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S U M M A RY

Our current energy system and infrastructure depend mainly on fossil fuels. Since
these resources were created millions of years ago, on the human timescale, they
are considered non-renewable. Burning fossil fuels has contributed significantly
to the increase of atmospheric CO2 from around 277 ppm to 419 ppm in the last
250 years [1], causing considerable environmental damage. Therefore, reducing the
dependence on fossil fuels and limiting greenhouse gas emissions from all human
activities has become one of the critical challenges of our generation. From the latest
IPCC report it is clear that it is not enough to reduce carbon dioxide emissions,
but to also directly remove CO2 from the atmosphere [2]. There are a few viable
negative emission technologies, with direct air capture (DAC) being one of the most
promising when coupled with CO2 storage. In addition, its captured CO2 can be
used as a source to make carbon-neutral synthetic fuels. Here, besides capturing CO2,
the other two main steps for producing a synthetic fuel are hydrogen production
followed by fuel synthesis. The interest in DAC has significantly grown over the last
years, within both academia and industrial environments. However, if these fuels are
to play a substantial role in mitigating climate change, their costs need to decrease
significantly. For the captured CO2 using DAC, on the one hand, further optimization
is needed within the process design and material development. On the other hand,
the choice of the process is a major criterion for hydrogen production, including the
use of more advanced electrolyzers or novel routes like photoelectrochemical cells.
The aim of this thesis is to contribute to the research of carbon-neutral synthetic fuels
by quantifying possible pathways for CO2 capture from the air and H2 production
from water and identifying the most promising routes, both in terms of process
performance and economics.

Beginning with a brief introduction in Chapter 1, the core of this thesis starts in
Chapter 2 with a comparative technical assessment of the two main routes for captur-
ing CO2 from the air: aqueous scrubbing and solid-based processes. Using process
simulations and mathematical optimization, energy consumption and productiv-
ity are computed consistently. The results show that all technologies can provide
high purity CO2 and that the solid-based process has the potential to offer the best
performance. By translating productivity and energy performance into the cost of
CO2 capture, it is shown that capital expenditure is the main cost driver. While all
technologies have the potential to operate below 200 $ ton−1

CO2

, the solid-sorbent
process achieves this under broader conditions and becomes less dependent on the
installation cost if a high mass transfer is possible. Therefore, the solid-based process
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is explored in more detail. In the second part of chapter 2, the modeling and opti-
mization are extended by including the effect of time-dependent ambient conditions,
i.e., varying temperature and humidity. Based on an exemplary vacuum-temperature
swing (VTSA) cycle, a stand-alone DAC system’s optimal design and operation are
investigated by calculating the energy consumption and the minimum system costs
for multiple temperature-humidity combinations. The results show that capturing
costs are significantly smaller in cold and humid conditions. Surprisingly, both
capturing costs and energy requirements depend more on the ambient temperature
than the humidity; this holds for sorbents where CO2 adsorption is enhanced by
water and those negatively affected by water.

The adsorbent selection plays a critical role when designing a DAC plant. The
ample design space of sorbent structure and the associated capability of tailoring
properties to match process requirements make adsorption-based technologies suit-
able candidates for CO2 capture processes. So far, several hundreds of thousands
of adsorbent materials exist in the literature, real and hypothetical, with only a
few tested for DAC application. In Chapter 3, a vast database is screened to iden-
tify promising sorbents for dilute and ultra-diluted processes. For this purpose,
an equilibrium-based model for rapid simulation of VTSA cycles is developed.
The accuracy and prediction capabilities of the equilibrium model are improved
by incorporating feed-forward neural networks, allowing to include the process
productivity as a key performance indicator. The screening reveals 12 promising
materials for DAC application with reasonable energy consumption and productivity
performance. It is found that capturing CO2 from dilute feed streams places different
requirements on the sorbents compared to the capture from conventional large point
sources. This naturally leads to the question of what an optimal sorbent for DAC
should look like. Because of the diversity of phenomena concurring in adsorption
processes, simple metrics like working capacity or selectivity do not necessarily
translate into promising performance and costs. Moreover, capacity, regenerability,
and costs are often contrasting objects that are difficult to consider in synthesizing
new sorbents. Therefore, in Chapter 4, the effect of different sorbent properties on
the performance of a VTSA cycle is examined, which is done by applying a process
inversion approach, where the process performance is optimized by both including
adsorbent properties and process performance parameters as decision variables.
By optimizing the parameters of different CO2 isotherm models, the design space
for DAC is identified. The technical assessment is complemented by a detailed
bottom-up economic analysis of the hypothetical materials. The resulting costs are in
the range of 360 to over 1000 $/tCO2 and are strongly dependent on the assumptions
for the sorbent, i.e. the purchase price and lifetime, as well as on the kinetics.

Having assessed the capture processes for CO2, the second part of the thesis
focuses on the production of H2. To begin with, in Chapter 5, an overview of
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different water splitting devices to produce H2 using solar energy is given. To better
understand photoelectrochemical water splitting in general, a modeling framework
based on equivalent circuits is introduced, which allows for a computationally
efficient yet precise prediction of the system performance. The results show that
under real operating conditions, the solar-to-hydrogen efficiency is significantly
lower than under ideal conditions. The presented model is a powerful tool for
untangling the performance of photoelectrochemical water splitting devices and
comparing different concepts. Following this analysis, a techno-economic analysis
of two solar-assisted hydrogen production technologies is presented in Chapter
6: a photoelectrochemical (PEC) system and its main competitor, a photovoltaic
system connected to a conventional water electrolyzer (PV-E). In addition, since PEC
systems are not yet commercialized, the estimated costs in the economic analysis are
subject to various assumptions and high uncertainty which necessitate sensitivity
analyses. The results show that the levelized costs of hydrogen for the already
commercialized PV-E system are considerably lower compared with the PEC system.
Even under generous assumptions, PEC devices are costlier and less flexible in their
application, which makes it unlikely for the PEC system to achieve lower hydrogen
production costs compared to photovoltaic-electrolysis systems. Still, research into
photoelectrochemical cells remains of interest.

Finally, in Chapter 7 the main findings of this thesis are summarized.
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S A M E N VAT T I N G

Ons huidige energiesysteem en onze infrastructuur zijn voornamelijk afhankelijk
van fossiele brandstoffen. Aangezien deze grondstoffen miljoenen jaren geleden
zijn ontstaan, op de menselijke tijdschaal, worden ze op de menselijke tijdschaal
als niet- hernieuwbaar beschouwd. Het verbranden van fossiele brandstoffen heeft
aanzienlijk bijgedragen aan de stijging van atmosferische CO2 van ongeveer 277 ppm
tot 419 ppm in de laatste 250 jaar [1], wat ernstige milieuschade heeft veroorzaakt.
Daarom is het verminderen van de afhankelijkheid van fossiele brandstoffen en het
beperken van de uitstoot van broeikasgassen door menselijke activiteiten een van
de belangrijkste uitdagingen van onze generatie. Uit het laatste IPCC-rapport blijkt
duidelijk dat het niet volstaat de uitstoot van kooldioxide te verminderen, maar
dat CO2 rechtstreeks uit de atmosfeer moet worden verwijderd [2]. Er zijn enkele
bruikbare negatieve emissietechnologieën, waarbij ‘Direct Air Capture’ (DAC) in
combinatie met CO2-opslag een van de meest veelbelovende is. Bovendien kan het
afgevangen CO2 worden gebruikt als bron voor het maken van koolstofneutrale
synthetische brandstoffen. Naast het afvangen van CO2 zijn de twee belangrijkste
stappen bij de productie van een synthetische brandstof de waterstofproductie en de
daaropvolgende brandstofsynthese. De belangstelling voor DAC is de laatste jaren
sterk toegenomen, zowel in de academische wereld als in het bedrijfsleven. Indien
deze brandstoffen echter een belangrijke rol zullen spelen bij het matigen van de
klimaatverandering, zouden de kosten aanzienlijk moeten dalen. Enerzijds vereist
CO2-afvang met behulp van DAC een verdere optimalisering van het procesontwerp
en de materiaalontwikkeling. Anderzijds is de keuze van het proces een belangrijk
criterium voor de waterstofproductie, met inbegrip van het gebruik van geavanceerde
elektrolytische cellen of nieuwe processen zoals foto-elektrochemische cellen. Het
doel van deze proefschrift is bij te dragen tot de exploratie van koolstofneutrale
synthetische brandstoffen door de mogelijke routes voor CO2-afvang uit lucht en H2-
productie uit water te kwantificeren en de meest veelbelovende routes te identificeren
in termen van zowel procesprestaties als economische aspecten.

Na een korte inleiding in hoofdstuk 1 begint het belangrijkste deel van deze
proefschrift in hoofdstuk 2 met een vergelijkende technische evaluatie van de twee
belangrijkste processen voor het afvangen van CO2 uit de lucht: waterige gaswassing
en processen op basis van vaste stoffen. Processimulaties en wiskundige optimalisa-
tie werden gebruikt om het energieverbruik en de productiviteit te berekenen. Uit de
resultaten blijkt dat alle technologieën CO2 met een hoge zuiverheidsgraad kunnen
produceren en dat het op vaste stof gebaseerde proces de beste prestaties levert.
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Door de productiviteit en het energieverbruik te vertalen naar de kosten van CO2-
afvang wordt aangetoond dat de investeringskosten de belangrijkste kostenfactor
zijn. Hoewel alle technologieën potentieel hebben om onder 200 $ ton−1

CO2

te werken,
bereikt het op vaste stof gebaseerde proces dit onder meer diverse omstandigheden
en wordt het minder afhankelijk van de installatiekosten wanneer een hoge massa-
overdracht mogelijk is. Daarom wordt het proces op basis van vaste stoffen meer
in detail onderzocht. In het tweede deel van hoofdstuk 2 wordt de modellering en
optimalisering verder uitgebreid naar tijdsafhankelijke omgevingscondities, d.w.z.
variërende temperatuur en vochtigheid. Aan de hand van een voorbeeld van een
vacuümtemperatuur- wisselcyclus (VTSA) wordt het optimale ontwerp en de opti-
male werking van een autonoom DAC-systeem onderzocht door het energieverbruik
en de minimale systeemkosten te berekenen voor verschillende temperatuur- vochtig-
heidscombinaties. Uit de resultaten blijkt dat de kosten voor CO2 opvang aanzienlijk
lager zijn in koude en vochtige omstandigheden. Verrassend is dat zowel de sens-
orkosten als de energievraag sterker afhankelig is van de omgevingstemperatuur
dan van de vochtigheid; dit geldt voor sorptiemiddelen waarbij de CO2-adsorptie
door water wordt versterkt en voor sorptiemiddelen die negatief door water worden
beïnvloed.

De keuze van het adsorbens speelt een kritieke rol bij het ontwerp van een DAC-
installatie. De grote ontwerpruimte van sorptiemiddelstructuur en de daarmee
samenhangende mogelijkheid om eigenschappen aan te passen aan de procesver-
eisten maken adsorptiegebaseerde technologieën geschikte kandidaten voor CO2-
afvangprocessen. Tot op heden zijn er in de literatuur enkele honderdduizenden
adsorbentia beschreven, zowel echte als hypothetische, waarvan er slechts enkele
voor DAC-toepassingen zijn getest. In hoofdstuk 3 wordt een grote databank door-
zocht om veelbelovende adsorbentia voor verdunde en ultraverdunde processen te
identificeren. Daartoe wordt een op evenwicht gebaseerd model ontwikkeld voor
de snelle simulatie van VTSA-cycli. De nauwkeurigheid en het voorspellend ver-
mogen van het evenwichtsmodel worden verbeterd door de integratie van neurale
netwerken, waarmee het mogelijk is de productiviteit van het proces als een be-
langrijke prestatie-indicator te berekenen. Uit de screening komen 12 veelbelovende
materialen voor DAC-toepassingen met een redelijk energieverbruik en een redelijke
productiviteit naar voren. Het is aangetoond dat het afvangen van CO2 uit verdunde
stromen andere eisen stelt aan de sorbentia dan het afvangen uit conventionele grote
puntbronnen. Dit leidt tot de vraag hoe een optimaal sorptiemiddel voor DAC eruit
moet zien. Door de diversiteit aan verschijnselen die zich bij adsorptieprocessen
voordoen, vertalen zich eenvoudige maatstaven als werkcapaciteit of selectiviteit niet
noodzakelijkerwijs in prestaties en kosten. Bovendien zijn capaciteit, regenereerbaar-
heid en kosten vaak tegenstrijdige doelstellingen die moeilijk in aanmerking kunnen
worden genomen bij de synthese van nieuwe sorbentia. Daarom wordt in hoofd-
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stuk 4 het effect van verschillende sorbent eigenschappen op de prestaties van een
VTSA-cyclus onderzocht. Dit wordt gedaan door een procesinversiebenadering toe te
passen, waarbij de procesprestatie wordt geoptimaliseerd door zowel de adsorbent
parameters als de procesparameters te integreren als beslissingsvariabelen. Door het
optimaliseren van de parameters voor verschillende CO2-isothermmodellen, wordt
de ontwerpruimte voor DAC geïdentificeerd. De technische evaluatie wordt aan-
gevuld met een gedetailleerde economische bottom-up analyse voor hypothetische
materialen. De daaruit voortvloeiende kosten bedragen tussen 360 en meer dan
1000 $/tCO2 en zijn sterk afhankelijk van de veronderstelde sorptiemiddelen, d.w.z.
de aankoopprijs, de levensduur, en de kinetica.

Na de evaluatie van de processen voor het afvangen van CO2, richt het tweede
deel van het proefschrift zich op de productie van H2. Om te beginnen wordt in
hoofdstuk 5 een overzicht gegeven van verschil- lende watersplitsingsinstallaties voor
de productie van H2 met behulp van zonne-energie. Om de foto-elektrochemische
watersplitsing beter te begrijpen wordt een modelleerkader op basis van equi-
valente schakelschema’s geïntroduceerd, die een rekenkundig efficiënte en toch
nauwkeurige voor- spelling mogelijk maakt van de systeemprestatie. Uit de resul-
taten blijkt dat onder reële bedrijfsomstandigheden het rendement van waterstof
op zonne-energie aanzienlijk lager is dan onder ideale omstandigheden. omstan-
digheden. Het gepresenteerde model is een krachtig instrument om de prestaties
van foto-elektrochemische watersplitsingssystemen te ontcijferen en om verschil-
lende concepten met elkaar te vergelijken. Na deze analyse volgt in hoofdstuk 6

een technisch-economische analyse van twee technologieën voor waterstofproductie
met behulp van zonne-energie: een foto-elektrochemisch (PEC) systeem en zijn
voornaamste concurrent, een fotovoltaïsch systeem gekoppeld aan een conventionele
waterelektrolyse- installatie (PV-E). Aangezien de PEC-systemen nog niet op de
markt zijn, zijn de geraamde kosten van de economische analyse gebaseerd op ver-
schillende aannames en grote onzekerheden die gevoeligheidsanalyses noodzakelijk
maken. Uit de resultaten blijkt dat de ’levelized costs’ van waterstof voor het reeds
gecommercialiseerde PV-E systeem aanzienlijk lager zijn in vergelijking met het
PEC-systeem. Zelfs bij genereuze veronderstellingen zijn PEC-apparaten duurder
en minder flexibel in hun toepassing, waardoor het onwaarschijnlijk is dat met het
PEC-systeem lagere kosten voor waterstofproductie kunnen worden bereikt dan
met fotovoltaïsche elektrolysesystemen. Desalniettemin blijft het onderzoek naar
foto-elektrochemische cellen van belang.

Tot slot worden in hoofdstuk 7 de belangrijkste resultaten van dit proefschrift
samengevat.
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1
I N T R O D U C T I O N

This chapter introduces synthetic fuels and the process route from the two compo-
nents, CO2 and H2O, to carbon-neutral synthetic fuels. The reader is introduced to
the basic concepts of capturing CO2 from the air as well as solar hydrogen produc-
tion from water, which will be the two main topics of this thesis. Finally, the scope
and the outline of the thesis are presented.
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2 introduction

Historical records show a substantial increase of the CO2 concentration in the
atmosphere from pre-industrial values of around 277 ppm to 419 ppm by June 2022,
an increase of nearly 51% [1, 3]. The increase of CO2 emissions originates mainly from
the use of fossil fuels and amounts to around 33 GtCO2/year [4]. Today, it is widely
accepted that an increase in CO2 concentrations in the atmosphere contributes to
global warming, yet a decrease in fuel use is not expected; on the contrary, the world
energy use is predicted to increase in the coming years [4]. The Paris Agreement was
designed to keep the global temperature increase below 2 °C, and possibly below
1.5 °C [5]. To avoid an overshoot, many scientists and governments agree that net
zero needs to be achieved by 2050, i.e. a balance between the anthropogenic net
greenhouse gas (GHG) emissions and the absorbed greenhouse gas emissions by
sinks [6]. Besides reducing the use of fossil fuels and increasing energy efficiency, the
removal of CO2 from large point sources and the atmosphere, i.e. Carbon Capture
and Storage (CCS), is an essential approach to mitigate climate change [3]. Another
pathway is carbon capture and utilization (CCU), which includes the recycling of
CO2 to fuels and other materials, also called power-to-X [7, 8]. These synthetic fuels
can be used for decarbonizing e.g. the transport sector, especially in areas where
only a few low-carbon alternatives exist, such as heavy-duty vehicles, aviation, and
maritime shipping [9].

Inspired by nature, taking the three feedstocks, i.e. CO2, H2O and solar energy, an
integrated device can be used, where solar energy conversion and the synthesis of
the fuel are combined in one step. These devices, which mimic the function of natural
photosynthesis, are called artificial photosynthesis or artificial leaf. In recent years,
the interest in realizing this technology has grown [10, 11]; however, the reaction
chemistry is complex, and the technical implementation is still in its infancy. Another
route for the production of synthetic fuels is the reduction of CO2 and H2O to CO
and H2, respectively, followed by catalytic conversion to the desired fuel.

In general, three main steps are required to produce a sustainable hydrocarbon
solar fuel: solar water splitting for the production of H2, carbon capture, and fuel
synthesis [12]. For the latter proven industrial technologies can be employed, and
depending on the process, different fuels can be synthesized, e.g. methane (via
methanation), methanol (via methanol synthesis), or petrol/diesel/jet fuel (via
Fischer-Tropsch or Methanol-to-Gasoline synthesis) [13, 14]. The other two main
steps, i.e. water splitting for H2 production and capturing of CO2, are the most
energy- and cost-intensive steps of the chain and are introduced in the following
sections.
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Figure 1.1: Three different routes for capturing CO2 with a) fossil fuels, b) biomass, and c)
the ambient air as resources.

1.1 capture of carbon dioxide

Figure 1.1 gives a schematic overview of three different routes for capturing CO2

from different sources. The fossil route includes capturing the CO2 from a point
source powered by fossil fuels, e.g. a coal power plant but also cement and aluminum
factories. Although capturing CO2 from point sources is an important capture process
for mitigating climate change when CO2 is permanently stored, either underground
or as a mineral, this route cannot be seen as a sustainable route for the production
of synthetic fuels since it includes the combustion of fossil resources. Within the
second route, biomass is burned in a power plant, and the emitted CO2 is captured
from the flue gas. Although the resulting biogenic CO2 is consistent with net-zero
systems, drawbacks are the slow-growing of suitable plants and burning biomass is
competing with other utilization possibilities of biomass. The third route represents
capturing CO2 directly from the ambient air, which, when powered by renewable
energies, can be considered a sustainable route.

Compared to the emitted CO2 from point sources, the CO2 in the air is a location-
independent source. While flue gases typically have a CO2 concentration of 5-15%
for power plants and between 15-30% for the cement and steel industry [15], the
concentration of CO2 in the ambient air is significantly lower with around 0.04

vol%. Still, although the concentration is more than 100 times smaller, the energy
consumption is not multiplied by this factor, as shown in Figure 1.2. Here, the exergy
consumption for different capture processes from point sources is compared with a
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Figure 1.2: Energy requirement DAC. Energy for post-combustion from [16].

typical range for the DAC case. From a theoretical perspective, the minimal energy
required to separate one mole of CO2 from the air at ambient conditions (expressed
by the Gibbs free energy) is 497 kJ/kgCO2 , while capturing from point-sources
requires 30-50% less energy (150-250 kJ/kgCO2). In practice, real processes require
larger amounts of energy. For capture plants from point sources, the exergy demand
is in the area of 1.6-1.9 MJ/kgCO2 [16] while the estimated exergy demand for DAC
range from about 4-12 MJ/kgCO2 . This comparison shows no thermodynamic limit
for capturing CO2 from the air. Besides the energy consumption, another major
challenge for DAC is the processing of large volumes of air, which depends on the
reactor’s design and the process engineering.

There exist two main technological pathways to implement DAC: one makes
use of established liquid solvents, e.g. potassium-based alkaline solutions, where
CO2 is removed in a classical liquid scrubbing process. The research group of
Keith, among the others, at Harvard University is working on such a process, while
the company Carbon Engineering is developing an alkaline hydroxide process
commercially. The second major pathway is using a solid sorbent to separate the
CO2 from the air. Several research groups are working on this capture technology,
e.g. the group of Jones at Georgia Tech or the group of Lackner at Arizona State
University. The company Climeworks has realized this technology within two pilot
plants in Switzerland and Iceland.
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1.2 solar hydrogen production

The global demand for hydrogen is expected to grow within various sectors such as
power, heating, industry, and transportation [17]. Still, at present, over 95% of the
global hydrogen production is made from fossil fuel feedstock [17, 18]. It is possible
to combine hydrogen production from natural gas with CO2 capture, transport
and storage (CCS), resulting in low-carbon hydrogen [19]. The current alternative
is to produce hydrogen from water via electrolysis. Using carbon-free electricity
such as wind, solar, or hydropower as input results in renewable hydrogen. Here,
we will focus on the use of solar-powered technologies; the produced hydrogen is
then called solar hydrogen. The main water electrolysis technologies are alkaline
electrolysis (AEL), proton exchange membrane electrolysis (PEMEL), and solid oxide
electrolyzer cell (SOEC). While these devices are mature and benefit from modularity,
i.e. they consist of at least two components, one for collecting the light and one
for splitting the water, they therefore require at least two housing and support
structures. An alternative is to use integrated devices that combine light absorption
and water splitting in a single component, which can simplify the architecture.
These so-called photoelectrochemical devices (PEC) are less mature and not yet
commercially available but are potentially a sustainable and affordable solution to
produce solar hydrogen.

1.3 research objectives and thesis structure

The availability of cheap and abundant CO2 and H2 as reactants is indeed the main
hurdle for the production of synthetic solar fuels which leads to the overarching
question of this thesis: What are the technical limits of CO2 capture from air and H2
generation from H2O?

There exist several technological pathways to supply the two initial components
for hydrocarbon synthetic fuels, i.e. capturing CO2 from fossil power plants or the
ambient air, and water splitting to produce H2, but the uncertainties are high in
terms of technical performance and economic feasibility. Therefore, the research
reported in this thesis addresses these two key components for the production of
solar fuels: i) carbon dioxide obtained from the air and ii) hydrogen produced from
water using solar energy. The aim is to assess different routes for the supply of CO2

and H2 in terms of technological and economic performance, and to identify the
key challenges for bringing down the costs. To achieve the research objective, the
following research questions, summarized in Table 1.1, are formulated:
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1. Which are the main technological pathways to capture CO2 from the air and how do
they compare in terms of performance and economics?

There exist three main technologies for capturing CO2 from the air, i.e. two
aqueous scrubbing processes based on potassium hydroxide or alkanolamines, and
one solid-sorbent process. In Chapter 2 these technologies are studied in detail using
process simulations and mathematical optimization. The comparison is based on the
energy consumption and productivity, which are computed consistently, followed by
an evaluation of the costs. In addition, a comparison between absorption, i.e. the use
of a liquid solvent, and adsorption, i.e. the use of a solid sorbent, for DAC application
is reported. While this extensive study revealed no clear winner, the solid sorbent
process showed the most promising potential in terms of process performance and
economics. Therefore, this process route is investigated in more detail. First, the
performance of a DAC process under real weather conditions is investigated in
the second part of Chapter 2. Here, the effect of varying ambient conditions, i.e.
temperature and humidity, on the performance of a vacuum temperature swing
adsorption (VTSA) process at different locations is studied.

While there exit huge databases with several hundreds of thousands of adsorbent
materials, there is only a small number studied for the application in DAC processes.
Therefore, the next question which arises is:

2. Are there already existing adsorbents in databases that show promising performance for
DAC applications, and how can we find them across several thousands of possible structures?

This question is addressed in Chapter 3. An equilibrium model for VTSA cycles is
developed, which is suitable for large throughput sorbents screening. The accuracy
and prediction capabilities of the equilibrium model are improved by incorporating
feed-forward neural networks. The model is then applied to screen and identify
promising sorbents for capturing CO2 from dilute streams. Analysing existing mate-
rials naturally leads to the next question:
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3. What are the performance and cost limits for DAC using an ideal adsorbent with VTSA?
Following the results of the screening, in Chapter 4 a theoretical experiment is

carried out to identify the limits of VTSA when capturing CO2 from dilute streams.
Process conditions together with isotherm parameters are used as decision variables
for the optimization. The effect of adsorption kinetics and physical properties of
the sorbent is investigated. In addition, the cost performance of the hypothetical
adsorbents is compared with existing materials and it is investigated what it would
take to bring the DAC costs below 100 $/tCO2 .

Having analyzed the supply of CO2 by sequestration from the air, the following
research questions concern the production of H2 from water using solar energy. To
begin with, the following question is formulated:

4. What technologies are available for electrochemical production of hydrogen from solar
energy and water, and how do they operate under real working conditions?

This question is addressed in Chapter 5. First, an overview over possible technolo-
gies is given and the most promising one, a photoelectrochemical (PEC) device, is
selected for further assessment. An equivalent circuit model is developed to compute
the steady-state performance of several different PEC devices. Given the infancy
stage of the PEC technology, most experiments are carried out under ideal laboratory
conditions. Therefore, in a second step, the model is adapted to handle real light
operating conditions. Besides innovative solutions like integrated PEC devices, it
is also possible to produce H2 from water using stand-alone electrolyzers and PV
panels (PV-E), a more mature technology. With this in mind, the following question
is formulated:

5. What is the techno-economic performance of PEC and PV-E systems, and how do they
compare?

In Chapter 6 a techno-economic analysis of the two solar-assisted hydrogen
production technologies is carried out: a photoelectrochemical (PEC) system and
a more mature photovoltaic system connected to a conventional water electrolyzer
(PV-E). A comparison based on the levelized cost of hydrogen is performed to
identify the more promising technology.

Finally, the research questions are answered in Chapter 7 and a brief summary of
this work is given .
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Table 1.1: Overview of the chapters and their corresponding research questions and publi-
cations (P).

Research questions

and relevant publications

Chapter Topic Q1 Q2 Q3 Q4 Q5

2 Comparative energy and x
costs assessment of DAC P2,
technologies P5

3 Equilibrium model for VTSA x
processes P4

4 Ideal sorbent analysis x
P6

5 Techno-economic comparison x
of PEC devices P1

6 Modeling PV-EC devices un- x
der real working conditions P3



2
A C O M PA R AT I V E E N E R G Y A N D C O S T S A S S E S S M E N T A N D
O P T I M I Z AT I O N F O R D I R E C T A I R C A P T U R E T E C H N O L O G I E S

This chapter provides a comparative technical assessment of three technologies for
CO2 removal from air: two aqueous scrubbing processes based on potassium hydrox-
ide or alkanolamines, and one solid-sorbent process. Using process simulations and
mathematical optimization we consistently compute exergy and energy consumption,
and productivity. Moreover, we evaluate the cost range and discuss the challenges
that need attention for large-scale implementation. We show that all technologies can
provide high purity CO2, and that the solid-based process has the potential to offer
the best performance, having a specific exergy demand of Translating productivity
and energy performance into cost of CO2 capture via a simple model, we show
that the capital cost is the main cost driver. All technologies have the potential to
operate below 200 $ ton−1

CO2

under favorable, yet realistic, energy and reactor costs.
The solid-sorbent process achieves this under broader conditions, and becomes less
dependent on the installation cost if high mass transfer is possible.

The results presented in the main part of this chapter are reported in: Sabatino, F., Grimm, A., Gallucci,
F., van Sint Annaland, M., Kramer, G. J., Gazzani, M. A comparative energy and costs assessment and
optimization for direct air capture technologies. Joule 5, 2047 (2021). The results of section 2.8 are part of:
Wiegner, J., Grimm, A., Weimann, L., Gazzani, M. On the optimal design and operation of solid sorbent
direct air capture processes at varying ambient conditions. Industrial & Engineering Chemistry Research
(2022).

9
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2.1 introduction

Currently, there exist a few processes that can be used for capturing CO2 from the air.
Frank Zeman and Klaus Lackner were the first to describe a process in which CO2 is
extracted from air through wet scrubbing with an aqueous alkali hydroxide [20]. This
DAC system consists of two cycles. In the first one, sodium or potassium hydroxide
reacts with carbon dioxide to produce carbonates, which are soluble in water. In
the second cycle, the carbonates are causticized with lime (i.e. Ca(OH)2) resulting
in the precipitation of CaCO3, which is finally heated above 900°C to release CO2.
This concept was further developed by Baciocchi et al. [21], who provided the first
conceptual design based on mass and energy balances. Several issues were pointed
out, the most important being the high and essentially unavoidable energy demand
of the solvent regeneration. Later, in a report by the American Physical Society (APS)
alkali scrubbing was selected as the benchmark process for DAC; they estimated a
cost of about $600 per ton of CO2 captured [22]. Later estimates based on a different
absorption unit design are, however, lower. Due to the concentration of CO2 in
the atmosphere, large volumes of air have to be processed to capture a relevant
amount of carbon dioxide. Hence, efficient air contact with the solvent is extremely
important. This is where the DAC company Carbon Engineering has focused the
early development efforts. By using a different design of the absorption unit, tailor-
made for air capture applications, Holmes and coworkers estimated that the total
costs of the air contactor alone (that is, neglecting the costs for the regeneration of
the solvent) could be drastically reduced from the 240 $/tonCO2

assessed by the
APS [22] to 60 $/tonCO2

[23]. The air contactor [24] and some of the units involved
in the solvent regeneration [25] have also been tested at pilot scale with promising
results, prompting Carbon Engineering to plan the construction of a 1 MtonCO2

/year
DAC plant. However, the major drawbacks related to the caustic recovery of the
alkali hydroxide have not been overcome and alternative regeneration techniques
show limited potential [26].

An alternative absorption-based DAC process has been described by Custelcean
et al. [27]. In this process CO2 is extracted from air by an aqueous solution of amino
acids, such as glycine or sarcosine, yielding the corresponding bicarbonate salts.
The amino acid is subsequently recovered by crystallization of the carbonate anions
with a bis-iminoguanidine solid. Finally, the carbonate crystals are decomposed
at temperatures between 60 and 120°C, thus releasing high purity CO2. While the
temperature required for the regeneration of the solvent is lower compared to the
alkali scrubbing process, the energy demand of the process proposed by Custelcean
et al. is higher [28]. Indeed, amino acid solvents provide fast absorption kinetics, but
low cyclic capacity.
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Surprisingly, liquid scrubbing via alkanolamines (e.g. monoethanolamine - MEA)
have been hardly considered for applications in DAC. In fact, amine scrubbing is the
benchmark technology for post combustion CO2 capture, and has been applied in
hundreds of gas separation processes [29]. In its basic form, the process consists of
the extraction of CO2 from (flue) gases near ambient temperature with an aqueous
solution of amines, followed by regeneration of the solvent through stripping at
about 120°C. Alkanolamines have a high affinity for CO2, which is enough for
CO2 capture from air [30]. Despite this, liquid scrubbing with MEA has only very
recently been assessed as an option for DAC. Barzagli et al. have conducted an
experimental screening of amine-based solutions as solvents for DAC [31]. Aqueous
primary amines appeared to be the best candidates, with MEA capturing 87.3% of
CO2 from air in a 24 hours period. Kiani et al. have carried out a simulation study
and economic evaluation in Aspen Plus, adapting the conventional MEA-based
absorption process for the capture of CO2 from air [32]. The total estimated cost for
this process was, in the base case, 1690 $/tonCO2

. The high cost is substantially due
to the high capital expenditure required for the absorption column, but Kiani et al.
have adopted a conventional packed column as absorber, which is not an optimal
design for DAC. In fact, they report that using a cooling tower inspired system, as
the one designed by Carbon Engineering, could reduce the cost of the absorber by
83%. It however remains that amine scrubbing requires great amounts of low-grade
heat for regeneration, and that amines are generally corrosive and toxic and degrade
over time due to oxidation [33].

These disadvantages can partly be overcome through immobilization of amines on
solid supports. By exchanging H2O with a solid support with lower heat capacity, the
amount of energy required to regenerate the amines can be reduced significantly [34].
Moreover, degradation and corrosion in supported amine are less of a problem [35].
In fact, amine-functionalized sorbents are currently receiving significant attention in
the DAC scientific community [36, 37], and early DAC companies adopted them for
their commercial processes. Among them, Climeworks proposed porous granulates
modified with amines applied in vacuum-pressure temperature swing adsorption
(VTSA) cycles [38]. In this process, unloaded sorbent material is contacted with air
to capture carbon dioxide at ambient condition; subsequently, the unit is evacuated
to a pressure in the range of 20–400 mbar and heated to a temperature of 80–130°C
to desorb CO2 [39]. The combination of vacuum and temperature allows for a higher
cyclic capacity, therefore limiting the amount of sorbent needed. Finally, the unit
is repressurized and cooled down to ambient conditions. Climeworks and Global
Thermostat are two established startups developing and commercializing such
DAC processes, with multiple pilot plants already running or being built [40]. In
addition to the specific sorbents, which differ in composition and structure, the two
companies have opted for different contactors: while Climeworks employs air-filter
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like structures [41], Global Thermostat uses honeycomb monoliths [42]. In both cases,
a VTSA cycle is used as process.

Another class of solid materials that has shown promising performances both
as sorbents [43, 44] and supports [45, 46] are metal-organic frameworks (MOFs).
MOFs are hybrid structures with metal nodes linked by organic bridges in bi- or
three-dimensional crystalline structures. Their large design space and versatility have
made MOFs good candidates for various gas-separation applications: surface area
and pore characteristics can be tailor-tuned and open metal sites allow for additional
functional groups. On the other side, production and commercialization of MOFs at
large scale is still an unsolved challenge [47].

An important point that need attention when considering solid sorbents is the
behavior with respect to water adsorption. Depending on the ambient conditions
and the solid characteristics, H2O can affect the adsorption of CO2 and therefore the
process productivity and energy requirements. More specifically, it is important to
obtain high quality experimental data and implement a suitable model for water
competitive or cooperative adsorption [35, 48]. So far, this point has largely been
overlooked in open scientific literature.

We can conclude that two DAC technologies stand out in light of the scale at
which they have been deployed and the technological readiness they have achieved:
wet scrubbing with aqueous alkali hydroxide solutions [25] and VTSA on supported
sorbents [49]. Moreover, we argue that MEA scrubbing should also be regarded as
an equally ready DAC technology. These processes have different advantages and
disadvantages. Liquid scrubbing is a continuous process that can take advantage
of mature and inexpensive components. The regeneration is, however, costly and
complex, especially for alkali solvents. The VTSA process is in principle simpler,
since the CO2 capture and the sorbent regeneration are carried out in the same
unit. Moreover, the regeneration of the sorbent takes place at low temperature.
On the other hand, the process is not as mature as liquid scrubbing, the sorbent
stability is still an issue and achieving high CO2 purity requires customized and
more energy-demanding cycles.

Choosing between these two approaches and prioritizing their research and devel-
opment is therefore not trivial; the projected cost of both technologies once deployed
at large scale has been estimated to be around $100 per ton of CO2 captured [40];
while this value might be too optimistic, $200 per ton of CO2 is a likely target that
DAC companies are pursuing. However, it remains unclear what specific actions
need to be taken to get there and where improvements are most needed.

With this chapter we provide a thorough process analysis for aqueous- and solid-
based DAC technologies. We do this by coupling advanced rate-based process
modelling with mathematical multi-objective process optimization. For the thermo-
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dynamic modelling, we use Aspen Plus for liquid solvents, and a state-of-the-art in
house code for fixed bed cycles with solid sorbents [50]. For the process optimization,
we directly connect the first-principles rate-based models to Matlab, where we use
suitable mathematical algorithms to identify the optimal design. As a result, we are
able to compute the specific energy consumption [MJ kg−1

CO2

] and CO2 productivity
[kgCO2

m−3 h−1] starting from thermodynamic models of specific reactor designs,
which are adopted from existing pilot plants. These two key performance indicators
(KPI) provide the required input for a simplified cost model that, despite its simplic-
ity, is able to clearly map the main contributions to the total specific cost [$ kg−1

CO2

]
and the directions to follow for further improvements, e.g. benefits from reduction
in fixed costs vs. reduction in operating costs. When comparing to existing literature,
although a few techno-economic analyses of DAC have been published, they either
rely on simple process models [51], or on energy assumptions from literature [40, 52],
or analyze a single process [32, 53–55]. In addition, we here consider the presence
of water and its co-adsorption. Accordingly, this chapter advances compared to
existing literature as it (i) provides a detailed model-based comparison of the key
DAC processes, (ii) assesses the potential of each DAC process via process models
and optimization, (iii) identifies the main weak points of the selected technologies,
thus providing input for future R&D, and (iv) quantifies how process/material
improvements could enhance the performance.

This chapter is organized as follows. In Section 2.2 we describe the considered
DAC processes and the modelling approach adopted for their analysis. This is
complemented by an exhaustive supplemental information document. In Section
2.3 we describe the process optimization and in Section 2.4 the economic analysis
methodology. In Section 2.5 we present the main results. Finally, in Section 2.6 and
2.7 we discuss the results and summarize the main conclusions, respectively.

2.2 process schemes and methodology

Alkali Scrubbing

The alkali scrubbing process is shown in Figure 2.1. The process has been thoroughly
discussed in past literature [20, 21, 25], however, it has never been systematically
optimized. Here, we shortly discuss the process features, especially in light of
modelling and optimization, while the reader can refer to literature or the SI for
more details on the process units.

In the alkali scrubbing, carbon dioxide is captured in a dedicated air contactor
unit, where it is absorbed in an aqueous solution of KOH in the form of K2CO3.
The K2CO3 solution is regenerated by forming calcium carbonate, which is then fed
to a calciner and decomposed to CaO and CO2. In this work, the whole process is
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modelled using Aspen Plus V11, which allows for precise computation of relevant
thermodynamics via the electrolyte NRTL method while also providing a reliable
rate-based model (available within radfrac).
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Figure 2.1: Schematic representation of the alkali scrubbing DAC process.

The absorption mechanism of carbon dioxide in alkaline solutions is well known
and takes place through a two-step process [56]:

CO2(aq) + OH− ⇌ HCO3
− (2.1)

HCO3
− + OH− ⇌ CO3

2− + H2O (2.2)

The rate-limiting step of the absorption mechanism is represented by Equation 2.1.
This mechanism is common to all alkali hydroxide sorbents, but it is reported that
KOH provides the fastest kinetics [24, 57]. In our simulations, we consider the air
contactor design developed by Carbon Engineering [23], who adapted commercial
cooling tower technologies to fit liquid scrubbing for DAC application (see SI for
additional details). Notably, such original units are devised to efficiently bring very
large quantities of ambient air into contact with water. The kinetics for the absorption
reactions have been adapted from the work of Pinsent et al. [58], while pressure
drops are estimated using the built-in correlations in Aspen Plus for the selected
packing.

The regeneration of the solvent and collection of CO2 are carried out through
a calcium-based thermo-chemical cycle, a process that has been adapted from the
Kraft pulping widely used in the paper industry [59]. The CO2-rich solution coming
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from the air contactor is fed to the pellet reactor, where K2CO3 is converted back to
KOH through causticization with lime according to the following reaction:

K2CO3(aq) + Ca(OH)2(aq) ⇌ 2KOH(aq) + CaCO3(s) (2.3)

Calcium carbonate has an extremely low solubility in water and, therefore, precip-
itates and it is easily separated from the liquid phase, which is sent back to the air
contactor. However, the rate of Reaction 2.3 is driven by the concentration of Ca2+

ions, which is low in highly alkaline solutions due to the low solubility of Ca(OH)2

in these conditions [20]. This could be an issue, as the CO2-rich solution coming
from the air contactor still contains a considerable amount of KOH, but it can be
tackled by having calcium hydroxide as the limiting reactant and by long residence
times in the pellet reactor [25, 60].

The wet CaCO3 particles are collected from the bottom of the pellet reactor and
are dried and pre-heated before being fed to the calciner, where CO2 is released
upon decomposition of calcium carbonate:

CaCO3(s) −→CaO(s) + CO2(g) (2.4)

The final step of the regeneration cycle is carried out by the slaker, where the
hydration of CaO to Ca(OH)2 takes place according to:

CaO(s) + H2O(g) −→Ca(OH)2(s) (2.5)

The design of the regeneration process and the performances of the unit operations
comprising it have been based upon the data published by Keith et al. [25]. Key
parameters used for modelling the alkali scrubbing process are reported in the
Supplemental Information in Table A.1.

Amine Scrubbing

The amine scrubbing process differs from the alkali scrubbing in the regeneration
section, where it is considerably simpler. The process layout is shown in Figure 2.2.

The air contactor designed by Carbon Engineering is adopted also in this case, as
it provides a clear advantage over conventional absorption columns. The chemical
absorption of CO2 in the aqueous MEA solution takes place via reaction with the
hydroxide ion (Equation 2.1 and 2.2) and according to the following reactions [61]:

MEA + CO2(aq) + H2O ⇌ MEACOO− + H3O+ (2.6)

MEA + H3O+ ⇌ MEAH+ + H2O (2.7)
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Figure 2.2: Schematic representation of the amine scrubbing process.

As opposed to K2CO3, MEA has a relatively high vapor pressure, resulting in
a considerable potential loss of solvent to the atmosphere. Additionally, MEA is
a much more toxic substance and its impact on both humans and environment
could be detrimental [62]. For this reason, a water-wash section has been employed
to reduce the emissions of MEA. Additional details for this unit, which has been
modelled following the same approach adopted for the air contactor, are reported in
Table A.1.

The rich solvent stream is first pumped to the stripper pressure and then split
in two flows: the largest is preheated in conventional fashion by the lean/rich heat
exchanger, while the other is kept cold and fed at the top of the stripper. With this
arrangement, the vapor released from the hot rich stream is exploited to heat up the
cold stream flowing from the top - a conventional practice in CO2 capture from flue
gases [63]. The rich solvent stream is regenerated through stripping with steam.

The properties of the liquid phase are evaluated with the unsymmetrical electrolyte
NRTL method, while for the gas phase SRK equation of state is employed, a proven
approach for amine systems [64]. The absorption reactions are implemented in the
air contactor blocks through kinetically controlled reactions. The kinetic constants
are as in the work of Amirkhosrow et al. [65], who validated them under different
operating conditions.
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An equilibrium RadFrac block has been adopted to model the stripper, as the re-
generation is usually carried out at conditions close to equilibrium. Details regarding
the stripper are reported in Table A.1.

Solid sorbent process

The simplified flow scheme of the adsorption process is shown in Figure 2.3. The
plant consists essentially of: the air contactor, controlling valves, a vacuum pump,
and heat and cold supply. When looking at the details of the air contactor, the
most mature version of the solid sorbent process is a cyclic process, where a single
unit undergoes successively a loading (adsorption) and a regeneration (desorption)
step at different pressures (PSA). Because DAC treats air at ambient conditions
and in very large flow rates, air compression is not a viable option, which leaves
temperature and vacuum as the only regeneration drivers. We therefore consider a
vacuum-temperature swing adsorption (VTSA) cycle, as illustrated with exemplary
column status in Figure 2.4a. This cycle was synthesized to allow the production of
CO2 at high purity (dry) and consists of four different steps, i.e. (i) adsorption, (ii)
purge, (iii) regeneration and (iv) repressurization.
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bonized 
air

Vacuum pump

Waste

Dryer

CO2 

Electricity
Heat
Cooling

Heating

Cooling
H2O
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Figure 2.3: Simplified flowsheet of the capturing process using a solid sorbent.

During the adsorption step, the air mixture enters the adsorber unit at ambient
conditions. CO2 (and H2O) is selectively removed by the sorbent, and CO2-lean
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air leaves the system. When the CO2 front reaches the end of the bed this step is
terminated. In order to increase the purity of the CO2, a preliminary heating step is
introduced, whereby the air, mainly N2, in the void space is removed. The sorbent is
heated up to a temperature T1 < T2 by an external heating fluid, where 1 refers to the
pre-heating and 2 refers to the heating step. At the same time, vacuum is generated
using vacuum pumps. Small amounts of CO2 and H2O are already desorbed during
this step. During the main desorption step the sorbent is heated to the highest
working temperature T2 while the vacuum condition is maintained or even tightened.
High purity CO2 in H2O vapor is produced during this step and withdrawn from
the column. Compared to the aqueous solution-based systems, lower temperatures at
around 100°C are sufficient to regenerate the sorbent. Subsequently, the valve at the
entrance is opened and ambient air streams in which cools down the sorbent material
and repressurizes the system until the column is back to the starting conditions.

As for the air contactor geometry, we have adopted the design described in patents
of Climeworks [41, 66, 67]. In such a configuration, the air contactor, which is
shown in Figure 2.4b, resembles an air ventilation system rather than a conventional
adsorber column. The physical dimensions of the module, e.g. the length of the
sorbent layer, as well as the void space within the contactor are set choosing arbitrarily
from the design range provided in [41, 66, 67]. Additional parameters used in the
process model are listed in Table A.16. It is worth stressing that DAC companies
may use different types of VTSA cycles and air contactor designs.

Extensive data is needed to model the adsorption process: from sorbent isotherms
to transport parameters. We address them in the following section. Because adsorption-
based DAC is not as established as liquid scrubbing, we provide more details than
in section 2.2-2.2.
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Figure 2.4: Representation of the adsorption process, showing in a) the schematic design of
the VTSA process, divided into four cycles. Note that here we use a column-type
cycle representation for the sake of clarity. More information about the structure
are given in Figure 2.3 simplified flowsheet of the capturing process, and in
b) a schematic design of the air contactor unit comprising a number of plates
containing the solid sorbent, similar to a design published in [67].
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Key for the process performance is indeed the sorbent. So far, several sorbents
have been presented in literature but only few possess the minimum thermodynamic
requirements for a successful DAC process. This can be clearly shown by plotting
the CO2 cyclic working capacity of the sorbent, i.e. the difference between the
equilibrium CO2 loading at adsorption and at desorption conditions, with respect to
the desorption temperature (see Figure 2.5).
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Figure 2.5: Working capacity for several solid sorbents including zeolites (green lines),
MOFs (grey lines) and amines (orange lines). The capacity is calculated with
ambient conditions for the adsorption step (T=293 K, p=1 bar, pCO2

=400 ppm)
and a desorption pressure of 100 mbar. The four sorbents selected for this study
are shown by thick lines and named in the legend.

The sorbent selection in this work is therefore based on the following constraints:
(i) cyclic capacity larger than zero when considering CO2 partial pressure in the
air for the adsorption, and Tmax = 120°C and pmin = 0.1 bar for the regeneration,
and (ii) data availability in open scientific literature for relevant isotherms and
sorbent physical properties. As a result, we selected four promising sorbents, which
are highlighted in Figure 2.5, namely APDES-NFC [41], Tri-PE-MCM-41 [68], MIL-
101(Cr)-PEI-800 [45] and Lewatit VP OC 106 [48, 69, 70]. It is worth noting that,
because DAC is a relative young application, experimental data are currently limited.
On the one hand, data are missing about H2O and N2 adsorption under different
conditions. On the other hand, multicomponent isotherms are not available to the
best of our knowledge. More specifically: for the APDES-NFC and the Lewatit
sorbent comprehensive experimental data for both water and CO2 isotherms are
available; MIL-101(Cr)-PEI-800 shows the highest CO2 working capacity, but no
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data were found for the H2O isotherm in the pressure and temperature range of
interest. In this work we cope with the limited availability of data for the considered
DAC sorbent by combining the sorbent-specific CO2 isotherm with different H2O
isotherms, which allows us to better evaluate the role of water in the process. To this
end we consider the H2O isotherms of APDES-NFC, Lewatit and MCF-APS-hi [71],
which feature a high, medium and low water adsorption, respectively. Moreover, as
the current sorbent landscape does not allow us to set a reference sorbent, e.g. among
the four selected, we include in our analysis an exemplary sorbent for CO2, obtained
by combining the equilibrium data of the four materials highlighted in Figure 2.5. The
resulting different cases are listed in Table 2.1. The matrix of cases obtained in such a
fashion allows us to consider sorbents well characterized (APDES-NFC and Lewatit),
as well as a promising sorbent missing experimental data (MIL-101(Cr)-PEI-800),
and an exemplary sorbent representing the average behavior.

