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Abstract

With ever more people living in cities worldwide, it becomes increasingly important to understand and improve the impact of the ur-
ban habitat on livability, health behaviors, and health outcomes. However, implementing interventions that tackle the exposome in
complex urban systems can be costly and have long-term, sometimes unforeseen, impacts. Hence, it is crucial to assess the health
impact, cost-effectiveness, and social distributional impacts of possible urban exposome interventions (UEIs) before implementing
them. Spatial agent-based modeling (ABM) can capture complex behavior–environment interactions, exposure dynamics, and social
outcomes in a spatial context. This article discusses model architectures and methodological challenges for successfully modeling
UEIs using spatial ABM. We review the potential and limitations of the method; model components required to capture active and
passive exposure and intervention effects; human–environment interactions and their integration into the macro-level health im-
pact assessment and social costs benefit analysis; and strategies for model calibration. Major challenges for a successful application
of ABM to UEI assessment are (1) the design of realistic behavioral models that can capture different types of exposure and that
respond to urban interventions, (2) the mismatch between the possible granularity of exposure estimates and the evidence for
corresponding exposure–response functions, (3) the scalability issues that emerge when aiming to estimate long-term effects such
as health and social impacts based on high-resolution models of human–environment interactions, (4) as well as the data- and
computational complexity of calibrating the resulting agent-based model. Although challenges exist, strategies are proposed to
improve the implementation of ABM in exposome research.

Keywords: urban exposome; agent-based modeling; social cost–benefit analysis; scenario modeling; urban health interventions;
complex systems

Introduction
Stressing the fact that genetic models alone can only explain
about 10% of human diseases and that environmental and be-
havioral factors are essential for their prevention, a new disci-
pline called exposome science has emerged.1 The concept of the
human exposome can be understood as “the totality of exposures
we face throughout our lives and includes the food we ingest, the
air we breathe, the objects we touch, the psychological stresses
we face, and the activities in which we engage” that affect our
health.2 On a global level, unhealthy food, followed by smoking,
and air pollution are the risk factors with the largest attributable
mortality.3 These environmental and behavioral factors belong
to the most frequent causes of cardio-metabolic pulmonary
diseases. The latter account for approximately one-third of all
premature deaths globally.4

Acknowledging this impact of the built, physicochemical,
and social environment on our health, either through exposure

to environmental factors such as air pollution, noise, and heat or
through impacting health-relevant behavior such as physical ex-
ercise, diet, or smoking, has considerable implications for spatial
planning and architecture.5,6 In light of that, the growing trend of
worldwide urbanization7 poses a threat but also an opportunity
to design structural, risk-minimizing solutions to improve public
health. We call urban interventions that target the human expo-
some to improve health “urban exposome interventions” (UEIs).
Designing and implementing UEIs is challenging as they are often
costly and will impact a city for many years and often in unfore-
seen ways. To avoid unintended social and health consequences
and select the most cost-effective policy option, it is necessary to
evaluate interventions ex ante, before implementing them.
Understanding the social distributional impacts of interventions
is moreover key for communicating who benefits and planning
compensation for those who loose out. This can help build social
acceptance of interventions.
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While there are reviews of intervention effectiveness
studies that are based on (quasi) experiments of implemented
interventions,8-13 it is unknown whether in different cities, the
same result would be achieved. The exact urban context and ini-
tial behavioral patterns influence how interventions are imple-
mented and how they impact urban life. It can be expected that
the effectiveness of interventions in the complex system of a city
behaves in a non-linear fashion and that path dependency
strongly impacts the outcomes. For example, constructing mas-
sive bike infrastructure in a very car-centered and polluted city
might result in different changes of modal choice compared with
constructing the same infrastructure in a city with already a ma-
jority of bikers. Apart from these real-world experiments, there
are some health impact assessment (HIA) studies that evaluate
hypothetical or real interventions,14,15 or the impact of a hypo-
thetical change of behavior or an environmental stressor without
intervention.16-18 The latter set of methods have limited capabili-
ties to model behavioral and environmental feedback, adaptive
processes, and non-linear effects. However, in many situations,
such as in traffic, the behavior of one person depends on the be-
havior of others and may have externalities that affect others. In
other words, these intervention assessment methods do not ap-
propriately capture the complex interactions between the envi-
ronment, human behavior, and health and social outcomes.19

In a nutshell, the complexity of UEI modeling has at least
three dimensions: (1) The interaction between human behavior
and the physical and social environment in cities20; (2) the health
impact of the multiple, partially overlapping exposures resulting
from an interaction of exposure and personal attributes1,21; and
(3) the wider distributional social outcomes of interventions.22

Which method would be appropriate to estimate intervention
impacts taking these interactions into account?

We and others have proposed using spatial agent-based
modeling (ABM) to model the impacts of UEI scenarios. ABM is a
simulation method in which autonomous agents (ie, representing
citizens) interact with each other and the environment, changing
the attributes of the agents and the environment. These micro-
level interactions (transition rules) may ultimately impact
macro-level outcomes, such as public health and social impacts.
Spatial ABM means that the ABM model is embedded in geo-
graphic space represented by maps (eg, the urban environment
and population distribution). ABM has been identified as one of
few currently existing methods with an ability to capture
complex processes, from emergence, feedback-loops to path de-
pendency, non-linearity, and adaptation.23,24 We understand
UEI-assessment ABMs as a class of models that aim to estimate
changes in environmental stressors and individual behavior
through UEIs, the resulting exposure interactions, their health,
and social impacts using spatial ABM. There are a variety of
scopes and contexts for which this class of model can be applied,
which is why this article covers a range of different intervention
types, exposure types, and potentially required sub-models.

