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Chapter 1

The Immiscibles

If we knew what it was we were doing, it would not be called

research, would it?

Albert Einstein, physicist

1.1 Theories of two-phase flow including interfacial

area

D
arcy’s law for multiphase flow assumes that the only driving forces for flow of

each fluid are the gravity and the gradient in fluid pressure. The resisting force

is assumed to be linearly proportional to the relative fluid velocity with respect to

the solid. This results in a linear relationship between the flow velocity and driving

forces. While these assumptions are reasonable for single-phase flow, one may ex-

pect many other factors to affect the balance of forces in the case of multiphase flow.

Among these are interfacial forces that influence the movement of phases and the

distribution of interfaces in the porous medium. In fact, through the application of

rational thermodynamics, Hassanizadeh and Gray (1990, 1993a) developed a theory

of two-phase flow in which interfacial areas were introduced as separate thermody-

namic entities, possessing mass, momentum, and energy. They derived momentum

balance equations not only for phases, but also for interfaces, and macroscale effects

of interfacial forces were explicitly included. They found that the driving forces for

the flow of a phase were the gradients of Gibbs free energy of the phase, plus grav-

ity. They showed that for the case of single-phase flow, the gradient of Gibbs free

energy reduces to the gradient of pressure. But, for the case of two-phase flow, be-

cause Gibbs free energy of a phase is a function of saturation and specific interfacial

area, as well as mass density, its gradient will lead to terms in addition to the pres-

sure gradient. They derived the following extended form of Darcy’s law in which

gradients of pressures, saturations and specific interfacial area appeared as driving

forces:

vα = −Kα

µα
·
(
∇Pα − ραg− Ψαa∇anw − ΨαS∇Sα

)
, α = w, n (1.1)
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where vα denotes the relative velocity of fluid phase α with respect to the solid. In

the rest of this work, without loss of generality, we assume that the solid phase is

rigid. Kα isα-phase permeability tensor,Ψαa andΨαS representmaterial properties,

g is the gravity vector, anw is the specific area of fluid-fluid interfaces (amount of

interfacial area per unit volume of the porous medium), Pα, ρα, Sα, and µα are

pressure, mass density, saturation, and viscosity of the α-phase. Superscripts w

and n designate wetting and nonwetting phases, respectively. Note that Kα is the

product of relative permeability coefficient and absolute permeability tensor. Thus,

it is considered to be a function of average saturation.

Hassanizadeh and Gray (1990, 1993a) also showed that the averagemotion of fluid-

fluid interfaces is due to a gradient in their Gibbs free energy, plus gravity. Again,

as Gibbs free energy of interfaces is a function of saturation and specific interfacial

area, the following equation for the average velocity of fluid-fluid interfaces was

obtained:

wnw = −Knw · [∇ (anwσnw) + Ψnw∇Sw] (1.2)

where the gravity term is neglected. In this equation, wnw denotes the relative

macroscopic velocity of fluid-fluid interfaceswith respect to the solid,Knw is perme-

ability tensor for nw-interfaces, Ψnw represents a material property, and σnw is the

macro-scale interfacial tension. These equations may be seen as the truly extended

forms of Darcy’s law, not only for a fluid phase but also for an interface. They must

be supplemented with the following equations of balance of volume for phase sat-

urations and specific interfacial area (assuming incompressible phases and constant

mass density for interfaces):

ϕ
∂Sα

∂t
+ ∇ · vα = 0, α = w, n (1.3)

∂anw

∂t
+ ∇ · (anwwnw) = Enw (1.4)

where ϕ is porosity, vα and wnw denote average velocities of α-phase and nw-

interfaces, respectively, and Enw is the net rate of production of nw-interfaces. It is

proposed that Enw should depend on saturation and its time rate of change (Niess-

ner and Hassanizadeh, 2008, Pop et al., 2009). Joekar-Niasar et al. (2010a) studied depen-

dence of Enw on dynamic parameters (viscosity ratio and different global pressure

difference) using a dynamic pore-network model. But, the size of the network was

almost oneREV and they assumed that the advective flux of specific interfacial area

was negligible. Here, the full equation in a long domain is analyzed.

Another central equation in theories of two-phase flow is the so-called capillary
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pressure-saturation relationship, which is commonly written as:

Pn − Pw = P c(Sw) (1.5)

In fact, there are two major assumptions in this equation: capillary pressure is a

function of wetting phase saturation only, and fluids pressure difference is equal

to capillary pressure (at all times and under all conditions). Regarding the first as-

sumption, it is known that capillary pressure-saturation relationship is not unique

and but a function of the history of fluids movements, even though it is obtained un-

der equilibrium conditions. This is probably because P c-Sw relationship depends

not only on the volume fraction of phases, but also on their microscale distribution

(Entov, 1980). In fact, one would expect capillary pressure to depend also on the

interfacial curvature and/or specific interfacial area. Hassanizadeh and Gray (1993b)

have suggested that the non-uniqueness in the capillary pressure-saturation rela-

tionship is indeed due to the absence of specific interfacial area in the capillarity

theory and they proposed the following equation for the macroscopic capillary pres-

sure:

P c(Sw) = P c(Sw, anw) (1.6)

A number of computational and experimental works have shown that under a wide

range of drainage and imbibition histories, P c-Sw-anw surfaces more or less coin-

cide. This means that the inclusion of anw leads to the removal or significant re-

duction of hysteresis in capillary pressure-saturation relationship. In other words,

a unique P c-Sw-anw surface may exist for all imbibition and drainage process (e.g.

Cheng et al., 2004, Joekar-Niasar et al., 2008, 2010b, Porter et al., 2009, Reeves and Celia,

1996).

Regarding the second assumption underlying Equation 1.5, it is now an estab-

lished fact that Pn − Pw is equal to capillary pressure but only under equilibrium

conditions (seeHassanizadeh et al., 2002, for an extended review of experimental evi-

dences). For non-equilibrium situations, the following equation for the difference in

fluid pressures has been suggested (Entov, 1980,Hassanizadeh and Gray, 1990, Kalay-

djian and Marle, 1987, Stauffer, 1978):

Pn − Pw = P c − τ
∂Sw

∂t
(1.7)

where τ , the non-equilibrium capillarity coefficient, is a material property that may

still be a function of saturation and specific interfacial area.

In particular the behaviour of Equations 1.1, 1.2, and 1.4 has not been investi-

gated in laboratorial works due to the technical limitations. Furthermore, contin-

uum models are not capable to give insights into the involved parameters and their
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dependencies. Among different pore-scale simulators, we have chosen dynamic

pore-network modelling due to its rather cheap computational costs that allows us

to simulate large domains. We will investigate Equation 1.6 extensively using quasi-

static pore-network models presented in Chapters 3, 4 and 5 for various porous me-

dia.

1.2 Pore-network models for two-phase flow

Pore-network models can be divided into quasi-static and dynamic ones.

Quasi-static pore-network models Quasi-static pore-network models have been

developed extensively since Fatt (1956) introduced them for modelling capillary

pressure-saturation (P c-Sw) curve. They have been used not only for theoretical

studies (see e.g. Dias and Payatakes, 1986a, Held and Celia, 2001, Reeves and Celia,

1996), but also for practical purposes for estimating or predicting characteristics

of soils and rocks (see e.g. Blunt et al., 2002, Piri and Blunt, 2005a,b, Valvatne and

Blunt, 2004). For example Blunt et al. (2002) have suggested that using appropriate

pore-scale physics combined with a geologically representative description of the

pore space, one can produce capillary pressure and relative permeability curves for

a given rock without actual measurements. Vogel (1997, 2000) and Vogel and Roth

(1998) have stated that, to have a predictive representative pore-network model, an

accurate translation of topology from the pore space geometry to a pore network is

essential. Information on topology of porous samples can be obtained from imag-

ing techniques such as X-ray tomography andmicro-tomography (see e.g.Al-Raoush

and Willson, 2005a,b,Coles et al., 1998,Culligan et al., 2004, 2006,Knackstedt et al., 2004,

Lindquist, 2002, Lindquist et al., 2000,Montemagno and Pyrak-Nolte, 1995,Wildenschild

et al., 2002), laser confocal microscopy (Fredrich et al., 1993, 1995,Montoto et al., 1995),

and serial sectioning imaging (Vogel, 1997). Translation of information from such

techniques to a pore-network model can be done in two different ways; statistically

representative models and topologically representative models. Statistically repre-

sentative models capture the statistical distribution of pore size and connectivity

and not the exact topology of the pores. They are usually in a structured lattice, and

pore-bodies and pore throat distributions are determined so that on a REV scale

they represent a real porous medium. In these statistically representative models,

information acquired from imaging techniques is used to construct a network of

pore bodies connected by pore throats. Pore bodies and pore throats are assigned

regular geometrical shapes amenable to simple flow analysis. This translation of

information, however, is not straight forward. Often many idealizations of the pore
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size, shape, and orientation are used. Topologically representative models are also

based on detailed data provided by imaging techniques that include connectivity,

position and orientation of pore bodies and pore throats. Thus more detailed sim-

ulations are possible using these topologically representative models. Therefore, it

is desirable to come up with an approach that transforms the real geometry of the

porous medium to a pore network with minimum loss of information, yet allows

the computation of distribution of fluids within the network in a fairly simple way.

Dynamic pore-networkmodels Among different computational methods for sim-

ulating transient behaviour of two-phase flow in porous media, dynamic pore-

network modelling has been used extensively as an upscaling tool as it is relatively

simple and computationally less demanding than the other computational meth-

ods. For example, Lattice Boltzmann (LB) method, which solves Navier-Stokes equa-

tion, is computationally too expensive and memory demanding compared with dy-

namic pore-network models, which usually solve a simplified form of the momen-

tum equation such as Stokes equation. For instance, Porter et al. (2009) have recently

used LB method to simulate air-water flow in glass beads with physical domain

size of less than 500 pores, which was discretized into 207 × 207 × 166 voxels. At

a flux of 0.00008 muts−1 (mass unit per time step), approximately 50,000 ts were

required to obtain only a 5% change in saturation, which took about 1.25 days to

run on four amd64 CPU (2.8 GHz) machines in parallel. Roughly speaking, for

their given specifications of domain and fluids, a full drainage simulation would

take more than 100 days with a single processor. In another study, Pan et al. (2004)

have stated that computational limitations are of great concern when applying LB

simulations for multiphase porous medium systems, even using large-scale parallel

computing. They could not afford to simulate domains with sizes close to an REV.

The advantage of Lattice Boltzmann method, however, is that it can solve equations

in an arbitrary pore space geometry and topology without simplification. Whereas,

in pore-network modelling, the porous medium should be idealized to some simple

geometries, such that essential features are adequately represented (Celia et al., 1995).

This idealization can lead to loss of geometrical and topological information. Also,

information on temporal changes within a single pore in pore-network models is

not as detailed as in Lattice Boltzmann simulations. Nevertheless, simplifications in

pore-network modelling allow us to simulate much larger domains and with much

less computational effort; this is a major advantage.

The first dynamic pore-network model reported in the literature was developed

by Koplik and Lasseter (1985) who simulated dynamics of two-phase imbibition pro-

cess in a two-dimensional unstructured pore-network model with circular cross sec-

tions. Later, several dynamic pore-network models were developed for various ap-
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plications, such as simulating two-phase drainage (see e.g. Aker et al., 1998a, Al-

Gharbi and Blunt, 2005,Dahle and Celia, 1999, Gielen et al., 2005,Nordhaug et al., 2003),

imbibition (see e.g. Hughes and Blunt, 2000, Koplik and Lasseter, 1985, Nguyen et al.,

2006, Thompson, 2002), evaporation (e.g. Prat, 2002), three-phase flow (see e.g. Pereira

et al., 1996) and ganglia movement (see e.g. Constantinides and Payatakes, 1996, Dias

and Payatakes, 1986a,b). Of notable significance have been the models developed by

Payatakes and co-workers (see e.g. Constantinides and Payatakes, 1996, Dias and Pay-

atakes, 1986a,b), which can simulate ganglia displacement.

Dynamics of two-phase flow during drainage has been studied in several works.

Aker et al. (1998a,b) and Van der Marck et al. (1997) studied pressure field evolution

with time for a range of viscosity ratios and capillary numbers during drainage.

Capillary number (Ca) is traditionally defined as the ratio of viscous forces of the

invading phase to capillary forces (µinvqinv

σnw ) and the viscosity ratio is the ratio of vis-

cosity of invading fluid to that of the receding fluid. Dahle and Celia (1999) developed

an IMPES-type algorithm to explicitly model the dynamics of fluid-fluid interfaces

and also pressure field evolution with time for favorable viscosity ratios. Singh and

Mohanty (2003) as well as Al-Gharbi and Blunt (2005) studied effect of capillary num-

ber on residual water saturation during drainage for constant injection rate at the

boundaries. They also investigated the fractional flow behaviour for different flow

rates as did Knudsen and Hansen (2002) andKnudsen et al. (2002). Mogensen and Stenby

(1998) developed an angular-shape pore-network model to study dynamics of im-

bibition under the effect of flow rate, viscosity ratio, aspect ratio, and coordination

number.

Thompson (2002) developed a dynamic pore network model to investigate imbi-

bition process in fibrous material for water-air system (favorable viscosity ratio). He

solved pressure fields for each phase separately, including local capillary pressure.

However, his model failed to simulate capillary-dominated conditions. Payatakes

and co-workers studied dynamics of oil ganglia as well as dependency of relative

permeabilities curves on the capillary number and viscosity ratio in several publica-

tions (Constantinides and Payatakes, 1991, 1996,Dias and Payatakes, 1986a,b, Payatakes,

1982).

1.3 Book outline

This book can be considered in three parts:

• Review of dynamic pore-network models (Chapter 2).

• Development and application of various quasi-static pore-network models to

analyze Equation 1.6 (Chapters 3,4,5).
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• Development and application of a dynamic pore-network model with differ-

ent geometries to analyze Equations 1.1-1.4 and 1.7(Chapters 6,7,8).

In Chapter 2 a comprehensive review of dynamic pore-network models for two-

phase flow is presented. This review surveys different aspects of the models such

as structure and geometry, computational algorithm, and applications. Dynamic

pore-network models have been employed for many applications, mostly to gain

insights into the physics of two-phase flow. They have been used for investigation

of the effect of dynamic conditions on trapping, saturation profile, capillary pressure

curve, relative permeability curve, disconnected phase displacement, dynamics of

fluid-fluid interfacial area, etc.

In Chapter 3, a hypothetical structured regular pore-networkmodel is developed

to investigate Equation 1.6. In this regard, primary drainage and imbibition curves

with many scanning drainage and imbibition curves are generated. The results are

used to produce two surfaces as anw = f(P c, Sw) for drainage and imbibition, sep-

arately. The hysteresis between these surfaces can show the validity of Equation 1.6.

This conjecture has been further investigated in Chapters 4 and 5.

In Chapter 4 a pore-network model for a high-porosity two-dimensional micro-

model is developed. For development of the model, a pixel-based distance trans-

form is employed to extract the medial pixels of the domain. Then P c-Sw curves

for primary drainage, scanning imbibition are produced to generate anw-P c-Sw sur-

faces.