Table 2.1: Different combinations for CO2 and H2O isotherms.

CO2 isotherm

H2O isotherm

APDES-NFC MCF-APS-hi Lewatit VP OC 106

APDES-NFC case 1:A-A - -

Exemplary case 2: E-A case 3: E-M case 4: E-L

MIL-101(Cr)-PEI-800 case 5: MP-A case 6: MP-M case 7: MP-L

Lewatit VP OC 106 - - case 8: L-L

For the four sorbents highlighed in Figure 2.5, we fitted experimental adsorption
data by applying suitable isotherm models. For CO2 adsorption, we identified
two different models that returned the best fitting. For APDES-NFC we apply the
temperature-dependent Toth model:

qi(p, T) =
nsbpi(

1 + (bpi)
t
)1/t , i = CO2 (2.8)

For the remaining sorbents we adopted a modified version of the classical Toth
equation, where two terms are present, one for describing physisorption and one
for describing chemisorption, as proposed by Elfving et al. [72]. This model showed
the best fitting for three out of four sorbents, since it describes two independent
adsorption mechanisms - chemisorption by the amine groups, and physisorption by
the surface interaction [73].
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qi(p, T) =

 nsbpi(
1 + (bpi)

t
)1/t


chem

+

 nsbpi(
1 + (bpi)

t
)1/t


phys

(2.9)

where in both Equations 2.8 and 2.9 pi is the partial pressure of the component
i, and ns, b and t are temperature-dependent parameters of the Toth model. The
temperature dependent coefficients, which have the same functional form for the
chemical and the physical term, are defined as follows

ns(T) = ns0exp
[

χ

(
1 − T0

T

)]
(2.10)

b(T) = b0exp
[

∆H
RT0

(
T0

T
− 1
)]

(2.11)

t(T) = t0 + α

(
1 − T0

T

)
(2.12)

where the terms are as defined in the variable list [74].
The fitting was carried out with the optimization routine fmincon in Matlab version

R2018b by minimizing the error between the experimental and modeled data using
the normalized standard deviation. Further details for the fitting of the different
sorbents as well as the calculation of the isosteric heat can be found in the Supporting
Information A. The resulting parameters for the different CO2 isotherms are shown
in the Supplementary Information in Table A.3. It can be noted that R-squared is
rather high in all cases.

The adsorption isotherms of water were described in all cases by using the
Guggenheim-Anderson-de Boer (GAB) model [41, 75]:

qH2O(T, pH2O) = Cm
CGKads

pH2O
p0(

1 − Kads
pH2O

p0

) (
1 + (CG − 1)Kads

pH2O
p0

) (2.13)

with

CG(T) = CG,0exp
(

∆HC

RT

)
(2.14)

Kads(T) = K0exp
(

∆HK

RT

)
(2.15)

Cm(T) = Cm,0exp
(

β

T

)
(2.16)
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where the terms are as defined in the variable list. As mentioned before, the
equilibrium data of water are from three different sorbents, namely APDES-NFC [41],
MCF-APS-hi [71] and Lewatit VP OC 106 [76].

Most of the DAC processes modeled in literature are either based on dry con-
ditions [73] or disregard the effect of water on the CO2 isotherm. However, the
presence of water in the feedstream enhances the CO2 capacity of amine-based sor-
bents, depending on the temperature and partial pressure of H2O in the stream [35,
48]. Despite the very limited set of data available, modeling the co-operative adsorp-
tion of water and CO2 is key to compute a realistic process performance. Ideally,
multicomponent competitive isotherms should be used but, as those are not yet
available for the sorbents of interest, we use single component isotherms and de-
scribe empirically the interaction of CO2 and H2O. Wurzbacher et al. [75] added
an enhancing factor dependent on the partial pressure of CO2 and the humidity, to
describe the humid adsorption of CO2. However, this factor is applicable in a small
pressure range and lead to wrong estimates in other conditions of interest. Using a
physical approach, Stampi-Bombelli et al. [55] proposed a new isotherm model for
the APDES-NFC sorbent, where the water uptake is embedded in the Toth isotherm
for CO2. This method is physically sound, but depends on having comprehensive
experimental water isotherms, including competition and cooperative adsorption
with CO2. Here, we applied a robust, yet empirical approach by including an equiv-
alent adsorption temperature Teq, which is dependent on the humidity RH and the
actual temperature T, in the form of

Teq(T, RH) = T − a
(

278K
T

)b
RH (2.17)

with a and b being two fitting parameters. The expression allows to have Teq=T for
RH=0% while also including a minimum Teq for RH=100%, i.e. the most favorable
adsorption condition for CO2 as function of humidity. The calculation of a and b
was carried out by fitting data provided in Veneman et al. [48] and applied to all
sorbents considered in this work. Details can be found in the Supporting Information
A, including the comparison with data reported for APDES-NFC. For the Toth-cp
model, the equivalent temperature is included only in the chemisorption, as the
physisorption mechanism is not as strongly affected by humidity.

Finally, while we do consider the presence of N2 in the feed gas and in the void
part of the bed, which influences the CO2 purity, we neglect the adsorption of N2. It
is worth noticing that, given the chemisorption role, the adsorption of N2 will be
very limited.

The adsorption column is simulated by using a deterministic in-house model,
which was originally developed for cyclic adsorption processes in fixed beds in
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the group of Mazzotti at ETH Zurich and that has been adapted here to describe
the sorbents of interest. The operation of the process is modeled by solving mass,
energy and momentum balances for a unique column which undergoes the cycle
steps sequentially. It is completed when a cyclic steady state (CSS) is reached, or, in
other words when the overall mass balance and the internal column parameters, like
composition and temperature, are the same for the n and the n− 1 cycle. More details
can be found in [77, 78]. The underlying modelling approach is well established and
state-of-the-art in the field of CO2 adsorption [79, 80]. The tool has been validated
against experiments for PSA, TSA and VSA conditions conditions [50, 81–83] and has
been used in several scientific publications for analysis of adsorption processe [83–
85].

The additional process components, like the air blower and the vacuum pump,
are modeled by using MATLAB, details can be found in the Supporting Information
section A.

Along with the equilibrium data, transport parameters, namely the mass transfer
and heat transfer coefficients, are needed. Unfortunately, the data availability for
these is even more limited than isotherms. Here, we have tackled this by estimating
data from existing experiments, and by adding extensive sensitivity analysis to
provide a range of performance, rather than a single point value. In the adsorption
model, the mass transfer resistance is described using the linear driving force (LDF)
model

∂qi
∂t

= ki

(
qeq

i − qi

)
(2.18)

with the (lumped) mass transfer coefficient ki of component i and the equilibrium
adsorbed phase concentration qeq

i . The reference CO2 coefficient was assumed to
be kCO2 = 0.1 s−1, which is in the same range compared to other literature [86, 87],
however other references provide smaller values, e.g. [55] who fitted the limited set
of data from [41, 75, 88] resulting in a coefficient of kCO2 = 0.0002. Since the kinetics
have a large impact on the performance of the process and given the lack of kinetic
data in literature, especially for the specific sorbents we have chosen, a sensitivity
analysis is carried out by varying the mass transfer coefficient for CO2 in the range
of kCO2,1 = 0.0001 s−1, kCO2,2 = 0.01 s−1 and kCO2,3 = 0.1 s−1, while keeping the
kinetics for water constant. Since experimental data in [75, 89] showed faster kinetics
for H2O, we assumed kH2O = 1 s−1 for the mass transfer coefficient.

The heat transfer coefficient was calculated by fitting experimental data provided
in [41]; details of the calculation can be found in the Supporting Information A. The
resulting coefficient is 6.7 W/(m2K), which is comparable with values used by other
authors [77, 90]. Since this calculation is only based on one experimental set of data,
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we included a sensitivity analysis for h1 = 4.0 W/(m2K), h2 = 6.7 W/(m2K) and
h3 = 6.0 W/(m2K).

Finally, the specific properties of the different sorbents can be found in the Sup-
porting Information in Table A.14.

2.3 multi-objective optimization

In order to determine the optimal performance of the different capture systems and
the associated operating and design variables, a multi-objective optimization was
carried out [91]. It includes two competing objectives, namely productivity, which
can be seen as an indicator for the resulting equipment costs, and the electrical and
thermal energy consumption coupled in the mass-specific exergy e value, which
reflects the operating costs. The problem is defined as:

minimize
x

(−Pr, e)

subject to Φ ≥ Φspec

(2.19)

where x are decision variables, Φ the purity and Φspec the required minimum
purity (here assumed 95%, as for CO2 storage applications). Since these objectives
are conflicting, the trade-off is identified by a Pareto line; e.g. for a given reactor size,
an increase in productivity requires capturing more CO2, which can be achieved
processing more air (i.e. larger energy consumption for the fan) or working with
higher recovery (i.e. larger heat consumption for regeneration). The productivity is
calculated as

Pr =
ṁCO2

Vaircontactor
(2.20)

where ṁCO2 is the mass rate of CO2 captured from the air and Vaircontactor the volume
of the air contactor. The specific exergy requirement e is calculated differently for
every process as described below.
Exergy consumption of the alkaline scrubbing process. The specific exergy demand
using KOH as a solvent is expressed by

e =
1

ṁCO2

[
ṁCH4 LHVCH4 + ẆASU + Ẇblower + Ẇcomp

]
(2.21)

where the product ṁCH4 LHVCH4 is the exergy demand for the calcination, which is
provided by an oxyfuel combustion of methane with oxygen from an ASU consum-
ing ẆASU. In addition, the energy requirement for the air blower Ẇblower and the
compression of the CO2 Ẇcomp is included.
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Exergy consumption of the MEA scrubbing process. In this case, the exergy demand
is calculated as

e =
1

ṁCO2

[
Q̇reboiler

(
1 − T0

Treb

)
+ Ẇrefr + Ẇpump + Ẇblower + Ẇcomp

]
(2.22)

with Q̇reboiler representing the heat required for the reboiler of the stripper, Ẇrefr
the power used for cooling the lean stream and Ẇpump the energy requirement of
the pumps.
Exergy consumption of the VTSA process. For solid sorbent DAC the specific
exergy requirement is calculated as:

e =
1

ṁCO2

[
Q̇purge

(
1 − T0

Tpurge

)
+ Q̇reg

(
1 − T0

Treg

)
+ Ẇvac,purge

+ Ẇvac,prod + Ẇblower + Ẇcomp

]
(2.23)

where Q̇purge and Q̇reg represent the heat required for the purge and regeneration
step, Ẇvac,purge as well as Ẇvac,prod the required electrical energy of the vacuum
pump, Ẇblower the energy for the air blower and Ẇcomp the energy for CO2 compres-
sion. All input variables are calculated in our optimization framework.

As for the exergy consumption, also the optimization variables are specific to
process type.
Optimization variables of the alkali scrubbing process:

• Absorber loading (ξ), defined as the ratio between the moles of KOH in the
lean stream and the moles of CO2 in the air stream;

• Air velocity in the contactor unit (uair);

• Mass fraction of water in the K2CO3 slurry (wH2O).

Optimization variables of the MEA scrubbing process:

• Absorber loading (ξ), defined in this case as the ratio between the number
of moles of MEA in the lean stream and the number of moles CO2 in the air
stream;

• Air velocity in the contactor unit (uair);

• Specific reboiler duty (d), defined as the ratio between the set duty of the
reboiler and the mass flowrate of the lean stream;
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• Split fraction ( fSplit), the fraction of rich stream which is directly fed to the top
stage of the stripper.

Optimization variables of the VTSA process:

• time of the adsorption phase tads, of the CO2 production phase tprod, and of
the purge step tpurge;

• vacuum pressure of the preheating and CO2 production step pvac;

• temperature of the heating step Tprod;

• temperature difference between the CO2 production and the purge step
∆Tpurge;

• air velocity uair at the feed (the upper boundary is dependent on the specific
material properties and is calculated as the minimum fluidizing velocity).

All decision variables and their respective lower and upper boundaries in the opti-
mization are reported in the Supplemental Information in Table A.7. The boundaries
were chosen to be large enough to explore the optimum for all sorbents while being
computationally feasible within some hours.

In all simulations, the optimization is carried out using state-of-the-art mathe-
matical algorithms implemented or available in Matlab (R2018b). For the liquid
scrubbing processes, Matlab was directly connected to Aspen Plus V11 using the
ActiveX software framework, i.e. the data exchange is fully automated. For these
cases, the non-dominated Sorting Genetic Algorithm version II (NSGA-II) as avail-
able in Matlab was employed. More details can be found in the Supplemental
Information section A. For the solid sorbent process, the optimization was carried
out using a new algorithm that (part of) the authors have specifically coded in
Matlab for tackling adsorption processes. The algorithm is directly connected to
the Fortran-based adsorption model: it receives results from it and provides new
set of optimization variables. The algorithm is a modified version of the global
optimization algorithm multi-level coordinate search (MCS) which is extended to
deal with multiple objectives (MO-MCS). Details can be found in [91].

In addition to the objective functions and optimization variables, we report
throughout this work also the capture rate. This indicator is defined as the ra-
tio between the amount of CO2 captured over the amount of CO2 fed to the air
contactor:

Cr =
ṁCO2

wAir
CO2

ṁAir
(2.24)

For all processes, the simulations are carried out considering as ambient conditions
T = 293 K, p = 1.001 bar, relative humidity of 43%, and CO2 content: 4 × 10−4

molCO2/mol.
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2.4 economic evaluation

As complement to the detailed technical analysis, we carried out a simplified eco-
nomical evaluation of the different processes. The goal is not to present a detailed
economic analysis of the specific technologies, which would require to compute all
components of the capital expenditures (CAPEX) and the operational expenditures
(OPEX) - out of scope here, but to identify the main cost drivers of the processes and
to compare their potential from an economic perspective. In gas separation, energy
and air contactor volume are first proxies for operating and capital cost respectively.
Using the consistent computation of energy performance and productivity we there-
fore map the CO2 capture cost cCO2 as function of (i) the air contactor cost per m3 γ,
(ii) the electricity price cel, and (iii) the heat price cth. These can also be regarded as
proxy for CAPEX (point (i)), and OPEX (point (ii) and (iii)). The resulting equation
is:

cCO2 =
γ

Pr · a
+ ctheth + celeel (2.25)

where Pr, eth, and eel are taken from the Pareto fronts computed with the optimiza-
tion, and a is the lifetime of the plants, which was assumed to be 20 years (note that
unit conversion factors have been omitted in the equation). For γ, a range of 2000 to
50000 $/m3 was chosen. The order of magnitude of the two values has been chosen
to cover a broad range of plant costs; from a rather simple and cheap traditional
column (as reference a contactor cost of 2000 $/m3 was back-calculated from [25]) to
the higher cost of a full VTSA system (calculated considering a cost of 600 $/tonCO2

and the design and capacity of Hinwil Climeworks plant).
For cth and cel we chose a realistic range of 1− 10 $cents/kWh. It should be stressed

that, while we show the full cth-cel plane, cases where heat is more expansive than
electricity should be disregarded.

2.5 results and discussion

Alkali Scrubbing

The Pareto front obtained for the KOH process is reported in Figure 2.6a. The region
below the curve is unfeasible while that above represents a sub-optimal operation.

It is worth noting that the exergy does not change much along the Pareto front,
as opposed to the productivity. On the one hand, there is not much room for the
reduction of the exergy demand of the KOH scrubbing process with the chosen
decision variables and their respective boundaries. The demand is mainly determined
by the oxy-combustion, which is around 5 MJ/kgCO2 . A better understanding can
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Figure 2.6: Resulting graphs for the KOH process. a) Specific exergy-productivity Pareto
front for the KOH process; point A: minimum exergy consumption; point
B: maximum productivity. Empty points represent sub-optimal conditions
obtained during the optimization. b) Breakdown of the exergy demand of the
alkali scrubbing process for the two extremes, i.e. point A and B, of the Pareto
front. The energy demand is equal to the exergy demand. With the specific
values for the calciner A/B: 5.05 MJ/kg, the air separation unit A/B: 0.44 MJ/kg,
the air blower A: 0.28 MJ/kg and B: 0.55 MJ/kg, the CO2 compression A/B:
0.34 MJ/kg and the pumps A/B: 0.10 MJ/kg.

be achieved by examining Figure 2.6b, which shows the breakdown of the exergy
demand for the two extremes of the Pareto front. The energy demand is almost equal
to the exergy demand, since the calcination is a high temperature process, where
energy and exergy converge to the same value.

For both points, the largest share of the exergy demand is due to the calciner and
the ASU. The methane and oxygen streams to achieve 98% conversion of CaCO3

at a fixed temperature of 900°C are constant along the pareto as a result of the
decoupling between the capture and the regeneration sections. As for the purity, the
CO2 concentration in the dried product stream does not differ much from the value
of 94.7% and, consequently, the specific energy consumption of the compressors is
constant throughout all the simulations.

The energy consumption of the air blowers, on the other hand, significantly
changes along the Pareto. As a matter of fact, the pressure drop across the air
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contactor units increases with increasing air velocity, the latter being one of the
design variables chosen for this process.

These results are in line with those presented in literature. Keith et al. estimate a
total exergy demand of 6.57 MJ/kgCO2, with the calcination representing the largest
portion at 5.25 MJ/kgCO2 [25]. The biggest discrepancy can be identified in the CO2

compression work, as Keith et al. report 0.475 MJ/kgCO2, while, as it is shown in
Figure 2.6b, we estimate 0.34 MJ/kgCO2. This is likely due to different compressor
isentropic efficiencies.

As for the effects of the design variables on the process performance, which are
shown in Figure A.2, we find that the air velocity has the prominent influence. With
increasing air velocity, both the specific energy demand and the productivity increase,
thus delineating the Pareto frontier. Because of the shorter residence time, higher
air velocity leads to lower capture rate, which is compensated by the larger amount
of CO2 fed to the contactor. The absorber loading as well as the moister content
of the CaCO3, on the other hand, do not effect the performance significantly. This
is a peculiarity of the double ions exchange process, which, from an optimization
perspective, allows to decouple the flow rates in the air contactor from the flow
rates in the regeneration. Additional details can be found in the supplementary
information in Section A.

The purity of the captured CO2 is independent of the considered design variables,
and was found to be 94.7% on a dry basis. The remaining impurities consist of N2,
Ar and O2 and depend on the ASU and the oxy-combustor design. The CO2 purity
of the alkali scrubbing process could increase when adopting a gas cleaning process -
as done in conventional CCS oxycombustion processes - or when using an ASU with
a third column for Ar recovery. It is in fact worth noting that only negligible amounts
of N2 and Ar are transferred from the air in the air contactor to the regeneration
section.

Amine Scrubbing

Amine scrubbing is a well-established and widely adopted CO2 capture process. The
DAC version described in this work is based on the unconventional air contactor
units of its alkali counterpart, while the solvent regeneration is carried out through
conventional steam stripping. The Pareto front for the amine scrubbing process is
reported in Figure 2.7a.

It can be noted that both productivity and exergy demand change significantly
along the Pareto, suggesting the importance of optimization for this process. As for
the alkali scrubbing process, the solvent regeneration is the biggest contributor to the
energy demand. Figure 2.7b shows that, for both extremes of the Pareto, the energy
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demand consists almost entirely of the reboiler duty. Moreover, it can be noticed that
the reboiler duty increases dramatically when moving towards higher productivity.
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Figure 2.7: Resulting graphs for the MEA process. a) Specific exergy - productivity Pareto
front for the amine scrubbing process; point A: minimum exergy consumption;
point B: maximum productivity. Empty points represent sub-optimal conditions.
b) The breakdown of the energy demand for the two extremes, i.e. point A and
B, of the Pareto front. With the specific values for the Reboiler A: 18.01 MJ/kg
and B: 48.16 MJ/kg, the lean stream A: 1.01 MJ/kg and B: 0.12 MJ/kg, the
air blower A: 0.73 MJ/kg and B: 0.75 MJ/kg, the CO2 compression A/B: 0.28

MJ/kg and the pumps A: 0.07 MJ/kg and B: 0.01 MJ/kg. The overall exergy
demand for both points is shown by orange dots, using the right axis.

Although in terms of exergy demand the amine and alkali scrubbing processes
are similar, amine scrubbing requires much more energy than its alkali counterpart.
Figure 2.7b shows the energy demand for point A of the Pareto, that is the point for
which the energy consumption is the lowest. Even in these conditions, the amine
scrubbing process requires almost three times the energy consumed by the alkali
process. However, only low-grade heat has to be provided to the reboiler, which
explains the significant difference between energy and exergy demand. The results
reported in this section are in line with those already published in the literature.
However, for operating conditions similar to those adopted in this work, Kiani et
al. [32] reported a reboiler duty of 21.9 MJ/kgCO2 and electrical energy requirement
of 5.04 MJ/kgCO2. The energy demand breakdown for point A and B of the Pareto is
represented in Figure 2.7b. The much lower energy requirement of the air blowers
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reported in this work can be explained by the lower pressure drops provided by the
Carbon Engineering type of air contactor.

The influence of the design variables on the productivity and energy demand is
shown in Figure A.3 in the Supplementary Information. The weight fraction of MEA
in the lean stream is kept to the well-established optimal value of 30% throughout all
the simulations. This means that an increase in the absorber loading (ξ) determines
an increase in the lean flow rate. When moving towards high productivity, both
ξ and the air velocity steadily increase. This implies that the lean flow rate is
significantly higher, while the CO2 recovered is about constant, thus explaining the
rise in energy demand. Remarkably, the specific reboiler duty (d) does not steadily
increase as the productivity rises, but it shows a maximum in the middle of the
Pareto and then decreases for the points with the highest productivity. This can be
explained by the influence of the absorber loading. This design variable increases
when moving towards high productivity, meaning that more MEA than CO2 is
present in the system. Therefore, the rich stream becomes more diluted in carbon-
carrying components, which affects the energy demand of the reboiler. Indeed, less
energy is required to regenerate a more diluted stream, thus the reduction in specific
reboiler duty in the high productivity region. Moreover, less CO2 is released by
regenerating a diluted rich stream, therefore, although d decreases, the specific
energy demand still increases.

The split fraction does not show a clear trend with respect to the energy demand
or the productivity. However, the Pareto points in the high productivity, high energy
demand region are all characterized by a high split fraction, meaning that this design
variable does have an effect on the performances of the process.

Interestingly, we show that the kinetic performance of MEA would allow for
capturing CO2 from air. As reported in Figure 2.8, the capture rate achieved at the
Pareto is as high as 89%. The alkali scrubbing process can provide an even higher
capture rate of 97%, although at the expense of productivity. This is due to the fact
that higher productivity is achieved via higher air velocity and, therefore, lower air
residence times. In this way more air is processed per time and volume of the reactor.
For the highest productivity the capture rate of the alkali scrubbing process is 50%.
For the amine scrubbing, on the other hand, the capture rate is almost independent
of the productivity (i.e. air velocity). This is due to the fast kinetics of MEA, which
determine extensive CO2 removal in the optimal range of the air residence time.
Similar performance has also been reported in recent literature: Barzagli et al. [31]
achieved a capture rate of 87.3 % using an aqueous solution of MEA.

Extremely high CO2 purities exceeding 97% are achieved. This is not surprising,
since MEA is a remarkably selective solvent. The other main components contained
in the CO2 product stream are H2O, N2 and O2. Thanks to the washing section,
the MEA content in the CO2-lean air stream is negligible. The purity is constant
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throughout all the operating conditions, but tends to slightly decrease with increasing
energy demand. An increase in energy demand is determined by a rise in the reboiler
duty, meaning that more water is vaporized, partly ending up in the CO2 stream.
However, on a dry basis, the purity achieved with this process is constant.
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Figure 2.8: CO2 capture rate for the resulting Pareto points for both liquid scrubbing
processes over the normalized productivity.

Solid sorbent

The Pareto curves for the different solid sorbent materials are shown in Figure 2.9,
while the breakdown of the specific exergy and energy consumption can be found in
Figure 2.10. The values for the design variables for each Pareto curve are attached in
the Supporting Information in Figures A.5- A.11. From Figure 2.9 it can be noted that
the solid sorbent process covers a rather broad range both in terms of exergy (1.5-3.7
MJ/kgCO2) and productivity (3.8-10.6 kg/m3/h). This is because of the different
chemical-physical properties of the sorbents. The highest exergy consumption was
achieved with the Lewatit sorbent. One reason is that the heat of adsorption for
the chemisorption is 91.2 kJ/mol, which is higher than for the other sorbents and
leads to a higher thermal energy demand. Furthermore, the working capacity of the
water adsorption is high, which further increases the energy demand during the
regeneration step. In addition, the lower particle density and particle diameter limits
the maximum air velocity, resulting in a lower productivity. The MIL-101(Cr)-PEI-800

sorbent shows high working capacity and low energy consumption, which depends
on the water isotherm. The MFC-APS-hi water isotherm shows the lowest H2O
working capacity and leads to a lower exergy consumption for the combinations
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Figure 2.9: Productivity-exergy Pareto curves for the solid sorbent optimization using
different combinations of isotherms for CO2 and H2O (the shortcuts of the
cases are explained in Table 2.1). In all simulations the mass transfer coefficient
for CO2 is 0.1s−2 and the heat transfer coefficient 6.7 W/m2/K. The different
colors represent different CO2 isotherms, while the different symbols change
with the different H2O isotherms.

using this sorbent, i.a. MP-M and E-M. For the APDES-NFC sorbent (case A-A), the
lower exergy point is comparable with the MIL-101(Cr)-PEI-800 sorbent but the high
productivity is limited to about 6 kg/m3/h. This is due to the high porosity and low
density of the sorbent and the lower working capacity of the CO2 isotherm, which
requires a higher regeneration temperature and a lower vacuum pressure during
the production step. For all cases, the main exergy (energy) demand is required
by the heat consumption during the regeneration. The energy consumption for the
vacuum pump during the purge step is very low, since this step only ensures that
all the N2 in the void space is removed to achieve a high purity, which proceeds
very quickly. The vacuum pump for the CO2 production step has a higher share
on the overall energy consumption and varies mainly with the different vacuum
pressures needed for the regeneration. For the MP-A case, e.g., the vacuum pressure
is comparably high, which results in a very low energy consumption for the pump.
The energy consumption for the air blower as well as the CO2 compression is similar
for all cases. The former has a higher impact on the productivity. While keeping the
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dimensions of the air contactor the same, a higher air velocity leads to an increase in
the productivity for the considered range of values. Because of the low temperature
of the regeneration, and similarly to MEA, there is a large difference between the
energy and exergy demand for all solid sorbents (see Figure 2.10).
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Figure 2.10: Detailed energy and exergy demand for the different cases of the solid sorbent
process. a) Breakdown of the exergy demand. b) Breakdown of the energy
demand. The thermal energy demand is shown in blue, with different shades
referring to the reaction heat of CO2 and H2O, which were calculated at
equilibrium (T = 373 K, p = 0.1 bar), and the sensible heat of the sorbent,
CO2 and H2O. In both graphs X-X:A refers to the minimum exergy/energy
on the Pareto, and X-X:B to the maximum productivity.

In all cases, the CO2 purity is in the range of 94 to 99% with water being the main
impurity. The only exception is APDES-NFC, where the purity was slightly lower,
in the range of 0.89-0.94; this is due to the higher porosity of the sorbent and the
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additional amount of nitrogen present in the pores. The recovery is similar for all
simulations and varies between 60 and 99%, as shown in Figure A.4.

Sensitivity analyses were carried out for two highly uncertain parameters: the
mass transfer and the heat transfer coefficients. The Pareto fronts for varying the
kinetics are shown in Figure 2.11a. Three cases were analyzed here, depending on
their resulting Pareto curves shown in Figure 2.9: the case with the lowest exergy
consumption (E-M), the one with the highest exergy consumption (L-L) and one in
between (E-A). It can be noted, that the mass transfer highly affects the shape of the
Pareto front. While the minimum energy consumption is similar, the productivity
varies significantly when reducing the mass transfer coefficient because of the higher
cycle time required. For a specific mass transfer coefficient of k = 0.1 − 0.01 s−1

the Pareto is rather flat - the productivity can be increased with minor additional
energy expenditure. However, the Pareto becomes very steep for k = 0.0001 s−1 -
the productivity can be slightly increased at great energy costs. This effect is similar
for all three materials tested. Varying the heat transfer coefficient mainly affects the
productivity, i.e. lower productivity for smaller heat transfer coefficient, which is
due to the longer heating time required as shown in Figure 2.11b. Differently from
the mass transfer, heat transfer does not strongly affect the adsorption step.
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Figure 2.11: Pareto curves for the sensitivity analysis: (a) Changing the kinetics from
k = 0.1s−1 to k = 0.0001s−1 (for material E-A, E-M and L-L) and (b) changing
the heat transfer coefficient (W/m2K) (for material E-A).

For the solid sorbent process, we find that the total energy demand varies in a
range of 4.9-13.3 MJ/kgCO2. The thermal energy is the largest contribution (4 – 11.8
MJ/kg) while the electrical energy accounts for 0.8-1.8 MJ/kg.
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We can compare the results presented here with values reported in literature; this
is possible for the energy consumption only, as – to the best of our knowledge –
no other study reports the CO2 productivity (or required volume). Moreover, it is
worth stressing that different literature works rely often on different assumptions
and different sorbents. Finally, the results we present are obtained with an extensive
process optimization, while literature results are either single data point or outcome
of sensitivity analysis.

The process developed by Climeworks requires 1.8-2.6 MJel/kg and 5.4-11.9
MJth/kg, where the minimum represents future target and the maximum the cur-
rent consumption [92]; for our case A-A, which includes the APDES-NFC sorbent
supposedly similar to Climeworks material, the energy demand is 1.1-1.3 MJel/kg
and 8.6-10.1 MJth/kg, therefore in line with published data. As for the electricity
consumption, likely sources of deviations include the vacuum pump and blower
efficiency, and the pressure drops in the contactor (e.g. we do not account for con-
centrated pressure drops). As for the heat consumption, the main difference is found
when comparing the future Climeworks target, which includes heat integration
options between heating and cooling and that we do not include in our models.

Bajamundi et al report measured data of a modular DAC system using an amine-
functionalized polystyrene sorbent, operating as a VTSA cycle. The resulting thermal
energy demand is in the area of 27.4 MJ/kg and the mean electrical energy demand
is 8.6 MJ/kg [93]. The test was carried out with varying atmospheric temperature
and humidity, which is a possible source of higher energy consumption. However,
the reported energy consumption is significantly higher than other experimental and
numerical studies, which might be linked to the specifics of the experimental plant.

Kulkarni and Sholl report modelling results with an energy requirement of 0.79

MJel/kg and 6.0 MJth/kg when using an amino-modified silica adsorbent, TRI-PE-
MCM-41 [73]. We cannot directly compare these with our results because we didn’t
run specific simulations for TRI-PE-MCM-41 – but rather consider it when deriving
the exemplary sorbent. In fact, the performance is similar to the exemplary sorbent
(namely E-A, E-M and E-L cases), for which we obtain 0.8-1.0 MJel/kg and 7.1-7.7
MJth. Despite a few differences between the system configuration affecting the heat
consumption, e.g. they consider direct steam heating, energy results are similar.

Sinha et al [53] report modelling result for a VTSA system similar to the system of
Kulkarni and Sholl, but using two amino-modified MOFs, MIL-101(Cr)-PEI-800 and
mmen-Mg2(dobpdc). The reported total energy demand is 5.11 MJ/kg for the former
sorbent and 3.6 MJ/kg for the latter. In our simulations for MIL-101(Cr)-PEI-800,
we obtain 4.7-8.9 MJ/kg, depending on the adsorption of water. The key difference
here is due to the water adsorption, which is not included in the work of Sinha et al
while it is here: when considering the low capacity water isotherm (i.e. case MP-M),
we obtain a total energy demand of 4.7 MJ/kg, fully in line with Sinha et al.
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Yu and Brilman measured experimentally an energy consumption of 6.5 MJth/kg
and 0.6 MJel/kg using Lewatit in a fixed bed reactor [94]. Our corresponding case
(L-L) shows values in the range of 10.1-11.8 MJth/kg and 0.6-1.3 MJel/kg. The main
difference can be found once again in the water, as the experiments were carried
out using a dry feed. We estimate that removing water would decrease the energy
consumption of about 3 MJth/kg (see Figure A.1), thus in good agreement with the
experimental value of Yu and Brilman.

Finally, we can do a back-of-an-envelope comparison of our productivity with a
proximate value for Climeworks Hinwil plant. Considering that the demonstration
plant is designed for 2460 kg/day using 18 modules, whose unit size we estimate
to be similar to a cube of 1.5 m side, and assuming 24 h/day operation, we obtain
about 1.7 kg/m3/h, in line with our APDES-NFC case when using low linear driving
force. Moreover, when comparing DAC to classical TSA applications for CCS, we
see that the productivity decreases of approximately one order of magnitude: from
28-70 kg/m3/h to 0.5-10 kg/m3/h.

Overall, the solid sorbent process model shows that the performance of different
sorbents, here identified by different CO2 isotherms and physical properties, are
strongly affected by the H2O isotherms and the heat and mass transfer. Within the
limits of physics, it is convenient to design DAC sorbents that (i) limit the water
adsorption capacity if the energy is to be minimized (ii) possess a positive CO2-H2O
cooperative adsorption if the productivity is to be maximized, and, in any case, (ii)
show low mass transfer resistance.

2.6 processes comparison and economic evaluation

The Pareto curves of all three processes are compared in Figure 2.12. When us-
ing KOH as a solvent the productivity is the lowest and considering the exergy-
productivity range of all processes, the exergy does not change much with a change
in productivity. The MEA process on the other hand is more sensitive for differences
in productivity and the exergy consumption increases very steeply with increasing
productivity. The optimization with the solid sorbent process results in the lowest
exergy consumption with the highest productivity, however with the largest uncer-
tainties. We have therefore highlighted the results with a blue area encompassing
all computed exergy-productivity data. The area starts approximately nearby the
KOH/MEA processes, but extends to much higher productivity/lower energy con-
sumption ranges. Table 2.2 lists the share of the energy demand for the different
processes; notably the lowest energy demand is obtained for the KOH process.

It is important to stress that the calculation of the productivity is here based on
the largest contributor to the process footprint, i.e. the air contactor volume; the
two liquid solvent processes do not include the size of additional components like
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the calciner/reboiler or other equipment. Similarly, for the solid sorbent process,
we did not consider the size of the piping and valves equipment. We note that by
leaving these ancillary equipments out, the productivity calculations are slightly
advantageous for the liquid solvent processes since the additional components take
up more space compared to the solid sorbent process.
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Figure 2.12: Resulting Pareto charts of all three processes. For the solid sorbent process
an area is plotted, which comprises all Pareto plots, including the sensitivity
analysis.

The results of the cost analysis is shown in Figure 2.13, which reports the maps
of the total system costs as function of the heat price (cth), the electricity price (cel)
as well as the air contactor cost (γ). We find that, for all processes but the solid
sorbent with high mass transfer, the cost is strongly dependent on the module cost.
Accordingly, low-cost area (<200$/tonCO2) is found for the low range of γ. The
MEA economics (Figure 2.13b) strongly depends on the heat price, since the thermal
energy demand is dominating. Accordingly, a low-cost area (<200$/tonCO2) can be
found at low heat cost and low module cost. The total costs increases significantly
for values of cth above 5 $cents/kWhth, irrespective of the module cost. Compared
to the MEA process, the alkali scrubbing (Figure 2.13a) shows more favorable total
costs, which do not depend strongly on the heat price thanks to the significantly
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Table 2.2: Energy and exergy consumption of the three processes for the two extreme
Pareto points A and B, referring to the Pareto charts shown in Figure 2.12. For
the solid sorbent process the exemplary isotherm is considered (case E-A) and
the range in brackets indicates the results of the sensitivity analysis.

KOH MEA Solid sorbent

A B A B A B

Energy (MJ/kgCO2 ) 6.21 6.48 20.04 49.32 7.96 8.68

(3.98-11.17) (4.69-23.49)

Exergy (MJ/kgCO2 ) 6.21 6.48 5.59 13.13 1.81 2.1

(1.31-3.45) (1.42-12.12)

smaller thermal energy demand. On the other hand, the low productivity makes the
process more dependent on the module cost. The solid sorbent process is shown in
Figure 2.13c and d, for low and high mass transfer rates, respectively. For materials
allowing high mass transfer rates, the process shows on average the lowest costs
thanks to the combination of low energy demand and high productivity compared
to the two liquid solvent processes. In this case, the costs are mainly dependent on
the heat price. However, this changes significantly in case of low mass transfer rates
as the capture cost becomes strongly dependent on the module cost, with a resulting
behavior similar to the MEA, though more favorable.

In this simplified economic calculation we did not differentiate between high and
low temperature heat. However, we can reasonably assume that the requirement
of low temperatures opens opportunities for recovering low-grade heat, typically
wasted, especially if simple heat collection is possible. We can visualize this by using
exergy rather than energy for computation of the heat costs; the results are shown
in the Supporting Information in Figure A.13. Notably, for the KOH process results
stay nearly the same, i.e. there are no opportunities to use waste heat in the calciner,
whereas the MEA process becomes much cheaper compared to the previous results.
The costs for the solid sorbent process decrease as well.

Overall, from the energy-productivity-costs analysis presented here we can reach
the following recommendations:

• For the MEA process (and similar liquid scrubbing processes using amines
as solvents), improvement efforts must be focused on lowering the thermal
energy consumption, possibly via a combination of more favorable solvents
and advanced process configurations, similarly to what has been done in stan-
dard CCS applications. Especially, new solvents need to nicely combine high
CO2 loading, fast reactions, limited toxicity, and simple manufacturing. More
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advanced existing solvents (e.g. the proprietary solvent from MHI, Cansolv,
AkerCCS), are worth testing in DAC applications.

• For the KOH process, it is key to keep the contactor cost low, which is likely
possible thanks to the simple design and the use of established components
(i.e. contactor packing). The low process productivity and resulting high depen-
dency on contactor costs also call for a simpler regeneration process compared
to the current configuration.

• For the solid sorbent process using existing sorbents, the cost optimal design
requires to fully characterize the sorbent from a multi-component equilibrium
and transport perspective. Once sorbent characteristics are known, the improve-
ment priority can be either directed on decreasing the contactor costs, e.g. via
additive manufacturing, or on designing a convenient energy system for heat
provision, e.g. via integrating heat recovery options.

• The development of new solid sorbents, which can in principle exploit several
thousands of possible new structures [95], should always prioritize high mass
transfer, and should be connected to the environment and application where
DAC is supposed to work. If the productivity is to be prioritized, new sorbents
should exploit the cooperative adsorption of CO2 and H2O and be designed
for operating in countries with moderate-to-high humidity. If the energy con-
sumption is to be minimized, new sorbents should selectively adsorb CO2 over
H2O and be designed for operating in arid countries with high renewable heat
potential.

When comparing the different technologies, we can note that:

• Productivity: Both liquid solvent processes show a low productivity range,
with [0.18–0.45 kgCO2 m−3 h−1] for the alkali scrubbing and [0.75–1.08 kgCO2

m−3 h−1] for the amine scrubbing. For the solid sorbent process this range is
much broader with [3.8–10.6 kgCO2 m−3 h−1], but more data uncertainties are
present.

• Energy consumption: The amine scrubbing process shows the highest energy
demand, resulting in a 2

nd law efficiency1 of ηnd = 3.8 − 8.8%. For the KOH
process the energy demand is lower, but at high temperature, thus requiring
hydrocarbon fuels, resulting in η2nd = 7.6 − 7.9%. For the solid sorbent pro-
cess, the energy consumption is relatively low, and at low temperature, with
potential for heat integration with other processes (η2nd = 13.1 − 37.7%).

1 the 2
nd law efficiency is calculated as the ratio between the exergy obtained here and the minimum

thermodynamic work of separation η2nd = e
∆gmin .
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• Scalability: For the liquid solvent processes, the capture unit is modular and can
be easily scaled up and down. Concerning the regeneration, a complex process
is required for the alkali scrubbing, which fits better large scale plants. For the
amine scrubbing, the regeneration process is moderately complex, requiring
dedicated equipment (heat exchanger, stripper, etc.) and thus would not fit
small scales. The solid sorbent process could be easily scaled up and down,
but at large scale the piping and the number of valves would make the process
design and control challenging. In addition, the process is discontinuous and
therefore requires storage vessels (here not considered).

• Economic performance: All three processes have areas of cost lower than 200

$/tCO2, but this is achieved for different boundary conditions. MEA benefits
the most of low heat price while KOH of low contactor cost. Depending on
the specific mass transfer coefficient, solid sorbent benefits of low heat price or
low contactor cost. When looking at the contactor cost for the three different
processes, it is worth noting that the volume-specific cost for liquid scrubbing
is likely lower than for solid sorbents, as conventional packing and cheap
solvents are used instead of expensive sorbents (i.e. in 2.13 the liquid scrubbing
are more likely to work in the region of low contactor cost than solid sorbents).

• Fitness for 1.5°C scenario: The solvents for the liquid scrubbing processes are
available at large scale, but the water consumption is high, which would be
problematic in water-distressed areas. For the regeneration, the heat provision
for the amine scrubbing, as well as the fuel for the alkali scrubbing process must
be CO2-neutral. For the solid sorbent process, a sorbent for DAC application
is not yet available at the scale for capture of gtonCO2

per year, and the heat
provision must be CO2-neutral; on the other hand, there is the possibility to
co-produce clean water. In all cases, the process must be designed with a
system approach that includes the energy provision.

• Scientific challenges: The liquid solvent processes are already well understood.
For the solid sorbent process, there is a lack of experimental data relevant for
DAC applications and the underlying adsorption mechanisms are not yet fully
understood.

• Technological challenges: A more efficient design of the different reactors of the
regeneration section, as well as the electrification of the calciner can further im-
prove the alkali scrubbing process. Concerning the amine scrubbing, research
on the redesign of the absorber for handling more advanced amines (volatility,
toxicity, etc.) is needed. Challenging fields for the solid sorbent process com-
prise the development of an efficient heat exchange within the contactor, heat
integration (heating/cooling), an advanced design of the contactor as well as
the identification of a leading sorbent.
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Figure 2.13: Maps of total system cost as a function of electricity price, heat price and
plant cost, referring to the m3 of air contactor for the three different processes:
KOH using point B on the Pareto chart (highest productivity) (a), MEA using
point A on Pareto chart (lowest exergy consumption) (b) and (c) + (d) solid
sorbent case E-A (c: high kinetics k = 0.1 s−1 using point B on Pareto chart
and d: low kinetics k = 0.0001 s−1 using a middle point on the Pareto chart
with an exergy consumption similar to the KOH process). We have assumed
full-load operation plant, a 20 year project life and an 10% discount rate. The
dashed lines show total costs with a value of 100 $/tCO2 and the continuous
lines a value of 200 $/tCO2. As an example: when assuming heat costs of cth=5

$cents/kWhth, electricity costs of cel=10 $cents/kWhel and contactor costs of
γ=25000 $/m3, this would result in total costs of 419 $/tCO2

, 537 $/tCO2
, 149

$/tCO2
and 427 $/tCO2

for the KOH, MEA and the two solid sorbent processes,
respectively.
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2.7 conclusions

In this chapter, three main DAC processes have been analyzed and their process line-
ups optimized. They were subsequently compared on the basis of their exergy and
energy demand as well as productivity. The alkali scrubbing and solid sorbent VTSA
processes have been selected because of their comparative technical maturity amongst
the novel DAC processes. For comparison, the conventional and technically mature
amine scrubbing process has been added as a benchmark by extending its operating
range from flue gas to air capture. These processes have been modelled with state-
of-the-art tools and a rigorous multi-objective optimization has been carried out to
identify the best design. The results have shown that the absorption-based processes
perform generally worse than the solid sorbent process. The productivity for the
alkali and amine scrubbing processes ranges between 0.18 - 0.45 kgCO2 m−3 h−1 and
0.75 - 1.07 kgCO2 m−3 h−1, respectively. For the solid sorbent process it can vary
between 3.8 - 10.6 kgCO2 m−3 h−1, however, when accounting for the uncertainties
surrounding the mass transfer in the adsorption process and including the lowest
estimates presented in literature, the productivity range broadens to 0.13 - 10.6 kgCO2

m−3 h−1. The solid VTSA process also comes out on top when we consider exergy
demand, which could be as low as 1.31 MJ kg−1

CO2
in the best case and, moreover,

of a lower temperature than the one required by the absorption processes. The
three technologies have also been compared from an economic point of view. The
aim, in this case, was not to provide an accurate cost evaluation, but to compare
the economic potential of the processes on the basis of common assumptions. The
total cost has been calculated using the productivity and energy demand computed
with thermodynamic models, which makes the relative comparison strong, while
providing a simple estimate of absolute values. To account for uncertainties and
fluctuation in energy prices, the costs have been evaluated for a certain range of
electricity, heat and contactor prices. From this analysis too the VTSA proves to be the
most promising process. Its higher productivity makes its cost less dependent on the
air contactor price, which is encouraging, as advanced design of the contactor and
novel sorbents could be more expensive than what is currently expected. While the
solid sorbent VTSA process comes forward from our analysis has the most attractive
option, many questions are yet to be answered to be effectively deployed at large scale,
with the most pressing involving the adsorbent itself. The adsorption/desorption
kinetics and the affinity of the sorbent for H2O have a tremendous influence on
the performance of the VTSA process, but information on this is scarcely reported
in the literature, even for the most prominent materials. Moreover, there are also
technological issues to be solved. The sorbent regeneration requires considerable
amounts of (low temperature) heat: an optimal air contactor design should allow
efficient heat transfer and recovery. We believe that by addressing these challenges the
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greatest benefits could be reaped. On the other hand, the alkali and amine scrubbing
processes will likely be needed to meet the carbon removal targets consistent with
1.5 °C.

2.8 on the optimal design and operation of solid sorbent direct

air capture processes at varying ambient conditions

The growing academic body of literature on solid sorbent DAC has so far mainly
focused on four main pillars: (1) the role of DAC technologies in the mitigation of
climate change [96–101]; (2) the development of new materials capable of capturing
CO2 from air [72, 75, 102–110]; (3) the life-cycle assessment of DAC [111, 112]; and
(4) the economics of DAC technologies [51, 98, 113–115]. Note that the reference list
above is not meant to provide a comprehensive overview of the rapidly expanding
works on DAC, but is rather exemplary. For that purpose, readers could refer to
recent review papers. [107, 116, 117] However, so far little attention has been paid to
investigate the DAC performance under varying ambient conditions (e.g. different
geographic locations, varying seasons, daily fluctuations), despite these factors play
a pivotal role for the performance of the technology [118]. Recently, Terlouw et al.
(2021) has shown that the choice of installing location of a DAC system is a key factor
for its global greenhouse gas removal potential, especially because of renewable
heat and electricity availability. Moreover, there is an underlying thermodynamic
behavior that controls the solid sorbent DAC performance at varying ambient
conditions, notably temperature and humidity of the incoming air. First of all, the
ambient temperature strongly affects the CO2 adsorption on the material, which
is an exothermic process. Higher air temperature leads to higher specific energy
demand and lower productivity, especially at fixed regeneration temperatures; this
is a direct consequence of the reduced cyclic capacity at higher air temperature.
Second, the air humidity affects the performance of most solid sorbents currently
considered for DAC (e.g. amine-functionalized sorbents, ion exchange resins), though
in a more complex way: The coadsorption of water at high humidity levels leads
to: (1) increased adsorption capacities and improved reaction kinetics, resulting in
larger capturing capacities per cycle; and (2) higher energy requirements during the
regeneration, since besides CO2 also water must be desorbed.

