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A B S T R A C T

We present a refinement of the widely accepted spin-wave spectrum that Kalinikos and Slavin (Kalinikos,
1981; Kalinikos and Slavin, 1986) computed for magnetic films with an in-plane magnetization. The spin wave
spectrum that follows from the diagonal approximation in this theory becomes inaccurate for relatively thick
films, as has already been noted by Kreisel et al. (2009). Rather than solving an integrodifferential equation
which follows from the magnetostatic Green’s function, as done by Kalinikos and Slavin (Kalinikos, 1981;
Kalinikos and Slavin, 1986), we impose the exchange and magnetostatic boundary conditions on bulk spin-
wave solutions. This boundary problem has an accurate analytical solution which is quantitatively different
from the commonly used diagonal theory (Kalinikos, 1981; Kalinikos and Slavin, 1986) for magnetic films.
1. Introduction

Dipole-exchange spin waves propagating in in-plane magnetized
magnetic thin films have attracted lot of attention in recent years,
due to their potential applications in magnonic devices [1]. Of special
interest is the case in which spin waves travel perpendicular to the
external magnetic field – in which case the spin wave velocity is
the largest. As noted by Kreisel et al. [2] the spin wave spectrum
that follows from the diagonal approximation in the commonly used
theory [3,4] is inaccurate in this case for relatively thick films. The
inaccuracy stems from the diagonal approximation, and disappears
when solving the system numerically with interband interactions. This
approach on the other hand is not feasible for analytic approximations.

In this article, we present an alternative analytic derivation of the
dipole-exchange spin wave spectrum for this scenario. Rather than
solving an integrodifferential equation following from the magneto-
static Green’s functions as done by Kalinikos and Slavin [3,4], we
use an approach resembling that of Wolfram and DeWames [5] which
previously had no analytical solution. A similar approach has been
used by Sonin [6] to derive the spectrum of spin waves propagat-
ing parallel to an in-plane magnetic field for sufficiently large wave
numbers. Moreover, Arias [7] used this approach to find the spin-
wave dispersion numerically and presented a uniform mode solution
in the ultrathin-film limit similar to the uniform mode solution in the
diagonal approximation by Kalinikos and Slavin [3,4]. Kalinikos and
Slavin [3,4] approximately solved the integrodifferential equations by
assuming a superposition of magnetization profiles which satisfy the
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exchange boundary conditions but do not satisfy the bulk equations
of motion. Here, however we impose both the exchange and magneto-
static boundary conditions on bulk spin wave solutions. This boundary
problem turns out to have an accurate analytical solution – compared
with the numerical spectrum – and is quantitatively different from the
commonly used diagonal spin wave theory [3,4] for relatively thick
films.

2. Thin-film ferromagnet

2.1. Model and set-up

We consider the set-up in Fig. 1 of a ferromagnetic thin film of
thickness 𝐿 subject to an in-plane external magnetic field 𝐇e. We chose
the 𝑥−𝑦 axes to correspond to the in-plane directions, with the external
magnetic field 𝐇e = 𝐻e𝑦̂ pointing in the 𝑦 direction. Furthermore, the
𝑧 axis corresponds to the out of plane direction where the surfaces
of the thin film are located at 𝑧 = ±𝐿∕2. For temperatures below
the Curie temperature, amplitude fluctuations in the magnetization
are negligible. Hence, the dynamics of the magnetization direction
𝐧 = 𝐌∕𝑀𝑠 is described be the Landau–Lifshitz equation (LL), and
the Maxwell equations in the magnetostatic limit – accounting for
dipole–dipole interactions. The LL equation is given by

𝜕𝑡𝐧 = −𝛾𝐧 ×𝐇eff , (1)
vailable online 6 May 2022
304-8853/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.jmmm.2022.169426
Received 1 October 2021; Received in revised form 9 March 2022; Accepted 27 Ap
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ril 2022

http://www.elsevier.com/locate/jmmm
http://www.elsevier.com/locate/jmmm
mailto:J.S.Harms@uu.nl
mailto:R.A.Duine@uu.nl
https://doi.org/10.1016/j.jmmm.2022.169426
https://doi.org/10.1016/j.jmmm.2022.169426
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2022.169426&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Magnetism and Magnetic Materials 557 (2022) 169426J.S. Harms and R.A. Duine
Fig. 1. Sketch of the set-up. We consider a ferromagnetic thin film of thickness 𝐿 with
the equilibrium magnetization pointing in the 𝑦 direction.

which describes precession of the magnetization direction around the
effective field 𝐇eff = −𝛿𝐸∕𝛿(𝑀𝑠𝐧). Here, we consider the magnetic
energy functional 𝐸[𝐧] of the form

𝐸[𝐧] = 𝑀𝑠 ∫ 𝑑𝑉
[

−1
2
𝐽𝐧 ⋅ ∇2𝐧 − 𝜇0𝐇 ⋅ 𝐧

]

. (2)

In the above 𝐽 is the spin stiffness and 𝐇 = 𝐇e + 𝐇D is the magnetic
field strength, where 𝐇D is the demagnetization field originating from
dipole–dipole interactions. Furthermore, the magnetostatic Maxwell
equations [8] – accounting for dipole–dipole interactions – are given
by

∇ ×𝐇 = 0,∇ ⋅ 𝐁 = 0, (3)

with 𝐁 = 𝜇0(𝐇 +𝐌) the total magnetic field. The boundary conditions
require the normal component of 𝐁 and the tangential components of
𝐇 to be continuous at the thin film surfaces.