Chapter 5 presents a new approach for generating a pore-network model for

granular media. This approach is based on the full recovery of shape-factor distri-

bution for a given medium. The cross sections are developed based on irregular

hyperbolic triangles or regular hyperbolic polygons. The curvature of cross section

boundary facilitates a continuous recovery of shape factor, which provides very ac-

curate representative pore network. The model has been validated against glass-

bead experiments. There is a very good agreement between P c-Sw and anw-Sw

curves resulted from simulations and the experiments for drainage and imbibition

processes. Finally, anw-P c-Sw surfaces resulted from drainage and imbibition simu-

lations are used to test the validity of Equation 1.6.

In Chapter 6 nonequilibrium effects in phase pressures difference (Equation 1.7),

interfacial area (Equation 1.6) and its production rate (Equation 1.4 excluding the

second term) have been analyzed. In this regard, a DYynamic POre-network SIm-

ulator for Two-phase flow (DYPOSIT) with cubic pore bodies and parallelepiped

pore throats is developed. Numerical schemes employed in the model provide nu-

merical stability of the model for unfavorable and favorable viscosity ratios as well

as very small and large capillary numbers. This is a new issues, which has not been

reported in the literature before.
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To increase the consistency between the geometry of the pore bodies in the DY-

POSITmodel and a real porous medium, geometry of pore bodies has been changed

to a truncated octahedron in Chapter 7. In this chapter, extensive simulations are

implemented to study dependence of nonequilibrium capillarity coefficients (τ in

Equation 1.7) on fluid viscosities (viscosity ratio and effective viscosity) as well as

flow process (i.e drainage, imbibition).

Chapter 8 is a long-domain drainage simulation using DYPOSIT with cubic pore

bodies. In this chapter we average the local information with a moving averaging

window in time and space to analyze the behaviour of coefficients given in Equa-

tions 1.1 and 1.2. This is the first attempt to study the behaviour of these coefficients.

Since the simulation domain is long enough, Equation 1.4 including its second term

has been studied. The upscaled information have been compared along the previous

studies or experiments.

Finally, Chapter 9 gives a short overview of the outcomes of each chapter.



Part I

Literature Review
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Chapter 2

Dynamics of Two-Phase Flow

One faces the future with one’s past.

Pearl S. Buck, Writer

Abstract

I
nthis literature survey, different aspects of dynamics of two-phase flow in porous media

are discussed. This review is based on the results of developed dynamic pore-network

models and their applications. Thus, those concepts of dynamics of two-phase systems

are addressed that have been already discussed in the previous studies. Since it is not al-

ways possible to study different aspects of laboratory experiments, dynamic pore-network

models developed to gain some insights into the process. This characteristic is the major

advantage of pore-network models, which gives a better understanding of the physics of

a process at pore scale as well as at the scale of representative elementary volume (REV).

Dynamic pore-network models have been reviewed under different classifications; struc-

ture, computational algorithm and local rules and applications.

2.1 Introduction

T
ogain a better insight into multiphase flow processes in porous media, vari-

ous theoretical, computational and experimental methodologies can be applied.

Despite the enormous value of experimental work, often it cannot be used to its full

potential due to several limitations such as complexity of processes, difficulty of

measuring certain quantities, uncertainty in results of measurements, etc. More-

over, experiments are commonly expensive and time-consuming. Thus, theoretical

and computational approaches can be used as complementary, and sometimes as

a substitute, to gain a more detailed understanding of processes. They can also be

used to aid with a more effective design of experiments (see e.g. Joekar-Niasar et al.,

2009).

In general, computationalmethods applied for studying two-phase flow systems

can be classified into conventional continuum-scale numerical models and pore-

scale models. In the latter approach, one attempts to represent pore-scale geometry
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and topology of the medium and to model pore-scale processes. Main advantage

of pore-scale models is the possibility to define local variables and simulate local

processes that lie at the base of continuum-scale observations and descriptions.

Pore-network modelling has been used extensively in a large variety of fields

such as hydrology, petroleum engineering, chemical engineering, mechanical engi-

neering, reservoir engineering, and physics, as an investigative tool to study macro-

scale and micro-scale processes in porous media (see reviews by Blunt, 2001, Celia

et al., 1995,Dullien, 1992).

Pore-scale models may be subdivided into five different groups: pore-network

models (e.g. Blunt et al., 2002, Fatt, 1956, Held and Celia, 2001, Joekar-Niasar et al.,

2008, 2009, Nordhaug et al., 2003, Payatakes, 1982, Payatakes et al., 1980, Reeves and

Celia, 1996, Valvatne and Blunt, 2004), lattice- Boltzmann models (e.g. Knutson et al.,

2001,Martys and Hagedorn, 2002), smoothed particle hydrodynamics approach (e.g.

Liu et al., 2006, Tartakovsky and Meakin, 2005), level-set models (e.g. Prodanović and

Bryant, 2006), and percolation models (e.g.Wilkinson, 1984). In this review, we focus

on pore-network models.

From the physical point of view, pore-network models can be divided into two

major classes: quasi-static pore-network models and dynamic pore-network mod-

els. Quasi-static pore-network models are used for studying systems under no-flow

conditions in multi-phase porous media. Dynamic pore-network models, which

are more complex, are used for studying transient phenomena in multi-phase flow

systems. Despite the fact that numerous dynamic pore-network models have been

proposed over the years, the quasi-static models have remained dominant, largely

because of computational tractability. In particular, the extreme nonlinearity at the

pore-scale causes severe problems of stability in dynamic pore-network models. In

spite of this fact, these models can be very efficient in investigation of dynamics of

multi-phase flow at pore-scale.

Dynamic pore-network models have been mostly developed for studying gen-

eral issues in dynamics of two-phase flow in porous media. But, they have been

used for specific applications too. For instance, Figus et al. (1999) and Prat (2007)

studied drying process in porous media using pore-network models. Also very few

studies of dynamics of three-phase flow in porous media exist (e.g. Pereira et al.,

1996) .

In this review, we introduce and discuss main aspects of dynamic pore-network

modelling, including computational formulations for two-phase flow simulations,

their advantages and disadvantages, network structures, geometrical and topologi-

cal properties. Furthermore, various applications of these models, which give new

insights into the physics of two-phase flow are discussed. These applications in-

clude effect of dynamic parameters on trapping, saturation profile, relative perme-



2.2. Quasi-static vs. dynamic pore-network models 13

ability curves, pressure field evolution, disconnected flow, etc.

2.2 Quasi-static vs. dynamic pore-network models

Under dynamic conditions in multi-phase flow, there is a competition between vis-

cous forces and capillary forces. To quantify this competition, a dimensionless num-

ber, called capillary number (Ca), is introduced. Capillary number is commonly

defined as the ratio of dynamic forces to capillary forces. This is, however, not a

suitable definition as such a number would decrease for increasing capillary effects!

This would be clearly counter intuitive as we should expect capillary effect to be

more important when capillary number is large. A more logical definition is to take

the ratio of capillary forces to viscous forces (see e.g. Manthey et al., 2008). Never-

theless, in order to keep the link to the previous works, we follow the traditional

definition, namely the ratio of viscous forces to capillary forces:

Ca =
µinv.qinv.

σnw
(2.1)

Here, µinv. [ML−1T−1] is viscosity of the invading phase, qinv.[LT
−1] is total Darcy

velocity (volume flowing per unit area per unit time) of the invading phase and

σnw is the interfacial tension [MT−2]. If Ca is zero or very small, capillary forces

dominate. For studying capillary-dominated flow, invasion-percolation models and

quasi-static pore-network models have been used extensively. These models are

based on the fact that the displacement of fluids is controlled by entry capillary

pressure of individual pores. Quasi-static pore-network models can simulate equi-

librium states of drainage and imbibition processes only. Flow conditions between

equilibrium states are not modelled. For these models to be applicable, it is essential

to remain close to equilibrium. Therefore, incremental changes in global pressure

differences should be applied to go from one equilibrium to another equilibrium

state. The comparison between quasi-static pore-network models and experiments

show that these models can be used successfully for predictive purposes (e.g. Blunt

et al., 2002, Joekar-Niasar et al., 2009, Lerdahl et al., 2000,Øren et al., 1998).

Under dynamic conditions, both viscous and capillary forces have to be included

at the pore scale. Invasion at the pore-scale is determined by the entry capillary pres-

sure of network elements (e.g. pore throats) and time-rate of invasion is determined

by local viscous and capillary forces. As a result, dynamic models require much

more complicated coding, robust solutions methods, and efficient algorithms. Prob-

lems of numerical convergence and instabilities may cause major difficulties. Also,

due to the highly non-linear nature of the coupling between viscous forces and cap-



14 2. Dynamics of Two-Phase Flow

illary forces, simulations are much more time-consuming and memory-demanding

(Al-Gharbi and Blunt, 2005).

2.3 Model structure

Interstitial spaces in granular porousmedia are typically very irregular in shape and

size. At the pore-scale, there are larger void spaces as well as bottlenecks. To mimic

the geometrical features of these interstitial spaces, pore-network models typically

consist of pore bodies (larger voids) connected to each other by pore throats (narrow

voids). However, the geometry of void spaces is not the only important factor to be

considered in a representing a porous medium. Topology of soil (i.e. how voids are

connected to each other) is another important parameter that should be considered

in the generation of networks.

2.3.1 Network topology

The simplest network structure is a two-dimensional or three-dimensional lattice

with uniform spacing; we refer to this as a uniform lattice network. In such a network,

pore bodies are located at the lattice nodes, which are all equally spaced, and pore

throats are lined up along the lattice coordinates. The number of pore throats con-

nected to a pore body is called coordination number. In a uniform lattice network,

the coordination number is equal to four, for a two-dimensional network, and six,

for a three-dimensional network. In a real porous medium, the centers of large pore

spaces are not located on lattice points. Also, the number of pore throats connected

to large pores is not the same for all pores. Therefore, unstructured pore-network

models have been developed to mimic this feature of a real porous medium.

Based on these two characteristics of topology (i.e. center of void spaces and co-

ordination number), pore-network models can be classified into four groups: lattice

isotropic, lattice anisotropic, unstructured isotropic, and unstructured anisotropic

networks. Up to now, most dynamic pore-networkmodels have had lattice isotropic

structures with a uniform coordination number. Also, almost all dynamic pore-

network models, except those developed by King (1987), Blunt and King (1991) and

Koplik and Lasseter (1985), have had lattice structures, i.e centers of the pore bodies

are located in a lattice frame work. King (1987) and Blunt and King (1991) devel-

oped unstructured isotropic networks, and only in models developed by Koplik and

Lasseter (1985), and Mogensen and Stenby (1998) coordination number was variable.

Mogensen and Stenby (1998) developed amodel with a variable coordination number

up to a maximum of 26. Geostatistically equivalent networks, which are developed

based on topological and geometrical data can be structured anisotropic (e.g. Raoof
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Figure 2.1: Various cross-sectional shapes used for pore throats in pore-network models

and Hassanizadeh, 2009) or unstructured and anisotropic. However, they have not be

used for dynamic simulation of two-phase flow.

2.3.2 Network geometry

Network geometry is related to the geometrical shape of pore bodies and also cross

sections of pore throats. Commonly, pore bodies are assumed to be cubic or spheri-

cal in shape. Exceptionally Joekar-Niasar and Hassanizadeh (2010) presented the pore

bodies as truncated octahedrons. For pore throats, however, a variety of geomet-

rical shapes for the cross sections have been considered, as shown in Figure 2.1.

Using such a variety of cross sections for pore throats is because of two facts. First,

some pore-network models have been developed for simulating specific experi-

ments, generally micro-model experiments (e.g. Van der Marck et al., 1997). Second,

an angular cross section allows for the existence of corner flow along the edges. This

feature can allow simulating simultaneous flow of two phases within a pore throat.

Obviously, corner flow in a circular cross section is not possible. In a real porous

medium, the wetting phase usually fills the corners and grooves, and the corner

flow has a significant effect on flow mechanism at pore-scale especially during im-

bibition. Existence of corner flow will allow phase continuity for the two fluids in

a pore throat. Thus, the governing equation for the pressure field will be different

from that for circular cross sections.

Many of dynamic pore-network models have pore throats with circular cross

sections (e.g. Dias and Payatakes, 1986a,b, Koplik and Lasseter, 1985), but there are few

models with angular cross sections such as Al-Gharbi and Blunt (2005) who have

assumed triangular cross sections. Also, Hughes and Blunt (2000), Joekar-Niasar et al.

(2010a),Mogensen and Stenby (1998), Singh and Mohanty (2003) have used cubic pore

bodies, and parallelepiped pore throats.

There are some other pore-network models, which do not explicitly consider

pore bodies and pore throats. In these models, it is assumed that pore elements have

varying cross sections; the narrowest part is located in the middle and it diverges

towards both ends, which may be considered to play the role of a pore body (e.g.



16 2. Dynamics of Two-Phase Flow

Aker et al., 1998a,b, Al-Gharbi and Blunt, 2005, Knudsen and Hansen, 2002, Knudsen

et al., 2002, Valvanides et al., 1998). But, no specific geometry or configuration has

been assumed at the connection point of these pore elements. In this paper, these

pore elements are referred to as “composite pores”. Another important geometrical

parameter is the ratio of pore body diameter to pore throat diameter, referred to

as ”aspect ratio”. This parameter plays an important role in snap-off, which can

influence trapping during imbibition.

2.4 Computational algorithms

Continuum-scale equations of two-phase flow in porous media are usually solved

for the pressure and the saturation of wetting or nonwetting phases. Ignoring grav-

ity effect, the following system of equations for a rigid porous medium and incom-

pressible immiscible nonreactive fluids should be solved:

φ
∂Sα

∂t
= −∇ · uα, α = n,w

uα = − 1

µα
kαK∇Pα, α = n,w

Sw + Sn = 1

P c = Pn − Pw = f(Sw) (2.2)

where, superscripts n and w denote nonwetting and wetting phases, respectively. φ

is the porosity, µα is the viscosity of phase α, Sα is saturation of phase α, uα is the

velocity of phase α, K is the intrinsic permeability tensor, kα is the relative perme-

ability of phase α, Pα is the pressure of phase α, P c is the capillary pressure, and

superscripts w and n refer to the wetting and nonwetting phases, respectively. Ob-

viously, these equations do not apply at the pore scale. A different, but somewhat

similar, set of equations need to be formulated at the pore scale. The form of these

equations depends on how the fluid pressure fields are handled. Two general ap-

proaches exist: single-pressure and two-pressure algorithms, which are described

in detail below.

2.4.1 Single-pressure algorithm

In this algorithm, regardless of the occupancy of pore bodies by the two fluids, a

single fluid pressure is assigned to each pore body. This single-pressure algorithm

is generally based on one of following three assumptions:

i) It is assumed that each pore body or pore throat can be occupied by only one
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fluid at any given time. This is generally applied to networks with circular cross

sections (e.g. Aker et al., 1998a,b, Van der Marck et al., 1997).

ii) It is assumed that both fluids can be present within a pore body but not within

a pore throat. Also, a major assumption is made that the local capillary pressure in

pore bodies is negligible. Therefore, to each pore a single pressure is assigned (e.g.

Gielen et al., 2005).

iii) It is assumed that pore bodies and pore throats may be occupied by the both

fluids. But then, an equivalent fluid is defined; with an equivalent single pressure

assigned to each pore body and an equivalent conductivity assigned to each pore

throat (e.g. Al-Gharbi and Blunt, 2005,Mogensen and Stenby, 1998).

