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ABSTRACT 
Breathing patterns are shown to have strong correlations with emo-
tional states, and hence have promise for automatic mood order 
prediction and analysis. An essential challenge here is the lack 
of ground truth for breathing sounds, especially for medical and 
archival datasets. In this study, we provide a cross-dataset approach 
for breathing pattern prediction and analyse the contribution of 
predicted breath signals for the detection of depressive states, using 
the DAIC-WOZ corpus. We use interpretable features in our models 
to provide actionable insights. Our experimental evaluation shows 
that in participants with higher depression scores (as indicated by 
the eight-item Patient Health Questionnaire, PHQ-8), breathing 
events tend to be shallow or slow. We furthermore tested linear 
and non-linear regression models with breathing, linguistic sen-
timent and conversational features, and show that these simple 
models outperform the AVEC17 Real-life Depression Recognition 
Sub-challenge baseline. 
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• Computing methodologies → Machine learning approaches; 
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1 INTRODUCTION 
Automatic emotional assessment from voice is a tool with great 
potential for mood disorder analysis and prediction. However, stud-
ies in the literature focus primarily on non-verbal paralinguistic 
qualities for this purpose [18, 26]. This paper investigates breathing 
patterns for such applications, in general, and depression, in partic-
ular. Breathing is known to correlate with emotional states, and it 
was previously shown that for instance, in the emotional moments 
during the recounting of traumatic events, there are signifcant 
changes in the use of breathing and silences [1]. Here, we propose 
a novel approach with interpretable features to process breathing 
during speech for depression prediction. 

For the analysis of breathing, the lack of ground truth is a re-
current challenge. Although the ground truth is measurable with 
breathing belts, performing such measurements is not the standard 
for most naturally recorded data. Cross-dataset learning provides a 
potential solution for this problem: the models can be learned on ex-
ternal data for which ground truth is available. However, since the 
breathing ground truth often comes in the form of changes in diam-
eter of the thorax/abdomen (and not necessarily as measurements 
related to a sound signal), it is not intuitive to evaluate its accuracy 
by comparing the audio and signal plots manually. Here, we propose 
an approach that will enable assessing the accuracy of the breathing 
predictions based only on the audio recordings. With this goal in 
mind, we use the INTERSPEECH 2020 Computational Paralinguis-
tics Challenge (ComParE) Breathing Sub-challenge dataset [26] to 
observe correlations between audio and breathing signals and then 
extrapolate this knowledge to other settings for breathing signal 
prediction. 

In our proposed multimodal approach, we combine linguistic and 
breathing features to assess psychopathology. Our ultimate goal is 
to understand how breathing during speech relates to emotionality 
in both verbal and voice features, such as pitch and voice quality. 
We empirically observe variations in the breathing patterns during 
emotional moments, such as faster and shallow breathing, holding 
the breath and taking deep breaths, which can serve as indicators. 

This paper is structured as follows. In Section 2, we briefy sum-
marise the related work on depression analysis from speech, as well 
as discuss breathing analysis in afective computing. In Section 3, 
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we detail the datasets we make use of, i.e. the INTERSPEECH Com-
ParE 2020 Breathing Subchallenge corpus for cross-dataset learning 
and the DAIC-WOZ corpus for experimental evaluation of depres-
sion analysis. In Section 4, we detail our approach for cross-dataset 
breathing prediction, as well as feature extraction and depression 
regression. We report our experimental results and observations 
in Section 5, and provide future directions and a discussion in Sec-
tion 6. 

2 RELATED WORK 

2.1 Breathing, speech and language 
Breathing is a constant in a human’s life and happens naturally 
and efortlessly. This process is adjusted continuously to the indi-
vidual’s needs. For example, we coordinate breathing with eating 
or speaking. Breathing occurs via the inspiratory pump muscles 
contracting to draw air into the lungs. Expiration occurs mainly 
passively, with the recoil of the chest wall and lungs during quiet 
breathing. If needed, expiratory muscles can produce active expi-
ration. During the respiratory cycle, the volume of the lungs will 
vary. 

Vocalisation will impose aeroacoustic constraints and so require 
adaptations of breathing control. However, breathing adaptations 
during speech go beyond that; respiration needs to be adjusted to 
diferent linguistic and communicative levels. For example, syn-
tactic boundaries, sentence length, prosody and listener-speaker 
behaviour can infuence this adaptation mechanism [8]. From a 
physiological point of view, speech breathing will involve more 
variable and deeper inhalations, depending on the breathing capac-
ity needed for the spoken sentence, followed by a long exhalation. 
The respiratory volume during speech was studied by Winkworth 
et al. [32] with the help of respiratory belts (on chest and abdomen), 
who found that the majority of inspirations (i.e. inhalations) oc-
curred at structural boundaries during reading and “grammatical 
junctures" during spontaneous speech. As predicted, the latter show 
a higher number of grammatically inappropriate inspirations. They 
also noted that the initiation lung volume (inspiration) is corre-
lated with the breath group length. Consequently, we expect a 
higher inspiration volume before a long utterance, particularly dur-
ing spontaneous speech, where the subject has the opportunity to 
make adjustments to the utterance on the go. 

