities in quantum information, as well as their technical applications for quantum
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computing and quantum communication are open problems. The generation of a spin superfluid state for sustainable
spin transport is worth studying to clarify the ongoing debates [37,297].

• Squeezed states. The squeezing of magnons and excitations of magnets in general, present various paths towards
interesting phenomena and novel technologies. Some of these stem from nonequilibrium magnon squeezing [219–
221,337,513] and thus can borrow understanding from quantum optics directly. The path of equilibrium squeez-
ing [21,103], however, has a clear niche in magnonic systems and might hold the key to unprecedented phenomena.
Hence, theoretical efforts are needed to establish further new protocols that can capitalize on this equilibrium
squeezing. The double-edged sword of strong interactions in magnets is that they enable large squeezing but may
underlie rapid decoherence. Thus, the role of interactions and dissipation needs to be addressed. This will provide
realistic estimates for the stability of quantum information encoded in magnonic systems. On the experimental side,
in the short term, existing spectroscopic tools could be developed further towards detecting and confirming the
nonclassical features of magnons [303,514–516]. For example, the detection of entanglement between different spins
will likely require employing external qubit(s). Spin current correlations [103,215,517–520] offer another path where
recent experiments show promise [521,522]. In the longer term, the focus of experiments is expected to shift from
detection to exploitation. We hope that ongoing and future theoretical studies will pave the way for many feasible
exploitation strategies.

• Magnonic devices for quantum information processing. Hybrid magnon-phonon systems are promising for
precision metrology of temperature, small magnetic fields, and small mechanical displacements. Even though some
of the proposals have been realized in the lab, the state-of-art design and test of these devices needs further
investigation. It would also be meaningful to push existing proposals, such as microwave transducers and gradient
memories, to the quantum limit, and see whether new physics will emerge. Several groups have already reported on
the anomalous increase and saturation of magnon damping with decreasing temperature below 1 K [316,523,524].
The authors attributed this phenomenon to the coupling of the magnetic system to an ensemble of two-level atoms,
though the physical interpretation of such a bath and its implication for magnetization dynamics remain unclear.

• Classical analogue of quantum phenomena. Searching for classical analogues of quantum phenomena or macro-
scopic quantum phenomena in a magnonic system is another ongoing direction. This direction will extend the
horizon of magnon spintronics and promote it as a diverse and reliable platform. For example, stimulated Raman
adiabatic passage is a population transfer process between two quantum states through the assistance of a third
quantum state, which is useful when the direct population transfer between the two states is forbidden [525]. Wang
et al. demonstrated a magnonic state transfer between two waveguides with the help of a third waveguide [526]. As
another example, Klein tunneling (also known as Klein paradox) [527] is an important phenomenon of relativistic
particles in quantum physics, but its experimental verification using fundamental particles is nearly impossible
because of the extremely high electric fields required. Recently, Harms et al. [528] showed that this tunneling can
be realized in a driven-dissipative magnonic system, where magnon–antimagnon pairs were produced by delicately
designing the balance of driving through spin–orbit torque and intrinsic dissipation of magnons. Yet another example
is the recent proposal for quantum computation with magnonic BECs [529].

• Noncollinear structures based quantum magnonics. Until now, most of the existing studies in quantum magnonics
focus on magnon excitations in a collinear magnetic structure (either the ferromagnetic state or the antiferromag-
netic Néel state). Magnonics based on noncollinear magnetic structures or spin textures including domain walls,
skyrmions, vortices, spirals, hopfions, etc. is itself an interesting field, but most of the studies are still in the classical
regime [530] while the exploration of their quantum aspects has just began [203,531,532]. It would be interesting to
study the nonclassical states of magnons excited in these spin textures and further couple them to other quantum
platforms such as qubits and photonic cavities. Recently, magnetic skyrmions have been proposed to serve as a
new class of quantum logic qubits [203], where qubit information is encoded in the helicity of skyrmions and a
single-magnon sensor is required to read out the qubit states. Liensberger et al. [533] experimentally demonstrated
the dispersive coupling between magnons and photons in a chiral magnet with skyrmions, where the coupling
rate can be effectively tuned by a magnetic field at the phase boundaries of the skyrmion lattice state. Proskurin
et al. [445,534] used the oscillating mode of a pinned domain wall as an effective mechanical subsystem, which
mimics the mechanical oscillator from cavity optomechanics. Graf et al. [535] studied the coupling of a magnetic
vortex to an optical whispering gallery mode and Martínez-Pérez et al. [536] showed theoretically that a single
photon can be coupled to a gyrating vortex.
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