In all three cases, the volumetric fluxes through pore throats is calculated by

means of Washburn equation. The complete system of the equations using single-

pressure algorithm may be written as follows for a pore body i connected to an

other pore body j by a pore throat ij:

Vi
∂Sw

i

∂t
+

Ni∑

j=1

QijS
w
ij = 0

Qij = Kij∆ij (2.3)

Sw
ij + Sn

ij = 1

Sw
i + Sn

i = 1

∆ij = f(Pi, Pj , P
c
ij ,fluids configurations in pore throat ij)

P c
ij = f(rij) (2.4)

where, Qw
ij is the wetting volumetric flux from pore body i to pore body j, P c

ij[
ML−1T−2

]
is the entry capillary pressure of pore throat ij, rij is the radius of pore

throat ij, Kij

[
M−1L4T

]
is the equivalent hydraulic conductivity as a function of

the pore throat radius, pore throat length and fluid viscosities. An important issue

in this algorithm is how the equivalent pressure drop, ∆ij , is related to the capil-

lary forces in pore throat ij. Two different formulations are proposed by Koplik and

Lasseter (1985) and Van der Marck et al. (1997), discussed here.

Koplik and Lasseter (1985) considered various combinations of fluid occupancies

in pore bodies i and j, as shown in Table 2.1. They assumed that up to two interfaces

may exist in a pore throat ij. Based on the 8 possibilities considered in Table 2.1, a

general form is proposed, which covers all the options using saturations at pore

bodies.

Koplik and Lasseter (1985) have suggested the following expression for ∆ij and
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Table 2.1: Defining ∆ij (Equation 2.4) based on fluid configurations in two neighboring pore

bodies and a pore throat (Koplik and Lasseter, 1985)

Case Fluid occupancy Fluid occupancy ∆ij

in pore body i in pore body j
1 nonwetting nonwetting Pn

i − Pn
j

2 wetting wetting Pw
i − Pw

j

=Pn
i − Pn

j − P c
i + P c

j

3 nonwetting wetting Pn
i − Pw

j − P c
ij

=Pn
i − Pn

j + P c
j − P c

ij

4 wetting nonwetting Pw
i − Pn

j + P c
ij

=Pn
i − Pn

j − P c
i + P c

ij

5 meniscus at pore, nonwetting Pn
i − Pn

j

nonwetting
6 meniscus at pore, nonwetting Pw

i − Pn
j + P c

i

wetting =Pn
i − Pn

j

7 wetting meniscus at pore, Pw
i − Pn

j + P c
j

nonwetting =Pn
i − Pn

j − P c
i + P c

j

8 wetting meniscus at pore, Pw
i − Pw

j

wetting =Pn
i − Pn

j − P c
i + P c

j

General form ∆ij=P
n
i − Pn

j + Sw
i (P c

ij − P c
i ) − Sw

j (P c
ij − P c

j )

Figure 2.2: Schematic presentation of pore bodies i and j and pore throat ij and corresponding

capillary pressures and saturations. Based on the occupancy of the pore bodies and interface

location, pressure drop rules have been defined in Table 2.1.

have solved the system of Equations 2.4.

∆ij = Pn
i − Pn

j + Sw
i (P c

ij − P c
i ) − Sw

j (P c
ij − P c

j ), (2.5)

in which Sw
i and Sw

j are the wetting saturations in pore bodies i and j.

Van der Marck et al. (1997) modelled a system similar to what Koplik and Lasseter

(1985) used but for drainage simulations. They assumed pore throats to have a neg-

ligible volume compared with pore bodies. Therefore, the interface was not tracked
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within the pore throat (i.e. spontaneous filling of a pore throat at the moment of

invasion was assumed). Van der Marck et al. (1997) also assumed that up to two

interfaces can exist in a single pore throat, one at each end. They included the grav-

ity effects in the pore-network model. For a pore throat connecting pore body i to

pore body j, and filled with fluid density ρij [ML−3], a variable χij was defined as

follows:

χij = Pi − Pj − ρijg (xi − xj) (2.6)

One should note that since each pore throat can be filled simultaneously with only

one fluid, ρij is the density of the fluid filling pore throat ij. Assuming a dummy

variable x, Van der Marck et al. (1997) also defined a step-wise function, θ[x], as fol-

lows.

θ[x] =

{
1 if x > 0

0 otherwise
(2.7)

Considering definitions of χij and θ[x], ∆ij in Equation 2.4 has been defined for

different cases as shown in Table 2.2. The entry capillary pressure for pore throat ij

has been denoted by P c
eij

.

Table 2.2: Defining ∆ij based on fluid configurations in two neighboring pore bodies and a

pore throat (Van der Marck et al., 1997)

Fluid occupancy Fluid occupancy ∆ij

in pore body i in pore body j
nonwetting nonwetting χij

wetting wetting χij

nonwetting wetting θ
h

χij − P e
ij

i “

χij − P c
eij

”

+ θ [χij ] χij

wetting nonwetting θ
h

χji − P c
eij

i “

χij + P c
eij

”

+ θ [χij ] χij

meniscus at pore, meniscus at pore θ
h

χij − P c
eij

i “

χij − P c
eij

”

+ θ
h

χji − P c
eij

i “

χij + P c
eij

”

nonwetting nonwetting

A similar formulation was also used by Dias and Payatakes (1986a,b), Vizika et al.

(1994) and Knudsen et al. (2002) with some modifications. Application of ∆ij for-

mulations in Equation 2.4 results in a nonlinear system of equations that has been

solved with a combination of an over-relaxation and a dampened Newton-Raphson

methods.

Obviously, corner flow is not included in the originalWashburn equation (single-

pressure approach). Nevertheless, this equation has been modified and used for

angular cross sections, using the concept of equivalent phase described in situation

(iii) (page 17) above. The equivalent conductivity of a pore throat Keq
ij is defined

as the average of conductivities of phases using the rule of equivalent resistor for
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electrical resistor circuits. Thus, instead of solving for two pressure fields, one can

solve for a single pressure field (see e.g. Al-Gharbi and Blunt, 2005, Bravo et al., 2007,

Mogensen and Stenby, 1998).

The advantage of single-pressure approach is that it simplifies the problem sig-

nificantly, and it can reduce computational effort. But, it has the limitation that it

can not be used for angular cross sections properly. Al-Gharbi and Blunt (2005) have

shown that single-pressure approach in angular cross sections can lead to inconsis-

tent results in fluids occupancy in the network. If we use the same contact angle

in static and dynamic simulations, one would expect that during drainage the same

equilibrium fluid occupancy to be obtained from a quasi-static pore-network model

as well as a dynamic pore-network model for the same boundary conditions. How-

ever, Al-Gharbi and Blunt (2005) have shown that when employing the concept of

equivalent phase pressure, snapshots of fluid occupancy obtained from quasi-static

and dynamic pore-network models with the same boundary conditions are not the

same.

2.4.2 Two-pressure algorithm

In this algorithm, when a pore body is filled with two fluids, each fluid is assumed

to have its own pressure. Therefore, a local capillary pressure exists in a pore body.

The complete system of the equations for the two-pressure algorithmmay bewritten

as follows:

Vi
∂Sα

i

∂t
+

Ni∑

j=1

Qα
ij = 0, α = n,w

Qα
ij = Kα

ij

(
Pα

i − Pα
j

)
(2.8)

Sw
i + Sn

i = 1

P c
i = Pn

i − Pw
i = f(Sw

i )

Kα
ij = f(P c

ij), α = n,w (2.9)

where Kα
ij is the hydraulic conductivity for phase α, and Vi is the volume of pore

body i. This formulation has been used initially by Thompson (2002) to investigate

imbibition process in fibrous materials for water-air system (favorable viscosity ra-

tio). He solved pressure fields for each phase separately, including local capillary

pressure. The local capillary pressure in each pore body was defined through the

local interface curvature, corresponding to a given local saturation. This formula-

tion provides the possibility to include mechanisms related to the variations of local

capillary pressure (such as snap-off, counter-current flow) in simulations. In addi-



2.4. Computational algorithms 21

tion, numerical formulation of this approach is easier to implement compared with

the single-pressure approach. However, similar to Equations set 2.4, in capillary-

dominated regimes, this equation shows a highly nonlinear behavior that should be

treated carefully. Thompson (2002) stated that he could not find a good agreement

between results of a slow dynamic simulation and a quasi-static simulation. Also,

the model could not be used for very small capillary numbers. Later on, Joekar-

Niasar and Hassanizadeh (2010), Joekar-Niasar et al. (2010a) used two-pressure algo-

rithm with some numerical improvements in pressure solver. They investigated

non-equilibrium effects in capillary pressure and fluid-fluid interfacial area.

2.4.3 Numerical difficulties

When capillary forces are comparable with viscous forces, there is a competition be-

tween them that creates high nonlinearities in pressure field at pore scale. Handling

these nonlinearities in simulations is not trivial and equations should be treated

carefully, especially in capillary-dominated flow.

The numerical problem in dynamic pore-network modelling was reported for

the first time by Koplik and Lasseter (1985) who observed that saturations in two

neighboring pore bodies were oscillating between 1 and 0 continuously. They re-

ferred to this as “capillary pinning” problem. From Equations set 2.4, the volume

conservation equation for pore body i can be written as follows:

Ni∑

j=1

[Kij∆ij ] = 0

∆ij = Pn
i − Pn

j + Sw
i (P c

ij − P c
i ) − Sw

j (P c
ij − P c

j ) (2.10)

Writing this equations for all pore bodies results in a system of nonlinear equa-

tions as follows:

A(Sw
i , S

w
j )Pn = B(Sw

i , S
w
j , P

c
i , P

c
j , P

c
ij)

A(Sw
i , S

w
j ) = f(Kij(S

w
i , S

w
j )) (2.11)

in which, A is a bandedmatrix whose elements are functions of the pore throats con-

ductivities. In the above equation, Pn represent vectors of pressure at pore bodies

and B is a function of capillary pressure and saturation at pore bodies. As it can be

observed, Pn and B are both functions of local fluid configurations. A similar linear

system of equations is resulted fromEquations set 2.8. If a decoupled scheme is used

to solve the equations system (Equations set 2.4 or 2.8) first B should be calculated

for a given fluid configuration. Then, the pressure field should be solved. Knowing
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the pressure field (P), fluxes at each pore body will be calculated. Finally, saturation

can be updated explicitly.

The decoupled scheme does not lead to a serious problem for viscous-dominated

flow (i.e. large capillary numbers). At low flow rates, local capillary forces are com-

parable with viscous forces in which case A, B and consequently Pn will be highly

dependent on local fluid configurations. The decoupling procedure will cause oscil-

lation of saturations between two neighboring pores, which was refered to as “cap-

illary pinning” earlier.

To overcome this problem, Koplik and Lasseter (1985) linearized the system us-

ing a constrained set of equations. For linearization, they defined a criterion to

check whether local saturation in a pore body oscillated from 1 to 0 in three suc-

cessive iterations. If this condition occurred, a no-flow condition was assigned to

that pore body (dead-end pore body). Then, the pressure field was solved again. At

each time step, validity of the local no-flow pore body (and pore throat) was also

checked. They defined the validity criterion using the ∆ij function defined in Table

2.4.1. Assigning a no-flow restriction to a pore throat forces ∆ij to be equal to zero.

Thus, saturation of the no-flow pore body (Sw
j ) can be calculated in terms of the

other variables and parameters as follows: Sw
j =

P n
i −P n

j +Sw
i (P c

ij−P c
i )

P c
ij
−P c

j

. If Sw
j is not be-

tween 0 and 1 (> 1 or < 0), the no-flow criterion is violated and it will be removed.

Obviously, this approach for the linearization of the system is too complicated and

time-consuming, since in many iterations a linear equation should be solved to cal-

culate the pressure to check validity or invalidity of the no-flow criterion.

”Capillary pinning” problem was also observed in other pore-network models,

where no geometry was assigned to the connections of pore throats (i.e. no pore

bodies were defined) as in Dias and Payatakes (1986a), Aker et al. (1998a), Aker et al.

(1998b), and Knudsen et al. (2002). When an interface moving in a pore throat reaches

a connection point, new interfaces should be created in the connecting pore throats

(see Figure 2.3). So, when a meniscus reaches the end of a pore throat (position 1),

it is removed and three new menisci are created at position (δ) in the neighboring

pore throats (position 2). When a new interface is created, a capillary pressure is

assigned to it. If capillary forces are comparable with viscous forces, they can cause

the interface to move back and forth in successive time steps. To overcome this

problem, a part of all pore throat denoted by δ in Figure 2.3) is defined as the “pore

body region”. They forced the capillary pressure in a pore throat to change from

P c
ij to zero in the connection points of pore throat. This change of capillary pressure

occurs in the range shown by δ. This region prevents immediate disappearing of

menisci at position 2 and moving back to the initial position 1 in tubes (Figure 2.3).

Dias and Payatakes (1986a,b) have assumed to have a deltaij equal to 15% of the total

length of pore throat ij. Aker et al. (1998a,b) and Løvoll et al. (2005) assumed that δij
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Figure 2.3: The motion of the menisci at a node. The non-wetting fluid (shaded) reaches the

end of the tube (position 1) and moves a distance δ into the neighboring tubes (position 2). A

proper time is recorded due to the small movement(Aker et al., 1998a)

has a length equal to 1-5% of the length of pore throat ij.

In two-pressure algorithm, Joekar-Niasar and Hassanizadeh (2010), Joekar-Niasar

et al. (2010a) proposed a semi-implicit saturation update, instead of explicit satu-

ration update.

Vi
(Sw

i )k+1 − (Sw
i )k

∆t
−

Ni∑

j=1

(
Kn

ij

Ktot
ij

Qtot
ij +

Kw
ijK

n
ij

Ktot
ij

∂P c
ij

∂Sw
ij

(
(Sw

i )k+1 − (Sw
j )k+1

)
)

= 0 (2.12)

This formulation includes a term related to viscous forces and another term related

to capillary forces. They showed that it worked successfully for both unfavorable

and favorable viscosity ratios for very small and large capillary numbers. Based on

this formulation they could model very small capillary numbers for drainage and

they found a precise agreement between quasi-static and dynamic simulations.

2.4.4 Boundary conditions

Boundary conditions commonly considered in dynamic pore-network models are

either constant pressure (Dirichlet) or constant flux. Implementing constant pres-

sures at boundaries is numerically quite straight forward. However, since pore-

network models have been mostly used to study two-phase flow for prescribed

capillary numbers, constant flux boundary conditions have been applied more fre-

quently. Applying constant flow rate in pore-network modelling is not trivial. At

pore-scale, pressure field is sensitive to the local capillary pressure and this causes

small fluctuations in flow rate in successive time steps. The constant flux boundary

conditions has been implemented in various ways. A common approach is what
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Al-Gharbi and Blunt (2005) have used. They specified a constant injection rate at

the upstream boundary and a constant pressure at the downstream boundary. Al-

though at each time step, fluid configuration and consequently pressure field might

change, they assumed that the change in pressure drop required to maintain a con-

stant injection rate between two consecutive time steps is small. But, it seems that

this assumption can not be valid for their network where the lattice size is only 9×9

nodes. They selected a small time step to calculate the next pressure step and finally

the discharge rate. Vizika et al. (1994) considered very narrow (high-resistivity) pore

throats at the downstream boundary, and applied a constant flux at the upstream

boundary. Applying narrow pore throats at downstream boundary can regulate the

flux only during drainage. During imbibition, applying very fine pore throats at

downstream can increase probability of the snap-off at the boundary that will result

in large amount of trapped nonwetting fluid.