Emotions happen with physiological changes within the entire 
body, including changes in breathing. The respiratory motor system 
commands the contraction of the respiratory muscles following 
complex neural networks in our brain and primarily adapts in 
response to metabolic demands. However, this system’s output can 
also be infuenced by internal and external environmental changes, 
resulting in behavioural breathing. An example is the relationship 
between anxiety and breathing: studies show an increase in the 
respiratory rate with anticipation anxiety, which is not related to 
a higher demand for oxygen. Unpleasant respiratory sensations, 
such as an uncomfortable urge to breath, depend on the afective 
state of the subject and can be elicited by anxiety and distress [11]. 

Observations focusing on negative emotions and breathing pat-
terns indicate that the arousal dimension is essential for the analysis. 
For example, although low valence and high arousal emotions such 
as anger or stress increase the respiratory rate and breathing depth, 

this phenomenon is not found for all negative emotional conditions. 
Emotions such as sadness or being depressed are associated with 
decreased respiratory rate, as well as slow and shallow breathing. 

It should be noted that defning a general breathing variation pat-
tern for clinically depressed patients is challenging. These patients 
will often have an anxiety disorder responsible for an increased 
breathing rate, which might point to a voluntarily induced slowing 
of the respiratory rate to cope with the stimulus [4]. Furthermore, 
a higher respiratory pattern variability is correlated with depres-
sion, presenting more variation in pause duration and respiratory 
frequency [37]. 

If the emotion-related changes in breathing patterns can be distin-
guished from other factors infuencing breathing, they can serve as 
useful and interpretable features for the analysis of mood disorders. 
Eforts to provide interpretability to accurate but complex models 
for mood disorder recognition have received increased attention 
over the past years [2, 3, 19]. However these eforts still amount to 
only a small fraction in the computational health research domain. 
In the context of depression, most studies do not assess the potential 
of breathing features explicitly. Our main premise in this paper is 
that such features can provide explainable indicators, and help for 
diagnostics. 

2.2 Depression analysis 
Looking at the relevant depression analysis literature, we observe 
that a large number of features are potentially useful for depression 
detection, including speech behaviour, speech prosody, eye move-
ments, and head pose. Neuro-physiological changes associated with 
depression infuence motor coordination and the efects can be de-
tected in acoustic features, such as jitter and shimmer [23, 24]. Such 
analysis can be used for automatically screening subjects and to 
facilitate diagnosis [31]. Recent studies also fnd speech behaviour 
features (e.g., pauses) to be very distinctive for diagnosis [2]. 

Banerjee et al. [3] described a single model for predicting three 
mood disorders, depression, anxiety, and anhedonia, respectively, 
as three binary prediction tasks. First, unimodal convolutional neu-
ral network (CNN) models are trained on audio, video, and text 
modalities, and the features are transferred to a multimodal model. 
Then, encodings are concatenated and processed further by an at-
tention mechanism and a fully connected layer. Some features are 
not very informative by themselves (such as “Contrast Spectrogram 
10”), while others are more interpretable, such as “Word Valence” or 
“Number of Characters”. The fact that the top ten most important 
features contain many linguistic features, as well as that the linguis-
tic model was found to be the highest performing unimodal model, 
indicates that linguistic features are quite important for these tasks. 

Depression analysis from conversational data allowed the inves-
tigation of a range of features. The Audio/Visual Emotion Chal-
lenge (AVEC) has been instrumental in the development of new 
approaches, and depression analysis was specifcally addressed 
in these challenges. During the AVEC’16, AVEC’17 and AVEC’19 
Challenges on depression analysis [21, 22, 30], multiple solutions 
were presented for depression assessment on the Distress Analysis 
Interview Corpus - Wizard of Oz (DAIC-WOZ) dataset, which is 
part of the larger Distress Analysis Interview Corpus (DAIC) [10]. 
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The database contained human-agent interactions, and the chal-
lenge participants were required to classify whether the human 
was depressed or not, where the binary ground-truth was based on 
the severity of self-reported depression as indicated by the Patient 
Health Questionnaire (PHQ-8) [13] score for each human-agent 
interaction. Hybrid solutions combining video, audio, and text fea-
tures were shown to be the most successful, taking advantage of 
the transcriptions provided for participant turn segmentation and 
topic modelling [9, 27, 35, 36]. 

The modelling of the conversation topic is useful, because dif-
ferent topics elicit diferent emotions in subjects, and this leads to 
diferent amounts of information for depression analysis. In the 
challenge data, several questions were answered by the participants, 
and these are used to steer the topic. In [27], the questions posed 
were divided into classes inspired by the PHQ-8 domains: lack of 
interest, depressed feelings, sleep quality, tiredness, appetite, failure, 
concentration, and psycho-physiological events such as moving 
and speaking very slowly. Similar conclusions were reached in [33] 
showcasing the diferent predictive values of each question for 
post traumatic stress disorder (PTSD), on an extended set of DAIC 
interviews with both war veterans and non-veterans. 

The lack of annotated data for the study of depression screen-
ing motivated researchers to focus solely on audio features for 
depression detection, achieving motivating results in the challenge 
development sets [18, 34]. Further work has shown the potential of 
speech-related features for depression assessment using deep learn-
ing approaches across various depression scored datasets [17], with 
the most recent work proposing a Mel Frequency Cepstrum Coef-
cient (MFCC)-based Recurrent Neural Network model, focusing on 
the efect of depression in vowel pronunciation [20]. 