Most academic work investigating the influence of temperature and humidity has
been conducted in the realm of material science, including both theoretical and small-
scale experimental analysis under lab-conditions. Table 2.3 provides an overview of
studies that took into account the impact of humidity and/or temperature on the
sorbent. It highlights the counteracting effect of increased humidity on the energy
and adsorption capacity, and the straightforward effect of the temperature on the
CO2 adsorption capacities. The studies suggest, that materials used for solid sorbent
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Table 2.3: Studies on the effect of temperature and humidity on the performance of sorbent
materials.

Humidity Temperature

Material Capacity Energy Capacity Energy Source

Nanofibrillated cellulose
framework coated with
PEI

increase na na na Sehaqui et al.
(2015) [108]

Fumed silica with PEI
coating

ambiguous na na na Goeppert et al.
(2011) [104]

Amine-functionalized
cellulose

increase increase decrease na Gebald et al. (2014) [119]

Amine-functionalized
cellulose

increase increase decrease na Wurzbacher et al.
(2016) [75]

Amine-functionalized
cellulose

increase increase decrease none Wurzbacher et al.
(2012) [49]

Amine-functionalized
proprietary resin

increase na decrease na Elfving et al. (2017a) [72]

Amine-functionalized
proprietary resin

increase na decrease na Elfving et al.
(2017b) [103]

Amine-functionalized
CA silica fiber sorbents

increase na decrease na Sujan et al. (2019) [109]

Aminopolymer-
impregnated hierar-
chical silica structures

increase na increase na Kwon et al. (2019) [106]

Amine-Impregnated
MIL

increase na decrease na Rim et al. (2022) [110]

DAC typically perform best in humid and cold conditions. However, for a carbon
neutral DAC process, renewable energy supply is needed. These renewable resources
are typically located at warm and dry locations (especially cheap solar resources).
It follows that the availability of renewable energy and the ambient air conditions
lead to a trade-off between an optimal DAC performance and an economical energy
supply.

With this work, we aim at better understanding the effect of climatic conditions
(i.e. geographic locations) on the optimal operation and design of solid sorbent
DAC processes as well as on the associated energy supply system. We therefore
complement and extend the studies on sorbents behavior and characterization at
different ambient conditions with a process and system level perspective so far
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missing in the open scientific literature. We do this by bridging a robust, yet complex
thermodynamic model of the process to a computationally efficient linear model,
which can be used for hourly-resolved system design and operation.

Modelling framework for Solid Sorbent DAC processes at varying ambient conditions

Ambient conditions vary significantly following daily and seasonal cycles; under-
standing DAC behavior under such conditions therefore requires a yearly time
horizon with an hourly resolution. Clearly, the classical thermodynamic approach of
simulating adsorption cycles with energy, mass and momentum balances discretized
in space and integrated in time is not viable in a similar framework: the compu-
tation of a full cycle and its CSS conditions requires significant computing time
(typically in the order of minutes for CSS), which would make the analysis unfeasi-
ble when thousands (8760) of simulations must be performed. On the other hand,
linear modelling, which is often used for complex time-discretized problems, has
limited fidelity if not supported by thermodynamics; this can easily lead to wrong
performance prediction. To tackle these shortcomings and properly evaluate the
performance of a DAC process under varying ambient conditions, we developed a
new modelling framework, which is shown in Figure 2.14. At the core of the method
lies the interaction between a thermodynamic-based description of the process and
its reformulation as a MILP. The thermodynamic framework (top box in figure 2.14)
is used to evaluate and optimize the performance of the DAC VTSA cycle for an
assigned set of temperature-humidity combinations. It is important to note, that
the use of process optimization allows to identify the optimal working conditions -
in terms of productivity and energy consumption - for any temperature-humidity
combination. These results are then used to build model-based performance maps at
different ambient conditions, which provide input to the hourly-discretized MILP
optimization problem (bottom box in figure 2.14).

It is worth noting, that the thermodynamic modelling approach used here has
been developed and applied to various processes in the past, e.g. to DAC in Sabatino
et al. [120], to TSA in Joss et al. [84], and to DAC in Streb et al. [85]. On the other
hand, the key modelling contributions of this work are (i) the development of the
MILP-DAC model, and (ii) the development of the overarching modelling framework
shown in Figure 2.14. Accordingly, the remaining of this section describes the MILP-
DAC model and its embedding in the overall framework (i.e. with respect to the
possible DAC operating modes). The performance maps are described at the end of
this section, while all details on the thermodynamic framework can be found in the
references mentioned above (for clarity, the main balance equations are also reported
in the Supplementary Information).
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Figure 2.14: Modelling framework developed in this work to assess the performance of
DAC at varying ambient conditions. The thermodynamic models adopted
here and depicted in the top part of the figure were developed in the work of
Sabatino et al. [120]. The MILP modelling framework includes the DAC model
and the overall system model

Concerning the DAC cycle, we consider a VTSA process, which can be regarded
as state-of-the-art for CO2 capture from air with solid sorbents. This cycle consists of
four different steps, i.e. (i) adsorption of the CO2 from ambient air, (ii) preheating
while pulling a vacuum to remove most of the nitrogen, (iii) heating at vacuum
conditions to produce a highly concentrated stream of CO2, and (iv) repressurization
and cooling (see Figure 2.15). Such a VTSA process is affected by both exogenous
and controllable variables. The ambient air conditions are exogenous and vary over
time and space. The controllable variables include design and operation choices,
such as the sorbent type, the contactor design, cycle times, pressure levels, and the
regeneration temperature. Accordingly, a VTSA process will need to be equipped
with a control strategy so as to guarantee high performance at varying exogenous
variables by changing the operating parameters.
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Figure 2.15: Scheme of a VTSA process for DAC including a representation of the four
adsorption steps. Note that the process also produces water and other waste
gases that were not illustrated for simplicity.

The mixed integer linear model presented requires data on the performance of a
VTSA as a function of the exogenous variables and the respective control parameters.
To this end, we simulated the process with a 1-D model, where the productivity and
energy consumption are calculated starting from the cycle and sorbent characteristics.
The 1-D model is rate-based and has been used and validated experimentally for
multiple adsorption cycles. More details can be found in Sabatino et al. (2021), Cases
et al. (2013), and Joss et al. (2015) [77, 82, 120, 121]. For the sorbent, we follow the
approach presented in section 2.2, and consider an exemplary material, which was
obtained by combining experimental data of four representative sorbents for Direct
Air Capture. This allows us to study the average behavior of solid sorbents without
focusing on a specific material2. The isotherm parameters as well as the model
parameters for the simulation are listed in Table A.19 and A.20 in the Supplementary
Information. By including an equivalent temperature as explained in Section 2.2

2 The details on the exemplary sorbent calculations can be found in section 2.2
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the isotherm does not only change with temperature but also with humidity, which
is shown in Figure 2.16. In order to obtain the data needed to fit αi(Θt), βi(Θt),

Figure 2.16: CO2 isotherms for different temperatures and humidity levels of the exemplary
sorbent material used in this work. a) 278 K, b) 293 K and c) 313 K.

γk(Θt) and δk(Θt), we carried out several multi-objective simulations of the VTSA
DAC process, whose two competing objectives are productivity Pr and energy
consumption e [91]. The problem is therefore defined as:

m
x

in (−Pr, e)

subject to Φ ≥ Φspec

(2.26)

where x are decision variables3, Φ the CO2 (dry) purity and Φspec the required
minimum purity (here 95%). Details of the calculation of the productivity and the
energy consumption, as well as the range of the decision variables can be found in
the Supplementary Information (Section A). To account for the influence of both
temperature and humidity on the performance of the VTSA process, several cases
were optimized by combining a range of ambient temperatures (5 °C, 20 °C, and 40

°C) with different humidity levels in the feed stream (0%, 22%, 43%, 75% and 100%).
It follows, that multiple Pareto fronts were obtained for several fixed ambient

conditions. The results are shown in Figure 2.17.
Figure 2.18 shows the interpolation of the results in the investigated range of

ambient conditions. As expected, the CO2 capacity of the sorbent decreases with
temperature and therefore the productivity is higher at low ambient temperature.
In addition, the capacity increases with increasing humidity, especially for low

3 Decision variables are: adsorption, preheating and heating times, the vacuum pressure level, the air flow
rate and the heating and preheating temperatures
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Figure 2.17: Sorbent Performance at different ambient air conditions

temperatures. However, for temperatures above 30°C, the productivity decreases
with humidity. The reason is found in the trade-off between the two competing
objectives of optimization. When having a higher humidity in the feed stream, more
water has to be heated up during the regeneration; whilst for lower feed temperature
this is compensated by the sorbent capacity, for higher feed temperature the capacity
of the sorbent is low, and the heat required to heat up the water has a high effect
on the overall energy consumption. Therefore, the process optimization keeps the
energy requirement limited by allowing a loss in productivity.

(a) Productivity (b) Specific energy requirements

Figure 2.18: Productivity and specific energy requirements for maximal productivity opti-
mization
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Results

The cost minimization problem described is carried out for two overarching cases:
First, we compute the performance of DAC for different fixed temperature-humidity
combinations, i.e. their values do not vary in time and are constant for every hour
of the year. This allows us to understand the performance of DAC for different
ambient conditions but independent from their change in time and space and of the
DAC operation strategy. Second, we compute the performance of DAC for varying
temperature and humidity over the year according to real weather data. In order to
investigate the system at (i) temperate-humid, (ii) hot-humid, and (iii) highly variable
ambient conditions, we used the weather data of The Netherlands (Schiphol), Spain
(Barcelona), and California, US (Lancaster), respectively.

Performance of DAC for different time-independent ambient conditions

Here, we solve the cost optimization of a DAC system for different, time-independent
temperature-humidity combinations.

Figure 2.19 shows the normalized capturing costs and energy requirements for 66

cost optimizations with different temperature-humidity combinations. Each marker
represents one optimization with the respective temperature and humidity level. The
results are shown as contour lines for (a) specific normalized capturing costs and (b)
specific total energy requirements.

(a) Specific CO2 capturing cost (Nor-
malized to 300Dollar/t)

(b) Specific total energy (kWh/t
CO2)

Figure 2.19: Normalized capturing costs and specific energy requirements at different
ambient conditions.

The results suggest that the temperature is the major driver for both energy re-
quirements and capturing costs. In fact, a 1 Kelvin increase in temperature leads
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to a 3.4% increase in specific energy requirements and a 2.0% increase in costs on
average. These relationships are though non-linear: The increase in specific energy
requirement and cost is larger at higher temperature. The effect of higher tempera-
tures on the capturing costs is caused by higher specific energy requirements and
lower sorbent productivity. In contrast to temperature, humidity plays a subordinate
role for the DAC performance. Both the specific total energy requirements and
the capturing costs first increase with humidity, peaking between 40-60% and then
decline again. The electric energy requirement follows the same shape but with
steeper slopes while the thermal energy requirements increase in humidity only for
dry conditions (below 30%) and reach a stable level for higher values (see Figure
A.27 in the Supplementary Information). For the former, the reason lies in the higher
CO2 cyclic capacity with higher humidity: The presence of water reduces the partial
pressure of CO2 in the product thus requiring a lower vacuum level and therefore
lower overall electricity consumption. However, there exists a trade-off between
reducing the vacuum pressure to get a higher cyclic capacity and increasing the
vacuum pressure to save energy. For moderate humidity (e.g. 40%), the electrical
energy demand increases with higher temperature since the positive effects of the
humidity during the adsorption and the higher CO2 partial pressure during the
desorption are limited. On the other hand, for lower temperatures, the vacuum
pressure can be higher, since the cyclic capacity is already high. As for the effect
of humidity, the productivity increases with humidity up to 30-40% and remains
thereafter approximately constant (see A.28b in the Supplementary Information).
The rising productivity and rising energy requirements with increasing humidity
have two counteracting effects on the capturing costs: (i) Due to a higher productivity,
less units are required for a fixed CO2 capturing amount resulting in lower overall
investment costs; (ii) rising energy requirements increase the operating costs of the
unit. Consequently, the share of investment costs in the total capturing costs is lowest
for humidity levels of around 40% (see also Figure A.28a in the Supplementary
Information) and accounts for 76% of total cost. The lowest overall capturing costs
are reached for cold and humid conditions, where the temperature has a leading
role; these results confirm previous studies on sorbent performance [75, 103, 109].

Performance of DAC for time-varying ambient air conditions

To study the effect of different climatic conditions on the DAC process with plausi-
ble humidity and temperature profiles, we selected three representative locations:
Schiphol (The Netherlands), Barcelona (Spain), and Lancaster (US). Schiphol is
characterized by a humid and temperate climate throughout the year with limited
variability. Barcelona exhibits a similarly small variability of humidity and temper-
ature, however, the average temperature is about 6 °C higher while humidity 20
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percentage points lower. Lancaster has a similar average temperature as Barcelona,
but its climate is significantly drier; more importantly, humidity and temperature
exhibit high fluctuations even within single days. The input data as well as temper-
ature and humidity profiles of all three locations are reported in Table A.22 and
Figures A.29-A.32 in the Supplementary Information. For simplicity, investment and
maintenance costs are assumed to be equal at all locations. The findings are thus
driven by different temperature and humidity profiles and the related differences in
the process performance.

We minimize total annualized costs with an annual demand of 10,000 t of CO2.
All optimizations have the following configurations: (i) To reduce the run-time of
the optimizations, full-year weather profiles are clustered into 100 typical days
with a k-means algorithm. The days are clustered the same way for each model
configuration of the same location. (ii) The minimum working temperature of the
sorbent was assumed to be 5°C, i.e. the temperature has been fixed to 5°C also for
colder days. This is a conservative approach, as colder temperatures are beneficial for
the CO2 cyclic capacity. We decided to implement this approach to prevent infeasible
operation close to the water triple point, especially for the adsorption step. There exist
multiple strategies to operate DAC at low temperature, but these need to be devised
specifically for a given design (one simple possibility is to keep the sorbent above
0°C). (iii) The relationship between energy input and CO2 capture is again modeled
linearly with no breakpoints. For every location, we run the optimization for the
three different operating configurations representing different control configurations
and plant layouts. In this shortened version of the research work, the focus is set
on the effect of the ambient conditions on DAC, therefore, the results of operating
condition 1 (OC1) are explained below, while the additional cases and a sensitivity
analysis can be found in the publication [122].

OC1: Flexible CO2 production and tunable operating variables without water
spraying. It can first be noted that Schiphol is the most suitable location for both the
cost and energetic performance of the DAC: the capture costs at Schiphol are about
16% lower compared to Barcelona and Lancaster; likewise, the energy requirements
are 33% lower. However, it can also be noted that the difference in costs among the
various cases is limited and fully negligible between Lancaster and Barcelona. This
is an inherent result of OC1, which allows for running the system at the operation
points that are optimal for any temperature-humidity combination. In fact, at every
location, the system works at full load over the whole modelled time-horizon,
which is very much desirable for tecnologies with high investment cost share as for
DAC. Hence, OC1 allows for exploiting the full potential of all installed units at all
times, even though the ambient conditions at some time-steps result in unfavorable
productivities and energy requirements. Figure A.35 in the appendix depicts the
CO2 output at all locations for different temperature and humidity levels and it
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Figure 2.20: Cost and energy results for the stand-alone model for operational configuration
OC1.

confirms that the ambient temperature is the main cost and energy driver for the
operation of DAC systems. In contrast, humidity plays a subordinate role.

Sensitivity analyses

One of the identified uncertainties that could affect the findings of the previous
analysis is the performance of the solid sorbent at varying temperature and humidity.
The productivity and energy requirements of the DAC process were obtained using
the approach of Sabatino et al. (2021), where an exemplary sorbent was derived [120].
While the effect of temperature for different materials varies depending on the en-
thalpy of adsorption, the general trends hold for any adsorption material: capturing
capacities decrease while energy requirements increase with increasing adsorption
temperature (and fixed regeneration temperature). Thus, our results might change
slightly with regards to the size of the effect, but not in their general trends. We
tested two additional sorbent behaviors by (i) removing humidity dependencies
from the data and (ii) by inverting the humidity effect on the performance. These
two cases aim at mimicking a sorbent, where CO2 adsorption is not affected by H2O
adsorption, and a sorbent where CO2 adsorption decreases with H2O respectively.
In both cases, the results remained substantially similar, confirming the leading role
of temperature. Further information and the respective optimization results can be
found in the Supplementary Information (Figure A.38 and A.41).
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Conclusion

In this section, we have investigated the performance of an exemplary VTSA DAC
process under varying ambient conditions, i.e. temperature and humidity. More
specifically, we have computed the energy consumption and the minimum system
costs of the VTSA for multiple temperature-humidity combinations, and for three
exemplary locations (The Netherlands, Spain, and California), where the ambient
conditions are different both in terms of average values and daily/yearly profiles.

With this work, we show that when focusing on the stand-alone DAC process the
annual average ambient temperature is the main climatic driver for both capturing
costs and energy requirements. Surprisingly, humidity plays a subordinate role; this
holds true for sorbents where CO2 adsorption is enhanced by water, as well for those
that are negatively affected by water. In cold and humid climates the capturing costs
and energy requirements can be significantly lower than warmer locations: we found
that the cost and the energy consumption of DAC deployed in The Netherlands are
about 16% and 33% lower compared to Spain or California, respectively. This general
trend remains true over a wide range of model setups and cost assumptions.

Accordingly, we can draw the following recommendations:

• DAC sorbents behavior at varying climatic conditions, especially at varying hu-
midity, is still not fully understood and adequately investigated. However, the
process performance is significantly affected by ambient conditions. Material
scientists should consider this when synthesizing and characterizing sorbents.

• The optimal operation of VTSA DAC under time-varying ambient conditions
requires adequate control algorithms and instruments. These have to be synthe-
sized for specific process designs and associated dynamics. The vast research
community of control systems should consider contributing to this research
gap.

• The design of DAC technologies should take into account the fact that operation
will inevitably take place under varying ambient conditions, varying electricity
generation (i.e. electricity prices), and, likely, varying CO2 demand.





3
A M A C H I N E L E A R N I N G - A I D E D E Q U I L I B R I U M M O D E L O F
V T S A P R O C E S S E S F O R S O R B E N T S S C R E E N I N G A P P L I E D T O
C O 2 C A P T U R E F R O M D I L U T E D S O U R C E S

The large design space of sorbents structure and the associated capability of tailor-
ing properties to match process requirements make adsorption-based technologies
suitable candidates for improved CO2 capture processes. This is particularly of
interest in novel, diluted and ultra-diluted separations, as direct CO2 removal from
the atmosphere. Here, we present an equilibrium model of vacuum temperature
swing adsorption cycles that is suitable for large throughput sorbents screening, e.g.
for direct air capture applications. The accuracy and prediction capabilities of the
equilibrium model are improved by incorporating feed-forward neural networks,
which are trained with data from rate-based models. This allows for example to
include the process productivity, a key performance indicator typically obtained in
rate-based models. We show that the equilibrium model reproduces well the results
of a sophisticated rate-based model, both in terms of temperature and composition
profiles for a fixed cycle, as well as in terms of process optimization and sorbents
comparison. Moreover, we apply the proposed equilibrium model to screen and
identify promising sorbents from the large NIST/ARPA-E database; we do this for
three different (ultra)diluted separation processes: direct air capture, yCO2 = 0.1%,
and yCO2 = 1.0%. In all cases, the tool allows for a quick identification of the most
promising sorbents and the computation of the associated performance indicators.
Also in this case, outcomes are very well in line with the 1D model results. The
equilibrium model is available open access at the link provided in the SI.

The results presented in this chapter have been reported in: Grimm, A., Gazzani, M., A machine learning-
aided equilibrium model of VTSA processes for sorbents screening applied to CO2 capture from diluted
sources, Industrial & Engineering Chemistry Research (2022).

57
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3.1 introduction

When looking at the DAC industrial and scientific landscape, separation based on
solid sorbents has so far attracted most of the attention and has been successfully
demonstrated at relevant scale [123, 124]. Moreover, significant scientific efforts are
directed towards the development of new, better performing sorbents for DAC [37,
117, 125]. At the same time, adsorption-based technologies are being developed and
researched for CO2 capture from point sources, from flue gas to syngas to steel work
gases [126, 127].

While several studies investigate from a process and material perspective the
development of better performing sorbents for CO2 capture from point sources,
there are no works - to the best of our knowledge - that do so in the realm of diluted
CO2 sources, e.g. DAC.

The choice of the adsorbent is indeed a key factor for the optimal design of a cap-
ture process and several research groups have developed computational techniques
to design new sorbents and to characterize their thermodynamic (and transport)
properties [95, 128, 129]. Hundreds of thousands of theoretical sorbent materials
have been simulated and could in principle be synthesized, provided the right ex-
perimental processes are available and the theoretical crystal is stable. On the other
hand, the availability of all these theoretical materials requires a suitable screening
procedure, which needs to be fast and accurate enough to provide a reliable ranking.
To this end, different approaches exist. A first, simple approach is calculating char-
acteristic parameters, like the working capacity or the heat of adsorption, based on
the isotherm data of the materials [130–132]. While this analysis can be extremely
fast, the results only provide a rough overview about the suitability of the materials.
For a more reliable understanding, a process-based analysis is required [133–136].
Ideally, for every sorbent a detailed process simulation combined with process opti-
mization is carried out; however, such a framework is computationally expensive
and may take up to several days per sorbent [77, 137]. Two main alternatives exist
to speed up the screening. On the one hand, rigorous process simulation can be
coupled to machine learning techniques, for example in the convergence to cyclic
steady state. Recently, Pai et al. [138] developed a generalized data-driven surrogate
model which well reproduces a PSA/VSA process. The framework makes use of
a dense feed forward neural network and can significantly reduce the simulation
and optimization time while showing a high accuracy. The data-driven model is
trained using the simulation results of different sorbents and operating conditions
and can be used as a screening tool, as long as the CO2 and N2 adsorption isotherm
of the material can be described by the implemented numerical adsorption model.
This approach is showing great potential for bridging simulation, optimization and
sorbents screening; however, it requires a large representable dataset for training
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and testing the algorithms. The second, more traditional approach is to simplify
rate-based process simulations by using equilibrium. In this case, simpler models
are used to solve the material and energy balances. A few key works are available in
literature that demonstrate the potential of equilibrium-based simulations. In their
seminal work, Maring and Webley [139] developed a simplified pressure/vacuum
swing adsorption (P/VSA) model for a binary mixture. They adopted a well-mixed
bed approach for the cycle, consisting of three steps: blow-down, repressuration and
adsorption. To further simplify the model, they assumed adiabatic operation and
equilibrium between the adsorbed and gas phases. In addition, they proposed an
approach to directly calculate the cyclic steady state (CSS). The model was validated
for post-combustion CO2 capture by VSA against rate-based numerical simulations;
four different types of sorbents were tested. More recently, Balashankar et al. [140]
expanded the approach of Maring and Webley by treating the process as isothermal,
and by considering different VSA cycle configuration, which included blow-down,
evacuation, pressurization and adsorption steps. Notably, the model was used to
screen 197 adsorbents from the NIST/ARPA-E database for CO2 capture application.
When looking at the temperature swing adsorption (TSA) landscape, Joss et al. [78]
developed a shortcut model for a four step TSA cycle and binary mixture. No spatial
gradients were considered in the model and the partial differential equations were
reduced to ordinary differential equations. In addition, the model directly calculates
the CSS semi-analytically, which reduces the computational complexity. More re-
cently, Ajenifuja et al. [141] further developed the work of Maring and Webly [139]
and Joss et al. [78] and presented an equilibrium model to quickly scan adsorbents
using a three-step TSA cycle. Instead of using partial differential equations, a set of
nonlinear algebraic equations is used for mass and energy balances, which reduces
the computational time. The methodology is applied to screen 75 adsorbents for
capturing CO2.

In this chapter, we further contribute to the topic of equilibrium-based modelling
tools for computationally-efficient analysis of adsorption processes. The framework
we present builds upon the excellent works discussed above, and further extend
them by:

• Bridging the equilibrium-based approach to machine learning, i.e. we improve
the accuracy and prediction capability of an equilibrium model using neural
networks. This allows, for example, to include the productivity as key perfor-
mance indicator, and to consider saturation levels in the bed during adsorption
below 100%.

• Modelling a vacuum-temperature swing adsorption cycle, i.e. we add the
vacuum step to the TSA cycle.
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• Considering a ternary mixture as feed where CO2 is not necessarily the most
retained gas, i.e. we add H2O adsorption, which is often the most adsorbed
species in CO2 capture with V/TSA.

• Including multiple CO2 isotherm types in the model, i.e. Toth, extended
Toth model (Toth-cp), Langmuir-Freundlich, Dual-Site-Langmuir (DSL) and
s-shaped isotherm model.

• Applying the tool to dilute or ultradilute CO2 concentrations, i.e. from CO2

capture from air to fluegas with 1% CO2.

The model that we present here is benchmarked with a well-established detailed
1-D VTSA model. Furthermore, we apply the proposed method to efficiently scan the
NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (NIST-ISODB)
in search of promising sorbents to capture CO2. The NIST-ISODB database is the
world’s largest public collection of experimental gas adsorption isotherms [142]. It
includes over 30000 isotherms for a wide range of adsorbent materials including
MOFs, COFs, zeolites, activated carbons and amorphous porous polymers and serves
as basis for several data-driven analyses [143, 144]. In addition, we complement the
NIST database with adsorbents data from publications that have not been included
yet [120, 133, 145].

This chapter is organized as follows: in Section 3.2 we describe the 4 step VTSA
process and the mathematical modeling framework of the 0D model. In addition,
an overview over the key performance indicators is given. In Section 3.3, the 0D
model is validated against the rate-based model by comparing the performance
for a specific simulation (e.g. in terms of time steps and temperatures) as well as
optimization results. Finally, in Section 3.4, the model is applied for screening more
than 2100 materials for CO2 capture from diluted sources.

3.2 equilibrium model for vtsa

The VTSA cycle considered in this work is shown in Figure 3.1 and consists of four
steps: adsorption, blow-down, heating, and cooling. This is a slightly simplified
version (i.e. no preheating step) of the VTSA cycle adopted for CO2 capture from
air in Sabatino et al. [120]. Moreover, we consider a feed stream consisting of three
components, i.e. CO2, H2O and N2, where CO2 and H2O can adsorb, while N2 is
treated as an inert. It is worth noting that the model can be adapted to consider
additional gas species. Differently from other simplified models [139–141], the
targeted species is not necessarily the strongly adsorbed one but can also be the
weakly adsorbed component, i.e. H2O typically shows a higher adsorption capacity
than CO2 when using materials of interest for CO2 capture from diluted streams.
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The model builds upon the approach presented in previous works [139–141],
where the key model assumptions are: (i) the bed is treated as a well-stirred reactor,
(ii) the gas and the solid phases are in equilibrium during all steps of the cycle, (iii)
the gas phase behaves like a perfect gas, (iv) the pressure drop in the bed as well as
(v) heat transfer resistances are negligible. Accordingly, at any time instant, the total
amount of moles of component i in the bed Ni,total is calculated from the number of
moles in the solid (s) and in the fluid (f) phase

Ni,total(t) = Ni,s(t) + Ni,f(t) (3.1)

with

Ni,s(t) = msq∗i (yi, p, T) (3.2)

Ni,f(t) =
pyiVcϵ

RT
(3.3)

where p is the pressure in the column, yi the mole fraction of species i, Vc the
column volume, ϵ the void fraction, R the universal gas constant, T the temperature,
ms the mass of the adsorbent and q∗i = f (yi, p, T) the equilibrium adsorbed amount.
q∗i can be calculated from any suitable isotherm; in this work we have implemented
multiple isotherm equations so as to include in the screening as many materials from
the NIST database as possible: Toth, extended Toth (Toth-cp), Langmuir-Freundlich,
Dual-Site-Langmuir (DSL) and s-shaped isotherms. The detailed equations can be
found in the SI in Table B.15. The overall material balance considering the column
and the flows entering/leaving can be written as

∑
i

Ni,total(tf)− ∑
i

Ni,total(t0) =
∫ t f

t0

Ṅindt −
∫ t f

t0

Ṅoutdt (3.4)

The material balance is complemented by the energy balance, which can be written
as

mscp,s (T(tf)− T(t0)) =
∫ t f

t0

Q̇dt + (Ni,s(tf)− Ni,s(t0))
n

∑
i
|∆Hads,i| (3.5)

where Q̇ is considered positive when entering. The isosteric heat ∆Hads,i is calcu-
lated using the Clausius-Clapyron equation:(

∂lnpi
∂T

)
=

−∆Hads,i

RT2 (3.6)
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Figure 3.1: Simplified VTSA cycle. Indirect heating and cooling are performed with an
open end or open entrance, respectively. The temperature and pressure profiles
are indicative.
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It is worth noting that the specific heat capacities of the gases are considered
negligible with respect to the specific heat of the solid material, and therefore
excluded from the energy balance.

In the following, we discuss how the material and energy balances are writ-
ten and solved for each step in the cycle. The overall resolution strategy with
known/unknown variables is also shown in Figure 3.2. A more detailed list of the
equations used in each step (derived from the previous balances) are reported in
Table B.6 in the SI. Similarly to previous works, the starting point of the 0D simu-
lation is the end of the adsorption, i.e. the blow-down step in our cycle. However,
we propose a different approach for the resolution, which allows us to include the
process productivity in the model despite using equilibrium, as well as to better
represent real bed operation. This is enabled by targeted use of neural networks, as
explained in the following.

Blow-down step
During the blow-down step, the total amount of gas leaving the column Nout, the gas
composition yi as well as the temperature T are calculated. The initial temperature
and pressure are as during the adsorption, i.e. ambient conditions. When applying
vacuum, a waste stream consisting mainly of the species present in the fluid phase
is produced. Heating could also be applied to optimize the cycle, but given the
difference in typical times of pressure and heat exchange, we neglect this and keep
the model significantly simpler.

For the resolution of this step, the material and energy balances are solved for
a discrete number of sub-steps, where the pressure is gradually decreased and
gas is extracted from the bed until pvac is reached. The pressure follows a time
profile obtained from detailed 1D simulations and it is temperature- and material
independent. Therefore, the material and energy balances for every step k of the
blow-down are written as

Nk−1
i,total − yk

i Nk
out = Nk

i,total (3.7)

mscp,s

(
Tk

des − Tk−1
des

)
=

CO2,H2O

∑
i

(
Nk−1

i,s − Nk
i,s

) ∣∣∣∆Hk
ads,i

∣∣∣ (3.8)

where the superscript k refers to the current step of the blow-down, and k-1 to the
preceding step. Nout is the total amount of gas which is removed from the column,
and it is calculated for every step k. Since N2 is treated as an inert, NN2,s = 0 and
therefore only considered as present in the fluid phase. As for the energy balance, cp,s
is the specific heat capacity of the sorbent, Tdes the desorption temperature, ∆Hads,i
the isosteric heat of adsorption for every species i adsorbing (i.e. H2O and CO2). Tk

des
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is calculated numerically from the energy balance for each sub-step k while ∆Hads,i
is computed for each sub-step k using the Clausius Clapeyron expression, and - as
suggested by Joss et al. [141] - is approximated by including the temperature, pressure

and composition from the previous sub-step k-1, i.e. ∆Hk
ads,i = f

(
yk−1

i , pk−1, Tk−1
)

.
More details can be found in the SI in section B. The time length of the blow-down
is directly retrieved from the vacuum pressure profile (see SI B).

In previous works [139–141], the initial conditions of the blow-down step were set
assuming that full bed saturation was reached during the adsorption step. However,
full saturation is hardly achieved in fixed bed separations, as the front of the targeted
species propagating in the bed is not perfectly sharp. Therefore, depending on
the process specifications and characteristics, a certain level of under-saturation is
always present in the bed, which affects the amount of targeted species that can
be recovered. Here, we propose to overcome this intrinsic limitation of equilibrium
models by computing the saturation level α via a neural network trained with
rate-based simulations:

α = NN(ρp, Tdes, pvac, V̇feed) (3.9)

In the following section 3.2 we provide more details about the neural networks.
Accordingly, a level of saturation below 100% in the bed is assigned at the beginning
of the blow-down depending on the particle density ρp, the desorption temperature
Tdes, the vacuum pressure pvac, and the volume feed stream V̇feed.

Heating step
During the heating step, the total amount of gas leaving the column Nout, the gas
composition yi as well as the external heat provided Qheating are calculated. The
pressure is kept constant at pvac during the whole step while the temperature is
increased following a pre-assigned profile, which is calculated by fitting data from
rate-based simulations. In contrast to the pressure profile, which is only dependent
on the starting and end pressure, the temperature profile is dependent on the start
and final temperature, the density and the heat capacity of the adsorbent material,
and the bed pressure. Moreover, the length of the heating step is calculated via a
dedicated neural network, whose training data are the same used for the saturation
level. More details can be found in the SI in section B.

The material balance solved during heating is shown in Eq. 3.4, while the energy
balance needs to be extended to include the external heating Qheating:

Qk
heating =

CO2,H2O

∑
i

(
Nk

i,s − Nk−1
i,s

) ∣∣∣∆Hk
ads,i

∣∣∣+ mscp,s

(
Tk

des − Tk−1
des

)
(3.10)
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As for the blow-down, the differential equations of the isosteric heat of adsorption
are pre-solved at each sub-step, k, using the pressure, temperature and composition
from the previous sub-step, k-1 The initial conditions of the heating are the final
conditions of the blow-down, and the heating step is calculated till the final desired
temperature is reached.

Cooling step
During the cooling step, the exit valve is closed and the system is repressurized with
ambient air and cooled by an external cooling. The initial conditions of the cooling
step are equal to the final state of the heating step. The composition of the three
components, yi, the air required for repressurization, Nin, and the amount of cooling,
Qcool, are calculated. Similar to the previous steps, the repressurization and cooling
proceeds incrementally by adding a small amount of air during each sub-step. The
length of the cooling and the temperature/pressure profile are fixed according to
the 1-D model (more details can be found in the SIB). The cooling step is calculated
till Tk

des reaches Tamb, and the following balance equations are used

n

∑
i=1

Nk−1
i,total + yi,feedNAir,k

in =
n

∑
i=1

Nk
i,total (3.11)

Qk
cooling =

CO2,H2O

∑
i

(
Nk−1

i,s − Nk
i,s

) ∣∣∣∆Hk
ads,i

∣∣∣+ mscp,s

(
Tk

des − Tk−1
des

)
(3.12)

Besides using an external cooling it is also possible to implement an open cooling
with ambient air. In this case, in Equation 3.12, the term Qk

cooling is substituted with(
mAir,k

in cp∆T
)

. In addition, an outlet term needs to be added to the material balance
in Equation 3.11. The closed cooling system is generally the most efficient one, while
for DAC applications, for simplicity reasons, open cooling may be preferred which
would lead to a lower recovery. For our further analysis we therefore choose the
closed cooling system.

Adsorption step
During this step, the total amount of feed Nfeed and waste Nwaste are calculated. To
keep the model simple and fast, the adsorption step is considered isothermal and
isobaric at ambient temperature and pressure. The initial condition is set by the
final condition of the cooling step and the bed is then fed with ambient air until
the CO2 saturation level set by the neural network is reached. Differently from the
previous steps, the adsorption is not divided into multiple k steps but solved for
the final conditions directly. Because of the presence of H2O, CO2 can be either the
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weakly or the strongly-adsorbed species depending on the material. Especially for
cases with very low CO2 concentrations like in the ambient air, CO2 is usually not
the most strongly adsorbed species. Therefore, in order to avoid material balance
errors, the adsorption step is divided into two sub-steps: the first sub-step is used
to reach saturation of the strongly-adsorbed species, while the second sub-step is
used to reach the desired level of saturation of the weakly-adsorbed species. Let’s
start with the case of CO2 as weakly-adsorbed species. First, air is fed until the bed
is saturated with H2O; here, both CO2 and H2O can adsorb. During the second
sub-step, more air is fed until the bed reaches the CO2 saturation level fixed by the
neural network, while H2O cannot adsorb anymore. On the other hand, if CO2 is the
strongly-adsorbed component, the adsorption step coincides with the first sub-step
only, where the bed is fed until the CO2 saturation level from the NN is reached.
The material balances solved during the first sub-step of adsorption are:

Ni,total(tf)− Ni,total(t0) = yfeed
i

∫ tf

t0

Ṅfeeddt − yi(to)
∫ tf

t0

Ṅwastedt

= Nin
i − Nout

i (3.13)

where Ni,total(t0) and Ni,total(tf) are the total amount of component i in the col-
umn at the end of the cooling step and adsorption step, respectively; yfeed

i is the
concentration of the component in the feed stream; yi(to) is the mole fraction of
component i at the end of the cooling; Nin

i and Nout
i are the amount of species i fed

and withdrawn form the column during the adsorption time, respectively. For the
resolution of the material balances of the first sub-step of the adsorption and as far
as H2O is the strongly-adsorbed species, NH2O,total(tf) corresponds to the conditions
of full saturation in the column and Eq.3.13:

NH2O,total(tf) = msq∗H2O + yfeed
H2O

pambVcϵ

RTamb
(3.14)

If CO2 is the strongly-adsorbed species, H2O in Eq. 3.14 is substituted with CO2.
The material balances of the second sub-step of the adsorption are written as for the
first sub-step (Equation 3.13), but with the following differences:

• The initial conditions (t0) correspond to the end of the first adsorption sub-step.

• NCO2,total(tf) corresponds to the saturation level assigned by the neural net-
work.

• Water is treated as an inert, i.e. it flows through the column without adsorption.

The molar fraction of CO2 at the end of the second sub-step, yCO2(tf), is equivalent
to the initial composition of the blow-down step. Therefore, the total amount of
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air and the waste stream leaving the column are: Nfeed
ads = Nin,1

i + Nin,2
i , Nwaste

ads =

Nout,1
i + Nout,2

i . The total time of the adsorption step can be determined by including
the air velocity uair and the geometry of the considered sorbent (SI B). Figure 3.2
gives an overview of the whole cycle with the input and output parameters for each
step, as well as the process performance parameters.
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Figure 3.2: Architecture of the equilibrium model.
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Neural Networks

Two independent neural networks are used in the framework we propose, and they
allow for overcoming the inherent limitations of equilibrium models by providing:
(i) the (under)saturation level of the bed α at the end of the adsorption step, and
(ii) the time required for heating, which in turns allows for an estimate of the
productivity, an indicator typically computed in rate-based models exclusively (see
the next sub-section). This results in a more realistic and informative 0D model. The
first NN directly provides α for assigned particle density, desorption temperature,
vacuum pressure, and volume of gas fed (varying these cycle operating parameters
corresponds to exploring different purity-recovery combinations). The second NN
provides the time required for heating the bed to the regeneration temperature theat,
which is typically the longest step in the cycle, for assigned sorbent and particle
density, sorbent specific heat, desorption temperature, and vacuum pressure. Indeed,
the key for obtaining meaningful neural networks is in the dataset provided to the
training step. Here, we used simulations carried out for eight different sorbents
combinations obtained with the 1D rate-based model described in Sabatino et al. (the
materials were taken from the same work). [120]. For the NN providing the heating
time, a total of 4200 simulations were performed using the eight different material
combinations and varying desorption temperature and vacuum pressure. For the
NN providing the saturation level, we restricted the input dataset to the optimal
pareto points of the eight sorbents described in Sabatino et al. [120], resulting in
a total of 324 simulations. In Figure 3.3 we show the shape of the isotherms used
for setting up the saturation neural network (red lines), those used for the database
screening (gray), and those selected as optimum by the screening (light blue). We can
note, that overall the isotherms shape is similar, but that those used for the neural
network training span a smaller area in the isotherm plane. Including additional
sorbents in the 1-D model data generation phase would likely strengthen the NN
accuracy.
For both neural networks, the data-sets were divided into training, validation, and
testing data with a ration of 60:20:20. The training was done using the Levenberg-
Marquardt back-propagation method as implemented in the neural network toolbox
provided in MATLAB. A summary of the input/output data for both neural networks
is shown in Table 3.1.

Performance indicators

The adsorption cycle can be evaluated via four performance indicators, which are
calculated at the end of the simulation, i.e. the productivity PrCO2 , the specific
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Figure 3.3: Overview over the isotherms included in the training data for the NN compared
to the isotherms of the database. a) linear scale and b) logarithmic scale.

Table 3.1: Summary of the input, output, and boundary conditions of the neural networks.

input output # data-sets Tdes range pvac range

(K) (bar)

ρparticle, ρMaterial, cp,s, Tdes, pvac theat 4200 363-400 0.1-0.8

ρparticle, Tdes, pvac, V̇feed α 324 363-400 0.1-0.8

thermal energy consumption eth
CO2

, the CO2 recovery r, and the CO2 (dry) purity

Φdry
CO2

.

PrCO2 =
NCO2 MMCO2

tcycleVs
(3.15)

eth
CO2

=
Qth

mCO2

(3.16)

Φdry
CO2

=
NCO2

Ntotal − NH2O
(3.17)

rCO2 =
NCO2

Nin
CO2

(3.18)

where NCO2 is the amount of CO2 produced during the heating step, tcycle is
the total duration of the cycle, and Vs is the volume of the adsorbent. The time of
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the cycle required to compute the productivity is calculated by including all step
times, i.e. tcycle = tBD + theat + tcool + tads. As shown in Figure 3.2: the time for the
blow-down is obtained with a fitting function; the heating time is retrieved using a
neural network; the cooling time is set to 350s similar to our previous work [120];
the time of the adsorption step is determined by the air velocity and the geometry of
the sorbent as explained in the previous section.

The 0D model is implemented in MATLAB R2021 and the mass and energy
balance equations are solved using the lsqnonlin solver and trust-region-reflective
algorithm [146]. The model takes less than 10s to simulate one cycle, using a laptop
machine with INTEL Core i7 2.50GHz processor and 8.00 GB of RAM.

3.3 model validation

The equilibrium model validation is carried out by comparing the results with a
rate-based adsorption model. In the 1D model, the material and energy balances of
a fixed-bed are typically expressed in differential form and are numerically solved
in space and time until a cyclic steady state is reached. Moreover, the mass transfer
is approximated with the linear driving force approach. The 1D model adopted for
the validation has been used in multiple previous publications, and it has shown to
predict experimental results well [50, 81–83]. The detailed mathematical equations
and the simulation parameters are reported in the SI B. Additional details can also
be found in other previous publications [77, 78].

The validation of the 0D model is structured in two different steps. We need in
fact to recognize that not only does the 0D model have to reproduce fairly well
the performance of a specific cycle simulated with the 1D model, but it also has to
correctly identify the potential of a given material when the process is optimized.
If both conditions hold, then the 0D model can be used for screening potential
sorbents. Accordingly, first we compare the profiles and performance indicators of a
single simulation by using the same input parameters (e.g. cycle times, inlet velocity,
temperatures and pressure). Second, we compare the results when the process is
optimized, i.e. the input parameters are varied. More specifically, the optimization
of the four-step VTSA process is carried out by minimizing the energy consumption
and maximizing the productivity [91]. The multi-objective optimization problem is
formulated as follows:

minimize
x

(−Pr, eth)

subject to Φ ≥ Φspec

(3.19)
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where x are decision variables, Φ the purity and Φspec the required minimum
purity. This constraint is imposed as a penalty C on the resulting objective function
in the form of

C = 10[min(0, (Φ − Φspec))] (3.20)

We would like to note that the minimum recovery Φspec value allowed in the
optimization was set to 70%. This was required to include APDES-NFC - a DAC
sorbent described in the early works of Climeworks’ founders which we considered
in previous work [120] and in the 1-D model simulations. This sorbent features a high
porosity, and higher CO2 purity can only be reached when a preheating-to-waste
step is included with the blowdown. However, the constraint is never active in the
screening and for the validation of other sorbents (see next section and Figures B.11,
B.12, B.13). Therefore, the low-purity constraint does not affect the outcome of the
fast screening.

The decision variables x for the 0D model are: (i) the desorption temperature,
(ii) the vacuum pressure, and (iii) the inlet feed velocity. The time of the different
cycle steps depends on these parameters as well as on the material properties. The
boundaries of the decision variables are given in Table B.11 in the SI. We repeat the
same optimization for the 1D model using the same VTSA cycle and materials, but
adding the step times as variables.

The optimization of the 0D model is carried out using a particle swarm algorithm
adapted for multi-objectives (MOPSO), as implemented in MATLAB [147]. The size
of the particle and repository was set to 50 and the number of cycles to 35. These
parameters are smaller than the ones recommended by Coello et al. [148], but they
did show the same accuracy. For the 1D model optimization, we follow the same
approach reported in Sabatino et al. [120]. The results of the optimizations with
the 0D and 1D models are compared in terms of energy and productivity range
for the eight materials discussed by Sabatino et al. [120]. The nomenclature of the
materials can be found in Table B.14 and includes four promising sorbents, namely
APDES-NFC [41], Tri-PE-MCM-41 [68], MIL-101(Cr)-PEI-800 [45] and Lewatit VP OC
1065 [48, 69, 70] together with data for H2O isotherms of three different materials,
i.e. APDES-NFC, Lewatit and MCF-APS-hi [71]. More details on the choice of these
materials can be found in Sabatino et al. [120].

Validation of a specific cycle simulation

Here, we compare the 0D and 1D model for the same input parameters, i.e. same
material, heating and cooling temperature, pressure, feed composition, feed velocity,
and cycle times. The pure component isotherm equations as well as the parameters
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for the different materials are reported in the SI B. We carry out this validation for
two different materials: case s2/E-A and Cr-MIL(101). Case s2/E-A was among the
materials used to build the data collection adopted to develop the profiles functions
and the neural networks called in the 0D model. On the other hand, Cr-MIL(101)
was not used for this purpose; thus we use the Cr-MIL(101) validation to investigate
the capability of the 0D model to predict the performance of new materials. For all
tested cases, we carry out the validation using air as feed, i.e. a direct air capture
process.

The cycle times were defined by running the simulation with the 1D model and
are long enough for the model to reach the vacuum pressure (tBD), the desorption
temperature (theating)), and to ensure a high saturation in the bed (tads). The cooling
time was set to tcool = 350s for all materials. This is done to ensure that the times, as
well as the final temperature and pressure are the same for both models. For this
case, the 0D model structure was adapted to handle the times as additional input.
Furthermore, the 1D model uses an equivalent temperature, to include the enhancing
effect of water on the CO2 adsorption; for consistency, this was also included in the
0D model for the validation. More details on this approach can be found in Sabatino
et al. [120]. The process conditions for this validation are reported in Table 3.3.

Figure 3.4 shows the temperature, pressure, and the molar fraction profiles of the
three components for the 0D and 1D models. Figure 3.4 a) and b) refer to material
s2/E-A, while Figure 3.4 c) and d) refer to Cr-MIL(101). In addition, in the SI in
Figure B.5 the profiles of the adsorbed amount of CO2 and H2O are added. Although
the 0D model is significantly simpler than the detailed 1D model, the profiles are in
good agreement. Notably, also the concentration profiles show a good agreement
between the models, which is hard to obtain for a well-stirred 0D equilibrium model.
When looking at the main differences between the 0D and the 1D model, we notice
the following. In the temperature profile (Fig. 3.4 a)) a deviation is present for the
adsorption step: for the 1D model, the temperature increases at the beginning of this
step, while the 0D model shows a constant temperature. This is because we assume
isothermal adsorption in the 0D model.

When looking at Fig. 3.4 c) and d), i.e. the Cr-MIL(101) case, we can notice that
the model predicts well the profiles also when a new material is considered. This is
an important feature of the model, and it confirms that the 0D model can effectively
predict the performance of sorbents not used to build the NN functions, and can
therefore be used as a screening tool.