While ABM has in recent years gained interest from the re-
search community in a variety of disciplines also in public
health,25-31 there is a lack of understanding of the model con-
straints and meaningful architecture for an UEI analysis. We aim
to start filling that gap by reviewing the potential model specifi-
cations and methodological challenges when applying ABM to es-
timate impacts of UEIs and proposing strategies for overcoming
them. Further, predictive ABMs require a sufficient understand-
ing of the process underlying the model components. However,
for some aspects of an UEI assessment ABMs, we are still lacking
high-quality, standard process-based models, such as for human

health behavior or granular exposure-dose–response functions as
we will show in the following sections. This article contributes by
identifying the necessary components and reviewing the state-
of-the-art data and models for each of them, in order to direct fu-
ture research. Further work is needed to analyze the level of
detail required to capture impacts of UEIs and the modeling effi-
ciencies that can be made without increasing uncertainty.

We discuss what ABMs have to offer in the context of UEI as-
sessment and how this compares to quantitative HIA, and the
model components required to capture the urban exposome and
the effects of different types of UEIs. Subsequently, we elaborate
on the concepts, spatial representation, sub-models, and transi-
tion functions that define the human–environment interactions
in the model. Afterward, the integration of the various ABM mod-
ules—environmental stressors, behavior, acute health impacts,
chronic health impacts, and the social cost–benefit analysis
(SCBA)—and their temporal scales is discussed. Based on that,
the emerging scalability issues and possible solutions are dis-
cussed. Next, the most efficient calibration strategies and neces-
sary data sources are reviewed. The final section concludes with
a discussion of the research agenda.

The potential of spatial ABM for UEI
assessment
Prospects and constraints
There are multiple reasons why spatial ABM is a particularly suit-
able method for UEI modeling. (1) As environment–behavior
interactions lie at the heart of ABMs, it is well-suited for modeling
exposure influenced by specific behaviors, their timing, and loca-
tion. An attractive feature is that it can be linked to geographic
information systems (GIS) for representing spatial context.30,32 (2)
Equally important is that any mathematical relationship—also
non-linear, complex interactions—can be algorithmically mod-
eled in an ABM (eg, the complex environment–behavior–health
interactions discussed in the fourth paragraph of the
“Introduction”). (3) ABMs can integrate many factors resulting in
a holistic and context-dependent model.29 This also entails that
it is possible to integrate a SCBA into the intervention assessment
to analyze the health and economic consequences of UEIs for dif-
ferent social groups. (4) ABMs are fit for scenario modeling and
forecasting, which allows estimating future effects contingent on
interventions32-35 Since ABMs are based on process-oriented
models of the components and relationships, a change in some
of the input variables through an urban intervention (eg, an at-
tribute of the infrastructure) will lead to different behavior of de-
pendent components (eg, transport behavior). Sensitivity
analysis, as well as quantitative uncertainty analysis, provides el-
egant ways of dealing with uncertainty. (5) Another important as-
pect of ABMs (and other simulation methods) is that it is an
intuitive visualization and communication tool. ABMs can help
explain the processes underlying intervention effects because
they explicitly and thus transparently model relevant relations.
ABM is thus different from a black-box approach to prediction.
Moreover, by summarizing and displaying the effects of interven-
tions, ABM has the potential to become a powerful tool to support
decision-making (similar to other GIS-based planning support
systems36,37) and participation processes.38-40 (6) Finally, once a
suitable ABM framework has been built up in a generic, modular
way, it can be (re-)used or extended for many purposes, such as
new interventions, other cities, and improved calibration through
newly available quality data, as has been done with the transport
ABM MATSim.41
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While these features are promising for UEI assessment, there
are also limitations that need to be considered. The estimations
of ABM will be only as good as the process-based models of which
the ABM is composed. In other words, if the process underlying
the model components and their interactions is not well under-
stood or there is not enough data to appropriately calibrate its
parameters, then the ABM might lead to a false sense of accu-
racy. Next, the number of variables and interactions can quickly
lead to the curse of high-dimensionality,42 which can become very
computationally and data-intensive to calibrate and validate.

Benefits of ABM for HIA
Quantitative HIA is increasingly used for urban planning and has
been recommended by the WHO.43,44 Urban Environmental HIA
involves “modeling to determine likely exposures and epidemio-
logical knowledge to translate these into estimates of potential
health effects.”45 These estimations are usually based on deter-
ministic or probabilistic models that integrate coefficients of for-
mer published studies.14,17,18,46 ABM can improve the modeling
approaches on three dimensions: (1) calibration and use of data;
(2) georeferencing; and (3) the ability to model complex interac-
tions.

Regarding the calibration and use of data, deterministic and
probabilistic HIAs model the changes in exposure caused by an
intervention based on coefficients taken from generalized evi-
dence (that combines multiple studies), if available.14 The prob-
lem is that there is no way to check if the coefficients are correct
for the local context (eg, the influence of transport infrastructure
on behavior). Generalized or average impacts might deviate sub-
stantially from the local impact because each neighborhood and
location varies in relevant variables, such as socioeconomic con-
text, demographics, urban built environment, climate, or culture.
In an ABM, the causal relations or processes that give rise to a
change in outcome are modeled. What is more, the transition
functions that model the behavior of agents, the air pollution
field, or any other element of the model can be calibrated using
data from the place that is simulated. Various calibration strate-
gies are discussed in Section 7. As the transition functions have
been parameterized within the spatial context, the resulting pre-
dictions of behavior, environmental stressor, and exposure
change are likely more realistic and robust.

The second dimension is the georeferencing of the model com-
ponents. Deterministic and probabilistic HIAs usually use spatial
data to determine the status quo environmental stressors and
the difference caused by the intervention.47,48 Moreover, while
most HIAs use a baseline health profile for the analyzed region as
a whole, few use census or cohort data to identify the heteroge-
neous spatial distribution of risk groups. However, exposure is
usually calculated by taking the residential address as a proxy for
people’s 7*24 h location. A spatial ABM can model dynamic, inter-
active behavior in a concrete spatial environment, which might
lead to more granular and accurate exposure and behavior esti-
mations. Thereby, ABMs can differentiate between the spatial
daily activity patterns of different social groups, for example,
based on census and behavioral data. Finally, the exact way that
an intervention, such as one in the transport system, is spatially
implemented in a city has a difference in impact, as different
people are affected by it, and different activities are offered in the
place of intervention. An ABM can account for that context-
dependency by integrating GIS layers of urban environmental
features, a spatial layer of the intervention, and a heterogeneous
population of residents with daily lifestyle patterns.