In equilibrium the LL equation requires the equilibrium magnetiza-
tion 𝐌eq and the effective magnetic field strength 𝐇eff to be parallel
𝐌eq ∥ 𝐇eff . In this case the internal magnetic field strength 𝐇eq =
𝐇e + 𝐇D has a contribution from the external magnetic field 𝐇e and
the demagnetization field 𝐇D = −𝑧̂𝑀𝑧, originating from the magne-
tostatic boundary conditions. For an external magnetic field pointing
in the 𝑦 direction, as discussed in this article, the uniform equilibrium
magnetization 𝐌eq should also point in the 𝑦 direction.

Dipole-exchange spin-wave modes are generated by dynamical fluc-
tuations of the magnetization and the demagnetizing field around the
magnetostatic equilibrium

𝐌 = 𝐌eq +𝐦(𝑡), 𝐇 = 𝐇eq + 𝐡D(𝑡), (4)

where 𝐦 is perpendicular to 𝐌eq up to linear order in 𝑚𝑥 and 𝑚𝑧, lying
in the 𝑥 − 𝑧 plane. The latter is a consequence of the magnitude of
the magnetization being constant |𝐌| = 𝑀𝑠. Since the magnetostatic
Maxwell Eqs. (3) are linear we require ∇ × 𝐡D = 0, ∇ ⋅ 𝐛 = 0, with
𝐛 = 𝜇0

(

𝐡D +𝐦
)

. Using that the dynamic demagnetizing field is has
vanishing curl, we express the dynamic demagnetization field in terms
of a scalar potential 𝐡D = ∇𝛷D. Hence, the magnetostatic Maxwell
equations become ∇2𝛷D = −∇ ⋅ 𝐦, where the magnetization outside
the thin film vanishes.

The Landau–Lifschitz and magnetostatic Maxwell equations may
be rewritten by means of 𝐧 ≃ 𝑧̂

√

2Re[𝛹 ] − 𝑥̂
√

2Im[𝛹 ] + 𝑦̂
(

1 − |𝛹 |

2),
with 𝛹 = (1∕

√

2) (𝑧̂ − 𝑖𝑥̂) ⋅ 𝐧. Consequently the linearized LL and
magnetostatic Maxwell equations become

𝛺̂𝛹 = −
(

𝛺𝐻 − 𝛬2∇2)𝛹 +
(𝜕𝑧 − 𝑖𝜕𝑥)
√

2𝑀𝑠

𝛷D, (5a)

∇2𝛷D

𝑀2
𝑠

= −
(𝜕𝑧 + 𝑖𝜕𝑥)
√

2𝑀𝑠

𝛹 −
(𝜕𝑧 − 𝑖𝜕𝑥)
√

2𝑀𝑠

𝛹∗. (5b)

Additionally, the exchange boundary conditions for thin films [9,10] in
the absence of surface anisotropy require

± 𝜕𝑧𝛹
|

|

|𝑧=±𝐿∕2
= 0. (6)

In the above, we defined the dimensionless magnetic field 𝛺𝐻 =
𝜇0𝐻𝑒∕𝜇0𝑀𝑠, exchange length 𝛬 =

√

𝐽∕𝜇0𝑀𝑠 and the dimensionless
frequency operator 𝛺̂ = 𝑖𝜕 ∕𝛾𝜇 𝑀 .
2

𝑡 0 𝑠
2.2. Bulk dipole-exchange spin-waves and its boundary conditions

Using the Bogoliubov ansatz, we write 𝛹 (𝐱, 𝑡) = 𝑢(𝐱)𝑒−𝑖𝜔𝑡 + 𝑣∗(𝐱)
𝑒𝑖𝜔𝑡 and 𝛷D(𝐱, 𝑡) = 𝑤(𝐱)𝑒−𝑖𝜔𝑡 + 𝑤∗(𝐱)𝑒𝑖𝜔𝑡, where

(

𝑢(𝐱), 𝑣(𝐱), 𝑤(𝐱)
)

∝
𝑒𝑖𝐤⋅𝐫∥

(

𝑢(𝐤, 𝑧), 𝑣(𝐤, 𝑧), 𝑤(𝐤, 𝑧)
)

, with 𝐤 =
(

𝑘𝑥 𝑘𝑦
)

and 𝐱 =
(

𝑥 𝑦 𝑧
)

. In these coordinates the linearized LL and magnetostatic
Maxwell equation (5) become

 ⋅
(

𝑢(𝐤, 𝑧) 𝑣(𝐤, 𝑧) 𝑤(𝐤, 𝑧)
)

= 0, (7)

with

 =

⎛

⎜

⎜

⎜

⎝

−
√

2𝑀𝑠𝐹 0 (𝜕𝑧 + 𝑘𝑥)
0 −

√

2𝑀𝑠𝐹 ∗ (𝜕𝑧 − 𝑘𝑥)
𝑀𝑠
√

2
(𝜕𝑧 − 𝑘𝑥)

𝑀𝑠
√

2
(𝜕𝑧 + 𝑘𝑥) (𝜕2𝑧 − 𝑘2)

⎞

⎟

⎟

⎟

⎠

. (8)

and 𝐹 = 𝛺 + 𝛺ℎ + 𝛬2(𝑘2 − 𝜕2𝑧 ), 𝐹 ∗ = −𝛺 + 𝛺ℎ + 𝛬2(𝑘2 − 𝜕2𝑧 ) the
dimensionless LL spin-wave operators and 𝛺 = 𝜔∕𝛾𝜇0𝑀𝑠 the dimen-
sionless frequency. Furthermore, 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦, which becomes 𝑘2 = 𝑘2𝑥
for spin waves travelling perpendicular to the external magnetic field.
The above bulk equation of motion gives rise to a sixth order homo-
geneous differential equation in position space, which is cubic with
respect to 𝜕2𝑧 . For spin waves travelling in the 𝑥 direction, perpendicular
to the external magnetic field, the general solution of Eq. (7) is given
by the linear combination of plane waves