Aker et al. (1998b) implemented constant flux at boundaries, differently. Con-

sidering Washburn equation, they suggested that for two-phase flow, total flux (Q)

over the whole domain may be written in terms of the global pressure difference

and capillary pressure:

Q = f1(∆P ) + f2(P
c) (2.13)

where ∆P is the difference between the pressures at upstream and downstream

boundaries. Assuming a linear relationship, Aker et al. (1998b) suggested the follow-

ing equation:

Q(Sw) = A(Sw)∆P +B(Sw, P c) (2.14)

Clearly, A(Sw) and B(Sw, P c) depend on two-phase fluid configurations. Thus,

to calculate A(Sw) and B(Sw, P c) for a given fluid saturation (Sw), two equations

are required. For a given fluid configuration, two different pressure drops can be

imposed at the boundaries. Thus, two different flux rates can be calculated, which

both should be consistent with Equation 2.14. So, two equations are resulted. By

solving these two equations, A(Sw) and B(Sw, P c) can be calculated. Knowing pa-

rameters A(Sw) and B(Sw, P c), and knowing the desired injection rate (Q), proper

pressure drop can be estimated. Since, A(Sw) and B(Sw, P c) are dependent on the

fluid configuration, they should be calculated at each time step, with the change of

fluid configuration. This makes the problem computationally too expensive.

To investigate steady-state flow conditions, Constantinides and Payatakes (1996)

and later Knudsen and Hansen (2002),Knudsen et al. (2002) defined periodic boundary

conditions for saturation at inlet and outlet. It means that the amount of α−phase

that exit the domain, is introduced from the corresponding pore throat at inlet. Side

boundaries were assumed to be periodic in saturation and pressure field as well.

Thus, saturation of thewhole domain does not changewith time, and it is possible to
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simulate the steady-state conditions. However, to prevent simulation results biased

by initial conditions, simulations should be continued so that the average values of

pressure becomes constant.

2.4.5 Geometry and conductivity assumptions

Assumptions made on the pore-network structure can change complexity of com-

putations. In particular, assumptions are made regarding the volume as well as

resistance of pore elements. It is computationally very expensive to track the inter-

faces within pore throats and pore bodies. In many models (see e.g. Blunt and King,

1991, Blunt et al., 1992, Bravo et al., 2007, Gielen et al., 2004, 2005, Koplik and Lasseter,

1985, Touboul et al., 1987, Van der Marck et al., 1997), it is assumed that the volume

of pore throats is negligible compared to the volume of pore bodies. At the same

time, resistance of pore bodies has been considered to be negligible compared to

that of pore throats. In some models, since no specific geometry was assigned to

the connections (no pore body), volume and resistance were both assigned to the

pore throats (e.g. Aker et al., 1998a,b,Dahle and Celia, 1999, Knudsen and Hansen, 2002,

Knudsen et al., 2002, Løvoll et al., 2005). If a pore (body or throat) is considered to

have resistance and volume at the same time, the fluid-fluid interfaces should be

tracked inside that pore (body or throat), which is computationally expensive. The

only case, where volume and resistance were assigned to both pore bodies and pore

throats is the work of Mogensen and Stenby (1998). Using the harmonic averaging

they calculated the effective resistance of a pore throat and connected pore bodies.

However, the advantages of this model compared to the other ones have not been

discussed.

2.4.6 Local rules

In addition to the general equations required for simulating two-phase flow in a

pore-network model, some local rules should be defined too. General local rules

usually needed for the development of a pore-network model are as follows:

• Entry capillary pressure: Nowetting phase can invade a pore-throat only when

the local capillary pressure is larger than the entry capillary pressure of that

pore throat. Entry capillary pressure can be calculated by writing balance

of forces for a specific cross section (geometry) and based on contact angle

and viscosity ratio. The most common approach for calculating entry capil-

lary pressure is the MS-P (Mayer-Stowe-Princen) method suggested byMa et al.

(1996), Mayer and Stowe (1965), Princen (1969a,b, 1970), which is based on bal-

ance of forces for contact lines. Using this method, entry capillary pressures
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for different cross sections such as irregular triangular (Mason and Morrow,

1991), square (Fenwick and Blunt, 1998, Joekar-Niasar et al., 2009, 2010a), start-

shape (vanDijke and Sorbie, 2006), and hyperbolic polygonal (Joekar-Niasar et al.,

2010b) have been calculated.

• Local conductivities: Assuming Poiseuille equation to be valid in a pore ele-

ment, its conductivity can be determined in terms of its geometry (cross sec-

tion, length) and fluid property. In the case of pores with angular cross section,

the conductivity for each phase will be a function of local saturation and thus

local capillary pressure. Solving Navier-Stokes equation in pore throats with

triangular and square cross sections, some algebraic equations for conductivi-

ties have been suggested (Patzek and Silin, 2001,Ransohoff and Radke, 1988,Zhou

et al., 1997). As mentioned earlier, these equations are a function of local capil-

lary pressure, saturation, and pore geometry.

• Snap-off : The snap-off phenomenon occurs when the wetting phase pinches

off the nonwetting phase (Figure 2.5 and 2.6). This mechanismwas introduced

by Roof (1970) and similar to entry capillary pressure, it is a function of pore

geometry, contact angle, and interfacial tension. More detailed explanations

are given in the next section.

• Trapping: If the receding phase forms clusters that are disconnected from the

moving part (which is commonly connected to its boundary reservoir), it is

considered to be trapped. In a water-wet porous medium, trapping of the

nonwetting phase during imbibition is more important than during drainage

process, since the wetting phase can be connected to its boundary through the

corners. To find whether local disconnection affect larger groups of pores to

get disconnected from the boundary, a search algorithm should be formulated

(Al-Futaisi and Patzek, 2003).

2.5 Effective fluid and structural parameters

System parameters in two-phase flow are related to topology and geometry of pore-

network as well as fluid properties. These parameters include capillary number

(Ca), aspect ratio (pore body diameter/pore throat diameter), viscosity ratio (M

defined as a ratio of viscosity of invading fluid to receding one) and coordination

number. A viscosity ratio is referred to as ”favorable” if it is larger than one and as

”unfavorable” if it is smaller than one.

As defined by Equation 2.1, capillary number is the ratio of viscous forces to cap-

illary forces. In addition to capillary number, viscosity ratio is another important
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Figure 2.4: Schematic presentation of flow pattern under different capillary numbers (Ca)

and viscosity ratios (M ) based on Lenormand (1990), Lenormand et al. (1988), courtesy of Sinha

and Wang (2007)

system parameter, which controls flow pattern and trapping of fluids. Lenormand

et al. (1988) defined a phase diagram, which shows flow pattern under different cap-

illary numbers and viscosity ratios, as shown in Figure 2.4. For favorable viscosity

ratios, two flow patterns are possible depending on capillary number. If capillary

number is very small (Figure 2.4a) capillary fingering is observed; and if capillary

number is large enough (Figure 2.4c) a stable displacement front occurs. Generally,

if the capillary number is less than 10−6, the viscous pressure drop in a phase is

negligible and fluids movement is controlled by capillary forces. It means that, for

this regime, intrinsic properties of the medium (pore size distribution) control the

invasion. However, for unfavorable viscosity ratios, independent of how large the

viscous forces are, viscous fingering (Figure 2.4b) occurs and larger pressure gradi-

ent can not stabilize the invasion front.

Dynamic pore-network models have been employed to gain insight into the ef-

fects of system parameters on different aspects of two-phase flow dynamics at pore

scale and REV scale. In particular, the following issues have been studied: trapping

mechanisms, piston-like and snap-off displacement, capillarity effects under non-

equilibrium conditions, macroscopic front topology (invasion pattern), dynamics of

interfacial area, dependencies of relative permeability, and ganglia movement.
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2.6 Trapping mechanism

As shown in several studies (e.g.Dias and Payatakes, 1986a,b,Hughes and Blunt, 2000,

Mogensen and Stenby, 1998,Vizika et al., 1994) capillary number, viscosity ratio, aspect

ratio, and contact angle have significant impact on displacement mechanism and

consequently on residual (trapped) saturation of the receding phase.

2.6.1 Piston-like movement vs. snap-off

Generally, there are twomechanisms that regulate fluids displacement; snap-off and

piston-like displacement. The phenomenon in which wetting phase in the corners

causes the nonwetting phase in the middle of pore throat to become locally dis-

connected, is referred to as snap-off. Snap-off can occur during both drainage and

imbibition.

During drainage, when the nonwetting phase saturation in a pore body in-

creases, the local capillary pressure in that pore body builds up. It continues until

it can invade a pore throat (Figure 2.5a). When invasion occurs, if the nonwetting

phase can not fill the next pore body (Figure 2.5b), it will be snapped-off by the

wetting phase, which remains in the pore throat. After snap-off, there will be a dis-

connected blob of non-wetting phase in the second pore body (Figure 2.5c). Then,

after capillary pressure builds up further in the first pore body, the nonwetting phase

will invade the pore throat again. If the nonwetting phase does not fill up the second

pore body, it will get disconnected again. This process continues intermittently until

the second pore body is filled up and the nonwetting phase in both pore bodies can

stay connected without snap-off.

During imbibition, the wetting phase will first fill small pores, crevices, and

grooves. If there is already wetting fluid in the porous medium, the wetting phase

tends to flow through the films already present in the corners. Thus, a swelling of

the wetting film during imbibition will happen (Figure 2.6b). As the injection of the

wetting fluid continues, the filling grows so that eventually the wetting fluid is able

to fill the pore. This “snap-off ”or “choke-off” mechanism was proposed for the first

time by Roof (1970).

If the invading fluid can completely sweep the receding fluid in a pore element,

the displacement is referred to as piston-like movement. However as snap-off is re-

lated to the ability of wetting phase to chock off the non-wetting phase, it is more

important during imbibition compared to drainage. In general, the larger the as-

pect ratio is, the higher the possibility of snap-off is. As explained before, snap-off

effect is significant during imbibition, which causes trapping of a part of the non-

wetting phase. If the capillary number is very small, snap-off is dominant and with
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Figure 2.5: Schematic presentation of snap-off sequence during drainage.

the increase of capillary number, the possibility of occurrence decreases. Using a

pore-network model Mogensen and Stenby (1998) found that for capillary numbers

between 10−8 to 10−7, there was a transition from snap-off movement to piston-

like movement. As Blunt et al. (1992) have stated, snap-off can happen only when

a piston-like movement is topologically impossible. For instance, Joekar-Niasar et al.

(2009) did not observe any snap-off in amicro-model experiment even for very small

capillary numbers due to small aspect ratio (relatively large pore throats) and high

porosity of the domain.

2.6.2 Effect of contact angle on trapping

Contact angle can influence the possibility of snap-off especially during imbibition.

Hughes and Blunt (2000) simulated the effect of flow rate and contact angle on snap-

off and piston-like movement using a pore-network model. They showed that with

the decrease of contact angle, possibility of snap-off increases. Thus, more discon-

nection of nonwetting phase would happen and consequently more trapping of

nonwetting phase could be resulted (Figure 2.7). As they have shown, snap-off can

increase trapped oil saturation significantly; more than 50% of pore throats in their

simulation were affected by snap-off when the flow rate was very low and contact

angle was zero.

Constantinides and Payatakes (2000) modelled the effect of wetting films on snap-

off during imbibition using a pore-network model. Their simulations showed that
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Figure 2.6: Schematic presentation of snap-off sequence during imbibition. With the decrease

of local capillary pressure, the wetting phase in the corners of a pore throat swell till snap-off

occurs

Figure 2.7: Effect of capillary number and contact angle on residual nonwetting saturation

(Hughes and Blunt, 2000)

the wetting film could cause significant disconnection and entrapment of nonwet-

ting phase during imbibition. This was specially so when contact angle as well as

capillary number were small for unfavorable viscosity ratios.
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2.6.3 Effect of topology on trapping

As explained earlier, capillary number and viscosity ratio are the main parameters

that control the invasion mechanism and trapping. However, under some condi-

tions, porousmedia topology and geometry can be so important that could suppress

effect of dynamic parameters. For instance, in micromodel experiments, Joekar-

Niasar et al. (2009) observed zero snap-off and consequently zero residual nonwet-

ting phase during imbibition. They did experiments with nitrogen and decane in a

two-dimensional micro-model with 68-72% porosity and very small aspect ratio.

As mentioned earlier, the main characteristics of porous media are coordination

number and aspect ratio. Some researchers have looked into the effect of struc-

tural simplification of porous media on the qualitative results from pore-network

models. Mogensen and Stenby (1998) investigated the effect of coordination number

and aspect ratio on the residual nonwetting saturation (imbibition), using a pore-

network model, which had variable coordination numbers up to 26. They found

that, for high capillary numbers, effect of coordination number on residual nonwet-

ting saturation is minor compared to the aspect ratio, contact angle, and capillary

number. However, for small capillary numbers, where snap-off movement may be

more dominant than piston-like movement, effect of coordination number is signif-

icant. For example, for Ca = 10−6, with the decrease of coordination number from 4

to 3 in a 40×40 two-dimensional network, residual nonwetting saturation increased

from 13.3% to 29.4%. However, in general, effect of contact angle, aspect ratio and

capillary number on residual nonwetting saturation compared with coordination

number is more significant. Aspect ratio, which illustrates contrast between pore

body and pore throat size distributions, can magnify the response of the system to

the dynamic parameters under different conditions. For instance, there is a tran-

sition zone between snap-off-dominated and piston-dominated flow, as shown in

Figure 2.8. For large aspect ratios, the change of behavior from snap-off-dominated

to piston-like dominated zone is more abrupt than small aspect ratios.

In another study, Chaouche et al. (1994) studied the effect of heterogeneity (by

increasing the variance of pore sizes) on saturation distribution during drainage.

They compared results of continuum model and pore-network model with their

experiments. They did not find a good agreement between continuum and pore-

network model results, which might be due to the small size of their pore-network

model. Their model was based on the algorithm by Blunt and King (1991) for a two-

dimensional network. Capillary number in the pore-networkmodel varied between

1.5×10−6 and 1.5×10−3, and three viscosity ratios were selected equal to 0.1, 1, and

10. The nonwetting saturation rose as the low permeable region was approached.

The nonwetting fluid saturation decreased substantially as the low permeable re-
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Figure 2.8: Effect of aspect ratio, contact angle, and capillary number on the amount of wet-

ting fluid accumulating in the corners, Z = 6 (Mogensen and Stenby, 1998).

gion was entered. Under favorable viscosity ratios during drainage, homogeneous

displacement was compact in all regions (low and hight permeability). Thus, high

saturation values and high sweeping efficiency was resulted. Variation of satura-

tion in highly permeable region (with small capillarity effect) was insignificant. In

contrast, for unfavorable viscosity ratio, displacement was much less efficient and

heterogeneity effects were quite pronounced in the saturation profile.

2.6.4 Effect of Ca and M on trapping

Many researchers have focused on the effect of dynamic parameters - capillary num-

ber and viscosity ratio - on residual oil saturation during imbibition. Koplik and Las-

seter (1985) simulated the imbibition process with viscosity ratio equal to one. They

showed that capillary number and viscosity ratio significantly influence the fluids

distribution during imbibition. They studied the distribution of blob sizes remained

in the pore network at the end of the imbibition experiment for different capillary

numbers. They investigated two different aspects of the trapped blobs in their sim-

ulations. With the increase of capillary number, the size of trapped blobs decreased,

but the number of trapped blobs increased. This is because viscous forces tends to

fragment residual oil into small parts. Under low capillary number conditions, the

size of trapped blobs got larger, but number of trapped blobs decreased compared

to high capillary number conditions.