Figure 3.5 shows the molar fractions of CO2 and H2O as a function of the temper-
ature during the cycle, for both the 0D model and the 1D model. Also here, Figure
3.5 a) and b) is for sorbent case s2/A-E, while Figure 3.5 c) and d) is for sorbent
Cr-MIL(101) (the concentration-pressure profiles are reported in the SI). It can be
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Figure 3.4: Temperature, pressure and concentration profiles for the 0D and 1D models.
Figure a) and b) refer to s1/E-A, while Figures c) and d) refer to Cr-MIL(101).
For the 0D model profiles, the adsorption step is plotted over time.
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Table 3.3: Process conditions for the validation of the 0D model against the 1D model.

material Tdes pvac V̇feed tads tprod tcool tpurge H2O

(K) (bar) (m3/s) (s) (s) (s) (s) isotherm

s2/E-A 373 0.27 8.9 × 10−6
3160 1500 350 30 APDES-

NFC

Cr-MIL(101) 373 0.27 8.9 × 10−6
5000 4300 350 300 APDES-

NFC

noted that the compositions profiles follow a similar shape, both for sorbent s2/E-A
and sorbent Cr-MIL(101).

The overall performance of the 0D model with respect to the 1D model for all
tested sorbents is shown in the parity plots in Figure 3.6, where the results are
reported for the 9 different materials. Moreover, the parity plots for different CO2

concentrations in the feed and same materials are reported in the SI B. The following
can be concluded. (i) The purity predicted by the 0D model underestimates the 1D
model, which is a consequence of the well-stirred approach. The results are however
within a 20% gap, with only material s1/A-A outside this gap. (ii) The capture rate
is in good agreement and typically slightly overestimated by the 0D model (20% gap
still applies). (iii) The specific thermal energy demand is in good agreement with
the 1D simulation. (iv) The productivity is in fair agreement with the 1D model;
this is particularly surprising, given that the 0D model is equilibrium based and
the productivity is computed by means of a neural networks function. The higher
productivity stems from the higher capture rate of the 0D model. When considering
the two additional cases for yCO2 = 0.1% and yCO2 = 1% vol., the parity plots show
similar agreement for energy and productivity, and a better agreement for purity
and capture rate (see SI B).

Although the error for the predicted performance parameters is in the range of
+/ − 20%, it must be noted that the 0D model does not aim at providing a very
accurate prediction of the performance, but rather at consistently predicting the
performance of multiple sorbents. Therefore, to examine better this feature, we need
to compare the capability of the model when process optimization is used.
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Validation of sorbent comparison and optimization

As mentioned, the goal of the 0D model is to identify the most promising adsorbents
from large databases of possible sorbents, where the ranking is done using technical
key performance indicators. Therefore, we here benchmark the 0D model in terms
of optimization of adsorbents. To this end, we consider again the 8 adsorbents used
for the previous validation and compare the results of process optimization carried
out using the 0D and the 1D models. The design variables considered with the
0D model are the desorption temperature Tdes, the vacuum pressure pvac, and the
volume stream of the incoming air V̇feed. Same ranges across the different materials
are considered for Tdes and pvac, while for V̇feed the range is material-specific (the
maximum air velocity is set by the minimum fluidization velocity). In contrast to the
0D model, the 1D model requires the cycle step times as input variables; in this case,
the design variables and their upper and lower bounds are taken from Sabatino et
al. [120] and are listed in the SI in Table B.11.

As optimization results, Pareto curves with the optimal productivity-energy points
are obtained. The detailed optimization results including purity, recovery, and
decision variables are found in the SI in section B. To improve the visualization of the
comparison between the models, the optimal Pareto points are depicted in Figure 3.7
as interval bars for both productivity (left y axis) and specific energy consumption
(right y axis). As comparison, the brighter bars show the corresponding results for
the 1D model. When comparing the 0D and 1D models, we now aim at obtaining
similar sorbent ranking (i.e. the most performing sorbents are identified) and similar
range for the performance indicators.
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Figure 3.7: Resulting performance parameters (productivity in blue, thermal energy con-
sumption in orange) from the 0D and 1D optimization. The nomenclature for
the different sorbent cases can be found in Table B.14

Looking at the comparison, we first notice that the optimization results of the
0D model are in line with the 1D model, i.e. the simplified approach identifies
similar values for energy consumption and productivity. Typically, the 0D model
identifies broader ranges compared to the 1D model, especially for the productivity.
The latter is however the most difficult indicator to extract from an equilibrium
model. Second, we notice that the 0D model identifies the same well-performing and
badly-performing sorbents of the 1D (see Table 3.5 for a summary of the ranking).
For the 0D model the two best performing materials are the s6/MP-A and s3/MP-A,
while the two worst performing sorbents are s1/A-A and s8/L-L. The 1D model
identifies the same worst sorbents and the same best sorbents (where the two best
sorbents are swapped). These results let us conclude that the 0D model reliably
reproduces the screening performance by the 1D model, but in a fraction of the
required time: around 2 hours are needed for an optimization with the 0D model
(per material) while from 8 hours to several days are needed for the 1D model (per
material). It should be also stressed, that the 0D model shall not fully substitute the
1D model, but complement it in the sorbent screening phase.
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Table 3.5: Resulting ranking of the adsorbents for the validation of the 0D model using
the 1D model. The values of the maximum productivity and the corresponding
thermal energy consumption are given for the best performing adsorbent. For
the remaining materials, the deviation to the best performing one is given in a
percentage.

0D model 1D model

Pr Qth Pr Qth

(kg/m3/h) (MJ/kg) (kg/m3/h) (MJ/kg)

s6 MP-M 12.1 7.7 s3 E-M 10.8 4.1

s3 E-M +1% -5% s6 MP-M -5% 0%

s2 E-A 0% +13% s2 E-A -16% +86%

s5 MP-A -25% +19% s5 MP-A +23% +107%

s7 MP-L -2% +27% s7 MP-L -23% +96%

s4 E-L -1% +24% s4 E-L -23% +107%

s1 A-A -35% +50% s1 A-A -45% +149%

s8 L-L -40% +38% s8 L-L -76% +188%

3.4 sorbents screening

We applied the model described above to screen and rank a large number of possi-
ble sorbents. The screening was carried out retrieving data from different sources,
i.e. the NIST/ARPA-E database [142], adsorbents considered by Khurana and Fa-
rooq [133] and promising DAC sorbents from literature not included in the previous
sources [145]. We do not limit the screening to specific classes of sorbents, but con-
sider e.g. zeolites, activated carbon, and MOFs. Both real and hypothetical sorbents
are included. The first objective is to demonstrate the potential of the 0D model
by screening all the data mentioned above and by ranking the most promising
adsorbents. The second objective is to identify the most promising sorbents for CO2

capture from diluted sources. To this end we apply the screening to CO2 capture
from air (400ppm) and from sources at 0.1% vol CO2 and 1% vol CO2. These latter
may be representative compositions found in stables and in the aluminium industry,
respectively. Therefore, for the last two cases an additional constraint is set, namely
the capture rate needs to be higher than 90%. For the DAC case on the other hand,
the capture rate is not restricted.



3.4 sorbents screening 81

Database 
with 

adsorbents
sorting fitting

Working 
capacity

0D 
model

sorting
Optimi-
zation

0D

Optimi-
zation

1D

Final 
ranking

Gas, units, 
temperature

Fitting 
accuracy

WC > 0 Reasonable 
objectives

Reasonable 
materials

Figure 3.8: Overall screening approach.

Screening methodology

The screening process includes several steps, which are shown in Figure 3.8. All
screening tools are made available as open source online - see SI. As a first step, the
isotherm data of the NIST/ARPA-E needs to be retrieved from the online database
and preliminary filtered to exclude adsorbents which cannot be further considered.
This includes e.g. isotherms availability for the gas of interest, or converting the
units of the data. More details are provided in Figure B.10 in the SI. In the next
step, isotherm fitting is carried out for the remaining adsorbents. Since the isotherm
of adsorbents can take various shapes, we allow for automatic selection among
three common isotherm models during the fitting, i.e. the Langmuir-Freundlich, the
Toth-cp and the S-Shaped methods (these three isotherm models can capture a wide
range of experimental isotherm shapes). The fitting approach is further described in
the SI B.
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Table 3.6: Boundary conditions for the material screening.

Tdes Tads pvac pads yfeed
CO2

yfeed
H2O yfeed

N2

(K) (K) (bar) (bar) (%) (%) (%)

DAC (400ppm) 373 293 0.1 1.001 0.04 1.34 98.62

0.1% 373 293 0.1 1.001 0.1 1.34 98.56

1.0% 373 293 0.1 1.001 1.0 1.34 97.66

In the next step, the working capacity is calculated to identify those materials with
positive capacity for the CO2 adsorption of interest. A summary of these conditions
is reported in Table 3.6. While these process conditions are here fixed, the screening
could be carried out for varying inputs. Thereafter, the 0D model is run for all
materials with a positive working capacity. When no H2O isotherm is provided in
the database, we include the H2O isotherm of APDES-NFC [41] and Lewatit [48]
with a fitting provided by Sabatino et al. [120] (the H2O uptake of the APDES-NFC
isotherm lies somewhere in the middle, while Lewatit adsorbs higher amounts of
H2O). Moreover we consider the case of no water adsorption with a dry feed. For
the screening process, no enhancing effect of water on the CO2 adsorption was
considered, as no specific and reliable information/data is generally available.

Another issue present for most of the materials, especially those from the NIST/
ARPA-E database, concerns the availability of physical properties data (and asso-
ciated units), like the material and particle density, heat capacity. For the cases
where one or more properties are not available, the following generic assump-
tions are made: ρmaterial = 1130 kg/m3, particle void fraction ϵparticle = 0.35 and
cp,s = 1070 J/kg/K [133, 141]. While this is certainly a simplification, any other
assumptions would result in similar outcome.

In the next step, the results of the 0D model are sorted: materials with specific
energy consumption higher than 100 MJ/kgCO2

are excluded from further consid-
eration. For the remaining adsorbents, an optimization is carried out using the 0D
model. The upper and lower bounds of the decision variables are the same as for the
validation of the exemplary isotherm mentioned in the previous section (see Table
B.11 in the SI). The optimization results allow for a final ranking of the sorbents.
Possibly, the most promising sorbents are further evaluated by optimization with
the 1D model.
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Screening results

The screening considers initially around 2500 different materials, for which nearly
8000 isotherms are fitted and sorted. For the DAC case, only 12 materials show
a positive working capacity and reasonable performance parameters. 13 and 30

materials were found for yCO2 = 0.1% and yCO2 = 1.0%, respectively. Here we
would like to remind the reader, that for the two latter cases the capture rate is
constrained to be higher than 90% while it can vary freely for the DAC case. The
screening results are shown in Figure 3.9, while Table 3.8 reports the ranking of the
10 best performing adsorbents for the three different cases. The ranking is based on
the minimum specific energy consumption and the maximum productivity. Figure
3.9 shows that, as expected, the specific energy consumption is decreasing and the
productivity is increasing for higher CO2 concentrations in the feed. The model
consistently predicts that for an increase in productivity, more thermal energy is
needed. Notably, a few particularly sorbents can be identified for all applications.

For DAC, the MOFs Cr-MIL(101) and MIL-101 are the most performing both in
terms of productivity, which can reach 20 kg/(m3h), and energy; the latter can be
potentially as low as 4.1 MJth/kgCO2

. For 0.1%, PCN-11 is also an interesting sorbent
in addition to the MOFs for DAC. The maximum productivity increases to above
40 kg/(m3h). Finally, for the 1.0% case, the MOFs Mg-MOF-74, MIL-101(Cr)-250nm-
PEI-399 and Ca-X are identified as most promising, with energy consumption as low
as 4.3 MJth/kgCO2

and maximumn productivity above 100 kg/(m3h). Nicely, Zeolite
13-X is also identified as one of the most performing sorbents, in line with what has
been reported for post-combustion CO2 capture with VSA and TSA cycles.

All materials shortlisted from screening the 0.1% case are included in the results
of the 1.0% case. The materials of the 0.04% case, on the other hand, are not all
included in the higher CO2 concentration cases, since for the DAC case we do not
constraint the capture rate: the capture rate of the three excluded materials is lower
than 90% (see SI Fig. B.11-B.12).

For the DAC case, an optimization with the 1D model is also carried out for the
shortlisted sorbents, and the corresponding material ranking is reported in brackets
in Table 3.8. The rankings for the two models is again very similar and the two
best adsorbents are consistently identified. The three cases using a different water
isotherm, i.e. from the Lewatit sorbent, are very similar to the screening with the
APDES-NFC isotherm and the resulting ranking is the same (see SI). When looking
at the screening cases using a dry feed stream, the results, on the contrary, are very
much different. This was expected, since the concentration profiles are very different.
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Figure 3.9: Resulting objectives for three case studies: a) humid air feed stream with yCO2 =
0.04%, b) yCO2 = 0.1% and c) yCO2 = 1.0%. The best performing adsorbents show
a high productivity Pr, given on the x-axis, and a low specific thermal energy
demand Qth represented by the colorbar. The upper limit of the color bar is set
to a specific value to make the differences and best performing materials visual.
The actual energy consumption can therefore be higher than the limit shown by
the bar.
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Table 3.8: Resulting rankings showing the 10 best performing materials for three different
cases with varying CO2 concentrations in the feed and including water. The
results for case 1 using the 1D model are added next to the materials in brackets.
The deviation of the productivity and thermal energy consumption between the
best performing material and the rest is given in in Tables B.16-B.20 in the SI.a

400ppm 0.1% 1.0%

1 Cr-MIL(101) (2) PCN-11 Mg-MOF-74

2 MIL-101 (1) MIL-101 Ca-X

3 CuBTC (3) Cr-MIL(101) MIL-101(Cr)-250nm-PEI-300

4 MIL-53(Al) (4) Ca-X Zeolite Na-LSX

5 Zn-DABCO (5) Zeolite Na-LSX Zeolite 13X

6 MIL-101(Cr)-PEI-800

(6)
Cu-BTC powder PCN-11

7 Lewatit (8) CuBTC MIL-101

8 Exemplary (7) MIL-53(Al) Carbonb

9 Zeolite Na-LSX (10) Zn-DABCO Cr-MIL(101)

10 Ca-X (9) MIL-101(Cr)-PEI-800 Mg-X
aThe names of the sorbents correspond to the naming in the NIST database.
bActivated Carbon.
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3.5 discussion

In this work, we showed that equilibrium models can effectively contribute to the
overall design of adsorption processes for CO2 capture from diluted sources and from
air. Especially, they are useful tools to map the preliminary performance regions
and to identify promising sorbents from large databases. Coupling equilibrium
models with machine learning further enhances the outcome, e.g. by providing
good estimates of the process productivity. However, as for all models, there are
a few limits that are worth stressing (which are particularly relevant for scientists
interested in re-using our MATLAB package provided on GITHUB).
First, it should be kept in mind that the purpose of the 0D model is not to provide
accurate predictions - for that, rate-based models shall be used - but to enable (i)
otherwise non-viable simulations, e.g. high-throughput materials screening, (ii) and
a better understanding of the process performance in an early stage of development.
The 0D model should be consistent with rate-based models’ predictions but should
not aim at substituting them.
Second, it is important to include in the 0D model the adsorption of all relevant
species, and adopt suitable adsorption models. For example, in this work we have
considered N2 as an inert, which is acceptable as far as N2 adsorption is negligible
(e.g. in amine-functionalized sorbents), but which should be included when dealing
with more traditional sorbents (e.g. Zeolite 13X). N2 must also be included when
extending this model framework to non-diluted CO2 capture applications, e.g. NGCC,
coal, and industrial sources. Along a similar line, in this work we have neglected
H2O competition and enhancement effects: this should be corrected as soon as more
experimental data become available.
The last limitation we would like to discuss here concerns the neural network
modules. As all data-driven models, the quality of the NNs depends on the quality
of the data input. In the development of the NN used in our model, we considered
limited number of materials (see Fig. 3.3) and kinetic data, and we used such NN
for extrapolation to different isotherms. While this led to outcomes in line with the
rate-based model, the performance of the NN could be improved by adding training
data from additional materials (e.g. considering the finding of this work as shown in
Fig.3.9). When more experimental data become available, most of all about kinetics,
the model should be updated accordingly: first, by retraining the NNs, second by
rethinking the overall model structure. One possibility along the latter line might
include the use of AI as surrogate model for equilibrium, and using the kinetics
indicators to drive the sorbent selection.1

1 We would like to acknowledge that the idea of swapping the use of AI from surrogate for kinetics to
surrogate for equilibrium was suggested by one of the reviewers of this work.
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3.6 conclusions

In this chapter, we presented a new equilibrium-based 0D model for rapid simulation
of vacuum temperature swing adsorption cycles. The model, which builds upon
the key assumption of well-mixed conditions in the bed, was developed to enable
fast, yet reliable screening of sorbents for CO2 removal from diluted sources, e.g.
direct air capture applications. Nonetheless the formulation is generic and portable
to other separations of interest as far as the model is adapted to grasp the key
separation characteristics. To this end, we extended the approaches presented in
literature for equilibrium-based adsorption models by embedding neural networks
sub-models trained from rate-based simulations, by including H2O in the feed
- i.e. CO2 is not necessarily the strongly-adsorbed species, and by considering
vacuum temperature adsorption cycle. The resulting model can predict the separation
performance (capture rate and purity), the specific energy consumption, and the
productivity. The latter is enabled thanks to the embedding of machine learning,
as equilibrium models do not provide rate-connected performance. The resulting
0D model can simulate a VTSA cycle in less than 10s, and a full cycle optimization
in less than 2hr, therefore lowering significantly the computing time, especially on
standard desktops, and thus enabling large screening of new materials.

We have shown that the resulting 0D model can predict fairly well the different
performance indicators of VTSA cycles. To this end, we compared the model with
the results of a more sophisticated 1D rate-based model. The validation included
the comparison of specific fixed cycles for several materials in terms of performance
indicators and temperature/composition profiles, and also the comparison of the
outcome of cycle optimizations for different sorbents. The findings confirm that (i)
the 0D model reproduces well specific cycles, and (ii) returns similar metrics when
optimizing cycles, i.e. it is capable of substituting more sophisticated models in large
screening of materials.

Finally, we applied the 0D model to the screening of several thousands of sorbents,
which were obtained from the NIST/ARPA-E database and additional literature [120,
133, 142, 145]. We carried out the screening to assess CO2 capture from air and from
other diluted sources (yCO2 = 0.1% and yCO2 = 1.0%). The sorbent screening included
also additional steps that are required to retrieve and polish the source data. We
identified 12, 13, and 28 promising materials for the DAC, the yCO2 = 0.1%, and
the yCO2 = 1.0% case, respectively. In all cases, a couple of sorbents stood out as
particularly promising both in terms of energy consumption and productivity. As
final comparison, we run the optimization of the DAC promising sorbents with the
1D model; the outcome results were fully consistent with the 0D model.

Overall, we can conclude that equilibrium models, and particularly the one we
propose here, are a powerful tool for sorbents screening that could reliably substitute
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more sophisticated models. We showed that this holds true also when using more
complicated cycles, i.e. VTSA, and when considering more challenging separations,
i.e. from (ultra)diluted sources.



4
H O W D O E S A N I D E A L S O R B E N T I M P R O V E T H E T E C H N I C A L
A N D E C O N O M I C P E R F O R M A N C E O F D A C ?

4.1 introduction

Recent developments in material science have lead to the ability of discovering new
materials very quickly; the number of theoretical adsorbents is indeed increasing
significantly. Today, hundreds of thousands of adsorbent materials, both real and
hypothetical, are available in literature. Still, very few of the studied materials show
promising CO2 adsorption performance [149]. In the previous chapter we showed
that only 12 suitable sorbents out of 2500 were identified for CO2 capture from the air
using a vacuum temperature swing adsorption (VTSA) cycle. Most of the discarded
materials either showed a negative working capacity for the considered feed and
desorption conditions, i.e. yfeed

CO2
= 0.04%, Tmax

des = 373K and pmin
vac = 0.1bar, or showed

poor performance leading to unfavourable capture costs. The development of DAC
is just at the initial phase, and, therefore, there is large room for improving the
performance and decrease the levelized costs of CO2.

Several new classes of porous adsorbents have been discovered during the last
years including metal-organic frameworks (MOFs), which open up for thousands
theoretical materials [134]. With the emergence of computational molecular dynamics,
the possibility of replacing experiments by molecular simulations came forth, which
allowed for large screening studies, e.g. by Snurr et al. [150–152] and Smit et al. [131,
153]. These studies have in common, that the materials were compared using metrics
like the Henry’s constants or the isosteric heats of adsorption. Although these
properties are important for designing materials at molecular level, they are not
sufficient to predict the performance in a real process [133, 154]. Rather, the behaviour
in the process itself has to be investigated as well. Therefore, a few studies focus
on multiscale screening, where molecular and process modeling are combined [134,
155–157].

In the process modeling studies reviewed above, equilibrium adsorption data was
obtained from molecular simulations (like Grand Canonical Monte Carlo (GCMC)
simulations) and from experiments. These were then used in process modelling
and technoeconomic assessments. An alternative approach is called process inversion,
where the aim is to find an "optimal" sorbent from a process perspective by optimiz-
ing both adsorbent properties and process performance parameters. This approach

This chapter builds upon a scientific manuscript under preparation.
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helps in identifying the limits of a specific adsorption process and provides guide-
lines for the material discovery and synthesis [137]. A few studies have followed this
approach to identify promising properties for post-combustion CO2 capture, with
the goal of decreasing the energy consumption and/or capture costs [90, 137–139,
158–160]. For example Danaci et al. [159] optimized three isotherm parameters of a
single-site Langmuir isotherm for CO2 and N2 to maximize the capture costs. No
trend between the CO2 isotherms was found which could result in a high process
performance. By applying a techno-economic optimization, Subraveti et al. [160]
tried to identify an ideal adsorbent to find the limits of a pressure-vacuum swing
adsorption (PVSA) process for post-combustion CO2 capture. They optimized adsor-
bent properties, including isotherm parameters and the density and void fraction,
together with the process design variables. The CO2 and N2 adsorption isotherms
were modelled using the competitive dual-site Langmuir (DSL) equation. In the
present work, we follow the same approach of process inversion, and extend it to also
assess the separation of CO2 from dilute feed stream like DAC.

So far, research has mainly been focusing on novel materials for capturing CO2

from anthropogenic point sources. When developing these new materials, there is
not one best sorbent, but a best match between a sorbent and a process. In this
context, pressure swing adsorption (PSA) and temperature swing adsorption (TSA)
have been studied extensively. The separation of CO2 from dilute streams requires a
different process, where the vacuum temperature swing adsorption (VTSA) cycle
is mainly investigated. Therefore, while the overall approach of finding suitable
sorbents for dilute feed streams can be similar to that of other separation processes,
the resulting metrics with which the materials are evaluated, can be different. For
example when capturing CO2 from the air, the CO2 recovery plays a minor role,
while the co-adsorption of water has to be considered for most of the materials as
well.

Let us start this analysis for DAC applications by looking at the properties of
isotherms. The adsorption equilibrium information of the considered material is
indeed one of the most important inputs. There exist different empirical and mech-
anistic isotherm models which can be categorized by the amount of parameters
involved [161, 162] or by the shape [163–165]. In Fig. 4.1 three exemplary shapes
of CO2 isotherms relevant for DAC application are shown. The first two shapes (a)
and (b) are type I isotherms [165], which are characterized by a horizontal plateau
for high partial pressure. This shape can be fitted using e.g. a Langmuir-Freundlich,
a Toth, a Toth-cp or a Dual-site-Langmuir (DSL) isotherm model. While shape (a)
shows a steep slope at the begin, for isotherm (b) the increase is flatter. The third
shape (c) shows an S-shaped isotherm, which belongs to a type V isotherm, and
shows one inflection point. The adsorbed amount can reach a plateau or continue
increasing for higher pressure. For the capture of CO2 from dilute streams, the
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Figure 4.1: Schematic overview of different isotherm shapes.

isotherm shapes (a) and (c) are good candidates. Thanks to the steep slope at low
partial pressure the material (a) can adsorb already at very low concentrations. If
the step of the S-shaped isotherm occurs before the partial pressure of the CO2 at
feed concentration, the capture rate can be high as well. In addition to the capacity
at ambient temperatures, the isotherm shape at desorption temperatures plays a
crucial role as well. Figure 4.2 shows an exemplary isotherm for shape (a) and (c) at
adsorption and desorption temperature. Both figures show isotherms which have a
high CO2 working capacity ∆q using a dilute feed stream. Therefore, for DAC it is
important to i) have an isotherm with a steep increase at low partial pressure and ii)
a low loading at higher temperature, which narrows the choice of suitable isotherm
models.

In this work, we consider a four-step vacuum temperature swing adsorption
(VTSA) cycle and include several isotherm models in our analysis, i.e. Langmuir-
Freundlich, Toth, Toth-cp, S-shaped, and DSL. Both adsorbent properties and process
conditions are optimized to predict the performance limits, i.e. high productivity
and low energy consumption using a simplified 0D model. In addition, we analyze
the effect of the kinetics and material properties by using a rate-based 1D model. In
a last step, we carry out an economic analysis for the "optimal" materials. Although
this is a theoretical experiment, the study can help in evaluating possible prospects
of dilute CO2 capture and can provide a framework for the potential in developing
new materials.

The chapter is structured as follows: in section 4.2, the considered process as well
as the considered isotherm models are discussed. In addition, existing databases are
analyzed by screening and assessing the resulting materials based on their isotherms.
In section 4.3 several theoretical experiments are carried out by optimizing isotherm
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Figure 4.2: Illustrative isotherm at adsorption and desorption temperature. a) for a type I
isotherm and b) for a type V isotherm shape.

parameters of the five isotherm models. In a second step, we use these results in a
rate-based 1D model to also analyse the effect of the mass transfer coefficient. Finally,
a cost analysis of the resulting hypothetical materials is carried out and the results
are compared with existing materials.

4.2 methodology

The analysis of the ideal sorbent consists of the following steps:

• Optimization of process performance parameters (Tdes, pvac, Vfeed) and equilib-
rium isotherm parameters with the 0D model. Including five different isotherm
models and varying feed concentration (yCO2

= 0.04%, 0.1%, 1.0%).

• Optimization of the cycle times with the 1D model using the optimized
isotherms as input.

• Techno-economic analysis of the performance of the hypothetical isotherms.

In the following we provide more details on the process simulation tools and on
the optimization methods. The economic analysis is instead described in Section 4.4.

Process layout

We consider a simple four-step VTSA cycle, which is suitable to capture CO2 from
dilute feed streams like air. The process schematic is shown in Figure 4.3 and consists
of four consecutive steps:
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Figure 4.3: Process scheme of the four-step VTSA cycle.

• Adsorption at ambient pressure and temperature, where the feed stream enters
the air contactor and CO2 as well as H2O are adsorbed, while N2 is treated as
an inert.

• Blow-down, where vacuum is pulled with the purpose of extracting N2 in
the void space. Some CO2 and H2O get desorbed, preheat of the system is
possible.

• Heating at vacuum pressure and desorption temperature where the CO2 and
H2O are desorbed and evacuated.

• Cooling and repressurization.

Given the effect of water on the adsorption process, especially for typical materials
for DAC application like amine functionalized adsorbents, we consider a feed stream
consisting of three components, i.e. CO2, H2O and N2, where CO2 and H2O can be
adsorbed by the sorbent, while N2is treated as an inert.

VTSA Simulation Models

The present work includes two parts: i) optimization of isotherm parameters together
with process performance parameters using a simplified 0D model, and ii) assessing
the effect of mass transfer on the resulting optimal isotherms using a 1D model.

0D model

First, the equilibrium model presented in the previous Chapter 3 is used to optimize
the sorbent. Since it is designed to screen large databases, it is much faster than a 1D
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model, allowing us to include numerous decision variables during the optimization.
The 0D model is based on the following key assumptions: (i) the bed is treated as
a well-mixed reactor, (ii) the gas and the solid phases are in equilibrium during all
steps of the cycle, (iii) the gas phase behaves ideally, and (iv) the pressure drop in the
bed as well as (v) heat transfer resistances are not considered [149]. The equations
can be found in the SI B.

1D model

Second, we consider the effect of mass transfer on the different isotherm models
using a 1D rate based model, keeping the feed stream concentration at yCO2

= 0.04%.
The 1D model has been used in multiple previous publications, and it has shown
to predict experimental results well [50, 81–83]. The features of the mathematical
model as well as the complete set of the equations and its validation are provided
elsewhere [50, 81–83]. The physical dimensions of the module (the size of the air
contactor or the length of the sorbent layer) are taken for the analysis carried out in
Chapter 2 and are summarized in the Table C.3 in the SI. Mass transfer is included
with the linear driving force (LDF) approximation, where the resistances are lumped
into a single effective parameter. Besides the mass transfer, we also use the 1D model
to investigate the influence of the material density of the adsorbent and the void
fraction.

Equilibrium Isotherm Models

For our analysis we consider five different isotherm models: i) Dual-site-Langmuir
(DSL), ii) Toth, iii) extended Toth with chemi- and physisorption (Toth-cp), iv)
Langmuir-Freundlich (Sips), and v) S-shaped. The selection of this group is based on
several criteria. First of all, we want to be able to screen the full q-pi plane, and this is
best done by considering multiple isotherm models. Second, we aim at representing
the typical isotherm models reported in the databases (e.g. DSL isotherm model) but
also the typical isotherm models for DAC (Toth and Toth-cp). The equations of the
five equilibrium isotherm models are shown in Table 4.1. The number of isotherm
parameters varies from 6 to 13 variables; their naming and units are listed in the
Nomenclature. The water adsorption isotherm is kept the same for all simulations
and is modeled using the GAB isotherm model, similar to previous studies [26, 41,
55]. While it would be also possible to include the parameters of the water isotherm
in the optimization, the uncertainty for the choice of the boundaries would be high
due to lack of experimental data. With more available experimental data, also with
respect to the enhancing effect of water on the CO2 adsorption, this would make an
interesting future project.
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Table 4.1: Equations for the five different isotherm models.

Model Equation

Toth-cp qCO2 = ns,c
bc pyCO2(

1+(bc pyCO2)
tc
)1/tc + ns,p

bp pyCO2(
1+(bp pyCO2)

tp
)1/tp

ns,c/p = ns0,c/p exp
(

Xic/p

(
1 − T

T0

))
bc/p = b0,c/p exp

(
∆Hc/p

RT0

)(
T0
T − 1

)
, tc/p = t0,c/p + αc/p

(
1 − T0

T

)
DSL qCO2 = n1

b(yCO2 p)
1+b(yCO2 p)

+ n2
d(yCO2 p)

(1+d(yCO2 p))

b = b0exp
(

Hb
RT

)
, d = d0exp

(
(Hd
RT

)
Toth qCO2 = ns

bpyCO2(
1+(bpyCO2)

t)1/t

ns = ns0 exp
(

Xi
(

1 − T
T0

))
b = b0 exp

(
∆H
RT0

(
T0
T − 1

))
, t = t0 + α

(
1 − T0

T

)
Langmuir-

Freundlich

qCO2 = ns
(bpyCO2)

1/t(
1+(bpyCO2)

1/t
)

ns = ns0exp
(

Xi
(

1 − T
T0

))
b = b0 ∗ exp

(
∆H
(RT0)

(
T0
T − 1

))
t = t0 + α

(
1 − T0

T

)
S-shaped [166] qCO2 = qL (1 − w) + qU w

qL =
qL,0bL(yCO2 p)
(1+bL(yCO2 p))

bL/U/H = bL/U/H,0exp
(

∆UL/U/H
RT

)
w =

(
exp

( (
log(yCO2 p)−log

(
pstep

))
σ

)
/

(
1 + exp

( (
log(yCO2 p)−log

(
pstep

))
σ

)))γ

pstep = pstep,0exp
( −∆Hstep

R

( 1
T0 − 1

T

))
σ = xi1 ∗ exp

(
xi2

(
1

T0
− 1

T

))
, qU =

qU,0∗bU(yCO2 p)
1+bU(yCO2 p)

+ bH (yCO2 p)
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Process optimization

The optimization problem was formulated to minimize the thermal energy consump-
tion and maximize the productivity for different CO2 feed concentrations, similar to
the cases in Chapter 3. The multi-objective optimization problem is formulated as
follows:

minimize
x

(−Pr, e)

subject to Φ ≥ Φspec, r ≥ rspec

(4.1)

with
Pr =

ṁCO2

Vs
(4.2)

e =
Q̇reg

ṁCO2

(4.3)

where x are decision variables, Φ the purity, Φspec the required minimum purity,
r the recovery, rspec the required minimum recovery (for yCO2 > 0.04%), ṁCO2 is
the mass rate of CO2 captured from the air, Vs the volume of the sorbent, and Q̇reg
represent the heat required during the regeneration step. The constraint of the purity
and recovery is imposed as a penalty C on the resulting objective function in the
form of

C = 10[min(0, (Φ − Φspec))]

C = 10[min(0, (r − rspec))]

For Φspec we are here assuming a value of 95%, which is a typical value for CO2

storage applications. The constraint on the recovery is set to rspec > 90% for CO2

concentrations higher than 400ppm.
As mentioned, two types of multi–objective optimizations were performed. For

the first case we carry out an optimization using the 0D model and optimize both
process and adsorbent parameters. For the second case, we use the 1D model to
understand the effect of mass transfer by varying the linear driving force coefficient.
Both approaches are presented below.

0D model. The design variables include both process and adsorbent decision
variables:

• Operating process parameters are: desorption temperature Tdes, vacuum pres-
sure pvac, and volume feed stream Vfeed.



4.2 methodology 97

• isotherm decision variables, depending on the isotherm model. For the Toth-cp
method, e.g., 12 variables are optimized: ns0,c/p, Xic/p, b0,c/p, ∆Hc/p, t0,c/p, and
αc/p.

The range for the process parameters is given in Table C.6 and is in line with
previous optimization runs for VTSA processes using dilute CO2 feed streams [120,
149]. The maximum desorption temperature is limited to 373K, to allow for the use
of low temperature heat during the regeneration. The boundaries for the material
properties are chosen by scanning adsorbent properties published in literature [137,
166] and analysing isotherms from our previous screening [149]. The density and
void fraction of the hypothetical materials are kept constant during the optimization.
The constant adsorbent and process properties are listed in the SI in Table C.5
and C.3, respectively. When looking at the isotherm parameters for the different
isotherm models, we can use similar boundaries for the enthalpy of adsorption and
the saturation capacity of the physisorption ns,0. Since the saturation loading can
have a significant influence, we are carrying out a sensitivity analysis for the upper
bound of this parameter. For the remaining isotherm parameters we need to have
wider ranges, which are defined by carrying out a screening of several databases.
The boundaries for the decision variables for the different isotherm models are listed
in the SI in Table C.7. More details on the screening are provided in the following
section 4.2.

It is important to note that for the range of the isotherm decision variables it can
happen that the resulting isotherms are not physically meaningful; for example, a
decreasing CO2 loading with increasing partial pressure or with decreasing tempera-
ture. This effect was mainly seen for the s-shaped isotherm model. Therefore, special
care needs to be taken during the optimization, for example by including a penalty
function. More details can be found in the SI C.

The optimization of the 0D model is carried out using a particle swarm algorithm
adapted for multi-objectives (MOPSO), as implemented in Matlab R2021 [147]. The
settings for the algorithm are reported in the SI C.

1D model. Taking the resulting isotherm and process parameters from the opti-
mization with the 0D model, an optimization with the rate-based model is carried
out to also include the effect of the kinetics. In addition to the process decision
variables for the 0D model, the times of the different steps are included as well. For
the optimization we follow the same approach reported in chapter 2. A list of all
variables together with their upper and lower bounds can be found in C.6.
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Figure 4.4: Outline of the overall approach.

Adsorbent evaluation and screening

Before designing new isotherms, already existing materials from databases are
analyzed. This is done to identify the ranges of the isotherm parameters of the
different isotherm models but also to be able to compare the optimized isotherm
shape with existing adsorbents. A summary of all the steps involved in finding the
ideal sorbent is shown in Figure 4.4.

The screening is carried out similar to the work in Chapter 3, but we include
additional databases, obtaining around 5800 materials. More details concerning the
databases can be found in the SI C.

Depending on the CO2 concentration in the feed stream, different materials are left
when screening the databases. The equilibrium isotherms for the resulting materials
are plotted in Figure 4.5 on the left for the three different cases. The corresponding
Pareto charts from optimizing a VTSA cycle using these materials are given by the
right figures. For the most diluted case, only 12 materials showed a positive working
capacity. For yCO2 = 0.1% and yCO2 = 1.0% the screening revealed more materials,
namely 13 and 30 adsorbents, respectively.

For defining the ranges of the isotherm parameters, all fitted isotherms from the
databases are considered. Most of the isotherms were fitted using the DSL, Toth-cp,
and Langmuir-Freundlich isotherm models, and only a few were fitted using the
Toth and s-shaped models. These fitting data were used to determine the parameter
ranges for the different models, which are listed in Table C.7 in the SI.

In contrast, the isotherms resulting from screening, i.e., the isotherms showing a
positive working capacity at yCO2 = 0.04%, only include materials fitted with the
Toth-cp and the Langmuir-Freundlich methods. It can be seen that these remaining
isotherms from the screening show a higher slope at low pressure. This trend can
also be seen by a quantitative analysis using isotherm metrics. Further details on
this study can be found in the SI C.
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Figure 4.5: Screening results including several databases. The left column shows the result-
ing Pareto chart, while in the right column the isotherms are plotted for different
CO2 feed stream concentrations: a)+b) yCO2 = 0.04%, c)+d) yCO2 = 0.1%, and
e)+f) yCO2 = 1.0%.
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In contrast, the isotherms resulting from the screening, i.e., the isotherms showing
a positive working capacity at 40, include only materials equipped with the Toth-cp
and Langmuir-Friendly methods. It can be seen that these remaining isotherms from
screening show a higher slope at low pressure. This trend can also be seen in a
quantitative analysis using isothermal metrics.

4.3 results optimizing isotherm parameters

Effect of isotherm parameters and feed concentration

For each isotherm model, a productivity - thermal energy optimization was carried
out including process and isotherm parameters as decision variables. The resulting
Pareto charts are plotted in Figure 4.6. Each Pareto point of the optimized isotherm
models represents one hypothetical isotherm. The three graphs show the results using
three different CO2 feed stream concentrations, i.e. yCO2 = 0.04 %, yCO2 = 0.1 %, and
yCO2 = 1.0 %. For comparison, the grey lines show the resulting Pareto charts from
the database screening for varying CO2 concentrations, as explained in the previous
section 4.2.

When looking at the DAC case (Figure 4.6 a)) and comparing the Pareto charts of
the hypothetical isotherms with the materials from the databases, the thermal energy
consumption is lower for all cases, which is mainly due to the lower desorption tem-
perature of the hypothetical materials. The figure also shows, that the productivity of
the optimized isotherms is in a similar range to several of the existing sorbents. While
one might have expected the optimized isotherm models to outperform the database
materials more significantly, there are several explanations for this behaviour. With
the 0D model optimization an increase in productivity is mainly achieved through
higher adsorption capacity. This means that a very steep isotherm at low pressure
for this ultra-dilute case is needed. However, depending on the boundary conditions
for the isotherm parameters, this may not have room for further improvement: the
boundaries were chosen by taking into account fitting values from existing materials.
Another reason could be that the density considered for the ideal sorbent is lower
than that of materials in the database (the density is kept constant for all hypothetical
materials). In addition, the productivity is an outcome of the neural network trained
without the performance of the improved sorbents.

In Figure 4.7 the optimal isotherms of all isotherm models for the DAC case are
plotted, together with the isotherms from the databases. One can see that the capacity
within the low and high pressure region at ambient conditions is higher for most of
the hypothetical isotherms.
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Figure 4.6: Resulting Pareto charts for the optimized isotherm models using a CO2 feed
concentration of a) yCO2 = 0.04%, b) yCO2 = 0.1%, and c) yCO2 = 1.0%. In
addition, for case a) the Pareto plots of three real materials are plotted in black.
Using 0D model.

Figure 4.7: Optimized isotherms including all models (blue for adsorption temperature
Tamb=293K and red for desorption temperature Tdes=373K) compared with real
isotherms (grey) for yCO2

= 0.04%. Plotting a) linear scale and b) logarithmic
scale.
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When comparing the different isotherm models with each other, the S-shaped
isotherm shows the best performance for the ultra-dilute case, with a very low
minimum energy consumption of 0.55 MJ/kgCO2 . This is due to the isotherm step
which requires limited heating. In the SI in Figures C.5 and C.6, all simulated
isotherms are plotted both in linear and logarithmic-scale for a feed stream con-
centration of yCO2 = 0.04%. Here, the step of the S-shaped isotherm can be seen,
which can lead to a higher working capacity and a lower desorption temperature
during the regeneration. The resulting Pareto curves for the Toth-cp, the Toth and the
Langmuir-Freundlich isotherm are in a similar range, while the DSL shows the worst
performance for the ultra-dilute feed concentration. This, again, can be explained by
the shape of the isotherms when looking at Figure C.6. Although the DSL isotherms
can have a steep slope at low pressure region, this also leads to a steeper isotherm at
higher temperature. Therefore, the low capacity must be compensated by a higher
desorption temperature.

For higher CO2 concentrations, the results are comparable with the DAC case, i.e.
with respect to the productivity, the optimized isotherm models are in a similar range
compared to the materials from the database while the thermal energy consumption
is lower. The performance of the S-shaped isotherm model gets worse for higher
concentrations, which may be due to the boundary range of the isotherm parameters
and the constraint on the CO2 recovery. The Toth model shows the best performance
for higher concentrations. For the yCO2 = 1.0% case, one adsorbent from the screen-
ing outperforms all optimized isotherm models, showing the highest productivity
while also showing a low energy consumption (Mg-MOF-74). Overall, the results
show that, depending on the CO2 concentration in the feed, some isotherm models
perform better than the others. This confirms the need to choose or design a sorbent
specifically for a particular purpose and process.

1D optimization: Effect of kinetics and material properties

Using the optimal isotherms obtained with the 0D model, we investigate the influence
of the mass transfer coefficient, density and void fraction. This analysis is carried
out for the ultra-dilute case, i.e. DAC application. Figure 4.8 shows two groups of
Pareto charts: i) the results when optimizing the isotherm and process parameters
using the 0D model as presented in the previous section, ii) and the Pareto curves
using the 1D model. For the latter, the Pareto front of each isotherm model is
calculated using one optimal isotherm as input, which was received from the 0D
model optimization. As marked in Figure 4.8, we considered the optimal isotherm
and process parameters at point A. The input parameters for the 1D optimizations
as well as the process conditions and boundaries are listed in the SI in Tables C.3 -
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C.11. For these optimization runs the linear driving force coefficient for CO2 was set
to kLDF = 0.1s−1.

While the energy consumption for the Toth-cp, Toth and Langmuir-Freundlich
model are in a similar range for both models, the productivity is lower for all
cases when using the 1D model. This difference between the two models was
already identified in Chapter 3, where the validation between both models showed a
consistent variance. On the other hand, for the S-shaped isotherm model the energy
consumption obtained in the 1D model is significantly different from the results of
the 0D model. In addition, it was not possible to run the rate-based model with any
of the optimized isotherms using the DSL method. A reason for this to happen is
the assumption of isothermal adsorption in the 0D model. Both isotherm models
are very sensitive to a temperature change. Therefore, a set of isotherm parameters
that lead to a positive working capacity using an isothermal desorption step in the
0D model, can result in a negative uptake using a non-isothermal adsorption model.
A temperature wave will propagate through the bed leading to a different local
temperature and eventually to a different adsorbed amount compared to the 0D
model. A similar behaviour for a stepped isotherm model was also found in other
literature [167, 168].
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optimization of the respective isotherm model, while the corresponding Pareto
chart using the 1D model shows the optimization using the optimal isotherm
of point A obtained with the 0D model.
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Since the optimization of the Toth-cp model showed the best performance while
having results consistent with the 1D model, this equation is used for further
investigations. First, we run an optimization for two other points along the 0D
Pareto using the rate-based model. Results are shown in Figure 4.9 a). The isotherm
parameters for all three points are listed in Table C.13. The productivity calculated
by the 1D model is lower but in the same range of the 0D model. The energy
consumption increases for point A and B while decreases for point C. The shape
of these three optimal isotherms is shown in Figure 4.9 b) together with the other
optimal isotherms from the Pareto front obtained with the 0D model. While the
isotherms show a similar uptake during the adsorption, i.e. at 293K and yCO2 =
0.04%, their shape is slightly different at desorption temperature. For point A the
capacity is the lowest and for point C the highest, which is also represented by the
Pareto points in the 0D Pareto front and by the individual Pareto fronts using the
1D model: optimization with point A results in a lower productivity compared to
point C.

In Figure 4.10 a) the influence of the linear driving force coefficient is shown for
the three optimal isotherms. As expected, the performance worsens for lower values
of kLDF, both in terms of productivity and energy consumption. The influence of the
kinetics is larger when starting at high productivity, i.e. the productivity of point C
decreases by 78% compared to around 40% for point A, when looking at the two
extreme LDF coefficients. This clearly shows, that optimal isotherms can increase
the process performance but CO2 removal from air is largely controlled by kinetics.
Therefore, sorbent development should target both kinetics and equilibrium.

On the other hand, the density and void fraction only show a small effect on
the performance. The Pareto fronts shown in Figure 4.10 b) are all similar in forms
of minimum energy and maximum productivity. When looking at the purity and
recovery of the different optimization runs in the SI in Figure C.8, and considering
the other parameters fixed, a high void space and a low density show a lower purity.
In addition, the adsorption and production time are higher for the higher density
and small void volume sorbents.
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Figure 4.9: Details on the optimized Toth-cp isotherm model: a) Pareto fronts of the opti-
mized isotherm obtained with the 0D model (grey line) and the 1D model for
three optimized isotherms (A, B, and C). b) The shape of the optimal isotherms
obtained with the 0D model, highlighting the three chosen isotherms correlating
to point A, B, and C in the Pareto chart of a).
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Figure 4.10: Optimization results using the 1D model: a) Pareto charts for Toth-cp model
including three different optimzal isotherms obtained with the 0D model and
varying LDF coefficients (k1
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0.1s−1). b) varying rho and void (ρ1 = 1000kg/m3, ρ2 = 1700/m3, ρ3 =
3500/m3 and void1 = 0.4, void2 = 0.6, void3 = 0.8).
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4.4 cost assessment

Methodology

Eventually, the choice of the optimal sorbent is driven by its economic performance.
Therefore, starting with the results of the rate-based model, an economic analysis is
carried out. The calculation of the levelized cost of CO2 (LCOC) is kept simple but
accurate enough, to compare different hypothetical materials with each other but
also with existing ones. Therefore, the analysis is carried out applying a bottom-up
methodology which requires sizing and costing of all components.

To determine the LCOC, we use the total annualized cost (TAC), which includes
three cost blocks: sorbent cost, CAPEX, and OPEX, as well as the capital recovery
factor (CRF) [169]. The recovery factor is calculated using the weighted average cost
of capital (WACC) and the technical lifetime of the plant l

LCOC =
CRF · CCAPEX + COPEX + CSorbent

mCO2

=
TAC
mCO2

(4.4)

CRF =
WACC (1 + WACC)l

(1 + WACC)l − 1
(4.5)

Details concerning the calculation of the equipment purchase costs is given in
the SI in Section C. All costs are provided in $2020 and adjusted using the Chemical
Engineering Plant Cost Index (CEPCI). The installed costs were determined by
applying the Lang Factor method, where the purchase cost of the equipment is
summed up and then multiplied by a Lang Factor fL [170, 171]. In addition, the
delivery costs of the equipment are considered by including a factor of fd = 1.05 [172]
resulting in

Cunit
CAPEX =

n

∑
i=1

Cp,i fL fd (4.6)

with Cp,i being the purchase costs of equipment i.
The primary equipment components included in the capital cost calculations are

the air contactor, the air blower, the vacuum pump, a condenser, adsorbent vessels,
adsorbent material, and a storage tank for the temporary storage of the captured
CO2.

Currently, DAC is in an early stage of development, but with gaining more
experience around the technology, cost reduction can occur. In addition, scaling up
the process can lead to a reduction of the component costs due to mass production.
Therefore, to calculate the total costs, two approaches are applied: i) economies of
scale for the components which are already well-established [171, 172], and ii) the
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concept of learning-by-doing for innovative technologies [173]. The former is used to
scale up the storage tank and the condenser, while the latter is used to calculate the
costs of one air contactor module. Such a module includes an air blower, the housing
of the air contactor and a vacuum pump. The target cumulative capacity of the plant
is set to 1 MtonCO2 per year. More details on the economic calculation can be found
in the SI C. The sorbent is considered to be not affected by a scaling up factor.

