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Let everything happen to you
Beauty and terror

Just keep going
No feeling is final

Rainer Maria Rilke
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DIFFUSION MRI IN SVD RESEARCH

Cerebral small vessel disease (SVD) is a major cause of cognitive impairment and dementia 
(Pantoni, 2010). SVD affects the small vessels of the brain and results in characteristic lesions 
visible with magnetic resonance imaging (MRI), including lacunar infarcts, white matter 
hyperintensities (WMH), cerebral microbleeds, and brain atrophy. These conventional MRI 
markers are routinely evaluated in clinical practice but relate poorly with clinical outcome 
(Smith et al., 2019). Moreover, these markers mainly describe changes in brain tissue that 
occur at a later stage of the disease, but do not inform about microstructural changes of the 
underlying tissue. Therefore, it remains difficult to predict clinically relevant symptoms such 
as cognitive impairment based on imaging, with prognostic value (Pasi & Cordonnier, 2020). 

Diffusion MRI (dMRI) on the other hand has the potential to explain SVD-related at the 
microstructural level and offers more insights into the pathophysiology of the disease (Baykara 
et al., 2016; Wiegertjes et al., 2019). Diffusion is a physical phenomenon related to the 
random motion of water molecules, which move differentially according to the organization 
of underlying tissues. Measures derived from dMRI are sensitive to changes in brain tissues 
beyond lesions detected with convectional MRI. As an extension of dMRI, fibre tractography 
allows to reconstruct major white matter pathways and map whole brain networks (Yeh et 
al., 2021). This framework can be used to study topological changes in brain connectivity 
and identify tracts-specific damage related to brain functions. Promising research has already 
shown that a possible avenue through which SVD affects cognition is by disrupting network 
connections, hampering efficient exchange of information throughout the brain (Morris et 
al., 2014; Petersen et al., 2020; Reijmer et al., 2015). 

Despite its potential, dMRI remains difficult to implement in a clinical setting compared 
to other imaging markers (Schilling et al., 2019, 2021). An important challenge is the lack 
of generalization of results across settings. This is mainly due to differences in scanner and 
acquisition and choice of post-processing steps. Differences in acquisition result in low 
comparability of dMRI signal across centres. Regarding post-processing, higher order dMRI 
analyses such as network analysis, require many processing steps. The nature of dMRI network 
analyses, together with inconsistencies that can accumulate with multiple processing steps 
can produce networks with many false positive connections. This is an important source of 
different network architectures between datasets. These inconsistencies due acquisition and 
post processing affect measurements obtained: i) across different scanners and/or acquisition 
parameters; ii) in longitudinal studies with long rescan intervals; iii) to compare different 
groups of subjects, particularly in the presence of pathology. Therefore, it has been difficult 
to validate SVD dMRI findings in large datasets, which is a requirement for implementation 
in the clinical setting.
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THESIS AIM

Overarching aim: The aim of this thesis is to advance the implementation of dMRI in the 
context of SVD research, by exploring methods that improve its technical validity. I will 
focus on two key objectives: 

•	 To improve the validity of multicentre dMRI measurements, by removing variability 
related to acquisition hardware in dMRI across sites with harmonization of the raw 
diffusion signal. 

•	 To improve the validity of dMRI-based brain network analyses, in the presence of 
pathology, removing false positive connections by thresholding.

SCANNER-RELATED VARIABILITY OF DMRI

Large multicentre dMRI datasets can help to increase sensitivity to effects of interest and 
increase internal and external validity of the results of dMRI studies. However, joint analysis 
of dMRI obtained at different sites and/or acquired at different time points is challenging due 
to local and/or temporal scanner characteristics that cause in a high inter- and intra-scanner 
variability (Vollmar et al., 2010). These can be caused by a range of factors such as scanner 
hardware (Grech-Sollars et al., 2015) (e.g., scanner, transmitter/receiver coils, magnetic field 
strength, gradient strength, or field inhomogeneities), acquisition parameters (e.g., voxel size, 
number of gradient directions, echo time), scanner software and reconstruction algorithms 
(Sotiropoulos et al., 2013) (GRAPPA or SENSE, etc.,). 

Once images are acquired, pre-processing and quality control of the data also present sources 
of variability (Zeilinger et al., 2017). These may include motion correction, eddy current, 
susceptibility induced distortion correction, processing to reduce partial volume effects, all 
of which affect the measured diffusion signal intensity, resulting in poor agreement of metrics 
derived from downstream analysis. Ultimately, it is important to understand that there are 
many choices to make in acquisition and processing that will affect the raw data, the type and 
robustness of analyses possible, and the absolute values of quantitative metrics. Therefore, 
direct comparisons of diffusion metrics between studies or datasets acquired on different 
scanners cannot be performed without accounting for systematic variability obscuring true 
effects of interest. 

In prospective studies, scanner and acquisition-related variability can be controlled beforehand 
using standardized acquisitions and scanners from the same manufacturer (Konieczny et al., 
2020). Nevertheless, reliability studies have demonstrated that diffusion metrics of subjects 
acquired using the same scanner and acquisition protocol may still differ significantly across 
sites. Even in phantoms, scalar dMRI metrics such as mean diffusivity (MD) and fractional 
anisotropy (FA) have shown more than 7% variability across sites (Palacios et al., 2017; 
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Teipel et al., 2011). In the human brain, these differences can be non-uniform across different 
regions, with effect sizes reaching the same order or of magnitude as differences between cases 
and controls (Kumar et al., 2009). In retrospective studies, where it is no longer possible to 
adjust scanner and acquisition protocols, differences in dMRI measurements across sites are 
even more pronounced. Consequently, the majority of retrospective dMRI studies in disease 
have been single centre with modest sample sizes, using external cohorts only for validation 
rather than pooled analysis. It is therefore imperative that multicentre dMRI is harmonized 
prior to joint-analysis.

Several harmonization techniques have been developed and can be divided into two categories. 
The first category operates on each diffusion metric individually (e.g., FA and MD) by using 
statistical approaches such as meta-analysis to combine z-scores from all sites or by modelling 
each site with a covariate during analysis (Palacios et al., 2017). Another method that works 
on directly diffusion metrics is ComBat (Fortin et al., 2017) (combating batch effects when 
combining batches), which estimates an additive and a multiplicative site-effect coefficient at 
each voxel. A limitation of this method is the assumption that site-effect follows a particular 
parametric distribution, which might not generalize to all scenarios or diffusion metrics. 
The major downside of both ComBat and of other statistical methods is that each diffusion 
measure is harmonized separately, which might alter the relation between dMRI metrics that 
are mathematically linked. Moreover, it is not clear how non-linearities in the signal propagate 
through pre-processing steps, as well as model fitting procedures (Pinto et al., 2020). 

By contrast, the second category of harmonization operates directly on the raw dMRI signal 
rather than on diffusion metrics (Koppers et al., 2019; Mirzaalian et al., 2015). The advantage 
of these approaches is that the raw diffusion signal is harmonized in a model-independent 
manner, allowing any type of subsequent analysis once the data has been harmonized, such as 
fibre tractography and network analysis.  In the studies described in this thesis we focus on the 
second type of harmonization, and particularly on the rotation invariant spherical harmonics 
(RISH) method, which maps the dMRI signal from a ‘target’ site to a ‘reference’ site. This 
signal mapping is possible because the voxel-wise dMRI signal intensity can be represented 
in a spherical harmonics (SH) basis with a given number of parametrization coefficients 
(Descoteaux et al., 2007). From this representation, RISH features can be calculated and used 
to scale the dMRI signal from the target site to the reference. 

In chapter 2 we show proof of concept that RISH harmonization can be applied in multicentre 
analysis of dMRI of elderly subjects with SVD to remove acquisition-related differences in 
scalar metrics (FA, MD and peak width of skeletonized MD – PSMD) while preserving well-
known associations with WMH. In chapter 5 we further demonstrate that RISH harmonization 
is beneficial for multicentre network analysis, by improving cross-scanner consistency of 
dMRI-based brain networks while also improving sensitivity and precision to detect disease 
effects. 
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INCONSISTENCIES IN BRAIN NETWORKS ANALYSIS

Fibre tractography is a dMRI technique that allows us to reconstruct white matter pathways and 
define large scale brain networks. Brain networks are often described as a set of nodes (cortical 
and subcortical gray matter regions) connected by edges (white matter tracts) (Hagmann et al., 
2008). Subsequently, graph theory is used to characterize this network, allowing us to examine 
topological network changes in psychiatric and neurological disorders (Bullmore & Sporns, 
2009). In recent years, this approach has emerged as a useful tool to understand how focal 
and non-focal degeneration (e.g., Alzheimer’s disease and SVD) affect cognitive function. 

Despite its widespread use, the process from data acquisition to generation of brain networks 
is a multi-step procedure with numerous assumptions and uncertainties that can ultimately 
affect the ability to faithfully represent true axonal connections of the brain. A fundamental 
problem with brain network analysis is the lack of a ground truth, meaning it is impossible to 
identify false positive (FP) and false negative (FN) connections in the network (Hein et al., 
2016; Maier-Hein et al., 2017). In the context of dMRI-based brain networks, a false positive 
refers to finding a connection that is either non-existing in reality, or not representative of the 
underlying anatomy. On the contrary, a false negative represents the failure to reconstruct an 
actually existing connection. 

Several sources of error contribute for the presence of false positives and false negatives in 
the network. The well-established approach of diffusion tensor imaging (DTI) is unable to 
resolve complex fibre orientations (Von Dem Hagen & Henkelman, 2002). Streamlines derived 
with DTI tractography are likely to terminate or choose only one dominant direction in such 
regions. DTI tractography is therefore prone to many false negatives. In contrast methods such 
as constrained spherical deconvolution (Tournier et al., 2008) are less prone to false negatives, 
but can lead to spurious peaks in the fibre orientation distribution, especially in presence of 
datasets characterized by low angular resolution, low signal to noise ratio or poorly charac-
terized fibre response functions (e.g., due to alterations of the brain microstructure). This will 
result in more erroneous streamline trajectories and more false positives. When dealing with 
datasets of patients with presence of pathology, fibre tractography methods, which are devel-
oped using high quality datasets of healthy subjects or phantoms, might have a suboptimal 
performance, potentially resulting different amounts false positives and false negatives (de 
Reus & van den Heuvel, 2013) and disparities in network density across subjects, as explored 
in Chapter 4. Furthermore, network edges can be weighted by different indices, such as FA or 
number of streamlines (NOS), which present more sources of variability in network definition. 

The most straightforward approach to alleviate the effects of false positives is to employ 
thresholding to remove ‘weak’ connections (van Wijk et al., 2010). This can be done at group 
level where connections with low consistency across groups are removed, or at individual level 
based on diffusion parameters (e.g., low number of streamlines in the reconstructed tracts). 
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This procedure is useful on two accounts: firstly, it helps to remove the spurious connections 
(the false positives discussed above) and secondly by inducing the sparsity it helps minimize the 
number of connections tested in ensuing analyses, minimizing multiple comparison problems. 
There are multiple thresholding approaches described in the literature, for example fixed-density, 
proportional, consensus and consistency thresholding (Garrison et al., 2015). Many network 
studies have used absolute thresholding (Garrison et al., 2015), where a uniform threshold is 
applied to remove all connections below a certain edge-weight (e.g., below 5 streamlines). 
Another popular method is fixed-density thresholding (Rubinov & Sporns, 2010; van den 
Heuvel et al., 2017), where a relative threshold derived from each individual data is applied to 
remove the weakest connections, such that an equal network density is achieved across subjects. 

Scan-rescan studies in healthy controls suggest that applying thresholds to remove false posi-
tives can improve network similarity across datasets and over different time points, not only in 
terms of graph metrics but also by replicating the same network architecture (e.g., the same set 
of edges and edge-weights) (Andreotti et al., 2014; Buchanan et al., 2019; Messaritaki et al., 
2019; Sarwar et al., 2018; Tsai, 2018; Welton et al., 2015). In chapter 3, I will also explore how 
thresholding methods that improve network reproducibility in controls can also be applied to 
improve network analysis in longitudinal studies, with patients scanned over longer time frames.

OUTLINE OF THE THESIS

The aim of this thesis is to advance the implementation of dMRI in the context of SVD by 
exploring methods that improve its technical validity, with a particular focus on harmonization 
of raw dMRI data and network thresholding. The two key objectives will be addressed in 
four chapters:

•	 In chapter 2 we assess if RISH harmonization effectively removes acquisition-related 
differences in multicentre dMRI of subjects with SVD, without affecting disease effects. 

•	 In chapter 3 we examined how thresholding brain networks to a core structure improves 
network consistency of in SVD patients and healthy controls, while remaining sensitive 
to group-differences in cross-sectional analysis. 

•	 In chapter 4 we explore the impact of thresholding on longitudinal network analysis, with 
a focus on consistency of network architecture and sensitivity to disease effects. 

•	 Finally, in chapter 5 we combine RISH harmonization with network thresholding to facili-
tate large multicentre network analysis with improved consistency of network architecture 
across scanners and improved sensitivity to detect SVD-related network injury. 
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ABSTRACT

Objectives: Acquisition-related differences in diffusion magnetic resonance imaging (dMRI) 
hamper pooling of multicentre data to achieve large sample sizes. A promising solution is 
to harmonize the raw diffusion signal using rotation invariant spherical harmonic (RISH) 
features, but this has not been tested in elderly subjects. Here we aimed to establish if RISH 
harmonization effectively removes acquisition-related differences in multicentre dMRI of 
elderly subjects with cerebral small vessel disease (SVD), while preserving sensitivity to 
disease effects.

Methods: Five cohorts of patients with SVD (N = 397) and elderly controls (N = 175) with 3 
Tesla MRI on different systems were included. First, to establish effectiveness of harmoniza-
tion, the RISH method was trained with data of 13 to 15 age and sex-matched controls from 
each site. Fractional anisotropy (FA) and mean diffusivity (MD) were compared in matched 
controls between sites using tract-based spatial statistics (TBSS) and voxel-wise analysis, 
before and after harmonization. Second, to assess sensitivity to disease effects, we examined 
whether the contrast (effect sizes of FA, MD and peak width of skeletonized MD - PSMD) 
between patients and controls within each site remained unaffected by harmonization. Finally, 
we evaluated the association between white matter hyperintensity (WMH) burden, FA, MD 
and PSMD using linear regression analyses both within individual cohorts as well as with 
pooled scans from multiple sites, before and after harmonization.

Results: Before harmonization, significant differences in FA and MD were observed between 
matched controls of different sites (p < 0.05). After harmonization these site-differences were 
removed. Within each site, RISH harmonization did not alter the effect sizes of FA, MD and 
PSMD between patients and controls (relative change in Cohen’s d = 4 %) nor the strength of 
association with WMH volume (relative change in R2 = 2.8 %). After harmonization, patient 
data of all sites could be aggregated in a single analysis to infer the association between WMH 
volume and FA (R2 = 0.62), MD (R2 = 0.64), and PSMD (R2 = 0.60).

Conclusions: We showed that RISH harmonization effectively removes acquisition-related 
differences in dMRI of elderly subjects while preserving sensitivity to SVD-related effects. 
This study provides proof of concept for future multicentre SVD studies with pooled datasets.
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1 INTRODUCTION

Combining data from multicentre studies is becoming increasingly important in neuroimaging, 
with the aim to increase statistical power and provide outcomes that are more generalizable 
than those obtained at single-centre level (Lorca-Puls et al., 2018, Van Horn and Toga, 2014). 
However, joint analysis of multicentre magnetic resonance imaging (MRI) can be challenging 
if inter-site variability due to acquisition-related inconsistencies is not considered (Vollmar 
et al., 2010).

Inter-site variability is particularly problematic in diffusion MRI (dMRI) and can be caused 
by a range of factors, including scanner hardware (e.g., scanner manufacturer, magnetic field 
strength, gradient strength, field inhomogeneities), software, acquisition parameters (e.g., voxel 
size, number of gradient directions, echo time) (Helmer et al., 2016). All these factors may 
affect the measured diffusion signal intensity and metrics derived from the data. In prospec-
tive multicentre studies, this variability can be controlled using standardized acquisitions and 
scanners from the same manufacturer (Konieczny et al., 2020). However, when retrospectively 
combining data form different cohorts, differences in acquisition can be substantial. Even 
with phantoms, dMRI metrics have shown more than 7% variability across sites (Palacios et 
al., 2017, Teipel et al., 2011, Timmermans et al., 2019). In the human brain, this variability is 
even more pronounced and non-uniform across tissues with acquisition-related differences 
reaching the same order of magnitude as case-control differences (e.g., traumatic brain injury 
vs. controls, Kumar et al., 2009). In such scenarios, if multicentre data were naively pooled 
into a single analysis, true biological effects would likely be masked by acquisition-related 
differences. It is therefore crucial that multicentre dMRI is harmonized prior to joint-analysis 
(Tax et al., 2019).

Two main kinds of retrospective dMRI harmonization techniques have been developed to date. 
The first category operates on each diffusion metric individually (e.g., fractional anisotropy – 
FA, and mean diffusivity – MD) by using statistical approaches such as meta-analysis, or by 
modelling the difference between sites with covariates during analysis (e.g., ComBat, Fortin 
et al., 2017). By contrast, the second category of harmonization operates directly on the raw 
dMRI data rather than on each diffusion metric (Karayumak et al., 2019, Koppers et al., 2019, 
Mirzaalian et al., 2015). This type of harmonization is more general since the raw diffusion 
signal is harmonized in a model-independent manner, theoretically allowing any type of 
subsequent analysis. In this study, we focus specifically on the second type of harmonization 
with the rotation invariant spherical harmonics (RISH) methods (Mirzaalian et al., 2015).

The core idea of the RISH method is to map the dMRI signal from a ‘target’ site to a ‘reference’ 
site, using groups of healthy subjects matched for factors such as age, sex, etc. This signal 
mapping is possible because the dMRI signal intensity can be represented in a spherical 
harmonics (SH) basis with a given number of parametrization coefficients (Tournier et al., 
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2004). From this representation, RISH features can be extracted and scaled to harmonize the 
dMRI signal between two sites (Karayumak et al., 2019). Applications of RISH harmonization 
have been presented using synthetic data and with data of healthy young subjects, with recent 
work showing that acquisition-related differences are removed while preserving age- and 
sex-related effects (Karayumak et al., 2019). Recently, this method has also been applied to 
harmonize a large dataset of patients with Schizophrenia and investigate changes across the 
lifespan (Cetin-Karayumak et al., 2020). However, the applicability of the RISH method to 
older individuals exhibiting brain atrophy or to patients with (diffuse) white matter lesions 
remain unclear.

In this work, we evaluate the RISH harmonization framework in the context of a retrospective 
multicentre analysis of individuals with brain lesions due to cerebral small vessel disease 
(SVD). SVD is a leading cause of cognitive impairment and dementia, and it is often inves-
tigated with dMRI (Baykara et al., 2016, Lyoubi-Idrissi et al., 2017, Wiegertjes et al., 2019). 
The patterns of diffusion change in SVD are well documented using the diffusion tensor model, 
with patients typically exhibiting widespread increase of MD, peak width of skeletonized 
MD (PSMD) and decrease of FA, often related to white matter hyperintensity (WMH) burden 
(Tuladhar et al., 2015, Van Norden et al., 2012). Hence, this patient population is well-suited 
to investigate the efficacy of harmonization methods. Using scans from five SVD cohorts 
acquired on different systems (Philips Healthcare, NL, and Siemens Healthineers, DE) and 
with different protocols, we aimed to establish if application of the RISH method removes 
acquisition-related differences in dMRI of elderly subjects, while preserving the sensitivity 
to disease effects in SVD. Finally, we show proof of concept of how multicentre harmonized 
data can be pooled to perform robust inference of the relation between WMH burden and 
dMRI metrics.

2 METHODS

2.1 Datasets and inclusion criteria

For this retrospective analysis, we obtained scans from five cohorts including healthy elderly 
subjects and patients with SVD. These cohorts differed in study design and inclusion criteria 
(described below), comprising four samples with sporadic SVD and one sample with geneti-
cally defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 
Leukoencephalopathy, CADASIL). For the present study, we used a harmonized definition 
for patients and controls. Patients with sporadic SVD had symptomatic SVD defined as a) 
history of stroke, with a corresponding small subcortical infarct visible on MRI or b) cognitive 
complaints and presence of WMH burden on MRI (Fazekas score ≥ 2, Fazekas et al., 1987). 
The presence of CADASIL was confirmed by molecular genetic testing of the NOTCH3 gene 
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or ultrastructural analysis of a skin biopsy (detection of pathognomonic granular osmiophilic 
material, Wollenweber et al., 2015). Patients were excluded if they had other major neurological 
or psychiatric conditions (e.g., multiple sclerosis, epilepsy, Parkinson’s disease). Controls 
had no history of stroke or cognitive complaints for which they sought medical advice, and 
their MRI did not show signs of lacunes or WMH with Fazekas score ≥ 2. All subjects had a 
structural MRI (T1-weighted) and a dMRI scan. Characteristics of the study samples included 
in this study (397 patients and 175 controls) are provided in Tables 1. All studies included 
in this analysis were approved by the ethics committees of the respective institutions and all 
participants provided written informed consent.

2.1.1 Utrecht: Patients (n = 171) were selected from the Utrecht participants of the Parels-
noer study memory clinic cohort (Aalten et al., 2014). Age-matched controls (n = 53) were 
recruited from a community-based cohort (Reijmer et al., 2013). All MRI scans for both cohorts 
were acquired on the same 3 Tesla Philips scanner (Achieva, Philips, Best, the Netherlands). 
T1-weighted scans for both cohorts were acquired with the following parameters: voxel size: 
1×1×1 mm3, echo time (TE): 4.5 ms and repetition time (TR): 7.9 ms. dMRI data were obtained 
with a voxel size: 2.5 × 2.5 × 2.5 mm3, TR/TE 6638/73 ms, 45 diffusion gradients directions 
with a b-value of 1200 s/mm2, and 1 b = 0 s/mm2 averaged 3 times. Fluid-attenuated inversion 
recovery (FLAIR) images were obtained with TR/TE/inversion time (TI): 11000/125/2800 
ms, voxel size: 1 × 1 × 3 mm3.

2.1.2 Hong Kong: Patients (n = 20) and controls (n = 20) were selected from a community-based 
cohort, the Chinese University of Hong Kong–Risk Index for Subclinical brain lesions in 
Hong Kong (CU-RISK) (Lam et al., 2019). MRI scans were acquired on a 3 Tesla Philips 
scanner (Achieva, Philips, Best, the Netherlands). T1-weighted images were obtained with 
TR/TE: 7.49/3.46 ms, voxel size: 0.60×1.04×1.04 mm3 and dMRI had a TR/TE: 8944/60 
ms, voxel size: 1×1×2 mm3; 32 diffusion gradient directions with b-value 1000 s/mm2 and 1 
b = 0 s/mm2. FLAIR images were acquired with TR/TE/TI: 8000/328.6/2400 ms, voxel size: 
0.55 × 0.44 × 0.44 mm3.

2.1.3 Munich: Patients (n = 72) with CADASIL and controls (n = 34) were selected from 
the prospective VASCAMY (Vascular and Amyloid Predictors of Neurodegeneration and 
Cognitive Decline in Nondemented Subjects (Baykara et al., 2016) study. All MRI scans were 
acquired on a 3 Tesla Magnetom Verio scanner (Siemens Healthineers, Erlangen, Germany). 
T1-weighted scans were obtained using TR/TE: 2500/4.73 ms, voxel size: 1×1×1 mm3 and 
DWIs were performed with a voxel size: 2 × 2 × 2 mm3, TR/TE: 12700/81 ms, 30 diffusion 
gradient directions with a b-value of 1000 s/mm2, and 1 b = 0 s/mm2. FLAIR images were 
obtained with TR/TE/TI: 5000/395/1800 ms, voxel size: 1 × 1 × 1 mm3.

2.1.4 Utrecht2: A second dataset from the UMC Utrecht consisted of patients (n = 34) and 
controls (n = 18) from an ongoing prospective observational cohort study Zoom@SVDs 
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(van den Brink et al., 2021). MRI scans were acquired using the same scanner system and 
acquisition parameters as the Utrecht1 dataset. However, since multiple scanner software and 
hardware (coil) updates occurred between the two studies, scans from the Zoom@SVDs study 
are treated as a separate site. 

2.1.5 Singapore: Patients (n = 100) and controls (n = 50) were selected from a community-based 
cohort, the Epidemiology of Dementia in Singapore (EDIS) study (Hilal et al., 2013). All MRI 
scans were performed on a 3 Tesla Siemens Magnetom Trio Tim scanner (Siemens Healthineers, 
Erlangen, Germany). T1-weighted scans were obtained with TR/TE: 2300/1.9 ms, voxel size: 
1×1×1 mm3 and dMRI were acquired with a TR/TE: 6800/85 ms, voxel size: 3.1×3.1×3 mm3; 
61 diffusion gradient directions with b-value 1150 s/mm2 and 7 b = 0 s/mm2. FLAIR images 
were obtained with TR/TE/inversion time (TI): 9000/82/2500 ms, voxel size: 1 × 1 × 3 mm3.

2.2 MRI data pre-processing

All datasets were pre-processed using ExploreDTI version 4.8.6 (Leemans et al., 2009) and the 
Functional Magnetic Resonance Imaging of the Brain (FMRIB) software library (FSL, v6.0.1). 
Images were corrected for signal drift (Vos et al., 2016), eddy currents, subject motion with 
rotation of the B-matrix (Leemans and Jones, 2009), and susceptibility induced distortions 
(Veraart et al., 2013). dMRI data were nonlinearly registered to the T1 and resampled to an 
isotropic resolution of 2 × 2 × 2 mm3 and brain masks were generated using brain extraction 
(BET) tool from FSL. 