Apart from recurrent neural networks, attention-based models 
have recently been employed for depression analysis. The winners 
of the AVEC’19 Detecting Depression with AI Sub-challenge (DDS) 
have developed an attention-based model, with multiple stages of 
attention layers using three modalities (audio, video, text) to predict 
the PHQ-8 scores [19]. The audio and video features were indepen-
dently processed through a Bi-LSTM attention network and the text 
features through an ordinary Bi-LSTM layer. Then, the output from 
these three modalities were merged by means of an extra attention 
layer. In this way, the attention weights gave an indication of the 
importance of each modality. Indicated by the weights, the text 
modality was found to be very important (0.57) with respect to the 
visual and audio modalities (both 0.21). The authors also trained 
unimodal models, with a text-only model resulting in the best score. 
Both results indicate that the text modality, processed in this way, 
also provides valuable cues towards prediction of depression. 

3 CORPORA 
In this work, we use several corpora for breathing analysis and 
depression analysis. We describe these resources in this section. 

3.1 Speech Breath Corpus (SBC) 
The SBC database is a subset of the UCL Speech Breath Monitor-
ing (UCL-SBM) corpus and is introduced for the breathing Sub-
Challenge of the INTERSPEECH 2020 Computational Paralinguis-
tics Challenge [26]. The dataset includes spontaneous speech about 

the participant’s daily experiences, such as visiting a city. It consists 
of 49 audio interviews, each of four minutes, with the correspond-
ing breath signal measured with a piezoelectric respiratory belt in 
the thorax area. 

For the present work, we have further annotated audible breath 
events in 10 recordings from the SBC database, corresponding to 
40 minutes of spontaneous speech, according to the type of event 
(“Inhale" or “Exhale"), as well as the location of the event in the 
speech signal (“Middle of the speech", or a “pause"), segmenting a 
total of 433 breath events. 

3.2 Distress Analysis Interview 
Corpus-Wizard-Of-Oz (DAIC-WOZ) 

The Distress Analysis Interview Corpus-Wizard-of-Oz dataset (DAIC-
WOZ) consists of semi-structured clinical interviews designed to 
support the diagnosis of psychological distress conditions, partic-
ularly depression and post-traumatic stress disorder (PTSD). The 
interviews were conducted by an AI based virtual agent, under a 
wizard-of-oz framework, meaning that human agents controlled 
the agent’s non-verbal behaviours and verbal utterances [6, 10]. 
This corpus motivated the Depression, Mood and Emotion Chal-
lenge in the Annual Workshop on Audio/Visual Emotion Challenge 
(AVEC) in 2016 [30], and the Real-life Depression Challenge in 
AVEC 2017 [22]. In the remainder of our work, we will refer to the 
2017 challenge and related publications as a baseline. 

For each session of the Depression corpus used in AVEC’17, audio 
recordings, transcriptions, and baseline audio and video features are 
available. The dataset includes 107, 35, and 47 subjects for training, 
development, and test sets, respectively. The average depression 
severity on the training and development set is M = 6.67 (SD = 5.75) 
out of a maximum score of 24. 

In addition, for depression prediction, self-assessed PHQ-8 scores 
are provided. We use the breathing annotations presented in [12] 
for breath signal cross-dataset prediction evaluation. A total of 1478 
breath event are annotated across 16 recordings. These annotations 
were performed on the extended version of the dataset proposed in 
the 2019 edition of the AVEC [21]. 

4 METHODOLOGY 
Figure 1 illustrates the proposed pipeline for depression severity as-
sessment. One of the contributions of the present work is the breath 
signal prediction module and the extracted breathing features. In 
this section, we discuss the cross-dataset prediction method, con-
textual segmentation, and correlation analysis for each feature 
proposed. Lastly, we propose a depression regression model. 

4.1 Cross-dataset prediction for breath signal 
A continuous breathing signal provides extensive information about 
the respiratory patterns, allowing the measurement of depth, respi-
ratory speed, and pattern variability. When looking into emotions 
in a depressed subject, the depth of the respiratory events and over-
all pattern variability are essential factors, motivating us to focus on 
continuous breath signal prediction instead of simple audible breath 
event segmentation. To tackle the lack of a breath signal ground 
truth in the DAIC-WOZ dataset (and most other real-world datasets), 
we propose a cross-dataset prediction approach, based on the 1D 
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Figure 1: Proposed method for depression severity assessment. On the right, a deep breath event is highlighted on both audio 
and breath signals for visualisation purposes. Q1 and A1 refer to the frst question and answer, with the remaining questions 
and answers following the same notation. 

CNN + LSTM architecture proposed by the ComPaRE2020 challenge 
winner team, Markitantov et al. [14], on the Speech Breath Cor-
pus (SBC). This study suggests a prediction window of 16 seconds, 
suitable for the continuous speech characteristics in the dataset. 
However, our target dataset (DAIC-WOZ) consists of dialogues 
between participants and an AI agent taking turns to speak. There-
fore, the participant’s continuous speech sections are smaller, and 
predicting a continuous breath signal across the session becomes 
highly challenging due to the AI speech component. 

To adapt the 1D CNN + LSTM architecture proposed in [14] to 
the DAIC-WOZ, we focus solely on predicting the breath signals 
during the participants’ reactions. The frst challenge is to deter-
mine a suitable window size for the analysis of the breathing signals. 
Subsequently, we frst analyse the DAIC-WOZ training set to fnd 
a suitable input window considering the length of the participants’ 
reactions following a question. The resulting model performance 
is evaluated on the SBC, using the same cross-validation scheme 
proposed in the original paper. 