⎛

⎜

⎜

⎝

𝑢(𝐱)
𝑣(𝐱)
𝑤(𝐱)

⎞

⎟

⎟

⎠

=
6
∑

𝑙=1
𝐶𝑘𝑙

⎛

⎜

⎜

⎜

⎝

𝐹 ∗
𝑙 (𝑘𝑙 + 𝑘𝑥)∕

√

2𝑀𝑠

𝐹𝑙(𝑘𝑙 − 𝑘𝑥)∕
√

2𝑀𝑠
𝐹 ∗
𝑙 𝐹𝑙

⎞

⎟

⎟

⎟

⎠

𝑒𝑘𝑙𝑧+𝑖𝑘𝑥𝑥, (9)

where 𝐹𝑙 = 𝛺 + 𝛺ℎ + 𝛬2(𝑘2 − 𝑘2𝑙 ) and 𝐹 ∗
𝑙 = −𝛺 + 𝛺ℎ + 𝛬2(𝑘2 − 𝑘2𝑙 ).

The wave numbers 𝑘𝑙 satisfy the bulk equations of motion which follow
from setting the determinant of Eq. (8) to zero

𝐹 ∗
𝑙 𝐹𝑙(𝑘2 − 𝑘2𝑙 ) + (1∕2)(𝐹 ∗

𝑙 + 𝐹𝑙)(𝑘2𝑥 − 𝑘2𝑙 ) = 0. (10)

This is explicitly written as

(𝑘2 − 𝑘2𝑙 )
{

[

𝛺ℎ + 1∕2 + 𝛬2(𝑘2 − 𝑘2𝑙 )
]2 − 1∕4 −𝛺2

}

= 0. (11)

We find that the bulk equation of motion in Eq. (10) gives rise to
one volume mode 𝑘𝑙 = ±𝑖𝑞 and two real surface modes 𝑘𝑙 = ±𝑘1,2,
with {𝑞, 𝑘1, 𝑘2} real and positive. Furthermore, the bulk equation of
motion Eq. (11) may be rewritten in the dispersive form

𝛺2 =
[

𝛺𝐻 + 1∕2 + 𝛬2𝑘2 + 𝛬2𝑞2
]2 − 1∕4, (12)

where the precise form of the volume mode 𝑞 follows from the bound-
ary conditions on the system. From Eqs. (10) and (12) we find that the
remaining two surface modes 𝑘1,2 may be expressed as

𝑘21 = 𝑘2𝑥, (13a)

𝑘22 = 𝑘2𝑥 + 𝛬−2 [2𝛺𝐻 + 1 + 𝛬2𝑘2 + 𝛬2𝑞2
]

. (13b)

The surface mode with wavelength 𝑘1 is the Damon–Eshbach (DE)
surface mode [11], which is confined to the surface with width 1∕𝑘𝑥.
The remaining surface mode 𝑘2 ≫ 𝑘1 is a much more confined to the
surface with a width of 1∕𝑘2. We will find this mode to be evanescent
due to the boundary conditions of the thin film.

The exchange boundary conditions in Eq. (6) evaluated for the
spin-wave modes in Eq. (9) give
6
∑

𝑙=1
𝐶𝑘𝑙𝑘𝑙𝐹

∗
𝑙 (𝑘𝑙 + 𝑘𝑥)𝑒±𝑘𝑙𝐿∕2

|

|

|𝑧=±𝐿∕2
= 0, (14a)

6
∑

𝑙=1
𝐶𝑘𝑙𝑘𝑙𝐹𝑙(𝑘𝑙 − 𝑘𝑥)𝑒±𝑘𝑙𝐿∕2

|

|

|𝑧=±𝐿∕2
= 0, (14b)

with 𝑘𝑙 ∈
{

±𝑘1,±𝑘2,±𝑖𝑞
}

as defined in Eqs. (10) and (13). The
magnetostatic boundary conditions on the other hand require a bit
more work. We start by noting that the magnetization vanishes 𝛹 = 0
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outside the magnetic thin film (𝑧 < −𝐿∕2 and 𝐿∕2 < 𝑧). Hence, the
magnetostatic Maxwell Eqs. (3) outside the thin film give ∇2𝑤(𝐱) =
(−𝑘2+𝜕2𝑧 )𝑤(𝐤, 𝑧)𝑒𝑖𝐤⋅𝐫∥ = 0. The asymptotically bound solutions of outside
the magnet are thus given by

𝑤(𝐤, 𝑧) ∝
{

𝑒−𝑘𝑧, 𝑧 > 𝐿∕2,
𝑒𝑘𝑧, 𝑧 < −𝐿∕2.