All images were visually inspected to exclude the presence of major artifacts and misregistration. 
Since the dMRI data were acquired with different b-values in the different cohorts, we adjusted 
for differences in b-values as part of the harmonization pipeline. We estimated the signal of all 
dMRI data to a common b-value (b = 1000 s/mm2) using a linear scaling of the signal decay 
(S/S0) in the logarithmic domain (Jensen et al., 2005, Steven et al., 2014). This signal decay 
has been validated in phantoms and healthy controls and shown to be robust for datasets with 
closely spaced b-values centred around b = 1000 s/mm2 where the diffusion signal is not heavily 
weighted towards non-Gaussian effects (Magin et al., 2019). This approach was also utilized 
by (Karayumak et al., 2019) for the RISH harmonization method. In our case, b-value scaling 
was applied to Utrecht1, Utrecht2 and Singapore, which had original b-values of 1200 s/mm2 
and 1150 s/mm2.

WMH volumes were segmented from the FLAIR images using an automated pipeline (coroflo) 
and registered the MNI152 template (Kuijf et al., 2019). All volumes were normalized to the 
percentage of intracranial volume (ICV) of the MNI brain.
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2.3 Harmonization with RISH features

Harmonization of dMRI with rotation invariant spherical harmonics (RISH) features 
was first proposed by Mirzaalian et al. 2015, with recent improvements allowing 
harmonization of scans with different acquisition parameters (Karayumak et al., 
2019), which is the case in our study. This type of harmonization is based on the fact 
that dMRI signal along unique gradient directions can be represented with a basis 
of spherical harmonics (SH). From this representation, RISH features that describe 
different aspects of the signal can be calculated. RISH features can be viewed as the 
total energy at a specific angular frequency (order) in the SH space. The core assump-
tion of this method is that two groups of healthy subjects matched for age, sex, lesion 
burden, etc., are expected to have similar diffusion profiles on a group level and thus 
none of the RISH features should be statistically different between sites. Under this 
assumption, eventual group differences observed in diffusion measurements such as 
FA and MD are attributed to scanner-related inconsistencies, as previously shown in 
healthy controls (Ning et al., 2020). 

To ensure that the average of RISH features captures site properties on a group level 
and not characteristics of individuals, a minimum number of training controls (15–20) 
is required from each site (Karayumak et al., 2019). Subsequently, a scaling is deter-
mined between the average of RISH features such that scanner-related differences 
are removed between sites. This mapping is linear in the SH domain, but non-linear 
in the original diffusion signal domain. We provide a detailed description of RISH 
harmonization in the supplementary information, and further theory can also be found 
in the original method papers (Karayumak et al., 2019; Mirzaalian et al., 2015)

In short, RISH harmonization pipeline consists of two parts: 1) learning inter-site 
differences in the form of scale maps between RISH features of the reference and 
target site (Figure 1, part 1); and 2) applying the learned scale maps to harmonize 
all dMRI datasets of the target site (Figure 1, part 2). The learning part is performed 
using age- and sex-matched controls as training data. From the dMRI signal, the RISH 
features are calculated and registered to a common spatial template generated from 
training subjects with ANTs (Avants et al., 2010). In the template space, the expected 
values of RISH features are defined as the sample mean over the number of training 
subjects and voxel-wise scale maps of RISH features are estimated between the 
target and reference site. Next, in the application part, the scale maps are warped to 
the subject space and used to harmonize the SH coefficients of the target site. Finally, 
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the harmonized diffusion signal can be reconstructed. 

2.4 Experimental design and analysis 

2.4.1 Effectiveness of RISH harmonization

Here we assess if acquisition-related differences in diffusion metrics between sites 
can be removed by RISH harmonization. The first step was to select Training Controls 
from every cohort that were as similar as possible between sites to minimize sources of 
variability other than scanner. The Utrecht1 cohort was used as a reference site because 
the age range of the controls allowed matching with all other sites. This was done on 
a site-by-site basis, generating four sets of Training Controls with participants from 
every site matched for age and sex to participants from Utrecht1 (demographics in 
supplementary Table S1). Tract-based-spatial-statistics (TBSS, Smith et al., 2006) and 
voxel-based analysis were used to compare the FA and MD between Training Controls 
of the reference and target sites, before and after harmonization. For the TBSS pipeline, 
FA and MD were estimated using the diffusion tensor model (dtfit from FSL). Next, FA 
maps were aligned to the MNI152 template and a white matter skeleton representing 
the centres of major bundles was computed. Subsequently, FA and MD of the skeleton 
were compared between reference and target sites in a voxel-wise fashion using t-tests 
with threshold-free cluster enhancement (5000 permutations). This comparison was 
also extended to the whole brain to ensure that acquisition-related differences in grey 
matter regions and other structures are also removed.
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We also evaluated the generalizability of effectiveness of harmonization beyond the 
Training Controls. This was done by creating a group of Validation Controls with 
data from Utrecht1 (n = 15), Munich (n = 15) and Singapore (n = 15), since those 
sites had a sufficient number of controls outside the Training Controls to generate 
separate sets of matched groups (demographics in supplementary Table S2). Similar 
to the analysis with training controls, TBSS and voxel-based analysis were used to 
compare validation controls between each target site and the reference, before and 
after harmonization. Furthermore, one-way ANOVA was performed to compare the 
average FA and MD of the TBSS skeleton across these three sites. 

2.4.2 Sensitivity to disease effects in SVD 

For this objective we included all patients from all sites (demographics in Table 1). We 
made a selection of controls that included both training and validation controls, while 
ensuring that the average age was similar across sites (demographics in supplementary 
Table S3). We matched controls for age across sites in order to have a common refer-
ence to calculate effect sizes against patients. Thus, after harmonization controls are 
expected to have similar diffusion measures while the contrast with their respective 
patient groups should not be affected. To assess sensitivity to disease effects, general 
linear model (GLM) adjusted for age and sex was performed to examine the contrast 
(effect sizes of FA, MD and PSMD from the TBSS skeleton) between patients and 
controls within each site, before and after harmonization.

In patients, we also explored the sensitivity to disease effects by relating WMH 
volume with FA, MD and PSMD, before and after harmonization. Linear regression 
adjusted for age and sex was performed. Since the WMH volumes was non-normally 
distributed, a Box-Cox transformation was applied (Box & Cox, 1964). We determined 
the R2 and standardized regression coefficients (β), before and after harmonization. 

2.4.3 Proof of concept of data pooling

We evaluated if disease effects were similar if patients were compared to Internal 
Controls or to a pooled set of matched controls derived from external centres only. 
GLM adjusted for age and sex was performed to compare patients from Utrecht1 and 
from Munich versus External Controls pooled from other sites. We compared effect 
sizes of FA, MD, PSMD obtained with External Controls to the original effect sizes 
with Internal Controls.

Finally, we demonstrated proof of concept of data pooling by relating WMH volume 
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with FA, MD and PSDM on pooled data of patients from multiple sites and compared 
the fit of the curve before and after harmonization. Similar to the analysis within sites, 
linear regression was performed.

3 RESULTS

 3.1 Effectiveness of RISH harmonization

Figure 2 shows RISH features of order 0, 2 and 4 obtained from the Training Controls 
and corresponding scale maps, before harmonization. We observed widespread differ-
ences in RISH features between the reference and target sites that were dependent on 
the tissue type. Small differences were observed in regions with prevalently single 
fibre populations (e.g., corpus callosum) for all orders of RISH features, whereas more 
peripheral white matter and grey matter regions showed bigger differences across sites 
(see scale maps). Furthermore, data from Hong Kong, Munich and Singapore sites 
showed larger differences from the reference (Utrecht1) than Utrecht2.

Before harmonization, significant differences in FA and MD were found between the 
reference and each target site across the entire brain (Figure 3), especially for Hong 
Kong Munich and Singapore (p<0.05). After harmonization, all significant differences 
in the white matter skeleton between the target sites and the reference were removed. 
When analysing the whole brain, FA differences were still seen for the Hong Kong site (p 
< 0.05), mainly in subcortical grey matter and near tissue interfaces with cerebrospinal 
fluid, probably due to misregistration (Figure 3, top right panel). A map of effect sizes 
further clarifies that differences (positive or negative Cohen’s d) are removed after 
harmonization (i.e., effect sizes become closer to zero, Supplementary Figure S1).

Regarding Validation Controls (Figure 4), voxel-wise differences in FA and MD in the 
white matter skeleton and across the whole brain were removed after harmonization, 
with exception of minor differences at tissue interfaces, probably due to misregistration. 
When comparing the average FA and MD of the skeleton significant differences in 
FA were found across sites before harmonization (F (1,43) = 18.2, p < 0.001, Figure 
5A). All differences in FA were removed after harmonization. The average MD of the 
skeleton did not differ across sites before or after harmonization (Figure 5B). 
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Figure 3: Results of the TBSS (left) and whole brain voxel-wise analysis (right) comparing FA (top) and MD 
(bottom) between Training Controls of each target site and the reference, before and after harmonization. The 

yellow-red colormap shows voxels where statistical differences were observed after multiple comparison 
corrections (p-value < 0.05). Corresponding maps of effect sizes are shown in Supplementary material (Part 3, 

Figure S1).
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Figure 5: Boxplots of average FA (panel A) and MD (panel B) of the white matte skeleton compared between 
Validation Controls, before and after harmonization (demographics in supplementary table S2). The dashed 
blue line represents the mean of the reference site. The blue marker within each boxplot indicates the mean 
of the corresponding group, which were compared between sites using a one-way ANOVA. Top: FA before 

harmonization, F (1,43) = 18.2, p<0.001; FA after harmonization, F (3,43) = 0.2, p = 0.8. Bottom:  MD before 
harmonization: F (3,43) = 0.83, p = 0.06; MD after harmonization: F (3,43) = 2.6, p = 0.4.

FINAL_INSIDE.indd   36FINAL_INSIDE.indd   36 14/10/2022   21:5314/10/2022   21:53



Harmonization of multicentre dMRI in cSVD

37

C
ha

pt
er

 2

3.2 Sensitivity to disease effects in SVD

Figure 6 depicts differences in dMRI metrics between patients and controls within each site, 
with quantitative values shown in Table 2. Before harmonization, patients had a significantly 
lower FA (Figure 6A), higher MD (Figure 6B) and higher PSMD (Figure 6C) than controls in 
all sites except Hong Kong: FA (d = -0.96 to -2.07, p<0.001); MD (d = 1.02 to 1.99, p<0.001); 
PSMD (d = 0.93 to 1.71, p<0.001). After harmonization, all effect sizes were preserved, regard-
less of if they were small (0.2), medium (0.5) or large (0.8). On average, the relative change in 
effect size from pre- to post-harmonization was 3.9 % (Table 2). Voxel-wise analysis of one 
of the target sizes (Munich) shows that regional differences between patients and controls are 
preserved after harmonization (Supplementary Figure S2). 

Before harmonization, WMH volume was significantly associated with all dMRI metrics in all 
sites, FA (R2 = 0.37 to 0.68, p < 0.001); MD (R2 = 0.57 to 0.70, p<0.001); PSMD (R2 = 0.49 to 
0.76; p<0.001), except Hong Kong where associations MD were not significant (Figure 7). After 
harmonization, all associations were preserved regardless of the strength, with R2, standardized 
β coefficients being marginally affected. The relative change in R2 after harmonization was 2.8%.
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Figure 6: Average FA (panel A), MD (panel B) and PSMD (panel C) of the white matter skeleton compared 
between patients (green) and controls (gray) within each site (demographics for selected controls in supplementary 

table S3). Results are displayed for the reference site and for each target site before and after harmonization. 
Corresponding p-values and effect sizes are displayed in Table 2. The dashed line indicates the mean value of 

controls of the reference site.

FINAL_INSIDE.indd   38FINAL_INSIDE.indd   38 14/10/2022   21:5314/10/2022   21:53



Harmonization of multicentre dMRI in cSVD

39

C
ha

pt
er

 2

U
tre

ch
t1

H
on

g 
K

on
g 

be
fo

re
H

on
g 

K
on

g 
af

te
r

%
C

ha
ng

e
M

un
ic

h
be

fo
re

M
un

ic
h

af
te

r
%

C
ha

ng
e

U
tre

ch
t2

 
be

fo
re

U
tre

ch
t 2

 
af

te
r

%
 

C
ha

ng
e

Si
ng

ap
or

e 
be

fo
re

Si
ng

ap
or

e 
af

te
r

%
C

ha
ng

e

FA

P-
va

lu
e

1.
40

×1
0-1

1
.4

3
.3

9
3.

17
×1

0-2
1

2.
30

×1
0-2

1
2.

20
×1

0-5
2.

20
×1

0-5
3.

30
×1

0-1
0

9.
00

×1
0-1

5

Ef
fe

ct
 si

ze
 (C

oh
en

’s
 

d)
-.9

6
-.2

5
-.2

7
8

-2
.0

7
-2

.0
9

1
-1

.1
6

-1
.1

6
0

-1
.1

9
-1

.1
7

2

C
I

(-
1.

29
, -

.6
4)

(-
.8

7,
 .3

7)
(-

.8
8,

 .3
5)

(-
2.

57
, -

1.
57

)
(-

2.
59

, -
1.

59
)

(-
1.

79
, -

.5
1)

(-
1.

79
, -

.5
2)

(-
1.

54
, -

.8
3)

(-
1.

53
, -

.8
1)

M
D

P-
va

lu
e

6.
29

×1
0-1

0
0.

17
0.

13
9.

57
×1

0-2
1

6.
29

×1
0-2

1
2.

84
×1

0-4
2.

62
×1

0-4
2.

40
×1

0-1
4

5.
80

×1
0-1

4

Ef
fe

ct
 si

ze
 (C

oh
en

’s
 

d)
1.

02
.4

4
.4

8
9

1.
99

2
1

1.
18

1.
19

1
1.

14
1.

11
3

C
I

(.6
3,

 1
.3

4)
(-

.1
9,

 1
.0

6)
(-

.1
5,

 1
.1

1)
(1

.4
9,

 2
.4

9)
(1

.4
9,

 2
.4

8)
(.5

4,
 1

.8
2)

(.5
5,

 1
.8

3)
(.8

0,
 1

.5
0)

(.7
6,

 1
.5

0)

PS
M

D

P-
va

lu
e

3.
10

×1
0-1

2
.0

6
.0

4
3.

6×
10

-1
7

5.
97

×1
0-1

8
3.

2×
10

-6
9×

10
-6

4.
10

×1
0-1

2
2.

40
×1

0-1
2

Ef
fe

ct
 si

ze
 (C

oh
en

’s
 

d)
.9

3
.6

2
.6

9
11

1.
71

1.
78

4
1.

03
1.

1
7

-.9
9

-.9
9

0

C
I

(.6
2,

 1
.2

5)
(-

.0
2,

 1
.2

5)
(.0

5,
 1

.3
2)

(1
.2

3,
 2

.1
8)

(1
.2

9,
 2

.2
5)

(.3
9,

 1
.6

5)
(.4

6,
 1

.7
3)

(-
1.

34
, -

.6
4)

(-
1.

35
, -

.6
5)

Ta
bl

e 
2:

 E
ffe

ct
 si

ze
s o

f F
A

, M
D

 a
nd

 P
SM

D
 b

et
w

ee
n 

pa
tie

nt
s a

nd
 c

on
tro

ls
 w

ith
in

 si
te

s, 
be

fo
re

 a
nd

 a
fte

r h
ar

m
on

iz
at

io
n.

D
em

og
ra

ph
ic

s f
or

 se
le

ct
ed

 c
on

tro
ls

 in
 S

up
pl

em
en

ta
ry

 T
ab

le
 S

3.

FINAL_INSIDE.indd   39FINAL_INSIDE.indd   39 14/10/2022   21:5314/10/2022   21:53



Chapter 2

40

Figure 7: Scatter plots of associations between WMH volume, FA (top), MD (middle) and PSMD (bottom) within 
sites, before and after harmonization. MD and PSMD values are given in mm2/s. *p < 0.05 for β coefficients.
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3.3 Proof of concept of data pooling

When comparing Utrecht1 patients to External Controls before harmonization, differences in 
FA were close to twice as large as the original effect size obtained with internal controls from 
Utrecht1 (d = -1.87, compared to -0.96, Figure 8A). After harmonization, the effect size of FA 
between Utrecht1 patients and External Controls was more comparable to the original effect 
sizes (Cohen’s d = -1.1, compared to -0.96). Results were similar when we performed the same 
analysis using patients from Munich (Figure 8B)): effect sizes between patients and the External 
Controls were more similar to the original effect size after harmonizing the data (original effect 
size: d = -2.07; effect size with Pooled Controls before harmonization d = -1.67, after harmo-
nization d = -2.1). For MD and PSMD, the effect sizes between patients and External Controls 
were similar to the original effects for both Utrecht1 and Munich, even before harmonization 
(Figure 8 C-F). 

Regarding associations between WMH and FA on the pooled data before harmonization, FA 
values from different sites were clustered in separate clouds (Figure 9A). This non-harmonized 
data still described a significant association between WMH volume and FA but with weaker 
correlations than some individual sites due to the clustering effect (R2 = 0.33; p = 2×10-31). After 
harmonization, data points were more aligned around the fitted curve, with the measurements 
behaving as a single centre data (Figure 9B). This resulted in stronger associations between 
WMH volume and FA (R2 = 0.62; p = 2×10-75). For MD (Figure 9 C-D) and PSMD (Figure 
9 E-F), the clustering of points was less prominent, but associations with WMH volume also 
became stronger after harmonization. Before harmonization, MD (R2 = 0.61; p = 7×10-74); 
PSMD (R2 = 0.56; p = 6×10-64); after harmonization, (MD:  R2 = 0.64; p = 7×10-89); PSMD (R2 
= 0.60; p = 5×10-71).
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Figure 8: Boxplots of FA (A-B), MD (C-D) and PSMD (E-F) of the white matter skeleton compared between 
patients and controls. (Left): Comparisons between Utrecht1 patients and Internal Controls and between Utrecht1 
patients and External Controls, before and after harmonization. (Right): Comparisons between Munich patients 

and Internal Controls, and between Munich patients and External Controls, before and after harmonization 
(demographics for selected controls in supplementary table S3). Data from each site is colour coded as follows: 

red = Utrecht1; green = Hong Kong; blue = Munich; black = Utrecht2; magenta: Singapore.
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Figure 9: Scatter plots of associations between WMH volume, FA (top), MD (middle) and PSMD (bottom) on 
the pooled data, before and after harmonization. MD and PSMD values are given in mm2/s. *p < 0.05 for β 

coefficients. Data from each site is colour coded as follows: red = Utrecht1; green = Hong Kong; blue = Munich; 
magenta: Singapore.
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4 DISCUSSION

We investigated the applicability of RISH harmonization to remove acquisition-related differ-
ences in multicentre dMRI of elderly subjects with SVD while preserving disease-related effects. 
Before harmonization, we observed significant differences in FA and MD across sites, which 
were removed after harmonization, both in the Training Controls and in Validation Controls 
not involved in the training step. Importantly, effect sizes of FA, MD and PSMD for group 
differences between patients and controls as well as for associations with WMH volume within 
each site were preserved after harmonization. The harmonized controls could be effectively 
considered as a single-site dataset. The pooled data of patients covered a wide range of WMH 
burden, allowing to demonstrate a strong relation between WMH volume and dMRI metrics. 

The RISH method has been previously implemented using scans of healthy young subjects 
without apparent brain lesions for the training step (Cetin-Karayumak et al., 2020, Mirzaalian 
et al., 2015). Here, we have evaluated whether peculiar characteristics of the elderly brain, such 
as presence of lesions as WMH brain atrophy and larger ventricles, which are present to some 
extent even in control subjects, could affect the computation of the scale maps of RISH features. 
In our study, the selection criteria for controls were based on low burden of SVD. Thus, the 
training controls were minimally affected by WMH and had relatively similar brain volumes. 
The largest differences in RISH features were observed in grey matter and peripheral white 
matter areas, where partial volume effects might play a role on the diffusion profile (Vos et al., 
2011, Vos et al., 2012). After harmonization differences in FA and MD between the target sites 
and the reference were removed across the brain, except for Hong Kong where minor differences 
in MD still persisted in deep grey matter structures and at tissue interfaces with cerebrospinal 
fluid. This is likely due to residual inaccuracies in image registration or differences in WMH 
burden and brain volumes in Training controls, given these were not explicitly matched for 
these markers (Supplementary Figure S7). Accordingly, we suggest that when dealing with 
data of elderly subjects it might be beneficial to match Training Controls not only for age and 
sex (Hsu et al., 2008), but also in terms of WMH lesion distribution, brain volumes or other 
demographics that contribute for variation in diffusion (e.g., handedness, race, etc., Büchel et 
al., 2004), although this might be challenging to achieve in practice in most studies. This is 
particularly important when the inclusion criteria for controls are not based on MRI markers 
of SVD but rather on variables such as being cognitively healthy. 

Another important consideration for studies implementing the RISH method is that imaging 
artefacts specific of one site or few subjects (e.g., ghosting, incomplete fat saturation) might be 
learned as part of the harmonization features and propagate into the harmonized dataset. In our 
study, an example of these artefacts can be seen as rings due to incomplete fat suppression on 
the L4 scale maps shown in Figure 2. Nevertheless, their impact on the harmonized data was 
deemed minimal and it did not significantly affect any subsequent result. The RISH method does 
not assume that two groups of healthy older subjects are completely identical, but as shown by 
our work, if groups are matched for major factors, differences in RISH features can be learned 
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on a group-level, without major influence of individual properties. This is further supported by 
our results on the generalizability of RISH harmonization with Validation Controls. We demon-
strated not only that dMRI metrics of subjects not involved in the training step are harmonized, 
but also the transitivity of harmonization, e.g., that the independent harmonization of two target 
sites to the reference also implies harmonization between target sites.

Next, we demonstrated that RISH harmonization does not affect the sensitivity of dMRI to 
effects of SVD. Well-known differences in FA, MD and PSDM between patients and controls 
observed within each site before harmonization were preserved (Baykara et al., 2016, Wieg-
ertjes et al., 2019). Effect sizes were unaffected after harmonization (relative change = 3.9 %.), 
regardless of whether the magnitude was small, medium or large. We believe such small change 
in effect size can be deemed negligible and is likely caused by registration and interpolation 
inaccuracies (Karayumak et al., 2019). We also repeated the same analysis with the statistical 
harmonization method ComBat (Fortin et al., 2017) for comparison. RISH harmonization 
outperformed ComBat in this dataset, which was not able to preserve effect sizes within all 
sites (see supplementary Information, Part 6). Recent work has shown that application of the 
RISH method does not alter the relation between dMRI metrics and biological effects such as 
age-related changes (Karayumak et al., 2019; 2020). Here, we extended such finding by showing 
that RISH harmonization also preserved the relation between WMH volume and dMRI metrics, 
a well-established relation in this kind of patients (Van Leijsen et al., 2017), regardless of the 
strength or the sample size available within each site to test such associations.

To date, most studies of SVD with dMRI have been single site based, and the inclusion of 
cohorts from other sites, which can differ substantially in terms of acquisition, has been limited 
to external validation only. Our results with External Controls indeed show that multicentre 
data without standardized acquisition across centres cannot be simultaneously analysed, as their 
integration before harmonization would result in biased effect sizes when comparing patients 
and controls. Effect sizes obtained with External Controls before harmonization were biased 
up to 1 standard deviation, which is on the same order of magnitude as typical differences 
between patients and controls. Conversely, after harmonization External Controls behaved as 
single-site dataset that could be used as reference for patients from all sites with minimal bias in 
effect sizes. An important implication of this result is that harmonization can potentially address 
data obsolescence. Diffusion scans are routinely acquired at single-site level for the purpose of 
testing specific hypotheses and discarded afterwards as hardware updates are implemented or 
the acquisition protocols are adjusted. Being able to account for such differences might allow to 
include previously acquired data across multiple studies, thus valorising previous investments 
and reducing the burden of scanning new controls in prospective studies. 

Another potential benefit of harmonization is in longitudinal studies where upgrades in scanner 
systems complicate the comparison of data at different time points (Takao et al., 2012). Still, 
for prospective multi-centre studies and especially clinical trials, which typically lack a healthy 
control group needed for post-hoc data harmonization, standardization of the acquisition should 
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still have a high priority.

After establishing that RISH harmonization allows to integrate data from different cohorts, we 
demonstrated associations between WMH volume and dMRI metrics on the pooled dataset of 
patients, which resulted into improved statistical power due to the larger sample size. Since the 
cohorts included in this study had different disease burdens, the pooled data covered a larger 
spectrum of WMH volumes, allowing to test associations with more confidence than what the 
individual sites would allow. Since WMH volume already has strong correlations with dMRI 
metrics (Bendlin et al., 2010), even the non-harmonized pooled data resulted in significant 
associations. However, R2 were lower than some individual sites, showcasing again the risk of 
performing inferences using non-harmonized data. After harmonization, data points of different 
sites behaved as a single-centre data and more aligned with the fitted curve, resulting in an 
increase of R2. The impact of harmonization is likely to be even more important in the study of 
other correlates of SVD with more subtle effect sizes than WMH (e.g., relation between dMRI 
metrics and cognition, Du et al., 2020) or when assessing disease progression over time (van 
Leijsen et al., 2019). 

5 LIMITATIONS AND FUTURE DIRECTIONS

Despite its advantages, RISH harmonization does not come without limitations. To minimize 
differences in diffusion weighting across sites, we used a linear scaling to map the diffusion 
signal to a b-value of 1000 s2/mm, which is only applicable to a limited range of b-values. For 
prospective multicentre studies, it is crucial to minimize differences in acquisition parameters 
such as b-values, but for retrospective studies with already acquired data, harmonization of 
scans with largely different b-values needs further investigation. As clinical protocols contin-
uously improve and more complex sequences are implemented (e.g., multi-shell data), future 
work should also investigate whether RISH harmonization is suitable for such advanced dMRI 
applications in SVD (De Luca et al., 2018, Konieczny et al., 2020, Rydhög et al., 2017). More-
over, since we focused our analyses on the dMRI metrics most commonly associated with SVD 
(FA, MD, PSMD), further analyses are required in order to generalize our conclusions to other 
metrics obtained from higher level analysis such as fibre tractography (De Luca et al., 2020) 
and network theory in SVD (Reijmer et al., 2015).