We frst segment the interview sections where the interviewee 
is speaking. These sections have annotations for the Participant (P), 
Filler (F), Breath (B), Laughter (L), and others that have a minimum 
duration equal to the selected window size. This division intends 
to mimic the participant’s action segmentation implemented in 
the DAIC-WOZ. A small window size increases the number of 
participant reactions from which we can obtain breathing signal 
predictions. However, if the size is too small, it becomes difcult to 
catch breathing events. We evaluated the selected parameters on 
the annotated breath events introduced by Kaya et al. [12]. 

Lastly, we compared simple functionals of the predicted breath 
signal between the annotated breath events of the SBC dataset and 
the target dataset. If the cross-dataset breath signal prediction is 
successful, we expect these events to have similar characteristics. 

4.2 Question segmentation and correlation 
analysis 

The analysis of the responses of a patient can be improved by taking 
into account the context of the signals. The literature on DAIC-
WOZ corpus presents correlations between depression recognition 
and certain question types, especially the ones related to PHQ-8 do-
mains [9, 27]. Following the literature, we also segment the dataset 
according to question-answer pairs, and target interactions that 
lead to more prolonged reactions from the participants. This ap-
proach has certain challenges. Above all, the dataset is based on a 
semi-open interview approach, meaning that not all participants 
are asked the same questions. With the breath signal prediction 
constraints described in Section 4.1, we further impose a reduction 
in the number of processed answers, eliminating some additional 
questions. Since the interviews are not fully structured, the ques-
tions derive from a limited question pool, and hence this approach 
is still possible. 

We use the labels provided with the train set transcriptions that 
annotate the AI agent’s actions, for example, “dream_job" refers to 
the question “what is your dream job?". We extend these annotations 
to the development and test sets by comparing each action of the 
AI Agent with the “tag" - “action speech" pairs defned in the train 
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set. In addition, we manually annotate the actions that were not in 
the initial action set. We further categorise the diferent questions 
according to their polarity into fve groups as “Positive" (“what do 
you enjoy about traveling?", “who’s someone that’s been a positive 
infuence in your life?"), “Negative" (“What are some things you 
wish you could change about yourself?", “Tell me about a time when 
someone made you feel really badly about yourself?"), “Neutral" 
(“Why did you move to LA?", “How long ago were you diagnosed?"), 
“Mixed", meaning emotional questions with no implicit polarity (“Do 
you fnd it easy to be a parent?", “Tell me about your kids?") and 
“General", follow up questions (“Can you give me an example of 
that?", “Tell me more about that"). 

We extract the corresponding answer for each question, defned 
as the participant’s speech between the inquiry and AI Agent’s 
following action. Considering the window size of our breathing 
prediction model, we solely consider the participant reactions with 
a duration equal to or longer than the breath prediction window 
defned in the cross-dataset breath signal prediction experiment. 
We then explore the correlation between the continuous diagnosis 
score, PHQ-8 Score, and question-specifc features under three main 
categories: conversational features, linguistic sentiment features, 
and breath signal features as presented in Table 1. These features 
are chosen due to their interpretability. 

We calculate valence, arousal, and dominance (VAD) features 
based on the NRC VAD lexicon [15]. Each word is associated with 
a reliable human-rated value for VAD. Then, we calculate the an-
swer’s sentiment by applying functionals to the list of values of all 
the words in the response. 

We pre-process the predicted breath signal for breathing feature 
extraction to remove noise in the prediction and produce inter-
pretable functionals based on the literature in the feld. Hence, we 
apply a Savitzky-Golay flter [25] with a polynomial of 2nd degree 
and a window of 13 samples, corresponding to 0.52 seconds, in line 
with the average breath event duration observed in the SBC. We 
extract simple functionals from the resulting smooth signal and the 
respective frst derivative. Further, we perform peak detection over 
the signal to identify the local maxima and minima, expected to 
be associated with inhale/exhales. To flter out the smaller peaks 
detected, likely related to small breath events during the speech, 
we defne the minimum prominence as 0.13, corresponding to the 
median prominence in the annotated breath events on the SBC, 
calculated on the predicted, smooth signal. Additionally, we de-
fne the minimum distance between maximum peaks as 2 seconds, 
approximately half of a typical breath cycle for young, healthy in-
dividuals [28]. Furthermore, to evaluate the breath signal during 
silences, we extracted the breathing signal for the reaction time 
and silences longer than 0.3 seconds. When it is not possible to 
calculate a feature, for instance, in the absence of two peaks in the 
case of peak-to-peak distance, we set its value to zero. 

For each session, we extract features from 1) each answer, 2) 
the combined set of answers for each question type, 3) the entire 
set of answers, and 4) all participant’s reactions. Then, we group 
the resulting feature vectors across the train set according to the 
answer selection criteria, i.e. 1) question, 2) question type, 3) all 
participants’ answers, and 4) all participants’ actions. Finally, we 
evaluate the Pearson Correlation Coefcient (PCC) between the 

individual features and the depression severity label for each subset, 
excluding all PCC with a p-value > 0.05. 