Concerning the third dimension, the ability to model complex

interactions, probabilistic and deterministic models estimate the

accumulated outcome of adaptive processes without modeling

the underlying process. Particularly deterministic models do not

model feedback and interaction, and variables are modeled in a

static manner, except when explicitly modeling changes in the

values. On the other hand, an ABM models causal relations, or

heuristically approximated processes, that give rise to a change

in value or behavior. Therewith, it predicts the non-linear or

emergent outcome. The ability to explicitly model feedback and

interaction is one of the core benefits that ABM can bring to HIA.

This includes incorporating social interaction and adaptive be-

havior, such as the observation and imitation of others.
An ABM approach might benefit HIA particularly (1)

when people’s behavior or spatial daily lifestyle patterns play an

important role in the intervention outcome, (2) when incorporat-

ing behavioral feedback or complex environment–behavior inter-

actions, or (3) when having to model interactions between

dynamic spatial components. The following section dives more

deeply into why human behavior is crucial for urban exposure.

Identifying the required model components

Urban exposure types
To adequately model exposure in an ABM, we propose to distin-

guish between active or behavioral exposure, such as physical activ-

ity, smoking, and dietary habits, and passive or environmental

exposure, such as all forms of air pollution and noise, as it has

implications for modeling. We define active and passive expo-

sures in terms of direct and indirect causal relations (see

Figure 1). An active exposure is caused by individual behaviors,

so that behavior is a mediator of the environment’s influence on

active exposure (Environment ) behavior ) Active Exposure).

(Arrows display causal relations, but they are not exhaustive and

hence do not exclude the existence of other causal influences.

For instance, there are more determinants of behavior than solely

the environment.) Environment (eg, the quality of the cycling in-

frastructure and time of the day) plays only a role in influencing

behavior (eg, an individual’s decision to cycle or not). We call this

active, because the exposure is caused by a behavior. In contrast,

passive exposure is directly caused by the environment (eg, air

pollution concentration) at an individual’s location at a given

time (Environment ) Passive Exposure). Individual mobility be-

havior is only indirectly important insofar as it influences the lo-

cation of the individual. This distinction between active and

passive exposure is sometimes referred to as one between volun-

tary and involuntary exposures, one people have control over or

not. However, next to this ethical significance, the distinction

also has implications for the modeling requirements. While for

passive exposure, tracking of people (mobility behavior) and envi-

ronmental stressor concentrations need to be modeled in detail,

for active exposure behavioral choices of humans need to be

brought into focus. Figure 1 provides an overview of the types of

exposures that are particularity salient in an urban environment

and illustrates the role of people’s behavior for them. Since the

mobility behavior of people influences also passive exposure, it

can be argued that the ability of ABM to model complex environ-

ment–behavior interactions can improve the modeling of both

active and passive exposure.
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UEIs and their modeling requirements
Cities (urban policy makers) have influence on a large set of fac-
tors that impact the Urban Exposome, such as the transport sys-
tem, land use planning, and the design of public space,
commercial regulation, and the housing market. An overview of
major urban interventions assigned to these four domains, the
exposures they target, and the model components that are cen-
tral to their simulation can be found in Table 1. The interventions
were collected from World Health Organization,4 Tonne et al.,5

Nieuwenhuijsen,6 Foster et al.,8 Freak-Poli et al.,9 Baker et al.,10

Burns et al.,11 Salam et al.,12 Freudenberg et al.,49 Münzel et al.,50

Donnelly et al.,51 Amorim et al.,52 Mueller et al.,53 and Peng
et al.54 Note that most interventions target or at least affect mul-
tiple exposures. Different interventions require different behav-
ioral and environmental model components (see last column of
Table 1), but there are overlaps in the component requirements.
To increase the impact and appreciate the full value of a devel-
oped model, one can model multiple interventions with similar
modeling requirements (eg, multiple transport interventions) in-
stead of only one. Mobility behavior is the most widely required
type of behavior across the intervention types, because it is an in-
direct component of most passive exposures. Active exposure
also requires modeling of other specific activity choices (eg,
smoking, eating, and physical activity).

The decision for an intervention type to be evaluated needs to
be taken early in the model building process. From a methodolog-
ical perspective, modeling interventions requires that there is (1)
data available for calibrating the required model components to
ensure realistic scenarios as well as (2) the computational resour-
ces to model the required intervention components and interac-
tions. After having decided on the intervention type (eg, see
Table 1), an actual implementation of such an intervention has
to be designed for a specific local context, potentially through a
consultation of local planners or experts. Choices need to be
made about the scale or magnitude (eg, spatial extent, number of
features built, and regulation thresholds), the target group, and
the period of implementation. There is a trade-off between the
need for standardization and for realism of intervention model-
ing. Methodologically speaking, interventions need to be designed
in a standardized way when wanting to compare cities and have
a reproducible study. However, the more generic the intervention

design is, the less realistic and hence the less useful its analysis
for planning decisions within individual cities. Fortunately, one
can test multiple intervention designs without having to remodel
other ABM components. Multiple scenario modeling can more-
over help understand which scope and form of an intervention
has the best effects.

Modeling human–environment interactions
To model the spatial context of interventions, model components
representing the Urban Environment and human agents have to
be georeferenced, resulting in multiple GIS layers interacting
with each other. Decisions have to be taken concerning which
components to model, how to conceptualize them in terms of
spatial information (eg, as discrete object, continuous field, net-
work, or event55), on what resolution levels to represent them
and what operations to use for their interactions.56 While it is
tempting to represent components and processes as granular
and detailed as possible, the model has to remain verifiable. In
other words, how detailed ABMs can become is limited by the res-
olution level of the available data and evidence.