6 CONCLUSIONS

Despite the limitations, our study is the first to prove the feasibility of RISH harmonization of 
multicentre dMRI scans in the context of SVD. We showed that harmonizing the raw dMRI 
signal is effective in removing acquisition-related differences, while preserving the sensitivity 
to disease effects. This ultimately allowed us to directly pool scans acquired at different sites 
into a single analysis and increase the power of dMRI inferences. Our work paves the way not 
only for the validation of dMRI markers of SVD in large scale multicentre studies, but also for 
studies that aim to answer new research questions where statistical power is critical, such as 
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untangling underlying aetiologies in SVD populations (e.g., free-water imaging, Finsterwalder 
et al., 2020). When translated to even larger scales, harmonization could significantly improve 
the sensitivity and specificity for studies attempting to identify tract specific damage and network 
connections related to cognitive dysfunction (Konieczny et al., 2020).
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Reference
(N=15)

Munich
(N=15) 

Singapore
(N=15) 

Demographics

Age, years 70.8 ± 3.4 70.9 ± 5.7 68.6 ± 5.6
Male sex (%) 67 47 60

Table S2: Demographic characteristics of Validation Controls. 

For each site, controls that were not involved in the training step were selected as Validation 
Controls, to test generalizability of harmonization. This was done for Utrecht1, Munich and 
Singapore, since those sites had a sufficient number of controls to generate separate sets of 

matched groups.

Utrecht1
(N = 44)

Hong Kong
(N = 20)

Munich
(N = 30)

Singapore
(N = 34)

Utrecht2
(N = 12)

Demographics

Age, years 68.8 ± 3.6 69.2 ± 3.4 69.3 ± 4.3 68.3 ± 4.9 68.4 ± 3.4

Male sex (%) 54 50 40 59 66

Table S3: Demographic characteristics of controls used to test effect sizes vs. patients.  

This selection of controls includes both Training and Validation Controls. Age-matching of 
controls across sites was applied to reduce between site differences in controls. We made no 
attempt to also age-match the patients across sites, as this was not required for the intended 

analyses.
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Part 2 - Detailed descriptions of RISH harmonization

2.1 Diffusion MRI signal and RISH features 

The use of rotation invariant spherical harmonics (RISH) for harmonization was first proposed 
by Mirzaalian et al. (2015), with recent improvements allowing harmonization of datasets 
with different acquisition parameters (Karayumak et al, 2019), which is the case in our study. 
This harmonization method is based on the fact that dMRI signal S = [S1...SG]T along unique 
gradient directions (G) can be accurately represented in a basis of spherical harmonics (SH) 
with coefficients Cij given by: S ≈ ∑∑ Cij Yij , where Yij are SH basis functions of order i and 
phase j. From this representation, several RISH features F per harmonic order are computed 
as follows (Mirzaalian et al. 2015):

RISH features can be viewed as the total energy of the signal in a particular frequency band 
(order) in the SH space and capture different aspects of the signal. Given two groups of healthy 
subjects matched for age and sex, they are expected to have similar diffusion profiles and thus 
the RISH features should not be statistically different on a group level. Therefore, differences 
found in diffusion measurements are mainly attributed to scanner-related inconsistencies. 
During the harmonization procedure, the goal is to determine appropriate scaling factors for 
RISH features between the reference and target sites. This mapping is linear in the SH domain, 
but non-linear in the original diffusion signal domain. 

2.2 Mapping voxel-wise RISH features in training controls

We estimated voxel-wise linear mapping between each target site and the reference site using 
training controls, as depicted in Part 1 of Figure 1. We computed 3 RISH features of order 0, 2 
and 4 which capture different microstructural aspects of the signal. We did not calculate higher 
order RISH features since in our dataset they primarily capture noise. Next, RISH feature maps 
were registered to create a multi-modal template using ANTs algorithm (Avants et al., 2010). 
In the template space, the expected values of the voxel-wise RISH features are defined as the 
sample mean over the number of training subjects:

Where Cn
i is the RISH feature of order i for the nth subject and Ns is the number of training subject 

for site s. From here voxel-wise scale maps between RISH features of target site (TAR) and 
reference site (REF) are computed in the template space using:
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2.3 Applying scale maps to harmonize all DWIs 

The scale maps estimated from the training data were applied to all other scans of the target 
site. First the scale maps are nonlinearly transformed to the native subject space. This transfor-
mation is obtained by registering the RISH features of each subject to the template space and 
then inverting the transformation. The dMRI signal can now be recalculated by scaling the SH 
coefficients at each voxel in the subject space with: 

Where   are the scaled SH coefficients. Finally, the harmonized diffusion signal in the SH 
domain is transformed back to the signal intensity domain as follows:

.

Part 3 - Effectiveness of harmonization in training controls: effect size maps
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Part 4 - Sensitivity to disease effects: voxel-wise differences between patients 
and controls

Part 5 - Effectiveness of harmonization using a second sample Training Controls  

In Figure S1 we demonstrate that RISH harmonization is independent of the sample 
of training subjects used to train the algorithm, as long as these subjects are matched 
between the reference and the target. Differences between matched controls of Utrecht1 
and Munich sites found before harmonization were removed after harmonization (note 
that the gray boxplots representing the controls fall on the same line after harmoni-
zation). Furthermore, within each site, effect sizes of FA, MD, PSMD found before 
harmonization were unaffected after harmonization. This result indicates that the 
RISH method is independent of sampling biases of Training Controls.

Figure S2: Voxel-wise differences in FA and MD between patients and controls (in Munich), before and after 
harmonization. Colormap shows p < 0.05
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Figure S3: Average FA (top), MD (bottom) and PSMD of the white matter skeleton compared 
between patients (green) and controls (gray) within each site. Results are displayed for the 

reference site for the Munich site before and after harmonization using different training samples. 
Corresponding p-values and effect sizes are displayed in Table S4 The dashed line indicates the mean 
value of controls of the reference site and blue maker in each boxplot represent the mean of that group
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Part 6 - Statistical harmonization using ComBat

We compared the performance of RISH harmonization with a recently proposed statis-
tical harmonization tool, ComBat (Fortin et al., 2017). We performed 3 experiments 
using different sets of covariates in the model. We used age and sex as biological 
covariates for all experiments. Our aim was to understand whether scanner related 
differences in matched controls between sites are removed, while preserving effect 
sizes between patients and controls within each site. In the first experiment, patients 
and controls were harmonized in the same batch using an additional covariate for 

“group” (e.g., patients = 2 vs. controls = 1). In the second experiment, controls and 
patients were also harmonized in the same batch, using a group covariate with values 
between 1 and 3 for controls, SVD patients and CADASIL patients, respectively. The 
aim of this analysis was to understand whether separating the subjects per disease type 
would enhance the performance of harmonization. Finally, in the third experiment we 
harmonized patients and controls in separate batches. 

6.1 Experiment 1: using a group covariate of patient and controls.

Figure S2 and Table S5 show results of ComBat harmonization using disease type as 
covariate. After harmonization, one-way ANOVA shows that significant differences 
still exist between matched controls of all sites: FA (F (3,120) = 31, p < 0.001), MD (F 
(3,120) = 40, p< 0.001), and PSMD (F (3,120) = 44, p< 0.001). Note that the controls 
(gray boxplots) do not fall on the same line before or after harmonization, suggesting 
that scanner related differences are not accurately removed. Furthermore, effect sizes 
between patients and controls are not always preserved after harmonization, and 
changes in effect size up to 96% were observed.
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Figure S4: Harmonization using the ComBat method with age, sex and group (patients, controls) as covariates. 
Average FA (top), MD (bottom) and PSMD of the white matter skeleton compared between patients (green) and 
controls (gray) within each site, before and after harmonization. P-values and effect sizes are displayed in Table 

S4. The dashed line indicates the harmonized mean value of controls of the reference site and blue makers in each 
boxplot represents the mean of each group.   
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6.2 Experiment 2: using a group covariate of controls, SVD and CADASIL 

Figure S3 and Table S6 show results of ComBat harmonization using disease type as covariate. 
Similar to the previous experiment, after harmonization, significant differences still persisted 
between matched controls of all sites: FA (F (3,120) = 7.8, p < 0.001), MD (F (3,120) = 9.4, p< 
0.001), and PSMD (F (3,120) = 5.9, p< 0.001). Effect sizes between patients and controls were 
less affected by harmonization than in Experiment 1, showing that the inclusion of disease type 
as covariate can enhance the performance.

6.3 Experiment 3: patients and controls harmonized in separate batches. 

Figure S4 and Table S7 shows results of ComBat harmonization when patients and controls are 
harmonized separately. Contrary to the previous experiments, after harmonization, differences 
in FA, MD and PSMD between matched controls of all sites were removed (all p>0.05). Note 
that control groups (gray boxes) fall on the same line after harmonization. However, effect sizes 
between patients and controls were severely disrupted by harmonization. For example, for the 
Hong site where FA differences were not initially significant (Cohen’s = -0.25, p = .43), the 
effect size was inflated after harmonization (Cohen’s = -2.11, p = 6.74×10-8).
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Figure S5: Harmonization using ComBat method with, age, sex and group (CADASIL, SVD, 
controls) as covariates. Average FA (top), MD (bottom) and PSMD of the white matter skeleton 

compared between patients (green) and controls (gray) within each site, before and after 
harmonization. P-values and effect sizes are displayed in Table S5. The dashed line indicates the 

harmonized mean value of controls of the reference site and blue makers in each boxplot represents 
the mean of each group.   
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Figure S6: Harmonization using ComBat method, with patients and controls harmonized separately 
using age, sex and group as covariates. Average FA (top), MD (bottom) and PSMD of the white 

matter skeleton compared between patients (green) and controls (gray) within each site, before and 
after harmonization. P-values and effect sizes are displayed in Table S6. The dashed line indicates the 
harmonized mean value of controls of the reference site and blue makers in each boxplot represent the 

mean of each group. 
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Part 7 - Prevalence of WMH in training controls.

Figure S7: White matter hyperintensities (WMHs) observed in training controls of different sites. The 
green areas correspond to WMHs that occur in at least 25% of the subjects. For the Hong Kong site, 
the red-yellow colormap indicates areas where MD differences persisted after harmonization (p<0.05 

when compared to the reference site).
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ABSTRACT

Introduction: A popular solution to control for edge density variability in structural brain 
network analysis is to threshold the networks to a fixed density across all subjects. However, it 
remains unclear how this type of thresholding affects the basic network architecture in terms of 
edge weights, hub location, and hub connectivity and, especially, how it affects the sensitivity to 
detect disease-related abnormalities. We investigated these two questions in a cohort of patients 
with cerebral small vessel disease and age-matched controls. 

Methods: Brain networks were reconstructed from diffusion magnetic resonance imaging data 
using deterministic fibre tractography. Networks were thresholded to a fixed density by removing 
edges with the lowest number of streamlines. We compared edge length (mm), fractional anisot-
ropy (FA), proportion of hub connections, and hub location between the unthresholded and the 
thresholded networks of each subject. Moreover, we compared weighted graph measures of 
global and local connectivity obtained from the (un)thresholded networks between patients and 
controls. We performed these analyses over a range of densities (2–20%). 

Results: Results indicate that fixed-density thresholding disproportionally removes edges 
composed of long streamlines but is independent of FA. The edges removed were not preferen-
tially connected to hub or non-hub nodes. Over half of the original hubs were reproducible when 
networks were thresholded to a density ≥10%. Furthermore, the between-group differences in 
graph measures observed in the unthresholded network remained present after thresholding, 
irrespective of the chosen density. 

Conclusions: We therefore conclude that moderate fixed-density thresholds can successfully 
be applied to control for the effects of density in structural brain network analysis.
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1 INTRODUCTION

Studies of brain network changes in disease have improved our understanding of a wide range 
of cognitive and neurological disorders (Bassett and Bullmore, 2009; Stam, 2014). In network 
neuroscience, the structural brain network is often described as a set of nodes (gray matter 
regions) connected by edges (white matter tracts). Then, graph theoretical analysis is applied 
to characterize this network, allowing us to examine topological differences between patients 
and controls (Liu et al., 2017; Rubinov and Sporns, 2010; Sporns et al., 2005).

Although methods to reconstruct brain networks are improving, several methodological issues 
remain (Qi et al., 2015; Stam, 2014). A well-known issue is the confounding effect of network 
density (i.e., the number of detected edges divided by the number of all possible edges) on graph 
metrics (Stam, 2014; van Wijk et al., 2010). Since graph metrics are mathematically dependent 
on network density, variation in density caused by factors unrelated to disease of interest can 
mask real group differences or introduce false group differences (van Wijk et al., 2010). Such 
unwanted variation can be caused by factors related to network reconstruction. For example, 
brain networks reconstructed from diffusion magnetic resonance imaging (MRI) data contain 
false-positive and false-negative connections due to errors in fibre tractography, which occur 
especially in white matter regions with complex fibre orientations (Hein et al., 2016; Jeurissen 
et al., 2017). These complex fibre orientations cannot be fully resolved by using the diffusion 
tensor model, resulting in early termination of fibre tracts (i.e., false negatives) (Jones, 2008). 
On the contrary, advanced diffusion models such as constrained spherical deconvolution (CSD) 
are more effective in resolving complex fibre orientations but are prone to detect many false 
positives (Zalesky et al., 2016). Altogether, these reconstruction errors contribute to the variation 
in network density across subjects, affecting the computation and comparison of graph metrics.

One of the most straightforward methods to control for the variability in network density is to 
threshold the connectivity matrix by removing edges with the lowest weight until a common fixed 
density is achieved across all individuals (Achard and Bullmore, 2007; Bassett et al., 2009; van 
den Heuvel et al., 2008). Fixed-density thresholding is widely used in functional connectivity 
studies and has been suggested to be more reliable than other thresholding approaches such as 
absolute thresholding (Mårtensson et al., 2018; Telesford et al., 2011). However, the advantages 
and shortcomings of fixed-density thresholding are still under discussion (Garrison et al., 2015; 
van den Heuvel et al., 2017; Váša et al., 2018).

Much less is known about the consequences of fixed-density thresholding on diffusion-based 
brain networks (Andreotti et al., 2014b; Drakesmith et al., 2015). In particular, the effect of thresh-
olding on the basic architecture of diffusion-based networks (e.g., edge composition, location of 
hub nodes and hub connections) is still unclear. The influence of thresholding on these network 
properties is relevant since these characteristics are the building blocks of structural networks 
and are often the focus of clinical studies (Achard et al., 2012; Daianu et al., 2016; Pandit et al., 
2013). For example, long-range fibre connections are suggested to be more affected in certain 
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neurological disorders (Daianu et al., 2015). Moreover, network hubs and hub connections are 
preferentially disrupted in many pathologies and are frequently the most discriminatory features 
between patients and controls (Fagerholm et al., 2015; Tuladhar et al., 2017). Thus, before 
applying fixed-density thresholding in clinical studies, it is essential to understand if and how 
it affects the edge composition, the organization of hubs and hub connections in the network as 
well as the subsequent between-group comparisons of graph metrics.

In this study, we assessed the effects of thresholding on (1) edge composition, location of hub 
nodes and hub connectivity and (2) the ability to detect between-group differences in a cohort 
of patients with cerebral small vessel disease (SVD). SVD is a common cause of white matter 
injury in the elderly, and previous studies have characterized network abnormalities in patients 
with SVD based on unthresholded networks (Heinen et al., 2018; Reijmer et al., 2015). We 
evaluated our research objectives over a range of network densities while maintaining a fully 
connected network (van Dellen et al., 2018).

2 MATERIALS AND METHODS

2.1 Participants

Patients included in this study were part of the TRACE-VCI cohort recruited through the 
memory clinic at the University Medical Center Utrecht (Boomsma et al., 2017). Inclusion 
and exclusion criteria of the original cohort are described elsewhere (Boomsma et al., 2017; 
Heinen et al., 2018). Patients were eligible for this study if they had (1) a structural brain MRI 
scan, including a diffusion-weighted sequence; (2) evidence of SVD on MRI, such as white 
matter hyperintensities (WMH) and lacunes; and (3) if they presented with cognitive complaints, 
resulting in 162 patients.

In addition, 53 age-, sex-, and education-matched elderly without any history of dementia or 
other known neurological disorder that could affect cognition, and a minimental state exami-
nation (MMSE) score between 28 and 30, were included as a control group (Table 1). Control 
participants were recruited from the population as part of the Utrecht Diabetic Encephalopathy 
Study (van Den Berg et al., 2010). 

2.2 Magnetic resonance imaging data acquisition

MRI data of patients and controls were acquired on a 3-T Philips scanner (Achieva, Philips, 
Best, the Netherlands) using a standardized protocol that included a 3D T1-weighted image and 
a diffusion-weighted sequence. The T1 scans were acquired with the following parameters: 192 
continuous slices, isotropic acquisition voxel size: 1 × 1 × 1 mm3, a flip angle of 8°, echo time 
(TE): 4.5 ms and repetition time (TR): 7.9 ms.

The diffusion-weighted scans were obtained using a single-shot spin echo EPI sequence with 

FINAL_INSIDE.indd   74FINAL_INSIDE.indd   74 14/10/2022   21:5314/10/2022   21:53



Thresholding in cross-sectional dMRI network analysis 

75

C
ha

pt
er

 3SVD patients
N = 137

Controls
N = 44

Demographic characteristics

   Female sex 65 (47.4) 21 (47.7)

   Age in years 74.01 ± 7.88 72.0 ± 4.6

   MMSE 26 [23, 28] 29 [28, 30]*

Imaging markers

    Brain volume in % of ICV 67.5 [64.69, 69.3) 70.9.18 [69.9, 73.0]*

   GM volume in % of ICV 35.4 [34.1, 36.7] 38.4 [36.5, 39.7]

   WMH volume in % of ICV 1.1 [0.4, 2.2] 0.4 [0.2, 0.8]*

   Lacunar infarct 46 (34) 13 (30)

Table 1: Characteristics of the Study Population

Data presented as mean ± standard deviation, absolute number (%), or median [interquartile range]. 
Demographic variables and MRI markers of SVD were compared between patients and controls using 
independent-samples t-test for continuous variables and χ2 test for proportions. For the MMSE, brain 
volume, GM volume, and WMH volume, we used the nonparametric equivalent of the independent-
samples t-test, Mann–Whitney U test, since these variables were not normally distributed. *p < 0.02. 
GM, gray matter; ICV, intracranial volume; MMSE, minimental state examination; MRI, magnetic 

resonance imaging; SVD, small vessel disease; WMH, white matter hyperintensities.
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48 contiguous slices, field of view of 220 × 220 × 120 mm3, isotropic acquisition voxel size: 
2.5 × 2.5 × 2.5 mm3, TR/TE 6638/73 ms, 45 isotopically distributed diffusion-sensitizing gradients 
with a b-value of 1200 s/mm2, and 1 b = 0 s/mm2 (3 signal averages).

Furthermore, a fluid-attenuated inversion recovery sequence (FLAIR; TR/TE/Inversion 
time = 11,000/125/2800 ms) was acquired to rate neuroimaging markers of SVD (i.e., brain 
volumes, WMH volume, and lacunes).

2.3 Diffusion MRI processing and fibre tractography

The diffusion-weighted data were processed using ExploreDTI version 4.8.6 (Leemans et al., 
2009) running on MATLAB R2014b (MATLAB and Statistics Toolbox Release 2014b; The 
MathWorks, Inc., Natick, MA). Data were corrected for signal drift (Vos et al., 2017), subject 
motion, eddy current, and susceptibility artifacts, including rotation of the B-matrix before the 
estimation of the diffusion tensors (Leemans and Jones, 2009; Tax et al., 2015; Veraart et al., 2013).

The diffusion tensors were computed using robust estimators (Tax et al., 2015) followed by 
whole-brain tractography. Fibre tracts were reconstructed by starting seed points uniformly 
throughout the data at 2 mm isotropic resolution with a step size of 1 mm. Each streamline was 
propagated using integration over fibre orientation distributions (FODs). Streamlines were 
guided by fibre orientations inferred using CSD with a maximum harmonic order (l-max) of 6. 
This method allows for the reconstruction of more complex pathways, such as those found in 
regions of crossing fibres (Jeurissen et al., 2011). Streamlines were terminated when they entered 
a voxel with FOD <0.1, or when the deflection angle between two successive steps was >45°. 
These tractography parameters were chosen according to recommendations from the previous 
literature (Jeurissen et al., 2017).

2.4 Network reconstruction

The T1-weighted images were pre-processed using the Computational Anatomy Toolbox (CAT12) 
from SPM. The pipeline, as illustrated in Figure 1, included brain extraction and parcellation 
of the brain volume into 90 cortical and subcortical regions of interest (ROIs), using the auto-
mated anatomical labelling (AAL) template (Tzourio-Mazoyer et al., 2002). The parcellation 
was performed in the native space, with the AAL template being warped to each subject’s T1 
image (Odish et al., 2015). After parcellation, we visually checked the quality of each image, 
and overlaid the segmented AAL labels with the original T1 image to ensure that the registration 
and parcellation were successful. The cerebellum was excluded from the analysis since most 
subjects had insufficient scan coverage of this structure.

For network definition, each ROI represented a node in the network. Two nodes were considered 
to be connected if they contained the endpoints of at least one streamline, resulting in a 90 × 90 
binary connectivity matrix. We also obtained three weighted connectivity matrices for each 
subject, in which the previously defined edges were weighted by the number of streamlines 
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(NOS), average streamline length (SL), and fractional anisotropy (FA) (Figure 1).

Figure 1: Flowchart of the structural network reconstruction. A: Coregistration of the diffusion-
weighted image (top) with the T1-weighted image (bottom). B: Reconstruction of fibre tracts from 

the diffusion-weighted data (top) and the parcellation of the T1 image into 90 cortical and subcortical 
regions using AAL template (bottom). C: Network definition: for any pair of ROIs of the AAL 

template, we established that a connection was present when at least one streamline existed with 
endpoints in these two regions, resulting in a 90 × 90 connectivity matrix; NOS-weighted matrix (top), 
FA-weighted matrix (middle), SL-weighted matrix (bottom). AAL, automated anatomical labelling; 

FA, fractional anisotropy; NOS, number of streamlines; ROIs, regions of interest; SL, streamline 
length. 
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2.5 Network thresholding

The NOS-weighted matrix is typically used for thresholding (Sarwar et al., 2019; van Dellen 
et al., 2018). To obtain thresholded networks, edges with the lowest NOS are removed, which 
can result in disconnected networks. To ensure that the network did not become disconnected, 
we first calculated the minimum spanning tree (MST) using the Kruskal algorithm (Kruskal, 
1956). The MST is an acyclic subgraph that connects all N nodes in the network such that the 
weight is minimal. We computed the MST by selecting the edges with the largest NOS first. This 
method of constructing the MST has previously been described as a good representation of the 
network backbone (Tewarie et al., 2015; van Dellen et al., 2018). The MST has per definition 
N − 1 edges and a density of 2/N. Since our network definition includes N = 90 nodes, the density 
of the MST was ≈ 2.2%.

To obtain networks with larger densities, we added edges from the original unthresholded network 
to the MST, until a fixed density was reached, again by selecting edges with the largest NOS 
first. After each thresholding step, the NOS weights were disregarded to obtain binary matrices 
with densities of 2.2% (MST), 5%, 10%, 15%, and 20% (Figure 2). In this manner, the NOS 
weight determined which edges were retained after thresholding. The binary matrices were then 
multiplied with the FA-weighted and SL-weighted matrices for further analyses.

2.6 Edge composition and hubs

The first question we addressed was whether and how thresholding affects the characteristics 
of edges and nodes in the network. To examine the edge composition, we computed NOS, SL 
(mm), and FA of the edges removed versus the edges retained in the network.

We also explored whether the edges removed and retained during thresholding were preferentially 
connected to hub nodes. For this purpose, we first defined hub nodes as the nine nodes with the 
highest betweenness centrality (i.e., top 10th percentile) (Reijmer et al., 2015). Nodes with high 
betweenness centrality are often considered “hubs” because they participate in many shortest 

Figure 2: Network thresholding. The first step was the calculation of the MST (density ≈2.2%), by 
prioritizing the edges with the largest NOS. Next, edges were added until fixed densities of 5%, 10%, 
15%, and 20% were reached. The average density of all the unthresholded networks of patients and 

controls was 28% ± 3% (mean ± SD). MST, minimum spanning tree; SD, standard deviation. 
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paths and largely contribute to the global efficiency of the network (Hagmann et al., 2008; van 
den Heuvel and Sporns, 2011). After defining the hub nodes, we computed the percentage of 
hub connections relative to all edges retained in the network. Here, hub connections represent 
edges that connect hub nodes to other hub nodes and edges that connect hub nodes to non-hub 
nodes. We repeated the calculation of hub connections for each density level.

We also examined whether the hub nodes defined in the unthresholded network corresponded 
to the hub nodes defined in the thresholded networks. We computed nine hubs (according to 
the definition above) for each density level and compared their location with the location of the 
hubs in the unthresholded network. Finally, we investigated whether the overall nodal ranking 
(here defined as the ranked betweenness centrality of all nodes) was affected by thresholding. 
We calculated the nodal ranking for each density and compared it with the nodal ranking of the 
unthresholded network.

2.7 Detection of small vessel disease-related network impairments

The second question we addressed was whether thresholding influences comparisons of graph 
metrics between patients and controls. Ideally, the edge weight applied for thresholding the 
networks is not the same as applied for the between-group comparisons. In this study, we therefore 
obtained measures of global connectivity (e.g., global efficiency) and local connectivity (e.g., 
connectivity strengths of hub and non-hub nodes) from the FA-weighted networks. FA-weighted 
networks are frequently used to examine structural aspects of brain connectivity in patients 
and have been shown to be sensitive to the effects of SVD (Heinen et al., 2018; Lawrence et al., 
2014; Reijmer et al., 2015; Tuladhar et al., 2016).

Global efficiency was defined as the inverse of the shortest path lengths (i.e., the minimum 
number of connections between each pair of brain regions). This network measure expresses 
the extent to which information is exchanged over the network (Rubinov and Sporns, 2010). 
Connectivity strength of hubs and non-hubs was defined as the mean FA over all the edges 
connected to hub nodes or non-hub nodes, respectively. All graph measures mentioned in this 
article were calculated using the brain connectivity toolbox (Rubinov and Sporns, 2010).