(15)

Since the tangential components of 𝐡D are continuous across the thin
film surfaces, the scalar field 𝑤(𝐤, 𝑧) should also be continuous across
the thin film surface. Furthermore, continuity of the normal component
of 𝐛 in the Bogoliubov ansatz requires

𝜕𝑧𝑤(𝐤, 𝑧±) =𝜕𝑧𝑤(𝐤, 𝑧∓) (16)

+
𝑀𝑠
√

2
[𝑢(𝐤, 𝑧∓) + 𝑣(𝐤, 𝑧∓)]|𝑧=±𝐿∕2,

with 𝑧± = 𝑧 ± 0+. This boundary condition (16) in combination
with Eq. (15) gives the effective magnetostatic boundary condition

(±𝑘 + 𝜕𝑧)𝑤(𝐤, 𝑧) +
𝑀𝑠
√

2
[𝑢(𝐤, 𝑧) + 𝑣(𝐤, 𝑧)]|𝑧=±𝐿∕2 = 0. (17)

Evaluated for the spin-wave modes in Eq. (9) the above effective
magnetostatic boundary condition (17) gives
∑

±
𝐶±𝑘1

[(

2𝐹 ∗
1 𝐹1 + 𝐹 ∗

1
)

𝛿± − 𝐹1𝛿∓
]

𝑒±𝑘1𝐿∕2 (18a)

−
∑

𝑙
𝐶𝑘𝑙𝐹

∗
𝑙 𝑒

𝑘𝑙𝐿∕2
|𝑧=𝐿∕2 = 0,

∑

±
𝐶±𝑘1

[

(2𝐹 ∗
1 𝐹1 + 𝐹1)𝛿∓ − 𝐹 ∗

1 𝛿±
]

𝑒∓𝑘1𝐿∕2 (18b)

−
∑

𝑙
𝐶𝑘𝑙𝐹𝑙𝑒

−𝑘𝑙𝐿∕2
|𝑧=−𝐿∕2 = 0,

with 𝛿± ≡ 𝛿1,±1 the Kronecker delta and 𝑘𝑙 ∈
{

±𝑘2,±𝑖𝑞
}

as defined
in Eqs. (10) and (13). Note here that we used the bulk equation of
motion in Eq. (10) to simplify the above boundary conditions.

3. Dipole-exchange dispersion relation

3.1. General derivation

For notational simplicity we introduce the dimensionless wavenum-
bers 𝛬𝑘 → 𝑘, 𝛬𝑞 → 𝑞 and the dimensionless thickness 𝐿∕𝛬 →
𝐿.

3.1.1. Effective boundary conditions for spin waves
We start this section with by noting that Eq. (13) yields 𝑘2 ≫ 𝑘 ≡ 𝑘𝑥,

𝑒𝑘2𝐿∕2 ≫ 𝑒−𝑘2𝐿∕2 and |𝐹 ∗
2 | ≫ |𝐹2|. This allows us to approximate the

exchange boundary conditions in Eq. (14) by

𝑎+𝐹
∗
𝑘 𝑘

2𝑒𝑘𝐿∕2 + 𝑏+ = (19a)
𝑐𝐹 ∗

𝑞
(

𝑞2 cos[(𝑞 + 𝛿)𝐿∕2] + 𝑘𝑞 sin[(𝑞 + 𝛿)𝐿∕2]
)

,

𝑎+𝐹
∗
𝑘 𝑘

2𝑒−𝑘𝐿∕2 + 𝑏− = (19b)
𝑐𝐹 ∗

𝑞
(

𝑞2 cos[(𝑞 − 𝛿)𝐿∕2] − 𝑘𝑞 sin[(𝑞 − 𝛿)𝐿∕2]
)

,

𝑎−𝐹𝑘𝑘
2𝑒−𝑘𝐿∕2 = (19c)

𝑐𝐹𝑞
(

𝑞2 cos[(𝑞 + 𝛿)𝐿∕2] − 𝑘𝑞 sin[(𝑞 + 𝛿)𝐿∕2]
)

,

𝑎−𝐹𝑘𝑘
2𝑒𝑘𝐿∕2 = (19d)

𝑐𝐹𝑞
(

𝑞2 cos[(𝑞 − 𝛿)𝐿∕2] + 𝑘𝑞 sin[(𝑞 − 𝛿)𝐿∕2]
)

.

where 𝑎± = 𝐶±𝑘, 𝑏± ≃ 𝐶±𝑘2𝐹
∗
2 𝑘

2
2𝑒

𝑘2𝐿∕2∕2 and 𝑒±𝑖𝛿𝐿∕2𝑐 = 𝐶±𝑞 . Note that
𝛿 can in principle be a complex number. For future convenience we
rewrite the above exchange boundary conditions to

𝑏̄+ + 𝑎−𝐹𝑘𝑘
2𝑒−𝑘𝐿∕2 = 2𝑐𝐹𝑞𝑞

2 cos[(𝑞 + 𝛿)𝐿∕2], (20a)

𝑏̄+ − 𝑎−𝐹𝑘𝑘
2𝑒−𝑘𝐿∕2 = 2𝑐𝐹𝑞𝑘𝑞 sin[(𝑞 + 𝛿)𝐿∕2], (20b)

̄ 2 𝑘𝐿∕2 2
3

𝑏− + 𝑎−𝐹𝑘𝑘 𝑒 = 2𝑐𝐹𝑞𝑞 cos[(𝑞 − 𝛿)𝐿∕2], (20c) i
−𝑏̄− + 𝑎−𝐹𝑘𝑘
2𝑒𝑘𝐿∕2 = 2𝑐𝐹𝑞𝑘𝑞 sin[(𝑞 − 𝛿)𝐿∕2]. (20d)

where 𝑏̄+ = (𝐹𝑞∕𝐹 ∗
𝑞 )𝑏+ + 𝑎+(𝐹𝑞∕𝐹 ∗

𝑞 )𝐹
∗
𝑘 𝑘

2𝑒𝑘𝐿∕2 and 𝑏̄− = (𝐹𝑞∕𝐹 ∗
𝑞 )𝑏− +

𝑎+(𝐹𝑞∕𝐹 ∗
𝑞 )𝐹

∗
𝑘 𝑘

2𝑒−𝑘𝐿∕2 are free parameters since 𝑘2 ≫ 𝑘 implies that 𝑏+
and 𝑏− are – to good approximation – not restricted by the magneto-
static boundary conditions. From here we find that the contributions of
𝑞 and 𝛿 can be separated by making use of the trigonometric identities

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos[(𝑞 ± 𝛿)𝐿∕2] = cos(𝑞𝐿∕2) cos(𝛿𝐿∕2)

∓ sin(𝑞𝐿∕2) sin(𝛿𝐿∕2),

sin[(𝑞 ± 𝛿)𝐿∕2] = sin(𝑞𝐿∕2) cos(𝛿𝐿∕2)

± cos(𝑞𝐿∕2) sin(𝛿𝐿∕2).