As for the OPEX, a fixed part and a variable part are considered. The fixed part
refers to the annual maintenance cost and the labour cost. The former is calculated
as 4% of the total plant cost, and the labor cost is 30% of the maintenance cost. The
variable costs comprise the thermal energy and electricity price and are included
with 0.026$/kWh and 0.108$/kWh, respectively.The operating costs include the
electrical requirements for the rotating machinery, the heat requirement for the
regeneration, as well as the adsorbent replacement costs.

For the theoretical case, the adsorbent cost was set to cs = 30 $/kgCO2
and a

lifetime of ls = 2 years was assigned. These two parameters can vary depending on
the specific materials, e.g. MOFs can have stability issues and their production can
be costly. Compared to Zeolite 13X, which has costs of around 2 $/kgCO2 and a
lifetime between 7-10 years [171], our assumption is quite conservative but justified
with the uncertainty DAC processes bring at the current status.

Cost limits of a VTSA cycle

First, we have computed the LCOC for all Pareto points. Results are shown in Figure
4.11 for the best performing material, i.e. case C from Figure 4.9; results for case A
and B can be found in the SI in Figures C.11 and C.12, respectively. The three plots in
Figure 4.11 show the three cases for varying the linear driving force coefficient. It can
be clearly seen that, independent of the kinetics, the sorbent costs make up the most
significant proportion of the total costs. The OPEX, in particular, only contribute
to a small extent. In addition, the results show a clear trend between productivity
and costs, i.e. a higher productivity leads to smaller total costs. Therefore, the costs
increase with decreasing kinetics.

The cost range we obtain, 450 $/tCO2 to 2500 $/tCO2 , is in line with other cost
estimations in open literature: depending on the assumptions and process design,
costs from below 100 to over 1000 $/tCO2 can be found [22, 54, 174–176]. In 2018,
Climeworks claimed the cost of their first commercial plant to be in the range
of 600 $/tCO2 and estimates that it will fall below 100 $/tCO2 within the next 5-10

years [177].
As shown in Figure 4.11, the sorbent cost introduces a significant uncertainty.

Therefore, we carried out a sensitivity analysis on the sorbent price and on the
sorbent lifetime. The bar charts in Figure 4.12 show how the total costs depend



4.4 cost assessment 109

8.5 9 9.5

Productivity, Pr (kg/(m3 h))

0

500

1000

1500

2000

2500

C
os

ts
, c

 (
$/

t C
O

2
)

CAPEX
SORBENT
OPEX

4 5 6 7 8

Productivity, Pr (kg/(m3 h))

0

500

1000

1500

2000

2500

C
os

ts
, c

 (
$/

t C
O

2
)

1.5 2 2.5

Productivity, Pr (kg/(m3 h))

0

500

1000

1500

2000

2500

C
os

ts
, c

 (
$/

t C
O

2
)

a) b) c)
k

LDF
=0.1 s-1 k

LDF
=0.001 s-1 k

LDF
=0.0001 s-1
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on both parameters: for the sake of clarity, the costs are calculated for one Pareto
point, and, since the productivity has the largest effect on the costs, the highest
productivity point was chosen. In addition, we compute the costs for a simulation
obtained with data from existing sorbents, i.e. Lewatit (as already reported in [26])
and a promising MOF, MIL-101. When looking at the ideal sorbent, the first three bar
charts include different sorbent costs, i.e. i) 2 $/kgCO2

similar to the commercially
available costs of Zeolite 13X, ii) 30 $/kgCO2

comparable with Lewatit VP OC 1065,
and iii) 90 $/kgCO2

which is chosen to represent a more innovative material like
e.g. a MOF. A detailed breakdown of the costs can be found in the SI in Figures
C.16-C.18. With the following three bar charts the effect of the sorbent lifetime is
investigated. We consider a range of 0.5 years to 5 years, with the upper bound being
similar to Zeolite and the lower bound for MOFs. While the hypothetical sorbent
outperforms Lewatit for both analyses, it can be seen that the costs of the sorbent
need to be in the range of the ones of Zeolite for DAC to become attractive, i.e. to
get close to the 100 $/tCO2 . Even when combining both, i.e. long lifetime and low
sorbent price, the resulting costs are slightly above the 100 $/tCO2 target, as shown
in the SI in Figure C.14 a). When looking at the results using the MOF MIL-101 in
Figure 4.12, this material is able to outperform Lewatit, but only when assuming
the same sorbent costs, which is rather unrealistic. Keeping the sorbent costs and
lifetime the same, the ideal sorbent shows the lowest costs.
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with the highest productivity was chosen (kLDF − 0.1 s−1). The bars show
resulting costs dependent on the sorbent costs and lifetime.

The graphs in Figure 4.11 show a clear correlation between the productivity and the
total costs. Yet, we can’t guarantee that an optimization based on costs minimization
would lead to similar cost performance of an energy-productivity optimization.
Therefore, we combined the cost calculation with the 0D model and ran the isotherm
optimization to minimize the total costs. The decision variables and boundaries were
kept the same as in the previous section 4.3, including the isotherm and process
parameters. The analysis was run using the Toth-cp isotherm model. The results are
shown in Figure 4.13 a). The colored points show all the simulation data and the red
circle represents the optimal point, i.e. the lowest costs. For comparison, the Pareto
front obtained from the previous optimization is shown, using the productivity
and thermal energy demand as objectives within the 0D model. The results clearly
show that the optimal costs are on the Pareto front. When zooming in, one can
see that the cost-optimization shows a slightly better performance compared to the
multi-objective optimization, which is due to the simpler approach, i.e. only one
objective, and therefore faster execution. Since the costs are strongly dependent on
the productivity, they are similar as well (238.3 $/tCO2 for optimizing the costs and a
range of 241.5 $/tCO2 -516.9 $/tCO2 for the Pareto chart).

On the right in Figure 4.13, the shape of the isotherms are compared with each
other, showing both a linear and logarithmic scale. The shaded area represents the
optimal isotherms from the multi-objective optimization, while the thick, dashed
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Figure 4.13: Results for optimizing for the total costs. a) Comparison of optimization results
with the optimization for productivity and energy consumption. The latter is
shown by the bright blue Pareto chart, while the optimal point for optimizing
the costs is marked by a red circle. b)+c) comparison of the optimal isotherm
shapes for both optimization approaches. The optimal isotherm for the lowest
costs is shown by the thick dashed line.

lines represent the resulting isotherm when optimizing the costs. They show a
similar shape, with the optimal isotherm for costs revealing a smaller capacity
during adsorption and low loading during desorption, eventually leading to a higher
working capacity.

The results clearly show that both, optimizing for the process performance param-
eters or the total costs of the plant, lead to similar results. When comparing these
findings with CO2 post-combustion capture, where the CO2 concentration in the
feed stream is higher and sorbent materials are already commercially available, the
objectives show a different correlation [160, 178]. In this case, the points revealing
the lowest investment costs lie in the sub-optimal region of the Pareto plot and not
on the Pareto front, which is due to the complex scale-up of vacuum swing adsorp-
tion processes from single-column simulations. On the other hand, DAC is mainly
affected by the productivity (between 5 and 15 kg/m3/h, vs. over 500 kg/m3/h for
post-combustion capture). This effect was also seen in our analysis for a CO2 feed
concentration of yCO2 = 1.0% (see Figure C.15 in the SI).
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4.5 discussion

Before concluding, we would like to put the main findings into perspective and
discuss some limitations and possible future research subjects. In this work, we
explored the limits of CO2 adsorption from the ambient air in terms of process
performance and economics. To do so, we not only focus on one isotherm model, but
included five models to represent a broader sorbent spectrum. While we were able
to find several hypothetical isotherms which could outperform existing materials,
our approach had some limitations.

First, we optimized the isotherm parameters using a simple equilibrium model.
While this allowed us to include also complex isotherm models like the S-shaped
model with 13 parameters, and carry out the optimization in a reasonable time of
maximum 2 days, the optimized isotherms do behave differently when run with a
rate-based model. One reason is the assumption of isothermal adsorption for the
0D model. For several optimized isotherms with temperature sensible isotherms
in our pressure region like the DSL and the S-shaped isotherm, the results were
completely different when running them with the 1D model. Therefore, for these
isotherm models the presented approach is not applicable. When including these
isotherm models, the equilibrium model needs to be updated to make the adsorption
step non-isothermal.

In addition, the resulting performance of the isotherm models is limited by the
boundary conditions of the isotherm parameters. While we chose parameters in the
area of already existing materials, this might not necessarily be the case for new
sorbents. When doing so, one has to carefully check the resulting isotherm shape
and evaluate the feasibility.

Another important point is the modeling of the water adsorption. Since experi-
mental data for co-adsorption of water is rare, we kept the isotherm model and also
the isotherm parameters constant throughout the analysis. With more experimental
data available, the adsorption of water can be adapted as well, e.g. by including
competitive CO2 and H2O isotherms.

Still, with our approach we were able to identify material properties sets that
improve the performance of DAC, both when using an equilibrium- and a rate-based
model. With our approach, we provide a broad guideline on the limits of sorbents
for dilute feed streams.

4.6 conclusions

In this study, we have investigated the performance and cost limits of a four step
VTSA cycle for capturing CO2 from the air. In our work we follow the approach of
process inversion, where both the adsorbent properties and process design variables
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are optimized. In the first part of the analysis, we optimize five different CO2 equi-
librium isotherm models to represent different isotherm shapes. The optimization is
carried out using a 0D model with the aim of maximizing the productivity and mini-
mizing the thermal energy demand. In addition, we have considered different CO2

capture scenarios by considering three feed stream concentrations, i.e. yCO2 = 0.04%
(DAC case), yCO2 = 0.1%, and yCO2 = 1.0%. When comparing with existing materials
from several databases, the results show that the optimized isotherms outperform
all of them. The best performing isotherm models for the ultra-dilute feed con-
centration were the extended Toth equation showing the highest productivity up
to 17 kg/m3/h and the S-shaped model showing the lowest thermal energy con-
sumption of 0.55 MJ/kgCO2

. For higher concentrations the order changed with the
S-shaped model getting worse while for the Toth and Langmuir-Freundlich models
the performance improved.

Focusing on the DAC case, sensitivity analyses on the mass transfer coefficient, the
density, and void fraction were carried out to understand the impacts of uncertainty.
For this purpose, the optimized isotherm and process parameters were used as an
input for a rate-based model. The results show a strong dependence on the kinetics,
while the density and void fraction have only a small influence on the performance.
However, the magnitude can vary depending on the situation.

Finally, these results served as a starting point for an economic analysis of DAC.
Depending on the kinetic factor, the levelized cost of CO2 for a plant producing 1Mt
CO2 per year varies between 450 to 2500 $/tCO2 . This leads to the question: what
does it take to bring the cost down, preferably below 100 $/tCO2 , to be competitive
with other negative emissions technologies such as afforestation or BECCS [176]?
The technical and economic performance of a DAC process is strongly affected by
the adsorbent material. While the productivity, and therefore the mass transfer play
a very important role, the results also show a strong dependency on the sorbent
costs, including the sorbent purchase cost as well as its lifetime, which account for a
share of nearly 70% when considering 30 $/kgsorb and 2 years life. Bringing down
the overall costs would require either a sorbent with a particularly high performance
at the same costs resulting in a productivity of around 60 kg/m3/h, or sorbent costs
similar to the commercially available Zeolite 13X (2 $/kg) and/or a longer lifetime.

Although this research is based on hypothetical sorbents obtained by theoretical
experiments, this framework can serve as a basis for the evaluation of future VTSA
plants and provides guidelines on the practical limitations of adsorbents for capturing
CO2 from dilute feed streams. In addition, the framework could be used as a guide
for choosing key criteria in adsorbent development.
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M O D E L I N G P H O T O V O LTA I C - E L E C T R O C H E M I C A L WAT E R
S P L I T T I N G D E V I C E S F O R T H E P R O D U C T I O N O F H Y D R O G E N
U N D E R R E A L W O R K I N G C O N D I T I O N S

Photoelectrochemical splitting of water is potentially a sustainable and affordable
solution to produce hydrogen from sun light. Given the infancy stage of technology
development, it is important to compare the different experimental concepts and
identify the most promising routes. The performance of photoelectrochemical devices
is typically measured and reported under ideal irradiation conditions, i.e. 1 sun.
However, real-life operating conditions are very different, and are varying in time
according to daily and seasonal cycles.

In this chapter, an equivalent circuit model for computing the steady state perfor-
mance of photoelectrochemical cells is presented. The model allows for a computa-
tionally efficient, yet precise prediction of the system performance and a comparison
of different devices working in real operating conditions. To this end, five different
photoelectrochemical devices are modeled using experimental results from literature.
The calculated performance shows good agreement with experimental data of the
different devices. Furthermore, the model is extended to include the effect of illumi-
nation and tilt angle on the hydrogen production efficiency. The resulting model is
used to compare the devices for different locations with high and low average illumi-
nation and different tilt angles. The results show that including real illumination data
has a considerable impact on the efficiency of the PV-EC device. The yearly average
solar-to-hydrogen efficiency is significantly lower than the ideal one. Moreover, it
is dependent on the tilt angle, whose optimal value for European-like latitude is
around 40°. Notably, we also show that the most performing device through the
whole year might not necessarily be the one with highest sun-to-hydrogen efficiency
for one-sun illumination.

The results presented in this chapter have been reported in: Grimm, A., Sainte-Marie, A., Kramer, G.
J., Gazzani, M., Modeling photovoltaic-electrochemical water splitting devices for the production of
hydrogen under real working conditions. International Journal of Hydrogen Energy 47, 11764 (2022).
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5.1 introduction

The water splitting reaction is an endothermic reaction at ambient condition with a
net free Gibbs energy ∆G0 of 237.2 kJ/mol, which corresponds to a potential (E°) of
1.23 V. The two redox half-reactions occurring at the electrodes are (i) water oxidation
at the anode (Eq. 5.1), or oxygen evolving reaction (OER), and (ii) water reduction at
the cathode (Eq. 5.2), or hydrogen evolving reaction (HER):

2 H2O −−⇀↽−− O2 + 4 H+ + 4 e− (5.1)

4 H+ + 4 e− −−⇀↽−− 2 H2 (5.2)

Solar water splitting, or photolysis of water, is not a new concept; the first ex-
perimental demonstration of the splitting of water into hydrogen and oxygen by
electrocatalysis was reported by Fujishima and Honda in 1972, who used a rutile
titanium dioxide (TiO2) photoanode and a Pt counter electrode [179]. Since the
conduction band of rutile is not negative enough to split H2O, an applied voltage
bias was applied to the TiO2 working electrode. Although TiO2 material is stable
in aqueous electrolytes, the performance is low due to its large band gab (3.2 eV),
which limits the utilization of the solar spectrum to the UV portion.

Since then, an increasing number of experimental concepts has been assembled
and tested, improving the technology significantly (e.g. [180–182]). As expected,
most studies focused on developing more performant materials for the different
components of the device, or on designing optimal reactor configurations to achieve
higher solar-to-hydrogen (STH) efficiencies [183]. Notably, solar water splitting
systems involve five main ingredients, namely a photoabsorber that converts photons
into electron-hole pairs, a catalyst of the oxygen-evolving reaction, a catalyst of the
hydrogen-evolving reaction, an electrolyte allowing the protons transportation from
one electrode to the other, and, for most reactor designs, a membrane to separate the
products.

Depending on the materials used and the design of the system, different types
of solar water splitting devices can be identified. In literature, various taxonomies
for the different cells can be found, e.g. in [184–186], where detailed reviews of the
different solar fuel generators are presented. In Figure 5.1, a simplified overview
of the different types and sub-types of solar water splitting devices is given. Three
main approaches can be identified: photocatalytic (PC), photoelectrochemical (PEC),
and photovoltaic + electrolyzer (PV-E). The presented overview should not be seen
as a strict categorization, since there exist also devices that could be attributed to
more than one of these categories. Rather, with the presented classification we focus
on technological and modeling aspects.

A PC device consists of suspended particles of photocatalyst dispersed in a
medium. It is the simplest system, since there is only one light absorber, however,
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Figure 5.1: Different types of solar water splitting devices. PEC cells are divided into
photovoltaic-electrochemical (PV-EC) devices, photovoltaic-PEC (PV-PEC) de-
vices and devices with two photoelectrodes (Dual-PE). For each configuration a
typical example is illustrated.

the simplicity is paid with low STH efficiencies, which are in the range of 1% [187,
188]. On the other side of the spectrum, combining PV cells with an electrolyzer is a
modular approach using two systems: PV panels producing independent power are
connected to an electrolyzer (or several electrolyzers). Due to significant advances in
solid state photovoltaics, PV-E systems are today the most efficient way to carry out
solar water splitting, yielding STH efficiencies as high as 30% [189]. PEC devices lie
in the middle, as the integrated version of a PV-E system, where the light absorber is
immersed in the electrolyte. Because semiconductors are very sensitive to corrosion,
the light absorber has to be protected from the electrolyte, affecting the overall STH
efficiency of the system. Typical STH efficiencies of PEC devices range from 1 to
20% [190].

The architecture of a PEC device is mainly based on the type of junction used
to separate the electron-hole pair. Band bending, resulting from a local imbalance
in charge neutrality, is the phenomenon responsible for the charge separation and
transfer in a PEC device. Band bending occurs at a junction between a semiconductor
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and another material and depends on the type of junction. Two junctions can be
found in a PEC device: a buried PV junction and a solid-liquid junction (SLJ). In
a buried PV junction (also called Schottky-junction), the interface between a metal
and a semiconductor is responsible for band bending. A buried junction works
together with at least one p-n junction, located at the interface between two layers
of a semiconductor, one doped positively (p) and the other doped negatively (n).
Together, the buried junction and the p-n junction(s) drive efficiently the electrons
and holes apart. On the other hand, a solid-liquid junction is located at the interface
between a semiconductor and a liquid solution. The effect is the same as in a
buried PV junction since it permits the charge separation and transfer between the
photoabsorber and the electrolyte. However, a single SLJ is not sufficient to drive
the water splitting reaction without any additional bias, thus, a tandem architecture
is necessary [191]. PEC devices can be further divided in sub-categories as shown
in Figure 5.1: (i) a PEC device with one or more buried PV junctions and two
or more p-n junctions (also known as PV-EC device), (ii) a PEC device with one
buried PV junction coupled with one solid liquid junction (PV-PEC), and (iii) a dual
photoelectrode with two SLJ (Dual-PE).

PV-EC technology benefits from the well-established knowledge of water electrol-
ysis on the one hand, and photovoltaics on the other hand, and can easily achieve
STH efficiencies of more than 10% [190]. Several PV-EC devices have been built using
various PV technologies such as crystalline silicon [192], thin film (e.g. amorphous
silicon (a-Si) [193], copper indium gallium selenide (CIGS) solar cells [194]), and
multijunction solar cells [195]. Recently, Cheng and coworkers have demonstrated
a record STH efficiency of 19.3% with a monolithic PV-EC device consisting of a
GaInP/GaInAs multijunction [89].

On the other hand, PV-PEC devices are hybrid systems combining both a buried
PV junction with p-n junction(s) and a SLJ. In this configuration, the PV cell provides
the voltage bias necessary for the photoelectrode to drive the water splitting reaction.
Such devices are generally built to study and improve the photoelectrode [196].

In a dual-PE device, two different absorbers are in contact with the electrolyte
solution, resulting in two SLJs, one at each photoelectrode. This design benefits from
cheaper materials but exhibits lower STH efficiencies, around 1% [190]. Multiple
studies focus on dual photoelectrodes devices to improve the efficiency of the system.
To date, the highest STH efficiency was achieved by using a BiVO4 photoanode with
a CIGS photocathode and reached 3.7% [197].

While dual photoelectrode technology is in its infancy, PV-EC and PV-PEC systems
are more mature [191]. This work focuses on PV-EC because of the maturity and
relative simplicity of the technology but also due to the better experimental data
availability.
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While there exist studies providing a detailed overview of the state-of-the-art of
solar water splitting devices [198–201], there are no works that focus on modeling
and comparing different PV-EC devices under ideal and real light conditions. One
reason is that research efforts currently focus mainly on finding innovative materials
and architectures to improve the overall performance of the system. As a result,
it is difficult to identify the preferred direction of development among the many
materials and devices presented in literature. Moreover, the effect of illumination on
the hydrogen production efficiency has been largely overlooked in past works, with
the exception of Turan et al, who investigated the scale up PV-EC devices [183]. With
this work, we aim at contributing to close these gaps by (i) providing a consistent
modelling framework of different PV-EC devices using the equivalent electric circuit
approach, and by (ii) predicting and comparing the yearly hydrogen production rate
under real-world illumination and varying tilt angles. This chapter is organized as
follows: Section 5.2 describes the modeling methodology and resulting performance
of five different PV-EC devices using the equivalent electric circuit approach, first
for ideal conditions, second for varying illumination and tilt angle. This is followed
by a yearly comparison of the different devices (Section 5.3). Finally, we discuss the
resulting findings.

5.2 modeling pv-ec systems with equivalent electric circuit

In the following, we first present and validate a model for simulating PV-EC using
the equivalent electric circuit approach. For the validation we use experimental
data from literature. Then, we extend the model to include varying illumination
conditions, which allows for computing yearly performance including weather data
of different geographical locations. The obtained model is finally used to compare
different PV-EC devices at varying (i) location, and (ii) tilt angle.

PV-EC model for ideal sun conditions

Our modeling framework builds upon and extends the work of Winkler et al, who
modeled an integrated PV-EC device using steady-state equivalent circuits [202].
The approach of equivalent circuit is relatively simple, yet accurate in describing
the behaviour of a PV-EC system. To this end, the device can be divided into two
main components: a photoabsorber part, consisting of the different light absorbers
and later referred as the ’solar cell’, and an electrolyzer part, which includes the two
electrodes (the catalysts and/or a metal) and the electrolyte solution. A simplified
scheme of a PV-EC device is shown in Figure 5.2. We note that the solar cell and
the catalysts can be either directly in contact or wired, but since the losses due to
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the wires are negligible, we will no further make a differentiation between the two.
To model the thermodynamic performance of the system, we need the j-V curves
of PV and EC sides as shown in Figure 5.2. The cell operating point is identified by
the intersection of the two j-V curves, which depend on the specific materials and
architecture.
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Figure 5.2: (a) A simplified setup of an exemplary PV-EC device, and of a PV device
which provides power to an electrochemical cell (adapted from [190, 202]). (b)
Simplified j-V characteristics of a PV-EC device, the operating point is indicated
by a red dot.

The overall electric equivalent circuit of a generic multijunction PV-EC system
is shown in Figure 5.3. Each p-n junction in the photoabsorber is represented by a
one diode model consisting of a source of current jL, a diode defined by saturation
current density j0, a series resistance Rs and a shunt resistance Rsh. The source
of current jL represents the photogenerated current, while the diode represents
the recombination current induced by the recombination losses of electrons and
holes. Both series and shunt resistance are parasitic elements to represent ohmic
losses in the PV device. The equivalent steady-state circuit of the electrolyzer part of
the system is shown on the right in Figure 5.3. In this model, the thermodynamic
potential is depicted by a voltage source, while the resistance Rsol represents the
voltage drop caused by the electrolyte solution.



5.2 modeling pv-ec systems with equivalent electric circuit 121
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Figure 5.3: Equivalent circuit of a multijunction PV-EC device. In this example, the solar
system consists of three different p-n junctions which are made of material a, b
and c.

The current density of the photoabsorber can be calculated by taking the photo-
generated current jL and subtracting all recombination currents according to the
equivalent curcuit model [202]. The resulting equation is:

j =
1
ns

jL − j0exp

 V
nj
+ jRs

niVth

−
V
nj
+ jRs

Rsh

 (5.3)

where:

• Vth is the thermal voltage, i.e. the voltage induced in the p-n junction by the
ambient temperature and is calculated based on the Boltzmann constant kB, the
temperature T and the elementary charge q: Vth = kBT

q . At room temperature
Vth is equal to approximately 26 millivolts.
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• nj is the number of junctions (e.g. 3 for a triple junction as shown in Figure
5.3).

• ns is the number of solar cells connected in series, respectively.

The voltage calculated with Equation 5.3 is the voltage output of one single
photoabsorber junction. If a solar cell consists of multiple junctions or if several
single junction solar cells are connected in series, the total voltage output is given by
the sum of the voltage of each junction [203]:

V =

nj

∑
i

Vi (5.4)

which simplifies to V = njVi if the nj junctions are identical.
Since the solar cells and the electrolyzer are connected in series, the current is

the same in all the components. In case that ns identical solar cells are connected
in series, the photoabsorber area is then multiplied by the number of cells and the
current density of the total system is:

jtot =
j

ns
(5.5)

In order for the electrolyzer to split H2O, the solar cell(s) must produce a voltage
accounting for the thermodynamic potential E° of the water splitting reactions (OER
and HER) (1.23 V), and the voltage loss at the cathode and the anode and ohmic
losses of the solution. Therefore, the electrolyzer voltage can be written as:

Velectrolyzer = E° + Vloss
cathode + Vloss

anode + Rsol j (5.6)

The voltage loss at the cathode and anode can be calculated using the Tafel law,
which connects the rate of the electrochemical reactions of the electrode to the
overpotential:

Vloss
cathode + Vloss

anode = τHlog10
j

j0H
+ τOlog10

j
j0O

(5.7)

where the terms τO and τH are the Tafel slopes, j0O and j0H are the exchange current
densities and where the subscripts O and H refer to the OER and HER respectively.
The overall equation for the electrolyzer is therefore written as:

Velectrolyzer = E° + τHlog10
j

j0H
+ τOlog10

j
j0O

+ Rsol j (5.8)

The system operating point is found evaluating the photoabsorber and electrolyzer
voltage (or current) which is obtained in practice by directly coupling or wiring
together the two:
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∑
i

VPV,i = Velectrolyzer (5.9)

The resulting equivalent circuit model of the PV-EC system (Equation 5.3-5.9)
requires different empirical parameter as input: jL, j0, Rs, Rsh, ni for the solar cell
and τH , τO, j0H , j0O, Rsol for the electrolyzer part. These can be obtained by fitting
the model equations with available experimental points for a specific device, which
requires the expression of the equations in the form V = f (V) or j = f−1(V). This
can be tackled by using the Lambert function (more details can be found in the
Supplemental Information Section D). Once the j-V curve is resolved according to the
model equations, it is possible to obtain the operating current jop of the system and
the associated STH efficiency. Graphically, that means jop is found at the intersection
of the solar cell j-V curve and the electrolyzer j-V curve.

In this work, we calibrate and validate the model using experimental data of
five different PV-EC cells which are representative of different possible designs
and material combinations. These devices and the sources reporting the results are
listed in Table 5.1, together with the light absorber’s material, the catalysts used
in the cell as well as the reported STH efficiency. Urbain 2015 and Urbain 2016

are both silicon-based devices, the former consists of a solar cell made of a double
junction of amorphous silicon (a-Si) while the latter consists of a triple junction
made of two layers of amorphous silicon and one layer of micro-crystalline silicon
(µc-Si) [193] [195]. Jacobsson device includes solar cells connected in series: the
photoabsorbers consist of three single-junction copper indium gallium selenide
(CIGS) solar cells [194]. Finally, Varadhan and Sun’s devices both consist of a double
junction solar cell made of an indium gallium phosphide (InGaP) top cell coupled
with a gallium arsenide (GaAs) bottom cell [204] [205]. Moreover, Sun is the only
device that also includes a bipolar membrane, allowing the separation of the O2 and
H2.

Ideally, separate current-voltage data measurements for each component of the
device, i.e. the solar cell and the electrolyzer, are used to calibrate and test the
model. However, j-V data are often measured and reported for either some of the
components, or for a specific group of components. In such case the data must
be inferred by subtracting and adding the available j-V data points based on the
equations of the equivalent circuits, which was here necessary for the Varadhan
device. Details for the available data can be found in the Supporting Information.
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Table 5.1: List of the 5 PV-EC devices modeled

Device reference Light absorber Catalysts OER/HER STH

Urbain 2015, [193] a-Si/a-Si RuO2/Pt 6.8%

Urbain 2016, [195] a-Si/a-Si/µc-Si RuO2/Ni 8.7%

Jacobsson, [194] 3 CIGS (s)* Pt/Pt 10.5%

Varadhan, [204] InGaP/GaAs NiOx/Ni 12.1%

Sun, [205] InGaP/GaAs Ni/Ti-CoP 10.0%

*(s) : solar cells connected in series
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Figure 5.4: Normalized parity plots for a) the solar cell and b) the electrolyzer part. On
the x-axis, the experimental data points extracted from literature are displayed,
while on the y-axis the output of the model is shown. The data is normalized
over the experimental data. A separate Figure for each device is shown in the
Supplementary Information.

The fitting between model and data is carried out by minimizing the difference
between the calculated and measured j-V curve.The objective function f(y) is defined
as

f (y) = 1 − R2 =
∑(yi − ŷi)

2

∑(yi − ȳ)2 (5.10)
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where yi is the experimental data point i obtained from the j-V curve, ŷi is the
predicted value of yi by the model and ȳ is the mean value of yi. The objective
function is minimized with Matlab (R2018b) optimization routine fmincon using
the sequential quadratic programming (SQP) algorithm. Because of the sensitivity of
the Lambert function to changes in the boundary conditions, the model can easily
become difficult to solve. While this is not the case for the electrolyzer, whose model
is fairly simple, the solar cell can easily show convergence problems. This problem
can be tackled by following the approach proposed by Bouzidi et al. [206], where
Equation 5.3 is divided into two equations, one valid for low voltages and one for
higher voltages. Therefore, instead of fitting one complex function, the parameters
are found by fitting two simpler equations. The overall model is however not changed.
More details can be found in the Supporting Information section D.

In addition to the j-V curve, we compute the solar-to-hydrogen (STH) index,
which is a key performance indicator used to compare different solar water splitting
devices [207]. It is defined as the ratio between the total chemical energy generated
and the total energy input from sunlight illumination:

ηSTH =
|jop|E°ηF

Psun
(5.11)

where jop is the operating current density, E° (V) is the thermodynamic potential
needed to split H2O in H2 and O2 and Psun (mW cm−1) is the incident illumination
power density: ηF is the faradaic efficiency; for water splitting, faradaic efficiencies
close to 100 % are commonly reported in the literature [193], meaning that the pho-
tocurrent directly corresponds to the molar hydrogen generation rate and assumes
selective and stable catalysts for water splitting.

Figure 5.4 reports the parity plots for the solar cells on the left and for the
electrolyzer on the right. The parity plots of the solar cells show good agreement
with respect to experimental values (R2 greater than 0.99). For the Sun device, the
fitting showed only reliable results for a voltage greater than 1.9 V. This is due to the
limited number of experimental data points. Since the j-V curve is nearly horizontal
for smaller voltages (see Figure 5.5), the resulting fitting is still accurate. The source
of error for Varadhan lies in the uncertainty connected to the type of data reported.
However, the root mean square error (RMSE) indicates an error of 40 mV in average,
which is not significant.

The parity plots of the electrolyzers show more diverse results. In Varadhan et
al. [204], different curves were fitted to obtain the electrolyzer j-V characteristic. The
experimental curve of Urbain 2016 electrolyzer was obtained by subtracting the
j-V curve of the whole PV-EC device from the solar cell curve. By doing so, some
irregularities appeared at high current densities, probably due to the horizontal part
of the two curves, which explains the deviation observed in Figure 5.4 b). As for
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Table 5.2: Solar cell parameters of each junction calculated by fitting the equations of the
equivalent circuit to the experimental j-V curves of the 5 PV-EC devices. The
light absorber material used in each junction is also being reminded

jL j0 Rs Rsh ni

Material mA.cm-2 mA.cm-2 Ω.cm2 Ω.cm2

Urbain et al. a-Si 5.2 2 × 10−14
5.2 1551 1.1

2015

Urbain et al. a-Si 6.80 9.8 × 10−9
0.36 3317 1.0

2016

µc-Si 6.84 2.25 × 10−8
1.50 1481 1.6

Jacobsson et al. CIGS 34.6 3 × 10−10
1.7 1001 1.0

Varadhan et al. InGaP 9.7 1 × 10−9
0.5 2779 1.1

GaAs 10.0 3 × 10−9
0.6 2030 1.8

Sun et al. InGaP 8.1 1 × 10−16
3.6 8.80 ×105

1.2

GaAs 9.1 3 ×10−7
3.6 1.01 × 104

2.7

Jacobsson, the electrolyzer j-V curve is available in [194], but the experimental curve
of the electrolyzer is skewed for lower voltages (even below the thermodynamic
potential). This anomaly explains the low regression coefficient, which is shown in
Figure D.3 b). On the other hand, the parity plot shows good results for voltages
higher than 1600 mV corresponding to a current density of around 2 mA.cm-2, and
since the device is mainly operating for current densities around 5 mA.cm-2 low
voltage area should simply be disregarded. The electrolyzer curve of Varadhan
depicts the overpotential of the anode combined with the voltage drop due to the
solution resistance, and the model describes accurately the system. Urbain 2015

reports a value of Rsol which was measured by impedance spectroscopy. The data
available for Urbain 2015 is very detailed since the j-V curves of all the components
of the electrolyzer are published. Also in this case the model shows good agreement
with experimental data (highest RMSE is obtained for the cathod and limited to 6

mV). As for Sun, experimental data for anode, cathode, and electrolyte were available,
allowing for a detail tuning of the model.

The values of the fitting parameters of each junction of the solar cells are compiled
in Table 5.2. The values of the photogenerated current densities jL are in line with
the experimental short current densities. In the Jacobsson cell, the photogenerated
current displayed is approximately three times higher than the rest of the devices
due to the fact that the light absorbers consist of three solar cells connected in series.
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As for the other devices, the standard construction is a tandem device, where cells
are also connected in series, but the whole surface area belongs to the same cell.
In the Jacobsson device the cells are connected in series instead of being stacked
on top of each other, thus the available light collector area is three times higher.
The photogenerated current of the whole device is therefore jL/3 ≈ 11.5 mA.cm-2,
according to Equation 5.5. CIGS solar cells produce a high current density but suffer
from low voltage.

The saturation current densities j0 range from 10
-4 to 10

-16, showing no clear
connection with the respective material. j0 depends on many factors, among which
the type and number of junction [208]. In particular, Urbain 2015 and Sun devices
exhibit very low saturation current densities while, on the contrary, the j0 values
of Urbain 2016 device are rather high. The calculated saturation current densities
appear to be in range with the values reported in the literature. For example, the
modeling results by Winkler et al reveal value of j0 =4 10

−10 mA cm−2 [202].
The calculated series resistance Rs for four out of the five PV-EC devives range

from 0.5 to 5 Ω.cm2, in line with the few values reported in the literature [202], [206].
Urbain 2016 device shows particularly low values of Rs, which may be explained
by a trade-off between j0 and Rs since both parameters influence the open-circuit
voltage, also justifying the high calculated values of j0 compared to the other devices.

The values obtained for the shunt resistances Rsh are satisfactory since the expected
range is around 10

3 to 10
6 [209].

Finally, the ideality factor ni varies typically between 1 and 2 depending on
whether the recombination losses occur in the space-charge region (ni ≈ 1) or in
the depletion region (ni ≈ 2) [210], [211]. Yet, ideality factors greater than 2 can
sometimes be observed in heterojunction solar cells [212], such as in Urbain 2016 or
Sun devices.

The values obtained for the electrolyzer part of the devices are compiled in
Table 5.3. The parameters are in line with values provided in literature [202]. Since
the experimental data of the cathode of the Varadhan cell was not available (see
Supporting Information D), for this device the losses of the cathode were not
considered. For all devices, the exchange current density at the anode j0O is lower
than the exchange current density at the cathode j0H , which can be explained by the
lower kinetics of the OER. The solution resistance varies between 16 to 31 Ω.cm2,
which is in line with the range provided by Winkler et al (0-60Ω.cm2). The resistance
of Sun device is slightly higher, presumably due to the membrane between the
electrodes that slows down the circulation of the protons. The solution resistance
also depends on the distance between the two electrodes; the distance is usually
around 2 cm. But this information is not always provided.

The resulting j-V curves for the solar cell and the electrolyzer are shown in
Figure 5.5. When comparing the different devices, we can link the photoabsorber
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Table 5.3: Electrolyzer parameters found after fitting the experimental j-V curves of the
5 PV-EC devices. τO and τH are expressed in millivolt per decade.Rsol of Sun
device was directly provided in the literature.

τO τH j0O j0H Rsol

mV/dec mV/dec mA.cm-2 mA.cm-2 Ω.cm2

Urbain 2015 57 54 1.7 × 10−3
0.45 21.3

Urbain 2016 154 169 0.11 0.13 16

Jacobsson 177 36 0.04 0.26 22

Varadhan 57 - 2 × 10−4 - 27

Sun 51 72 1 × 10−9
0.15 31
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Figure 5.5: j-V curves of the solar cells and electrolyzers of the five PV-EC devices modeled.
The j-V characteristics of the devices are measured under Psun = 1 sun illumina-
tion (corresponding to 1000 W.m-2 or 100 mW.cm-2).
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Table 5.4: Calculated STH efficiencies based on the fitted devices.

Calculated STH Reported STH

Urbain 2015 7.5% 6.8%

Urbain 2016 8.6% 8.7%

Jacobsson 10.6% 10.5%

Varadhan 11.6% 12.1%

Sun 9.6% 10.0%

and electrolyzer curve to the characteristics of the device in terms of materials
and design. For instance, the two devices comprising platinum electrodes, Urbain
2015 and Jacobsson, exhibit very low overpotentials at the electrolyzer even at
high current density. Platinum is a very efficient, yet expensive catalyst used to
demonstrate proofs of concept [194]. Similarly, the figure shows that CIGS solar cells
used in Jacobsson device provide a high current density but suffer from low voltages.
Therefore, coupling the CIGS solar cells with the catalysts used in Sun device for
example (nickel and cobalt phosphide) would yield a much lower efficiency. Sun
device succeeds to exhibit a high efficiency because of the InGaP/GaAs junction that
provides a sufficient voltage.

It is worth stressing that PV-EC models based on equivalent electric circuit build
upon interpretation of the device physical behaviour but are largely empirical.
Therefore the physical interpretation of the model parameters must be taken with
caution. Yet, the main scope of such simple model is to reproduce mathematically the
j-V characteristics as accurately as possible, which is found to be overall satisfying.

Finally, we can compare the model findings with the experimental value of the
sun to hydrogen efficiency. The results are reported in Table 5.4. Overall, we notice
that the agreement between experiments and model is good. The largest difference is
observed for Urbain 2015 and is mainly due to the error in extracting the experimental
data from the graph in the paper. More specifically, while we obtain a R2 larger than
0.999, we find a Rsol=23.5Ω.cm2 compared to Rsol=21.3Ω.cm2 provided in the paper;
this is due to the small discreptancy between the data used to fit the model and
those obtained experimentally. For Varadhan and Sun, the difference is probably due
to the lack of the component-specific data points. On the other hand, the calculated
efficiency of Urbain 2016 and Jacobsson is almost equal to the reported efficiency,
while the others are reasonably close for such simple model.

In summary, the model shows good agreement with experimental values, however,
data availability and quality are key for tuning the model accurately.
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Figure 5.6: The effect of different illumination intensities for Urbain 2016 device as an
example. The red x shows the operating point jop of the solar cell and the
electrolyzer.

PV-EC model for varying illumination and tilt angle

The model presented before was fitted using experimental data measured under
artificial sunlight at standard condition, AM 1.5G and an illumination of 100 mW.cm-2

equal to 1 sun. However, PV-EC devices will hardly work under these conditions, and
to reflect more realistic performance and predict the yearly average STH efficiency,
we need to include the effect of illumination as well as the influence of different tilt
angles.

Solar illumination directly influences the photogenerated current jL proportion-
ally [213]:

jL =
ĵL · Psun

P̂sun
(5.12)

where ĵL is the nominal photogenerated current as calculated under P̂sun=1 sun
illumination and Psun the real illumination. As shown in Figure 5.6 for Urbain 2016,
a new operating point (jop) on the j-V plane is established for every value of jL.
In real application, jop becomes a time-dependent value. As a result, the matching
between photoabsorber and electrolyzer needs to be resolved at any time instant
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Figure 5.7: The effect of different illumination intensities on a) the operating point jop
between the PV cell and the electrolyzer, and b) the STH efficiency of the five
PV-EC devices.

(i.e. for different irradiation values). When comparing all devices considered in
this work for different irradiation values (see Figure 5.7 a) we note that, while
Varadhan’s device achieves highest jop and STH efficiency at 1 sun, Jacobsson’s
device is the most performing for Psun < 0.7 sun. This stems from the current density
of the PV cell, which is higher compared to the other devices. On the other hand,
Sun’s device shows the most stable performance, since its STH efficiency remains
almost constant over the whole illumination range. The high efficiency is due to
the InGaP/GaAs tandem-junction, which provides a sufficiently high voltage to
drive the watersplitting reaction. The efficiency curves of Urbain 2015 and Urbain
2016 show the same trend as the Varadhan device: the higher the illumination the
higher the STH. In order to understand on an yearly base what device is the most
performing, a time-discretized analysis is required.

5.3 comparison of pv-ec cells under varying working conditions

In this section, we compare the different devices with regards to their yearly perfor-
mance under varying time- and space-dependant illumination, and tilt angle. While
we do not directly compute H2 costs, which are highly uncertain and out of the scope
here, we compare the devices using the specific area a (in m2/tH2), i.e. the cell area
needed to produce one ton of H2 per year. This is a proxy for the system cost and
it embeds the thermodynamic performance of the device throughout the year. The
cell area a can be derived from the amount of energy stored as hydrogen molecules
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over the year per square meter of photoabsorber collector area, eyear
H2

(kJ/(m2 year)),
according to Equation 5.13:

ayear
H2

=
∆G0

H2

eyear
H2

(5.13)

where ∆G0
H2

the Gibbs free energy of the water splitting reaction (∆G0
H2

= 118.6
MJ/kg). Notably, eyear

H2
depends on the solar energy input Psun and on the STH

efficiency ηSTH of the device, where both Psun and ηSTH are time dependent. We can
therefore write:

eyear
H2

=
∫ tend

t0

ηSTH(t)Psun(t)dt (5.14)

Plugging in ηSTH from Equation 5.11 in the expression above, and noting that we
can include the time dependency via hourly-averaged values of jop in combination
with hourly data of solar irradiance (thus substituting the integral with an hourly-
resolved sum over the hours of the year), Equation 5.14 can be rewritten as:

eyear
H2

=
i=8760

∑
i=1

jop,iE°ηF (5.15)

where eyear
H2

is here provided in (kWh). This expression, in combination with irradiance-
dependent modelling of the PV-EC cell, allows for calculating the performance of
the cell with real-world, space-defined, data and tilt angle. Note that the tilt angle,
which for PV applications is typically a design variable that can be freely optimized,
it is here bounded by the fluid dynamic within the PV-EC cell: while vertical mod-
ules allow for a straightforward gas/liquid dynamic they are penalized from a
tilt angle perspective. The contrary holds for horizontal panels. In this work, we
consider two different locations as possible PV-EC sites: Sevilla in Spain (with high
illumination), and Utrecht in the Netherlands (with lower illumination). The solar
irradiance data, more precisely the global horizontal irradiance, in Sevilla and in
Utrecht was obtained from Solcast with an hourly resolution for 2019 [214]. Starting
from these data, the effect of the tilt angles (in the range of 0 to 90°) was included
applying the System Advisor Model (SAM) from the National Renewable Energy
Laboratory (NREL) [215]. The azimuth angle was instead kept constant at 180°as
well as the temperature of the system. The performance of catalysts and electrolytes
were considered independent of the illumination, i.e. no electrodes degradation as
function of sunlight were considered [216].

Figure 5.8 shows the daily average ηSTH for hours with irradiance larger than 0

over the full year. This figure was obtained with Urbain 2016 as exemplary device,
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Figure 5.8: Average daily STH efficiency over the year for Utrecht using the Urbain 2016

device at different tilt angles (blue for 0°, red for 45°, and yellow for 90°).
Change: different order: 90 at the back, 0 in front.

which can reach an efficiency in the range of ηSTH=5.9-8.6% (Figure 5.7). Moreover,
three different curves for three different tilt angles are shown (0, 45, and 90 °). The
yearly trend is as expected for any photovoltaic device: the maximum production
is reached in summer and the minimum in winter. However, the height of the
maximum in summer and the extent of the valley in winter depends on the tilt
angle: while low tilt angles favor the maximum STH efficiency in summer, a vertical
device has overall a more constant production through the year. Notably, only a
minor difference exists between tilt angles in the range 0-45°However, it is worth
stressing that tilt angles between 0-15°would be challenging from a practical point of
view, as the produced gases would tend to diffuse through the device rather than
being collecting because of natural buoyancy. On the other hand, increasing the tilt
angle is overall conducive to a lower average STH efficiency throughout the year,
although it has a minor impact: for a tilt angle of 60°, the average STH efficiency
decreases of about 0.5 % compared to a horizontal panel. Finally, it can be noted that
the daily STH efficiency is often lower then the STH efficiency measured under one
sun constant illumination.

It is important to stress that we do consider the working hours for the calculation
of the average ηSTH. Therefore, effects of shading are not included in our analysis.
These effects are dependent on the specific design of the cell, especially on the EC
part, and can be an important source of decrease. However, adapting our model to
include this effect is out of scope of the present study.

The specific area a for H2 production brings eventually together all dependencies
in one parameter. Figure 5.9 shows a for the different devices considered here,at



134 modeling pv-ec devices under real working conditions

0 20 40 60 80

Tilt angle (°)

0

200

400

600

A
re

a 
(m

2 /t H
2)

0 20 40 60 80

Tilt angle (°)

0

200

400

600

A
re

a 
(m

2 /t H
2)

Urbain2016
Urbain2015
Jacobsson
Varadhan
Sun
PVE

Figure 5.9: Specific area a for the 5 PV-EC devices and a PV-E device dependent on the tilt
angle (tilt = 0-90°). a) Utrecht. b) Sevilla. The azimuth angle is fixed at 180°.

varying tilt angle and location (Utrecht on the left and Sevilla on the right). Moreover,
we benchmark the 5 PV-EC devices with the standalone PV panel + electrolyzer
configuration (PV-E), which was calculated using data published by Clarke et al. [217].
The minimum specific area a is found at an angle of around 40°, which can be directly
correlated to the profile of the irradiation intensity (maximum at also around 40°).
When changing the azimuth angle, the optimum changes slightly. It can be noted
that the area requirement for the PV-EC cell is always larger than the PV-E system.
However, Jacobsson and Varadhan devices perform close to the reference system;
they therefore show rather clearly the preferred direction of PV-EC development (as
far as costs are excluded).

When comparing the two locations, and since the total energy input in Utrecht
(3.8 GJ/m2) is roughly half of that in Sevilla (6.8 GJ/m2) during the same year, a is
in general clearly higher in Utrecht. The associated operating hours amount to 3767

hours in Sevilla and 3034 hours in Utrecht. The distribution of the STH efficiency in
Utrecht and Sevilla for the whole year can be found in the Supplemental Information
in Figure D.5.

For both locations, the rank order of the PV-EC devices is the same, with Urbain
2015 requiring the largest surface area and Jacobsson the smallest. The ranking
is a result of the dependency of the STH efficiency on the illumination intensity
shown in Figure 5.7 b. Having the highest efficiency, the PV-E device shows the best
performance.

A summary of the effect of location and its comparison with the ideal one-sun
conditions is shown in Table 5.5 for a fixed tilt angle of 60°. While the Varadhan device
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Table 5.5: Specific area a and average STH efficiency based on the solar irradiance data of
2019 in Utrecht, Netherlands, and in Sevilla, Spain with a tilt angle of 60°. The
STH efficiency under 1 sun is also reported for comparison purposes. For very
low illumination intensities inferior to 0.1 sun, the model assumes no output.
The PV-E device was calculated using data from [217].