2.8 SVD imaging markers

SVD markers were computed as described previously (Ferro et al., 2019). Shortly, brain volumes 
were obtained using an in-house semiautomated pipeline as follows: (1) automated WMH 
segmentation using the FLAIR images; (2) lesion filling of 3D T1 images; and (3) probabilistic 
segmentations for gray matter, WM, and CSF. We visually checked the tissue classifications 
to ensure that the segmentations were correct and not affected by partial volume effects. Total 
brain volume was defined as the sum of the gray and WM volume. Brain volume was expressed 
as a percentage of the total intracranial volume. Lacunes were defined as hypointense areas 
between 2 and 15 mm on both FLAIR and T1-weighted images with a hyperintense rim on 
FLAIR images. Ratings were performed in line with the STRIVE (Standards for Reporting 
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Vascular Changes on Neuroimaging) criteria (Wardlaw et al., 2013) under supervision 
of a neuroradiologist (in training).

2.9 Statistical analysis

Statistical analysis was performed using IBM SPSS statistics (IBM Corp. Released 
2017, IBM SPSS Statistics for Windows, Version 25.0.; IBM Corp., Armonk, NY). A 
p-value <0.05 was considered significant. Demographic variables and MRI markers of 
SVD were compared between patients and controls using independent-samples t-test 
for continuous variables and χ2-test for proportions. For the MMSE, brain volume, 
gray matter volume, and WMH volume, we used the nonparametric equivalent of 
the independent-samples t-test, Mann–Whitney U test, since these variables were 
not normally distributed. Characteristics of the unthresholded network (i.e., edge 
weights and network density) were compared between patients and controls using 
independent-samples t-test.

FA and SL were compared between the edges retained and the edges removed from 
the network using independent-samples t-test. Changes in the organization of nodes 
were analysed in two different ways: first, we computed the one-to-one overlap of 
hub nodes between the thresholded network and the thresholded networks; second, 
we correlated the ranked betweenness centrality of the thresholded network with the 
ranked betweenness centrality of the thresholded network using Pearson’s correlation 
coefficient (r). Hence, the hub overlap reflects changes in the location of the nine hubs, 
while the correlation coefficient reflects changes in nodal ranking of all the nodes.

We analysed between-group differences (SVD vs. controls) in weighted graph metrics 
(global efficiency, strength of hub- and non-hub nodes) for each density level using a 
univariate ANOVA with age and sex as covariates. Effect sizes were defined as Cohen’s 
d, and p-values were adjusted for multiple testing using Bonferroni correction. To 
examine whether the between-group differences change across density levels, we 
tested interactions between density × group using a repeated-measures ANOVA with 
group as between-subject factor and density as within-subject factor. Again, age and 
sex were used as covariates.
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3 RESULTS

3. 1 Characteristics of the unthresholded network

Characteristics of the unthresholded networks of patients and controls are shown in Figure 3. The 
NOS of all edges in the unthresholded network was similar for patients and controls (p > 0.14; 
Figure 3A). However, the unthresholded networks of patients were composed of edges with 
relatively long streamlines (p < 0.001; Figure 3B) and lower FA (p < 0.001; Figure 3C). Of note, 
the edge FA and edge length seemed independent of the NOS (Supplementary Figure S1). The 
network density of the unthresholded networks of patients (mean ± SD = 26.98% ± 3.12%) was 
lower when compared with the unthresholded networks of controls (mean ± SD = 28.78% ± 3.17%) 
(p = 0.002, Figure 3D).

Nodes that were identified as hubs in the unthresholded networks of patients and controls are 
shown in Figure 3E and F. Hub nodes were largely consistent across groups and with those 
commonly reported in the literature (Hagmann et al., 2008; van den Heuvel and Sporns, 2011, 
2013).

3.2 Effect of thresholding on edge composition and hubs

The effect of thresholding on the edge composition of all subjects is shown in Figure 4. The 
edges removed from the network during thresholding had, by definition, a lower NOS, but they 
were also on average longer than the edges retained (p < 0.001; Figure 4A, B). However, the 
mean FA was similar for both sets of removed edges (p > 0.10; Figure 4C).
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Figure 3: Characteristics of the unthresholded networks. A: NOS weight of all edges in the 
unthresholded networks of patients (red) and controls (blue). B: SL of all edges in the unthresholded 
networks (patients vs. controls p < 0.001). C: FA weight of all edges in the unthresholded networks 
(patients vs. controls p < 0.001). D: Histogram of network density of the unthresholded networks of 

patients (mean ± SD = 26.98% ± 3.12%) and controls (mean ± SD = 28.78% ± 3.17%), p = 0.002. E: 
Average node betweenness centrality of the unthresholded networks of patients. F: Average node 

betweenness of the unthresholded networks of controls. Hubs were defined as the nine nodes with the 
highest betweenness. 
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Figure 4: Effect of thresholding on the edge composition. A: Average NOS of edges retained (black) 
and edges removed (red) at each density level (all p < 0.001). Error bars represent the SD. “unthr” 
(unthresholded network). B: Average SL of the edges retained, and edges removed at each density 

level (all p < 0.001); C: average FA of the edges retained, and the edges removed at each density level 
(all p > 0.1). p-Values were derived from independent-samples t-tests.
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The effect of thresholding on hub connections and hub nodes of all subjects is shown in Figure 
5. In the unthresholded network, 33% of all edges were hub connections (Figure 5A). This 
proportion did not change after thresholding, indicating that thresholding did not preferen-
tially target edges connected to hub or non-hub nodes. These results indicate that fixed-density 
thresholding (based on NOS weights) removes edges composed of relatively long streamlines 
but is independent of FA and does not disproportionally affect hub connections. When a small 
proportion of edges was removed, more than half of the hubs found in the thresholded network 
corresponded with the original hubs found in the unthresholded network (hub overlap ≥5/9 for 
densities ≥10%; Figure 5B). When a greater proportion of edges was removed, the majority of 
hubs defined in the unthresholded network no longer corresponded with the hubs defined in the 
thresholded network (hub overlap ≤ 4/9 for densities ≤5%, Figure 5B).

We found similar results when we compared the overall nodal ranking (i.e., the ranked between-
ness centrality of all nodes) (Figure 5C). There was a high correspondence in nodal ranking when 
a small proportion of edges was removed (r > 0.77 for densities ≥10%) and lower correspondence 
in nodal ranking when a larger proportion of edges was removed (r < 0.64 for densities ≤5%).

When we performed these analyses separately for patients and controls, fixed-density thresh-
olding had a similar effect on the edge composition, hub location, and hub connections for both 
groups (Supplementary Figures S2 and S3).
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Figure 5: Effect of thresholding on hub connections and hub nodes. A: Average number of hub 
connections retained in the network at each density level. This number is also represented as the 

percentage of all the edges retained in the network (dotted line, right y-axis). Error bars represent the 
SD. B: Overlap between the hubs defined in the unthresholded network and the hubs defined in the 
thresholded networks (20%, 15%, 10%, 5% and MST). C: Correlation between the nodal ranking of 
the unthresholded and nodal ranking of the thresholded networks (20%, 15%, 10%, 5% and MST). 
Note that each density is compared against the unthresholded network. Thus, the hub overlap and 

correlation coefficient for the unthresholded network are 9/9 and 1, respectively.
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3.3 Effect of thresholding on the detection of SVD-related network impairments

In line with the previous literature (Heinen et al., 2018; Lawrence et al., 2014; Tuladhar et al., 
2016), the global efficiency of the unthresholded FA-weighted network was lower in patients 
with SVD when compared with controls (Cohen’s d = 0.97, p < 0.001; Figure 6A). The between-
group differences in global efficiency remained present after thresholding, irrespective of the 
network density (Figure 6A). The largest effect size was observed at 15% density (Cohen’s 
d = 1.09, interaction term density × group: p = 0.026).

The connectivity strength of hub nodes in the unthresholded network was lower in patients when 
compared with controls (Cohen’s d = 1.11, p < 0.001, Figure 6B). Again, the between-group 
difference remained significant after thresholding. The largest effect size in strength of hub nodes 
was observed at 10% density (Cohen’s d = 1.18, interaction term density × group: p < 0.001).

Similarly, the largest effect size in strength of non-hub nodes was observed at 15% density 
(Cohen’s d = 0.95, interaction term density × group: p < 0.001, Figure 6C). At 10% and 5% densi-
ties, the group difference in strength of non-hub nodes was not significant and even reversed, 
indicating that the strength of non-hub nodes is less stable over thresholds.
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Figure 6: Difference in weighted network measures between patients with SVD (red) and controls 
(blue) across different levels of network density. A: FA-weighted global network efficiency. B: 

Average FA-weighted strength of hub nodes. C: Average FA-weighted strength of non-hub nodes. 
Hubs were defined in the control group; thus, the same nodes were considered hubs in both groups. 

*p < 0.001, Bonferroni corrected; age- and sex-adjusted effect sizes are given as Cohen's d. ¥p ≤ 0.026, 
density × group interaction. SVD, small vessel disease.
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4 DISCUSSION

In this study, we investigated the impact of fixed-density thresholding on the basic architecture 
of structural brain networks and on the subsequent detection of network abnormalities in patients 
with SVD. Our results showed that fixed-density thresholding mainly removes edges composed 
of long streamlines but seemed independent of FA. The removed edges were not preferentially 
connected to hub or to non-hub nodes. As a result, more than half of the hubs and their original 
location, as well as the overall nodal ranking, were preserved when networks were thresholded 
to a density >10%. Importantly, our results also showed that the sensitivity to detect network 
abnormalities in patients with SVD is not affected by thresholding. Patients had a lower global 
efficiency and hub strength than controls when we compared their unthresholded networks. These 
between-group differences remained present in the thresholded networks, indicating that the 
disease effects are not removed by thresholding. Thresholding of brain networks in case-control 
studies remains a topic of intense debate (Stam, 2014). Some have argued that the difference in 
network density is partly a consequence of the disease and enforcing a similar density would 
therefore lead to an elimination of disease effects. Here, we showed that disease effects were 
not removed by obtaining measures from brain networks with fixed densities.

Another argument against fixed-density thresholding in clinical network studies is that group 
differences may be artificially inflated. This effect is especially problematic when there is an 
initial group difference in the edge weights used for thresholding (van den Heuvel et al., 2017). 
Under these circumstances, more high-weight edges will be selected from the control networks 
than the patient networks to obtain the same network density, thereby increasing the between-
group difference in network weight. This inflation of between-group differences is often a 
problem in functional network studies where the same measure of functional connectivity is 
used for thresholding as well as for calculation of network measures for group comparison. 
In our study however, the unthresholded networks of patients and controls had similar NOS 
weight distributions. Furthermore, the edge weight used to calculate graph metrics (i.e., FA) 
seemed independent of the weight used for thresholding (i.e., NOS). Therefore, this form of 
bias introduced by the difference in thresholding weight was not an issue.

We also found that a larger proportion of long-range connections was removed during thresh-
olding, indicating that longer connections are often composed of low NOS (Roberts et al., 2017). 
A possible explanation for this bias is that long-range white matter pathways are inherently 
more difficult to tract because the likelihood of meeting the stopping criteria of the tractography 
algorithm (i.e., extreme fibre deviations or voxels with low FOD) is higher for long-range 
fibres (Jeurissen et al., 2017; Leopold et al., 2014). Understanding how the connection length 
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is affected by thresholding is relevant because the role of long-range connections is a topic of 
interest in disease studies (Tuladhar et al., 2017), due to their contribution for global network 
signalling (van den Heuvel et al., 2012).

The edges removed during thresholding were not preferentially connected to hub nodes (or to 
non-hub nodes). In this way, the removal of edges seemed comparable with a “random network 
attack” (Mengiste et al., 2015). Brain networks are shown to be resilient to random attacks due 
to their hierarchical organization (Crossley et al., 2014). This resilience could also explain why 
the hub location and nodal ranking were largely unaffected when the networks were thresholded 
to densities ≥10%. These results suggest that a threshold between 10% and 15% can be applied 
without significantly damaging the backbone structure of brain networks. This is also supported 
by previous research that shows that brain networks preserve their small-world characteristics 
when they are thresholded to densities between 10% and 34% (Zhang et al., 2011).

Finally, we showed that the between-group differences in graph metrics are preserved after 
thresholding. In line with previous work, global efficiency and FA-weighted strength of hubs 
in the unthresholded network were lower in patients with SVD than in controls (Lawrence et 
al., 2014; Reijmer et al., 2015). These group differences remained present after thresholding, 
which could be explained by the fact that there was no correlation between the NOS of the edges 
removed and their FA value. Thus, the FA weight used to calculate weighted graph metrics was 
not influenced by thresholding. Again, this shows the importance of using independent edge 
weights for thresholding and for the calculation of weighted graph metrics. Another explana-
tion for the preservation of group differences is that thresholding had a similar impact on the 
network architecture of patients and controls. Thus, the computation of graph metrics was not 
affected differently for both groups. The only measure where the group differences were not 
maintained (for densities <10%) was the strength of non-hub nodes. Since these nodes have low 
degree to begin with, when the networks are thresholded to low densities, local graph metrics 
are calculated based on few connections (often only one), making the strength of non-hub nodes 
a less stable measure.

The fact that the largest effect sizes were observed at 10% and 15% densities suggests that 
fixed-density thresholding might improve the detection of between-group differences. It is 
possible that by applying moderate thresholds, the amount of spurious (false-positive) connections 
is reduced without significantly increasing the number of false negatives (i.e., true connections 
removed during thresholding), which can improve the network specificity and sensitivity. Indeed, 
previous research indicates that reducing the number of false positives in the network is more 
beneficial than safeguarding against the creation of new false negatives (Zalesky et al., 2016). 
These mid-range densities (10% and 15%) could represent the levels where this balance between 
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false positives and false negatives is achieved. Thresholding beyond these levels would be detri-
mental to both the initial network architecture and the detection of between-group differences.

Strength of this study includes a standardized clinical MRI protocol with high-quality diffu-
sion data from the TRACE-VCI cohort (Boomsma et al., 2017). Furthermore, we performed 
whole-brain tractography using CSD, which is known to have a better anatomical accuracy 
than the conventional diffusion tensor imaging approach (Jeurissen et al., 2013). Moreover, 
by incorporating the MST into the thresholded network, we ensured that the network did not 
become disconnected, avoiding differences in network structure due to disconnected nodes.

This study also has some limitations. Brain network reconstruction involves several choices 
in pre-processing steps, which could have influenced our results. The choice of parcellation 
scheme (Zalesky et al., 2010), tractography algorithm (Bastiani et al., 2012), and tractography 
parameters (e.g., FOD threshold, l-max, streamline deflection angle, etc.) can have a significant 
impact on the definition of nodes and edges as well as on the number of false positives and false 
negatives in the network. Consequently, these choices can influence the thresholding results and 
graph outcome measures obtained from these networks. Another limitation is that we did not 
consider the effect of thresholding on all network characteristics but only on network properties 
commonly investigated in network studies with SVD populations. Furthermore, we used the 
betweenness centrality as the only metric to characterize nodal ranking and define hub nodes. 
This may not fully describe the importance of a node for network integration and communi-
cation. Alternatively, a metric such as communicability (Andreotti et al., 2014a) could have 
provided a broader view of node importance. However, the interpretation of this metric is not 
straightforward and not established in clinical studies.

Future studies should examine the consequences of fixed-density thresholding on other network 
parameters and in other disease populations. Nevertheless, fixed-density thresholding may yield 
more reproducible networks, as suggested by repeatability studies (Andreotti et al., 2014b; Roine 
et al., 2018; Tsai et al., 2018). This can be beneficial in studies with a longitudinal design, but 
further investigation is required.

5 CONCLUSIONS

We showed that moderate fixed-density thresholds (10% and 15% densities in this dataset) can 
be used to control for density effects in diffusion-based brain network studies. The present find-
ings can help researchers make a well-informed choice when selecting an appropriate density 
threshold for future clinical studies.
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Figure S1: Data points represent the composition of all edges found in the unthresholded networks 
of all patients and all controls. Red lines represent the linear regression fit between FA and NOS. A: 
Correlation between the NOS and edge FA. Edges with the highest NOS did not necessarily have the 
highest FA (R2 = 0.0022). B: Correlation between NOS and average SL. Despite the low correlation 

(R2 = 0.0253), the longest edges (>300 mm) are composed of few streamlines and therefore are 
removed first during thresholding. FA, fractional anisotropy; NOS, number of streamlines; SL, 

streamline length.
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Figure S2: Effect of thresholding on the edge composition. Patients and controls are shown 
separately. A: Average NOS of edges retained (black) and edges removed (red) at each density level. 

Error bars are omitted for simplification of the plot. ‘‘unthr’’ (unthresholded network). B: Average 
streamline length of the edges retained, and edges removed at each density level. C: Average FA of 

the edges retained, and the edges removed at each density level.
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Figure S3: Effect of thresholding on hub connections and hub nodes. Patients (red) and controls 
(blue) are shown separately. A: Average number of hub connections retained in the network at each 

density level. This number is also represented as the percentage of all the edges retained in the 
network (dotted line, right y-axis). Error bars are omitted for simplification of the plot. ‘‘unthr’’ 

(unthresholded network). B: Overlap between the hubs defined in the unthresholded network and the 
hubs defined in the thresholded networks (20%, 15%, 10%, 5% and MST). C: Correlation between the 
nodal ranking of the unthresholded and nodal ranking of the thresholded networks (20%, 15%, 10%, 
5% and MST). Note that each density is compared against the unthresholded network. Thus, the hub 
overlap and correlation coefficient for the unthresholded network are 9/9 and 1, respectively. MST, 

minimum spanning tree.
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ABSTRACT

Introduction: Thresholding of low-weight connections of diffusion MRI-based brain networks 
has been proposed to remove false-positive connections. It has been previously established 
that this yields more reproducible scan–rescan network architecture in healthy subjects. In 
patients with brain disease, network measures are applied to assess inter-individual variation 
and changes over time. Our aim was to investigate whether thresholding also achieves improved 
consistency in network architecture in patients, while maintaining sensitivity to disease effects 
for these applications.

Methods: We applied fixed-density and absolute thresholding on brain networks in patients 
with cerebral small vessel disease (SVD, n = 86; ≈ 24 months follow-up), as a clinically relevant 
exemplar condition. In parallel, we applied the same methods in healthy young subjects (n = 44; 
scan–rescan interval ≈4 months) as a frame of reference. Consistency of network architecture 
was assessed with dice similarity of edges and intraclass correlation coefficient (ICC) of edge-
weights and hub-scores. Sensitivity to disease effects in patients was assessed by evaluating 
interindividual variation, changes over time, and differences between those with high and low 
white matter hyperintensity burden, using correlation analyses and mixed ANOVA.

Results: Compared to unthresholded networks, both thresholding methods generated more 
consistent architecture over time in patients (unthresholded: dice = 0.70; ICC: 0.70–0.78; 
thresholded: dice = 0.77; ICC: 0.73–0.83). However, absolute thresholding created fragmented 
nodes. Similar observations were made in the reference group. Regarding sensitivity to disease 
effects in patients, fixed-density thresholds that were optimal in terms of consistency (densities: 
0.10–0.30) preserved interindividual variation in global efficiency and node strength as well 
as the sensitivity to detect effects of time and group. Absolute thresholding produced larger 
fluctuations of interindividual variation.

Conclusions: Our results indicate that thresholding of low-weight connections, particularly 
when using fixed-density thresholding, results in more consistent network architecture in patients 
with longer rescan intervals, while preserving sensitivity to disease effects.
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1 INTRODUCTION

Diffusion-weighted imaging (DWI) and fibre tractography enable us to map cerebral white 
matter pathways and reconstruct large-scale brain networks (Jeurissen et al., 2017). Subse-
quently, graph theory can be applied to quantify the properties of such networks (Hagmann et 
al., 2007; Sporns et al., 2005). This framework has been widely used to investigate not only 
normal brain development but also a variety of neurological and psychiatric disorders (Fornito 
et al., 2013; Tijms et al., 2013).

A major challenge in structural network analysis is the limited reproducibility of networks 
obtained with diffusion MRI, due to the presence of false-negative and false-positive connections 
(Buchanan et al., 2014; Zalesky et al., 2016). Essentially, false negatives represent white matter 
connections that are undetected by the tractography algorithm. By contrast, false positives are 
edges in the reconstructed network that do not represent true white matter connections. These 
errors can result from numerous processing steps (Sotiropoulos & Zalesky, 2017), particularly 
the choice of parcellation scheme (Zalesky et al., 2010), tractography algorithm (Sarwar et al., 
2018), and weighting strategy (Dimitriadis et al., 2017).

The most common solution to reduce false positives is to employ weight-based thresholding by 
removing so-called “weak” connections. In diffusion-based brain networks, weak connections 
are usually defined as having a low number of streamlines (NOS). Many network studies have 
used thresholding strategies such as absolute thresholding (Garrison et al., 2015; Nicols et al., 
2016), where a uniform threshold is applied to remove all connections below a certain edge-
weight (e.g., below five streamlines). Another popular method is fixed-density thresholding 
(Rubinov & Sporns, 2010; van den Heuvel et al., 2017), where a relative threshold derived from 
each individual’s data is applied to remove the weakest connections, such that an equal network 
density is achieved across subjects. Recent scan–rescan studies have investigated the impact of 
thresholding on the reproducibility of structural brain networks in healthy subjects (Buchanan 
et al., 2020; Messaritaki et al., 2019; Sarwar et al., 2018; Tsai, 2018; Welton et al., 2015). Their 
results suggest that applying thresholds to remove false positives can improve network similarity 
between scan and rescan, not only in terms of graph metrics but also by replicating the same 
network architecture (e.g., the same set of edges and edge-weights).

Previous scan–rescan studies that tested reproducibility typically focused on datasets of healthy 
subjects, with state-of-the art MRI sequences, high imaging quality, and short rescan intervals 
(Van Essen et al., 2013). Thresholding methods may also be of value to increase consistency in 
network architecture in datasets of patient populations. In this setting, diffusion-based network 
studies are primarily used to study disease effects, cross-sectionally and over time. Before applica-
tion in such clinical studies, it is essential to understand if thresholding indeed also produces more 
consistent network architecture in scans from patients, acquired in a clinical setting, containing 
various degrees of pathology, and across longer rescan intervals where further pathology has 
likely occurred. It is also important to determine if gain in network architecture consistency in 
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this setting does not come at the cost of reduced sensitivity to detect disease effects, reflected in 
interindividual variation in diffusion metrics, and disease-related network changes over time.

In this study, we therefore investigated whether thresholding methods that were previously 
shown to improve reproducibility in repeated scans of healthy young subjects also generate 
more consistent network architectures (e.g., the same set edges, edge-weighs, and hubs-scores) 
in patients who were scanned over longer time periods. To this end, we used longitudinal data 
of patients with cerebral small vessel disease (SVD), a condition known to affect cerebral white 
matter integrity that is often investigated with network analysis (Lawrence et al., 2018; Reijmer 
et al., 2013). In addition, we evaluated in these patients how thresholding affects sensitivity to 
disease effects, which was defined as (1) interindividual variation in network measures often 
examined in SVD (e.g., global efficiency and node strength) and (2) differences in global efficient 
and node strength between patients with low versus high SVD disease burden. We focused on 
two thresholding methods commonly applied in brain network studies: absolute thresholding 
and fixed-density thresholding, both of which remove low-weight connections and allow anal-
ysis of scan–rescan reproducibility on an individual patient level. As a frame of reference, we 
processed a dataset of healthy controls with the same methodology.

2 MATERIALS AND METHODS

2.1 Dataset 1 - Memory clinic patients with SVD

We included 228 patients from the Parelsnoer longitudinal study (Aalten et al., 2014). Patients 
who were referred to the memory-clinic of the UMC Utrecht for evaluation of cognitive prob-
lems, with a clinical dementia rating scale (CDR) (Morris, 1993) score of 0, .5, or 1, and a 
Mini Mental State Examination (MMSE) (Folstein et al., 1975) of 20 or higher were eligible. 
Exclusion criteria were: normal pressure hydrocephalus, Morbus Huntington, recent transient 
ischemic attack (TIA) or cerebrovascular accident (CVA) (<2 years), TIA/CVA followed by 
cognitive decline (within 3 months), history of major psychiatric disease or brain disease other 
than neurodegeneration or vascular disease, causing cognitive decline (e.g., brain tumour, 
epilepsy). Patients were eligible for the current analysis if they had a structural MRI and DTI 
scan at baseline and after ≈2-year follow-up visit date (N = 90). We additionally excluded three 
patients with cognitive complaints due to a diagnosis other than SVD or Alzheimer’s disease 
(AD) to obtain a more homogenous study sample and one patient who was an extreme outlier 
in the network analysis. Thus, the total number of subjects included in the analysis was 86 (59% 
male). The follow-up time ranged between 22 and 35 months (mean ± SD: 27 ± 3 months) and 
age of the patients varied between 56 and 86 years (mean ± SD: 73 ± 7 years). 

MRI data were acquired on a 3 tesla Philips scanner (Achieva, Philips, Best, the Netherlands) 
using a standardized clinical protocol that included a 3D T1-weighted image and a diffusion 
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weighted sequence. T1-weighted scans were acquired with a voxel size of 1 mm3. DWI scans 
had an isotropic acquisition voxel size of 2.50 mm3, 45 diffusion-sensitizing gradients with a 
b-value of 1200 s/mm2, and 1 b = 0 s/mm2. Fluid-attenuated inversion recovery (FLAIR; TR/
TE/inversion time: 11,000/125/2800 ms) were also obtained. The study was approved by the 
institutional review board of the UMC Utrecht, and all participants provided written informed 
consent prior to any research procedure.