The above trigonometric identities allow us to express 𝑏̄+ and 𝑏̄−
in Eq. (20) in terms of the variables 𝑎−, 𝑘 and 𝑞, which gives

𝑏̄+ =
𝑎−𝐹𝑘𝑘2

𝑘2 + 𝑞2

[

(𝑞2 − 𝑘2)𝑒−𝑘𝐿∕2 (21a)

+ 2𝑘𝑞
(

csc(𝑞𝐿)𝑒𝑘𝐿∕2 − cot(𝑞𝐿)𝑒−𝑘𝐿∕2
)

]

,

𝑏̄− =
𝑎−𝐹𝑘𝑘2

𝑘2 + 𝑞2

[

(𝑞2 − 𝑘2)𝑒𝑘𝐿∕2 (21b)

+ 2𝑘𝑞
(

cot(𝑞𝐿)𝑒𝑘𝐿∕2 − csc(𝑞𝐿)𝑒−𝑘𝐿∕2
)

]

,

here csc(𝑞𝐿) ≡ 1∕ sin(𝑞𝐿) and cot(𝑞𝐿) ≡ cos(𝑞𝐿)∕ sin(𝑞𝐿).
ence, Eqs. (20) and (21) allow us to express 2𝑐𝐹 ∗

𝑞 𝐹𝑞𝑞2 cos[(𝑞±𝛿)𝐿∕2] in
erms of the variables 𝑎−, 𝑘 and 𝑞, which to leading order in exponential
unctions is given by

𝑐𝐹𝑞 cos[(𝑞 + 𝛿)𝐿∕2] =
𝑎−𝐹𝑘𝑘2𝑒𝑘𝐿∕2

𝑘2 + 𝑞2
(22a)

×
(

𝑒−𝑘𝐿 + 𝑘𝐿 csc(𝑞𝐿)∕𝑞𝐿
)

,

𝐹 ∗
𝑞 cos[(𝑞 − 𝛿)𝐿∕2] =

𝑎−𝐹𝑘𝑘2𝑒𝑘𝐿∕2

𝑘2 + 𝑞2
𝐹 ∗
𝑞

𝐹𝑞
(22b)

× (1 + 𝑘𝐿 cot(𝑞𝐿)∕𝑞𝐿) .

So far we have used the exchange boundary conditions Eq. (19) to
express 2𝑐𝐹 ∗

𝑞 𝐹𝑞𝑞2 cos[(𝑞 ± 𝛿)𝐿∕2] in terms of the variables 𝑎−, 𝑘 and 𝑞.
From here, we impose the magnetostatic boundary conditions to find a
closed expression for 𝑞 satisfying all boundary conditions.

The remaining magnetostatic boundary conditions (18), for 𝑘2 ≫ 𝑘𝑥,
𝑒𝑘2𝐿∕2 ≫ 𝑒−𝑘2𝐿∕2 and |𝐹 ∗

2 | ≫ |𝐹2|, are well approximated by

+(2𝐹𝑘𝐹
∗
𝑘 + 𝐹 ∗

𝑘 )𝑒
𝑘𝐿∕2 − 𝑎−𝐹𝑘𝑒

−𝑘𝐿∕2 = (23a)
2𝑐𝐹𝑞 cos[(𝑞 + 𝛿)𝐿∕2],

+𝐹
∗
𝑘 𝑒

−𝑘𝐿∕2 − 𝑎−(2𝐹𝑘𝐹
∗
𝑘 + 𝐹𝑘)𝑒𝑘𝐿∕2 = (23b)

−2𝑐𝐹 ∗
𝑞 cos[(𝑞 − 𝛿)𝐿∕2].

.1.2. Dipole-exchange spin-wave modes
The above magnetostatic boundary conditions together with the

ffective exchange boundary conditions in Eq. (22) give two linear ho-
ogeneous equations in 𝑎+ and 𝑎−. Hence, we have spin-wave solutions
hen the determinant of this square matrix vanishes. At leading order

n exponential functions of the trigonometric contribution we find this
o be the case when

det
[

(2𝐹𝑘 + 1) (3𝑘2 + 𝑞2)𝑒−𝑘𝐿

𝑒−𝑘𝐿 𝐷(𝑘, 𝑞)

]

= 0, (24)

ith
(𝑘, 𝑞) = (2𝐹 ∗

𝑘 + 1)
[

(3𝑘2 + 𝑞2) + 2𝑘3𝐿 cot(𝑞𝐿)∕𝑞𝐿
]

+4𝑘2(𝑘2 + 𝑞2) (1 + 𝑘𝐿 cot(𝑞𝐿)∕𝑞𝐿).