Blunt and King (1991) studied distribution of nonwetting phase-filled pores at

breakthrough during drainage for different viscosity ratios. They showed that when

capillary number was high, a uniform distribution of filled pores was resulted. But

at low capillary numbers, only large pores were invaded. This effect has been illus-

trated in Figure 2.9 by showing number of pore throats filled with the nonwetting
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Figure 2.9: Number of pore throats filled with the nonwetting fluid versus the radii of pore

throats for M = 0.1. Crosses Ca = 0; triangles Ca = 0.5, squares Ca = ∞ (zero entry

capillary pressure). Notice that for Ca = 0, none of the pore throats with entry capillary

pressure larger than the percolation threshold are filled (Blunt and King, 1991).

fluid versus radius of pore throats. The horizonal curve with square symbol shows

that at very large capillary number (where only viscous forces are important), pore

throat occupancy for different pore throat radii is constant. But, if only capillary

forces are dominant (Ca = 0), large pore throats are filled (curve with cross sym-

bols). For an intermediate capillary number (triangle symbols), large pore throats

are more probable to be filled by the nonwetting fluid and this probability decreases

with decrease of pore throat radii. This is similar to the conclusion by Koplik and

Lasseter (1985); at low capillary number, there is more possibility for trapping and

larger blobs are expected.

Dias and Payatakes (1986a), Vizika et al. (1994), Blunt and Scher (1995), Mogensen

and Stenby (1998),Hughes and Blunt (2000), and DiCarlo (2006) have also shown that

during imbibition, with the increase of capillary number and viscosity ratio, less

trapping of the non-wetting phase (oil) during imbibition would happen. It is due

to the suppression of snap-off in high flow rates. Dias and Payatakes (1986a) showed

the effect of capillary number on residual oil saturation for different viscosity ratios

(Figure 2.10). It should be noted that κ in Figure 2.10 is the inverse ofM . Thus, with

increase of κ,M will decrease. As it can be seen, during imbibition, residual oil satu-

ration remains virtually constant (around 50%) for smaller capillary numbers. From

Ca ≈ 10−5, it starts to decrease drastically with increasing Ca. For viscosity ratios

smaller than 1 (unfavorable conditions), residual oil saturation remains constant up

to Ca ≤ 10−7 and in range of 10−7 ≤ Ca ≤ 5 × 10−5 it increases slightly. Then, it
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Figure 2.10: Residual oil saturation (Sor) versus the capillary number, Ca, for imbibition

simulation on a 15×30 network for various values of inverse viscosity ratio (κ = 1/M )(Dias

and Payatakes, 1986a).

decreases rapidly for Ca ≥ 10−4. This figure shows that the effect of capillary num-

ber on residual saturation decreases with decrease of viscosity ratio (M ). Hashemi

et al. (1999) and Hughes and Blunt (2000) presented a curve qualitatively similar to

Figure 2.10.

Vizika et al. (1994) investigated the effect of viscosity ratio in more details for

different capillary numbers using three-dimensional pore-network models and also

micro-model experiments. They concluded that the viscosity ratio affects the resid-

ual oil saturation during imbibition even at low Ca. But when the capillary forces

decrease (for example with increase of contact angle), effect of viscosity ratio on

residual oil saturation is less pronounced. Their interpretation is that local pressure

gradients, which are created by the advance of a single meniscus or a wetting film,

may be sufficiently large to make viscous stresses locally important, even if the local

overall flow rate is very small. The gradual accumulation of local viscous effects

may lead to substantial macroscopic effects.

Although, due to the industrial applications in reservoir engineering, residual

nonwetting phase saturation is generally of more interest, some researchers have

also investigated the trapped wetting phase during drainage. Singh and Mohanty

(2003), and Al-Gharbi and Blunt (2005) have studied residual water saturation dur-

ing drainage for constant flow rates. Singh andMohanty (2003) showed that in almost

all cases of drainage (including high and low capillary numbers, favorable and un-
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Figure 2.11: Capillary desaturation curves for different viscosity ratios, due to Singh and

Mohanty (2003). Each data point represents an average value over three realizations. Data

from Lefebvre du Prey (1973) are also plotted for comparison. It should be noted that κ =
µreceding

µinvading
.

favorable viscosity ratios), an increase of viscous forces (large Ca) can lead to a de-

crease of residual water saturation. However, as it can be observed in Figure 2.11,

for unfavorable viscosity ratio, it does not monotonically decrease. They conjecture

that the peak values are related to the change of behavior from viscosity fingering

to capillary fingering. It should be noted that κ is defined as the ratio of receding

phase viscosity to invading phase viscosity.

2.7 Pressure field development

To understand complexities in multi-phase flow, it is essential to investigate pres-

sure field evolution as well as capillarity effects under non-equilibrium conditions.

This will help to improve the extended Darcy’s law for multiphase flow. Van der

Marck et al. (1997), Aker et al. (1998a,b), Gielen et al. (2004, 2005), Joekar-Niasar et al.

(2010a) studied temporal evolution of pressure field using pore-network models in

order to gain a better insight into macroscopic pressure field behavior. They in-

vestigated pressure field evolution under the effect of viscosity ratio and capillary

number in drainage simulations.

2.7.1 Boundary pressure difference vs. capillary pressure

Van der Marck et al. (1997) have compared pore-network model results with micro-

model experiments implemented. These experiments, performed in one-, two- and

three-layer micro-models, were designed to investigate the effect of gravity for two

different viscosity ratios; equal to one and larger than one. Theymeasured pressures
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a) b)

Figure 2.12: An experimental pressure curve for drainage experiment showing pressure drop

after breakthrough a) High conductivity network, M = 12 b) Low conductivity network

M = 1 (Van der Marck et al., 1997)

at the inlet and outlet during drainage experiment under constant flow rate. Agree-

ment between their model results and experimental results decreased for viscosity

ratios larger than one and at high capillary numbers.

Obviously, with invasion of nonwetting phase forM > 1, the pressure difference

between inlet and outlet increased due to increasing viscous energy dissipation, as

shown in Figure 2.12. At first, the pressure should increased to reach the entry

pressure of the model. After nonwetting phase invaded the model, pressure built

up slowly as more and more nonwetting fluid (with higher viscosity) was injected.

Capillary blockage of channels and the resulting decrease in the flow conductance

of the micro-model were the main reason for the pressure buildup. However, after

breakthrough of the nonwetting fluid, pressure build-up changed dramatically, un-

der the influence of the outlet chamber. Van der Marck et al. (1997) had chosen a large

outlet chamber, which had a negligible influence on flow conductance and capillary

pressures. This had a disadvantage, viz., that the nonwetting phase that entered the

outlet chamber either remained connected or “snapped off”, which is readily influ-

enced by processes occurring outside the micro flow model that are hard to control.

They did not include these effects in their pore-network model. Thus, the simula-

tions results after breakthrough deviated from the experimental measurements. The

variation of pressure with time is shown in Figure (2.12). Aker et al. (1998a) inves-

tigated the effect of capillary forces for different viscosity ratios and capillary num-

bers using a two-dimensional pore-network model. They related the macroscopic

flux in two-phase flow to two separate terms related to viscous forces and capillary

forces. This formulation was selected in analogy to pore-scale Washburn equation

(Equation 2.4, and Table 2.1). In one-phase flow and ignoring the gravity effect, there
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is a linear relationship between the flux and global pressure drop (between the two

boundaries ∆P = Pi − Pj), written as Q = A∆P . But, in two-phase flow there is a

deviation between the fluxQ andA∆P , referred to asB in EquationQ = A∆P +B.

The origin of this different is the capillary pressure acting over the interfaces. They

assumed that the total flux (Q) had a linear relationship with the global pressure

drop plus the deviation created by the capillary forces; Q = A∆P + B. This linear

relationship can be written as:

∆P =
Q

A
− B

A
(2.15)

During drainage, new interfaces will be created with the invasion of nonwetting

phase. The interfaces can be categorized into two groups: ”cluster menisci”, sur-

rounding the trapped clusters of receding fluid, and the ”front menisci” located

at the front between the invading and receding fluids. Variation of capillary pres-

sure associated with theses interfaces can be different from each other. So, Aker

et al. (1998a) introduced two different capillary pressures; global capillary pressure

(P c
g ), which contributes to all menisci, and front capillary pressure (P c

f ), which is the

averaged capillary pressure associated with the front menisci. Based on the anal-

ogy between global pressure drop and pore-scale pressure drop, the second term in

Equation 2.15 was assumed to be equal to the global capillary pressure (P c
g ).

P c
g = −B

A
(2.16)

And, using simple arithmetic averaging, the front capillary pressure was given as:

P c
f =

1

N

N∑

i=1

|P c
i | (2.17)

Based on several drainage simulation they investigated trends of ∆P , A, and B

under different capillary numbers, and viscosity ratios.

Unfavorable viscosity ratio: First, they performed drainage simulations with un-

favorable viscosity ratio (M = 0.001) for different capillary numbers (3.5 × 10−4 to

1.1 × 10−2) and different sizes of network, so that they could observe capillary fin-

gering as well as viscous fingering. The largest network has 60 × 80 nodes. They

studied the trends of ∆P , global capillary pressure (P c
g ), and average front capillary

pressure (P c
f ).

With the invasion of nonwetting fluid (which had a smaller viscosity as M =

0.001), ∆P decreased. As Figure 2.13 shows, global capillary pressure (P c
g ) fluctu-
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Figure 2.13: Pressure fluctuations for M = 1.0 × 10−3 and Ca = 4.6 × 10−3 a)∆P b)P c
g c)

∆P − P c
g (Aker et al., 1998a).

ates around a mean value of about 1 × 103 dyn/cm2, which is about the average

threshold capillary pressure of the network, 2σnw

<r> . Here,< r > is the mean radius of

pore throats, equal to 0.4mm. The fluctuations of ∆P are highly due to fluctuations

in P c
g , as menisci invade into or retreat from tubes. This is clarified by plotting the

difference(∆P − P c
g ), which is presented as a smooth curve.

Figure 2.14 shows the variations of P c
g and P c

f for different capillary numbers, for

M = 0.001. The pressures are normalized by the average threshold capillary pres-

sure. Note that, in order to avoid overlap between the two curves at low capillary

numbers, the value of threshold capillary pressure (1000 dyn/cm2) was subtracted

from P c
g before normalization. As it can be observed, for small capillary numbers

less than 3.5×10−4, there is no significant difference between global capillary pres-

sure (P c
g ) and average front capillary pressure (P c

f ). However, this difference in-

creases with the increase of global capillary pressure. This is because the viscous

pressure gradient vanishes and capillary pressures of all menisci would become

equal to the difference between fluid pressures. Consequently, the global capillary

pressure reduces to that describing capillary fluctuations along the front: P c
f ≈ P c

g .

Therefore, for M ≪ 1 or at low injection rates, the effect of the clusters became

negligible, and P c
g reduces to the local capillary of the invading menisci along the

front.

Depending on the location of the menisci, their invasion mechanism can be dif-

ferent. The menisci in the uppermost fingertips are more likely to invade the next

pore throats compared to the menisci moving behind it. The latter menisci are

shielded by the moving fingertips causing their capillary pressures to be less than

the entry pressure needed to invade the pore throat. So, they only contribute to P c
f

with a constant value, and their average capillary pressure is almost constant over

time. However, those menisci located at the finger tips can vary with time and have
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Figure 2.14: a) P c
f and b) P c

g at four different capillary numbers for simulations with M =

0.001 and a lattice size of 25 × 35 nodes. The pressures were normalized using the average

threshold pressure of the tubes. Note that P c
g had been subtracted by 1000 dyn/cm2 before it

was normalized, in order to avoid overlap between the two curves at low capillary numbers.

The pressureswere normalized by 2σnw

<r>
. < r > is the mean radius of pore throats (Aker et al.,

1998a).

a time-dependent contribution to P c
f . Thus, for sufficiently large systems, the fluc-

tuations in P c
f will eventually die off when the number of menisci falling behind

becomes much larger than the menisci of the moving fingertips. Aker et al. (1998a)

did not show the evolution of A for unfavorable viscosity ratios.

Favorable viscosity ratio: When viscosity ratio is larger than one, pressure drop

increases with the invasion of high viscosity fluid. This pressure drop increases lin-

early at high flow rates but the linearity of the trend decreases if unstable displace-

ment develops. When the network is fully saturated with the wetting fluid, flux has

a linear relationship with pressure gradient. Aker et al. (1998a) introduced a pseudo-

hydraulic conductivity for the case of single-phase flow such thatQ = A0∆P . How-

ever, for a two-phase problem, used the formulaQ = A∆P +B, where, as explained

before, A and B are saturation dependent. They have determined variations of
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Figure 2.15: Evolution of pressure evolution at four different capillary numbers. Curves (a)

represent ∆P and curves (b) show P c
g as functions of time for simulations with M = 100

at low, intermediate, and high Ca. Curves A0/A are shown in the inset. Note that P c
g for

Ca = 4.2 × 10−3 and 7.5 × 10−4 has been reduced by 1000 dyn/cm2 to avoid overlap of the

curves. Vertical dashed lines indicate time at which front stabilizes, i.e. at that time front

width is equal to the saturation width (refer to page 43) (Aker et al., 1998a).

the ratio A0/A, ∆P , and P c
g with time, for four different capillary numbers and

M = 1.0 × 102. Results, plotted in 2.15, show that with the increase of nonwetting

phase saturation, A0/A increases (starting from 1). For small flow rates, where cap-

illary forces are dominant, the effect of viscous forces disappear and small A values

are resulted. Thus, ratio ofA0/A in fast flow is larger than that of slow flow. Initially,

P c
g should be negligible, since the domain is filled by one fluid. With the invasion

of the nonwetting phase, the effect of global capillary pressure on the total pressure

drop (∆P ) increases.
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2.7.2 Non-equilibrium capillarity effects

A central equation in theories of two-phase flow in porous media is the so-called

capillary pressure-saturation relationship, which is commonly written as:

Pn − Pw = P c(Sw) (2.18)

In fact, there are two major assumptions in this equation: capillary pressure is a

function of wetting phase saturation, and fluids pressure difference is equal to cap-

illary pressure (at all times and under all conditions). Regarding the second assump-

tion underlying (2.18), it is now an established fact that Pn−Pw is equal to capillary

pressure but only under equilibrium conditions (see Hassanizadeh et al., 2002, for an

extended review of experimental evidences). For non-equilibrium situations, the

following equation for the difference in fluid pressures has been suggested Stauffer

(1978), Kalaydjian and Marle (1987), and Hassanizadeh and Gray (1990):

Pn − Pw = P c − τ
∂Sw

∂t
(2.19)

where τ (ML−1T−1) is a material property that may still be a function of saturation.

This equation has been the subject of many studies in recent years, both experimen-

tally (Berentsen and Hassanizadeh, 2006, Bottero and Hassanizadeh, 2006, Hassanizadeh

et al., 2004,O’Carroll et al., 2005,Oung et al., 2005) and computationally, using a con-

tinuum model (see e.g. Das et al., 2006,Manthey et al., 2005) and pore-network mod-

els (see e.g. Dahle et al., 2005, Gielen et al., 2005, Joekar-Niasar and Hassanizadeh, 2010,

Joekar-Niasar et al., 2010a).