2.2 Dataset 2 – Reference data of healthy young adults

As a frame of reference, we included a second dataset with repeated scans from healthy young 
adults from the Human Connectome Project (HCP, Van Essen et al., 2013). Previous studies have 
already tested the effects of thresholding using on this dataset but since network reconstruction 
pipelines always differ slightly across studies. We included these controls in our study to have a 
high-quality reference, reconstructed with the exact same software packages, and tractography 
algorithm as our patient data. We selected 44 healthy participants (32% male) with scan–rescan 
DWI and T1-weighted images. The rescan interval ranged between 1.5 and 11 months (mean 
± SD: 4.7 ± 2 months) and the age of the participants varied between 22 and 35 years old. MRI 
was acquired on a Siemens Skyra 3 tesla scanner (Siemens, Erlangen, Germany). T1-weighted 
images had an isotropic voxel size of 1.25 mm3. The multi-shell DWI were acquired with an 
isotropic voxel size of 1.25 mm3 and three diffusion weightings (b-values: 1000, 2000, and 
3000 s/mm2). For each b-value, 90 diffusion-sensitizing gradients directions were measured. 
Additionally, 18 images with no diffusion weighting (b-values = 0 s/mm2) were obtained. Here, 
we selected only a single shell (b-value 1000 s/mm2), since it was more comparable to the 
patient dataset described above.

2.3 Diffusion processing and fibre tractography

All DWI scans were processed using ExploreDTI version 4.8.6 (Leemans et al., 2009) running 
on MATLAB R2018a (MATLAB and Statistics Toolbox Release 2018a, The MathWorks, Inc., 
Natick, MA, USA). Data were corrected for signal drift (Vos et al., 2017), eddy currents, subject 
motion with rotation of the B-matrix (Leemans & Jones, 2009), and susceptibility distortions 
(Veraart et al., 2013). The DWI volumes were nonlinearly registered to the T1 images prior to 
estimation of the diffusion tensors. Diffusion tensors were estimated using a robust method to 
account for outliers (Tax et al., 2015), and fibre tracts were reconstructed using deterministic 
fibre tractography. Seed points were distributed uniformly throughout the whole brain with 2 
mm isotropic resolution. The streamlines were propagated using integration over fibre orienta-
tion distributions (FOD), with a step size of 1 mm. The orientation distributions were inferred 
using constrained spherical deconvolution (CSD) with a maximum harmonic order (l-max) of 
6 (Jeurissen et al., 2011). Fibre tracking was terminated when streamlines entered a voxel with 
FOD < .1, or when the deflection angle between two successive 1 mm steps was > 45°. When 
tractography was concluded, streamlines with a length outside of the range between 10 and 
500 mm were excluded.
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2.4 Network definition

Figure 1 illustrates the processing steps for network definition. The T1-weighted scans were 
pre-processed using the FMRIB Software Library (FSL v5.0, Smith et al., 2004) and the Compu-
tational Anatomy Toolbox (CAT12, http://dbm.neuro.uni-jena.de/cat). First, each subject’s T1 
image was skull-stripped using FSL BET (Smith et al., 2004). Next, the gray matter volume 
was parcellated into 90 cortical and subcortical regions of interest (ROIs) using the automated 
anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The parcellations were 
performed in the native T1 space, with the AAL template being nonlinearly registered to each 
subject’s T1 image. The parcellated regions and the tractography data were combined to recon-
struct the whole-brain network. Each ROI represented a node in the network, and two nodes 
were considered to be connected when they contained the endpoints of at least one streamline, 
resulting in a 90 × 90 binary connectivity matrices. We also computed three weighted three 
matrices, where the edges were weighted by the number of streamlines (NOS) connecting the 
two nodes, the mean diffusivity (MD), and the fractional anisotropy (FA).

FINAL_INSIDE.indd   106FINAL_INSIDE.indd   106 14/10/2022   21:5314/10/2022   21:53



Thresholding in longitudinal dMRI network analysis 

107

C
ha

pt
er

 4

Figure 1: Network definition and thresholding. First, the DWI images were reregistered to the T1 
and corrected for subject motion and artefacts. This was followed by fibre tractography and gray 

matter (GM) parcellation. The tractography image and segmented brain regions were combined to 
obtain 90×90 connectivity matrices weighted by fractional anisotropy (FA), mean diffusivity (MD), 

and number of streamlines (NOS). The NOS matrix was used for thresholding. The thresholded 
networks obtained at each threshold level were subsequently weighted by FA and MD and used in 

further analysis.

FINAL_INSIDE.indd   107FINAL_INSIDE.indd   107 14/10/2022   21:5314/10/2022   21:53



Chapter 4

108

2.5 Network thresholding

Thresholding is frequently applied after network reconstruction, aiming to reduce the number 
of false-positive connections. In this work, we employed the two most common weight-based 
thresholding strategies: fixed-density thresholding and absolute thresholding. The fixed-den-
sity approach involved removing the edges with the lowest NOS until an equal density was 
achieved for all subjects. Network density is defined as the proportion of actual connections in 
the network, relative to all possible connections. For example, when a network has a density 
of 0.15, it means that 15% of all possible connections were detected in that network. To ensure 
that the networks did not become disconnected after thresholding we incorporated the minimal 
spanning tree (MST), an acyclic subgraph that connects all N nodes in the network (Tewarie 
et al., 2015). The MST is computed at the beginning of the thresholding step by selecting only 
edges with the highest NOS unless an edge forms a cycle. When all nodes are connected, the 
MST has N − 1 connections and a density of 2/N (≈ 0.02), with N being the number of nodes 
(N = 90 nodes in our case). 

Using the MST as a starting point, fixed-density thresholding is applied by adding more edges 
to the network (from strongest to weakest weights) until a certain density is achieved. We varied 
the density level between the density of the MST (0.02) and the mean density of all unthresh-
olded networks (density = 0.40) in steps of .01. Note that the stronger the threshold level, the 
lower the network density. The absolute thresholding approach involved removing all edges 
with a weight below an absolute number of streamlines. We varied the absolute threshold level 
between 1 and 40 streamlines in steps of 1. In this case, the stronger the threshold, the higher 
the number of streamlines removed. For example, a threshold of 20 streamlines means that that 
have fewer than 20 streamlines are removed from the network. This thresholding method does 
not ensure that nodes will not become disconnected or that networks of different subjects will 
have the same density after thresholding.

2.6 WMH volume segmentation

WMH hyperintensity volumes were segmented from the FLAIR images using and automated 
pipeline, kNN-TTP (Steenwijk et al., 2013).

2.7 Consistency of network architecture

To examine the consistency of network architecture between scan and rescan, we focused on 
characteristics that represent the building blocks of structural networks, such as edges detected, 
edge-weight distribution, and hub-scores (node degree and betweenness centrality).

2.7.1 Similarity in edges detected

The most direct manner of measuring similarity between networks of scan and rescan is to overlap 
the edges detected at both time points. Using the binary connectivity matrix, we computed the 
dice similarity coefficient between edges detected at scan and rescan:
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Here, the numerator represent edges in common between the two scans, whereas |scan| and 
|rescan| represent unique edges of scan and rescan, respectively. The dice coefficient ranges 
from 0 to 1, with 0 indicating no overlap and 1 representing a complete overlap between the 
two sets of edges.

2.7.2 Similarity in edge-weight

We also evaluated whether the edges detected in both scans have similar weights, namely the 
number of streamlines (i.e., the weight used to determine which edges should be retained or 
removed). Thus, we first computed edges in common between scan and rescan and calculated 
the agreement in edge-weight using the intraclass correlation coefficient (ICC) (Shrout & Fleiss, 
1979). The ICC was originally created to assess the reliability of multiple ratters measuring the 
same variable, but it is also often utilized in network studies to assess the consistency of graph 
measure over multiple sessions (Andreotti et al., 2014; Buchanan et al., 2014; Messaritaki et 
al., 2019):

where MSb is the between-subject variance, MSw represents within-subject variance, and k is 
the number of repeated measurements. ICC values range between 0 and 1 and are typically 
interpreted as poor (<0.40), fair (0.40−0.59), good (0.60−0.74), and excellent (>0.75) (Cicchetti, 
1994; Wang et al., 2019; Yuan et al., 2019).

2.7.3 Similarity in hub score

Another relevant feature of network architecture is the location of hub nodes. Hubs are topo-
logically central regions and are positioned to make strong contributions for global network 
function (van den Heuvel & Sporns, 2013). The two most common graph metrics used to 
define node importance and to identify hubs are node degree and node betweenness centrality. 
Degree refers to the number of connections that link one node to adjacent nodes. Betweenness 
centrality is defined as the fraction of all shortest paths in the network that pass through a given 
node (Bullmore & Sporns, 2009). These nodes with high “hub-score” (i.e., high degree and/or 
betweenness centrality) contribute to an efficient communication between distant brain regions. 
We compared the similarity in hub scores of all nodes between scan and rescan by computing 
the ICC of betweenness centrality and ICC of degree.
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2.8 Interindividual variation and sensitivity to changes over time in patients

Here, we examined how thresholding affects the natural interindividual variation in the data, 
necessary to test associations with external variables and perform group comparisons (Bagarinao 
et al., 2019). We focused on metrics such as global efficiency and FA- and MD-weighted node 
strength. Global efficiency was defined as the inverse of the average shortest path length and 
quantifies how efficiently information is exchanged over the network (Rubinov & Sporns, 
2010). Node strength was defined as the average FA or MD of all edges connected to a node. 
Clearly, disturbances of these network metrics are not specific to only SVD. Moreover, a range 
of other metrics exist. 

We choose these particular measures because they are known to be affected by SVD (Lawrence 
et al., 2014; Reijmer et al., 2013). Moreover, these metrics (i.e., lower global efficiency and FA, 
and a higher MD) are known to be related to disease burden and progression over time. Patients 
with larger WMH volumes show lower global efficiency and FA, and a higher MD, and as the 
disease progresses over time, global efficiency, FA and MD are expected to decline further 
(Tuladhar et al., 2020). Therefore, we also tested among the patients how thresholding affected 
the effect size of the difference in diffusion metrics between high and low disease burden and 
sensitivity to detect changes over time. The paragraphs below describe how we evaluated the 
interindividual variation of these metrics and sensitivity to detect time and group effects for 
different threshold levels.

2.8.1 Assessing interindividual variation

For each threshold level, global efficiency and node strength were calculated and transformed to 
z-scores. Follow-up z-scores were calculated using the mean and standard deviation of baseline. 
To assess whether thresholding affects interindividual variation, we computed a correlation 
matrix containing Pearson’s correlation coefficients between z-scores of different threshold 
levels. Figure 2 shows an example of how this correlation matrix was calculated for global 
efficiency (GE). First, global efficiency z-scores were calculated for each subject (S) and for 
each threshold level (T). Then, z-scores of one threshold level were correlated with z-scores 
of another threshold level, yielding a correlation coefficient (r). The strength of this correla-
tion indicates whether the interindividual variation in global efficiency is preserved between 
threshold levels. In other words, if baseline scores change between threshold levels, this results 
in low correlation coefficients. We calculated r between all combinations thresholds to fill the 
correlation matrix. In this manner, it is possible to observe which threshold levels generate 
substantially different global efficiency values. 

We also computed the same correlation matrix for rate of the change in global efficiency over 
time (i.e., baseline minus follow-up), to understand whether thresholding affects the estimated 
individual rate of change over time. Essentially, for a hypothetical subject with a baseline global 
efficiency of 1.5×standard deviation (SD) relative to the group mean, if the interindividual 
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variation is not affected, the same score should be obtained for that subject when a different 
threshold is used. Similarly, if the global efficiency of that subject declined −0.5 SD from base-
line to follow-up, the same rate of decline should be observed at different thresholds. The range 
of thresholds that shows the highest r values thus represent the thresholds were sensitivity to 
interindividual variation is optimal. Differences in follow-up time between subjects were not 
adjusted in the analyses, because such differences only further contribute to interindividual 
variation, and our intention was to assess that variation.

2.8.2 Assessing changes over time

To examine whether thresholding affects the sensitivity to detect network changes over time in 
patients, we used mixed ANOVA to compare baseline versus follow-up global efficiency and 
node strength. Patients were stratified into two groups using a median split of WMH volume. 
For this analysis, 13 patients were excluded due to lack of FLAIR images for the segmentation 
of WMH, resulting in 73 patients. We evaluated whether the sensitivity to detect an effect of 
time (within-subject factor), effect of group (between-subject factor), and interaction time × 
group is preserved across thresholds.

Figure 2: Correlation matrix of global efficiency values of different thresholds. A: First, for each 
threshold level (T), z-scores of global efficiencies (GE) were calculated for all subjects (S). Then, to 
examine whether the inter-individual variation changes between threshold levels (e.g., level 1 and 2), 
we calculated the Pearson correlation coefficient between global efficiency of those threshold levels 

(r1,2), resulting correlation matrix containing correlations between all pairs of threshold levels. B: 
Correlation coefficients were calculated for all combination of thresholds, resulting in a correlation 

matrix. Note that this matrix is symmetric since r1,2 = r2,1.
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RESULTS

3.1 Consistency of network architecture

Figure 3 shows the effect of thresholding on the consistency of network architecture in patients. 
In each panel, the first plot contains similarity scores for different characteristics of the network 
architecture, and the second plot shows the number of nodes that remain in the network at each 
threshold level. Quantitate values are shown in Table S1. Results with the reference dataset of 
controls are shown in the Supporting Information (Figure S1 and Table S2).

3.1.1 Similarity in edges detected

In the patients, the dice similarity of edges was 0.70 before thresholding. When fixed density 
thresholding was applied, this score increased with stronger thresholds (i.e., with lower densi-
ties), reaching a maximum of 0.76 (at a density = 0.08, p < 0.001 compared to unthresholded, 
Figure 3A, blue line, Table S1). For densities lower than 0.08, dice scores decreased sharply to 

.67 (density = 0.02). As expected, the number of nodes (N = 90) in the network did not change 
with fixed-density thresholding. Regarding absolute thresholding, the dice score also increased 
with stronger thresholds (i.e., with larger number of streamlines removed), from 0.70 (unthresh-
olded) to a maximum of 0.76 (# streamlines removed = 40, p < 0.001, Figure 3B, blue, Table S1). 
With absolute thresholding, the maximum dice score was produced by the strongest threshold. 
However, at this threshold level, only 38 of the initial 90 nodes remained in the network. Overall, 
these results indicate that compared to not applying any threshold whatsoever, thresholding 
generates a more similar set of edges between scan and rescan.

In controls, thresholding had a similar effect on dice similarity, albeit with higher scores than 
in patients as expected, because of higher quality scans and absence of pathology (Figure S1A 
and B, blue, Table S2).

3.1.2 Similarity in edge-weight

The ICC of edge-weight in patients was .71 for unthresholded networks (Figure 3A, black). 
After fixed-density thresholding, ICC scores increased with stronger thresholds to a maximum 
of 0.75 (density = 0.12, p < 0.001, Figure 3A, black). When absolute thresholding was applied, 
the ICC also increased with stronger thresholds, reaching a maximum of 0.76, again at the 
strongest threshold level (# streamlines removed = 40 streamlines, Figure 3B, black, Table S1). 
These results indicate that the edges retained after thresholding have more consistent weight 
distributions between scan and rescan. Similar results were observed in controls, but with higher 
ICC scores (Figure S1).
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3.1.3 Similarity in hub score

The ICC degree also increased after thresholding, from 0.78 (unthresholded) to 0.83 when 
fixed-density thresholding was used (density = 0.08, p < 0.001, Figure 3A, red, Table S1), 
whereas the ICC of betweenness centrality showed an unstable profile and did not increase 
significantly after thresholding (Figure 3a, green). Regarding absolute thresholding, the ICC 
degree also increased from 0.78 to a maximum of 0.83 (Figure 3B, red), and ICC-betweenness 
centrality did not increase with stronger thresholds. For controls, the effect of thresholding on 
hubs scores was analogous (see Figure S1), albeit with higher scores.

3.2 Interindividual variation and sensitivity to changes over time in patients

The analyses assessing interindividual variation and sensitivity to changes in global efficiency, 
MD- and FA-weighted node strength in patients are shown in Figures 4-6. In each figure, “panel 
a” contains spaghetti plots summarizing baseline and follow-up z-scores, as well as correlations 
between baseline and follow-up, within each threshold level. From a biological perspective, these 
correlations indicate whether patients maintain their relative position in group from baseline 
to follow-up, which would then be reflected in parallel lines in the spaghetti plots, and strong 

Figure 3: Consistency of network architecture between scan and rescan in patients (rescan 
interval = 22 - 35 months). In each plot, the x-axis represents the threshold level, with the strength 
of thresholding increasing from right to left. Note that for the fixed-density approach the stronger 

the threshold the lower the density, whereas for the absolute approach, the stronger the threshold, the 
higher the number of streamlines removed. The curve in orange under each plot shows the number of 
nodes that remain in the network after thresholding. The initial number of nodes for the unthresholded 

network was N = 90 nodes. Blue: dice similarity of edges, black: ICC of edge-weights; red: ICC of 
degree; green: ICC of betweenness centrality. The markers highlight maximum value in each curve, 

and the shaded areas represent the standard deviation.
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correlations. Panel B (left) shows correlation matrices between baseline values of different 
threshold levels. These correlations indicate whether individual patients maintain their relative 
baseline scores across different thresholds. Threshold levels that do not disturb this interindividual 
variation of baseline scores should show high correlations. Likewise, panel B (right) shows a 
correlation matrix but for the rate of decline over time across thresholds, indicating whether 
individual patients maintain the same rate of decline between thresholds. Panel C depicts the 
sensitivity to detect time and group effects in patients stratified by WMH volume for different 
threshold levels. If a statistically significant change over time is found, this will be reflected 
in an F-value (time) > critical value. The magnitude of this effect is given by the Cohen’s d. 
Similarly, if there is significant difference between patients with low and high WMH volume, 
this group-effect is given by the F-value (group) and corresponding effect size.

Since absolute thresholding produced a large number of disconnected nodes, some brain regions 
got excluded from the analysis, not allowing us to always evaluate global efficiency over the same 
network of 90 nodes. It is well known that global network measures are highly dependent on 
the number of nodes (van Wijk et al., 2010). Therefore, for the analysis regarding the sensitivity 
to disease effects, we focused on the fixed-density approach where the size of the network is 
maintained regardless of the threshold level, whereas the results for absolute thresholding are 
shown in the Supporting Information (Figures S1–S3).
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Figure 4: Effect of fixed-density thresholding on global efficiency. A: Spaghetti plots showing 
baseline and follow-up z-scores for different threshold levels. The red line represents the group 

average. The horizontal colour bar shows correlations between baseline and follow-up scores for each 
threshold level. B: (Left) Correlation matrix containing Pearson correlations between baseline global 
efficiency scores of different threshold levels. High correlations indicate that the baseline scores are 
similar between threshold levels. (Right) Correlations between the rate of change over time obtained 
at different threshold levels. High correlations indicate that the individual rate of change is similar 
between threshold levels. C: Impact of thresholding on the sensitivity to detect changes over time 
and group differences in patients stratified by WMH volume. (Top) F-values and effect sizes were 
calculated using mixed ANOVA with time as within subject factor and group (low vs. high WMH) 

as between-subject factor. Left axis corresponds to F-values and right axis represents the effect sizes 
for each effect: time (blue), group (gray). (Bottom) Average change over time in global efficiency for 
patients with low vs. high WMH volume. Patients with high WMH have lower efficiency scores and 

both groups declined over time.
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3.2.1 Global efficiency

Figure 4 shows results for global efficiency. In Figure 4A, the spaghetti plots indicate that 
before thresholding there is a clear variation in global efficiency between subjects, with an 
apparent decline from baseline to follow-up. The lines of the subject initially run in parallel 
before thresholding, reflected in high a correlation between baseline and follow-up scores (r = 
0.81). After thresholding, this variation of baseline and follow-up scores was maintained (r ≈ 
0.8). The relation between baseline and follow-up scores was only disturbed when networks 
were thresholded to densities < 0.05, implying that interindividual differences between subjects 
is no longer maintained.

In Figure 4b, we quantified whether the interindividual variation of subjects and the individual 
rate of change over time are maintained between different threshold levels. Regarding baseline 
values (left matrix), z-scores of global efficiency remained robust between density thresholds 
of 0.40 and 0.05 (r > 0.9). In other words, the distance of each subject to the group mean at 
baseline was unchanged, as long as networks were not thresholded to densities below 0.05. 
The same was true for the change over time (right matrix). The individual rate of change from 
baseline to follow-up was unaffected for densities between 0.40 and 0.10 (r > 0.9). Overall, these 
correlations analyses show that global efficiency scores of individual subjects do not change 
after thresholding (0.10 < density < 0.40).

In Figure 4C, we statistically tested whether the apparent decline over time in global efficacy 
observed in the spaghetti plots was statistically significant, and whether patients with low WMH 
differed from high WMH volume. Before thresholding (density = 0.40), there was significant 
effect of time (blue curve), indicating a decline in global efficiency from baseline to follow-up (F 
(1, 72) = 22; p < 0.01; Cohen’s d = 0.29). This decline is in line with previous reports (Tuladhar 
et al., 2020). Regarding the group effect (gray curve), patients with larger WMH volumes had 
a significantly lower global efficiency (F (1, 72) = 45; p < 0.01; Cohen’s d = 0.4). There was 
no interaction of time × group, with both groups of patients declining at the same rate. After 
thresholding, the sensitivity to detect time and group effects was robust, with F-values and effect 
sizes remaining relatively constant for a wide range of densities between 0.40 and 0.10. This 
result indicates that these threshold levels preserve the sensitivity to effects of time and group 
observed originally before thresholding. The absolute thresholding method resulted in larger 
changes on the interindividual variation and sensitivity do detect time and group effects (Figure 
S1). Only a narrow range of thresholds preserved the sensitivity to detect time and group-effects.

3.2.2 MD-weighted node strength

Figure 5 describes the same analysis as Figure 4, but for MD-weighted node strength. By 
observing the spaghetti plots on Figure 5a, MD appears unchanged from baseline to follow-up 

FINAL_INSIDE.indd   116FINAL_INSIDE.indd   116 14/10/2022   21:5314/10/2022   21:53



Thresholding in longitudinal dMRI network analysis 

117

C
ha

pt
er

 4

on a group level.

However, the correlation matrices on Figure 5B reveal that between a density of 0.40 and 
0.30, MD scores remain initially unchanged (r > 0.9, note the block of high correlations on 
the bottom right of the matrix). When stronger thresholds were applied (i.e., when more noisy 
connections were removed, densities < 0.30), MD scores obtained at these threshold levels no 
longer resemble those obtained for thresholds between .40 and 0.30 but did not change further 
for the remaining thresholds (r > 0.9, for densities between 0.30 and 0.02).

In Figure 5C, we tested the sensitivity to detect changes over time. Before thresholding, there 
was a significant but small effect of time on MD (F (1, 72) = 12; p < 0.01; Cohen’s d = 0.1). 
The group-effect and the interaction time × group were not significant. After thresholding, 
the sensitivity to detect an effect of time was increased (i.e., larger F-values) and highest for 
density thresholds around 0.12. Note that these were the threshold levels that also improved the 
consistency of network architecture over time. This indicates that removing noisy connections 
improves the sensitivity to detect small changes within individuals over time in local weight-
based metrics such as MD. Absolute thresholding produced larger changes on interindividual 
variation but did not eliminate the sensitivity to effects of time and group (Figure S2).
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Figure 5: Effect of fixed-density thresholding on MD-weighted node strength. A: Baseline and 
follow-up z-scores for different threshold levels. The horizontal colour bar shows correlations 

between baseline and follow-up scores within each threshold level. B: (Left) Correlation matrix 
containing Pearson correlations coefficients between baseline scores of different threshold levels. 
(Right) Correlations between rate of change over time obtained at different threshold levels. C: 

Impact of thresholding on the sensitivity to detect changes over time and group-differences in patients 
stratified by WMH volume. (Top) F-values and effect sizes for the effects of time (blue), group (gray). 

(Bottom) Average change over time in MD-weighted strength for patients with low vs. high WMH 
volume.
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3.2.3 FA-weighted node strength

Figure 6 shows the results for FA-weighted node strength. Thresholding appears to have a small 
effect on the relation between baseline and follow-up FA values as illustrated by the spaghetti 
plots and the correlations between baseline and follow-up (Figure 6a).

The correlations matrices (Figure 6B) further show that the interindividual variation of baseline 
values (left matrix) remained robust for all threshold levels between 0.37 and 0.02 (r > 0.9). In 
other words, the position of each individual subject relative to the group mean did not change 
for thresholds between 0.37 and 0.02. The same result was obtained for the individual rate of 
change over time (right matrix).

Figure 6C shows that before thresholding no significant time and group effects were detected. 
Thresholding did not improve the sensitivity and effect of time but did improve the sensitivity 
do detect a small effect of group for densities < 0.30: (F (1, 72) = 5; p < 0.05; Cohen’s d = 0.05).

Again, absolute thresholding caused larger changes on interindividual variation but also improved 
the detection group-effects after the first threshold levels (Figure S2).
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Figure 6: Effect of fixed-density thresholding on FA-weighted node strength. A: Baseline and follow-
up z-scores for different threshold levels. The horizontal colour bar shows correlations between 

baseline and follow-up scores within each threshold level. B: (Left) Correlation matrix containing 
Pearson correlations coefficients between baseline scores of different threshold levels. (Right) 

Correlations between rate of change over time obtained at different threshold levels. C: Impact of 
thresholding on the sensitivity to detect changes over time and group-differences in patients stratified 

by WMH volume. (Top) F-values and effect sizes for the effect s of time (blue), group (gray), 
interaction term (orange). (Bottom) Average change over time in FA-weighted strength for patients 

with low vs. high WMH volume.
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4 DISCUSSION

In this work, we evaluated the impact of thresholding on scan–rescan brain networks of patients 
with SVD to assess how thresholds that improve scan–rescan network reproducibility in healthy 
young subjects affect (1) consistency in network architecture in these patients over a longer 
time period and (2) sensitivity to detect biological effects. Our results indicate that threshold 
levels that improve the reproducibility in controls also generate more consistent network archi-
tecture over time in patients. The similarity between scan and rescan for characteristics such 
as the location of edges detected, edge-weights, and hub scores improved after thresholding. 
We also showed that the natural interindividual variation in outcome measures used to assess 
disease effect is preserved within threshold levels where the network architecture is consistent. 
Furthermore, the sensitivity to detect statistical group differences between patients with low 
vs. high WMH burden was maintained.