Spatiotemporal resolution and representation
Previous studies in environmental epidemiology have mostly
used daily or annually average raster cell or statistical area data
on environmental stressors and joined it with the residential lo-
cation of study participants to identify passive exposure
impacts.50,57-59 This method is based on the assumptions that
people rarely leave their residential neighborhood and that the
daily or annual average environmental stressor values of the ras-
ter cells or neighborhood units are a good proxy for the environ-
ment people are exposed to. However, the actual process of
exposure is much more complex, dynamic, and granular as most
individuals move between a wide range of indoor and outdoor
environments on a daily basis. Studies show that ozone, temper-
ature, and NOx concentrations strongly vary on an hourly basis
and across space, and that when taking into account the move-
ment trajectories, personal passive exposure estimates deviate
substantially from the one estimated based on the residential ad-
dress.60,61 Moreover, multiple studies have found that air pollu-
tion exposure calculated based on residential address causes an
underestimation of the health effect compared with an exposure

Figure 1. Urban exposure types and interactions.
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Table 1. UEIs and model requirements

Domain Intervention Target exposures Core model components

Transport Car-free zones
Bike infrastructure/sharing
Pedestrian infrastructure

Green walking and biking routes,
separate from sources of pollution

Modal choice; destination choice; car
emissions; traffic noise; routing

Removing car infrastructure/increase
parking prices

Subway/tram expansion

Speed limits Modal choice; destination choice; car
emissions; traffic noise; routing

Greening public transport

Low-emission zones Modal choice; destination choice; car
emissions; routing

Subsidizing/expanding e-mobility and
infrastructure

Vehicle buying choice; traffic noise; car
emissions; modal choice; destina-
tion choice; routing

Land Use and
Public Space

Green spaces Noise and air pollution filtering of veg-
etation; temperature; use of green
spaces; mobility

Mixed land-use/accessibility to work
and amenities

Destination choice; routing; modal
choice; car emissions; traffic noise

Urban gardening Gardening activity; eating; air pollu-
tion; temperature; mobility

Public sports facilities Sports behavior

Blue spaces Use of blue spaces; air pollution; tem-
perature; mobility

Relocating industry Industry emissions; mobility

More trees and vegetation Noise and air pollution filtering of veg-
etation; temperature; mobility

Designated smoking spaces Smoking behavior; mobility

Changing building and road materials Mobility; heat and noise absorption of
built environment

(continued)
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estimation taking time-activity patterns into account.62-64 One
could argue that the epidemiology of exposure effects is not yet
based on these granular estimations and that consequently it
will be hard to base high-resolution exposure–response functions
on evidence. However, it is possible to aggregate exposure esti-
mations to a level where evidence for exposure-response func-
tions can be found. Moreover, we increasingly have access to—or
at least the ability to collect—hyperlocal data using, for example,
wearable sensors to analyze spatiotemporal distributions or per-
sonalized exposure measurements of environmental factors,
such as air pollution, noise, etc. with much greater resolution
and precision.65-67 Data from information, communication, and
Global Positioning System (GPS) technologies allow us to model
or capture daily lifestyles and mobility patterns of a sub-
population in their specific environment, which much more
closely approximates their actual exposure.68 There is a small
but growing number of studies that have used wearable sensory
devices, trackers, and time activity diaries to capture the specific
personal exposure, which can be more accurate than the estima-
tions based on aggregated data.66,69-71 While it is still difficult to
collect data using sensors in large-scale health studies, it can be
argued that it is only a matter of time until robust evidence on
health effects of high-resolution exposure becomes more readily
available.

A very good example of exposure estimations of high granu-
larity in an ABM is the study of Chapizanis et al.30 The purpose of
their ABM was to estimate personal exposure of the Thessaloniki
(Greece) population, taking the spatial activity patterns and het-
erogeneous environmental stressor concentrations into account.
They generated an agent population based on available spatial
census data. To model the agents’ behavior, the authors used
existing time activity data from the Harmonized European Time
Use Survey (HETUS),72 which encodes the time use for activities

in fixed 10-min time slots. Next, they used existing maps of
hourly variations of PM2.5 and PM10 concentrations for each
building block (30–40 m) that were pre-calculated using atmo-
spheric dispersion models in the study of Sarigiannis et al.73

Indoor PM2.5 concentrations were estimated using the INTERA
computational platform (INTERA, 2011). They further used GPS
tracking data that were collected in the HEALS project and com-
bined it with the air pollution maps to calibrate and validate the
personalized exposure estimations of the model.

The study of Chapizanis et al.30 is an ambitious and relevant
example of how an Urban Exposure ABM can be embedded in
spatial data to ensure realistic estimations. However, to be able
to predict behavior and environmental change through urban
interventions, we will have to go further (see Figure 2 for an over-
view of components required for human–environment interac-
tion). If we want to capture feedback effects, we need to model
the behavior dependent on the urban environment (eg, transport
system, accessibility to, and quality of destinations) as well as in-
dividual and social factors. Next, the concentration of environ-
mental stressors may need to be modeled dependent on the
transport behavior of the agents and other source and modifier
data.

One of the most crucial data inputs is the synthetic agent pop-
ulation. There is a variety of methods that can be used for gener-
ating a synthetic agent population and the choice depends on the
available data.74 In general, combinatorial optimization meth-
ods75 can be used to duplicate real individual-level records, while
synthetic reconstruction76 generates individual level agent attrib-
utes based on distributions of variables, such as widely available
marginal and stratified distributions published by national cen-
suses. Both groups of methods can be applied in such a way that
multi-variable joint distributions are taken into account.