n the above we used the bulk equation of motion 2𝐹𝑞𝐹 ∗
𝑞 +𝐹𝑞 +𝐹 ∗

𝑞 = 0
o obtain 𝐹 ∗

𝑞 ∕𝐹𝑞 = −(2𝐹 ∗
𝑞 + 1). Note that we neglected 2𝑘3𝐿 csc(𝑞𝐿)∕𝑞𝐿

n Eqs. (24) and (22a) since it is exponentially suppressed in the
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equation of motion and thus not of importance for the dispersion
relation. The spin-wave modes hence satisfy
[

(𝐹𝑘 + 1∕2)(𝐹 ∗
𝑘 + 1∕2) − 𝑒−2𝑘𝐿∕4

]

× (3𝑘2 + 𝑞2)

+ (𝐹𝑘 + 1∕2)2𝑘2(𝑘2 + 𝑞2)

+ (𝐹𝑘 + 1∕2)(𝐹 ∗
𝑘 + 1∕2 + 𝑘2 + 𝑞2)

× 2𝑘3𝐿 cot(𝑞𝐿)∕𝑞𝐿

=0.

(25)

When interested in the 𝑛th spin-wave mode the above equation is well
approximated by
[

(𝐹𝑘,𝑛 + 1∕2)(𝐹 ∗
𝑘 + 1∕2) − 𝑒−2𝑘𝐿∕4

]

×
(

3𝑘2 + 𝑛2𝜋2∕𝐿2 + 𝛿𝑛𝜋
2∕4𝐿2)

+ (𝐹𝑘,𝑛 + 1∕2)2𝑘2(𝑘2 + 𝑛2𝜋2∕𝐿2)

+ (𝐹𝑘,𝑛 + 1∕2)(𝐹 ∗
𝑘,𝑛 + 1∕2 + 𝑘2 + 𝑛2𝜋2∕𝐿2)

× 2𝑘3𝐿 cot(𝑞𝐿)∕𝑞𝐿

=0,

(26)

with 𝛿𝑛 ≡ 𝛿𝑛,0 the Kronecker delta, 𝐹𝑘,𝑛 ≡ 𝐹𝑘|𝑞→𝑛𝜋∕𝐿 and 𝐹 ∗
𝑘,𝑛 ≡

𝐹 ∗
𝑘 |𝑞→𝑛𝜋∕𝐿. In order to proceed we use the identity

𝜋 cot(𝜋𝑥) = 1
𝑥
+ 2𝑥

∞
∑

𝑛=1

1
𝑥2 − 𝑛2

. (27)

o make use of the above identity we consider 𝜋𝑥 = 𝑞𝐿. Furthermore,
e note that 𝑞 for 𝑛th spin-wave is in the interval 𝑛𝜋∕𝐿 < 𝑞 < (𝑛+1)𝜋∕𝐿.

For the 𝑛th spin wave mode we obtain

cot(𝑞𝐿)
𝑞𝐿

≃
2 − 𝛿𝑛

𝑞2𝐿2 − 𝑛2𝜋2
+ 2

𝑞2𝐿2 − (𝑛 + 1)2𝜋2
− 𝛼𝑛, (28)

ith 𝛿𝑛 ≡ 𝛿𝑛,0 the Kronecker delta and

𝑛 =
4

3𝜋2
1

(1 + 𝑛)2
. (29)

e expand 𝑞2𝐿2 around 𝑛2𝜋2 for the 𝑛th spin-wave mode. From here
t follows that Eq. (26) can be written explicitly as

𝑛,𝑘𝑧
3 + 𝑏𝑛,𝑘𝑧

2 + 𝑐𝑛,𝑘𝑧 + 𝑑𝑛,𝑘 = 0, (30)

ith 𝑧 = 𝑞2𝐿2 − 𝑛2𝜋2. Furthermore,

𝑎𝑛,𝑘 ≈ − 1, (31a)

𝑏𝑛,𝑘 =𝐵𝑛,𝑘 − 𝛼𝑛𝐶𝑛,𝑘 − 𝑎𝑛,𝑘 (2𝑛 + 1)𝜋2, (31b)

𝑐𝑛,𝑘 =(4 − 𝛿𝑛)𝐶𝑛,𝑘 (31c)
− (𝐵𝑛,𝑘 − 𝛼𝑛𝐶𝑛,𝑘)(2𝑛 + 1)𝜋2,

𝑛,𝑘 = − 𝐶𝑛,𝑘(2 − 𝛿𝑛)(2𝑛 + 1)𝜋2, (31d)

nd

𝐵𝑛,𝑘 ≃ 1 − 𝑒−2𝑘𝐿

4𝛾𝑛,𝑘∕𝐿2
− (𝑘2𝐿2 + 𝑛2𝜋2) (32a)

×
𝑘2𝐿2 + 𝑛2𝜋2 + 𝛿𝑛𝜋2∕4
3𝑘2𝐿2 + 𝑛2𝜋2 + 𝛿𝑛𝜋2∕4

,

2𝐶𝑛,𝑘 ≃
𝑘3𝐿5 × 𝛾−1𝑛,𝑘

3𝑘2𝐿2 + 𝑛2𝜋2 + 𝛿𝑛𝜋2∕4
, (32b)

here 𝛾𝑛,𝑘 = 2(𝛺𝐻 + 1∕2 + 𝑘2 + 𝑛2𝜋2∕𝐿2). For the 𝑛th spin-wave
mode Eq. (30) gives the formal solution

𝑧𝑛,𝑘 = −1
3
𝑏𝑛,𝑘
𝑎𝑛,𝑘

+

√

−4𝑃𝑛,𝑘

3
(33a)

× cos

[

1
3
arccos

(

3𝑄𝑛,𝑘

2𝑃𝑛,𝑘

√

−3
𝑃𝑛,𝑘

)

− 2𝜋
3

]