Preceding our work, several studies had examined the effect of thresholding on reproducibility 
of network architecture, including the binary topology, edges detected, edge-weights, and graph 
metrics in healthy, mostly young, controls (Andreotti et al., 2014; Buchanan et al., 2014; Owen 
et al., 2013). As expected, our results with controls were in line with studies that explicitly 
showed that networks become more reproducible after thresholding (e.g., Buchanan et al., 2020; 
Messaritaki et al., 2019; Roine et al., 2019). In patients where disease effects are monitored over 
time, the rescan interval is typically much longer. Therefore, the same thresholding methods 
and threshold levels that are reported to improve reproducibility in controls might not directly 
apply. We used SVD as an exemplar condition, because network metrics have been shown to be 
relevant for this disease, but also because SVD-related brain injury such as white matter hyper-
intensities, brain atrophy, and enlarged ventricles can impact the performance of tractography 
and network reconstruction. Current fibre tractography methods do not explicitly account for 
such factors, which can lead to erroneous estimations of white matter pathways and presence 
of more false positives in the network. Our results with patients show that the consistency of 
edges detected and their respective weights are improved when both thresholding methods are 
used, suggesting that the edges removed are noisy connections with a more random weight 
distribution (Messaritaki et al., 2019; Zalesky et al., 2016). Thresholding also improved the 
ICC of degree, meaning that if we were to define hubs nodes based on degree, a more consistent 
set of hubs would be detected between scans. Notably, the betweenness centrality was less 
consistent between scans, which could be explained by the fact that this metric depends not 
only on edges directly connected to a specific node but also on edges connected to distant nodes. 
Since the betweenness centrality quantifies the proportion shortest paths that go through given 
node, removing only one edge (which can be directly or indirectly connected to that node) can 
have a large impact on that shortest path. Thus, the betweenness centrality is more susceptible 
to disruptions when edges are removed (Drakesmith et al., 2015; Segarra & Ribeiro, 2014).

The two thresholding methods had distinct threshold levels to achieve optimal reproducibility. 
For the fixed-density approach, similarity scores improved with decreasing density (i.e., stronger 
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thresholds), before drastically decreasing for densities < .05. This reproducibility profile could 
be explained by the proportion of false positive at low densities and by the MST (Zalesky et 
al., 2016). The MST was incorporated to ensure that networks remain connected and avoid 
fragmented nodes. Since, by definition, the MST cannot contain connections that form cycles, 
a certain proportion of low-weight connections (i.e., potential false positives) must be included 
to keep the network connected, meaning that at very low densities, the effect of these false posi-
tives is stronger. A potential disadvantage of thresholding networks to fixed-density is that it 
can lead to confounding effects when comparing groups or datasets with different distributions 
of edge weights. In a group with higher edge weights, this would lead to ignoring potentially 
important edges with strong weights, while in a group with lower edge weights, this would lead 
to including weak or potentially spurious edges (van Wijk et al., 2010). Regarding the absolute 
thresholding approach, the similarity scores increased with mild thresholds (2–5 streamlines). 
Since this approach works by removing all connections with a weight below a certain number of 
streamlines, only the highest weighted connections survive when strong thresholds are used. A 
major downside of this method, also evident in our dataset, is that it quickly creates fragmented 
nodes, which means that some brain regions are no longer part of the network. Furthermore, 
differences in brain size or absolute number of streamlines computed for each subject results 
in largely different networks between subjects or over time. Thus, a “one size fits all” type of 
threshold is not ideal. For datasets of patients with similar characteristics as those included in 
this study, we therefore recommend using fixed-density thresholds between 0.08 and 0.20 to 
achieve optimal network consistency while keeping all network nodes connected. This is also in 
line with previous research that estimated the density of structural connectomes to lie between 
0.05 and 0.30 (Hagmann et al., 2008; Roberts et al., 2017). 

One of the main arguments against thresholding networks of patients in the attempt to improve 
network consistency over repeated scans is that this procedure could remove biological or 
disease-related effects (Drakesmith et al., 2015; McColgan et al., 2018). This concern can be 
relevant in studies trying to identify disease effects at the level of subnetwork and/or individual 
connections, rather than pathological changes in large-scale brain network topology (Petersen 
et al., 2020). In the SVD field, this type of analyses could help understanding how diffuse and/
or focal damage in certain brain areas affects cognitive function. In those scenarios, applying 
thresholds could erroneously cut connections that are affected by pathology. On the other hand, 
for global network metrics, it is more desirable to assess disease effects on networks with a 
more consistent scan–rescan architecture, less affected by noisy connections that can confound 
the results. Detection of intraindividual changes over time in patients is generally one of the 
more challenging tasks in terms of sensitivity. Such changes may be detected at a group level, 
but the individual trajectories of patients tend to get overshadowed by noise if techniques are 
insensitive. Therefore, analysis of interindividual variation over time can be performed with 
more confidence if networks are voided of noisy connections. In the second part of our analysis, 
we show that the concerns about removal of disease effects by thresholding may not always 
be justified. For global efficiency, interindividual variation of subjects at baseline and their 
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individual rate of change over time remained robust for fixed-density thresholds > 0.10. Before 
thresholding, global efficiency was able to capture significant differences between patients 
with low and high WMH volume, which is in line with previous research where white matter 
lesion load was associated with lower global efficiency (Heinen et al., 2018). After fixed-density 
thresholding, a wide-range of densities (0.40–0.10) preserved the sensitivity to detect these 
disease-related effects, suggesting that changes in global metrics can be consistently detected 
over multiple threshold levels (de Brito Robalo et al., 2020; Drakesmith et al., 2015). Absolute 
thresholding had a stronger impact interindividual variation and sensitivity to time and group 
effects (see Supporting Information), since this thresholding approach creates disconnected 
nodes during, thereby changing the size of the network and disrupting global network metrics 
(van Wijk et al., 2010).

Regarding MD-weighted node strength, the sensitivity to detect time effects was improved after 
thresholding (density ≈ 0.12). Since this network metric is based on edge weights, the meas-
urements after thresholding are obtained over a smaller and more consistent set of connections, 
thereby decreasing the standard error and improving the sensitivity to detect small effect sizes. 
This hypothesis is also supported by previous work that examined associations between edge-
weights and age and showed that connections retained in the network after thresholding were 
significantly more associated with age than those removed (Buchanan et al., 2020). FA-weighted 
node strength was lower in patients with higher WMH volume but did not significantly decline 
over time. These effects were not affected by thresholding.

Strengths of this work include the use of two distinct datasets, with different MRI protocols, 
different subject groups, and rescan intervals. In this manner, it was possible to directly test 
whether thresholds that improve the reproducibility in high-quality scans with short rescan 
intervals also have the same effect on scans of patients, with longer follow-up intervals. Our 
study also had some limitations. We analysed the effects of thresholding only on network metrics 
that have shown association with disease effects in patients with SVD, such global efficiency 
and node strength. Thus, our results cannot be directly generalized to all network measures 
and all patient populations. Further investigation on disease effects reflected by other network 
metrics is required (e.g., local metrics or disease effects at the level of subnetworks). Our anal-
ysis was focused on the most popular weight-based thresholding methods that directly remove 
connections from each individual network, without the need to create a group-level network to 
determine a criterion to remove connections. In this manner, test–retest consistency of network 
architecture can be evaluated on an individual basis. Other scan–rescan studies have examined 
thresholding approaches that are not based on edge-weights but rather on group-level consist-
ency and is less biased towards the length of streamlines (Buchanan et al., 2020; Roberts et al., 
2017). Their findings also point that stringency of threshold can improve network consistency. 
However, future work should also analyse how consistency-based thresholding improves 
group-level consistency of network architecture (e.g., across scanners) in similar datasets and 
whether disease effects are preserved. Our results could also have been influenced by the choice 
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of parcellation scheme (Zalesky et al., 2010), tractography algorithm (Bastiani et al., 2012), 
weighting scheme, among other factors. Thus, these results need to be tested using different 
network reconstruction pipelines.

5 CONCLUSIONS

Our study demonstrates the effects of weight-based thresholding on longitudinal brain networks 
of patients with SVD. We showed that thresholding, particularly with fixed-density approaches, 
can produce more consistent network architectures in patients scanned over longer time periods, 
while preserving disease-related effects. Our work sheds a light on how to make informed 
decisions when applying thresholds in studies with a longitudinal design and how such choices 
can potentially influence the statistical significance of the results. A good practice for longi-
tudinal studies that intend to apply weight-based thresholds would be to first examine which 
threshold levels generate the most consistent network architecture over time and then verify if 
those threshold levels also preserve the interindividual variation in metrics that will be used as 
outcome for the study (e.g., global efficiency).
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SUPPLEMENTARY INFORMATION 

Figure S1: Reproducibility of network architecture between scan and rescan in controls (rescan 
interval = 1.5 – 11 months). In each plot, the x-axis represents the threshold level, with the strength 
of thresholding increasing from right to left. Note that for the fixed-density approach the stronger 

the threshold the lower the density, whereas for the absolute approach, the stronger the threshold, the 
higher the number of streamlines removed. The curve in orange under each plot shows the number of 
nodes that remain in the network after thresholding. The initial number of nodes for the unthresholded 

network was N = 90 nodes.  Blue: dice similarity of edges, black: ICC of edge-weights; red: ICC of 
degree; green: ICC of betweenness centrality. The markers highlight maximum value in each curve, 

and the shaded areas represent the standard deviation.

Metric Unthresholded Thresholded Effect size 
(Cohen’s d) p-value

Fixed-density 
thresholding

Dice coefficient 0.70 ± 0.04 0.76 ± 0.06 1.5 <0.001
ICC (edge weight – NOS) 0.71 ± 0.06 0.75 ± 0.09 0.73 <0.001

ICC (degree) 0.78 ± 0.10 0.83 ± 0.06 0.9 <0.001
ICC (betweenness 

centrality) 0.70 ± 0.12 0.70 ± 0.12 0.12 0.75

Absolute 
thresholding

Dice coefficient 0.70 ± 0.04 0.76 ± 0.02 1.76 <0.001
ICC (edge weight – NOS) 0.71 ± 0.06 0.76 ± 0.08 0.75 <0.001

ICC (degree) 0.78 ± 0.10 0.83 ± 0.13 0.7 <0.001
ICC (betweenness 

centrality) 0.70 ± 0.12 0.72 ± 0.2 0.19 0.06

Table S1: Similarity of network architecture between scan and rescan in patients, before and after 
thresholding.

Effect sizes and p-values obtained from paired samples t-test. 
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Table S2: Similarity of network architecture between scan and rescan in controls, before and after 
thresholding.

Metric Unthresholded Thresholded Effect size 
(Cohen’s d) p-value

Fixed-density 
thresholding

Dice coefficient 0.76 ± 0.03 0.83 ± 0.07 2.1 <0.001
ICC (edge weight – NOS) 0.77 ± 0.08 0.84 ± 0.10 1.5 <0.001

ICC (degree) 0.85 ± 0.04 0.89 ± 0.07 0.81 <0.001

ICC (betweenness centrality) 0.79 ± 0.10 0.80 ± 0.11 0.14 0.12

Absolute 
thresholding

Dice coefficient 0.76 ± 0.03 0.82 ± 0.05 1.79 <0.001

ICC (edge weight – NOS) 0.77 ± 0.08 0.84 ± 0.12 1.2 <0.001

ICC (degree) 0.85 ± 0.04 0.89 ± 0.06 0.77 <0.001

ICC (betweenness centrality) 0.79   0.10 0.80 ± 0.16 0.1 0.34

Effect sizes and p-values obtained from paired samples t-test. 
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Inter-individual variation and sensitivity to changes over time – absolute thresholding

Figure S2: Effect of absolute thresholding on global efficiency. A: Spaghetti plots showing baseline 
and follow-up z-scores for different threshold levels. The red line represents the group average. The 
horizontal colour bar shows correlations between baseline and follow-up scores for each threshold 

level. B: (Left) Correlation matrix containing Pearson correlations between baseline global efficiency 
scores of different threshold levels. High correlations indicate that the baseline scores are similar 
between threshold levels. (Right) Correlations between the rate of change over time obtained at 
different threshold levels. High correlations indicate that the individual rate of change is similar 

between threshold levels. C: Impact of thresholding on the sensitivity to detect changes over time 
and group-differences in patients stratified by WMH volume. (Top) F-values and effect sizes were 
calculated using mixed ANOVA with time as within subject factor and group (low vs. high WMH) 

as between-subject factor.  Left axis corresponds to F-values and right axis represents the effect sizes 
for each effect: time (blue), group (gray). (Bottom) Average change over time in global efficiency for 
patients with low vs. high WMH volume. Patients with high WMH have lower efficiency scores and 

both groups declined over time.
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Figure S3: Effect of absolute thresholding on MD-weighted node strength. A: Baseline and follow-up 

z-scores for different threshold levels. B: (Left) Correlation matrix containing Pearson correlations 
coefficients between baseline scores of different threshold levels. (Right) Correlations between rate of 
change over time obtained at different threshold levels. C: Impact of thresholding on the sensitivity to 
detect changes over time and group-differences in patients stratified by WMH volume. (Top) F-values 

and effect sizes for the effect s of time (blue), group (gray). (Bottom) Average change over time in 
MD-weighted strength for patients with low vs. high WMH volume.
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Figure S4: Effect of absolute thresholding on FA-weighted node strength. A: Baseline and follow-up 
z-scores for different threshold levels. B: (Left) Correlation matrix containing Pearson correlations 

coefficients between baseline scores of different threshold levels. (Right) Correlations between rate of 
change over time obtained at different threshold levels. C: Impact of thresholding on the sensitivity to 
detect changes over time and group-differences in patients stratified by WMH volume. (Top) F-values 

and effect sizes for the effect s of time (blue), group (gray), interaction term (orange). (Bottom) 
Average change over time in FA-weighted strength for patients with low vs. high WMH volume.
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ABSTRACT

Introduction: To investigate if network thresholding and raw data harmonization improve 
consistency of diffusion MRI (dMRI)-based brain networks while also increasing precision 
and sensitivity to detect disease effects in multicentre datasets. 

Methods: Brain networks were reconstructed from dMRI of five samples with cerebral small 
vessel disease (SVD; 629 patients, 166 controls), as a clinically relevant exemplar condition for 
studies on network integrity. We evaluated consistency of network architecture in age-matched 
controls, by calculating cross-site differences in connection probability and fractional anisot-
ropy (FA). Subsequently we evaluated precision and sensitivity to disease effects by identifying 
connections with low FA in sporadic SVD patients relative to controls, using more severely 
affected patients with a pure form of genetically defined SVD as reference.

Results: In controls, thresholding and harmonization improved consistency of network archi-
tecture, minimizing cross-site differences in connection probability and FA. In patients relative 
to controls, thresholding improved precision to detect disrupted connections by removing false 
positive connections (precision, before: 0.09-0.19; after: 0.38-0.70). Before harmonization, 
sensitivity was low within individual sites, with few connections surviving multiple testing 
correction (k=0-25 connections). Harmonization and pooling improved sensitivity (k=38), 
while also achieving higher precision when combined with thresholding (0.97).

Conclusions: We demonstrated that network consistency, precision and sensitivity to detect 
disease effects in SVD are improved by thresholding and harmonization. We recommend intro-
ducing these techniques to leverage large existing multicentre datasets to better understand the 
impact of disease on brain networks.
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1 INTRODUCTION

Describing the human brain as a network of nodes (gray matter regions) connected by edges 
(white matter pathways) can provide powerful insights into neurological disorders (Bullmore & 
Sporns, 2009; van den Heuvel & Sporns, 2013). Changes in local and global properties of brain 
networks reconstructed from diffusion MRI (dMRI) have been associated with many disease 
processes (Pievani et al., 2014). An important issue in this rapidly evolving research field is that 
network analysis is highly dependent on how the network nodes and connections are defined, 
particularly when trying to identify specific connections or subnetworks that are disrupted by 
particular disease. To date, network studies have used various definitions for edges and nodes, 
different tractography algorithms and edge-weights, resulting in inconsistent reported archi-
tectures across datasets (for example, Du et al., 2020; Tuladhar et al., 2017). 

Without proper processing, brain networks reconstructed from dMRI are known to contain many 
false-positive connections which contribute for variability in network architecture (Buchanan 
et al., 2014). This can be alleviated by thresholding the network to a core structure with more 
reliable connections, over which eventual disease effects can be assessed with higher confidence 
(McColgan et al., 2018). A second issue that needs to be considered when detecting network 
injury patterns in relation to disease is statistical power. To identify specific disrupted connec-
tions, methods such as network-based statistics (NBS) are applied to fit a univariate model at 
every connection and test hypotheses of interest (e.g., differences in fractional anisotropy – FA 

– between patients and controls at connection level) (Zalesky et al., 2010). Since networks typi-
cally contain thousands of connections, multiple tests are performed, often in study populations 
with a modest sample size, resulting in type I and type II errors. In this scenario, filtering for 
potentially false-positive connections reduces multiple testing. Moreover, an obvious strategy 
to improve power is to increase the sample size by pooling existing data from different sites. To 
date, however, dMRI data pooling has been hampered by acquisition-related differences across 
sites (Bonilha et al., 2015; Vollmar et al., 2010). As a consequence, network studies of network 
topology in patients have been predominately single centre with inconsistent recognition of 
network connections affected by disease (Du et al., 2020; Reijmer et al., 2016; Tuladhar et al., 
2017).  

Here, we address the challenge of using multicentre dMRI data to study abnormalities in network 
topology, using cerebral small vessel disease (SVD) as an exemplar condition. In this context 
SVD is of clear interest because it is considered to affect cognition by disrupting brain connec-
tivity as a result of vascular injury (Frey et al., 2021; Lawrence et al., 2018; Reijmer et al., 2015). 
However, the exact impact of SVD on network topology is still unknown, with variable results 
between studies (Du et al., 2020; Tuladhar 2017). This likely relates to the issues raised above, 
in particular possible confounding by false positive connections and insufficient sample sizes. 
Recently, in a monocentre setting, we demonstrated the benefits of pre-processing steps such as 
thresholding to reduce the number of false positive connections and generate more consistent 
network architectures to assess disease effects (de Brito Robalo et al., 2020). We have also 
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shown proof of concept of raw data harmonization to minimize acquisition-related differences in 
multicentre dMRI, at the level of basic diffusion metrics (e.g., FA from the white matter skeleton; 
de Brito Robalo et al., 2021). In this study, we apply these techniques to higher order diffusion 
models, to demonstrate the feasibility of multicentre studies of network topology in disease. 

We assess the joint application of network thresholding and harmonization to improve sensi-
tivity and precision to detect connections disrupted in SVD. We expect that applying network 
thresholding leads to more consistent architectures by reducing false positives and improving 
precision in network analysis, whereas dMRI harmonization improves the sensitivity, by reducing 
site variability to leverage large multicentre data to increase sample size. We reconstruct dMRI-
based networks from four samples with sporadic SVD and one sample with a monogenic form 
of SVD (Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoenceph-
alopathy – CADASIL, Craggs et al., 2014) and controls. We first evaluate cross-site consistency 
of network architecture before and after thresholding and harmonization, using age-matched 
controls from each site. Next, we determine within sites which connections are most affected 
in patients relative to controls, before and after thresholding and harmonization. To date there 
is no gold standard for which connections are actually affected by SVD. We therefore use the 
genetically defined SVD (CADASIL), which is characterized by severe and pure vascular injury, 
as a reference standard to determine precision and sensitivity for detecting affected connections 
in the sporadic SVD samples. Finally, we assessed how pooling of scans from all sporadic SVD 
samples, before and after thresholding and harmonization, improved sensitivity and precision 
to detect affected connections.

2 METHODS 

2.1 Datasets

Four samples of patients with sporadic SVD and one sample with CADASIL were included. 
Inclusion and exclusion criteria of each cohort are reported in the original studies (summarized 
below). For the current analysis, we used a harmonized definition for selecting patients and 
controls from the original cohorts, which was based primarily on the degree of white matter injury, 
since our objective was to assess benefits of thresholding and harmonization on the detection of 
injured connections but not their functional impact. Patients had symptomatic SVD defined as 
a) history of stroke, with a corresponding small subcortical infarct visible on MRI or b) cogni-
tive complaints and presence of white matter hyperintensity (WMH) burden on MRI (Fazekas 
score ≥ 2, Fazekas et al., 1987). Patients were excluded if they had other major neurological 
or psychiatric conditions (e.g., multiple sclerosis, epilepsy, Parkinson’s disease). Each cohort 
also included control subjects, with no history of stroke or cognitive complaints and no signs 
of lacunes on MRI and minimal WMH (Fazekas score 0 or 1). All subjects had T1-weighted 
and dMRI scans. Characteristics of the study samples (629 patients and 166 controls in total) 
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are provided in supplementary Table 1. All studies included in this analysis were approved 
by the ethics committees of the respective institutions and all participants provided written 
informed consent.

Utrecht: Patients (n = 170) were selected from a memory clinic cohort (Aalten et al., 2014). 
Controls (n = 46) were recruited from a community-based cohort (Reijmer et al., 2013). MRI 
scans were acquired on a 3 Tesla Philips scanner (Achieva, Philips, Best, the Netherlands). 
T1-weighted images had a voxel size of: 1×1×1 mm3, echo time (TE): 4.5 ms and repetition 
time (TR): 7.9 ms. dMRI data were obtained with a voxel size: 2.5 × 2.5 × 2.5 mm3, TR/TE: 
6638/73 ms, 45 diffusion gradients directions with a b-value of 1200 s/mm2, and 1 b = 0 s/mm2 
averaged 3 times. 

Utrecht 2 (ZOOM): A second dataset from the University Medical Center Utrecht consisted of 
patients (n = 26) and controls (n = 18) from an ongoing prospective observational cohort study 
(ZOOM@SVDs, van den Brink et al., 2021). MRI scans were acquired using the same scanner 
system and acquisition parameters as “Utrecht”, albeit with different scanner software versions. 
Utrecht2 is referred to as “ZOOM” for the remainder of this manuscript. 

Hong Kong: Subjects from a community-based cohort that fitted our definition of patients (n 
= 20) and controls (n = 20) were included (Lam et al., 2019). MRI scans were acquired on a 
3 Tesla Philips scanner (Achieva, Philips, Best, the Netherlands). T1-weighted images were 
obtained with a voxel size: 0.60×1.04×1.04 mm3, TR/TE: 7.49/3.46 ms and dMRI had a TR/
TE: 8944/60 ms, voxel size: 1×1×2 mm3; 32 diffusion gradient directions with b-value 1000 
s/mm2 and 1 b = 0 s/mm2.

Singapore: A second community-based cohort was included, with cases (n = 359) and controls 
(n = 54) fitting our selection criteria (Hilal et al., 2013, 2021). MRI were performed on a 3 Tesla 
Siemens Magnetom Trio Tim scanner (Siemens Healthineers, Erlangen, Germany). T1-weighted 
images had TR/TE: 2300/1.9 ms, voxel size: 1×1×1 mm3 and dMRI was acquired with a TR/
TE: 6800/85 ms, voxel size: 3.1×3.1×3 mm3; 61 diffusion gradient directions with b-value 
1150 s/mm2 and 7 b = 0 s/mm2. 

Munich: Patients (n = 54) with CADASIL and controls (n = 28) were selected from a prospec-
tive study (Baykara et al., 2016). All MRI scans were acquired on a 3 Tesla Magnetom Verio 
scanner (Siemens Healthineers, Erlangen, Germany). T1-weighted images were obtained using 
TR/TE: 2500/4.73 ms, voxel size: 1×1×1 mm3 and dMRI were acquired with a voxel size: 
2 × 2 × 2 mm3, TR/TE: 12700/81 ms, 30 diffusion gradient directions with a b-value of 1000 s/
mm2, and 1 b = 0 s/mm2. 

2.2 Network reconstruction

Diffusion scans were pre-processed using ExploreDTI version 4.8.6 (Leemans et al., 2009). 
Images were corrected for signal drift (Vos et al., 2017), eddy currents, subject motion with 
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rotation of the B-matrix (Leemans & Jones, 2009), and susceptibility induced distortions (Veraart 
et al., 2013). Individual T1-weighted images were resampled to an isotropic resolution of 2 
mm3, then dMRI scans were nonlinearly registered to the resampled T1 images to correct for 
susceptibility artefacts.  Subsequently, the diffusion tensor was estimated with a robust approach 
(Tax et al., 2015). Deterministic fiber tractography was performed with seed points distributed 
uniformly throughout the brain, using ExploreDTI. Streamlines were propagated using integra-
tion over fiber orientation distributions (FOD), with a step size of 1 mm. FODs were inferred 
using constrained spherical deconvolution (CSD) with a maximum harmonic order (l-max) of 
6 (Jeurissen et al., 2011). Fiber tracking was terminated when streamlines entered a voxel with 
FOD amplitude < 0.1, or when the deflection was > 45°. Streamlines with a length outside of 
the bounds 10-500 mm were deemed implausible and excluded. To reconstruct whole brain 
networks, the Automated Anatomical Labeling (AAL) atlas was used to define 90 cortical and 
subcortical brain regions that represent network nodes (Tzourio-Mazoyer et al., 2002). Networks 
were reconstructed by combining the segmented AAL regions with the tractography data. Two 
nodes were considered connected if they contained the end-points of at least one streamline, 
resulting in 90 × 90 binary connectivity matrices. The connectivity matrices were also weighted 
by fractional anisotropy (FA) to obtain 90 x 90 FA-weighted connectivity matrices.

2.3 Analysis

2.3.1 Cross-site consistency of network architecture 

We assess whether harmonization and thresholding improve the consistency of network architec-
ture across sites. For this objective we focused on networks of controls, which were age-matched 
across sites (n =15 for each site). The most straightforward definitions of network architecture 
are the presence or absence of connections (i.e., the binary structure) and their corresponding 
weights (e.g., FA). These characteristics constitute the basis of all network properties from which 
all network metrics are derived (Messaritaki et al., 2019). To evaluate consistency of the binary 
structure, we first constructed a group-level probability matrix for each site by averaging the 
binary connectivity matrices of all subjects. In this probability matrix, each entry represents 
the probability a connection being reconstructed in that group. For example, a connection with 
a probability of 0.5 is detected in 50 % of subjects. Second, we defined consistency between 
two sites as the average relative difference (in %) between the group-level probability matrices.