Table 1. (continued)

Domain Intervention Target exposures Core model components

Commercial Regulation Limiting fast food vending points Restaurant/market patronage; eating
behaviorFarmers and fresh food markets

Limiting vending points for alcohol Alcohol store patronage; drinking

Prohibiting smoking in bars and inside
public spaces

Inside public space and bar patronage;
smoking behavior

Housing Building health and safety standards Residential pollution; residential noise;
residential heat; mobility

Ban on residential coal/wood burning Residential pollution; mobility
Subsidizing stove exchange

Subsidizing green roofs Temperature, air pollution filtering of
vegetation; mobility

air pollution, noise, physical activity, heat, diet, smoking (passive and active), and alcohol.
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Sub-models and transition functions
There are three groups of core sub-models characterizing hu-
man–environment interactions, whereby each contains a set of
transition functions (see Figure 2): (1) the behavioral model; (2)
the exposure and exposure–response functions, and (3) the envi-
ronmental stressor models. The arrows in the figure display the
input and output relations of the environmental and individual-
level attributes with the three models. A challenge that all mod-
els share is the minimization of uncertainty coming from the
model specification. Specifically, the selection of variables and
relationships to be represented has to be validated and the num-
ber of assumptions reduced. For that purpose, it makes sense to
use existing evidence to justify the model structure, whereby the
sources of evidence and the complexity of evidence extraction
and synthesis vary between the different sub-models.
Additionally, the parameters of the models have to be calibrated
as we discuss in the last section. Finally, sensitivity analysis can
be used to quantify the uncertainty coming from different model
components. This section analyses the state-of-the-art models
and sources for structural model validation for each of the sub-
models.

The core requirement of the behavioral model is that it should
capture realistic health-relevant behavior (transport and activity
choices) dependent on the urban environment and individual
attributes, so that it can predict behavior change through an ur-
ban intervention. While plenty of different generalized cognitive
architectures have been developed in the field of artificial intelli-
gence (eg, ACT/R,77 SOAR,78 CLARION,79 or for a comprehensive
review80), they are not designed to simulate a whole city of agents
and either have redundant cognitive functions (like speech, mo-
tor skills) or lack important representations, such as social
norms. There has also been a plethora of different ABM applica-
tions with unique, model-specific behavioral frameworks that do
not meet our model requirements.30,33,35,81-83 The most useful be-
havioral frameworks that could be specified and amended for

our application purpose are behavioral architectures developed
in the field of multi-agent systems, such as the beliefs–desires–
intentions architecture and its derivatives84,85 or the normative-
agents framework.86 However, these frameworks are rather
abstract in the sense that they do not inform the selection of vari-
ables and data needed to model a specific type of behavior.
Hence, the exact specification and application to UEI assessment
remains a non-trivial task. As a possible starting point, we sug-
gest utilizing published empirical evidence on significant behav-
ior determinants and interactions in order to inform the variable
selection and structure of behavioral models. Considering the
vastness and complexity of the behavior science literature, per-
haps natural language processing and machine learning can be
used to automatize part of the knowledge extraction process.

Some of the transition functions that will govern the influence
of the environment on behavior can already be identified. The
environment influences decision-making via perception.
Perceivable features of the environment that may be part of be-
havioral transition functions are the (a) accessibility of destina-
tions, such as healthy food stores, sports facilities, a subway
station, etc., the (b) suitability of available destinations or routes
for certain activities, for example, the walkability, bikeability, af-
fordability, or safety, or the (c) visibility of other people engaging
in a specific activity. Studies on how environmental factors influ-
ence health relevant behavior should function as a basis for
modeling these relations.87-90

The second group of models are the exposure and exposure–
response functions. To estimate the dose of a passive exposure, a
simple spatial join of the agent’s location or route at the time-
step of the environmental stressor map is sufficient.
Additionally, other individual-level variables can be part of the
individual exposure dose calculation depending on the exposure
pathway: inhalation, ingestion, mechanosensation, or thermo-
ception. For example, inhalation rates (dependent on age, body
weight, and activities) and tidal volume could be relevant for air

Figure 2. Human–environment interactions: components, models, and data.
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pollution,91 while hearing sensitivity and noise annoyance could
be included in the noise dose, etc. However, actual inclusion of
such factors will depend on the availability of health studies
which cover these individual differences. For active exposure, the
duration and intensity of physical activity or the quantity of
health-relevant substances consumed (food, alcohol, etc.) should
be captured.

The exposure and dose estimated by the exposure functions
will be the input for the exposure–response functions that alter
the human health levels either temporarily or permanently.
Hereby, the exposure levels have to be aggregated to a temporal
period and metric for which robust exposure–response functions
are available. This would be hours to weeks for acute health
impacts and one to several years for chronic health impacts and
could be concentration or dose based. In the future, evidence of
Omics studies might inform heterogeneous exposure–response
functions and measures of susceptibility.

The final set of models are the environmental stressor models.
The last decades have seen a growth and improvement of
process-oriented models and even tools for estimating environ-
mental stressors, which can be either directly integrated or trans-
lated into an ABM. Since these models are based on deterministic
physical knowledge, their structure will not have to be validated
again. To model different types of air pollution, a set of atmo-
spheric dispersion models are available.73,92-94 To model urban
noise, multi-source noise diffusion models and mapping tools
have been developed.95-99 Finally, for dynamically estimating
temperature, heat transfer models are increasingly used to as-
sess the urban heat island effect.100,101 For certain environmental
stressors (eg, noise and air pollution), the behavior of an agent
(eg, driving with fuel-based transport) can have externalities that
affect the environmental stressor field.102 In that case, the
agent’s behavior will become a source within the environmental
stressor model.

Modules integration, temporal scales, and
outcome variables
The ABM model consists of different modules that are to a large
extent self-contained but interact with each other: The environ-
mental stressors, the urban perceivable environment (eg, trans-
port networks and destinations), agents and their behavior, the
acute and chronic health impacts, and the social costs and bene-
fits. The simulations within and between these modules have to
be aggregated to arrive at estimations of the effects of the UEI. A
challenge particular to evaluating long-term outcomes (such as
social costs and benefits and chronic health impacts) with a
high-resolution ABM is the integration of various temporal reso-
lution levels and extent requirements.