Utrecht Sevilla ηSTH

Area Average ηSTH Area Average ηSTH 1 sun

m2/tH2
% m2/tH2

% %

Urbain 2015 544 5.79 227 7.18 7.5

Urbain 2016 450 7.50 195 8.40 8.6

Jacobsson 309 12.33 143 11.43 10.6

Varadhan 335 10.26 146 11.24 11.6

Sun 367 9.94 165 9.93 9.93

PV-E 213 13.28 135 12.81 12.1

has the highest efficiency under one-sun illumination, the Jacobsson device reaches
a higher average efficiency, especially for Utrecht. This is because the Jacobsson cell
shows its best performance for an illumination intensity of around 0.2 sun (5.7 b) and
the average illumination in Sevilla is 0.50 sun, compared to 0.35 sun in Utrecht (in
2019, but generally valid). Therefore, the Jacobsson system is relatively more efficient
in Utrecht than in Sevilla, whereas the Varadhan device performs well under high
illumination, and has poor performance in Utrecht. On the other hand, the average
STH efficiency of the Jacobsson and Varadhan device are similar in Sevilla, resulting
in a similar specific area (Figure 5.9). This analysis shows that different PV-EC
devices might be optimal for different locations irrespective of their efficiency under
one-sun conditions, and that real operating conditions (time- and space-dependent)
are required to fairly compare devices. Overall, PV-EC development should target
real world varying conditions: High STH efficiency under ideal illumination does
not fully reveal the cell performance.

At the same time, it is worth stressing that the model presented here provides only
a first approximation of the behaviour of the system under real-world conditions.
In addition to varying irradiation, the ambient temperature should be included
as it has a significant impact on the performance of PV-EC devices (it influences
both the solar cell, increasing the thermal voltage Vth), and the electrolyser, whose
potential decreases significantly with the temperature [216]). Moreover, aging and
performance decay should also be included for a full evaluation. These effects will
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however further exacerbate the dependency of the device on the ambient conditions,
making the evaluation under non-ideal conditions even more necessary.

5.4 conclusion

In this chapter, a simple, yet insightful, framework to model photo- electrochemical
water splitting devices using an equivalent circuits approach is presented. In the first
part, we derived the model equations, described the resolution strategy and validated
the model with existing experimental data for ideal one-sun conditions. To this end,
current density-voltage data for five different devices were used, where the devices
were selected depending on the quality and type of experimental data available. The
model showed good agreement with the experimental results. Within the limits of the
model, we also tried to provide a physical explanation of the different performance
as function of the cell materials and design.

To extend the model to real operating conditions, we presented a simple modi-
fication of the model that takes into account real irradiation data. The five devices
were therefore compared at varying irradiation: Three of the five devices showed
an optimal STH efficiency for ideal illumination, one showed rather constant STH
efficiency, while one showed an optimal efficiency for low irradiation, i.e. 0.25 sun.
Moreover, the most performing device varies depending on the irradiation.

In the second part of the chapter we used the developed irradiation-dependent
model to evaluate the yearly performance of the considered cells at different tilt
angles and different locations, i.e. (i) Sevilla in Spain and (ii) Utrecht in the Nether-
lands. The cells were therefore compared using the specific area needed to produce
1 ton of hydrogen per year. We were able to identify the cell type with lower specific
area; moreover we found that irrespective of the cell a tilt angle in the range of 10-30

o

and 25-45
o is optimal for Utrecht and Sevilla, respectively.

Overall, the presented model is a powerfull tool for untangling PV-EC performance
and comparing different concepts. The availability of high quality experimental data
remains however a key requirement for the use of this model.
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R E N E WA B L E H Y D R O G E N P R O D U C T I O N : A
T E C H N O - E C O N O M I C C O M PA R I S O N O F
P H O T O E L E C T R O C H E M I C A L C E L L S A N D
P H O T O V O LTA I C - E L E C T R O LY S I S

This chapter reports a techno-economic analysis of two solar-assisted hydrogen
production technologies: a photoelectrochemical (PEC) system and its major com-
petitor, a photovoltaic system connected to a conventional water electrolyzer (PV-E
system). A comparison between these two types was performed to identify the more
promising technology based on the levelized cost of hydrogen (LCOH). The technical
evaluation was carried out by considering proven designs and materials for the
PV-E system and a conceptual design for the PEC system extrapolated to future,
commercial scale.

The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2, with a solar
to hydrogen efficiency of 10.9 %. For the PEC system, with a similar efficiency of
10 %, the LCOH was calculated to be much higher, namely 8.43 $/kgH2. A sensitivity
analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This
implies that much effort would be needed for this technology to become competitive
on the market.

Therefore we conclude that the potential techno-economic benefits that PEC
systems offer over PV-E are uncertain and, even in the best case, limited. While
research into photoelectrochemical cells remains of interest, it presents a poor case
for dedicated investment in the technology’s development and scale-up.

The results presented in this chapter have been reported in: Grimm, A., de Jong, W. A., Kramer, G.
J., Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and
photovoltaic-electrolysis. International Journal of Hydrogen Energy 45, 22545 (2020).
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6.1 introduction

Since the pioneering work of Fujishima and Honda [218] using a TiO2 photoelec-
trode coupled with a platinum cathode to describe the photoelectrochemical (PEC)
water splitting process nearly five decades ago, extensive efforts have been made
to construct efficient photocatalyst systems for solar energy utilization. Most liter-
ature focuses on the selection of a suitable material, since it strongly determines
the system efficiency; especially the choice for the photoelectrode and for catalysts
is of importance [183]. In addition, some laboratory-scale experiments have been
carried out to improve the solar-to-hydrogen efficiency [219]. A summary of the
latest developments within research on photoelectrochemical cells can be found
in [220, 221]. Most literature that focuses on economic evaluation does usually not
compare different technologies and therefore concentrates either on solar-driven
water electrolysis (PV-E) or PEC systems [222–226]. For example, a detailed techno-
economic analysis by the US Department of Energy (DOE), which represents a key
reference of the present analysis, gives a detailed overview over four different types
of PEC systems [223].

Another key paper is by Shaner et al., who compared two different PEC systems
and two types of PV-E systems regarding their technical and economic viability. The
results show a lower levelized cost of hydrogen (LCOH) for the PEC system than for
the off-grid PV-electrolyzer. However, the cost calculation of some major components
of the PEC system were based on commercial PV parts and commercially available
electrolyzers, which can be quite different from a real PEC system in which both
parts are integrated in one device. In addition, strong cost reduction has occurred
since their publication, especially for the PV panels, which makes new research
necessary.

Despite intense and promising research during the last years on PEC technology,
no system is yet commercially available. In this chapter we will analyze if, and under
what conditions, PEC devices can outcompete solar hydrogen production through
PV-electrolysis. It builds on the research of [227] and [223], taking into account new
developments and details within these technologies.

6.2 methodology

The assessment of the hydrogen production technologies includes a technical and
an economic evaluation. The latter is based on the results from the technical system
analysis, which was carried out by performing a broad review considering relevant
literature published from 2014 to the present time. The results are described in detail
in section 6.3.
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To compare the economic appeal of the two hydrogen production technologies,
the levelized cost of hydrogen (LCOH) in $ per kg was calculated. It reveals the
price of hydrogen which the system needs to reach, in order to achieve a desired
return on investment. The LCOH includes investment expenses as well as revenues
and expenditures during the plant’s lifetime, discounted to a reference date. It is
calculated by dividing the present value of all expenses by the present value of
hydrogen generation, resulting in

LCOH =
I0 + ∑n

t=0
OMt+Ft
(1+r)t

∑n
t=0

Ht
(1+r)t

, (6.1)

where I0 represents the initial investment in year t, OMt the annual costs for opera-
tion and maintenance, Ft the annual fuel costs, Ht the hydrogen production (kgH2

)
and r the real discount rate [228].

The total system costs were calculated using a bottom-up costing method. First,
a selection of the relevant components and cost parameters was carried out. Sub-
sequently, the total project costs were calculated. For both technologies, the capital
expenditures CCAPEX are comprised of the module itself Cmodule and the balance of
system (BoS) costs CBoS in the form of

CCAPEX = Cmodule + CBoS. (6.2)

BoS costs can then be divided into a hard- and soft-BoS share. The former includes
wiring, mounting, the inverter and land acquisition, while the latter is composed of
non-material costs such as permits and installation. Due to economies of scale, the
BoS costs vary with the size of the plant and are also dependent on the maturity of
the observed technology.

Table 6.1 presents a summary of the baseline assumptions for the economic
analysis. The production rate of the systems was set to 10 tH2/day, a scale similar to
other techno-economic reports discussing photoelectrochemical water splitting [223,
227] and typical of the today’s project size, and a scale at which the benefits of
scale-up have leveled off, beyond which point cost reductions should come from
mass manufacturing of MW-sized units. The scope of the analysis is 20 years, which
is a common period for techno-economic analyses [223, 224, 227, 229, 230]. A longer
lifetime might be interesting, too, since some elements like PV panels are expected
to have a longer lifespan (25 years [231]). However, this will increase uncertainties
about costs of other system components. The geographical location has a great
impact on the economic viability of the system and is adopted from [223], who
assumed the location to be in the USA, in Daggett, California. The site is used for
solar measurements and provides an average daily irradiance of 6.19 kWh/m2/day.
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Table 6.1: Summary of the assumptions required to carry out the economic analysis for the
considered PEC and PV-E systems.

Parameter unit Value Source

Hydrogen production rate tH2/d 10 [223, 225, 227]

Economic lifetime years 20 [223, 224, 227, 229, 230]

Construction period years 1 [223]

Operating capacity factor % 90 [223]

Inflation rate % 1.9 [223, 227]

Real discount rate % 12 [227]

Average labor rate for staff $/h 25 [232]

Land cost $/m2
0.15 [223]

Average solar irradiance kWh/m2/d 6.19 [223, 226]

Installation % of hard BoS 20 [223, 225]

Engineering and design % of hard BoS 5 [223, 225]

The operating capacity factor takes into account planned and unplanned outages
and represents the actual work performed in relation to the maximum work which
can theoretically be performed. A factor of 90 % is chosen, which is similar to the
value in [223]. All economic conjectures are drawn upon values from the U.S market
and refer to the year 2017, and it is assumed that the investment occurs within a
one-year construction time period. The installation costs are assumed to be 20% of
the capital costs, which is a value similar to [223, 225]. It is assumed that these costs
are the same for both systems. The installation of the PV-E systems requires more
cabling and the installation of the electrolyzers. The PEC system on the other hand
requires more piping and in addition the installation of the compressors. Again,
for engineering and design, the same value is used for both systems, namely 5 %
of the capital costs which is in the same range as the assumptions made in [223,
225]. In addition, the production of high purity oxygen by-product is vented to the
atmosphere and no cost credit is taken into account.

Sensitivity analysis. Since PEC systems are not yet commercialized, the costs
estimated in the economic analysis are subject to various assumptions and to a high
degree of uncertainty. Therefore, a sensitivity analysis is carried out by including the
components and parameters with the greatest influence on the total costs. Generally,
it can be assumed that costs for the technologies will decrease over time due to
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improvements in technology, new developments and a growing demand on hydrogen.
In addition, for the analysis of the PV module, learning curves are used to estimate
further potential.

6.3 component-level technical analysis and cost assessment

This section provides the basis for our comparison, starting with an outline over the
chosen system designs and the selected components. The second part covers the
economic evaluation of the two technologies and this forms the starting point for the
calculation of the LCOH.

Technical evaluation

To begin with, a technical analysis was carried out on the basis of a literature study
and state of the art technology. For the PV-E system, approved designs and materials
were studied. The PEC technology, on the other hand, needs to be examined more
closely since a reliable system is not yet available on the market; for example, for
some components a better and more stable material needs to be found.

To describe the performance of the technologies, the solar to hydrogen efficiency
is used. This parameter is defined as the chemical energy of the produced hydrogen
divided by the solar energy input in the form of

ηSTH =
mH2∆G

Ps Ae
(6.3)

where mH2 represents the hydrogen production rate (kg/s), ∆G is the change in
Gibbs free energy per mol of H2 (at 25°C ∆G=237 kJ/mol), Ps the solar energy input
(kWh/m2) and Ae the illuminated photoelectrode area (cm2) [233].

6.3.0.1 The PV-E system

The components of the PV-E system were chosen by considering technical properties
and examining current prices for photovoltaic modules and electrolyzers. Since a
PV-E system consists of two separate parts, namely the photovoltaic module and the
electrolyzer, they are outlined separately. Electrolyzers can produce pressurized H2
at 30 bar and therefore no compressors need to be added to the overall system [234].
Using these results, an optimization of the PV-E system was performed, which
reveals an ideal weighting between the two devices.

Photovoltaic-system. The selection of the photovoltaic system is based on litera-
ture analysis and on analyzing the current PV market, which is currently dominated
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by crystalline silicon (c-Si) PV cells with commercial efficiencies of up to around
24 % [235]. Silicon is the current standard material used in industry because of its
relatively low cost as well as good efficiency, steadiness and durability. Since this
type has some drawbacks, such as an energy intensive production and a relatively
low theoretical efficiency [236], other types like multi-junction solar cells or CdTe
(Cadmium telluride) thin film panels were included in the analysis. However, most
technologies are not yet commercially available or need a large scale-up. In addi-
tion, an increase in efficiency is often accompanied by higher costs, while cheaper
technologies are frequently less efficient and lack durability [236]. Hence, in this re-
search a crystalline silicon single-junction panel was chosen with an efficiency of 18%.

Electrolyzer. Compared to PV panels, the market for electrolyzers is relatively
small and is developing more slowly. At present, the alkaline electrolyzer is the
current standard technology on the market, and is considered to be technically
mature [237]. With a moderate efficiency of 59-70 % [237] and relatively low system
costs in the range of 860-1240 $/kW it is favoured in most industrial sectors [238].
Besides alkaline systems, the proton exchange membrane (PEM) electrolyzer rep-
resents another emerging technology with efficiencies up to 80-90% [239]. It is also
commercially available but more expensive (around 1350-2200 $/kW) and produced
in lower quantities [238].

Alkaline electrolyzers have major issues with intermittent and fluctuating power
sources, such as cross-diffusion of the product gases under low system loads, a slow
start-up as well as a slow loading response [222, 240, 241]. Compared to alkaline
systems, PEM water electrolysis is more suitable for the coupling with a PV system.
Its flexibility to handle fluctuating input currents and the expectation of large cost
reduction in the future will make it a good choice for a combined system [217, 222,
230, 242].

Combined PV-E system. To match the output voltage of the PV system and the
voltage of the electrolyzer at its design point, in general a DC-DC converter is
needed. However, when using a PEM electrolyzer, a converter is not necessarily
required [242], since the loss caused by non-optimal operation is expected to be
the same as the loss due to the use of a DC-DC converter [217, 227]. Therefore, a
moderate efficiency for the electrolyzer of 61% is chosen, which is lower than the
typical efficiencies of PEM electrolyzer in the range of 65-83% [243]. In addition, the
electrolyzer does not require a transformer and rectifier, because the PV module
delivers direct current.

Scaling the electrolyzer to the maximum power output of the PV plant results
in a low capacity factor for the electrolyzer. Since the electrolyzer costs represent
a considerable part of the overall costs, an optimization between the scale of the
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Figure 6.1: Resulting curves obtained by optimizing the ratio between the area of the PV
panels and the electrolyzer units for the PV-E system. The upper bound of
the solar irradiance was given by PS,max = 925 W/m2. The black curve shows
an optimal design point at around PS,design = 800 W/m2, at which the total
depreciation costs are lowest. The green curve shows the capacity factor of the
electrolyzer.

photovoltaic system and the electrolyzer unit was performed, to find an ideal balance
between these two technologies. A detailed description of the optimization can be
found in the Supporting Information.

Figure 6.1 presents the resulting curve obtained by the optimization. It reveals an
ideal operating point at which the area of the PV panels is designed for a maximal
solar irradiance of PS,design = 800 W/m2. This leads to an increase of the PV capacity
by 4 % and a reduction of the electrolyzer size by 11 % compared to a design point
at PS,max = 925 W/m2. As a consequence, the capacity factor of the electrolyzer
increases by 3 %-points, up to 31 %.

6.3.0.2 The PEC system

There exist roughly 30 design alternatives for PEC water-splitting devices [225] with
no clear favorite so far. This large amount of design possibilities makes it difficult to
strictly separate the PEC system from PV-E systems, as it creates a seamless transition
between these two technologies [219]. Therefore, a detailed technical analysis was
carried out, starting with a selection of a specific PEC type, followed by a thorough
assessment of the main components through analyzing essential properties, i. e.
efficiency, lifetime and potential productivity. The selection of the components was
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mainly based on a detailed DOE-report by James et al., supplemented and adjusted
by updated data amongst others found in [225, 227].

Panel based design. Among the different design possibilities for PEC systems, a
non-concentrated panel based layout was selected (similar to type 3 mentioned in
the DOE report). A panel design is a more mature design choice compared to solar
concentrator systems, which can increase the light intensity. It is similar to a PV panel
and absorbs photons to generate electrons for the electrolysis. The electrodes are in
direct contact with the electrolyte, generating oxygen gas at the anode and hydrogen
at the cathode. The panels are most likely composed of a multi-junction photon
absorber to provide sufficient voltage for the reactions. Another design possibility,
frequently mentioned in literature, is a PEC system based on nano particles, which
tends to be much cheaper [223]. However, an explosive gas mixture is created, which
should be avoided due to safety issues and system complexity in terms of additional
product separation. In addition, not much research has been done on this type
and therefore the existing data is subject to high uncertainties. By comparison, the
development in terms of technology readiness level (TRL) and efficiency as well as
durability is more advanced for the panel based design [225, 244]. Furthermore, more
possible design configurations exist for this type and a broader material portfolio is
available.

One liquid-solid-junction. In general, there exist three possible design configu-
rations within the panel based type [183]. First, a zero liquid-solid-junction design,
within which the photoactive part is not exposed to the corrosive environment caused
by the electrolyte. Since this type of set-up has more similarities with a PV-E system
instead of an integrated PEC device, it is not further considered in this analysis.
Second, a one liquid-solid-junction design, where one side of the photoelectrode is
immersed into the electrolyte. Finally, a system with two-liquid-solid-junctions.
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Figure 6.2: Schematic illustration of the selected PEC cell.

In our work the sec-
ond alternative was
chosen, which is schemat-
iccaly shown in Fig-
ure 6.2. One part of
the solar panel must
withstand electrochem-
ical reactions and cor-
rosion, while the other
side is in contact with
ambient air. So far, a so-
lar to hydrogen (STH) efficiency of 16.2 % has been achieved by using this layout [244].
Compared to the two liquid-solid-junctions, the lifetime can be extended and the
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material selection is simplified, which makes it more likely for this configuration to
become a stable low-cost system [183, 225].

No external bias. Furthermore it was assumed that the system operates sponta-
neously and does therefore not require an external electrical bias.

Material selection. The choice of the photoactive material has a significant impact
on the efficiency and the lifetime as well as the costs of the PEC system. The
photoactive layer consists of a doped semiconductor which absorbs photons and
therefore generates a charge separation. Most of the materials in literature are based
on thin film technology [183, 223–226, 244]. For the production of hydrogen a voltage
of approximately 1.65 V needs to be provided by the cell, to run the HER, OER and
make up for additional losses (overpotential) [245]. Since a high output voltage is
often accompanied by the ability to use only a small part of the solar spectrum, multi-
junction cells are preferred. Triple-junction amorphous Si is one of the promising
photoactive materials for PEC cells [183, 224, 226, 246] and was chosen in this work.
Other possible materials, e.g. GaAs/GaInP with efficiencies of more than 16,2 %
STH [247], were not considered any further since their costs are still too high. The
assumed efficiencies for a-Si cell found in literature varied a lot depending on their
source, with a resulting range of close to zero to 15 % STH [225, 248, 249]. In this
work we chose an efficiency of 10 % which is assumed to represent a realistic value
compared to the majority of the considered literature [183, 223, 224, 226]. This is also
in line with data found in [226], where the STH efficiency for PEC cells is assumed
to be limited to 75-80% of efficiencies for PV cells. For the anode/counter electrode,
which promotes the oxygen formation and can be directly attached to the housing
of the PEC cell, there are various possible materials like stainless steel, RuOx with
Pt gauze or Nickel [225, 226, 244]. Most relevant literature is based on the latter,
which is also chosen in this work. For the membrane we chose the same as in [225],
which is an anion exchange membrane with the commercial name Nosepta® [225,
250]. The most common material for the membrane is Nafion [227] therefore it is
also considered in our analysis. The area of the membrane is assumed to be 10 % of
the PV panel area [245].

Economic evaluation

Based on the results of the technical analysis, the following section summarizes the
economic evaluation needed to calculate the levelized cost of hydrogen.

PV-E system

In Table 6.3 the specific parameters for the analyzed PV-E system are shown along
with its capital expenses. A more detailed distribution of the cost components can
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be found in the Supporting Information in Table S1. The costs for the PV module,
based on a crystalline silicon panel with an efficiency of 18 %, were estimated to
be 0.30 $W−1 [251]. The solar collection area was calculated by using Equation 6.3
together with the efficiency of the overall PV-E system. The area of the whole PV-
E plant is 4.07 times the PV surface area, including e.g. the electrolyzer and the
control system. This factor was taken from [223], since we assumed the additional
are to increase similar to the total plant area of the PEC system. In this analysis
no inverter is included, which is already mentioned earlier while describing the
technical analysis. For the PEM electrolyzer no transformer and rectifier is required
since the PV panels deliver direct current. The costs for the stack were estimated
to be 0.40 $/W−1 with an efficiency of 61 % [252]. The lifetime of the electrolyzer
stack is estimated to be 7 years [227] and the replacement costs for the stack decrease
every period, based on learning curves, and were assumed to be 75 % of the initial
costs after 7 years and 60 % after 14 years, respectively. The PV module was assumed
to last the whole lifetime of 20 years of the plant. Additional costs e.g. for permit
and side preparation, are added with a factor of 5 $/m2 to the calculation which is
in line with recent data from [231].
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Table 6.3: Summary of technical parameters and respective costs for the main components
for the considered PV-E system.

Value Source

Photovoltaic system

Efficiency 18 % [251]

Phtotovoltaic area 4.8 ∗ 105 m2

PV module 0.30 $/W [251]

Mounting material 0.08 $/W [231]

Wiring 0.09 $/W [231]

Electrolysis system

Efficiency 61 % [252]

Stack cost 0.40 $/W [252]

Hard BoS 0.375 $/W [252]

Combined PV-E system

Efficiency 10.9 %

Process contingency 20 % of direct costs [223, 225]

Other soft-BoS 5 $/m2 [231]
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PEC system

Table 6.5 shows the technical parameters and capital expenses for the main com-
ponents of a PEC system at commercial scale. In Table S2 a more detailed cost
overview can be found. For the costs of the photoactive component 45 $/m2 was
estimated. Although some previous reports worked with a more optimistic value
of 15 $/m2 [223, 225], a more pessimistic and, in our opinion, more realistic value
was used for the calculation. The costs for glass were estimated to be 10 $/m2. We
assumed this value to be higher compared to PV systems (5 $/m2 [227]), since the
surface is not fully connected to the back side of the housing and therefore needs to
be more rigid to give structure to the cell.

The membrane was included with a cost factor of 50 $/m2 [227] which is expected
to decrease significantly when produced in large scale [223]. For the housing costs of
20 $/m2 were assumed to be realistic. Compared to PV systems (≈ 5 $/m2) these
costs are higher, since PEC cells set higher demands like a better resistance to the
electrolyte as well as a greater stability for the membrane. This value resembles other
assumptions in literature [223, 225]. For the whole PEC module the resulting costs
are 153.7 $/m2 which corresponds to approximately 1.01 $/W. In addition to the
module costs, a gas processing system comprising two-stage gas compressors [223,
227], piping, condensers and intercooling, as well as water management and system
controlling are included by using data published in the DOE analysis [223]. For
the contingency a percentage of 30 % of the uninstalled costs was estimated, since
PEC systems represent a less mature technology compared to the PV-E system. It
should be noted that this study does not take a costs credit for the byproduct O2
into account, which is generated during the reaction. Finally, the replacement of the
PEC cell was expected to be performed every 7 years and the costs for a PEC cell
were assumed to decrease alike the electrolyzer by applying learning curve theory.

6.4 results and discussion

PV-E system

The techno-economic analysis of the photovoltaic-electrolysis system results in a
LCOH of 6.22 $/kgH2. Figure 6.3 shows the breakdown of the overall costs; more
details can be found in Table S1. The first three bars reveal the distribution of the
costs for the PV-E system in $ per kgH2. For the first and second bar, the costs
are broken down into the PV and electrolyzer part respectively, to show the ratio
between these two parts. The costs for the electrolyzer are higher than the costs for
the PV system, namely 3.92 $/kgH2 compared to 2.30 $/kgH2, respectively. This gap
is even larger without optimizing the scale of these two plant components. Through
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Table 6.5: Summary of technical parameters and respective costs for the considered PEC
system. More details for the specific costs can be found in the Supporting
Information

Value Source

Efficiency 10 % [183, 223, 224, 226]

PEC area 5.3 ∗ 105 m2

Module 153.7 $/m2

Hard-BoS 46.0 $/m2

Soft-BoS 115.2 $/m2

Process contingency 30 % of direct costs

optimization, more PV panels were added to decrease the number of electrolyzer
units, which led to an increase in the capacity factor from 28 % to 31 %. Consequently,
the area of the photovoltaic panel increased by 4 % while the size of the electrolyzer
section was reduced by 11 %. It is likely that the BoS costs of the electrolyzer will
experience a significant decline within the next few years since there is room for
economies of scale and therefore the production volume can still be increased largely.
The third bar reveals the overall system costs, showing that the module costs make
up a large part of the costs.

To identify the potential of the PV-E system, a closer look is taken at future costs
for the PV module and the elecotrolyzer unit. A possible decline of the PV module
and hard-BoS costs of approximately 50 % in 10 years is assumed by the ITRPV
report [231]. For the future costs of the electrolyzer stack a reduction to 148 $/kW
can be expected, adopted from [230]. When including these optimistic assumptions
into the cost calculation, a possible LCOH of 3.76 $/kgH2 can be achieved.
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Figure 6.3: Breakdown of the costs for the photovoltaic system and the electrolyzer unit as
well as the overall costs for the combined PV-E system and the integrated PEC
system (brown bars), divided into the module costs, the OPEX as well as the
hard- and soft-BoS costs, respectively. In addition, a detailed cost breakdown of
the PEC module costs (blue bars).

PEC system

The LCOH for the PEC system is calculated by 8.43 $/kgH2. The results are sum-
marized in Figure 6.3, in the two bars on the right, and more detailed in Table S2.
The first bar reveals the PEC module to be the main cost contributor, accounting
for nearly half of the entire costs. This is followed by the soft-BoS costs, where the
contingency costs have the biggest influence since the uncertainties are still quite
high within this new technology. The bar on the right in Figure 6.3 shows a cost
breakdown for the PEC module by oneself. The membrane and the photoactive mate-
rial have by far the biggest influence on the costs, with 1.50 $/kgH2 and 1.35 $/kgH2

respectively.
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Therefore, these two components were included in a sensitivity analysis to show
their impact on the overall costs. However, many of the remaining costs are also
marked by uncertainty, since PEC cells are not yet commercially build. Therefore,
the allocation within this cost block can vary to a certain extend and some module
components can even have more impact than expected in this research. The results of
the sensitivity analysis are presented in Figure 6.4. For the membrane an optimistic
value of 15 $/m2 is estimated which is similar to a value provided by [225, 253]. The
pessimistic value is assumed to be 300 $/m2 for a mass-produced membrane. The
membrane represents a large factor of uncertainty, even though a strong decrease is
possible through mass production [230]. It should be noted that it is still an ongoing
challenge to find a suitable and stable membrane. In our PEC design, which is
based on the work by [225], a nafion membrane is selected which requires an acidic
environment. Some earth-abundant catalysts, like in our case Nickel, are only stable
in an neutral or alkaline environment. There are still challenges for the commercial
implementation of the presented PEC design and there is a lot of ongoing research
focusing on the development of stable membranes. For our techno-economic analysis,
the choice of the parameters give a good depiction of the still uncertain profitability
of a PEC system.

Starting with an initial value of 45 $/m2 for the photoanode layer a high perfor-
mance material, namely GaAs/GaInP, was selected for the highest costs. Assuming
mass production, the costs were calculated to be 393 $/m2 by using a simplified
estimate with data found in [247] and [254]. For the optimistic scenario, 15 $/m2

were chosen, which was found in [225]. From today’s view it is a major challenge to
find high performance materials which can be competitive on the market.

The preceding analysis of the PEC cell was carried out by using a STH efficiency
of 10 %. The optimistic case was conducted with an increase of the efficiency to
16.2 %, which is to date the highest efficiency reached for a PEC cell and is achieved
by [244] on laboratory scale. The pessimistic value was adopted by 5 %. The resulting
Figure 6.4 shows a strong and non-linear correlation of the efficiency and the LCOH
of the system. An increase of the cell efficiency by 6 %-points results in a decrease
of approximately 25 % of the overall costs. This indicates that high efficiencies are
crucial for competitive PEC systems.

Another influential parameter is the lifetime of the PEC cell. The initial value is
set to 7 years, which is similar to the stack of a PEM electrolyzer. This assumption
is quite low compared to other components, since the degradation of the cell is
high due to the presence of a corrosive electrolyte, even with the integration of a
protective layer on top of the photoactive material. In addition, this value entails
great uncertainty as there is no literature found which documents a duration of a
PEC cell exceeding a few weeks. Nevertheless, other literature even suggest higher
values for the lifetime [223, 225, 226]. The optimistic value was therefore chosen to be
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12 years whereas for the pessimistic case 3 years was selected. Lifetime is important
in order to achieve commercial success, but has a relatively small effect on the overall
system costs, since it concerns mainly the cell component.

4 6 8 10 12 14 16 18 20 22 24

LCOH ($/kg
H2

)

Lifetime    

Efficiency    

Photoactive material

Membrane    
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Figure 6.4: Sensitivity analysis for the PEC system on the basis of the costs for the mem-
brane and the photoactive material as well as the efficiency and the lifetime of
the whole plant. Each analysis represents the variation of a single parameter
from the initial LCOH of 8.43 $/kgH2

to a higher and lower value.

Comparison between PV-E and PEC

As shown in Figure 6.3, the estimated LCOH is significantly higher for the PEC
system compared to the PV-E system with 8.43 $/kgH2 and 6.22 $/kgH2 respectively.
The PV-E module costs account only for 40 % of the overall system costs compared
to the PEC module which constitutes more than half of the overall costs. This can be
explained mainly by additional components in the PEC device and more stringent
requirements for the photoactive material. Another reason for the large influence of
the PEC module on the overall costs is the relatively short lifetime of 7 years and
complementarily the replacement costs, which applies also to the electrolyzer. The
difference between the soft-BoS costs for both systems are, among others, the higher
costs for contingency for the PEC system, which is due to greater uncertainties
within this technology. The difference of the hard-BoS costs for the PEC and PV-E
plant is because the PV-E system comprises two hard-BoS blocks, for the photovoltaic
part and the electrolyzer. In addition, representing an integrated unit, less wiring
material is needed for the PEC system.

In the present study we considered an off-grid PV-E system for the production
of solar hydrogen. An advantage of this system is, that it has the possibility of
connecting to the grid, resulting in a significant increase in the capacity factor of the
electrolyzer. An approximate calculation by using data provided in [227] reveals a
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LCOH of 4.17 $/kgH2 for the grid connected device. It is important to stress that the
produced hydrogen is then no more a solar hydrogen and not comparable to the
PEC device, but shows the flexibility of the PV-E system.

The graph in Figure 6.5 shows the resulting LCOH and its uncertainty for the
PEC system. The latter was calculated by combining the results of the sensitivity
analysis outlined in the previous sections. Since the different parameters influences
each other, the resulting range for the hydrogen costs takes on a huge value. The
figure elucidates the high uncertainty of the considered parameters and highlights
the great range of the LCOH for the overall PEC system. For an optimistic case the
LCOH of the PEC-system can go down to 2.51 $/kgH2. A PV-E system, on the other
hand, can reach a hydrogen cost of 3.76 $/kgH2. However, for a pessimistic view
the costs of the PEC system can be more than ten times higher than the considered
LCOH of 8.43 $/kgH2. The probability that such high costs will incur is, as shown by
the graph, almost zero. Still, the results reveal a huge range for the LCOH and since
the PEC system is not yet mass produced, many assumptions are afflicted with high
uncertainty.
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Figure 6.5: Schematic diagram illustrating the probability distribution of the LCOH for a
PEC system using the results of the sensitivity analysis.

For the calculation of the land cost we included the same proportional increase
of the solar collection area to get the overall plant area. For simplicity reasons, this
proportional factor was assumed to be the same for both technologies. The land costs
are a minor contributor to the overall costs, to be more accurate, a detailed analysis
of the auxiliary devices needs to be carried out.

Since there is not much data available on long term degradation of especially the
PEC module, we assumed that both systems run with maximal efficiency over the
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whole lifetime. Therefore we assumed that the cell performance does not degrade
over time and also for the other components no degradation occurs over the lifetime.

It should be noted that the precise location of the plants has a significant influence
on the LCOH when looking at the solar energy input. For our analysis we chosen
a location with an average daily irradiation of 6.19 kWh/m2day. When carrying
out this analysis for e.g. northern Europe with a much lower sun irradiation (≈
3.0kWh/m2day) the LCOH would increase by more than 70%.

Comparison with previous literature

The results found during this techno-economic analysis were compared with previ-
ous studies. In [227] a similar comparison between two different PEC and two PV-E
systems was performed. However, the resulting LCOH were higher, especially for
the PV-E system (base-case 12.1 $/kgH2). The difference between the values stems
from the fact that our analysis includes updated prices for the PV panels and a
higher efficiency, since a significant development occurred within this technology in
the last few years. Another factor is that we include an optimization between the PV
system and the electrolyzer, which lead to an increase in the capacity factor of the
electrolyzer. The normalized costs for the PEC module published in [227] are in a
similar range with a value of 11.4 $/kgH2 for the base-case. The main difference is
that we are considering a different PEC design and we consider a different panel area,
similar to [223, 225]. In addition, our estimated hard-BoS costs are lower since we
considered lower costs for the mounting material. On the other hand, our calculation
is based on higher soft-BoS share, as we expect higher values for the installation and
contingency costs.

In the DOE report a LCOH of 10.36 $/kgH2 was calculated, which is slightly higher
compared to our value. The main difference lies in the different material costs for
the PEC module and slightly lower soft-BoS costs, since we expect the installation
costs to be lower which is mainly due to a higher production rate of our considered
systems.

In [255] and [229] a similar range for the LCOH of PEC systems was published,
showing a value of approximately 8 $/kgH2 and 10.40 $/kgH2, respectively. However,
their sensitivity analysis reveals a much lower error bar for the cost of hydrogen
compared to our results. This is mainly due to the higher material costs for the
membrane and photoactive layer which were assumed in this analysis. Both studies
do not show a detailed cost breakdown for the different material components.
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6.5 conclusion

This chapter concerns a comparative techno-economic analysis between a photoelec-
trochemical system (PEC) and an already commercially available system comprising
a photovoltaic device connected to an electrolyzer (PV-E). The evaluated conceptual
PEC system was based on a non-concentrated panel design with an efficiency of
10 %.

For a benchmark system, a crystalline silicon PV cell combined with an off-grid
PEM electrolyzer with an overall efficiency of 10.9 % was chosen. The calculated
levelized production cost of hydrogen (LCOH) resulted in 6.22 $/kgH2 for the PV-E
system and 8.43 $/kgH2 for the PEC system, respectively. The sensitivity analysis
for the PEC device revealed a significant level of uncertainty with regard to the
LCOH. It was carried out by varying the costs for the membrane as well as the
semiconductor material and by changing the efficiency and lifetime of the overall
system. The best-case scenario shows that there is a possibility to quarter the LCOH,
resulting in 2.51 $/kgH2. However, according to our findings, this cost is more likely
to be higher than the initial LCOH; for the median scenario, it is expected to nearly
double.

This work demonstrates that it is unlikely for the PEC system to achieve lower
hydrogen production costs compared to photovoltaic-electrolysis systems. Even
under generous assumptions, PEC devices are costlier and less flexible in their
application. As to the cost, we have shown that at present, the main obstacles are
the stability of catalysts and an unfavorable trade-off between cost and lifetime
of the semiconductor materials. Concerning the flexibility of utilization, a PV-E
system can be more efficiently embedded into the future energy system than a
PEC device because “PV” and “E” can be separately size-optimized to fit the needs
of the future energy system and the electricity grid. This leads us to conclude
that while PEC, as a research field, remains of interest for science, the prospects for
successful commercialization are effectively absent. Therefore, a dedicated technology
development effort is unwarranted.





7
S U M M A RY A N D C O N C L U S I O N

The transition toward a carbon-neutral society requires reshaping the world’s energy
system. But even a world with net-zero emissions will depend on hydrocarbon fuels
(but not necessarily of fossil origin), e.g., in the chemical industry or within the
transport sector. While this requires sequestration of CO2 from large point sources
combined with storage and the application of negative emission technologies, the
transition can be accelerated by the implementation of power-to-X (PtX) technologies,
especially for the harder-to-abate sectors like aviation, maritime shipping, and the
chemical industry. These products can also be called solar fuels when using solar
energy as the electricity source. The concept of solar fuels builds on combining
renewable energy with two abundant reactants, i.e., H2O and CO2, to produce car-
bon neutral fuels. While technological pathways already exist to supply the two
initial components, i.e., capturing CO2 from fossil power plants or the ambient air
and water splitting to produce H2, the uncertainties are high in terms of techni-
cal performance and economic feasibility. Therefore, the research reported in this
thesis addresses the capturing and sourcing of these two key components for the
production of hydrocarbon solar fuels: i) carbon dioxide obtained from the air and ii)
renewable hydrogen produced from water using solar energy. The aim is to assess
different routes for the supply of CO2 and H2 in terms of technological and economic
performance and to identify the key challenges for bringing down the costs.

The following central research questions were raised within this work, and the
answers are summarized in the following paragraphs.

1. Which are the main technological pathways to capture CO2 from the air and how do
they compare in terms of performance and economics?
This research question is addressed in Chapter 2, where the main processes for direct
air capture (DAC) have been analyzed: two liquid scrubbing processes and one solid
sorbent vacuum temperature swing adsorption (VTSA) process. These processes have
been optimized with the aim of maximizing productivity and minimizing energy
demand. The results have shown that all processes were able to capture high purity
CO2 from the air, with the solid sorbent process performing best. The productivity
of the adsorbent process was in the range of 3.8 to 10.6 kgCO2

/m3/h and the specific
exergy demand 1.4 to 3.7 MJ/kgCO2

. However, the uncertainty with regard to the
mass transfer was high and, depending on the driving force coefficient, broadens the
productivity range to 0.13 to 10.6 kgCO2

/m3/h. When comparing the three processes
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from an economic point of view, the solid sorbent VTSA process again showed the
most promising performance. While the solid sorbent process came out to be the
most attractive option, the uncertainties are also highest for this process. Therefore,
in the second part of Chapter 2 the effect of climatic conditions (i.e. geographic
locations) on the optimal design of a solid sorbent process is investigated. It is shown
that the annual average ambient temperature is the main climatic driver for both
capturing costs and energy requirements, while humidity plays a subordinate role.
In cold (and humid) climates, the capturing costs and energy requirements can be
significantly lower than in warmer locations: we found that the cost and the energy
consumption of DAC deployed in The Netherlands are about 16% and 33% lower
compared to Spain or California, respectively.

2. Are there already existing adsorbents in databases that show promising performance for
DAC applications, and how can we find them across several thousands of possible structures?
In Chapter 3, several thousand adsorbent materials were screened to identify suitable
candidates for capturing CO2 from dilute streams. For this purpose, an equilibrium
model of vacuum temperature swing adsorption cycles was designed, with which it
is possible to rapidly screen a huge amount of materials. The accuracy and prediction
capabilities of the equilibrium model are improved by incorporating feed-forward
neural networks, which are trained with data from rate-based models. This allows,
for example, to include process productivity, a key performance indicator typically
obtained in 1D models. The equilibrium model was first validated against a rate-
based model, showing a good prediction of the different performance indicators, i.e.,
productivity and thermal energy consumption. The screening of a large number of
materials revealed a ranking of the best performing adsorbents for different CO2

concentrations in the feed stream. For the DAC case, 12 promising materials were
identified, but no new materials for DAC were found. This naturally leads to the
next research question:
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3. What are the performance and cost limits for DAC using an ideal adsorbent with VTSA?
This question is addressed in Chapter 4, where, through an approach called pro-
cess inversion, the limits of solid sorbents for VTSA processes for DAC application
were explored. The aim was to identify ideal sorbents showing optimal process
performance by both including the adsorbent properties and process performance
parameters as decision variables. To keep this assessment broad, a variety of CO2

isotherm models was included in the analysis, i.e., the Langmuir-Freundlich, the
Toth, the extended Toth (Toth-cp), the Dual-site-Langmuir (DSL) and an S-shape
model. The water isotherm was kept the same. When comparing with materials from
several databases, the results show that with the optimized isotherm models, it was
possible to outperform the existing adsorbents. The best performing isotherm models
for the ultra-dilute feed concentration were the extended Toth equation showing the
highest productivity with up to 17 kg/m3/h and the S-shaped model showing the
lowest thermal energy consumption of 0.5 MJ/kgCO2

. Using the optimal hypothetical
isotherms from the Toth-cp model, an economic analysis was carried out. Depending
on the mass transfer coefficient, the levelized cost of CO2 was found to be in the
range of 450 to 2500 $/tCO2 . A cost breakdown revealed that the economic perfor-
mance of a DAC process centers around the adsorbent material, with the working
capacity and the kinetics determining the productivity, but also the sorbent price and
the lifetime having the greatest impact. With moderate assumptions for these factors,
it was not possible to reach the targeted DAC costs of 100 $/tCO2 using one of the
optimized adsorbents. Only with optimistic assumptions similar to a commercialized
adsorbent like Zeolite 13X could costs be brought down to reach this value.

The following two questions address the production of renewable H2 using solar
energy.

4. What technologies are available for electrochemical production of hydrogen from solar
energy and water, and how do they operate under real working conditions?
In the first part of Chapter 5, different types of solar water splitting devices were pre-
sented, and the most promising one, a photoelectrochemical (PEC) cell, was chosen
for further investigation. An equivalent circuit model was developed, with which
the steady state performance of PEC devices can be computed. The model allows for
a computationally efficient yet precise prediction of the system performance and a
comparison of different devices. Furthermore, the model was extended to include
the effect of illumination and tilt angle on hydrogen production efficiency. The yearly
performance of five PEC devices was evaluated at different tilt angles and different
locations. The results show that including real illumination data has a considerable
impact on the efficiency of the PEC device. The yearly average solar-to-hydrogen
efficiency is significantly lower than the ideal one. Moreover, it is dependent on the
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tilt angle, whose optimal value for European-like latitude is around 40°.

5. What is the techno-economic performance of PEC and PV-E systems, and how do they
compare?
Photoelectrochemical water splitting is potentially a sustainable and affordable so-
lution to produce hydrogen from sunlight. Given the infancy stage of technology
development, it is important to compare not only different integrated devices with
each other but also include other possible pathways. In Chapter 6 a techno-economic
analysis of two solar-assisted hydrogen production technologies: a photoelectro-
chemical (PEC) system and its major competitor, a photovoltaic system connected
to a conventional water electrolyzer (PV-E system) was carried out. The technical
evaluation was performed by considering proven designs and materials for the PV-E
system and a conceptual design for the PEC system extrapolated to future scale. The
levelized cost of hydrogen (LCOH) for the off-grid PV-E system was found to be
6.22 $/kgH2

, with a solar to hydrogen efficiency of 10.9%. For the PEC system, with a
similar efficiency of 10%, the LCOH was calculated to be higher, namely 8.43 $/kgH2

.
The results show that the potential techno-economic benefits PEC systems offer over
PV-E are uncertain and, even in the best case, limited. The main obstacles are the
stability of catalysts and an unfavorable trade-off between the cost and lifetime of
the semiconductor materials. Concerning the flexibility of utilization, a PV-E system
can be more efficiently embedded into the future energy system than a PEC device
because “PV” and “E” can be separately size-optimized to fit the needs of the future
energy system and the electricity grid.

7.1 recommendations

In Chapter 2, it was shown that water could have a strong effect on the CO2 working
capacity, which can significantly affect the performance and the capital cost of a
DAC plant. While water adsorption was included throughout the whole research
in this thesis, the data is based only on a few experimental analyses presented
in the literature. In addition, the effect of water on the CO2 capacity was only
included within Chapter 2 by considering an enhancement factor for CO2 adsorption
dependent on the humidity and temperature. With the few experimental data of
H2O adsorption on materials like amine-functionalized adsorbents or MOFs, it was
not possible to make more general assumptions, and therefore, in Chapter 3-4, the
enhancement factor was not included. The same limit holds true for the second part
of Chapter 2, where the effect of temperature and humidity on the technical and
economic performance of DAC processes was investigated. This analysis was again
carried out by using the limited set of experimental data on water adsorption.
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Another major factor determining the performance of the adsorbents is the mass
transfer coefficient. Here again, the uncertainty is high since experimental data for
low CO2 concentration, combined with water adsorption, is still rare. In Chapter 2

and 4 an optimistic value of kLDF = 0.1 s−1 was chosen, which was complemented
by a sensitivity analysis. In addition, while using the approach of the linear driving
force is a common approach for modeling adsorption processes, there might be more
suitable methods for modeling DAC processes.

In Chapter 5, several isotherm models were optimized to find the limits for cap-
turing CO2 from dilute feed streams. The 0D model was used for this analysis,
complemented by the rate-based model. Since the simplified model, as the name
indicates, has its limitations e.g., by considering an isothermal adsorption step or
not including kinetics, the results do give a possible design spectrum for promising
hypothetical adsorbents, but carrying out the same analysis using a rate-based model
will show different results. Still, the computational time would then increase strongly.

7.2 outlook

For solar fuels to become competitive, the cost must be drastically reduced. Kraan
et al. [256] analyzed the production costs of solar fuels from CO2 captured from
the air, and H2 produced via electrolysis. Their results show, that the main cost
contributors for solar fuels are the capturing of CO2 from air, followed by the H2

production, as shown by the current and target case in Figure 7.1. The target costs can
be reached when the overall production costs reach the 200 $/barrel mark. Taking
their simplified approach, the results gathered within this thesis are shown by the
third bar (present study). For this simple comparison, only the costs for the CO2

capture and H2 production are changed, by including DAC costs obtained from
optimizing a hypothetical sorbent (cs = 30$/kg and ls = 2years) and optimistic H2

production costs from the PEC analysis. It can be clearly seen that the total costs are
still far from reaching the target. While the technology for capturing CO2 from the
air has experienced remarkable progress within the past decade, there is still a lot of
potential to bring down the costs, mainly by improving the solid sorbent materials
with a focus on lower costs and longer lifetime. For the production of renewable H2

from water splitting, on the other hand, there exist already commercially available
technologies, i.e., photovoltaic devices connected to an electrolyzer. The present
study case in Figure 7.1 shows H2 production costs using PEC devices with already
highly optimistic assumptions for mass-produced cells. This reveals that with current
materials and existing PEC technologies, the target costs of 200 $/barrel cannot be
reached.
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Figure 7.1: Estimated costs for the production of a solar fuel from CO2 and water, adapted
from Kraan et al. [256].

A number of recent studies [257, 258], like the latest report of the Internal Panel
on Climate Change [257], have collectively stressed the need for negative emissions
technology to limit the average global temperature increase to 1.5 °C by 2100. While
there are several scenarios to meet the short-term goals, capturing CO2 from the
air is one of the technologies which is required to meet the longer-term goals in a
large-scale format [258]. DAC is currently being commercialized, and although it is
not economically feasible at present, it shows a promising means of mitigating the
effects of climate change.
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Figure A.1: Breakdown of the equilibrium energy requirement for regeneration of the
different sorbent cases using a simplified calculation (T = 373K, p = 0.1bar).
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Table A.1: Main specification adopted in the Aspen flowsheets for the alkali scrubbing
process [25] and the amine scrubbing process.