 

Note that the lower the difference between sites the higher the consistency in connection prob-
ability. To evaluate consistency of FA-weights, we also constructed a group group-level matrix 
containing the average FA of connections reconstructed within each group. We computed the 
consistency in FA as the difference between the group-level FA-matrices of different sites as by 
the formula above. We determined the consistency before and after thresholding and harmoni-
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zation, with each method being applied separately and in combination. 

Thresholding was performed on the group-level probability matrix by removing connections 
with low probability until a fixed network density of 15 % was achieved (de Reus & van den 
Heuvel, 2013; Roberts et al., 2017). This thresholding approach removes the most improbable 
connections within each site, while also ensuring that networks with equal densities are achieved 
across all sites.  

Harmonization was performed by scaling the dMRI signal off 15 age and sex-matched controls 
of all sites to an arbitrary reference (Utrecht) using rotation invariant spherical harmonic (RISH) 
features (Karayumak et al., 2019). Both our previous work (de Brito Robalo et al., 2021) and 
other method papers (Mirzaalian et al., 2015; Karayumak et al., 2019) have shown that 15 to 20 
controls is sufficient to calculate average RISH features that capture group properties of each 
site, rather than individual characteristics, to perform effective harmonization. This harmoniza-
tion method is applied to the raw dMRI signal to remove acquisition-related differences while 
preserving biological effects and between-subject variation.

2.3.2 Sensitivity and precision to disease effects in SVD

Here we assess if thresholding and harmonization improve precision and sensitivity to detect 
connections affected in patients with SVD.  Clearly there is no established ground-truth, apart 
from histology, on which tracts are preferentially affected by SVD and which are relatively 
spared (Craggs et al., 2014). Moreover, substantial inter-individual variation is likely to occur, 
according to lesion burden and location. Yet, we required a reference standard to provide a basis 
to test the validity of our approach. For this we used a sample of patients with a monogenic 
form of SVD (CADASIL) with a high burden of disease, as a pure form of SVD to which we 
could compare the findings in the other samples with sporadic SVD (Di Donato et al., 2017). 
To identify connections most affected in SVD, network-based statistics adjusted for age and 
sex was performed to compare the FA of each connection between patients and controls. 
Specifically, two-sample t-tests were performed for each connection and False Discorvery Rate 
(FDR) correction with 50 thousand permutations was used to account for multiple comparisons. 
Connections with large effect sizes (Cohen’s d > 0.8) relative to controls that survive network 
thresholding and FDR in the CADASIL cohort were used as reference standard of SVD-related 
patterns of network injury. 

To estimate precision and sensitivity within each sporadic SVD cohort, NBS with the same 
parameters as described above was performed to detect connections strongly affected in patients 
relative to controls. These affected connections were compared to those found in the CADASIL 
reference. Precision was defined as the ratio between true positives (TP; i.e., connections also 
affected in the reference standard) and the total number of connections detected:
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Here, false positives (FP) are connections detected in sporadic SVD but not in the reference. 
Precision was estimated for the pooled dataset and all sporadic SVD cohort, before and after 
harmonization and thresholding. The number of connections with large effect size that survive 
thresholding and FDR-correction was used as an indicator of sensitivity.

3 RESULTS

3.1 Cross-site consistency of network architecture 

Figure 1 shows group-level connectivity matrices containing connection probability for 
age-matched controls of each site, before and after harmonization and thresholding. Before 
thresholding and harmonization, networks contained many connections with low probability (i.e., 
that were only reconstructed in a small proportion of subjects) (Fig. 1A). These low-probability 
connections were inconsistent and were reconstructed in different network locations, resulting in 
large differences in probability across sites (relative cross-site difference:  34.7% - 46.8%, right 
panel). Harmonization alone did not change the probability of connections nor the consistency 
across sites (Figure 1B). This implies that on average the same tracts were reconstructed before 
and after harmonization. When comparing a fibre bundle (e.g., corpus callosum) of one subject 
before and after harmonization, the same streamlines were reconstructed (see Supplementary 
Figure S2). Thresholding had a significant impact on the connection probability and their 
consistency across sites since it removed low probability connections and retained connections 
with high probability (Fig. 1C and 1D). Since thresholding is applied at the higher level (on the 
connectivity matrix) it did not directly affect tractography results but rather determined which 
fibre bundles are considered for the network when defining nodes and edges. This resulted in 
more consistent network architectures across sites, with high-probability connections detected 
at the same network locations across sites (relative cross-site difference:  4.5% - 7.8%).

Figure 2 shows group-level FA-weighted connectivity matrices within each site, before and 
after harmonization and thresholding. FA values varied substantially across sites before harmo-
nization, particularly for Hong Kong (relative cross-site difference up to 36.9%, Fig.2A). After 
harmonization, cross-site differences in FA across were minimized, even though the network 
still contained many low-probability connections (relative cross-site difference in FA: 10.8% 

- 20.5%, Fig. 2B). At the tract level for example in the corpus callosum) it is also clear that FA 
values change along the tract after harmonization. Thresholding alone did not remove differ-
ences in FA across sites, because even though the connections retained were more consistent 
in probability, the weights of these connections still differed across sites due to scanner-related 
differences (Fig. 2C). When applied together, thresholding and harmonization produced networks 
that only contained high-probability connections with minimal differences in FA across sites 
(Fig. 2D).  In conclusion harmonization produced more similar FA values across sites without 
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changing the reconstruction of tracts.

Figure 1: Consistency of network architecture (binary topology) between matched controls of 
different sites. Left:  Connectivity matrices containing the probability of connections within each site 

(e.g., a connection with a probability of 0.2 is only detected in 20% of subjects of that group). The 
black background in the connectivity matrix means no connection is found between two nodes. Right: 

Relative difference between connectivity matrices of different sites. Results are displayed before 
harmonization and thresholding (A), after harmonization only (B), after thresholding only (C) and 

after combining the thresholding and harmonization (D).
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3.2 Sensitivity and precision to disease effects in SVD

Figure 3 describes patterns of connections affected in patients relative to controls, with results 
shown for individual samples with sporadic SVD (A), pooled data of all sporadic SVD samples 
before (B) and after harmonization (C) as well as for the reference CADASIL sample (D). 
For individual sites with sporadic SVD, different disease burdens were observed across sites 

-reflecting differences in patient populations- as indicated by the range of effect sizes between 
patients and controls. Utrecht and Zoom had the most connections with large effect sizes, whereas 
Singapore and Hong Kong had the lowest disease burden (Fig. 3A, second row). However, in 
all sites the majority of strongly affected connections were likely spurious as they were only 
present in few patients and controls (i.e., connections with low probability at group level). When 
unthresholded connections were compared to those found in the reference CADASIL sample, a 
large proportion were false positives, which resulted in low precision within sites before thresh-
olding (precision: 0.08 - 0.19, Table 1). Thresholding drastically reduced the number of false 
positives and improved precision within sites, relative to the reference (precision: 0.38 – 0.64, 

Figure 2: Consistency of network architecture (FA weight) between matched controls of different 
sites. Left:  Connectivity matrix containing the average FA of connections detected within each site. 
The black background in the connectivity matrix means no connection is found between two nodes. 

Right:  Relative difference between connectivity matrices of different sites. Results are displayed 
between before harmonization and thresholding (A), after harmonization only (B), after thresholding 

only (C) and after combining thresholding and harmonization (D).
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Fig. 3A, third row). However, only a small proportion of connections retained after 
thresholding also remained significant after FDR-correction (25 connections in the 
Utrecht cohort), indicating low sensitivity within individual sites (Fig. 3A, fourth row). 

Regarding the pooled data before harmonization, effect sizes were inflated due to 
scanner-related differences in FA, resulting in more than 2/3 of all tested connections 
having large effect sizes (2271 connections with effect size >0.8, Fig. 3B, first and 
second row). Moreover, the majority of these large effect sizes were found in low-prob-
ability connections, which resulted in low precision before thresholding, relative to 
the reference standard (precision: 0.06, Table 1). After thresholding, low probability 
connections were removed, resulting in improved precision (precision: 0.70, Table 
1). Compared to individual sites, more connections survived FDR-correction in the 
non-harmonized pooled data (164 connections, Fig. 3B, fourth row), due to the larger 
sample size. After harmonization, the effect sizes observed in the pooled data were 
no longer inflated by acquisition-related differences and were closer to the range of 
effect sizes observed in individual samples with sporadic SVD (Fig.1C, first and 
second row). Thresholding removed low probability connections, reducing the rate 
of false positives and improving precision (0.85). Sensitivity was apparently also 
improved since more connections survived FDR, as compared to individual sites (k 
= 38, Fig. 3C, fourth row).
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Figure 3: Patterns of network injury within sites with sporadic SVD versus controls (A), pooled data 
before (B) and after (C) harmonization as well as a reference cohort of CADASIL patients versus 
controls (D). N=x;y indicates numbers of patients and controls per site or in the pooled cohort. K 
represents the number of connections tested in the histogram or shown in the brain network map. 

First row: Histogram of effect sizes, showing Cohen’s d for all connections tested between patients 
and controls. Red area represents effect sizes >0.8. Second row: Connections with large effect sizes 
(> 0.8) for patients compared to controls. Third row: Connections with large effect sizes that survive 
network thresholding. Third row: Connections with large effect sizes that survive thresholding and 
FDR correction. After each step the patterns of connections of each site were compared with the 
thresholded and FDR-corrected CADASIL cohort shown in red (bottom right). The ratio of true 

positives, false positives and precision relative to the CADASIL cohort were calculated and shown in 
Table 1.  
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4 DISCUSSION

In a first study of its kind, using multicentre data of patients with SVD as an exemplar condition, 
we demonstrated that combining network thresholding and RISH harmonization improve consis-
tency of dMRI-based brain networks across sites, while also increasing precision and sensitivity 
to detect connections affected in disease. Thresholding removed low probability connections 
improving the precision to detect connections most strongly affected within each cohort with 
sporadic SVD. Yet, individual sites showed low sensitivity to detect strongly affected connec-
tions, likely due to modest sample sizes, with only a small number of connections surviving FDR 
correction.  Harmonization minimized cross-site differences in FA and enabled data pooling to 
achieve a large sample size and improve the sensitivity to detect strongly affected connections. 
When applied together, these two methods generated networks with more consistent sets of 
connections and more similar FA-weights across sites, while also achieving higher precision 
than individual sites. 

Thresholding and Harmonization improve network consistency

Preceding our work, several studies have analysed brain networks of older adults and the impact 
of SVD on global and local network properties as well specific patterns of injury (Du et al., 2020; 
Lawrence et al., 2018; Tuladhar et al., 2017). However, a frequently reported limitation in those 
studies is the low generalizability of results across datasets due to sample size or differences in 
network architecture (Smith et al., 2019). Our results indeed demonstrate that the network archi-
tecture before thresholding can differ substantially across age-matched controls with minimal 
burden of white matter injury. Within different sites, networks contained many unreliable tracts 
which were only reconstructed in a small proportion of subjects. These inconsistent tracts are 
likely a byproduct of cumulative errors during network reconstruction steps, especially in fiber 
tractography (de Reus & van den Heuvel, 2013). These tracts had a wide-range of lengths (10-300 
mm), indicating that thresholding was not biased to only short or long-range connections (see 
Supplementary Figure S1). While no ground-truth brain network has yet been established, it 
is well accepted that connections that describe underlying white matter pathways should be 
detected consistently across subjects, with small degree of interindividual variation (Roberts et 
al., 2017). As shown by our current results as well as previous work, introducing thresholding 
as a step during network reconstruction removes low probability tracts and generates networks 
with more consistent architectures across datasets (Buchanan et al., 2020; Kurokawa et al., 
2021; Messaritaki et al., 2019). We add to those results by showing that thresholding improves 
cross-site consistency in elderly subjects. We note that network thresholding is a higher-level 
step, since it is applied on the connectivity matrices and not on tractography itself. Therefore, 
it does not directly change the tractography results, but rather determines which edges of the 
network are more consistently observed across subjects. However the concept of thresholding 
(i.e., filtering noisy data) could also extend to other network reconstruction pipelines based on 
probabilistic tractography (Roberts et al., 2017). In this scenario, thresholding could be coupled 
with other established filtering strategies in probabilistic tractography (SIFT2, Smith et al., 
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2015). Of note, the same principles apply to functional connectomes where thresholding has 
been shown to increase edge-consistency across participants (Váša et al., 2018). 

A possible concern about thresholding is that removing connections from the network can be 
detrimental to the sensitivity to disease effects (van Wijk et al., 2010). Although we cannot 
formally test sensitivity, because we have no standard of which connections were truly affected 
in each of the samples with sporadic SVD, it is arguably desirable to establish disease effects 
over a more consistent network architecture, less affected by spurious tracts (de Brito Robalo et 
al., 2020). In this work we applied a thresholding method that not only removes low probability 
connections across subjects, but also ensures that  fixed network density is achieved across sites 
(van den Heuvel & Sporns, 2013). The stringency of thresholding remains arbitrary, but our own 
work and previous studies have shown that mid-range densities (≈ 15%) reduces the number 
of false positives connections in networks reconstructed with deterministic fibre tractography, 
while maintaining the well-known small-world structure of brain networks and sensitivity to 
disease effects (Hagmann et al., 2008; Robalo et al., 2020; Roberts et al., 2017).

Our results also demonstrated that dMRI harmonization improves the consistency of connection 
weights across sites. Before harmonization, FA of reconstructed connections varied substantially 
between matched controls of different sites due to acquisition-related differences in the diffu-
sion signal.  Groups of healthy subjects that are matched for demographics should have similar 
diffusion profiles and therefore scalar diffusion metrics used for network weighting should 
not significantly differ across sites (Mirzaalian et al., 2015). RISH harmonization removed 
differences in the diffusion signal and produced networks with more similar FA across sites. 
The harmonization results shown in this study should be generalizable in other studies since it is 
applied at the beginning of the processing pipeline, prior to other methodological considerations. 
(e.g., FA, MD). Since the RISH method only requires a subset of matched subjects from each 
site as training subjects, it can be generalized to any multicentre cohort as long as training data 
is available. Importantly, researchers should be aware that subject matching is a challenging 
step, especially when dealing with elderly subjects or subjects with brain lesions. In those cases 
we recommend ensuring that brain lesions in the training data are comparable across sites, both 
in terms of location and severity.

While alternative methods for harmonization exist (e.g. statistical harmonization with ComBat, 
Fortin et al., 2017, mega and meta analysis), it remains unclear how to couple them with 
connectivity analysis where several network weights can be used and different graph metrics 
are derived for further analysis. Contrary to meta and mega-analysis which combine statistical 
results from already processed data (e.g., effect sizes), the RISH method aims at creating a single 
large dataset, allowing any subsequent analysis (such as network analysis or FADTTS). When 
the data is available, RISH harmonization should be prioritized over meta and mega-analysis. 
Here, we used FA-weighted networks, since this metric has been widely used as outcome in 
network studies of SVD to examine contrasts between patients and controls or association with 
cognition (Heinen et al., 2018; Reijmer et al., 2016). A recent report (Schilling et al., 2021) 
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suggests that variability in scanner hardware and acquisition parameters is the largest source 
of uncertainty when performing fiber tractography with multi-site data. In our study, we did 
not observe large variability in brain networks before and after harmonization, which mainly 
impacted dMRI metrics of the connections, rather than their probability. This might imply that 
connection probability in brain connectivity is overall resistant to inter-scanner difference, 
especially when a relatively coarse-grained atlas is used to define the nodes (e.g. AAL atlas). On 
the other hand, data used in this work only included modest diffusion weightings, but the use of 
larger diffusion weightings – which is reccomended for accurate fiber tractography (Tournier et 
al., 2008) – might further exacerbate hardware-driven differences. Overall, when harmoniza-
tion was combined with thresholding, the resulting networks had more consistent connections 
across subjects and across sites and more similar FA-weights. Overall, when harmonization was 
combined with thresholding, the resulting networks had more consistent connections across 
subjects and across sites and more similar FA-weights. A thresholded and harmonized network 
is thus a more reliable basis from which patterns of injury in SVD can be identified.   

Thresholding and Harmonization improve sensitivity and precision to effects of interest

In the second part of this study, we examined the impact of thresholding, harmonization and 
pooling on the sensitivity and precision to detect connections strongly affected in SVD. Our 
findings within sporadic SVD samples show that before thresholding there is low precision to 
detect relevant connections compared to the reference standard. This is in part due to the fact 
that large effect sizes were detected in low probability connections, which were absent in a large 
proportion of subjects, and likely represent artefacts. For these low probability connections, the 
number of data points used for the t-tests in the NBS pipeline is even smaller than the already 
small sample size within sites (number of patients and controls). This resulted in many outlier 
connections showing large effect sizes (> 0.8). Thresholding removed a large proportion of 
false positive connections, ensuring that all large effect sizes were identified only for connec-
tions that were present in a large proportion of subjects (i.e., the actual sample size used for the 
t-test was closer to the group sample size). This resulted in higher precision to detect strongly 
affected connections. This finding is in line with previous research with healthy subjects from 
the UK biobank, which showed that connections retained in the network after thresholding are 
more strongly associated with biological effects of interest, such as age (Buchanan et al., 2020). 

Within each site, sensitivity was very low since few connections remained significant after 
FDR-correction. Significant connections were only retained in the Utrecht cohort, which had 
relatively high disease burden and a substantial sample size. In all other sites, no significantly 
different connection between patients and controls remained after FDR, likely due to limited 
sample size. For example, the Zoom Cohort had effect sizes relatively similar to Utrecht. For 
example, the Zoom Cohort had relatively similar effect sizes as Utrecht, but a limited sample 
small size to detect significant connections. On the other hand, Singapore had the largest sample 
size from all sites but since patients were community-duelling individuals with lower disease 
burden and more subtle effect sizes, but no connection survived FDR. So far, most network 
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analysis studies in SVD employed limited sample sizes, with the exception of a recent work with 
930 subjects that identified key connections disrupted in SVD, comprising interhemispheric 
connections as well as connections between subcortical and frontal brain regions (Petersen et 
al., 2020). 

An application of network localisation of SVD-related injury could be to help understanding 
how diffuse and/or focal damage in certain brain areas affects cognitive function (Biesbroek et 
al., 2018). If these findings are to be translated in more applied settings, they should be validated 
with large multicentre datasets and generalized across centers. With our pooled analysis we 
demonstrated that combining multicentre data to achieve a larger sample size can improve the 
sensitivity to detect connections affected in SVD, which would not have been possible using 
single center data. Importantly, our results clearly show that this should only be performed 
after harmonization to avoid introducing bias in effect sizes, in analogy to previous studies on 
diffusion tensor imaging metrics  (Cetin-Karayumak et al., 2020; de Brito Robalo et al., 2021). 
When the data was pooled without harmonization, effect sizes were much larger than those 
observed within individual sites, which is likely erroneous. Consequently, more than 2/3 of all 
the tested connections had an effect size larger than 0.8, which originates from acquisition-re-
lated differences in FA across sites, combined with imbalance in proportions of controls and 
patients in the samples. Even though more “affected connections” were detected, these were 
mostly false positives, resulting in low precision. Of note, without harmonization, the opposite 
scenario could also be possible, i.e., where pooling data results in a loss of effect size rather 
than inflation, depending on patient and control sampling and whether scanner effects produce 
higher or lower FA values for one site, relative to another. To avoid these detrimental scenarios, 
it is crucial that harmonization is performed prior to data pooling to ensure that the detected 
differences are not driven by acquisition-related differences across sites but by the increased 
power of a larger sample size. In summary, when applied together, thresholding, harmonization 
and pooling improved sensitivity to detect connections affected in sporadic SVD with higher 
precision than individual sites.  

Limitations and future outlook

A limitation of our study is the lack of a ground-truth for patterns of injured connections in SVD. 
By defining the CADASIL sample as model for patterns of network injury in SVD, we created a 
reference standard to compare the findings in patients with sporadic SVD from each site to. We 
realize that patterns of injury observed in CADASIL do not represent an actual ground-truth of 
network injury in sporadic SVD, but rather represent a typical example of most severely affected 
tracts to support our analyses. Using this reference standard, we focused on improving processing 
steps to identify network injury. Of note, at this stage we did not aim to obtain novel insight into 
actual SVD disease effects. Accordingly, we did not harmonize patient selection for particular 
disease stages, risk profiles, or outcomes. Our selection was primarily based on white matter 
lesion burden. Future studies could use the techniques demonstrated here to further characterize 
the actual patterns of disrupted connections in patients with SVD and their functional impact. 
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This should also entail more rigorous selection of patients and controls, considering parame-
ters such as risk factors, comorbidities or clinical diagnosis (e.g., mild cognitive impairment; 
dementia). Furthermore, recently developed techniques such as machine learning and classifi-
cation algorithms could benefit from large sample sizes gained by harmonizing multicentre data.  
In future studies it could be of interest to use classifiers to determine which patients are likely 
to have cognitive decline over time based on network metrics or which white matter tracts can 
predict change in specific cognitive domains. For such studies to be feasible it is important to 
have a large test sample to train the classifier and to perform validation. 

Our study was also limited to datasets with lower quality (e.g., lower angular resolution) as 
compared to other connectivity studies in healthy young adults (Sotiropoulos et al., 2013), but on 
the other hand reflects the reality in a clinical setting. Another point to consider from a technical 
perspective, is that network reconstruction involves many methodological choices which could 
not all be tested in this study, and are topics of debate (e.g., registration methods, tractography 
algorithm, parcellation schemes, Yeh et al., 2021). Finally, we examined network consistency 
based on primary features of network architecture (e.g., connection probability and connection 
weight), but topological metrics derived from graph theory should also be investigated in future 
analyses (Bullmore & Sporns, 2009).

4 CONCLUSION 

Using multicentre dataset of patients with SVD, we demonstrated that sensitivity and precision 
to detect disease effects in specific network connections can be improved by thresholding, 
harmonization and pooling. Future studies that investigate network localisation of SVD-related 
injury, or other diseases, and associations with brain function should introduce thresholding 
as part of the processing pipeline, to ensure that disease effects are evaluated over a network 
with a more consistent architectures and fewer positives. Furthermore, since effect sizes are 
likely to be subtle, large sample sizes should be used to study these effects. We provide proof of 
concept that harmonization facilitates pooling of large multicentre datasets to achieve this goal.

FINAL_INSIDE.indd   153FINAL_INSIDE.indd   153 14/10/2022   21:5314/10/2022   21:53



Chapter 5

154

ACKNOWLEDGEMENTS

We acknowledge and thank all patients and controls for study participation. We thank members 
of the Utrecht Vascular Cognitive Impairment (VCI) Study group. We also thank Mathias Hübner 
for technical assistance and Angelika Doerr as study nurse for her help in the VASCAMY study 
in Munich.

SUPPLEMENTARY INFORMATION

FINAL_INSIDE.indd   154FINAL_INSIDE.indd   154 14/10/2022   21:5314/10/2022   21:53



Harmonization and Thresholding in multicentre dMRI network analysis 

155

C
ha

pt
er

 5

U
tre

ch
t 1

U
tre

ch
t 2

 (Z
O

O
M

)
H

on
g 

K
on

g
Si

ng
ap

or
e

M
un

ic
h

C
on

tro
ls

(N
 =

 4
6)

Pa
tie

nt
s

(N
 =

 1
70

)
C

on
tro

ls
(N

 =
 1

8)
Pa

tie
nt

s
(N

 =
 2

6)
C

on
tro

ls
(N

 =
 2

0)
Pa

tie
nt

s
(N

 =
 2

0)
C

on
tro

ls
(N

 =
 5

4)
Pa

tie
nt

s
(N

 =
 3

59
)

C
on

tro
ls

(N
 =

 2
8)

Pa
tie

nt
s

(N
 =

 5
4)

D
em

og
ra

ph
ic

s

A
ge

, y
ea

rs
71

.2
 ±

 4
.8

74
.9

 ±
 9

.0
62

.4
 ±

 6
.9

64
.8

 ±
 6

.8
69

.2
 ±

 3
.4

74
.1

 ±
 3

.3
66

.6
 ±

 4
.8

71
.3

 ±
 6

.0
71

.8
 ±

 7
.4

56
.0

 ±
 7

.1

M
al

e 
se

x 
(%

)
28

 (6
1)

99
 (5

9)
10

 (5
5)

18
 (6

9)
10

 (5
0)

10
 (5

0)
31

 (5
2)

16
6 

(4
6)

16
 (5

7)
20

 (3
7)

M
R

I m
ar

ke
rs

W
M

H
 v

ol
um

e 
0.

3 
[0

.1
, 0

.6
]

1.
2 

[0
.5

, 2
.7

]
0.

03
 [0

.0
2,

 0
.0

8]
0.

7 
[0

.3
, 1

.3
]

0.
1 

[0
.0

5,
 0

.1
]

0.
6 

[0
.3

, 1
.1

]
0.

04
 [0

.0
2,

 0
.0

9]
0.

8 
[0

.0
8,

 1
.1

6]
0.

2 
[0

.1
 

0.
7]

6.
2 

[3
.5

, 
10

]

W
M

H
 (F

az
ek

as
)

0 
[0

, 1
]

2 
[1

, 2
]

1 
[1

,1
]

2 
[2

,3
]

0.
5 

[0
, 1

]
2 

[2
, 3

]
1 

[1
,1

]
2 

[1
,3

]
0 

[0
, 1

]
3 

[2
, 3

]

La
cu

ne
s 

(%
 p

re
se

nt
)

0 
(0

)
69

 (3
6)

0(
0)

12
 (4

6)
0 

(0
)

-
0 

(0
)

11
8 

(3
3)

0 
(0

)
40

 (7
4)

Im
ag

in
g 

pa
ra

m
et

er
s

Sc
an

ne
r

3T
 P

hi
lip

s A
ch

ie
va

3T
 P

hi
lip

s A
ch

ie
va

3T
 P

hi
lip

s A
ch

ie
va

3T
 S

ie
m

en
s M

ag
ne

to
m

 T
rio

, T
im

3T
 S

ie
m

en
s V

er
io

So
ftw

ar
e 

ve
rs

io
n

R
3.