The most granular modules are the environmental stressors,
the perceivable environment, and behavior as discussed in the
last section. The smallest time-steps in which variables belonging
to these modules should be able to change are 10 min–1 h, since
behavioral activities are likely to change in the course of an hour
and that is the resolution for which time-use data are available,
for example, from HETUS. Given that environmental stressors
depend on agent behavior, their temporal resolution should be
harmonized. The perceived environment is mostly static, but the
few elements that are dynamic and relevant for behavior (eg,
weather and seasonal changes of greenery) should also be able to
change with the same temporal resolution as the agent’s behav-
ior. The interaction of environmental stressors and the momen-
tary location of agents (passive exposure) and the health relevant

behavior (active exposure) are used to compute the exposures
that are the input for the exposure–response functions. The acute
health impacts should be calculated in time-steps of either a cou-
ple of hours or weeks, while the chronic health impacts should be
calculated every one to several years. Chronic impacts accumu-
late over a lifetime, which is also the temporal extent for which
they need to be assessed.

Finally, the module with the lowest resolution is the SCBA,
which incorporates the health impact variables generated by the
exposure–response functions with costs and benefits of UEIs,
preferably for different social groups. The SCBA compares the
health impacts and total societal costs of different intervention
scenarios with a baseline scenario, usually one in which no inter-
ventions are implemented and the status quo does not change.
The calculation includes the costs of the intervention itself and
the returns of the investment (eg, the number of prevented dis-
eases and healthcare savings). Some of the most important
returns of the investments will be changes in mortality, quality-
adjusted life years (QALYs), wellbeing-adjusted life years
(WALYs), and disability-adjusted life years (DALYs). In case an
UEI does not cause much of a change in these outcomes due to
scale of the intervention area or observational period, it is also
possible to evaluate its impact on active and passive exposure
(health behaviors and environmental stressor exposure). The so-
cial groups for the analysis of distributional effects can be de-
fined based on any of the individual agent variables, such as
ages, socio-economic status, or initial health conditions.
Moreover, different spatial groups, such as neighborhoods can be
compared. SCBA involves a lot of global variables which will not
be explicitly modeled in form of process-based models.

Scalability challenges and possible solutions
Mathematically speaking, it is possible to integrate input varia-
bles of any of the higher resolution modules into lower resolution
modules (like the SCBA) through aggregation, averaging, boolean
conditioning, or any other arithmetic operation. However, there
is a tension between the goal of modeling a high-resolution hu-
man–environment simulation and the requirement of a large
temporal extent over which this simulation needs to run: The
combination of these two goals leads to a computational com-
plexity problem. With 10 min time-steps, one would require
3.942.000 time-steps to run through a lifetime of 75 years.
Moreover, ABMs incorporate certain degrees of randomness or
uncertainty, necessitating an average over multiple runs (the
Monte Carlo method) to achieve a more robust result. This needs
to be done for a reference or baseline scenario and an interven-
tion scenario, to be able to identify the difference. The model out-
come variability across runs is indicative of the sensitivity of the
model to the sampled and random variables and a means to
quantify the uncertainty coming from sampling variability.
Additionally, bootstrapping103,104 can be used to get a more de-
tailed understanding of the sampling variability without compu-
tationally expensive additional runs. To obtain a scalable
computational model, we need to avoid simulation of redundant
parts and unnecessary detail.

There are several strategies that help reducing the computa-
tional load apart from decreasing the granularity of the high-
resolution modules.

• Extrapolation: When intervention impacts on behavior and
environmental stressors and exposure begin to stagnate, it is
not necessary to model a whole lifetime with a high-
resolution ABM. In this case, one can simulate the granular
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daily behavior and environmental interactions until no signif-
icant change apart from normal fluctuations can be found
anymore. From then on the future exposure, health impacts
and social costs and benefits can be extrapolated for the rest
of a lifetime. The reliability of such extrapolation strategies
can be tested by comparing results to the ones of full simula-
tions over a lifetime.

• Aggregation: Even though behavioral activities (trips, certain
activities) may change with a rate of 10–20 min, it may not be
necessary to model behavioral decisions in such time steps.
Instead, one can have agents plan a sequence of activities
over a period given by a coarser time step (eg, 1 h). In this
way, one can aggregate exposures resulting from the spatial
interaction of the agents and the environment over 1 h with-
out loosing high-resolution spatiotemporal variation. This
allows to take much larger time-steps in the ABM simulation,
making it more scalable.

Finally, one can reduce the general computational load by
random sub-sampling of the agent population to estimate inter-
vention effects, and by parallelizing computation across central
processing units or graphics processing units.

State-of-the-art calibration strategies and
data
A core challenge of ABM is to find the parameters for the behav-
ioral and interaction rules of the agents in the model so that it
best reflects real-world observations.105 A simulation model is
most useful when it is realistic, because only then it can generate
reliable estimations as a basis for policy decisions.24 Calibrating
the model takes four steps: (1) the selection of the parameters to
be calibrated, (2) the identification and preparation of required
data, (3) the definition of an objective function that reflects the
level of agreement between the modeled output and the observed
data, and (4) a method for optimizing the search for the best pa-
rameter values.

The core challenge in the first step is the fact that ABMs usu-
ally contain many model components and interactions and it is
nearly impossible to parameterize all model components due to
lack of data, time, and computational resources. We therefore
need to prioritize the model components and corresponding
parameters based on their relevance for the goal of the simula-
tion.42 Parameters regarding environmental stressors and agent
behavior are most important for exposure estimations and
should therefore be prioritized in the calibration process. In order
to avoid overestimation of parameter importance, one should
calibrate correlated variables that influence the same outcome at
the same time. In case of a strong correlation without additional
functionality one should exclude redundant parameters and cor-
responding variables. The last column in Table 1, which lists the
core components, can serve as a reference for finding the most
important parameters for calibration depending on the interven-
tion. Moreover, sensitivity analysis, a statistical method that
quantifies changes in output through variations in input, can
help to rank the importance of parameters for calibration.105

Having identified the parameters, one needs to find or collect
the data needed for calibration. To calibrate environmental
stressor models, one needs measurement data of the environ-
mental stressors with the same or higher spatiotemporal resolu-
tion as the ABM from the same city. Both measurement points or
aggregated raster data work, but the more complete the coverage

of the ABMs spatial extent and the more temporal coverage of
seasons, the more representative the distribution for calibrating
parameter settings. For the calibration of the behavioral model,
transport behavior data (modal choice, routes, trip length, etc.),
and time-use surveys that are spatially explicit and capture
socio-demographic attributes of individuals are required. Once
georeferenced, the datasets can be spatially joined to data about
the built-environment. The socio-demographic attributes will be
needed for matching ABM agents to similar individuals of the ob-
served datasets. While both the environmental stressor data and
the behavioral data are not ubiquitous, it can be found for most
cities within the EU. While EU environmental and health regula-
tion forces cities and nation states to monitor different types of
environmental stressors (even though not all), HETUS provides
access to national time-use surveys. Many countries moreover
conduct their own transport surveys.