4.3 Depression severity prediction via 
regression 

As the last step of our processing pipeline, we want to evaluate 
the predictive power of the feature set and contextual segmenta-
tion proposed in the previous section for depression assessment. 
Since depression severity scores are continuous, we tackle this as a 
regression problem. 

The requirement of interpretability poses some challenges in 
regression modelling. Non-linear models are more fexible com-
pared to linear models, but can be less interpretable. When feature 
extraction approaches are used, the original feature space can be 
transformed into new features that are more parsimonious, but not 
readily interpretable. Furthermore, multiple linear regression as-
sumes a low correlation between the independent variables, which 
is not always efciently dealt with in cases when transforming 
the feature space is undesirable, for example, due to the loss in 
explainability. However, there will be some degree of collinearity in 
all real-world data. Previous studies report extensively on the infor-
mative value of collinearity and solutions to overcome performance 
loss due to redundant variables [7, 16]. 

Based on the correlations observed in the exploratory study, we 
train simple linear models (i.e. Linear Regression), and non-linear 
models (i.e. Random Forest), to evaluate the predictive value of the 
features defned and their generalisation power across diferent 
sets. 

Random forests have shown to produce good results in the 
AVEC’17 Challenge [9, 22, 27]. The parameters of the Random 
Forest model were optimised using ten-fold cross-validation and 
experimenting with diferent numbers of estimators (1, 10, 30, 40, 
50, 100, and 200, respectively). After selecting the best parameters 
using a 10-fold cross validation in the training set, a model was 
trained across the entire training set and evaluated on the devel-
opment set. We combined the train and development sets for test 
set predictions and followed a similar approach. Additionally, the 
features were standardised according to their distribution in the 
train set, and the diagnosis labels were min-max normalised. 

5 EXPERIMENTAL EVALUATION 

5.1 Cross dataset prediction for breath signals 
In this section, we discuss the adapted 1D CNN + LSTM model used 
and validate its performance on the annotated breath events from 
the SBC and the Extended DAIC-WOZ datasets. 

To defne a set of desirable input window sizes for the 1D CNN 
+ LSTM model, we analysed the duration of the answers to all 
the questions present in this set. From the 92 questions presented 
in the train set, the average response time per question is 10.8 
seconds, with a standard deviation of 6.1 seconds. For this reason, 
we explored breath signals with a window size of 4, 6, 8, and 10 
seconds. 

Initially, we explored the efects of EBUR128 loudness normalisa-
tion [29] in breathing signal prediction in the SBC. When applying 
loudness normalisation to the input for both training and evalua-
tion phases, with the original window size, we observed a sharp 
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Table 1: Summary of the features used for PHQ-8 correlation analysis. The functionals will be calculated across the selected 
reactions, for instance, “all questions" or “positive" questions only. 

Feature (functionals) Description 

Conversational Reaction time Time between the end of AI Agent’s question and the beginning of the answer. 

Word rate Number of words in the answer divided by the speech duration. 

Sentiment Valence (max, mean) Positive-negative dimension of the answer [15]. 

Arousal (max, mean) Active-passive dimension of the answer [15]. 

Dominance (max, mean) Powerful-weak dimension of the answer [15]. 

Breath Breath signal and 1st derivative (mean, std) Predicted chest volume and respective variation rate across time. 

Breath signal during silences and 1st derivative Predicted chest volume and respective variation rate across time during silences, 
(mean, std) comparable to individual breath events. 

Inhalation slope (mean, std, max) Slope of the line defned between the inhalation onset and the following exha-
lation onset. 

Peak-to-Peak distance (mean, std, max) Duration of a breathing cycle. 

Volume (mean, std, max) Volume of the chest post-inhalation. 

decrease in the model performance on the cross-validation set, with 
a performance below the baseline. The 1D CNNs seem to work bet-
ter with non-loudness-normalised data. Therefore, we trained the 
breath prediction model used in this study in the non-normalised 
dataset. We present the results from the cross-validation of the 
breathing signal prediction model, using diferent windows, in Ta-
ble 2. We see a slight decrease in performance when using a window 
of six seconds; however, the prediction performance is still above 
the baseline defned for the ComParE2020 Challenge [26]. Thus, 
we consider the trade-of between window size minimisation and 
performance loss satisfactory. 

Table 2: Pearson Correlation Coefcient (PCC) of the breath-
ing signal prediction using a 1D CNN + LSTM model with 
diferent window sizes. Baseline corresponds to the perfor-
mance of the baseline of the ComParE2020 Challenge [26] 
in the development set. 

Baseline 1D CNN + LSTM 

window size (s) - 16 [14] 10 8 6 4 
PCC 0.507 0.607 0.582 0.574 0.583 0.367 

We evaluated the selected models under three diferent pre-
processing conditions: 1) applying the model proposed in [14] to the 
complete audio signal, with no pre-cropping of the AI-speech parts; 
under this approach, we have a continuous signal for the entire 
session, 2) cropped successive non-AI instances and predicted the 
breath signal using the adapted model with a window of six sec-
onds, which results in continuous predictions per answer, but not 
for the full interview, and lastly, 3) similar to the second condition, 
but applying EBUR128 normalisation to the resulting audio chunks 
before breath prediction. 