Gielen et al. (2004, 2005),Gielen (2007) developed a pore-network model based on

the model developed by Blunt and King (1991). They assumed that the capillary pres-

sure in pore bodies was negligible. Under Dirichlet boundary conditions, drainage

simulations were performed in a three-dimensional network model. They assumed

a viscosity ratio of 10; therefore a stable front was dominant in their simulations.

A network size of 30×30×40 pore bodies was found to satisfy the requirement of

a REV. Imposing different pressures at boundaries resulted in different time rate of

saturation change. They determined the intrinsic phase average pressure of each

phase (local pressure weighted by local saturation in pore bodies). The difference

between < Pn > − < Pw > was denoted by ∆P c. the resulting curves of ∆P c vs.

∂Sw/∂t at a given saturation (obtained for different boundary pressures) are shown

in Figure 2.16. As it can be observed, the curves are not parallel, indicating a depen-

dency of τ on wetting fluid saturation. All curves seem to pass through the origin

when extrapolated with a linear fit. The dynamic coefficient τ can then be evaluated

as the slope of the linearly fitted curves. The relationship between τ and saturation



42 2. Dynamics of Two-Phase Flow

Figure 2.16: Differences between dynamic and quasi-static capillary pressure vs. dSw/dt for

average wetting fluid saturations 0.3 through 0.9 (Gielen et al., 2004).

Figure 2.17: τ as a function of saturation for a 30×30×40 network (Gielen et al., 2004).

has been shown in Figure 2.17. It is evident that τ increases when fluid saturation

decreases.

Since the employed pore-network model had a simplified geometry (circular

cross section), many physical processes such as snap-off and capillary diffusion,

local counter-current flow could not be observed in simulations. In addition, all

simulations were for the case of M = 1 and 10, where stable front invasion oc-

curred. Joekar-Niasar et al. (2010a) investigated the dynamic effect during drainage

in pore-network with a angular cross sections for three different viscosity ratios

M = 10, 1, 0.1. They used the same procedure as Gielen et al. (2004) for the cal-
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Figure 2.18: τ as a function of saturation and viscosity ratio for a 35×35×35 network (Joekar-

Niasar et al., 2010a).

culation of the non-equilibrium capillary coefficient used. Figure 2.18 shows rela-

tionship between τ and saturation for a 35×35×35 network for different viscosity

ratios. As it can be observed, dynamic effect is not only a function of saturation but

also viscosity ratios, as found by Gielen (2007). Furthermore, it can be found that
∂τ

∂Sw is a function of viscosity ratio. For favorable viscosity ratios ∂τ
∂Sw < 0, while

for unfavorable viscosity ratio it is positive. Joekar-Niasar and Hassanizadeh (2010)

studied the variation of non-equilibrium capillarity coefficient under primary and

main drainage as well as main imbibition processes. Their results showed that vari-

ation of τ depends on viscosity ratio as well as effective viscosity. In the other word,

they found that dynamic effects can be originated frommacroscopic invasion mech-

anism. With shifting the topology of the front from stable front to the fingering, τ

value decreases. Although there is no doubt about the dynamic effects on pressure

field and its dependency on capillary pressure, magnitude of dynamic coefficient is

also a consequence of averaging the pressures. Although there are several averaging

methods for phase pressures, the most probable one is still an open question!

2.8 Macroscopic interface dynamics

As shown in Figure 2.4, depending on M and Ca, the invasion front can be clas-

sified into three different classes: capillary fingering, viscous fingering, and stable

displacement. Due to their versatility and rather inexpensive computational cost,

pore-network models have been used to investigate the macroscopic front topology.
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Figure 2.19: Viscous fingering invasion pattern for different randomness in porous media

structure. Left column shows modelling results for different randomness factor (λ) and

right column shows the experimental results in a two-dimensional micro-model. These two

columns should not be compared with each other quantitatively (Chen and Wilkinson, 1985).

Chen and Wilkinson (1985) investigated the effect of randomness of the porous

medium structure on viscous fingering using experimental and modelling ap-

proaches. Using a pore-network model with a single-pressure algorithm, they

showed that in a two-dimensional model, size of the fingers would also depend on

size distribution of pores. Radii of the poreswere generated in interval [1−λ, 1+λ]r,

where r is the mean radius and λ is a randomness factor changing from 0 to 1. In the

experiments andmodelling results, they observed that for a narrow size distribution

of the tubes (small λ), fingers formed almost ordered patterns and grew along the in-

jection direction (Figure 2.19a). But, for a wider range of distribution, fingers formed

in a chaotic fashion (Figure 2.19c). They compared their results of two-dimensional

drainage simulations qualitativelywith two-dimensional micro-model experiments.
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In those experiments oil was injected into the micro-model initially filled by glycerin

(M = 1
1200 ). Although there was no quantitative agreement between experiments

and model results, the effect of pore size randomness was visible in their results.

One of the interesting features of viscous fingering in multiphase flow is the

fractal behavior of the interface. Fractal dimension (D) as the major parameter has

been investigated using pore-network models. It is a statistical quantity that gives

an indication of how completely a fractal fills the space, as one zooms down to finer

and finer scales. The fractal dimension is:

D =
logN(l)

log l
(2.20)

in which l is the grid size and N(l) is the number of grids filled with the front. Chen

and Wilkinson (1985) found that fractal dimension in their two-dimensional simula-

tions was about 1.72. Later, King (1987) also used a pore-network model to investi-

gate the fractal behavior of fingering in a two-phase flow. He showed that viscous

fingering is a fractal phenomenon and the fractal dimension does not depend on the

disorder of porous medium structure. Instead, it is highly dependent on the viscos-

ity ratio; fractal dimension decreaseswith the increase of viscosity ratio. They found

the following formula by filling their simulations results:

D = 1 +
2

3

(
1 −M

1 +M

)2

(2.21)

More detailed pore-network simulations have been performed by Aker et al.

(1998a), Blunt and King (1991), Vizika et al. (1994),and Singh and Mohanty (2003).

Using a sigle-pressure dynamic pore-network model with circular cross sections,

Blunt and King (1990) studied fractal behavior of an invading phase in relation to

the structure spacing. Fractal dimension in their network increased from 1.82 in a

two-dimensional network to 2.44 in a three-dimensional network.

Results of a pore-network model by Dias and Payatakes (1986a) showed that al-

though the effect of capillary number on displacement is essential, but at high and

moderate Ca, the effect of viscosity ratio is more important, acting as a pivotal fac-

tor. This was also shown by Touboul et al. (1987). They showed that at large capil-

lary numbers (when viscous forces dominate the flow), depending on the viscosity

ratio, either viscous fingering or stable displacement would occur (Figure 2.4). If

the viscosity ratio is larger than one, stable displacement will occur as also shown

by Singh and Mohanty (2003) and DiCarlo (2006). Using a two-dimensional pore-

network model, Aker et al. (1998b) showed that atCa = 4.6×10−3 forM = 1.0×10−3

and 1.0 × 102, two different displacements can be observed. IfM < 1, at high capil-
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lary number, viscous fingering was observed, while forM > 1 stable displacement

was reported. With decreasing the flow rate, front moved from viscous fingering to

capillary fingering. For instance, for M = 0.1 at high flow rate, nonwetting front

was stable and compact. For very low flow rates, capillary fingering was observed.

Thus, one would expect to have less flooding efficiency for M < 1 compared with

the favorable conditions. Dias and Payatakes (1986a) showed that for unfavorable

viscosity ratio (M < 1), flooding efficiency begins to improve only for capillary

numbers larger than 5 × 10−4, and it is substantially inferior to the achieved values

withM > 1 with the same Ca.

Vizika et al. (1994) showed that at any flow rate, under unfavorable conditions,

micro-fingering can happen and cause macro-fingering. In addition, they found

that for favorable displacements (M > 1), the extent of micro-fingering decreased

with increasing Ca and for unfavorable displacements (M < 1), the extent of micro-

fingering increased slightly with increasing Ca for 10−6 ≤ Ca ≤ 10−5.

Another aspect of the macroscopic interface dynamics is related to the macro-

scopic interface velocity, which was studied by Nordhaug et al. (2003) and Joekar-

Niasar et al. (2010a). Nordhaug et al. (2003) studied interface movement in a three-

dimensional lattice pore-network model with circular cross sections using a single-

pressure algorithm. To save computational time and memory, they did not track

the menisci within pore throats (i.e. spontaneous pore throat filling was assumed).

They simulated stable and unstable displacement mechanisms during drainage un-

der Dirichlet boundary conditions (during simulation capillary number varied be-

tween 10−3 to 10−2) for three different viscosity ratios (M = 0.1, 1, 10).

They estimated interface velocity for stable displacement as well as viscous fin-

gering regime. Since it was assumed that the pore throats are filled spontaneously,

they could not calculate menisci velocity in the pore throats. However, they calcu-

lated the magnitude of a local velocity in pore bodies based on time-rate change of

local saturation, as follows:

‖vnw
i ‖ = lij

∆Sn
i

∆t
, ij : pore throat including the traveling interface (2.22)

in which, ‖vnw
i ‖ is the menisci velocity in pore body i, and lij denotes the length of

pore throat ij through which the entering interface travels plus the diameter of the

pore body i. To define the direction of the velocity, they averaged the directions of

total inflow and total outflow in pore body i. Equation 2.22 has a shortcoming in

definition; if more than one interface enter the pore throats connected to pore body

i, different fluxes will flow through the pore throats. Thus, the interface velocity in

the pore throats will be different, while Equation 2.22 uses
∆Sn

i

∆t for all pore throats

equally.
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Figure 2.20: Comparison between velocity of interface resulted frommodel and theory for a)

M = 10 b) M = 0.1 (Nordhaug et al., 2003).

To upscale the velocity from pore body to REV-scale, they averaged local veloci-

ties weighted with local interfacial area:

vnw =

∑#pb
i=1 a

nw
i vnw

i∑#pb
i=1 a

nw
i

(2.23)

In addition, they averaged fluid velocities weighted with local saturation. Since

it was not possible to compare their simulation results with experiments, they com-

pared the results with a simplified equation derived from thermodynamic theory

developed for multiphase flow in porous media by Hassanizadeh and Gray (1990,

1993a). They found that with including the trapped interfaces in the calculation

of total interfacial area, results of the simulation will underestimate the menisci

velocity compared with the thermodynamic-based equations. As expected, their

results were in better agreement with theory for stable displacement (M = 10) com-

pared with viscous fingering regime (M = 0.1) as shown in Figure 2.20. Nordhaug

et al. (2003) found that regardless of displacement regime, under constant pressure

boundaries, interface velocity decreased nonlinearly with decrease of wetting fluid

saturation during drainage; with the major drop in velocity happening in the satu-

ration range from 1.0 to 0.8. Qualitatively a similar behavior for average interface

velocity versus saturation was found by Lam and Horváth (2000) in pore-network

modelling of primary imbibition. Velocity of interfaces in the case of unfavorable

viscosity ratio were higher than the case of favorable viscosity ratio. In their model

there were some simplifications that might affect results significantly. For instance,

capillary diffusion through corner flow, local capillary pressures at pore bodies,

tracking of interface in pore throats were not included in the model. In another

study, Joekar-Niasar et al. (2010a) studied variation of specific interfacial area with

saturation under different pressures at the boundaries. Specific interfacial area is
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Figure 2.21: a) Qualitative comparison of macroscopic interface topology for M = 0.1, 1 and

10 in a 2D (70×70) network at three different saturations, b) Quantitative comparison between

quasi-static and dynamic specific interfacial area-saturation curves for the same fluid-solid

properties as (a) and boundary conditions mentioned.

defined as the ratio of total fluid-fluid capillary interfaces to the total volume of the

sample. They simulated the drainage process under five different global pressure

difference and three different viscosity ratios (M =0.1,1, 10). Viscosity of the wetting

fluid was kept constant in all simulations. They calculated the specific interfacial

area under dynamic conditions and compared it with the quasi-static simulations.

It has been shown that with the decrease of invading fingers, the area associated to

the main fluid-fluid interfaces will decrease as shown in Figure 2.21. Furthermore,

they showed that the production rate of specific interfacial area has a linear func-

tion with ∂Sw

∂t and production rate of interfacial area decreases with decrease of sw

during drainage.

Investigation of width of the invasion front under different conditions is another

aspect of interface dynamics, which has been studied by Aker et al. (1998a) for ap-

plications in reservoir engineering and by Lam and Horváth (2000) for application of
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Figure 2.22: The front width (w) as a function of time for Ca = 9.2 × 10−5. The horizontal

dashed line indicates the saturations width (ws) and the vertical dashed line indicates the

saturation time, ts (Aker et al., 1998a).

paper wetting process. Aker et al. (1998a), Lam and Horváth (2000) and Løvoll et al.

(2005) have studied development of the front width with time using a pore-network

model with circular cross sections for pore throats. Aker et al. (1998a) used different

terminologies:

• Front width: During the invasion of nonwetting phase, there will be some

pores on the invasion front, referred to as front pores. Front width (w) is de-

fined as the standard deviation of the distance between all front pores and the

centroid of the front.

• Saturation width: Denoted by ws, it is defined as the standard deviation of the

distance between all pores filled with the invading phase and the centroid of

part of the domain saturated with the invading phase.

• Saturation time: Denoted by ts, it is defined as the time in which saturation

width (ws) is equal to the front width.

Aker et al. (1998a) calculated front width for different capillary numbers, including

2.3× (10−3, 10−4), 4.6× (10−4, 10−5) and 9.2× (10−4, 10−5), as shown in Figure 2.22.

They used the simulation results to show scaling of the front width for t < ts. They

found that data points collapsed onto a more or less single curve when logw/ws

was plotted against t/ts (Figure 2.23). For this curve, they assumed the following

relationship for t≪ ts:

w

ws
=

(
t

ts

)β

(2.24)

They found a good agreement between their results and experimental data of Frette

et al. (1997), who found β = 0.8± 0.3. Furthermore, they found that saturation front
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Figure 2.23: Data collapse for the front width. β is given by the slope when t/ts < 1 and was

estimated to β = 1.0 ± 0.1 (Aker et al., 1998a).

width (ws), and saturation time (ts) are only functions of capillary number. Results

of Aker et al. (1998a) related to the drainage process only. Lam and Horváth (2000)

showed temporal and spatial correlation for fronts during imbibition process. In a

series of experiments by Horváth and Stanley (1995), a paper sheet was moved con-

tinuously downward into a water container at constant speed v. Imbibition front

evolution was investigated for various different dynamic conditions (different val-

ues of v) and a stationary experiment (v = 0). Lam and Horváth (2000) simulated

imbibition experiments using a pore-network model with circular cross sections.

They found β = 0.29 ± 0.01. Due to the large viscosity ratio (M ∼ 100), they solved

the pressure field only in the wetting phase (water), and ignored the pressure drop

in air phase.

In another study by Løvoll et al. (2005), the effect of gravity and viscous forces on

front width evolutionwith timewas studied. They performed drainage experiments

in a two-dimensional micro-mode of 35×35 cm2. The nonwetting phase was air and

the wetting phase was a mix of glycerol and water. Planer porosity was about 0.63

and permeability was 0.0189× 10−3cm2. The nonwetting phase viscosity was much

smaller than the viscosity of wetting phase. Specifications of their pore network

model are presented in Table 2.3. To include gravity forces in the simulations, Bond

number (Bo), was considered. Bond number is defined as the ratio of gravity forces

to capillary forces:

Bo =
∆ρga2

σnw
(2.25)

in which, ρ is the density and a is the length scale (lattice spacing of a pore network).