The third step requires selecting a measure of model fitness in
consideration of the model goal. This is crucial as the quality of
the calibration is dependent on how useful and specific the fit-
ness measure is.23 A core challenge in that step comes from the
fact that ABMs often operate on multiple hierarchical levels,
which makes it particularly difficult to compare outputs to obser-
vations of the underlying system.24 For example, one could com-
pare the output of a parameterized transport behavior model to
the behavioral patterns of individuals but also to the traffic vol-
ume in each raster cell or even the whole city, which might lead
to discrepant optimal parameter settings. Some proposals to
overcome this problem have been: (1) combining multiple objec-
tive functions42 and (2) pattern-oriented modeling (for further in-
formation, see Grimm et al.106).

In the fourth step, the search for the parameters that lead to
the closest fit between the model outcomes and the observations
needs to be optimized. Certain methods allow to avoid a compu-
tationally intensive brute force run through all possible parame-
ter combinations to evaluate their performance. One of the most
efficient optimization methods is the hill-climbing technique,
which builds on the principle of incremental change toward the
optimum. Its most efficient version is based on direct search
algorithms, which aim to find improved objective function values
by searching along trial directions from the current point.42

Finding only a local minimum can be avoided by starting the al-
gorithm from varied points in the parameter space and checking
the consistency of the final sets of parameter values.42 Some
more sophisticated parameter search methods are based on ge-
netic algorithms, such as particle swarm optimization,107 in
which sets of behavior defining rules evolve to increase their
model fitness until a global optimum fitness is reached.23,42

Evolutionary Monte Carlo goes even further by incorporating at-
tractive features of simulated annealing and genetic algorithms
into a framework of Markov chain Monte Carlo.108-110 Some more
recent calibration optimization strategies are based on surrogate-
modeling or meta-modeling to shortcut the ABM simulation
process. Hereby, a computationally cheap approximation of the
real model is generated based on a representative sample of pa-
rameter space values, using, for example, Kriging111 or super-
vised machine learning.112

Discussion and conclusion
In this article, we have discussed the prospects, value, concepts,
and methods for implementation and associated challenges of
simulating UEIs using ABM integrated with a SCBA. To sum up,
ABM has the potential to become a powerful tool for robust
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estimations of health impacts and social costs of UEIs. It is a

bottom-up modeling method that fully exploits state-of-the-art

process-based models for environmental stressors (eg, air pollu-

tion and noise), spatiotemporal data of our environment and life-

style patterns, and the knowledge on behavioral determinants.

By integrating causal relationships on several environmental and

behavioral levels and by calibrating parameters in an urban con-

text, estimations of intervention effects are likely to be of higher

quality than in previously used approaches. ABM allows model-

ing the complex environment–behavior interactions, health

impacts, and social distributional impacts in an integrated man-

ner.
However, there are still some challenges on our way toward

successfully exploiting ABM for UEI assessment (see box contain-

ing research agenda below). Firstly, it remains a non-trivial task

to design a realistic, parameterizable behavioral model that is

able to capture different types of exposures and responds to ur-

ban interventions. Secondly, there is a mismatch between the

possible granularity of exposure estimations and the available

epidemiological evidence needed for corresponding exposure–re-

sponse functions, which limits the spatiotemporal resolution

that an ABM can meaningfully explore. The third challenge

relates to the scalability problem and computational complexity

that emerge when aiming to estimate long-term effects such as

health and social impacts based on high-resolution models of

human–environment interactions. Finally, more work is needed
to understand how to calibrate the parameters of a high-
dimensional UEI ABM most efficiently. In this article, we have
discussed basic strategies and design options for tackling these
challenges. However, it remains for future research to specify,
implement, and test them. Further, future work should analyze
the level of detail that is needed to capture impacts of UEIs and
the short-cuts that can be made without increasing uncertainty.

Even if some of these challenges remain unsolved, the ABM
forces us to investigate the processes and changes induced by an
UEI. If successful, it gives us good approximations of intervention
impacts. The latter can be tested by comparing estimations (eg,
behavior and exposure change) of an UEI ABM model that was
calibrated with data from before a real-world intervention to the
actual impact of the intervention once implemented.
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68. Korpilo S, Virtanen T, Lehvävirta S. Smartphone GPS track-

ing—inexpensive and efficient data collection on recreational

movement. Landsc Urban Plan. 2017;157:608–617.

69. Dons E, Rojas-Rueda D, Anaya-Boig E, et al. Transport mode

choice and body mass index: cross-sectional and longitudinal

evidence from a European-wide study. Environ Int. 2018;

119(June):109–116.

70. Ekblom-Bak E, Hellénius ML, Ekblom Ö, Engström LM, Ekblom
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traffic simulation based on mobility behavior to calculate NOx

emissions caused by private motorized transport. Atmosphere

2019;10(6):293–14.

83. Orr MG, Kaplan GA, Galea S. Neighbourhood food, physical ac-

tivity, and educational environments and black/white dispar-

ities in obesity: a complex systems simulation analysis. J

Epidemiol Community Health. 2016;70(9):862–867.