1
M

R
 R

el
ea

se
 5

.6
.0

M
R

 R
el

ea
se

 5
.1

sy
ng

o 
M

R
 B

19
sy

ng
o 

M
R

 B
19

Vo
xe

l s
iz

e 
(m

m
3 )

2.
5 

× 
2.

5 
× 

2.
5

2.
5 

× 
2.

5 
× 

2.
5

1 
× 

1 
× 

2
3.

1 
× 

3.
1 

× 
3.

0
2 

× 
2 

× 
2

b-
va

lu
e 

(s
/m

m
2 )

12
00

12
00

10
00

11
50

10
00

# 
of

 d
ire

ct
io

ns
45

45
32

61
30

Ta
bl

e 
1:

 D
em

og
ra

ph
ic

s a
nd

 im
ag

in
g 

pa
ra

m
et

er
s o

f t
he

 st
ud

y 
sa

m
pl

es
. 

D
at

a 
pr

es
en

te
d 

as
 m

ea
n 

± 
SD

, n
um

be
r (

pe
rc

en
ta

ge
s)

 o
r m

ed
ia

n 
[in

te
rq

ua
rti

le
 ra

ng
e]

; S
V

D
 =

 sm
al

l v
es

se
l d

is
ea

se
; C

A
D

A
SI

L 
= 

ce
re

br
al

 a
ut

os
om

al
-d

om
in

an
t 

ar
te

rio
pa

th
y 

w
ith

 su
bc

or
tic

al
 in

fa
rc

ts
 a

nd
 le

uk
oe

nc
ep

ha
lo

pa
th

y;
 W

M
H

 =
 w

hi
te

 m
at

te
r h

yp
er

in
te

ns
ity

 (n
or

m
al

iz
ed

 to
 %

 o
f i

nt
ra

cr
an

ia
l v

ol
um

e)
. 

FINAL_INSIDE.indd   155FINAL_INSIDE.indd   155 14/10/2022   21:5314/10/2022   21:53



Chapter 5

156

Figure S1: Average tract length distribution of connections retained and connections removed from 
the network during thresholding.  

Figure S2: Fiber tractography of the corpus callosum before (A) and after (B) harmonization of an 
example control subject. The figure shows that harmonization does not change the reconstruction of 

fiber tracts, nor their pathways. Color coding: red (left-right); blue (superior-inferior); green (anterior-
posterior). This supports our main results in Figure 1 where we observed that harmonization alone 

does not affect the probability of a connection being reconstructed. 
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Figure S3: Fiber tractography of the corpus callosum before (A) and after (B) harmonization of an 
example control subject, color-coded by FA. The arrows indicate regions along the tract where FA 

changes after harmonization. This is in line with our main results in Figure 2, where we observed that 
the FA-weighted connectivity matrix is scaled after harmonization and becomes more similar across 

sites. 
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SUMMARY

The aim of the work described in this thesis was to advance the implementation of 
diffusion MRI in SVD research by exploring methods that improve its technical 
validity. The two key objectives were 1) to improve the validity of multicentre dMRI, 
by removing variability related to acquisition hardware in dMRI across sites with 
harmonization of the raw diffusion signal and 2) to improve the validity of dMRI-
based network analyses, in the presence of pathology, by removing false positive 
connections with thresholding. 

We addressed our first key objective in Chapters 2 and 5, where we showed proof of 
concept of effective harmonization with data from five cohorts of patients with SVD and 
controls, using rotation invariant spherical harmonic (RISH) features. In chapter 2 we 
showed that the RISH method removes acquisition-related differences in scalar dMRI 
metrics between matched controls of different sites, while preserving disease-related 
effect sizes (i.e., differences between patients and controls and associations between 
dMRI metrics and markers of SVD). Consequently, the harmonized data could be 
pooled to increase sample size and infer associations between dMRI metrics and 
markers of SVD with improved power. In chapter 5 we applied RISH harmonization 
beyond the scalar metrics explored in Chapter 2, by investigating if it also improves 
cross-site consistency of brain networks. We demonstrated that harmonization helps to 
achieve more similar network architectures across sites. Furthermore, harmonization 
facilitated data pooling to infer patterns of network injury with improved sensitivity 
as compared to single centre datasets. 

We addressed our second key objective in chapters 3, 4 and 5 where we examined 
whether network thresholding increases consistency of brain networks in studies with 
cross-sectional design, longitudinal design and in multicentre analysis. In chapter 
3 we proposed fixed-density thresholding as method to control for differences in 
network density (i.e., number of detected connections) when comparing networks of 
patients and controls. We showed that thresholding networks to a fixed density across 
all subjects preserves the original network architecture over a large range of thresholds 
and maintains the sensitivity to detected group-differences between patients with SVD 
and controls in global and local metrics. In this manner, networks can be compared 
across groups without the risk of measures being affected by density bias. In chapter 4, 
we tackled the effect of false positive connections causing low reproducibility of brain 
networks in longitudinal studies. We showed that weight-based thresholding improves 
scan-rescan network consistency in healthy young subjects (with relatively short-rescan inter-
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vals) but also in patients with SVD scanned over long time periods. Importantly, we 
proved that thresholding preserves sensitivity to detect statistical group-differences 
between patients with low and high SVD burden. Finally, in chapter 5 we demonstrated 
that thresholding, in combination with RISH harmonization, helps to generate more 
consistent networks in multicentre data. In this analysis we showed that thresholding 
complements harmonization by reducing the number of false positives in the network, 
ultimately improving precision to detect patterns of network injury in multicentre 
data of patients SVD. 

Altogether, the work presented in this thesis shows the benefits of dMRI harmoni-
zation by making data more comparable across centres and enabling data pooling to 
increase sample size. Our work also shows that advantages of network thresholding 
by improving precision of network analysis, paving the way for robust large scale 
dMRI network analysis in SVD.
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DISCUSSION

Dealing with scanner and acquisition-related differences in diffusion MRI

The future use of dMRI as a diagnostic tool in studies of neurological and psychiatric disorders 
requires reliability and stability of measures across scanners, and acquisition parameters (Teipel 
et al., 2011). The need for data harmonization has increased even more with the availability 
of large multicentre datasets such as the Human Connectome Project (HCP) (Essen et al., 
2013) or the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 2015). To take 
full advantage of such datasets where new imaging markers can be discovered and validated, 
harmonization strategies that deal with unwanted variability need to be included in the pipeline, 
prior to data pooling and joint analysis.

An important choice we faced when implementing harmonization was whether to harmonize 
the raw data or individual diffusion metrics. Given that SVD is a condition associated with 
changes in multiple dMRI metrics derived from different models and analysis pipelines (e.g., 
FA, MD, van Norden et al., 2012; PSMD, Baykara et al., 2016; tractography and connectivity 
metrics, Petersen et al., 2020), it was more advantageous to harmonize the raw data. The major 
disadvantage of the alternative approach, harmonizing the individual diffusion metrics, is that 
the choice of what kind of analysis and inferences we could perform afterwards would be very 
limited. Furthermore, harmonizing individual metrics could have implications for multivariate 
analyses, since it is not guaranteed that well known relations between those metrics (e.g., high 
FA in combination with low MD) are preserved. We chose the RISH method, which harmonizes 
the raw data in a model independent manner, therefore allowing us to calculate any diffusion 
metric in subsequent analyses (e.g., TBSS and voxel-wise comparison in Chapter 2 and network 
analysis in Chapter 5). We recognize that other harmonization methods that work on the raw data 
also exist. For example, the method of moments, which harmonizes a target site to a reference 
site by matching their spherical mean and spherical variance to correct for unwanted variability. 
Another recently method is sparse dictionary learning which uses machine learning approaches 
for harmonization (St-Jean et al., 2019). We chose to implement the RISH since it performed 
best in a recent challenge on dMRI harmonization (Lipeng et al). The best harmonization method 
for a particular study depends on the study design, the research question, the available data and 
the known sources of variability as discussed below. In Figure 1, we summarize questions that 
we faced when choosing which method to implement, and we recommend following this chart 
when choosing a harmonization method.
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When implementing the RISH approach, a challenge we had to consider was how to accurately 
match subjects across cohorts to train the harmonization algorithm. In the training phase, a key 
assumption is that statistical differences in dMRI between matched groups only occur due to 
scanner and acquisition-related differences. Consequently, if matching is optimal in this respect, 
the dMRI signal can be harmonized between two sites by calculating scaling factors between 
the average of RISH features of matched subjects included. In the studies presented in Chapters 
2 and 5, we had access to scans of elderly controls, which were established as training subjects 
and matched across sites not only in terms of age and sex. Yet, other factors that should ideally 
be considered are ethnicity, handedness, education level, but also other potential factors that 
influence the diffusion signal such as the degree of brain lesions. 

During our selection process we ensured that training controls only included subjects with 
minimal degree of WMH and no major artefacts. In an ideal scenario, all harmonization studies 
should have “travelling subjects” that are scanned on all sites, thus avoiding the hurdles of group 

Figure 1: Illustration of potential questions when implementing a harmonization pipeline. The first 
question is whether harmonization is performed on the raw data (left side - orange) or on individual 
diffusion MRI metrics (right side). Left: For harmonization of raw data, the most suitable method 

depends on what kind of the training data is available. Do we have access to scans of the same 
subjects scanned on all sites (“travelling heads”)? If yes, machine learning approaches such as 

Sparse Dictionary Learning (St-Jean et al., 2019) and a recent iteration of the RISH method (Cetin 
Karayumak et al., 2019) can be applied. If travelling subjects are not available, can we define age- and 
sex-matched groups across all sites? If yes, the RISH method is again suitable and if no, the Method 
of Moments (Huynh et al., 2019) is the alternative. Right: For harmonization of diffusion metrics, 
do we have access to whole brain maps of each subject? If yes, approaches that use regression of 
covariates such as ComBat (Fortin et al., 2017) are recommended. Otherwise, if only summary of 

statistics available, we are left with Meta-analysis approaches (Teipel et al., 2012).
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matching. We showed that when traveling subjects are not available, recruiting a group of 15 
matched subjects at each site is sufficient to effectively remove acquisition-related differences. 
Future studies implementing the RISH method on clinical cohorts should also consider that 
anatomical alterations from their relevant condition (e.g., tumour or stroke), particularly in the 
training data, could severely affect the performance of harmonization. In those cases, we recom-
mend to a least ensure that the location of anatomical alterations is the same across all sites. 

After computing harmonized scans, the question that followed was how to establish if harmoni-
zation was successful. For this purpose, we examined the preservation of disease-related effects 
alongside removal of scanner-related differences. We demonstrated that statistical differences 
in dMRI metrics between the training controls are removed, and that the expected variability 
between patients with SVD and controls as well as associations between dMRI metrics and 
SVD markers are preserved. This was true not only for metrics derived from the diffusion tensor 
model (FA, MD, PSMD in Chapter 2), but also for metrics obtained with more sophisticated 
analysis such as fibre tractography and network analysis (Chapter 5). We thus proved that RISH 
harmonization, which is applied at the beginning of the processing pipeline, generates more 
comparable dMRI metrics between sites, regardless of which approach is used to calculate those 
metrics. Consequently, data could be pooled at different stages of processing to increase sample 
size and confidence to test distinct effects of interest (e.g., associations between dMRI and 
WMH in Chapter 2 or patterns of network injury in Chapter 5). Similar validations of the RISH 
method have been shown in controls and in a large population of patients with schizophrenia, 
where statistical differences due to scanner were removed in matched groups, while preserving 
biological variation due to age and sex (Cetin-Karayumak et al., 2020). When implementing RISH 
harmonization with patient populations, we recommend verifying whether well-established 
disease effects are preserved, as part of the quality assessment of the processing pipeline. If 
traveling subjects were available, this would have provided a ground truth to directly compare 
RISH features or resulting dMRI metrics between sites on a subject-by-subject basis, thus 
simplifying the validation process.  

Despite the benefits of RISH harmonization demonstrated in this work, some challenges remain 
before dMRI can be fully implemented in clinical SVD research. Ideally, harmonization should 
not require training data and should be performed directly on patients since many studies do not 
include healthy controls alongside their patient population. Currently, it is only possible to harmo-
nize data with relatively similar spatial resolutions, b-value and number of diffusion gradient 
directions(Tax et al., 2019). Beyond harmonization, other steps can also be taken to facilitate 
multicentre data sharing and minimize scanner and acquisition-related differences. Ideally, in 
multicentre studies, all scans should be acquired with the same scanner hardware acquisition 
parameters and similar calibration phantoms from the beginning of the study. However, that 
is both a financial and logistical challenge. Nonetheless, at the very least, scanner vendors and 
researchers have the responsibility of being transparent with regards to reconstruction algorithms, 
acquisition protocols and processing steps. 
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Improving consistency of brain network analysis in the presence of disease

The study of brain networks has the potential to advance the understanding of many psychiatric 
and neurological disorders. However, even within single research fields such as SVD, there are 
large differences in defining network architectures, and disease effects. Apart from removing 
scanner-related differences in the raw data as proposed above, during network analysis we deal 
with other types of unwanted variability between datasets, whether we are comparing networks 
in cross-sectional studies, longitudinal studies or in multicentre analysis. In all scenarios the 
main challenge is that brain networks contain many false positive connections. 

As shown in Chapter 3, in single-centre cross-sectional analysis, the presence of false positives 
translates into significant differences in network density across subjects, which can bias group 
comparisons of network metrics such as global efficiency. This is especially problematic in 
datasets of elderly subjects where fibre tractography is suboptimal because of brain lesions, 
lower scan quality and misregistration, resulting in many false positives. In chapter 3 we applied 
fixed-density thresholding to remove false positives and generate networks with fixed densities, 
so that eventual differences in global network measures across groups appear solely through 
structural changes rather than density differences. We noticed that the disadvantage of this 
approach is the manipulation of the empirical network by removing connections since it could 
be possible that differences in overall density between subjects is caused by the experimental 
condition rather than a mere confounder. For this reason, we recommend checking whether the 
original network architecture (e.g., hub location, hub-hierarchy and connection weights) is 
maintained over different threshold levels. Moreover, group-differences that reflect real disease 
effects should be observed over a large range of thresholds and not only at a specific threshold.  

As an alternative to fixed-density thresholding, density bias could also be dealt with by normal-
izing network measures to random graphs (van Wijk et al., 2010). However, that also comes 
with its challenges since normalization introduces different bias for local and global network 
measures. This means that a uniform normalization step cannot be applied to all metrics at 
once. Until ground-truth brain networks have been developed both solutions will have their 
own limitations. 

Regarding longitudinal studies, the presence of false positives contributes for low scan-rescan 
network architecture reproducibility when subjects are scanned over multiple time points, espe-
cially when rescan intervals span months or years. The question we faced at this stage was how 
can we ensure that subtle changes over time caused by real disease effects and not confounded 
by low scan-rescan reproducibility? In the research presented in Chapter 4, we demonstrated 
that thresholding reduces the number of false positives in the network and generates more 
consistent network architectures over time (e.g., hub location and edges detected). Thresholded 
networks had a more consistent scan-rescan structure over which disease effects over time could 
be evaluated. However, we must consider that improving consistency of network architecture is 
only one side of the coin since thresholding could potentially remove genuine connections that 
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are relevant for assessing disease effects. As we demonstrated, one way to determine whether 
disease effects are preserved is to examine the interindividual variation of network metrics 
and associations with external markers (e.g., burden of WMH) over different threshold 
levels. We tested the performance of two weight-based thresholding methods (fixed-density and 
absolute thresholding), but we are aware that more thresholding methods have been proposed 
(e.g., consensus and consistency thresholding (Betzel et al., 2018; Roberts et al., 2017). These 
methods were developed using datasets of young subjects, but it is also important to test their 
validity on scans of patients, especially when we the longitudinal analysis is focused on group-
level networks rather than individual networks as described in Chapter 4. Other recently devel-
oped thresholding approaches directly filter individual streamlines from the tractography data, 
which could also improve scan-rescan consistency of network architecture in disease (Smith 
et al., 2015). Apart from thresholding, in longitudinal studies scan-rescan reproducibility can 
also be improved by using the same tractography algorithms, parcellation schemes and network 
weights (de Reus & van den Heuvel, 2013b).

In multicentre network analysis, the presence of false positives reduces consistency of networks 
across centres and restricts data pooling. With the study described in Chapter 5, we showed that 
combining harmonization and thresholding generates networks with more consistent architec-
tures across sites by removing low probability tracts. Even if no ground-truth brain network 
has been established, it is reasonable to assume that connections that represent true underlying 
white matter pathways will be consistently reconstructed across experiments. Thresholding 
helped to achieve this robust structure containing only the most consistent connections, over 
which disease effects could eventually be assessed. When working with multicentre data, even 
though thresholding alone improves the consistency of which connections are reconstructed, 
we recommend combining it with harmonization so that the connections weights of those 
connections also become more similar across sites. Only then can the data be pooled to increase 
sample size. We demonstrated that combining thresholding, harmonization and multicentre 
data pooling significantly improves the sensitivity and precision to detect patterns of network 
injury in patients with SVD. For network findings to be useful in clinical studies, they need be 
validated in large datasets, particularly if effect sizes are expected to be small.

CONCLUSIONS

The work presented in this thesis explored methods to improve the technical validity of diffusion 
MRI and advance its implementation in SVD research. We demonstrated that harmonization 
with the RISH method removed scanner and acquisition-related differences between diffusion 
scans acquired on different centres. The harmonization pipeline, as presented in this thesis, 
can be implemented in future SVD studies with multicentre data, to increase sample size and 
sensitivity to disease affects. Importantly, future studies should be aware that subject matching 
will be a challenging step, especially if the training controls are elderly subjects or contain brain 
lesions. In that case we recommend using scans where brain lesions are comparable across 
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sites, both in terms of location and severity. We also recommend verifying whether well-known 
biological effects are preserved after harmonization, alongside removal of cross-site differences 
in the training group. 

We also showed that network thresholding improves consistency of brain networks derived 
from dMRI, while preserving disease effects in cross-sectional and longitudinal analyses. For 
studies with a similar design, we propose applying the thresholding approaches discussed in 
this work to obtain more consistent network architectures and increase precision of network 
analysis. We recommend only applying threshold levels where the original network architecture 
and the interindividual variation of subjects are preserved. We also demonstrated benefits of 
thresholding in multicentre analysis, thresholding in generating more comparable networks 
across centres and in increasing precision to detect disease effects. 

I hope that the ideas presented in this thesis will guide researchers setting up dMRI studies in 
clinical settings, with a vision to validate their findings in large datasets.  
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NEDERLANDSE SAMENVATTING

Diffusie-MRI (dMRI) is een veelbelovende techniek om hersenschade te detecteren bij pati-
ënten met small vessel disease (SVD). Zo is met behulp van dMRI aangetoond dat bepaalde 
verbindingen in het hersennetwerk van patiënten met SVD zijn beschadigd en dat deze schade 
samenhangt met cognitieve problemen. Helaas kent de techniek momenteel nog een aantal 
technische beperkingen die grootschalig onderzoek en implementatie in de weg staan. Het is 
bijvoorbeeld niet goed mogelijk om dMRI gegevens afkomstig van verschillende centra samen 
te voegen, omdat elk type scanner een ander effect heeft op het diffusie signaal. Daarnaast 
bevatten op dMRI-gebaseerde hersennetwerken relatief veel vals-positieve verbindingen, 
waardoor ze niet goed te reproduceren zijn. Dit maakt de vergelijking van netwerken over tijd 
en tussen groepen minder nauwkeurig. 

Het onderzoek in dit proefschrift richt zich op het verbeteren van de toepasbaarheid van dMRI 
in SVD door de bovenstaande technische beperkingen van deze techniek te verbeteren. De twee 
hoofddoelstellingen waren: 

1) Het minimaliseren van centra-gerelateerde variatie in het dMRI signaal door een methode toe 
te passen die het onbewerkt diffusiesignaal ‘harmoniseert’. 2) Het verbeteren van de reprodu-
ceerbaarheid van op dMRI gebaseerde hersennetwerken door het toepassen van verschillende 
‘filters’. 

De eerste doelstelling hebben we onderzocht in hoofdstuk 2 en 5. Daarin hebben we de 
effectiviteit van de harmonisatie methode (RISH) laten zien in vijf verschillende groepen van 
patiënten met SVD en controles. In hoofdstuk 2 laten we zien dat de RISH-methode inderdaad 
de centra-gerelateerde variatie in het dMRI signaal verwijdert, terwijl de ziekte-gerelateerde 
verschillen behouden blijven (d.w.z. verschillen tussen patiënten en controles en verschillen 
tussen patiënten met milde en ernstige SVD). Dit betekent dat vervolgstudies met deze methode 
grotere steekproeven kunnen onderzoeken, doordat dMRI beelden van verschillende centra bij 
elkaar gevoegd kunnen worden. 

In hoofdstuk 5 laten we zien dat de RISH-methode het ook mogelijk maakt om hersennetwerken 
samen te voegen die gebaseerd zijn op dMRI scans afkomstig van verschillende centra. We 
toonden aan dat schade aan het netwerk in patiënten met SVD eerder kan worden aangetoond 
in deze samengestelde steekproef dan op basis van gegevens afkomstig van één enkele locatie. 
De RISH-methode verbetert dus de gevoeligheid van dMRI om SVD-gerelateerde schade aan 
het hersennetwerk te detecteren.

De tweede doelstelling was het verbeteren van de reproduceerbaarheid van het hersennetwerk, 
door het verminderen van het aantal vals-positieve verbindingen. Dit hebben we onderzocht in 
hoofdstuk 3, 4 en 5 door verschillende ‘filters’ toe te passen en het effect hiervan te bestuderen 
op de vergelijking tussen patiënten en controles (hoofdstuk 3), tussen 2 tijdspunten (hoofdstuk 
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4) en tussen patiënten en controles van scans die gemaakt zijn in meerdere centra (hoofdstuk 5). 

In hoofdstuk 3 hebben we een filter methode toegepast die ervoor zorgt dat elk netwerk uit 
een vast aantal ‘kern’ verbindingen bestaat. Met deze filter methode minimaliseer je het risico 
dat verschillen tussen groepen worden veroorzaakt door verschillen in de ‘dichtheid’ van het 
netwerk, oftewel het aantal verbindingen. We toonden aan dat ook als de dichtheid van het 
netwerk constant wordt gehouden, patiënten met SVD nog steeds gemiddeld een zwakker 
netwerk hebben dan controles.

In hoofdstuk 4 hebben we een filter toegepast die het aantal vals-positieve verbindingen in 
het hersennetwerk vermindert door de meest zwakke verbindingen te verwijderen. We zagen 
na toepassing van deze filter inderdaad een verbetering van de reproduceerbaarheid van het 
hersennetwerk van gezonde jonge proefpersonen die op 2 tijdspunten waren gemeten (met een 
relatief kort tijdsinterval). Maar ook bij patiënten met SVD die over een langere perioden 2 keer 
waren gemeten waren de netwerken meer vergelijkbaar. Belangrijke hierbij is dat de gevoelig-
heid voor het detecteren van SVD-gerelateerde afwijkingen met deze methode werd behouden. 

Ten slotte hebben we in hoofdstuk 5 de filter methode uit hoofdstuk 4 gecombineerd met de 
RISH-harmonisatie methode om meer consistente hersennetwerken te genereren uit multicenter 
data. De resultaten lieten zien dat de combinatie van deze methoden het aantal vals-positieve 
verbindingen in het netwerk nog verder verminderd en meer consistente netwerken oplevert. 
Hierdoor is het mogelijk om nog nauwkeuriger afwijkingen aan het hersennetwerk in patiënten 
met SVD te detecteren. 

Samenvattend toont het werk in dit proefschrift aan de harmonisatie- en filter-methoden de 
technische validiteit van dMRI in SVD onderzoek verbeterd. De methoden maken het mogelijk 
om dMRI gegevens uit verschillende centra samen te voegen om zo de steekproefomvang te 
vergroten. Daarnaast verbetert de filter methode de nauwkeurigheid van hersennetwerken die 
op basis van dMRI scans worden gereconstrueerd. Deze resultaten maken de weg vrij voor 
robuuste grootschalige dMRI-netwerkanalyse in SVD.
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AAL - Automated anatomical labelling

ADNI – Alzheimer’s disease neuroimaging initiative

ANOVA – Analysis of variance

ANTs - Advanced Normalization Tools

BET – Brain extraction toolbox

CADASIL – Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leuko-
encephalopathy

CDR – Clinical dementia rating

ComBat – Combatting batch effects when combining batches of gene expression microarray data

CSD – Constrained spherical deconvolution

CSF – Cerebrospinal fluid

CVA – Cerebrovascular accident

dMRI – Diffusion magnetic resonance imaging

DTI – Diffusion tensor imaging  

DWI – Diffusion-weighted imaging

EDIs – Epidemiology of Dementia in Singapore

FA – Fractional anisotropy

FDR – False discovery rate

FLAIR – Fluid-attenuated inversion recovery

FMRIB – Functional Magnetic Resonance Imaging of the Brain

FN – False negative

FOD – Fibre orientation distribution

FP – False positive

FSL – Functional Magnetic Resonance Imaging of the Brain (FMRIB) software library

GE – Global efficiency

GLM – General linear model
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GM – Gray matter

GRAPPA - Generalized autocalibrating partial parallel acquisition

HCP – Human connectome project

ICC – Intraclass correlation coefficient

MD – Mean diffusivity

MMSE – Minimental state examination

MoCA - Montreal Cognitive Assessment

MRI – Magnetic resonance imaging

MST – Minimum spanning tree

NOS – Number of streamlines

PSMD – Peak width of skeletonized mean diffusivity

RISH – Rotation invariant spherical harmonic

ROI – Region of interest

SENSE – Sensitivity encoding

SH – Spherical harmonic

SL – Streamline length

STRIVE - Standards for Reporting Vascular Changes on Neuroimaging

SVD – Small vessel disease 

TBSS – Tract-based spatial statistics

TE – Echo time

TI – Inversion time

TIA - Transient ischemic attack

TR – Repetition time

WM – White matter

WMH – White matter hyperintensity
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