According to Løvoll et al. (2005), percolation theory can predict a scaling law for this
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displacement as follows:

w = (Bo− Ca)−a = (Bo− Ca)−v/1+v (2.26)

To have a stable width evolution, (Bo − Ca) should be positive. It means that

width will increase with time till reaching a steady state. They showed that the

width evolution with time reaches a steady state condition with (Bo−Ca) > 0. They

found that their simulation results were in qualitative agreement with experiments.

Front width increased with time, and when (Bo − Ca) > 0 a steady-state condition

was reached. With increasing (Bo−Ca) values, the required time to reach the steady-

state front width decreased.

2.9 Ganglia flow dynamics

As mentioned in Section 2.6, during both drainage and imbibition processes the re-

ceding phase can be entrapped in the domain. However, the trapping mechanisms

are more significant during imbibition than drainage. In reservoir engineering, at

the end of a secondary flooding, a large ratio of oil remains entrapped in the reser-

voir. The residual oil exists in the form of discrete oil ganglia that can occupy 25 to

50% of the pore space. The size of an individual ganglion is typically ranging from

one to fifteen pore volumes (Payatakes et al., 1980). A picture of trapped ganglia in

a micromodel is shown in Figure 2.24 (from Avraam and Payatakes (1995a)). One of

interesting issues - investigated extensively - is the fate of trapped ganglia under

different dynamic conditions. Pore-scale investigations, such as pore-network mod-

elling, can be valuable in acquiring a better insight into the physics of the problem.

Most pore-network models assume that at any flow rate, disconnected ganglia are

immobile. In addition, it has been assumed that the intertwined pathways of the

two fluids are nearly independent of the flow rate within a wide range of flow rates.

This assumption leads to the result that the superficial velocity is a linear function of

macroscopic pressure gradient. However, in reality the superficial velocity is non-

linearly dependent on macroscopic pressure gradient. A number of pore-network

models have been developed by Payatakes and coworkers for ganglia movement.

They have investigated different aspects of ganglia movement and its contribution

to the nonlinearity observed in relative permeabilities in several publications. Us-

ing pore network modelling for studying ganglia movement has been reported in

Ng and Payatakes (1980), Payatakes (1982), Payatakes et al. (1980), Dias and Payatakes

(1986a,b), Hinkley et al. (1987), Constantinides and Payatakes (1991, 1996), Avraam and

Payatakes (1995,a), Avraam et al. (1994), Vizika et al. (1994), Valvanides and Payatakes

(2001), Valvanides et al. (1998),Dahle and Celia (1999), Al-Gharbi and Blunt (2005), and
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Figure 2.24: Snap-shot of ganglia trapped in a micro-model under steady-state flow condi-

tions (Avraam and Payatakes, 1995a).

Bravo et al. (2007).

At pore-scale, various mechanisms can act on ganglia, such as break-up (break-

ing up a ganglion into two smaller ganglia), mobilization (moving an entrapped

ganglion within the pore space), stranding, and coalescence (two or more ganglia

join to form a new bigger ganglion). To investigate the effect of these pore-scale phe-

nomena at macro-scale, Payatakes and his co-authors adopted the following steps,

implemented in several publications from 1980 to 2001:

• Defining system parameters for a single pore, such as geometry, conductivity,

entry capillary pressure, etc.

• Simulating ganglia dynamics in a pore-network model at meso-scale (∼ 103

pores) to calculate system factors. Such as the mean time-averaged gan-

glion velocity, the stranding and breakup coefficients, the mode of ganglion

breakup, the probability of stranding of a newly formed ganglion, and the

mean and maximum length of a ganglion for a given volume (Valvanides et al.,

1998).

• Development of population-dynamic equations and using the system factors

acquired in the previous step in this step to investigate the effect of ganglia

dynamics at macro-scale for steady-state conditions.

The whole procedure has been shown schematically in Figure 2.25 and their main

findings are described below.
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Figure 2.25: Ranges of number of pores over which the various models are applicable and

scale-up of the models (Valvanides et al., 1998)
.

2.9.1 Micro-scale phenomenology of ganglia dynamics

Ng and Payatakes (1980) have developed an approach for determining the fate of an

immiscible ganglion in a granular porous medium under quasi-static displacement.

In other words, ganglia flow phase was not simulated in their model. Since they

studied quasi-static displacement of a ganglion, no pressure field was computed.

They considered three mechanisms for a solitary ganglion in porous medium in-

cluding breakup, mobilization and stranding (but not coalescence). Ng and Payatakes

(1980) calculated at which capillary number the main terminal interfaces of a gan-

glion might move. Main terminal interfaces are shown in Figure 2.26 by thick curves

locating between the blank pore space and the hatched pore space. When ganglia

are trapped in a porous medium, under zero pressure gradient (∇P = 0) and ne-

glecting gravity effects, the curvatures of their menisci should all be equal. Imposing

a large pressure gradient in the wetting phase so that it can mobilize the ganglion,

and assuming a uniform pressure within the ganglion (Po), the pressure in the water

decreases along the ganglion in the flow direction. Consequently, capillary pressure

at downstream interface will be larger than that of the upstream interface, and ra-

dius of curvature at the downstream interfaces will be smaller than that of upstream

interfaces.

Under this condition, there are backward forces due to capillary pressure and

forward forces due to external pressure difference. The two forces may cancel each

other so that the ganglion remains in equilibrium. However, with the increase of

pressure gradient to a critical value, menisci can move if at least one of its main ter-

minal interfaces can cause drainage and back menisci undergoes imbibition (Figure
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Figure 2.26: Schematic presentation of a ganglia movement showing drainage menisci and

imbibition menisci. Flow direction is from left to right (Payatakes, 1982).

2.26). Thus, this criterion is met, the ganglion cannot resist mobilization any longer.

This displacement is referred to as a ”rheon”. During the rheon, oil invades one

of the downstream chambers and this displacement is referred to as ”xeron”. Fur-

thermore, the aqueous phase invades one of the upstream chambers that used to be

occupied by the oil. This displacement is referred to as ”hygron”. In porous media

with very irregular geometry, it is possible that if the xeron occurs in an unusually

large chamber, two (or more) hygrons may be necessary to supply enough oil for

the xeron. The reverse may also occur. Finally, if proper conditions for a hygron de-

velop at a site (where the ganglion is one-chamber long), the ganglion may fission

in two daughter ganglia.

Thus, to develop displacement criterion for the quasi-static mobilization of

oil ganglia, menisci locations should be identified in calculations. Based on the

schematic presentation shown in Figure 2.27, Ng and Payatakes (1980) assumed that

all interfaces were locked in their unit cells, except for two; one downstream with

index I and one upstreamwith index K. For this particular pair of menisci locations,

there is a critical pressure gradient that may cause mobilization. By repeating this

calculation for all possible pairs, one can identify the particular pair (i =I, k = K)

for which the required pressure gradient is minimum. If the mobilization is to oc-

cur, it will proceed through the Ith and Kth menisci. This analysis is equivalent to

identifying the maximum mobility factor (βKI ), namely

βKI = ∆LKI cos θKI/ [Jdr,I (θo
r) − Jim,K (θo

a)] (2.27)
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Figure 2.27: Concepts involved in the quasi-static criterion for mobilization (Payatakes, 1982)

in which, ∆LKI is the distance between menisci K and I, θKI is the angle between

the line connecting throats K and I and the macroscopic flow direction, Jdr,I is the

drainage curvature in the downstream meniscus I, Jim,K is imbibition curvature in

the upstreammeniscus K, estimated as Jj,i =
4 cos θj

di
, in which di is diameter of pore

i with circular cross section.

Finally,Ng and Payatakes (1980) defined the following mobilization and stranding

criterion:

If βKI |
`
P |/γow ≥ 1, mobilization occurs.

If βKI |
`
P |/γow < 1, stranding occurs.

To summarize their approach, a ganglion with an arbitrary volume was consid-

ered in the network model and the exact geometry of the ganglion was captured.

Then, mobilization-breakup criterion was applied to all interfaces to determine ad-

vancing/receding interfaces at that capillary number. Simulations would be termi-

nated when stranding or breakup occurred. To understand the mechanisms more

clearly, several realizations in each class of capillary number and ganglion volume

were implemented. Finally probability functions were produced for the fate of a

solitary ganglion based on quasi-static conditions as shown in Figure 2.28. Figure

2.28 shows variations of occurrence probability in a capillary number range of 10−4

to 10−2. Ng and Payatakes (1980) have shown that the threshold capillary number

for moving the stranded ganglia is 10−4. It decreases form 10−4 to 10−3 from prob-

ability of 1 to zero. But probability of two other phenomena, namely breaking up

and mobilization, increases. However, mobilization increases to the probability of
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Figure 2.28: Probability of mobilization (M), breakup (B) and stranding (S) per rheon for a

ganglion vs. capillary number (Ng and Payatakes, 1980)

0.85 and breaking up increases to almost 0.15. When stranding of ganglia begins to

decrease, probability of mobilization begins to increase.

These threemechanisms are functions of ganglion volume and capillary number;

larger ganglia have higher probability for breakup and less probability for strand-

ing as shown in Figure 2.29. Ng and Payatakes (1980) introduced the term CEVS

to indicate conceptual element void space, which is assigned to the pore elements

surrounded by circles in Figure 2.27. In the simulations, they observed that in the

absence of coalescence, the ganglia would be immobile. Thus it was necessary to

study the role of coalescence in producing large ganglia.

All results shown above were obtained from a quasi-static pore-network model.

However, dynamics of ganglia is more complex. It has been observed in exper-

iments that in viscous-dominated flows, ganglia can move through several pores

simultaneously. Due to the lack of this feature in quasi-static models they showed

two major shortcomings in such simulations. First, it was observed that tendency

for alignment and elongation in experiments was less compared with simulations.

Second, if downstream part of a ganglion encounters small pores, it cannot advance

into them quickly. Thus, the ganglion may grow a new branch at some appropriate

site along its body to bypass the elongation (Payatakes, 1982). Since Payatakes and

co-workers were interested in using the micro-scale results for macro-scale simu-

lations based on population-dynamics formulation, they had to define coefficients

representing micro-scale mechanisms, such as stranding (λ), break-up (φ), and coa-
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Figure 2.29: Probability of stranding (S) per rheon for a ganglion vs. volume of ganglion for

different capillary number (CEVS:conceptual element void space) (Ng and Payatakes, 1980).

lescence (Co). The first two ones were defined as follow:

λ = − 1

n

∂n

∂z
|due to stranding (2.28)

φ = − 1

n

∂n

∂z
|due to break-up (2.29)

in which, n is the total number of ganglia and ∂n
∂z is the variation of n in z direction.

But, the coalescence factor was not as straight-forward as breakup and stranding

factors. Coalescence factor of ganglia was investigated by Constantinides and Pay-

atakes (1991). It is related to the merging of menisci when they meet each other. Co-

alescence at pore scale depends on many factors including pore geometry, physical

properties of fluids, interfacial tension, interface velocity, double ionic layer interac-

tions, initial positions of interfaces, pressure difference between oil bodies. Constan-

tinides and Payatakes (1991) tried to quantify the coalescence parameter using their

pore-network model. The model consisted of two components, simulating bulk mo-

tion of ganglia in a pore-network, and simulating drainage of a water film trapped

between two colliding menisci at each pore (Figure 2.30). Both parts were coupled

together at different time scales. The time scale of the inner component (water film

simulator) was much smaller than the outer one. They tried to simulate the film

flow using a criterion for critical thickness of film. When the thickness of the film

is larger than the critical value, the interfaces are non-interacting. However, in very

small thickness (in this work <∼ 100Å), London-van der Waals forces are considered

using theHamaker constant (Sheludko, 1967). Constantinides and Payatakes (1991) tried

to define a probability rate for coalescence for two ganglia with different sizes and
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Figure 2.30: Schematic presentation of two-component model for simulating coalescence

(Constantinides and Payatakes, 1991).

found a range of 0.03 to 0.15. Coalescence probabilitywould increase graduallywith

the increase of capillary number, but it increased significantly with the decrease of

contact angle.

Figure 2.31 shows plots of stranding and break-up coefficients against the gan-

glia volumes for different wetting-phase saturations resulted from dynamic pore-

network modelling, while coalescence probability (Co) was set equal to 0.15 (Val-

vanides et al., 1998). According to Figure 2.31, with the increase of ganglia volume,

breakup coefficient increases while stranding coefficient decreases nonlinearly. Fur-

thermore, with the increase of wetting phase saturation, stranding coefficient in-

creases and break-up coefficient decreases.

a) b)

Figure 2.31: Dependency of a) Stranding coefficient, λ and b) Break-up coefficient φ on the

ganglion volume, v, and the water saturation,Sw, for Ca = 10−4, κ = µn

µw
= 3.35, Co = 0.15,

θa = 45, θr = 35 (Valvanides et al., 1998).

Length of ganglia under different dynamic conditions is another system factor

that should be determined for macro-scale modelling of ganglia dynamics. For
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Figure 2.32: Length of ganglia (normalized by mean lattice spacing length) for different gan-

glia volume and two viscosity ratios (κ = 1/M )(Constantinides and Payatakes, 1996).

M > 1 during imbibition, length of ganglia aligned to the direction of macroscopic

flow is relatively high (Figure 2.32). But, for M < 1 length of ganglia decreases in

direction of flow (Figure 2.32), and it prefers to follow a path composed of large

pores. With decrease of water saturation, interstitial velocity and local pressure gra-

dient increases, which increases dynamic behavior of ganglion displacement. Thus,

with decrease of saturation, tendency of ganglia to become long and aligned with

the macroscopic flow direction increases. Thus ganglia displace not only in the di-

rection of the macroscopic flow, but also in other directions due to the population

density. As Valvanides et al. (1998) have observed, stranding of ganglia decreases

as Ca or ganglia size increases and break-up increases. With the increase of vis-

cosity ratio (decrease of κ) during imbibition, time rate of stranding decreases and

break-up rate decreases (Constantinides and Payatakes, 1996), although the first one is

stronger. In addition, with the decrease of M ganglia volume decreases. Effect of

viscosity ratio on the size of ganglia is significant at large wetting phase saturations.

Another system factor required for macro-scale modelling is the average veloc-

ity of ganglia for different ganglia volumes. To understand the dynamics of gan-

glion, Payatakes (1982) reviewed data from amicro-model experiment done by Rapin

(1980). Rapin (1980) investigated the velocity of ganglia using visualization tech-

niques in experiments. His results are shown in Figure 2.33, where uz/Vf is the nor-

malized velocity of a ganglion defined as the velocity of the centroid of a ganglion

(uz) divided by the superficial velocity of the flooding (Vf ). According to Figure 2.33,

for a given volume of ganglia, the normalized velocity is a monotonically-increasing

function of capillary number. Near a critical mobilization capillary number, the
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Figure 2.33: Average ganglion velocity (normalized by superficial fluid velocity) versus gan-

glion volume (normalized by volume of CEVS) for several typical capillary number values.