Alkali Scrubbing Amine Scrubbing

Air contactor Air contactor

Number of blocks 6 Number of blocks 3

Number of stages
per block

20 Number of stages
per block

20

Diameter 5.64 m Diameter 5.64 m

Height 1.16 m Height 2.32 m

Packing Sulzer 250Y Packing Sulzer 250Y

wMEA 30 wt.%

Pellet reactor Washing section

Temperature 25°C Diameter 5.64 m

XCa(OH)2
1 Height 1 m

Calciner Packing Sulzer 250Y

Temperature 900°C L/G ratio 0.05

XCaCO3 0.98 Heat exchanger

Slaker Minimum ∆ T∗
10°C

Temperature 300 °C Stripper

XCaO 0.85 Number of stages 10

ASU Pressure 2 bar

WASU 1000 kJ/kgO2 Tcondenser 35°C

Treboiler 124°C

∗Enforced by a design specification.
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Table A.3: Fitted Parameters for single CO2 isotherms of the different solid sorbents and
the exemplary isotherm using the Toth or the Toth-cp model.

Parameter APDES-
NFC

Tri-PE-
MCM-41

MIL-
101(Cr)-
PEI-800

Lewatit VP
OC 106

Exemplary
isotherm

T0 (K) 296 298 270 278 298

Chemisorption

b0 (1/MPa) 0.560 × 106 3.135 × 106 9.96 × 106 2.54 × 106 0.426 × 106

∆H
(kJ/mol)

50.0 117.8 68.3 91.2 64.19

t0 (-) 0.368 0.236 0.243 0.442 0.282

α (-) 0.368 0.482 1.802 0.520 0.886

ns0

(mol/kg)
2.310 2.897 3.450 2.211 3.296

χ (-) 2.501 0.207 4.504 0 3.850

Physisorption

b0 (1/MPa) - 0.636 93.2 1.51 × 102
15.91

∆H
(kJ/mol)

- 2.64 40.1 5.19 3.44

t0 (-) - 0.872 0.163 0.636 0.150

α (-) - 0.003 2.287 2.407 6.814

ns0

(mol/kg)
- 8.208 6.205 1.840 1.243

χ (-) - 4.539 0.579 7.186 2.873

R2 (-) 0.99 0.996 0.997 0.99
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Table A.5: Fitted Parameters for the single water isotherms of the different solid sorbents
using the GAB model.

Parameter MCF-APS-hi Lewatit APDES-NFC1 APDES-NFC2

C0 (-) 21.375 1.715 6.86 6.86

∆HC (kJ/mol) -1.957 -24.636 -4.120 -5.088

K0 (-) 0.013 0.008 2.27 2.27

∆HK (kJ/mol) -1.0002 9.4384 -2.530 -3.443

Cm,0 (mol/kg) 0.051 4.697 0.0208 0.0208

β (K) 995.3 3083.0 1540 1797

R2 (-) 0.98 0.87 - 0.99

1 fitting by [41]; 2 own fitting
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Table A.7: Design variables for the three different processes, including lower and upper
bound.

Variable Range

KOH process

ξ (kmolKOH/kmolCO2
) 1-35

uair (m/s ) 0.4-2.4

wH2O (-) 0.11-0.26

MEA process

ξ (kmolMEA/kmolCO2
) 1-25

uair (m/s) 1.0-3.0

d (MJ/kglean) 0.28-0.8

fSplit (-) 0.02-0.2

Solid sorbent process

APDES-NFC MIL-101(Cr)-
PEI-800

Lewatit VP
OC 106

Exemplary

tads (s) 100-10000

tprod (s) 50-2200

tpurge (s) 1-400

pvac (bar) 0.01-0.9

Tprod (K) 363-393

∆Tpurge (K) 1-60

V̇air* (m3/s) 0.28 − 16.50 0.28 − 12.24 0.28 − 5.09 0.28 − 12.24

∗ values refer to one full module
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Figure A.2: Resulting design variables for the different points on the Pareto line: a) absorber
loading; b) air velocity; c) water content in the CaCO3 slurry.



appendix for chapter 2 171

Figure A.3: Resulting design variables for the different points on the Pareto line: a) absorber
loading; b) air velocity; c) specific reboiler duty; d) split fraction.

Figure A.4: CO2 purity and recovery over the productivity for the different points on the
resulting Pareto line.
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Figure A.5: Resulting design variables for the different points on the Pareto line for the
APDES-NFC sorbent (case A-A). The design variables are the adsorption time,
the CO2 production time, the vacuum pressure, the temperature difference
between the production and purge step, the temperature during the production
step, the purge time and the volume stream of the air.
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Figure A.6: Resulting design variables for the different points on the Pareto line for the
exemplary isotherm for CO2 with the water isotherm of the APDES-NFC
sorbent (case E-A). The design variables are the adsorption time, the CO2

production time, the vacuum pressure, the temperature difference between the
production and purge step, the temperature during the production step, the
purge time and the volume stream of the air.
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Figure A.7: Resulting design variables for the different points on the Pareto line for the
exemplary isotherm for CO2 with the water isotherm of the MCF-APS-hi
sorbent (case E-M). The design variables are the adsorption time, the CO2

production time, the vacuum pressure, the temperature difference between the
production and purge step, the temperature during the production step, the
purge time and the volume stream of the air.
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Figure A.8: Resulting design variables for the different points on the Pareto line for the
exemplary isotherm for CO2 with the water isotherm of the Lewatit sorbent
(case E-L). The design variables are the adsorption time, the CO2 production
time, the vacuum pressure, the temperature difference between the production
and purge step, the temperature during the production step, the purge time
and the volume stream of the air.
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Figure A.9: Resulting design variables for the different points on the Pareto line for the MIL-
101(Cr)-PEI-800 isotherm for CO2 with the water isotherm of the APDES-NFC
sorbent (case MP-A). The design variables are the adsorption time, the CO2

production time, the vacuum pressure, the temperature difference between the
production and purge step, the temperature during the production step, the
purge time and the volume stream of the air.
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Figure A.10: Resulting design variables for the different points on the Pareto line for the
MIL-101(Cr)-PEI-800 isotherm for CO2 with the water isotherm of the MCF-
APS-hi sorbent (case MP-M). The design variables are the adsorption time,
the CO2 production time, the vacuum pressure, the temperature difference
between the production and purge step, the temperature during the produc-
tion step, the purge time and the volume stream of the air.
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Figure A.11: Resulting design variables for the different points on the Pareto line for the
MIL-101(Cr)-PEI-800 isotherm for CO2 with the water isotherm of the Lewatit
sorbent (case MP-L). The design variables are the adsorption time, the CO2

production time, the vacuum pressure, the temperature difference between
the production and purge step, the temperature during the production step,
the purge time and the volume stream of the air.

Figure A.12: Resulting design variables for the different points on the Pareto line for the
sorbent Lewatit VP OC 106 (case L-L). The design variables are the adsorp-
tion time, the CO2 production time, the vacuum pressure, the temperature
difference between the production and purge step, the temperature during
the production step, the purge time and the volume stream of the air.
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Figure A.13: Maps oftotal system cost using the exergy consumption, as a function of
electricity price, heat price and plant cost, referring to the m3 of air contactor,
for the three different processes: KOH using point B on the Pareto chart
(highest productivity) (a), MEA using point A on Pareto chart (lowest exergy
consumption) (b) and solid sorbent case E-A (c: high kinetics k = 0.1 s−1

using point B on Pareto chart and d: low kinetics k = 0.0001 s−1 using a
middel point on the Pareto chart with an exergy consumption similar to the
KOH process). We have assumed full-load operation plant, a 20 year project
life and an 10% discount rate. The dashed lines show total costs with a value
of 100 $/tCO2 and the continuous lines a value of 200 $/tCO2. As an example:
when assuming heat costs of cth=5 $cents/kWhth, electricity costs of cel=10

$cents/kWhel and contactor costs of γ = 25000 $/m3, this would result in
total costs of 419 $/tCO2

, 300 $/tCO2
, 58 $/tCO2

and 301 $/tCO2
for the KOH,

MEA and the two solid sorbent processes, respectively.



180 appendix for chapter 2

Supplemental Experimental Procedure

Supplementary information for the liquid scrubbing processes

Alkali Scrubbing
The key parameters used for modeling the alkali scrubbing and the amine scrubbing
processes are listed in Table A.1.

KOH units details
In Carbon Engineering’s design, an open, cross-flow configuration is used, meaning
that the KOH solution trickles from top to bottom while air flows horizontally. This
design, which has been proven at pilot-scale [24], supposedly provides a fourfold
reduction in capture costs over conventional absorption towers. In order to reproduce
this cross-flow configuration, the air contactor was simulated using six rate-based
RadFrac blocks arranged in parallel, as represented in the following Figure.

Figure A.14: Representation of the approach adopted to model the air contactor.

The diameter and height of the blocks have been fixed to reproduce the inlet area
and packing depth of Carbon Engineering’s air contactor.

The kinetic model used in the alkali scrubbing flowsheet has been validated under
DAC conditions using experimental data reported by Mahmoudkhani et al. [57] and
Keith et al. [25].

The results are shown in the following Figure, while the key parameters adopted
in the two validation cases are reported in the Table below.
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Table A.9: Key operating parameters adopted in the validation cases.

Mahmoud-
khani et al.

Keith et al.

Air velocity (m/s) 0.7 1.4

Lean flowrate (L/s) 4.2 21

KOH concentration in the lean (mol/L) 3 1.1

K2CO3 concentration in the lean (mol/L) 0 0.5

Packing depth (m) 1.5 7

Packing diameter (m) 1.22 5.64

Packing type Sulzer 250X Sulzer 250Y

Number of air contactor blocks 1 6

Figure A.15: Validation of the KOH kinetic model based on experimental data reported by
Mahmoudkhani et al. [57] and Keith et al. [25].
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It can be observed that the model is able to adequately predict the CO2 recovery
in different operating conditions.

Slaker
The slaker is operated with steam at a temperature of 300°C. The heat released by
CaO dissolution in water is used to dry and preheat the CaCO3 particles, yielding
enough steam to self-sustain the reaction itself. The advantage of steam slaking over
the conventional water slaking carried out in the Kraft process is that the heat of
the slaking reaction is released at a higher temperature, thus making it more valuable.

Pellet reactor
The pellet reactor designed by Carbon Engineering provides a conversion of the fed
Ca(OH)2 of roughly 90% [25].

Calciner and Air Separation Unit
The calciner is operated at 900°C, a temperature that is reached through oxy-fuel
combustion of methane. An air separation unit (ASU) provides the required oxygen.
The gas stream coming out of the calciner, which contains exclusively CO2, steam,
unreacted O2 and inerts from the ASU oxygen supply, is used to preheat the CaCO3

particles in two counter-current cyclones and it is eventually cooled down, dried
and compressed. The specific energy demand of the calciner is calculated from
the methane feed required to reach the target CaCO3 conversion, while the energy
consumption of the ASU is according to the state of the art The energy demand for
theCO2 compression, and this holds true for all the processes, is calculated in Aspen
Plus according to Manzolini et al. [259].

The pellet reactor, the calciner and the slaker are simulated using equilibrium
(RGIBBS in Aspen Plus) or constrained equilibrium (RSTOIC in Aspen Plus) units.

Amine Scrubbing
The approach used to model the alkali scrubbing process was also adopted for the
amine technology. The most important parameters are reported in Table A.1.
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Supplementary information for the solid sorbent process

Pure component isotherms CO2

Working capacity. One criteria for choosing the representative sorbents was a
working capacity greater than zero, ∆qCO2 in molCO2/kgsorbent. It was calculated in
the form of

∆qCO2 = qads − qdes (A.1)

with qads being the capacity of the sorbent at yCO2 = 400 ppm and ambient
temperature and qdes the capacity at desorption conditions with varying vacuum
pressure and desorption temperature. The resulting graph is shown in the following
Figure. For our study we chose a maximum desorption temperature of 120

oC.
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Figure A.16: Working capacity for the different sorbents dependent on the vacuum pressure
pdes and the desorption temperature Tdes.

Fitting equilibrium data. The parameters for the Toth and Toth-cp isotherms
were estimated by fitting the experimental data for the single component adsorption
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isotherm provided by different authors, namely APDES-NFC [41], Tri-PE-MCM-
41 [68], MIL-101(Cr)-PEI-800 [45] and Lewatit VP OC 106 [48, 69, 70]. For the
adsorption of water we took the data provided in [41] for APDES-NFC and in
addition fitted the experimental points for MCF-APS-hi [71] and Lewatit VP OC
106 [76]. For the latter the Guggenheim-Anderson-de Boer (GAB) model is used [41,
75]. The experimental data points were extracted by making use of a Web Plot
Digitizer tool [260].

For the objective function the normalized standard deviation was applied, which
is commonly used to fit isotherm models to experimental data [41, 87, 261, 262]. It
includes the adsorbed amount determined experimentally qexp, the amount adsorbed
as predicted by the model qfit and the total number of experimental points N, and is
calculated in the form of

err =

√√√√√∑
[
(qexp−qfit)

qexp

]2

N − 1
· 100 (A.2)

which is minimized using the inbuilt Matlab optimization routine fmincon together
with the sequential quadratic programming (SQP) algorithm.

The error is expressed by

R2 =
∑
(
qexp − qfit

)2

∑
(
qexp − qexp

)2 (A.3)

with qexp being the mean of the experimental data.
The fitted data is plotted in the Figure below for the CO2 isotherms. The parameters

for each sorbent are listed in Table A.3 for CO2. For the APDES-NFC and the MIL-
101(Cr)-PEI-800 sorbent, the middle temperature was left out from the fitting, since
like this we were able to get a better fitting for the operating temperatures, i.e. the
adsorption and desorption temperature.
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Figure A.17: Experimental data points and fitted profile of the CO2 isotherms for different
materials (the experimental points in grey were not included in the fitting).
The experimental data was found in [41] for APDES-NFC, [68] for Tri-PE-
MCM-41, [45] for MIL-101(Cr)-PEI-800 and [48, 69, 70] for Lewatit VP OC 106.

The exemplary isotherm is representing a mean isotherm of the four materials
shown above. It was determined by first calculating a mean isotherm for three
different temperatures (298K, 340K, 373K) in the form of

qCO2,exempl(T, pCO2
) =

1
n

n

∑
i=1

qCO2,i(T, pCO2
) (A.4)

with i representing the different sorbent and n the amount of the input sorbents.
In a second step the resulting isotherm for the different temperatures was fitted. In
the Figure below, the resulting exemplary isotherm is shown.
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Figure A.18: Resulting experimental isotherm plotted for three temperatures.

Pure component isotherms H2O

Fitting equilibrium data. For the adsorption of water we took the data provided
in [41] for APDES-NFC and in addition fitted the experimental points for MCF-APS-
hi [71] and Lewatit VP OC 106 [76] using the the Guggenheim-Anderson-de Boer
(GAB) model [41, 75]. The fitting is carried out using the same approach as for the
CO2 isotherm. The fitted data is plotted in the following Figure and the parameters
for each sorbent are listed in Table A.5 for H2O.

Figure A.19: Experimental data points and fitted profiles of the H2O isotherms for MCF-
APS-hi [71] and Lewatit VP-OC [76]. The fitting of APDES-NFC was taken
from [41].
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In our analysis we used the fitting by Wurzbacher et al [75] for the water isotherm
of the APDES-NFC sorbent. For a humidity < 70% this fitting seems reliable. How-
ever, for a higher humidity there are no experimental points, and the fitting of
the experimental points seems not accurate anymore, since the isotherm of higher
temperatures overlap the isotherm of the ambient temperature which is shown in
the following Figure a). Therefore, an own fitting using the GAB model was carried
out to check the influence of a change in the isotherm shape. The fitted parameters
are listed in Table A.5. In the following Figure b), the resulting Pareto curves for
the APDES-NFC sorbent (A-A case) as well as the exemplary isotherm (E-A case)
is shown, using the fitting by Wurzbacher et al and our own fitting. A difference
in the Pareto curves can be seen, but the effect is not significant, and compared to
other uncertainty parameters like the kinetics, this influence is minor. Therefore, and
because of the lack of experimental points, the fitting by Wurzbacher et al is used
for our analysis.

Figure A.20: Analysis of different fittings for of the APDES-NFC water isotherm. a) Com-
parison of different fittings of the water isotherm for the APDES-NFC sorbent
with experimental points from [41]. The black lines show the fitting by [75]
and the grey lines show our own fitting. b) The resulting Pareto curves for
the APDES-NFC sorbent and the exemplary sorbent using the two different
water isotherm fittings.
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Isosteric Heat of Adsorption
The isosteric heat of adsorption (∆hiso) is defined as the difference between

the activation energy for adsorption and desorption. It represents the strength
of the adsorbate-adsorbent interaction and can be calculated from the Clausius-
Clapeyron [263] equation as(

∂(ln pCO2)

∂T

)
qequ

=
−∆hiso

RT2 (A.5)

where pCO2 is the partial pressure of CO2 (Pa), T is the absolute temperature
(K) and R is the universal gas constant. The isosteres were calculated at various
capacities from the experimental data points of the different materials. The average
heat of adsorption calculated from the slopes of the isosteres is shown in the Table
below.
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Table A.11: Resulting average isosteric heat for the different solid sorbents calculated by
fitting experimental data.

Material ∆hiso (kJ/mol) Source data

CO2

APDES-NFC 58.8 [41]

Tri-PE-MCM-41 96.7 [68]

MIL-101(Cr)-PEI-800 83.9 [45]

Lewatit VP OC 106 58.2 [70]

Exemplay isotherm 71.7

H2O

APDES-NFC 49.0 [41]

MCF-APS-hi 58.0 [71]

Lewatit VP OC 106 53.2 [76]

Modelling H2O-CO2 cooperative adsorption
The equivalent temperature was calculated by fitting data provided in [48] for

Lewatit. Veneman et al reported experimental data showing the capacity of the
sorbent for different humidity and temperature at a partial pressure of CO2 of 400

ppm. Through interpolation we calculated qCO2
for 6 different humidity’s, from

0-50%, for three temperatures, 288 K, 298 K and 308 K. The effect of humidity is
decreasing with increasing temperature, meaning that the gain in CO2 adsorption
is higher at lower temperature and lower at higher temperature [261], we added
a fourth temperature at 373 K where we assumed that there is no increase in the
capacity for an increasing humidity. The fitted data is shown in the Figure below
and the parameters can be found in the following Table.
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Figure A.21: Equivalent temperature fit to experimental data provided in [48].

Table A.12: Fitted parameters for the equivalent temperature included in the Toth-cp model
for the chemisorption part.

a b R2

116.87 15.00 92.12%
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When comparing our fitting of the equivalent temperature with the experimental
data by [41] for the APDES-NFC sorbent, the CO2 uptake for the ambient condition
can be represented as well.

The following Figure shows the experimental points for the APDES-NFC sorbent
for humid conditions provided by [41] for two temperatures. In addition we show
our fitted equilibrium data of CO2 for the same sorbent in dry and humid conditions,
by including the equivalent temperature to the isotherm model. For the lower
temperature and low partial pressure, which represents ambient condition, the
equivalent temperature gives a good representation of the experimental data. For
higher partial pressure the error increases, since our fitting was carried out for a
pressure of 0.04 Pa and the factor is independent of pressure. Contrary to the findings
in [261], the experimental data points of [41] show in increase in the enhancing effect
of humidity with increasing temperature. Therefore, the data points for 323 K can
not be represented by the equivalent temperature.

Figure A.22: Fitted equilibrium data of CO2 for the APDES-NFC sorbent in dry (solid
line) and humid (dashed line, pH2O = 2.55 kPa) conditions. The x-markers
represent the experimental data by [41]. Note that the lines of the dry and
humid isotherm for 323K are almost identical.

Physical properties and model assumptions
The material specific parameters which were used for the modeling are listed in

the following Table. For the exemplary isotherm a mean value was calculated using
the data of the other sorbents. The bulk density ρb was determined by using a bulk
factor fb which is the bed density divided by the particle density ρp.
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Table A.13: Specific properties for the different sorbents used for the simulations.

Parameter APDES-
NFC

Tri-PE-
MCM-41

MIL-
101(Cr)-PEI-
800

Lewatit VP
OC 106

Exemplary
isotherm

dP (mm) 1.3 [75] 1.0 [77]* 0.996* 0.688 [264] 0.996*

ρs (kg/m3) 1589.9 [265] 2120 [266] 1590* 1070 [267] 1590*

ρp (kg/m3) 61 [268] 550 500 [53] 880 [264] 497.8*

fb (-) 0.908* 0.582* - 0.773* 0.754*

ρb (kg/m3) 55.4 [75] 320.0 [266] 377.1* 680.0 [269] 375.4*

cp,s (J/kg/K) 2070 [75] 1000 [73] 892.5 [53] 1580 [270] 1514.2*

∗calculated values

Details regarding the modeling of the solid sorbent process are listed in the table
below.

Table A.15: Parameters for modeling the adsorption unit

Parameter Value Source

Plate containing sorbent

Length 0.05 m

Internal radius 0.005 m

External radius 0.005001 m

Heat capacity wall 2.457x10
6 J/(K m3)

Heat transfer fluid/wall/bed 6.7 W/(m2K) Modeled using [41]

Contactor geometry

LxWxH 1.5x1.5x1.5m [41]

Void fraction, ϵ = 1 − Vsorbent/Vaircontator 0.6 [41]
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Heat transfer
The heat transfer coefficient was calculated by using experimental data provided

in [41], where two temperature curves over the desorption time tdes are shown.
Temperature T1 was measured at the heating pipe, the second T2 in the middle
between two heating pipes in a frame filled with the sorbent. First, the experimental
data was extracted by using a Web Plot Digitizer tool [260]. The two cures were fitted
using lsqcurvefit in Matlab, as shown in the following Figure.

Figure A.23: Extracted points from experimental data by [41] and fitted curves for two
different temperature curves measured at two locations in the frame.

Each temperature is calculated by using one of the following equations

T1 = a + b
(

1 − exp
(
− 1

tdes

))
(A.6)

T2 = c + d log(tdes + e) (A.7)

with tdes being the desorption time and parameter a − e empirical constants. The
fitted parameters are listed in the following Table.
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Table A.17: Fitted Parameters for the two temperatures at different locations in the frame.

Parameter T1 T2

a 12.94

b 78.21

c 55.97

d 6.33

e -0.097

R2 0.999 0.995

The heat transfer was then calculated resolving a simple heat transfer equation
over the length l, including the sorbent density ρs = 500 kg/m3 and the specific
heat capacity cp,s = 1.4 kJ/kg/K as well as the volume of the considered element by
Gebald et al Vs = A · l = 460 cm3 [41].

h =
α dT2

dt
A(T1 − T2) · 2

(A.8)

with
α = ρsVscp,s (A.9)

Finally the resulting heat transfer coefficient is determined by calculating the mean
of Equation A.8, revealing a value of 6.7 W/m2/K .

Mass transfer
To account for the effect of adsorption kinetics, different values for the kinetic

parameter of the linear driving force model were considered. The adopted range can
be justified through mass transfer considerations.
For spherical pellets, the kinetic parameter for the linear driving force model in the
case of limiting pore diffusion can be calculated with Equation A.10 [271, 272]:

kp =
15De

R2 (A.10)

with

De = D
ϵ

τ
(A.11)

Where τ is the pore tortuosity and ϵ the porosity of the sorbent particles, which
in this analysis are assumed to be equal to, respectively, 3 and 0.33 [272]. D is the



appendix for chapter 2 195

diffusivity of CO2 in air, equal to 1.6 × 10−5 m2/s. The results are reported in the
following Figure.

Figure A.24: Kinetic parameter for the linear driving force model in the case of controlling
pore diffusion as a function of particle radius.

Electric energy requirement
In addition to the thermal energy requirement calculated with our model, which

includes the sensible heat duty of the system as well as the isosteric heat of adsorp-
tion [77, 78], we considered the electrical energy consumption of the air blowers, the
vacuum pumps and the compressors. The first two were calculated as

WAirBlower =
1

ηAB
∆pV̇air (A.12)

Wpump =
1

ηVP
ṁcpT

(
pout

pin

( γ−1
γ )

− 1

)
(A.13)

with
γ =

cp

cp − R
(A.14)

For the air blower the pressure drop is modeled during our simulation, with
an efficiency of 60%. The efficiency of the vacuum pump depends on the vacuum
pressure and decreases linearly in the range 0.7-0.6 for high to medium pressure and
0.6-0.3 for medium to low pressure.

The energy consumption for the compression of CO2 was calculated for all three
DAC technologies in the same way using a model in Aspen Plus.
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Simple model for heat requirement
The heat requirement for this chapter is calculated using a 1-D rate-based model

as explained in the main text. However, a simple method can be used to estimate
reasonably well the heat requirement for solid sorbent. The equilibrium thermal
energy Qequ,th for regeneration of the sorbents are given by the sum of the heat of
reactions and the sensible heats

Qequ,th = ∑ Qreaction + ∑ Qsens (A.15)

The specific heat of reaction Qreaction,i of CO2 and H2O is calculated using equation
A.16 and A.17 with the heat of reaction ∆Hi from Table A.11, the molar mass MWi
and the working capacity of the two components ∆qi calculated using the isotherm
models.

Qreaction,CO2 =
∆HCO2

MWCO2

(A.16)

Qreaction,H2O = ∆HH2O
∆qH2O

∆qCO2MWCO2

(A.17)

The calculation of the sensible heat of the sorbent Qsens,sorbent is carried out using
equation A.18, with the ambient temperature Tads = 298 K, the desorption tempera-
ture Tdes = 373 K the heat capacity of the sorbent cp,sorbent from Table A.14 and the
working capacity of CO2.

Qsens,sorbent = cp,sorbent(Tdes − Tads)
1

∆qCO2MWCO2

(A.18)

For the sensible heat of CO2 and H2O the two following equations were used,
with Tsat = 373K being the saturation temperature and the heat capacity cp,i.

Qsens,CO2 = cp,CO2(Tdes − Tads) (A.19)

Qsens,H2O =
(
cp,H2O(Tsat − Tads) + cp,vap(Tads − Tsat)

) ∆qH2OMWH2O

∆qCO2MWCO2

(A.20)

Supplementary information for optimization

Methodology and ranges
For the optimization of both liquid solvent processes, a direct connection between

Matlab R2018b and Aspen Plus V11 was set up. This was done by creating a Microsoft
Component Object Model (COM) through an actxserver, with which an external
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program like Aspen Plus can be controlled. Using this interface, Matlab can call
Aspen Plus, write data into the program, run it and then read and close it again.
The alkali scrubbing process has been simulated in Aspen Plus using two separate
flowsheets: one devoted to modelling the capture of CO2 and a second for the
solvent regeneration cycle. A direct connection between the two flowsheets has been
established again via Matlab. For the multi-objective optimization in Matlab, a non
dominated sorting genetic algorithm version II (NSGA-II) was applied [273]. For the
algorithm the size of the population is set to 100 and the number of generations, i.e.
iterations, is set to 20.

The decision variables for the three processes are listed in Table A.7.

Maximum air velocity for the solid sorbent process
Identifying the upper velocity limits of the presented air contactor design would

require experimental pressure drops-velocity insights, therefore, as proxy for this,
we use the minimum fluidization velocity um f as the upper bound for the velocity of
the feed stream. The velocity is calculated in the form of [274]

dpumfρa

µ
=

[
(28.7)2 + 0.0494

(
dP

3ρa(ρS − ρa)g
µ2

)]1/2

− 28.7 (A.21)

with the particle diameter dP, the sorbent ρS and air ρa=1.1839 kg m−3 density, the
viscosity of the air stream µ=0.02 g m−1 s−1 and the gravity constant g=9.81 m s−2.
The resulting velocity is shown in the Table below.

Table A.18: Maximal velocity for the considered materials.

Material uair (m/s)

APDES-NFC 0.619

Tri-PE-MCM-41 0.453

Lewatit VP OC 106 0.187

Exemplary isotherm 0.453

Supplementary information: results

Alkali Scrubbing
The effect of the design variables is shown in Figure A.2. The absorber loading

tends to increase, albeit in a scattered fashion, when moving on the Pareto towards
higher productivity; this is because higher loading allows for more CO2 capture
when keeping the contactor volume fixed. In addition, the effect of the moisture
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content on the performance seems to be negligible. The air velocity, on the other
hand, has a great influence on the energy demand and productivity. We examined
this behaviour in more detail, by carrying out a second optimization where we
only varied the air velocity within a range in line with absorption, uair = 0.5 − 2.5
m/s, while keeping the absorber loading and the water content constant at ξ = 20
kmolKOH/kmolCO2 and wH2O = 0.18 respectively. The comparison of the resulting
Pareto front is can be found in following Figure a), showing a similar performance
for both curves. In addition, in the following Figure b) the breakdown of the energy
consumption for two extreme Pareto points and both optimization runs is plotted.
The main difference between the Pareto points A and B is due to an increase in the
energy consumption of the air blower for a higher productivity, while the resulting
breakdown of both optimization runs is similar. For a higher air velocity, the increase
in the energy consumption of the air blower is proportionally higher than the
increase in the captured amount of CO2, which results in a higher specific energy
consumption of the air blower.
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(a) (b)

Figure A.25: Comparison of different design variables for the KOH process. a) Pareto front
for optimizing three design variables, i.e. absorber loading, air velocity and
water content, in blue and one design variable, i.e. air velocity, in green. b)
Breakdown of the energy consumption for the two extreme Pareto points
and both optimization runs using 3 design variables (3 var.) and one design
variable (1 var.).
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In addition, the capture rate decreases for higher air velocity, see the Figure below.

Figure A.26: Relation of the captured CO2 in kmol/h, simulated with 6 air contactor blocks,
and the air velocity with the capture rate.

Supplemental Material for Analysis with varying ambient conditions

Thermodynamic Model
The model equations are given below. For a further explanation, we refer to

literature. [50, 120, 275]. Component mass balance:

εt
∂ci
∂t

+
∂(uci)

∂z
+ ρb

∂qi
∂t

= 0 i = 1, ..., N (A.22)

Total mass balance:

εt
∂c
∂t

+
∂(uc)

∂z
+ ρb

N

∑
j=1

∂qi
∂t

= 0 (A.23)

Mass transfer: linear driving force model:

∂qi
∂t

= ki(q∗i − qi) i = 1, ..., N (A.24)
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Energy balance fluid and solid phase:

(εtCg + ρbCs + ρbCads)
∂T
∂t

− εt
∂P
∂t

+ uCg
∂T
∂z

− ρb

N

∑
j=1

(−∆Hj)
∂qj

∂t

+
2hL

Ri
(T − Tamb) = 0 (A.25)

Momentum balance: Ergun equation:

∂P
∂z

= −150µ(1 − εb)
2ρ

ε3
bd2

P
u − 1.75(1 − εb)ρ

ε3
bdP

|u|u (A.26)

Equation of state: ideal gas law:

ci =
yiP
RT

(A.27)

The optimization problem is defined as:

Pr =
ṁCO2

Vaircontactor
(A.28)

where ṁCO2 is the mass rate of CO2 captured from the air and Vaircontactor the
volume of the air contactor. Total energy consumption reads as:

e =
1

ṁCO2

[
Q̇purge

(
1 − T0

Tpurge

)
+ Q̇reg

(
1 − T0

Treg

)
+ Ẇvac,purge + Ẇvac,prod

+ Ẇblower + Ẇcomp

]
(A.29)

where Q̇purge and Q̇reg represent the heat required for the purge and regeneration
step, Ẇvac,purge as well as Ẇvac,prod the required electrical energy of the vacuum
pump, Ẇblower the energy for the air blower and Ẇcomp the energy for CO2 compres-
sion. All input variables are calculated in our optimization framework.
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Table A.19: Fitted Parameters for single CO2 and H2O isotherms using the Toth-cp as well
as the GAB model, respectively. The fitted data of the exemplary isotherm for
CO2 was taken from [120] and for the H2O isotherm from APDES-NFC sorbent
fitted by Gebald et al. [41].

Toth-cp (T0 = 298K)

Chemisorption

b0 ∆H t0 α ns0 χ

(1/MPa) (kJ/mol) (-) (-) (mol/kg) (-)

426000 64.19 0.282 0.886 3.296 3.850

Physisorption

b0 ∆H t0 α ns0 χ

(1/MPa) (kJ/mol) (-) (-) (mol/kg) (-)

15.91 3.44 0.150 6.814 1.243 2.873

GAB

C0 ∆HC K0 ∆HK Cm,0 β

(-) (kJ/mol) (-) (kJ/mol) (mol/kg) (K)

6.86 -5.088 2.27 -3.443 0.0208 1797

(a) Electric energy demand in kWh per t CO2

captured
(b) Thermal energy demand in kWh per t CO2

captured

Figure A.27: Thermal and electric energy requirements of a DAC unit with different
temperature-humidity combinations
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Table A.20: Parameters for modeling the adsorption unit

Parameter Value Source

Plate containing sorbent

Length 0.05 m

Internal radius 0.005 m

External radius 0.005001 m

Heat capacity wall 2.457x10
6 J/(K m3)

Heat transfer fluid/wall/bed 6.7 W/(m2K) Modeled using data from
Gebald et al. (2012) [276]

Contactor geometry

LxWxH 1.5x1.5x1.5m [276]

Void fraction∗
0.6 [276]

∗ϵ = 1 − Vsorbent/Vaircontator

(a) Investment Cost Share (b) Size of the DAC unit

Figure A.28: Investment Cost Share and Size of the DAC unit
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Table A.22: Input Data to the standalone DAC model

Netherlands Spain California

Average Relative Humidity (%) 80.2 62.6 41.1

SD Relative Humidity 13.3 14.4 23.1

Average Temperature (°C) 11.1 18.2 17.7

SD Temperature (°C) 6.4 6.1 10.3

Average Irradiance (W/m2) 120.2 191.4 239.3

SD Irradiance (W/m2) 194.6 274.9 320.5

Average Wind Speed (m/s) 4.8 1.4 2.2

SD Wind Speed (m/s) 2.7 0.8 1.4

Price (el, EUR ct/kWh) 3.20

Price (th, EUR ct/kWh) 0.50

Module Investment Cost (EUR) 200000

Lifetime (years) 25

Interest rate 0.1

Annual Maintenance Cost per Module (% of annual-
ized investment costs)

4%

Efficiency of ohmic heating 0.97

Figure A.29: Humidity, Schiphol (NL), 2017.
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Figure A.30: Humidity, Barcelona (ES), 2017.

Figure A.31: Humidity, Lancaster (US), 2017.
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Figure A.32: Ambient Temperature, Schiphol (NL), 2017.

Figure A.33: Ambient Temperature, Barcelona (ES), 2017.

Figure A.34: Ambient Temperature, Lancaster (US), 2017.

Testing different sorbent behaviors Different sorbents are expected to behave
similarly fro ambient temperature increases, however, they might have a different
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(a) Schiphol (NL)

Figure A.35: Productivity of the DAC unit for flexible demand and flexible operation

(a) Barcelona (ES)

Figure A.36: Productivity of the DAC unit for flexible demand and flexible operation

performance dependency with humidity. We thus used the available performance
data from the thermodynamic model and (i) removed the humidity dependency by
taking performance data for a relative humidity of 0% for all temperatures and (ii)
inverted the humidity dependency. Figure A.41 and A.43 show the original perfor-
mance data and the performance data with the two modifications. The respective
capture costs and energy requirements are depicted in Figure A.38.
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(a) Lancaster (US)

Figure A.37: Productivity of the DAC unit for flexible demand and flexible operation

Figure A.38: Cost and energy results for the stand-alone model for different sorbent behav-
iors. a) Specific CO2 capturing cost (Normalized to 300Dollar/t). b) Specific
energy requirements.
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Figure A.39: Original Performance Data

(a) Productivity (b) Specific energy requirements

Figure A.40: Performance Data for independent humidity dependency

(a) Productivity (b) Specific energy requirements

Figure A.41: Productivity and specific energy requirements for maximal productivity opti-
mization for different sorbent behaviors
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Figure A.42: Performance Data for inverted humidity dependency

(a) Productivity (b) Specific energy requirements

Figure A.43: Productivity and specific energy requirements for maximal productivity opti-
mization for different sorbent behaviors
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Modelling details

Blow-down step: pressure profile and time

The time for the blow-down step is mainly dependent on the vacuum pressure. By
fitting simulation data from the 1D model, the following equation was received

tBD =
−10pvac + a

b
(B.1)

with the parameters listed in Table B.1. Since the profile mainly varies with
pressure and does not show a notable dependence on the density or temperature of
the material, the fitting was carried out for a small dataset for one material (case s2

E-A) and different vacuum pressures over time.

Table B.1: Fitting parameters for the time of the blow-down step.

a b

20.70 20 000

211
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The pressure at each sub-step pk
vac is calculated using the following equation

pk
vac =

1
10

(
a

pb
vac

exp
(

ctk
BD

)
+ pvacexp

(
d

pb
vac

tk
BD

))
(B.2)

The fitted parameters are listed in Table B.2

Table B.2: Fitting parameters for the pressure profile of the blow-down step.

a b c d

0.18627 0.85 -0.1238 -7.138 10
−05

Heating step: temperature profile and time

The training data of the neural network for determining the heating time can be
found in Figure B.1.

The temperature profile was received by fitting several profiles retrieved from sim-
ulations using the 1D model. The profile is dependent on the desorption temperature
and the heating time

Tk
heat = (a + Tdes + b · Tc

des) ∗ atan

(
tk
heat − d · 109 · Te

des
f

)
+ (Tdes − g) · h (B.3)

The fitted parameters are listed in Table B.4.

Table B.4: Fitting parameters for the temperature profile of the heating step.

a b c d e f g h

-687.31 2791.97 0.346 -661.53 -4.296 42.005 -34162.55 0.00867

Cooling step: profile

The time of the cooling step is fixed to 350 seconds, similar to the 1D model
simulations. The temperature profile is calculated similar to the heating step, by
fitting data from the 1D model. The fitting equation is

Tk
cooling = 293 + a · Tdes · exp

(
b · tk

cool

)
(B.4)
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Figure B.1: Resulting training data (blue symbols) from the neural network together with
the validation data (red) and the testing data (black).

with the parameters listed in Table B.5.

Table B.5: Fitting parameters for the temperature profile of the cooling step.

a b

0.17485 -0.02629

Adsorption step

The total time of the adsorption step can be determined by including the air velocity
uair and the geometry of the considered sorbent

tads =
Nfeed

ads Mair

uair Aρair
(B.5)

with Mair being the molar mass of the air, A the column cross section and ρair the
density of the air.
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Figure B.2: Saturation level from simulations using the 1D model.

Saturation level

Since we are considering an equilibrium model, the saturation at the end of the
adsorption step or rather at the begin of the blow-down step is generally 100%. A
more realistic picture of the saturation level gives the simulation with the detailed
model, which shows a lower saturation level. Figure B.2 shows the saturation level
calculated for the Pareto points from the optimization of three different materials (the
same optimization as used for the validation). The saturation level α was calculated
for each grid point of the bed by calculating the actual loading referred to the full
saturation at ambient conditions

α =

Ngrid

∑
n=1

q∗CO2
((Tamb, pamb, yCO2,feed)− qn

CO2
((T, p, yCO2)

q∗CO2
((Tamb, pamb, yCO2,feed)

(B.6)

with qn
CO2

being the actual loading at the respective grid point and q∗CO2
the

loading at equilibrium.
Using this data, a neural network was trained to determine the saturation level

dependent on the particle density ρp, the desorption temperature Tdes, the vacuum
pressure pvac as well as the air volume flow V̇feed

α = NN(ρparticle, Tdes, pvac, V̇feed) (B.7)

The training, testing and validation results can be found in Figure B.3.
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Figure B.3: Training, testing and validation results.

Isosteric heat of adsorption

The isosteric heat of adsorption (∆Hads) represents the strength of the adsorbate-
adsorbent interaction and is defined as the difference between the activation energy
for adsorption and desorption. It can be calculated from the Clausius-Clapeyron [263]
equation (

∂(ln pCO2)

∂T

)
qequ

=
−∆Hads

RT2 (B.8)

where pCO2 is the partial pressure of CO2 (Pa), T is the absolute temperature (K)
and R is the universal gas constant.

Equations 0D model
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Table B.6: Equations 0D model (first part).

Blow-down step

Known: q0
CO2

, q0
H2O, y0

CO2
, y0

H2O, y0
N2

, p

Calculated: Nout, yk
CO2

, yk
H2O, yk

N2
, Tkms qk−1

CO2
+

yk−1
CO2

pk−1Vϵ

RTk−1

− yk
CO2

Nk
out −

msqk
CO2

+
yk

CO2
pkVϵ

RTk

 = 0

ms qk−1
H2O +

yk−1
H2O pk−1Vϵ

RTk−1

− yk
H2O Nk

out −

msqk
H2O +

yk
H2O pkVϵ

RTk

 = 0

ms qk−1
CO2

+
yk−1

CO2
pk−1Vϵ

RTk−1

+

msqk−1
H2O +

yk−1
H2O pk−1Vϵ

RTk−1

+

 yk−1
N2

pk−1Vϵ

RTk−1

− Nk
out −


msqk

CO2
+

yk
CO2

pkVϵ

RT

k
+

msqk
H2O +

yk
H2O pkVϵ

RTk

+

 yk
N2

pkVϵ

RTk


 = 0

mscp
(

Tk − Tk−1
)
− ∆Hi s, CO2k−1

(
msqk−1

CO2
− ms qk

CO2

)
− ∆Hi s, H2Ok−1

(
msqk−1

H2O − ms qk
H2O

)
= 0

1 − yk
CO2

− yk
H2O − yk

N2
= 0

Heating step

Known: q0
CO2

, q0
H2O, y0

CO2
, y0

H2O, y0
N2

, p, T

Calculated: Nout, yk
CO2

, yk
H2O, yk

N2
, Qexms qk−1

CO2
+

yk−1
CO2

pk−1Vϵ

RTk−1

− yk
CO2

Nk
out −

msqk
CO2

+
yk

CO2
pkVϵ

RTk

 = 0

ms qk−1
H2O +

yk−1
H2O pk−1Vϵ

RTk−1

− yk
H2O Nk

out −

msqk
H2O +

yk
H2O pkVϵ

RTk

 = 0

ms qk−1
CO2

+
yk−1

CO2
pk−1Vϵ

RTk−1

+

msqk−1
H2O +

yk−1
H2O pk−1Vϵ

RTk−1

+

 yk−1
N2

pk−1Vϵ

RTk−1

− Nk
out −


msqk

CO2
+

yk
CO2

pkVϵ

RT

k
+

msqk
H2O +

yk
H2O pkVϵ

RTk

+

 yk
N2

pkVϵ

RTk


 = 0

1 − yk
CO2

− yk
H2O − yk

N2
= 0

Qk
ex − mscp

(
Tk − Tk−1

)
+ ∆Hi s, CO2k−1

(
ms qk−1

CO2
− msqk

CO2

)
+ ∆Hi s, H2Ok−1

(
msqk−1

H2O − msqk
H2O

)
= 0
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Table B.7: Equations 0D model (second part).

Cooling step

Known: q0
CO2

, q0
H2O, y0

CO2
, y0

H2O, y0
N2

, p, T

Calculated: Nin, yk
CO2

, yk
H2O, yk

N2
, Qcoolms qk−1

CO2
+

yk−1
CO2

pk−1Vϵ

RTk−1

+ yk
CO2

Nk
in −

ms qk
CO2

+
yk

CO2
pkVϵ

RTk

 = 0

ms qk−1
H2O +

yk−1
H2O pk−1Vϵ

RTk−1

+ yk
H2O Nk

in −

ms qk
H2O +

yk
H2O pkVϵ

RTk

 = 0

ms qk−1
CO2

+
yk−1

CO2
pk−1Vϵ

RTk−1

+

msqk−1
H2O +

yk−1
H2O pk−1Vϵ

RTk−1

+

 yk−1
N2

pk−1Vϵ

RTk−1

+ Nk
in −


msqk

CO2
+

yk
CO2

pkVϵ

RT

k
+

ms qk
H2O +

yk
H2O pkVϵ

RTk

+

 yk
N2

pkVϵ

RTk


 = 0

1 − yk
CO2

− yk
H2O − yk

N2
= 0

Qk
cool − ms cp

(
Tk − Tk−1

)
+ ∆Hi s, CO2k−1

(
msqk

CO2
− ms qk−1

CO2

)
+ ∆Hi s, H2Ok−1

(
msqk

H2O − ms qk−1
H2O

)
= 0

Adsorption step

Sub-step 1

Known: qcool
CO2

, qcool
H2O, ycool

CO2
, ysat

CO2
, p, T

Calculated: Nwaste, Nfeed, yH2O, yN2ms qcool
CO2

+
ycool

CO2
pambVϵ

RTamb

+ yfeed
CO2

Nfeed −

msqsat
CO2

+
ysat

CO2
pambVϵ

RTamb

− ycool
CO2

Nwaste = 0

ms qcool
H2O +

ycool
H2O pambVϵ

RTamb

+ yfeed
H2O Nfeed −

(
ms qH2O +

yH2O pambVϵ

RTamb

)
− ycool

H2O Nwaste = 0

ycool
N2

pambVϵ

RTamb
+ yfeed

N2
Nfeed −

yN2 pambVϵ

RTamb
− ycool

N2
Nwaste = 0

1 − ysat
CO2

− yH2O − yN2 = 0
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Table B.8: Equations 0D model (third part).

Sub-step 2

Known: q1
CO2

, ysat
CO2

, ysat
H2O, y1

N2
, p, T

Calculated: Nwaste, Nfeed, y2
N2ms q1

CO2
+

y1
CO2

pambVϵ

RTamb

+ yfeed
CO2

Nfeed −

msqsat
CO2

+
ysat

CO2
pambVϵ

RTamb

− y1
CO2

Nwaste = 0

y1
N2

pambVϵ

RTamb
+ yfeed

N2
Nfeed −

y2
N2

pambVϵ

RTamb
− y1

N2
Nwaste = 0

1 − ysat
CO2

− ysat
H2O − y1

N2
= 0
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Details 1D model

Table B.9: Equations for 1D adsorption model [84]

Total mass balance

ϵt
∂( p

T )
∂t +

∂( up
T )

∂x + ρbR ∑N
j=1

∂nj
∂t = 0

Component mass balance

ϵ
∂( yi p

T )
∂t +

( uyi p
T )

∂x + ρbR ∂ni
∂t = 0 i = 1, ..., N

Mass transfer (Linear driving force model)
∂ni
∂t = ki

(
neq

i − ni

)
i = 1, ..., N

Energy balance for the fixed bed(
ϵtCg + ρbCs + ρbCads

) ∂p
∂t − ϵ

∂p
∂t + uCg

∂T
∂x − ρb ∑N

j=1

(
−∆Hj

)
∂nj
∂t

+ 4hwall-bed
di

(T − TW) = 0

Energy balance for the bed wall
∂TW
∂t = 4

Cp,W(d2
0−d2

i )
(dihwall-bed (T − TW) + d0hfluid-wall (Tfluid − Tw))

Momentum balance (Ergun equation)
∂p
∂x = − 150µ(1−ϵb)

2

ϵ3
b d2

p
u − 1.75(1−ϵb)ρ

ϵ3
b dp

|u|u

The decision variables for the detailed process simulation are listed in Table B.11.
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Table B.11: Design variables for optimizing the process, including lower and upper bound.
The upper bound for the air volume stream is calculated using the minimum
fluidization velocity [120]. For the 0D model only Tdes, pvac and V̇air are con-
sidered as decision variables.

Variable Range

APDES-NFC MIL-101(Cr)-
PEI-800

Lewatit VP OC
106

Exemplary

tads (s) 100-10000

tdes (s) 50-2200

tpurge (s) 1-400

pvac (bar) 0.1-0.9

Tdes (K) 363-373

∆Tpurge (K) 1-60

V̇air (m3/s) 2.0 × 10−7 2.0 × 10−7 2.0 × 10−7 2.0 × 10−7

−1.2 × 10−5 −8.9 × 10−6 −3.7 × 10−6 −8.9 × 10−6

Details regarding the modeling of the solid sorbent process are shown in Table
B.12.
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Table B.12: Parameters for modeling the adsorption unit using the 1D model.