We compared the similarity between annotated breath events 
for the target dataset and the SBC. For this purpose, we extracted 
simple functionals (mean and std of the breath events points) from 

the breath signal and the frst derivative (see the respective func-
tionals in Table 3). First, we evaluated how the prediction models 
afected the breath event characteristics in the SBC. The original 
and the adapted prediction models lead to a high increase in the av-
erage frst derivative value and signal standard deviation compared 
with the respective ground truth. As anticipated, breath predic-
tion along the entire signal leads to predictions that deviate from 
the expected values. The designed model produces a breath pre-
diction using a sliding window, so if we do not remove the AI 
component of the speech, this part will contribute to the breath pre-
diction of the respective window. There is no signifcant variation 
in model performance when applying the model to the recording’s 
non-AI instances. Overall, the predicted breath signals for breath 
events for both sets have similar functional values with the train-
ing/development dataset predictions. 

Finally, we evaluate the efect of the window size constraint 
and the number of individual answers extracted per session in the 
DAIC-WOZ. After discarding fve samples with answers shorter 
than six seconds, the training, development, and test set have 105, 
33, and 46 samples, respectively. Among these samples, 21, 7, and 
14 participants have depression, according to the binary labels 
(PHQ-8 > 10), highlighting the importance of using continuous 
PHQ-8 scores to analyse the validity of the proposed feature set. 
The number of excluded questions due to the time restraint imposed 
by the breath signal prediction model in each session has a similar 
distribution across the three sets. 

5.2 Correlation analysis between 
psychopathology and features 

In this section, we evaluate if the proposed breath features are 
informative for a depressive state, we probe if a particular type of 
question is more predictive of depression symptoms, and we assess 
the advantages of answer selection versus processing all participant 
instances. 
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Table 3: Comparison of basic statistics on annotated audible breath events. 

signal value 1st derivative 

Dataset Model and input variations mean std mean std 

Ground truth 0.030 0.081 0.257 0.469 
SBC Original model [14] -0.074 0.239 1.016 0.846 

Adapted model (6 second input) -0.122 0.251 1.108 0.860 

Extended 
DAIC-WOZ [12] 

Full recording (original model) 
Cropped non-AI instances (adapted model) 
Cropped normalised non-AI instances (adapted model) 

0.197 
0.043 
0.049 

0.076 
0.135 
0.179 

0.347 
0.614 
0.807 

0.352 
0.532 
0.653 

Table 4: Linear regression models to predict depression severity scores. The signifcance of each model was defned based on 
the p-value of each regression F-score. The F-score values with a p-value ≤ 0.05 are highlighted. We present the root mean 
square error (RMSE) on the development set for the signifcant models. No signifcant correlations were found for the question 
types “Negative", “Neutral" and “Positive". * - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001. 

All Conversational Sentiment Conv + sent Breath 

Summary n F-score RMSE F-score RMSE F-score RMSE F-score RMSE F-score RMSE 

Mixed questions 103 2.06** 6.13 6.85*** 6.12 2.80** 6.66 3.03** 6.17 2.00** 6.35 
General questions 64 2.26** 5.93 3.31* 5.82 1.57 - 1.92 - 2.10* 6.10 

All questions 105 1.77* 5.10 2.52 - 3.31** 6.40 2.49* 6.23 1.89* 5.98 
All reactions 105 1.48 - 3.26* 6.29 1.70 - 2.07* 5.80 1.73* 5.84 

We present the performance of the linear regressions model 
for depression prediction in Table 4. The Bonferroni-corrected p-
value threshold for the fve tests conducted per question is 0.01. 
Considering the dependency between tests and the exploratory 
nature of this study, we report all instances with a p-value ≤ 0.05. 
The number of cases per question type is not the same, since some 
samples have no representation in the session. 

The question types that show more predictive values are mixed 
and general questions, corresponding to questions without clear 
polarity, allowing for a more diverse set of answers and follow-up 
questions that go deeper into the participant’s previous questions. 
Unfortunately, the diferences in sample sizes do not allow us to 
compare the predictability performance between general and mixed 
questions. However, based on these preliminary results, we hypoth-
esise that ambiguous and open questions have relevant predictive 
values. Furthermore, answers to negative questions do not show 
a clear correlation with depression in the current dataset, despite 
what we initially expected. There may be several reasons for this. 
Interviews are not standardised, making it difcult to directly as-
sess the correlation of a specifc question subgroup, since not all 
the participants will have the same number of negative questions 
asked to them, and the depression severity distribution is not con-
sistent between question sets. Furthermore, the answer duration 
may have a strong impact on the performance of conversational 
and breath features. Finally, perceived valence may vary depend-
ing on the participant. The current question type categorisation 
was designed with a focus on emotion elicitation, assuming that 
“negative" questions will more likely elicit “negative" emotional 
states. In the future, we would like to extend the present question 

categorisation method by segmenting the questions based on key 
topics. 

The number of questions per session is a limiting factor for ro-
bust feature summarisation; for this reason, as a preliminary study, 
we explore the feature/diagnosis correlation across all participant 
reactions. The summarisation across all responses does not lead to 
signifcant models for the sentiment features. The conversational 
and breath feature models present a lower p-value, ≤ 0.05, although 
still not signifcant enough after the Bonferroni correction. When 
evaluating only the answers, we observe a substantial performance 
increase for the model trained using sentiment features, suggesting 
that the key emotional content of the session is in the answering 
components of the interview. The model trained with breathing 
features shows an F-score with a p-value of 0.03, motivating us to 
hypothesise that breath features are more meaningful when applied 
to the answer component of the interview. 