84. Georgeff, MPell, B Pollack, M Tambe, MWooldridge, M. The be-

lief–desire–intention model of agency. In: JP Müller, AS Rao, MP

Singh, eds., Intelligent Agents V: Agents Theories,

Architectures, and Languages.Springer; 1999: 1–10.

85. Norling EJ. Modelling human behaviour with BDI agents.

2009(June); PhD Thesis at University of Melbourne: 1-277.

86. Kollingbaum MJ, Norman TJ. Norm adoption and consistency

in the NoA agent architecture. In: MM Dastani, J Dix, A El

Fallah-Seghrouchni, eds. Programming Multi-Agent Systems.

Springer Berlin Heidelberg; 2004:169–186.

87. Cervero R, Denman S, Jin Y. Network design, built and natural

environments, and bicycle commuting: evidence from British

cities and towns. Transport Policy. 2019;74(July 2018):153–164.

88. Stefansdottir H, Næss P, Ihlebæk CM. Built environment, non-

motorized travel and overall physical activity. Travel Behav

Soc. 2019;16(1432):201–213.

89. Lu Y, Yang Y, Sun G, Gou Z. Associations between overhead-

view and eye-level urban greenness and cycling behaviors.

Cities 2019;88(January):10–18.

90. Marquet O, Floyd MF, James P, et al. Associations between

worksite walkability, greenness, and physical activity around

work. Environ Behav. 2020;52(2):139–163.

91. Sarigiannis DA, Karakitsios SP, Antonakopoulou MP, Gotti A.

Science of the total environment exposure analysis of acciden-

tal release of mercury from compact fluorescent lamps (CFLs).

Sci Total Environ. 2012;435–436:306–315.

92. Musalaiah M, Venkata RP, Liyakhath AS, Hussain Z. A review

on theoretical air pollution dispersion models. Int J Pharm

Chem Biol Sci. 2013;3(4):1224–1230.

93. Sachdeva S, Baksi S. Air pollutant dispersion models: a review. In:

NA Siddiqui, SM Tauseef, K Bansal, eds. Advances in Health and

Environment Safety. Springer Transactions in Civil and

Environmental Engineering. Springer Singapore; 2018:203–207.

94. Stockie JM. The mathematics of atmospheric dispersion

modeling. SIAM Rev. 2011;53(2):349–372.

95. Aumond P, Jacquesson L, Can A. Probabilistic modeling frame-

work for multisource sound mapping. Appl Acoust. 2018;

139(April):34–43.

96. Can A, Aumond P, Becarie C, Leclercq L. Dynamic approach for

the study of the spatial impact of road traffic noise at peak

hours. In: Proceedings of the International Congress on Acoustics;

RWTH. 2019(September):891–898.

97. Lesieur A, Aumond P, Mallet V, Can A. Meta-modeling for ur-

ban noise mapping. In Proceedings of the International Congress on

Acoustics; RWTH. 2019(September):1624–1631.

98. Schreurs E, Jabben J, Verheijen E. STAMINA-Model description:

standard model instrumentation for noise assessment. Report

680740003/2010, tech.rep.RIVM; 2010.

99. Anfosso-Lédée F, Paviotti M, Kephalopoulos S. Common noise

assessment methods in Europe (CNOSSOS-EU): to be used

by the eu member states for strategic noise mapping following

adoption as specified in the Environmental Noise

Directive 2002/49/EC. Publications Office of the European

Union; 2012.

100. Xie C. Interactive heat transfer simulations for everyone. Phys

Teach. 2012;50(4):237–240.

101. Oropeza-Perez I. Simplified numerical model for analyzing

the effects of the urban heat island upon low-rise buildings by

using a free-license thermal simulation program. Urban Sci. 2020;

4(2):30.

102. Degraeuwe B, Thunis P, Clappier A, et al. Impact of passenger

car NOX emissions on urban NO2 pollution—scenario analysis

for 8 European cities. Atmos Environ. 2017;171(2):330–337.

103. Efron B. Bootstrap methods: another look at the jackknife. Ann

Statist. 1979;7(1).

104. Efron B, Tibshirani RJ. An Introduction to the Bootstrap; Chapman

& Hall.1993.

Exposome, 2021, Vol 2 No. 1 | 13

D
ow

nloaded from
 https://academ

ic.oup.com
/exposom

e/article/2/1/osac009/6754814 by U
trecht U

niversity Library user on 04 N
ovem

ber 2022

https://ec.europa.eu/eurostat/web/time-use-surveys


105. Schulze J, Müller B, Groeneveld J, Grimm V. Agent-based

modelling of social–ecological systems: achievements, chal-

lenges, and a way forward. JASSS. 2017;20(2).

106. Grimm V, Revilla E, Berger U, et al. Pattern-oriented modeling

of agent-based complex systems: lessons from ecology.

Science. 2005;310(5750):987–991.

107. Kaveh A. Particle swarm optimization. In: Kaveh A. (ed.)

Advances in Metaheuristic Algorithms for Optimal Design of

Structures. Springer; 2017:11–43.

108. Liang F, Wong WH. Evolutionary Monte Carlo: applications to

CP model sampling and change point problem. Statist Sin.

2000;10(2):317–342.

109. Bottolo L, Richardson S. Evolutionary stochastic search

for Bayesian model exploration. Bayesian Anal. 2010;5(3):

583–618.

110. Liquet B, Bottolo L, Campanella G, Richardson S, Chadeau-

Hyam M. R2GUESS: a graphics processing unit-based R pack-

age for Bayesian variable selection regression of multivariate

responses. J Stat Soft. 2016;69(2).

111. Salle I, Yıldızo�glu M. Efficient sampling and meta-modeling for

computational economic models. Comput Econ. 2014;44(4):

507–536.

112. Lamperti F, Roventini A, Sani A. Agent-based model calibration

using machine learning surrogates. arXiv. 2017:1–36.

14 | Exposome, 2022, Vol. 2, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/exposom

e/article/2/1/osac009/6754814 by U
trecht U

niversity Library user on 04 N
ovem

ber 2022


	tblfn1