,

4

Fig. 2. The first seven modes of the dipole-exchange spin-wave dispersion relation for
𝛺𝐻 = 1∕2 and 𝐿 = 24 are shown. The dashed lines correspond to the analytic dispersion
in Eq. (35), while the solid lines correspond to the full numeric solution of Eqs. (14)
and (18).

with

𝑄𝑛,𝑘 =
𝑑𝑛,𝑘
𝑎𝑛,𝑘

− 1
3
𝑏𝑛,𝑘
𝑎𝑛,𝑘

𝑐𝑛,𝑘
𝑎𝑛,𝑘

+ 2
27

( 𝑏𝑛,𝑘
𝑎𝑛,𝑘

)3
, (34a)

𝑃𝑛,𝑘 =
𝑐𝑛,𝑘
𝑎𝑛,𝑘

− 1
3

( 𝑏𝑛,𝑘
𝑎𝑛,𝑘

)2
. (34b)

The dispersion relation of the 𝑛th spin-wave mode is accordingly given
by Eq. (12)

𝛺2
𝑛 =

[

𝛺𝐻 + 1
2
+ 𝑘2 + 𝑛2𝜋2

𝐿2
+

𝑧𝑛
𝐿2

]2
− 1

4
. (35)

Note that Eqs. (33) and (35) are expressed in terms of the dimension-
less wavenumber 𝛬𝑘 → 𝑘 and the dimensionless thickness 𝐿∕𝛬 → 𝐿.
Furthermore, Eq. (35) gives the dispersion relation for the dimension-
less frequency 𝛺 = 𝜔∕𝛾𝜇0𝑀𝑠. This is the main result of this paper.
In Fig. 2 we compare the analytic dipole-exchange mode in Eq. (35)
with the full numeric solution. We see that the analytic dispersion
derived above is in good agreement with the full numeric solution
of Eqs. (14) and (18). We like to stress that the analytic spin wave
modes given in Eq. (35) do not experience level crossing. Hence, the
𝑛th mode does not cross the (𝑛 − 1) and (𝑛 + 1)th energy modes. In the
remaining Sections 3.2 and 3.3 we will simplify Eq. (35) for relative
thin and thick films respectively.

3.2. Thick thin-film approximation for the lowest exchange mode

In relatively thick films, 𝐿 > (10
√

𝐽∕𝜇0𝑀𝑠), for sufficiently long
wavelengths, the lowest energetic mode will be dominated by the
first exchange mode. Away from the DE mode, we may approximate
exchange mode solutions of Eq. (24) by 𝐷(𝑘, 𝑞) = 0 with 𝐹 ∗

𝑘 → 𝐹 ∗
𝑘,𝑛. This

s equivalent to 𝑎𝑛,𝑘 → 0 in Eq. (30) and 𝑒−2𝑘𝐿 → 0 and 𝛿𝑛𝜋2∕4∕𝐿4 → 0
in Eq. (32). The above results in a second order equation in 𝑧 when the
exchange mode has a small avoided crossing with the DE mode. For the
lowest exchange mode 𝑛 → 0 this becomes

𝑘𝐿 cot(𝑞𝐿)∕𝑞𝐿 = 4𝑘2𝛾𝑘 − 3. (36)

ence, we obtain a quadratic equation in 𝑧

𝑘𝑧
2 + 𝑐𝑘𝑧 + 𝑑𝑘 = 0, (37)

here

𝑏𝑘 =𝐵𝑘 −
4𝐶𝑘

3𝜋2
, (38a)

𝑐𝑘 =13
3
𝐶𝑘 − 𝜋2𝐵𝑘, (38b)

𝑑 = − 𝜋2𝐶 , (38c)
𝑘 𝑘
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Fig. 3. Dipole-exchange dispersion relation of the lowest energy mode for 𝛺𝐻 =
1∕2 and 𝐿 = 24. The dashed line correspond to the analytically derived dispersion
in Eq. (41), while the solid line gives the numeric solution to Eqs. (14) and (18) for
the lowest energy mode.

and

𝐵𝑘 ≃ 3 − 8(𝛺𝐻 + 1∕2 + 𝑘2)𝑘2, (39a)

𝐶𝑘 ≃ 2𝑘𝐿. (39b)

We thus find

𝑧 = −
𝑐𝑘
2𝑏𝑘

+ sgn(𝑏𝑘)

√

(

𝑐𝑘
2𝑏𝑘

)2
−

𝑑𝑘
𝑏𝑘

. (40)

he lowest exchange mode dispersion is thus
2 =

[

𝛺𝐻 + 1∕2 + 𝑘2 + 𝑧∕𝐿2]2 − 1∕4. (41)

In Fig. 3 we compare the above dispersion relation with the numeric
olution of the lowest energy mode. We find good agreement between
he approximated dispersion relation in Eq. (41) and the numerical
owest energy mode for wavelengths 𝑘 larger than the level crossing
oint with the DE mode. Note that the above simplification is not
estricted to the lowest energy exchange mode, but can be applied to
he higher exchange modes as long as there is no large avoided crossing
ith the DE mode.