When comparing the p-values of the diferent models trained 
across all questions, breath features were the second most predic-
tive feature set, only surpassed by the combination of all features. 
This is a good fnding to motivate the relevance of these features for 
interpretable depression assessment, but a more robust distinction 
between answers and reactions would allow a more meaningful 
feature analysis. Currently, the participant speech chunks are split 
based on AI Agent’s interactions, independent of their length. The 
main advantage of this strategy is that we guarantee that the AI 
Agent’s speech does not afect the continuous breath signal pre-
diction. However, future work on the viability of semi-continuous 
signals for feature analysis would be relevant to advancing the feld, 
since it would allow us to assess breathing characteristics’ variation 
during interviews over a more extended period. 
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To better understand the particular relation between each sepa-
rate feature and depression, we analysed the Pearson Correlation 
Coefcient between each feature set and the respective PHQ-8 score 
in the train set (Table 5). 

We observed a longer reaction time per question in depressed 
participants. Further, valence values are negatively correlated with 
depression, suggesting that participants with depression express 
more negative emotions across the session. Combined with the 
negative correlation with maximum arousal and dominance, we 
can infer that participants with higher levels of depression have a 
higher expression of emotions related to sadness [5]. 

For breathing, we observe lower frst derivative values during si-
lences for participants with higher PHQ-8 scores, suggesting either 
shallow or slow breathing events, or breath-hold events. In addi-
tion, we fnd that the inhalation slopes in participants with higher 
PHQ-8 values have a lower maximum value across the session, 
which supports the hypothesis that depressed participants gener-
ally have shallow and/or slow breathing episodes. Consequently, 
the standard deviation of the same function is smaller. 

The PHQ-8 scores provided are based on a simple self-assessment 
questionnaire and are not comparable to a clinical diagnosis. Hence 
we avoid a direct comparison with breathing literature on major 
depressive disorders. Nevertheless, the breathing characteristics 
highlighted are related to depression and afect literature (particu-
larly concerning sadness) and are consistent with the low arousal 
and valence values observed. Furthermore, we see a signifcantly 
higher mean breath signal value for participants with higher PHQ-8. 
Due to the speech variations in the breath signal, this feature is 
not easily interpretable. However, less interpretable features were 
added to the feature list to account for losses in information due to 
errors in peak detection, and consequent errors in volume, peak to 
peak distance, and inhale slope defnition. 

5.3 Depression score regression 
We give the comparative performances of the proposed linear and 
non-linear models in Table 6. In addition, we present the challenge 
baseline and the top challenge submissions for comparison pur-
poses. 

The best performance was achieved in the development set using 
a Linear Regression model with conversational, linguistic sentiment, 
and breath features. The resulting model leads to an RMSE decrease 
of 23% compared with the best performing baseline for the same 
set. However, as observed in the challenge baseline, audio-based 
models have signifcantly reduced performance on the test set, as 
opposed to the development set. Looking at the linear regression 
results for the model trained with only breath features, we observed 
a similar tendency, with a signifcant decline in performance be-
tween development and test sets. Nonetheless, the performance for 
this estimator outperforms the more complex baseline audio-based 
model, encouraging further exploration of the impact of breath 
features on depression assessment. 

The best performing model on the test set omits breath features, 
pointing to a diferent breath feature value distribution between 
the combined train and development sets used to train the fnal 
model and the test set. This model surpasses the challenge baseline 
and is one of the top submissions in the test set. Moreover, we 

observed that Random Forest regressors performed more consis-
tently between the development and test set; these models do not 
assume linearity between the feature and prediction, allowing more 
fexibility in the feature importance between sets. 

To further explore the diferences in acoustic information across 
diferent sets, we looked at the total duration of all participant an-
swers (including reaction time), and the average length of a turn 
after a question per session. We present the respective distribu-
tions in Figure 2. Since we want to focus on depression analysis, 
we compared the distributions of depressed and non-depressed 
participants. 

(a) Total turn duration 

(b) Average turn duration per answer 

Figure 2: Distribution of a) total answer duration and b) mean 
answer duration per session in each set. The division between 
“Non-Depressed" (ND) “Depressed" (D) was based on the bi-
nary classifcation provided. 

There is a signifcant diference in the number of questions se-
lected and total answer time between the development and test 
sets. This pattern is observed for both depressed and non-depressed 
participants. We expect the variation in the number and duration 
of answers to have a high impact on turn level feature extraction. 
Particularly, breathing signal prediction will be more signifcant 
when evaluated across a longer audio sample, since the model uses 
a sliding window approach. Hence, we suggest that audio features 
will be less robust on the test set due to the comparative lack of 
relevant audio information. The performances of the top challenge 
submissions are consistent with this conclusion, with a text-based 
model achieving the best performance on the test set, and the low-
est variation in performance between both sets. Hybrid models 
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Table 5: Pearson correlation coefcients between the average of each feature across all the answers or all participant actions 
and the continuous diagnosis for depression. The values presented correspond to the performance on the train set (* - p-value 
≤ 0.05; ** - p-value ≤ 0.01. The functionals regarding “Peak to Peak distance" and “Breath Volume" did not achieve signifcant 
correlation values in the train set. 