Parameter Value Source

Plate containing sorbent

Length 0.05 m

Internal radius 0.005 m

External radius 0.005001 m

Heat capacity wall 2.457x10
6 J/(K m3)

Heat transfer fluid/wall/bed 6.7 W/(m2K) Modeled using [41]

Contactor geometry

LxWxH 1.5x1.5x1.5m [41]

Void fraction, ϵ = 1 −
Vsorbent/Vaircontator

0.6 [41]

Validation

Table B.14: Different combinations for CO2 and H2O isotherms.

CO2 isotherm

H2O isotherm

APDES-NFC MCF-APS-hi Lewatit VP OC 106

APDES-NFC s1:A-A - -

Exemplary s2: E-A s3: E-M s4: E-L

MIL-101(Cr)-PEI-800 s5: MP-A s6: MP-M s7: MP-L

Lewatit VP OC 106 - - s8: L-L
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Figure B.4: Composition of CO2 and H2O over the pressure for the whole cycle for case
s2/E-A (a) and b)), and Cr-MIL(101) (c) and d)).
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Figure B.5: Profiles of the adsorbed amount during one cycle, corresponding to Figure 4 in
the main text. a) shows case s2/E-A and b) Cr-MIL(101).
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Parity plots varying CO2 concentration
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Figure B.6: Parity plot for yCO2 = 0.1%.
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Figure B.7: Parity plot for yCO2 = 1.0%.
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Figure B.8: a) Purity and b) capture rate from optimizing the materials during the validation
for the 0D and 1D model.

The range of the resulting purity and recovery for both the 0D and the 1D model
are shown in Figure B.8.

Screening

The NIST/ARPA-E database, the database of novel and emerging adsorbents by
the National Institute of Standards and Technology (NIST) includes data from
published studies, both real and hypothetical. Since the database includes thousands
of isotherm data files, not only for CO2 adsorption, but also many other gases, it
is important to first filter the materials. We use a script written in MATLAB to run
through the materials filter the suitable adsorbents. The approach is graphically
shown in Figure B.9. During the filtering process, we are also excluding all data
sets for which only one temperature is available. This is necessary for the following
step, where the remaining isotherms are fitted by temperature dependent isotherm
models. The fitting process itself includes several steps, which are shown in the
flowchart in Figure B.10. For the objective function during the fitting, the normalized
standard deviation was applied, which is commonly used to fit isotherm models to
experimental data [41, 87, 261, 262]. It includes the adsorbed amount determined
experimentally qexp, the amount adsorbed as predicted by the model qfit and the
total number of experimental points N, and is calculated in the form of

err =

√√√√√∑
[
(qexp−qfit)

qexp

]2

N − 1
· 100 (B.9)
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Figure B.9: Flowchart describing the filtering process of the adsorbents from the
NIST/ARPA-E database.
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Input data from 
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Figure B.10: Flowchart fitting.
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which is minimized using the inbuilt Matlab optimization routine fmincon together
with the sequential quadratic programming (SQP) algorithm.

The error is expressed by

R2 =
∑
(
qexp − qfit

)2

∑
(
qexp − qexp

)2 (B.10)

with qexp being the mean of the experimental data.
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Table B.15: Equations of the different isotherm models.

Model Equation

Toth-cp equ. 1 qCO2 = ns,c
bc pyCO2

(1+(bc pyCO2 )
tc )

1/tc + ns,p
bp pyCO2(

1+(bp pyCO2 )
tp
)1/tp

ns,c/p = ns0,c/p exp
(

Xic/p

(
1 − T

T0

))
bc/p = b0,c/p exp

(
∆Hc/p

RT0

) (
T0
T − 1

)
,

tc/p = t0,c/p + αc/p

(
1 − T0

T

)
DSL equ. 2 qCO2 = n1

b(yCO2 p)
1+b(yCO2 p) + n2

d(yCO2 p)
(1+d(yCO2 p))

b = b0exp
(

Hb
RT

)
, d = d0exp

(
(Hd
RT

)
Toth equ. 3 qCO2 = ns

bpyCO2

(1+(bpyCO2 )
t)

1/t

ns = ns0 exp
(

Xi
(

1 − T
T0

))
b = b0 exp

(
∆H
RT0

(
T0
T − 1

))
, t = t0 + α

(
1 − T0

T

)
Langmuir-
Freundlich

equ. 4 qCO2 = ns
(bpyCO2 )

1/t(
1+(bpyCO2 )

1/t
)

ns = ns0exp
(

Xi
(

1 − T
T0

))
b = b0 ∗ exp

(
∆H
(RT0)

(
T0
T − 1

))
t = t0 + α

(
1 − T0

T

)
S-shaped equ. 5 qCO2 = qL (1 − w) + qUw

qL =
qL,0bL(yCO2 p)
(1+bL(yCO2 p))

bL/U/H = bL/U/H,0exp
(

∆UL/U/H
RT

)
w =

(
exp
(
(log(yCO2 p)−log(pstep))

σ

)
/
(

1 + exp
(
(log(yCO2 p)−log(pstep))

σ

)))γ

pstep = pstep,0exp
(−∆Hstep

R

(
1

T0 − 1
T

))
σ = Xi1 ∗ exp

(
Xi2

(
1
T0

− 1
T

))
,

qU =
qU,0∗bU(yCO2 p)
1+bU(yCO2 p) + bH (yCO2 p)
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Table B.16: Resulting ranking showing the 10 best performing materials for yCO2 = 0.4%.
The values of the maximum productivity and the corresponding thermal energy
consumption are given for the best performing adsorbent. For the remaining
materials, the deviation to the best performing one is given in percentage.

Adsorbent Pr Qth

1 Cr-MIL(101) 20.6 kg/m3/h 14.4 MJ/kg

2 MIL-101 -5% -4%

3 CuBTC -24% +9%

4 MIL-53(Al) -10% +42%

5 Zn-DABCO -24% +49%

6 MIL-101(Cr)-PEI-800 -66% -11%

7 Lewatit -74% +9%

8 Exemplary -77% +18%

9 Zeolite Na-LSX -21% +61%

10 Ca-X -27% +52%
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Table B.18: Resulting ranking showing the 10 best performing materials for yCO2 = 0.1%.
The values of the maximum productivity and the corresponding thermal energy
consumption are given for the best performing adsorbent. For the remaining
materials, the deviation to the best performing one is given in percentage.

Adsorbent Pr Qth

1 PCN-11 43.8 kg/m3/h 14.9 MJ/kg

2 MIL-101 -8% -2%

3 Cr-MIL(101) 0% +33%

4 Ca-X -25% +12%

5 Zeolite Na-LSX -32% +32%

6 Cu-BTC powder -31% +52%

7 CuBTC -29% +54%

8 MIL-53(Al) -15% +96%

9 Zn-DABCO -26% +53%

10 MIL-101(Cr)-PEI-800 -71% -30%
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Table B.20: Resulting ranking showing the 10 best performing materials for yCO2 = 1.0%.
The values of the maximum productivity and the corresponding thermal energy
consumption are given for the best performing adsorbent. For the remaining
materials, the deviation to the best performing one is given in percentage.

Adsorbent Pr Qth

1 Mg-MOF-74 207.7 kg/m3/h 4.72 MJ/kg

2 Ca-X -32% +68%

3 MIL-101(Cr)-250nm-PEI-300 -36% +88%

4 Zeolite Na-LSX -47% +118%

5 Zeolite 13X -49% +106%

6 PCN-11 -41% +205%

7 MIL-101 -52% +206%

8 Carbon -54% +139%

9 Cr-MIL(101) -43% +318%

10 Mg-X -60% +164%
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Figure B.11: a) Purity and b) recovery for resulting materials from screening with 0.04%
CO2 in the feed.

AC-C
hit

os
an
Ca-

X

Car
bo

n

Cr-M
IL

(1
01

)

CuB
TC

Cu-
BTC p

ow
de

r

M
IL

-1
01

(C
r)-

PEI-8
00

M
IL

-1
01

M
IL

-1
01

(C
r)-

15
0n

m
-P

EI-1
80

0

M
IL

-5
3(

Al)

PCN-1
1

Zeo
lite

 N
a-

LS
X

Zn-
DABCO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

ov
er

y

CuB
TC

Cu-
BTC p

ow
de

r

M
IL

-1
01

(C
r)-

PEI-8
00

M
IL

-1
01

M
IL

-1
01

(C
r)-

15
0n

m
-P

EI-1
80

0

M
IL

-5
3(

Al)

PCN-1
1

Zeo
lite

 N
a-

LS
X

Zn-
DABCO

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ur

ity

b)a)

Figure B.12: a) Purity and b) recovery for resulting materials from screening with 0.1%
CO2 in the feed.
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Figure B.13: a) Purity and b) recovery for resulting materials from screening with 1.0%
CO2 in the feed.
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Figure B.14: Resulting objectives humid using Lewatit H2O isotherm for a) 0.04%, b) 0.1%
and c) 1.0% CO2 in the feed.
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Figure B.15: Resulting objectives with dry feed for a) 0.04%, b) 0.1% and c) 1.0% CO2 in
the feed.
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The following three Tables B.22, B.24, and B.27 list the resulting materials from
the screening with different CO2 concentrations for the case with the APDES-NFC
isotherm for water.

Table B.22: Resulting materials with their DOI from screening with yCO2 = 40Pa and the
APDES-NFC isotherm for the water.

Material DOI

Ca-X 10.1039/c2ee23337a

Carbon 10.1021/la4004998

APDES-NFC 10.1021/es404430g

Cr-MIL(101) 10.1039/C2ra20641b

CuBTC 10.1016/j.cej.2015.07.020

Exemplary 10.1016/j.joule.2021.05.023

Lewatit 10.1016/j.ijggc.2015.07.014

MIL-101(Cr)-PEI-800 10.1021/acssuschemeng.6b01692

MIL-101 10.1021/Jp811418r

MIL-53(Al) 10.1021/Ie5006146

Zeolite Na-LSX 10.1016/S0167-2991(02)80202-6

Zn-DABCO 10.1016/j.seppur.2011.09.041
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Table B.24: Resulting materials with their DOI from screening with yCO2 = 100Pa and the
APDES-NFC isotherm for the water.

Material DOI

AC-Chitosan 10.1016/j.physe.2013.10.024

Ca-X 10.1039/c2ee23337a

Carbon 10.1021/la4004998

Cr-MIL(101) 10.1039/C2ra20641b

CuBTC 10.1016/j.cej.2015.07.020

Exemplary 10.1016/j.joule.2021.05.023

Lewatit 10.1016/j.ijggc.2015.07.014

MIL-101(Cr)-PEI-800 10.1021/acssuschemeng.6b01692

MIL-101 10.1021/Jp811418r

MIL-101(Cr)-150nm-PEI-1800 10.1039/C4ta01174k

MIL-53(Al) 10.1021/Ie5006146

PCN-11 10.1039/C0ee00700e

Zeolite Na-LSX 10.1016/S0167-2991(02)80202-6

Zn-DABCO 10.1016/j.seppur.2011.09.041
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Table B.27: Resulting materials with their DOI from screening with yCO2 = 1000Pa and the
APDES-NFC isotherm for the water.

Material DOI

AC-Chitosan 10.1016/j.physe.2013.10.024

Activated Carbon-600-0.5 10.1039/C2cp44436d

Ca-X 10.1039/c2ee23337a

Carbon 10.1021/la4004998

Carbon KNC-A-K 10.1021/Cm303072n

Carbon SBA-NC 10.1021/Cm303072n

Cr-MIL(101) 10.1039/C2ra20641b

CuBTC 10.1016/j.cej.2015.07.020

Exemplary 10.1016/j.joule.2021.05.023

Graphite Oxide Cu-BTC (3rd cycle) 10.1021/am404952z

Graphite Oxide/Urea Cu-BTC 2 (4th cycle) 10.1021/am404952z

Lewatit 10.1016/j.ijggc.2015.07.014

MIL-101(Cr)-PEI-800 10.1021/acssuschemeng.6b01692

MIL-101 10.1021/Jp811418r

MIL-101(Cr)-150nm-PEI-1800 10.1039/C4ta01174k

MIL-101(Cr)-250nm-PEI-300 10.1039/C4ta01174k

MIL-53(Al) 10.1021/Ie5006146

M-DNL-6 10.1002/cssc.201200907

Mg-MOF-74 10.1016/j.ijggc.2013.01.009

Mg-X 10.1039/c2ee23337a

PCN-11 10.1039/C0ee00700e

SAPO-34 zeolite 10.1080/01496395.2013.812118

SNS2-20 10.1039/c5ta01776a

UTSA-16-GO (19 mg) 10.1039/c4ta04770b

UiO-66-EA 10.1039/c5ta05997f

Zeolite 13X 10.1021/Je800900a

Zeolite Na-LSX 10.1016/S0167-2991(02)80202-6

Zn-DABCO 10.1016/j.seppur.2011.09.041
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Summary databases

A list of the databases included in the analysis:

• NIST database (3000) [142]

• Leperi et al. (280) [155]

• Sholl et al. (300) [277]

• Core database [278] with cleaned data by Arvind et al. (1200) [157]

Isotherm metrics

To describe and compare the shape of different isotherm models, characteristic
parameters can be used. There are several ways to define these metrics. Table C.1
and Figure C.1 give an overview of the properties used here.
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Figure C.1: Overview characteristics as an example on a Type I isotherm.

Table C.1: Performance evaluation metrics.

Metric Definition

Enthalpy of adsorption ∆H = ∑n
i=1 ∆Hi

Initial slope m0 m0 = limP→0
q
P = limP→0

dq
dP

Capacity at high pressure qs

Local loading q1 = q(Tamb, pamb, yfeed
CO2

)

Local slope m1 =
dq(Tamb ,pamb ,yfeed

CO2

)

dpfeed
CO2

Nonlinearity σNL =

√
∑

pCO2 =pfeed
CO2

pCO2 =0

(
dq(Tamb,pCO2

)

dpCO2
− dq

dp

)2

n

Working capacity WC = qads − qdes

Selectivity S =
qCO2 ,ads
qH2O,ads

pCO2 ,ads
pH2O,ads

Selectivity initial slope Sm =
mCO2,0
mH2O,0

A short description of the different metrics:
Slope at low pressure m0. When using specific metrics to describe the shape of the
isotherm, most studies use the Henry constant KH as an important characteristic. The
Henry constant represents the initial slope of an isotherm, but cannot be calculated
from every isotherm. E.g. for the Langmuir-Freundlich [279] as well as the s-shaped
isotherm models [280] the Henry condition is not fulfilled. Instead, we calculate a
slope at low pressure, i.e. assuming a linear slope between p0 = 0Pa and p1 = 1Pa
and calculate the steepness between these points.
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Capacity at high pressure q2. By measuring the CO2 adsorption capacity at high
pressure, we can evaluate the potential of the material to adsorb CO2. A similar
metric which is often used is the saturation capacity qequ

s . Since we include different
isotherm shapes of which not all reach a plateau at high pressure, we use the loading
at a specific pressure.

Loading at feed concentration q1. Similar to the capacity at high pressure, but
describes the number of moles of CO2 that a kg of adsorbent can adsorb at feed
concentration.

Local slope m1. This metric describes the slope of the isotherm at feed condition,
i.e. at a specific temperature T and partial pressure pCO2 .

Nonlinearity σNL. The nonlinearity is a measure for the shape of the isotherm
at low pressure, i.e from zero pressure to the feed concentration. It represents the
change in the curvature between this pressure range.

Working capacity WC. The working capacity is the difference between the equilib-
rium capacity at adsorption and desorption conditions.

Enthalpy of adsorption ∆H. This is a metric of the strength of the adsorbent
to bind CO2. A high value enables a high adsorption capacity at low CO2 partial
pressures. Typical DAC adsorbents like amine-based adsorbents, e.g., have high
isosteric heats of adsorption [41, 48, 87].

Selectivity S. The mixture selectivity of CO2 over H2O at adsorption conditions
and feed concentration.

Selectivity initial slope Sm. Comparing the slope of the CO2 and H2O isotherm
at ambient condition and feed concentration.

In Figures C.2-C.4 the distribution of the isotherm metrics is shown for the
isotherm of the databases. The red ’x’ shows the position of the resulting isotherms
when screening the databases using yCO2 = 0.04%. In Fig. C.2 a) and b) the slope at
very low pressure and at feed concentration is plotted, respectively. The majority of
the screened isotherms show low values for both metrics, but most of the selected
isotherms for DAC application can be found in the upper region. Therefore, also the
loading at feed concentration is higher for these isotherms, which can be seen by
Fig. C.2 c). A clear trend can be found between the loading and the slope at feed
conditions and the selectivity.
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Figure C.2: Distribution of the isotherm metrics for the materials of the databases, part I : a)
slope at low pressure, b) slope at feed conditions (T = Tamb, yCO2 = 0.04%, p =
pamb), and c) loading at feed conditions in mol/kg. The red crosses show the
materials left after the screening (case yCO2 = 0.04%).
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Figure C.3: Distribution of the isotherm metrics for the materials of the databases, part II :
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The red crosses show the materials left after the screening (case yCO2 = 0.04%).
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Isotherm optimization

Since it can happen, that the resulting isotherm shapes are not physically meaningful;
for example, a decreasing CO2 loading with increasing partial pressure or with
decreasing temperature, a penalty function is included within the optimization of
the isotherm parameters.

The criteria for which the hypothetical isotherm is checked are:

• qCO2(pCO2 = 1bar, T = Tads) > qmax
CO2

• qCO2(pCO2 = pfeed
CO2

, T = Tads)-qCO2(pCO2 = pdes
CO2

, T = Tdes) > 0

The verification of the hypothetical isotherm takes place at the beginning of the
optimization. If at least one of the points mentioned above is not fulfilled, the
optimization stops, the objectives are set to −Pr = 1e10 and Qth = 1e10, and new
isotherm parameters are chosen.
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Figure C.5: Optimized isotherms: a) Langmuir-Freundlich, b) Toth, c) Toth-cp, d) DSL,
and e) s-shaped. All hypothetical isotherms which were simulated during the
optimization are presented in grey, while the optimal isotherms are shown in
blue.
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Figure C.6: Optimized isotherms: a) Langmuir-Freundlich, b) Toth, c) Toth-cp, d) DSL,
and e) s-shaped. All hypothetical isotherms which were simulated during the
optimization are presented in grey, while the optimal isotherms are shown in
blue.
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Details 0D and 1D modelling and optimization

Details regarding the modeling of the solid sorbent process are listed in Table C.3.
The optimization of the 0D model is carried out using a particle swarm algorithm

adapted for multi-objectives (MOPSO), as implemented in Matlab R2021 [147]. The
settings for the algorithm like size of the particle and repository were set to 250,
which is higher compared to the optimization in our previous research [149], since
the optimization is more complex.

Table C.3: Properties for modeling the adsorption unit for both the 0D and 1D model.

Parameter Value Source

Plate containing sorbent

Length 0.05 m

Internal radius 0.005 m

External radius 0.005001 m

Heat capacity wall 2.457x10
6 J/(K m3)

Heat transfer
fluid/wall/bed

6.7 W/(m2K) Modeled using [41]

Contactor geometry

LxWxH 1.5x1.5x1.5m [41]

Void fraction, ϵ = 1 −
Vsorbent/Vaircontator

0.6 [41]

Table C.5: Material properties and geometry of the plate containing the sorbent for both
the 0D and 1D model used for the simulations.

Parameter Value

Material density 1590 kg/m3

Particle voidage 0.35

Column void fraction 0.6

Particle radius 0.001 m
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Table C.6: Design variables for optimizing the process, including lower and upper bound.
The upper bound for the air volume stream is calculated using the minimum
fluidization velocity [120]. For the 0D model only Tdes, pvac and V̇air are consid-
ered as decision variables.

Variable Range

tads (s) 100-10000

tdes (s) 50-2200

tpurge (s) 1-400

pvac (bar) 0.1-0.9

Tdes (K) 363-373

∆Tpurge (K) 1-60

V̇air (m3/s) 2.0 × 10−7 − 8.9 × 10−6

Additional information on optimized isotherms
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Table C.7: Boundaries decision variables process.

Process parameters

Tdes (K) 363-373

pvac (bar) 0.1-0.9 bar

Vfeed (m3/s) 7.0e−08-8.9e−06

Isotherm parameters

Langmuir Freundlich

ns,0 (mol/kg) 0.1-160

Xi (-) 0-15

t0 (-) 0-5

α (-) 0-10

b0 (1/Pa) 0-1

dH (kJ/mol) 0-100

Toth-cp

Xic (-) 0-5

dHc (kJ/mol) 40-110

αc (-) 0-2.5

Xip (-) 1e−3 -12

dHp 2-60

αp (-) 0-13

ns,0,c (mol/kg) 1-5

b0,c (1/Pa) 1e−2 - 10

t0,c (-) 0-1

ns,0,p (mol/kg) 1-160

b0,p (1/Pa) 5e−5-2e−4

t0,p (-) 1e−3-1
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Table C.8: Boundaries decision variables materials II.

Toth

Xi (-) 0.01-5

dH (kJ/mol) 40-130

α (-) 0.001-3.0

ns,0 (mol/kg) 1-160

b0 (1/Pa) 1e−2 - 0.1

t0 (-) 0.001-1

S-shaped

qL0
(mol/kg) 0.1-10

bL0
(1/Pa) 1e−14-1e−6

dUL (kJ/mol) 10-60

qU0
(mol/kg) 2-80

bU0
(1/Pa) 1e−15-1e−9

dUU (kJ/mol) 25-75

bH0
(mol/kg/Pa) 1e−11-1e−6

dUH (kJ/mol) 5-45

Xi1 (-) 5e−3-0.2

Xi2 (-) 0-1e4

pstep,0 (Pa) 1e−1-1e5

dHstep (kJ/mol) -80- -40

gamma (-) 4

DSL

n1 (mol/kg) 0.15-80

b0 (m3/mol) 1e−13-1e−4

Hb (kJ/mol) 5-65

n2 (mol/kg) 0.3-80

d0 (m3/mol) 1e−11-1e−2

Hd (kJ/mol) 1-60
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Table C.9: Isotherm parameters for the optimized isotherm models and the process condi-
tion using the 0D model. The parameters correspond to point A in the Pareto
charts (see Figure 4.8). Part I.

S-shaped isotherm

Parameter Value Parameter Value Parameter Value

T0 (K) 313.5 bH,0 (mol/kg/MPa) 3.78e-02 Tdes (K) 363.89

qL,0 (mol/kg) 10.0 ∆UH (J/mol) 5000.0 pvac (MPa) 0.010

bL,0 (1/MPa) 9.00e-08 Xi1 (-) 5.92e-02 V̇feed (m3/s) 8.86e-06

∆UL (J/mol) 3.12e+04 Xi2 (1/K) 1.031e+03 ∆Hads (J/mol) -6.849e+04

qU,0 (mol/kg) 9.765 pstep,0 (MPa) 1.32e-04

bU,0 (1/MPa) 1.124e+15 ∆Hstep (J/mol) -7.250e+04

∆UU (J/mol) 4.181e+04 γ (-) 4

Toth-cp isotherm

Parameter Value Parameter Value Parameter Value

T0 (K) 293 αp (-) 13.0 t0,p (-) 1.0

Xic (-) 4.69 ns,0,c (mol/kg) 5.0 Tdes (K) 363.66

∆Hc (J/mol) 9.240e+04 b0,c (1/MPa) 1.653e+07 pvac (MPa) 0.078

αc (-) 1.68 t0,c (-) 9.56e-01 V̇feed (m3/s) 2.63e-06

Xip (-) 3.09e-02 ns,0,p (mol/kg) 2.74 ∆Hads (J/mol) -1.072e+05

∆Hp (J/mol) 2.865e+04 b0,p (1/MPa) 1.30e+02

Toth isotherm

Parameter Value Parameter Value Parameter Value

T0 (K) 293 ns,0 (mol/kg) 7.77 pvac (MPa) 0.080

Xi (-) 6.51e-01 b0 (1/MPa) 3.611e+04 V̇feed (m3/s) 6.93e-06

∆H (J/mol) 9.773e+04 t0 (-) 6.79e-01 ∆Hads (J/mol) -9.793e+04

α (-) 1.89 Tdes (K) 369.22
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Table C.11: Isotherm parameters for the optimized isotherm models and the process condi-
tion using the 0D model. The parameters correspond to point A in the Pareto
charts (see Figure 4.8). Part II.

Langmuir-Freundlich isotherm

Parameter Value Parameter Value Parameter Value

T0 (K) 293 b0 (1/MPa) 5.168e+02 Tdes (K) 371.62

Xi (-) 8.23 ∆H (J/mol) 3.876e+04 pvac (MPa) 0.038

1/t0 (-) 2.79-01 ns,0 (mol/kg) 9.31 V̇feed (m3/s) 6.69e-06

α (-) 6.8 ∆Hads (J/mol) -1.091e+05

DSL isotherm

Parameter Value Parameter Value Parameter Value

n1 (mol/kg) 4.69 d0 (m3/mol) 1.00e-02 Tdes (K) 402.76

b0 (m3/mol) 9.09e-10 ∆Hd (J/mol) 2.325e+03 pvac (MPa) 0.010

∆Hb (J/mol) 6.223e+04 ∆Hads (J/mol) -6.217e+04 V̇feed (m3/s) 7.15e-06

n2 (mol/kg) 4.73e-01

Table C.13: Isotherm parameters for the optimized Toth-cp isotherm model, showing Pareto
points B and C. Point A can be found in Table C.9.

Toth-cp point B

Parameter Value Parameter Value Parameter Value

T0 (K) 293 αp (-) 1.27e+01 t0,p (-) 3.63e-01

Xic (-) 4.98 ns,0,c (mol/kg) 4.92 Tdes (K) 363.62

∆Hc (J/mol) 11.00e+04 b0,c (1/MPa) 3.879e+07 pvac (MPa) 0.080

αc (-) 1.35 t0,c (-) 1.00 V̇feed (m3/s) 8.90e-06

Xip (-) 1.00e-03 ns,0,p (mol/kg) 1.63 ∆Hads (J/mol) -1.22e+05

∆Hp (J/mol) 2.748e+04 b0,p (1/MPa) 1.09e+02

Toth-cp point C

Parameter Value Parameter Value Parameter Value

T0 (K) 293 αp (-) 13.0 t0,p (-) 1.00e-03

Xic (-) 5.00 ns,0,c (mol/kg) 5.0 Tdes (K) 363.00

∆Hc (J/mol) 1.001e+05 b0,c (1/MPa) 5.000e+07 pvac (MPa) 0.080

αc (-) 2.50 t0,c (-) 1.00 V̇feed (m3/s) 8.90e-06

Xip (-) 1.00e-03 ns,0,p (mol/kg) 6.51 ∆Hads (J/mol) -1.160e+05

∆Hp (J/mol) 5.416e+04 b0,p (1/MPa) 200
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Figure C.7: Decision variables for optimizing the optimal Toth-cp isotherm using the 1D
model (point A, kLDF = 0.11/s) and including the density and void fraction as
decision variables.
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Figure C.8: Purity and recovery for optimizing the optimal Toth-cp isotherm using the 1D
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Economic Analysis

The cost model is written in Excel and called by a Matlab code, which also includes
the simulation and optimization of the process. For the optimization, we are using a
particle swarm algorithm adapted for multi-objectives (MOPSO) for the first opti-
mization [147, 149]. For the second part of the cost analysis, where the optimization
is run having the total cost as a single objective, a particle swarm algorithm (PSO)
was used [281–283]. While details for the former can be found in chapter 3, for the
PSO, the maximum number of iterations and the swarm size were set to 3000 and
100, respectively.

Operating costs

The thermal and electrical energy demand for the operating costs is calculated within
the 1D or 0D model. The thermal energy demand includes the regeneration of the
adsorbent. The electrical energy demand includes the air blower and the vacuum
pump. More details can be found in Sabatino et al. [26] for the 1D model and in [149]
for the 0D model.

Contactor module capital cost

The capital cost of one air contactor is calculated. Because of the modular construction
of these modules, they are duplicated depending on the size of the capture plant.
The module consists of the following components:

Air blower capital cost
The air blower is of the type vane-axial fan [172].

Cp-AB = exp
(

9.6487 − 0.97566 ln (QAB) + 0.08532 (ln (QAB))
2
)

(C.1)

where QAB is the flow rate of the air feed stream in ft3/min.
Vacuum pump capital cost

The cost is calculated by using the following equation [159]

Cp-VP = exp (11.23543)VF0.750473 (C.2)

where VF is the vacuum factor, which is defined as the equivalent air mass flow,
depending on the vacuum pressure, in pounds per hour.

Air contactor
The design of the air contactor frame is similar to the type published in patents
by Climeworks [41, 66]. We consider two separate parts: the vacuum chamber and
inside the frames containing the sorbent. The chamber was considered a pressure
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vessel, while for the frames the costs were included by considering the material cost.
The dimension of the air contactor was assumed to be 1.5mx1.5mx1.5m [41] and the
costs are calculated using [172]

Cp-chamber = exp
(

5.6334 + 0.4599 ln (Wchamber) + 0.00582 ln (Wchamber)
2
)

(C.3)

with Wchamber being the mass of the material needed (in lb). We assumed the
chamber to be made of stainless steel with a price of 4 $/kg [284] and a density of
8 t/m3. The data is presented in Table C.15.

Table C.15: Specification of the vacuum chamber.

Components amount mass (kg)

lids 2 100.53

walls (axial) 4 288.00

walls (vertical) 2 93.73

Wchamber 482.27

The area of the frames is 1.5mx1m and is assumed to be made of Aluminum
and Ultramid PA with prices of cAl = 2.37 $/kg [285] and cPA = 1.8 $/kg [286],
respectively. The data for one frame is presented in Table C.16. We assume that one
air contactor includes Nframes = 48 frames and the overall costs are calculated with

Cp-frames = Nframes

n

∑
i=1

(mi ∗ ci) (C.4)

with n being the amount of components in one frame, mi the mass of the material,
and ci the price of the material. The overall costs per air contactor Cp-AC is the sum
of the chamber Cp-chamber and the frames Cp-frames.

Storage tank

The capital cost of the storage tank can be calculated with Equation C.3 with the
mass of the tank [172]

Wtank = π (Di + ts) (L + 0.8Di) tsρ (C.5)

with the thickness

ts =
PdDi

2SE − 1.2Pd
(C.6)
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Table C.16: Specification of the frames in the air contactor module.

Components for 1 frame amount material mass (kg)

support structures (profiles) 4 Aluminum 0.74

wedge spacers and sealing strips - Ultramide (PA) 0.158

primary HEX (pipes) 10 Aluminum 1.070

secondary HEX (fins) 100 Aluminum 2.025

and the internal gauge design pressure (in psi)

Pd = exp
(

0.60608 + 0.91615 ln (P0) + 0.0015655 ln (P0)
2
)

(C.7)

Here Di is the internal diameter, L the tangent-tangent length, S the maximum
allowable stress of the shell material (13570 psi for stainless steel [172]), E the
fractional weld efficiency (assuming 0.85 [172]), and P0 the operation pressure
(assumed to be ambient pressure).

The overall capital cost of the tank are [172]

Cp-tank = Cp-vessel + Cp-PL = Cp-vessel + 2275D0.2094
i (C.8)

The size of the tank is dependent on the size of the air capture plant and for the
type a carbon steel-horizontal tank with two ellipsoidal heads is chosen. We assume
that the volume of CO2 produced, VCO2 during two cycles needs to be stored as a
buffer. In addition, we assume that the capacity of the tank has to be 20% larger than
VCO2 and the ratio between the internal diameter Di and tangent-to-tangent length L
is 1:5, i.e.

L = 5Di (C.9)

With Equation C.9 and the following equation for calculating the tank volume Vtan
of a tank with two ellipsoidal heads

Vtan =
D2

i π

4
L +

D3
i π

24
2 (C.10)

the dimension of the tank can be specified.
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Condenser

To extract the water in the product stream, a condenser is included. The capital cost
is calculated by [159]

Cp-cond = exp (7.169723)A0.726108
cond (C.11)

with Acond being the area required to condense the water. The thermal coefficient
is assumed to be 200 Wm2/K. The temperature of the product steam is assumed to
be at desorption temperature and the water content in the stream is given by the
model.

Energy requirement

While the thermal energy demand is dependent on the regeneration of the sorbent
and is calculated within the model, we include the electrical energy consumption of
the air blowers WAB and the vacuum pump Wpump:

WAB =
1

ηAB
∆pV̇air (C.12)

Wpump =
1

ηVP
ṁcpT

(
pout

pin

( γ−1
γ )

− 1

)
(C.13)

with
γ =

cp

cp − R
(C.14)

For the air blower the pressure drop is modeled during our simulation, with
an efficiency of 60%. The efficiency of the vacuum pump depends on the vacuum
pressure and decreases linearly in the range 0.7-0.6 for high to medium pressure and
0.6-0.3 for medium to low pressure.

Scaling

The Chemical Engineering Plant Cost Index (CEPCI) of the year 2020 was applied to
convert the purchase cost using a value of 596

C2020 = Cref

(
I2020

Iref

)
(C.15)

For the storage tank and the condenser, the economy of scale approach is applied

Cnew
i = Cbase

i ·
(

capinew

capibase

)m

(C.16)
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with C being the cost of equipment i with the capacity cap, new corresponds to
the targeted case and base to the known cost with the related capacity, and m the
scaling factor as shown in Table C.18.

The second approach is the concept of learning-by-doing which is applied to the
air contactor module including the air blower, the housing of the air contactor, and
the vacuum pump:

Cnew
module = Cbase

module

(
Pnew

Pbase

)b
(C.17)

with

Cbase
module =

n

∑
i=1

Ci (C.18)

and

LR = 1 − 2b (C.19)

where Pnew refers to the cumulative production, i.e. the assumed targeting pro-
duction of this study, Pbase the production of the base-case, LR the learning rage,
and b the experience index related to the rate of cost reduction.
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Table C.18: Summary of economic parameters used in this study.

Lang Factor 4.67

Delivery cost factor 1.05

annual capacity factor 90%

scaling factor storage tank 0.3 [287]

scaling factor condenser 0.59 [287]

learning rate 0.101

discount rate 7.0%

electricity price 0.108 USD/kg

heat price 0.026 UDS/kg

sorbent price 30 USD/kg

sorbent lifetime 2 years

economic life plant 10 years

Additional results economic analysis
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0.0001 1/s. Using results from point A.
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Lambert function

The equation derived from the equivalent circuit of the PV part, Equation 3 from the
main text, is implicit and not solvable analytically. The equation must be expressed
as a function of J in the form V = f (J) or as a function of V as J = f−1(V) in order to
be solvable. To that end, the Lambert W function can be used [203]:

W(x)eW(x) = x (D.1)

The Lambert function is especially useful when trying to solve an equation in
which the unknown variable appears both inside and outside of an exponential
function, i.e. like in Equation 3 from the main text. Using the Lambert function W
within Matlab, Equation 3 can be rewritten in two ways; with J as the dependent
variable and VPV as the independent variable:

J =
JL − V

njRsh

ns

(
1 + Rs

Rsh

) − niVth
nsRs

W

[
Rs J0

niVth

(
1 + Rs

Rsh

)
exp

 V
njniVth

+
Rs(JL − V

njRsh
)

niVth

(
1 + Rs

Rsh

)
] (D.2)

or in the form V = f (J):

V = −JRs − (J − JL)Rsh − niVthW
[

J0Rsh
niVth

exp
(
(JL − J)Rsh

niVth

)]
(D.3)

where JL, J0, Rs, Rsh, nj are the parameters defined previously. ni is the ideality
factor, a fitting parameter that describes how closely the experimental behaviour of
the solar cell matches the theory. In an ideal solar cell, the p-n junction behaves as
an infinite plane, there is no recombination losses in the space-charge region and ni
is equal to 1.

One disadvantage of Equation D.3 is the presence of the shunt resistance Rsh -
often in the range of 10

3 - in the exponential which can cause some calculation
problems when using Matlab. In brief, Equation D.2 is preferred and is used when

267
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possible, but Equation D.3 is necessary when dealing with solar cells made of
different materials.

resolution according to bouzidi

Because of the sensitivity of the Lambert function to changes in the boundary
conditions, the model can easily become difficult to solve and therefore another
approach is applied to fit the j-V curves for the solar cell. Using the method proposed
by Bouzidi et al., Equation 3 from the main text is divided into two equations,
one valid for low voltages and one for higher voltages. The method is presented
hereinafter for a solar cell consisting of one single junction; for a heterojunction solar
cell, Equation 4 from the main text needs to be considered as well.

To fit all the parameters with two separate equations, Equation 3 first needs to be
rewritten in the form of [206]

J = JPa − Js

[
exp

(
1

niVth

(
V
nj

+ JRs

))]
− Ga

V
nj

(D.4)

with the photocurrent JPa, the diode saturation current Js as well as the shunt and
series conductance Ga defined as

JPa =
JL

1+ Rs
Rsh

Js =
J0

1+ Rs
Rsh

Ga =
1

Rs+Rsh

(D.5)

For low voltages, the linear part of Equation D.4 dominates and a simple linear fit
is sufficient:

J = JPa − Ga
V
nj

(D.6)

Using this equation in the form J=f(V), both parameters JPa and Ga are fitted against
the experimental data.

In a second step, for higher voltages with V
nj
+ JRs ≫ niVth, the j-V curve is fitted

using the previously calculated parameters, i.e. IPa and Ga. As proposed by [206],
first, a corrected current density Jc across the solar cell is calculated

Jc = J + Ga
V
nj

(D.7)

Here, Ga is the series conductance calculated by the linear fitting, and J and V are
given by the experimental data points.
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Using the corrected current density, Equation D.4 can be rewritten for high voltages
as

Jc = JPa − Js

[
exp

(
1

niVth
(

V
nj

+ JRs)

)]
(D.8)

For the fitting, Equation D.8 needs to be rearranged in the form of V = f(J,Jc)

V
nj

= f (J, Jc) = C0 + C1 J + C2ln
(

1 − Jc

JPa

)
(D.9)

where 
C0 = −niVthln Js

JPa

C1 = −Rs

C2 = niVth

(D.10)

Using Equation D.9 the coefficients C0, C1, and C2 can be fitted using the exper-
imental data points as well as the previously calculated JPa and Jc. Finally, with
the results of both fittings, the parameters Rs, JL, J0 and Rsh can be deduced using
Equations D.10.

data availability

The components or group of components for which the j-V curve was available are
shown in Table D.1.

Table D.1: List of the data availability of the J-V curves of the five PV-EC devices modeled.

Urbain 2015 Urbain 2016 Jacobsson Varadhan Sun

- Solar cell - Solar cell - Solar cell
- Solar cell

+ anode

+ electrolyte

- Solar cell

+ anode

+ electrolyte

- Anode - Whole device - Electrolyser - Anode - Anode

- Cathode - Cathode

- Electrolyte - Electrolyte

As a matter of fact, the j-V characteristics of the whole Varadhan device together
with the j-V curve of the electrolyzer were available, but the data was not consistent
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and therefore these curves could not be used. Indeed, the data extracted from the
published j-V measurements of the electrolyzer are implying that the overpotential
caused by the electrolyzer is smaller than the overpotential of the anode alone, which
is not possible since the electrolyzer includes both the anode and the cathode. Since
no additional information could be found, it was decided to neglect the overpotential
of the cathode. Neglecting the losses at the cathode has a minimal impact on the
overall output of the model, since the losses of the electrolyzer in its entirety are
mainly due to the slow kinetics of the OER and its resulting high overpotential [288].

In Figure D.1 the j-V curves of the different components of the Urbain 2016 device
are plotted. The curve of the whole PV-EC device and the curve of the solar cell were
extracted from literature [195]. The electrolyser curve in yellow was deducted from
the two previous curves and the purple curve, showing the electrolyzer, is obtained
from the model.

Figure D.1: j-V curve of the different components of the Urbain 2016 device.

parity plots

Figure D.2 shows the parity plots for the solar cell part, comparing the experimental
data points from literature with the calculated data using the model. In Figure D.3
the parity plots of the electrolyzer part are plotted.



appendix for chapter 5 271

0 2 4 6

Experimental J (mA/cm2)

0

2

4

6

C
al

cu
la

te
d 

J 
(m

A
/c

m
2
)

RMSE = 0.09 

R2 = 0.99

0 1000 2000 3000

Experimental V (mV)

0

500

1000

1500

2000

2500

C
al

cu
la

te
d 

V
 (

m
V

)

RMSE = 11.6 

R2 = 0.99

0 2 4 6 8 10 12

Experimental J (mA/cm2)

0

2

4

6

8

10

12

C
al

cu
la

te
d 

J 
(m

A
/c

m
2
)

RMSE = 0.12 

R2 = 0.99

0 1000 2000 3000

Experimental V (mV)

0

500

1000

1500

2000

2500

C
al

cu
la

te
d 

V
 (

m
V

)

RMSE = 40.39 

R2 = 0.99

1900 2000 2100 2200 2300 2400

Experimental V (mV)

1900

2000

2100

2200

2300

2400

C
al

cu
la

te
d 

V
 (

m
V

)

RMSE = 14.11 

R2 = 0.98

Figure D.2: a) Urbain 2015, b) Urbain 2016 c) Jacobsson d) Varadhan e) Sun. Parity plots of
the model for the solar cell part of the devices. On the x-axis, the experimental
data points extracted from the literature are displayed while on the y-axis,
the output of the model is shown. The regression coefficient R2 indicates the
relative accuracy while the root mean square error RMSE shows the absolute
accuracy.
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Figure D.3: a) Urbain 2016 - electrolyser, b) Jacobsson - electrolyser, c) Varadhan - electrol-
yser, d) Urbain 2015 - Anode, e) Urbain 2015 - Cathode, f) Sun - Anode, g) Sun
- Cathode, h) Sun - Electrolyte. Parity plots of the model for the different com-
ponents of the electrolyser part of the devices. On the x-axis, the experimental
data points extracted from the literature are displayed while on the y-axis, the
output of the model is shown. The R2 and the RMSE of each fitting is also
displayed.
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Illumination for Utrecht and Sevilla

Figure D.4 shows the distribution of the illumination for Utrecht and Sevilla over
the year 2019.

Figure D.4: Illumination distribution in 2019 in Sevilla and in Utrecht.
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detailed sth distribution

In Figure D.5 the distribution of the STH efficiency over one year for all five devices
is shown. For the calculation the illumination data from Figure D.4 was used.
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a) b) 

c) d) 

e) 

Figure D.5: STH efficiency distribution over the year 2019 in Sevilla and in Utrecht for the
5 PV-EC devices: a) Urbain 2015, b) Urbain 2016, c) Jacobsson, d) Varadhan
and e) Sun.
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Acronyms

ĵL nominal photogenerated current density, mA/cm2

P̂sun ideal illumination, sun

α Isotherm exponent

α saturation level

β parameter of the GAB model

χ Isotherm isotherm parameter

∆G0H2 Gibbs free energy, kJ/g

∆HC, ∆HK GAB isotherm parameters, kJ/mol

∆H heat of adsorption, kJ/mol

∆q, wc working capacity, mol/kg

ṁ mass flow, kg/s

Q̇ heat requirement, kJ

V̇ volume flow, m3/s

V̇f eed feed volume stream, m3/s

Ẇ specific work, kJ

ϵ Void fraction

η efficiency

ηF Faradaic efficiency

η2nd second law efficiency

ηSTH solar to hydrogen efficiency

γ contactor/module cost, $m3
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γ parameter for vacuum pump

µ viscosity, g/m/s

Φ purity

ρ density, kg/m3

σ S-shaped parameter

τ pore tortuosity

τH Tafel slope of HER, mV/dec

τO Tafel slope of HER, mV/dec

cel electrical energy cost, $cents/kWh

cth thermal energy cost, $cents/kWh

ξ absorber loading, kmol/kmol

A area, m2

a Fitting parameter equivalent temperature

a specific area, m2/tH2

a, b, c, d, e empirical constants

b Fitting parameter equivalent temperature

b Isotherm affinity coefficient, 1/kPa

b0 Isotherm affinity coefficient at reference temperature, 1/kPa

CG/G,0/m/m,0 GAB isotherm parameter

CG/G,0/m/m,0 GAB isotherm parameter

D mass diffusivity, m2/s

d diameter, mm

d specific reboiler duty, MJ/kglean

e, E specific exergy/energy, MJ/kgCO2

E° thermodynamic potential
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eyear
H2

energy stored in hydrogen molecules in a square meter of PV-EC over the
year, kJ/m2

fsplit split fraction

fb bulk factor

g gravity constant, m/s2

H height, m

h heat transfer coefficient, W/m2/K

j current density, mA/cm2

j0 saturation (dark) current density, mA/cm2

j0H exchange current density at HER, mA/cm2

jL photogenerated current density, mA/cm2

j0O exchange current density at OER, mA/cm2

k mass transfer coefficient, 1/s

Kads/0
GAB isotherm parameter

kB Boltzmann constant, J/K

L length, m

m mass, kg

myear
H2

hydrogen produced over the year per square meter, tH2/m2

MW molar mass, mol

N amount of moles, mol

ns0 Isotherm maximum capacity at reference temperature, mol/kg

ns Isotherm maximum capacity, mol/kg

ni ideality factor

nj number of junctions

ns number of solar cells connected in series
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p pressure, Pa

p0 saturation pressure of water vapor, kPa

pstep step partial pressure, MPa

Psun real illumination, mW/cm

Pr productivity, kg/m3/h

q adsorbed phase concentration, mol/kg

q elementary charge, C

q solid phase concentration, mol/kg

R ideal gas constant, J/mol/K

R universal gas constant, J/mol/K

R2 error

Rs series resistance, Ω/cm2

Rsh shunt resistance, Ω/cm2

Rsol electrolyte solution resistance, Ω.cm2

T temperature, K

t Isotherm exponent

t time, s

T0 reference temperature, K

t0 Isotherm exponent at reference temperature

u velocity, m/s

umf minimum fluidizing velocity, m/s

V voltage, mV

V volume, m3

Vc column volume, m3

Vth thermal voltage (25.9 mV at T = 300K)
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W width, m

W work, MJ

w mass fraction

w weighting function

X conversion factor

y concentration, ppm

y molar fraction

∆Hads isosteric heat of adsorption, J/mol

∆gmin specific minimum Gibbs free energy, kJ/mol

Q̇ specific heat, kJ/kg

Φ purity

cp specific heat capacity at constant pressure, kJ/kg/K

eth Specific thermal energy, kJ/kgCO2

r capture rate

Abbreviations, Subscripts and Superscripts

AB air blower

ads adsorption

ASU air separation unit

b bulk

BD blow-down

CAPEX capital expenditures

CCS Carbon Capture and Storage

chem chemisorption

comp compression

cp chemisorption-physisorption
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CSS cyclic steady state

DAC direct air capture

des desorption

DSL dual-site Langmuir

EC electrochemical

el electrical

eq equivalent

equ equilibrium

err error

exempl exemplary

exp experimental

f fluid,final

fit fitted

GAB Guggenheim, Anderson, and de Boer

GCMC Grand Canonical Monte Carlo

HER hydrogen-evolving reaction

i component

KOH Potassium hydroxide

LHV lower heating value, MJ/kg

max referring to maximum

MEA Monoethanolamine

mf minimum fluidization

min referring to minimum

MOF metal-organic framework

N number of experimental points
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n amount of sorbents

NET Negative Emissions Technology

NRTL Non-Random-Two-Liquid-Modell

OER oxygen-evolving reaction

OPEX operational expenditures

p particle

PC photocatalytic

PE photoelectrodes

PEC photoelectrochemical

phys physisorption

prod production

PSA pressure swing adsorption

PV photovoltaic

PV-E photovoltaic + electrolyzer

PVSA pressure-vacuum swing adsorption

refr refrigeration

reg regeneration

RH relative humidity

RK Redlich-Kwong

s solid, sorbent

sat saturation

sens sensible

SLJ solid-liquid junction

spec specified

SRK Soave-Redlich-Kwong
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STH solar-to-hydrogen

th thermal

vac vacuum

vap vapor

VP vacuum pump

VPTSA vacuum-pressure temperature swing adsorption
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