.3. Thin film approximation for the lowest energy mode

For very thin films, 𝐿 ∼ (
√

𝐽∕𝜇0𝑀𝑠), only the DE wave is of impor-
tance for the lowest energy mode. For very thin films it is reasonable
to assume 𝑞2𝐿2 < (3∕4)2𝜋2, we may thus approximate
cot(𝑞𝐿)
𝑞𝐿

≃ 1
(𝑞𝐿)2

− 1
3
. (42)

hus the lowest energy mode in very thin films is described by a
uadratic equation in 𝑧

𝑘𝑧
2 + 𝑏𝑘𝑧 + 𝑐𝑘 = 0. (43)

here

𝑘 ≈ −2(𝛺𝐻 + 1∕2 + 𝑘2)∕𝐿2, (44a)

𝑏𝑘 ≃ 𝐵𝑘 − 𝑐𝑘∕3, (44b)

𝑐𝑘 ≃ 𝑘𝐿∕6, (44c)

nd

𝑘 ≃ 1 − 𝑒−2𝑘𝐿

4
− 2

3
(𝛺𝐻 + 1∕2 + 𝑘2)𝑘2. (45a)

The lowest energy mode in very thin films is thus given by

𝑧 = −
𝑏𝑘 +

√

(

𝑏𝑘
)2

−
𝑐𝑘 , (46)
5

2𝑎𝑘 2𝑎𝑘 𝑎𝑘
Fig. 4. Dipole-exchange dispersion of the lowest energy mode for 𝛺𝐻 = 1∕2 and 𝐿 = 4.
The dashed line corresponds to the approximate dispersion relation in Eq. (47). The
solid line corresponds to the numeric solution of Eqs. (14) and (18).

Fig. 5. The first seven modes of the dipole-exchange spin-wave dispersion relation for
𝛺𝐻 = 1∕2 and 𝐿 = 24 are shown. The dashed lines correspond to the analytic dispersion
derived by Kalinikos and Slavin [3,4] in Eq. (48). The solid lines correspond to the full
numerical solution of Eqs. (14) and (18). We did not plot the analytic results in Eq. (35)
and Fig. 2, since it agrees very well with the numerical solution.

where the lowest energy dispersion relation is given by

𝛺2 =
[

𝛺𝐻 + 1∕2 + 𝑘2 + 𝑧∕𝐿2]2 − 1∕4. (47)

This is plotted in Fig. 4. We again find good agreement between the
analytic result in Eq. (47) and the numerical solution of the full bound-
ary conditions in Eqs. (14) and (18). Note that we took 𝛿𝑛𝜋2∕4𝐿2 → 0
of Eq. (32) in the very thin-film limit, since it simplifies the expressions
for 𝐵𝑘 and 𝑐𝑘 and does not have a big impact on the dispersion relation
or very thin-films.

.4. Comparison with Kalinikos and Slavin [3,4]

In the paper by Kalinikos and Slavin [3,4] the dipole-exchange spin-
ave spectrum that follows from the diagonal approximation for spin
aves propagating perpendicular to a tangentially magnetized thin-film
as given by
2
𝑛 = [𝛺𝐻 + 1∕2 + 𝑘2 + 𝑛2𝜋2∕𝐿2]2 − [𝑃𝑛 − 1∕2]2, (48)

with

𝑃𝑛 =
𝑘2𝐿2

𝑘2𝐿2 + 𝑛2𝜋2

[

1 − 𝑘2𝐿2

𝑘2𝐿2 + 𝑛2𝜋2
(49)

× 2
1 + 𝛿𝑛

(

1 − (−1)𝑛𝑒−𝑘𝐿

𝑘𝐿

) ]

.

In Fig. 5 we plotted the spin-wave dispersion by Kalinikos and Slavin [3,
4] in Eq. (48) for relatively thick films. We see that the analytic
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Fig. 6. Dipole-exchange dispersion of the lowest energy mode for 𝛺𝐻 = 1∕2 and 𝐿 = 4.
he dashed line corresponds to the dispersion relation by Kalinikos and Slavin [3,4]

n Eq. (48). The solid line on the other hand corresponds to the numeric solution
f Eqs. (14) and (18). We did not plot the analytic results in Eq. (35) and Fig. 4, since
t agrees very well with the numerical solution.

pin-wave dispersion by Kalinikos and Slavin [3,4] shows quantitative
ifferences with the analytic spin-wave dispersion derived in this arti-
le Eqs. (35) and (41) and the numerical solution of the full problem.
or very thin films on the other hand, we find good agreement between
he theory of Kalinikos and Slavin [3,4], the analytic results derived
n this article Eqs. (35) and (47) and the numeric solution of the full
oundary conditions, see Fig. 6.

. Discussion and conclusions

We considered the theory of spin waves in ferromagnetic films.
ore specifically, the theory of spin waves propagating perpendicular

o an in-plane magnetic field. This case is of special interest since it is
he most typical configuration used in spin wave experiments. The main
esult of this article is the spin wave spectrum in Eq. (35) which we de-
ived by imposed the exchange and magnetostatic boundary conditions
n bulk spin wave solutions. This derivation differs significantly from
he derivation of Kalinikos and Slavin [3,4] where the magnetostatic
reen’s function was used to construct the spin wave spectrum. The
oundary problem we obtained has an accurate analytical solution
hich agrees well with the numerical solution and shows quantitative
ifferences with the commonly used theory in Refs. [3,4] in relative
hick films. This inaccuracy of the spin wave spectrum that follows from
he diagonal approximation in the theory by Kalinikos and Slavin [3,4]
as already been observed by Kreisel et al. [2]. Furthermore, our results
ould be verified experimentally, for example using Brillouin light
cattering and spin-wave spectroscopy [12].

Future research could generalize the method presented here to
escribe spin waves propagating in an arbitrary direction with re-
pect to a generally oriented external magnetic field. This is relatively
traightforward for in-plane magnetizations. Another way to generalize
his model is to include the effects of both surface and boundary
nisotropies. Lastly, the magnetization profile of spin wave modes
ould relatively straightforwardly be determined from the spin wave
pectrum in Eqs. (35), (41) and (47).
6
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