Type 

Conversational 

Feature 

Reaction time 

Valence 

Functional 

-
mean 
max 

All answers 

0.214* 
-0.293** 
-0.278** 

All actions 

0.222* 
-0.274** 
-

Sentiment Arousal mean 
max 

-
-0.283** 

-
-

Dominance 
mean 
max 

-
-0.301** 

-
-

Breath signal mean 
std 

0.305** 
-

0.235* 
-

1st derivative 
mean 
std 

-
-

0.273** 
-

Breath Breath signal during silences mean 
std 

0.239** 
-

0.247** 
-

1st derivative during silences mean 
std 

-0.221* 
-

-
-

Inhale slope 
mean 
max 
std 

-
-0.207* 
-0.195* 

-
-
-

Table 6: Root mean square error (RMSE) results for the de-
pression assessment task on development and test sets. For 
comparison, we provide the challenge baseline and top sub-
missions. The best RMSE performance and corresponding 
MAE per subset is highlighted for each model group. LR -
Linear Regression model; RF - Random Forest model; DL -
Deep Learning approach; SGD-LR - Stochastic Gradient De-
scent Linear Regressor. 

Model Dev Test 

Challenge baseline 
audio 
video 
audio + video 

RF 
RF 
RF 

6.74 
7.13 
6.62 

7.78 
6.97 
7.05 

conv + sent + breath 
RF 
LR 

6.63 
5.10 

5.85 
6.80 

Proposed methods 
conv + sent RF 

LR 
6.33 
6.23 

5.83 
5.62 

breath 
RF 
LR 

6.98 
5.98 

6.40 
7.65 

selected features RF 
LR 

5.96 
6.53 

6.37 
5.67 

Yang et al [36] 
Yang et al [35] 
Sun et al [27] 
Gong et al [9] 

audio + video + text 
audio + video + text 
selected-text 
audio+video+text 

DL 
DL 
RF 
SGD-LR 

3.09 
4.65 
4.97 
3.54 

5.40 
5.97 
4.98 
4.99 

see a signifcant but less steep increase in performance between 
sets. Further analysis of the referred works on the contribution 
of each modality for the test set predictions would be useful for 
understanding the limitations of the dataset. 

Although further work is required to confrm the potential of 
breathing features for depression detection, the results presented 
show the value of this new set of interpretable features. Additional 
engineering of the feature set, such as feature selection, and tackling 
the efects of collinearity, are the following steps to extend our 
understanding of the proposed approach. 

6 CONCLUSIONS 
In this paper, we explored the potential of simple breath features 
for depression assessment, based on an imperfect measurement of 
breath signals. We used the well-documented DAIC-WOZ dataset 
for the depression analysis task. However, since this dataset did 
not have a breathing ground truth annotation, we used a cross-
dataset prediction approach, which we validated on a subset of 
DAIC-WOZ annotated with breath events. The interview setting of 
the DAIC-WOZ dataset further allowed us to test the performance 
of the proposed cross-dataset breathing prediction under mismatch 
situations that more closely resemble interactions observed during 
therapy sessions. 

One of our premises was that during an interview, diferent 
questions would provoke diferent emotional tones in subjects, and 
questions could be grouped accordingly. Our results suggest that 
session summarisation based on “General" and “Mixed" questions 
leads to good linear models, implying that open questions will 
produce more meaningful reactions for mood interpretation. The 
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results obtained are motivating, with informative breathing fea-
tures across these question types. However, negative questions did 
not provide any clear correlation with breathing features. One rea-
son of this might be the shortness of the answers, which is one 
of the limitations we found for breathing features. Compared to 
conversational features, they are afected more from the answer 
duration since short answers do not provide an opportunity to ex-
tract useful features. Our study furthermore revealed that dataset 
characteristics, particularly turn duration, can impose limitations 
on the prediction accuracy of the breath signal. 

Another limitation of our study lies in the use of PHQ-8 scores 
for depression severity estimation, which relies on self-assessment 
and cannot be directly compared with most of the literature on ma-
jor depression disorder. Also, the co-morbidity between depression 
and anxiety disorder makes analysis more difcult, as anxiety is 
frequently observed in patients with PTSD, and might afect breath-
ing features, hence limiting the assessment potential of them for 
depression analysis specifcally. 

Overall, the present study evaluated the correlation between 
breathing-related features and conversational, linguistic sentiment, 
and depression severity level, focusing on interpretable features 
to compare the correlations found within the literature. Our com-
parisons showed that features such as duration and deviations of 
breathing episodes provide intelligible features with the advantage 
of carrying non-identifable information and hence being more 
privacy-preserving than the audio signal. When evaluating the in-
dividual Pearson correlation coefcients between features and the 
PHQ-8 scores, we observed a negative correlation between depres-
sion and arousal, valence and dominance, pointing to states such 
as sad and depressed. Moreover, correlations found for breathing 
features suggested slow and shallow breaths to be indicative of 
high depression scores, consistent with the detected mood. 

The suggested approach could have applications in assessmentby 
clinicians with an interpretable automated prediction as well as 
emotion detection in conversational speech analysis. Our results 
suggest that there is room for further exploration on using breath-
ing features for interpretable depression detection. More robust 
breathing rate assessment could improve the contribution of this 
feature even further, and frequency-domain features, such as con-
tinuous wavelet transforms, present a potential future direction. 
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