Here, the viscosity ratio is µn/µw=(Payatakes, 1982). Data are from Rapin (1980).

normalized velocity increases monotonically with volume, reaching an asymptotic

value for volume of ganglia. The asymptotic value of ganglia is about 15 ∼ 20 CEVS

volume. However, when the value of capillary number exceeds critical mobilization

value, velocity will have a minimum in range of 3 ∼ 5 CEVS volume. Later Dias

and Payatakes (1986a,b) and Valvanides et al. (1998) could develop a dynamic pore-

network model to investigate velocity of ganglia and its dependencies on system

parameters. Simulation results shown in Figure 2.34 are qualitatively comparable

with the experiments. Figure 2.34 shows velocity of a ganglion versus its volume

for different viscosity ratios. For viscosity ratio smaller than 1 (M = 1/κ, κ > 1),

the time-averaged ganglion velocity of oil is smaller than the average velocity of

the water. If viscosity ratio is larger than 1 (κ < 1), this ratio will be larger than 1.

obviously, ganglia velocity increases with the increase of Ca.

An interesting result from these simulations is that for a ganglion with a given

volume, with the increase of Ca, ganglia velocity can reach an asymptotic value for

M < 1. However, this is not found to hold for M > 1. This means that when the

wetting fluid is less viscous than the nowetting fluid, the blobs of the nonwetting

phase can move faster and they are less constrained by the invading phase. Based

on these simulations, hysteresis in contact angle cannot significantly affect the trend
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Figure 2.34: Normalized time-averaged ganglion velocity, u∗ = uz/Vf , versus the normal-

ized ganglion volume v∗ (ganglia volume divided by the volume of a CEVS), in a 15×30

network for various Ca values, uz is the velocity of the centroid of a ganglion, and Vf is the

superficial velocity of the flooding. a) κ = 7, θe = θa = θr = 0 b) κ = 1, θe = θa = θr = 0

c) κ = 0.6, θe = θa = θr = 0 d) κ = 7, θe = θa = θr = 10 e) κ = 7, θe = θa = θr = 30 f)

κ = 7, θe = 10θa = 11.4θr = 0, κ = µn

µw
(Dias and Payatakes, 1986b).
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of time-average velocity especially for large ganglia and large Ca values.

Hinkley et al. (1987) compared results of the pore-network modelling of Dias and

Payatakes (1986a) with the micro-model experiments. They performed some two-

dimensional micro-model experiments to investigate the velocity of ganglia for dif-

ferent viscosity ratios and capillary numbers. The model was made of one layer of

grains sandwiched between two Plexiglass sheets. Resulting pores were completely

regular and uni-size. Comparison between simulation and experimental results is

shown in Figure 2.35. The agreement is very good large capillary numbers, since

nonlinearity of the multiphase flow system is not significant. With the decrease

of capillary number and increase of viscosity ratio (decrease of κ), the agreement

decreases significantly, due to the increase of nonlinearity of the system. The differ-

ence can be due to the fact that ganglion motion depends on the initial shape and

orientation of the ganglion, the local characteristics of the porous medium, and the

distribution of the two phases in the nearby region (Valvanides et al., 1998). In any

case, in spite of the quantitative difference, the same behavior for ganglia dynamics

which was observed by Rapin (1980) was captured by the model.

a) b)

Figure 2.35: Comparison between experimental and theoretical values of the normalized

time-averaged ganglion velocity, u∗ = uz/Vf , vs. the ganglion volume (normalized by the

volume of a CEVS), v∗, for various capillary numbers and viscosity ratios (a) κ=7.2 (b) κ =0.56,

κ = µn

µw
, uz is the velocity of the centroid of a ganglion, and Vf is the superficial velocity of

the flooding (Hinkley et al., 1987).

2.9.2 Macro-scale ganglia dynamics

Based on the system factors resulted from pore-network modelling and proposing

population dynamics balance equations developed for macro scale ganglia dynam-

ics, Payatakes et al. (1980), Constantinides and Payatakes (1996) and Valvanides et al.

(1998) studied macro-scale dynamic motion of the ganglia in porous media.
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Main assumptions of this model include a) oil is totally disconnected in the form

of ganglia of various sizes, b) the macroscopic flow is one-dimensional, c) the lon-

gitudinal dispersion of ganglia is neglected, d) gravity is neglected, e) in the inte-

gration of the population balance equations, the ganglia are considered as points

coinciding with their mass centers. f) specific assumptions are made for the calcula-

tion of the dimensionless collision rate.

The resulted populations dynamics equations for moving and stranded ganglia

were integro-differential type of equations that were solved numerically. For sake

of space the equations and their explanations have not been mentioned in this re-

view. Complete explanation can be found in Payatakes et al. (1980) and Valvanides

et al. (1998). Using the population dynamics equation, Valvanides et al. (1998) investi-

gated fate of stranded as well as moving ganglia with space and time for two differ-

ent types of regime: steady state fully developed (SSFD) and steady state non-fully

developed (SSnFD). Under SSFD conditions, number concentrations of moving and

stranded ganglia are independent of time and space. However, under SSnFD condi-

tions, number concentrations of moving and stranded ganglia are only independent

of time.

Although Payatakes and his co-workers investigated ganglia dynamics exten-

sively, there are some major shortcomings in their approach:

1. Topology and geometrical properties of porous medium has not been investi-

gated at all, while they have major effects especially geometrical properties such as

shape factor and aspect ratio.

2. The pore-network simulator is based on single-pressure solver. Thus effect of

corner flow, which is important in ganglia dynamics has not been explicitly consid-

ered.

3. The equations used for population dynamics of ganglia are developed for one

dimension only. Thus, there is not a clear picture how this approach can be used for

a real three-dimensional case.

4. From practical point of view, it seems that as Al-Gharbi and Blunt (2005) have

concluded, in reservoir engineering the capillary number values are smaller than

those ones used here that and disconnected flow in these conditions is not signifi-

cant.

2.10 Relative permeability

One of the major applications of pore-network models has been in the investigation

of relative permeability curves especially for predictive purposes. However, rela-

tive permeability curves have been mostly produced by quasi-static pore-network
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models. To use quasi-static pore-network models for relative permeability simula-

tion, it is assumed that flow paths of both phases are frozen at a given saturation

(or a grain global capillary pressure). Thus, dynamic effects on the flow path are

ignored. But, Hughes and Blunt (2000) have showed that the contact angle, initial

wetting saturation, and flow rate can affect significantly the displacement pattern

and consequently the relative permeability curves. Extensive experimental and the-

oretical investigations have shown that the relative permeabilities are strong func-

tions of a large number of parameters, including Sw, Ca, flow rates ratio r, viscosity

ratioM , advancing and receding contact angles θa and θr, coalescence factor, Bond

number (Bo), and the flow history (Avraam and Payatakes, 1995, Avraam et al., 1994,

Constantinides and Payatakes, 1996, Valvanides et al., 1998).

kro = kro(Sw, Ca, r,M, cos(θ0r), cos(θ0a), Co,Bo,flow history) (2.30)

Payatakes and co-authors, carried out extensive experimental and numerical studies,

using micro-models and pore-network models, to investigate the effect of ganglia

movement on relative permeability (Avraam and Payatakes, 1995,Avraam et al., 1994).

Constantinides and Payatakes (1996) developed a dynamic pore-network model,

including dynamics of ganglia, to investigate relative permeability curves at steady-

state flow for different saturations. To calculate relative permeability, they used the

following equation:
qα

A
= −krα

k

µα

∆Pα

L
,α = w, n (2.31)

in which, qα is the total flux for α phase, A is the cross section of pore-network

model normal to the flow direction, krα is the relative permeability of α-phase, k is

the intrinsic permeability of the pore-network, µα is the viscosity of phase α, L is the

length of the pore network in flow direction, w and n denote wetting and nonwet-

ting phase, respectively, and ∆Pα is the pressure drop of phase α. The approach for

defining boundary conditions in pore-network model developed by Constantinides

and Payatakes (1996) has been explained in Section 2.4.4. To prevent effect of initial

condition on simulation results, they continued the simulations so that the time-

averaged relative permeability became constant. Results for relative permeability

of oil are shown in (Figure 2.36). The same behavior was found for relative perme-

ability of water, and macroscopic pressure drop for nonwetting and wetting phase.

Oscillations in relative permeability values of oil are small for large ganglion dy-

namics. But, they are significant for connected-path flow regime. The wetting phase

relative permeability oscillations were minimal for small ganglion dynamics.

Constantinides and Payatakes (1996) calculated relative permeability curves for dif-

ferent viscosity ratios and capillary numbers, including ganglia dynamics effect.
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Figure 2.36: Time series of the instantaneous relative permeability of oil, k′
ro for a) Ganglia

with 1 CEVS volume b) Ganglia with 3 CEVS volume c) Ganglia with 9 CEVS volume (κ =

3.35, Ca = 10−4, C11 = 0.15, Sw = 0.5pore-volume, θ0

a = 45◦, θ0

r = 35◦) (Constantinides and

Payatakes, 1996).

Figure 2.37(a) shows the effect of viscosity ratio on relative permeability curves.

With the increase of viscosity ratio (decrease of κ = µn

µw ), relative permeability de-

creases. It is clear that relative permeability of nonwetting phase is more sensitive

to the viscosity ratio. Constantinides and Payatakes (1996) postulated that with the

decrease ofM (= µw

µn ), both phases tend to segregate and create their own separate

flow paths. Nonwetting phase tends to flow through big pores, which causes an

increase of its permeability. This segregation reduces viscous dissipation in the sys-

tem. However, these results differ from the findings of Lefebvre du Prey (1973) and

Fulcher et al. (1985), who observed experimentally that with the decrease of M , rel-

ative permeability of nonwetting phase increased but relative permeability of wet-

ting phase decreased. Constantinides and Payatakes (1996) have conjectured that this

contradiction may be due to the fact that in those experiments, different fluids and

porous medium sample were used, which may indeed affect contact angle and con-

sequently relative permeabilities.

Figure 2.37(b) shows the effect of capillary number on relative permeability. With
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Figure 2.37: Dependency of steady state relative permeability of both fluids (krw and kro)

on water saturation a) for different κ = 1/M (κ = 0.67, 1.5, 3.35,Ca = 10−4, θadvancing =

45◦, θreceding = 35◦) b) for different capillary number values Ca (Ca = 10−4, 10−5, 10−6,

θadvancing = 45◦, θreceding = 35◦) (Constantinides and Payatakes, 1996).

the increase of capillary number, relative permeability increases as well. Constan-

tinides and Payatakes (1996) have found that at medium and high Ca values, the two

fluids tend to become more segregated compared with small capillary number val-

ues. This causes an increase of both relative permeabilities.

Avraam et al. (1994) observed the same behavior in two-dimensional and quasi-

three-dimensional (consisting of two layers of pores) micro-models under steady-

state conditions. They found that relative permeability of oil correlates strongly with

the flow regimes and dynamic parameters of the system such as capillary number

and viscosity ratio. Avraam and Payatakes (1999) showed that the lubrication effect

can be significant for strongly wetting systems. They observed experimentally that

for small capillary numbers (Ca ≤ 10−6), flow of oil takes place through the motion

of ganglia and/or droplets. For larger capillary numbers (Ca > 10−6), connected

pathways for the flow of oil can form, but the disconnected flow can also lubricate

the flow of ganglia.

Avraam and Payatakes (1995), Avraam et al. (1994) also investigated relative per-

meability curves using micro-model experiments. Their micro-model had a square

lattice structure with node-to-node distance of 1221µm. Macroscopic flow direc-

tion was parallel to one of the diagonals. The network consisted of 11300 chambers

and 22600 throats. Mean diameters of chambers and pore throats were 560 µm and

112 µm, respectively. Maximum depth of pores was almost uniform equal to 140

µm. Cross section of pore throats was almost eye-shaped with a planer porosity of

0.25. To study the effects of different physical parameters such as viscosity ratio and

interfacial tension, three different fluid sets were used. In each experiment, simul-

taneous injection of the two fluids was continued (at a constant rate) until steady
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Figure 2.38: Ganglia flow regimes a) Large ganglia dynamics b) Small ganglia dynamics c)

Droplet traffic flow d) Connected-path flow (Avraam and Payatakes, 1995a).

state conditions was reached. Based on visual observations and flow rate measure-

ments, (Avraam and Payatakes, 1995, Avraam et al., 1994) found that the disconnected

oil movement contributed substantially to the flow of oil during imbibition.

They stated that over a large range of system parameters (in the range of practical

interest) the flow of oil takes place solely through the movement of ganglia and/or

droplets. Based on their experiments, two-phase flow behavior can be roughly clas-

sified into four flow regimes: large ganglion dynamics (Figure 2.38a), small gan-

glion dynamics (Figure 2.38b), drop traffic flow (Figure 2.38c) and connected-path

flow (Figure 2.38d). In the first three classes, oil flow is due to the motion of dis-

connected bodies of oil. This is even the case in connected-path flow regime (high

values), where many droplets and ganglia move at the fringes of connected path-

ways. Nonlinearity in the relative permeability depends on the pressure gradient

which is related to the creation, motion, fission and coalescence of ganglia/drops or

menisci/interfaces.

Observations showed that for a wide range of variables (10−8 ≤ Ca ≤ 10−6;0.6 ≤
M ≤ 3.4; 0.2 ≤ Sw ≤ 0.8) oil is disconnected in the form of ganglia or droplet.

Avraam and Payatakes (1995) observed that at the pore scale this mechanism is tran-
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sient but at meso-scale it is almost stationary, such that it can be identified as steady-

state.

Based on the experimental data reported by Avraam and Payatakes (1995),Avraam

and Payatakes (1995a) implemented some optimization calculations to study the be-

havior of viscous coupling coefficients (krαβ , krβα) introduced in the following ex-

tended darcy’s law.

vα = −kkrα

µα

∆Pα

L
− kkrαβ

µβ

∆Pβ

L

vβ = −kkrβ

µβ

∆Pβ

L
− kkrβα

µα

∆Pα

L
(2.32)

The cross-coupling terms are needed in order to describe the macroscopic flow

when a disconnected fluids is present. Avraam and Payatakes (1995a) used their

pore-network model to study changes of the coefficients with Sw, Ca ,and M .

Conventional and generalized relative permeabilities were determined based on

B-spline functions combined with standard constrained optimization techniques.

They found that the cross coefficients were not equal (krαβ/µβ 6= krβα/µα). These

coefficients as well as conventional coefficients were found to depend on the flow

conditions and the corresponding flow mechanics.

Relative permeabilities krα and krβ are increasing functions of the saturation of

the respective fluid. krα and krβ increase as Ca increases. The behavior of krα is

more complicated. In most cases krα increases as Sα increases, but in certain cases

the opposite behaviour has been observed. Roughly speaking, as Ca increases, all

the generalized coefficients increase.

Afterwards, Valvanides and Payatakes (2001) developed a continuum two-phase

flow model, which included the nonlinear dependence of permeability coefficients.

Their model was based on the decomposition of a two-phase system into two sub-

domains; connected-oil path domain and ganglion dynamics domain. The main

goal in their model was to save computation time to have a mesoscale predictive

model that for practical applications. The model results were compared with ex-

perimental results done in a two-dimensional micro-model by Avraam and Payatakes

(1995a). They founded fairly good to good agreement with experimental results for

low capillary numbers (Ca = 10−6) at different viscosity ratios. It seems that for

high capillary numbers, where ganglia dynamics can be important, the model was

not fully successful and there was a need for further improvement before it could

be used for predictive purposes.

Bravo et al. (2007) followed the same approach as Avraam and Payatakes (1995,a)

did, to study coupling coefficients in extended Darcy’s law. They used a dynamic

pore-network model for simulating disconnected gas and oil flow. What they pre-
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Figure 2.39: Conventional (broken lines) and generalized (solid lines) relative permeability

coefficients for κ = 0.66 (left column) and κ = 3.35 (right column), a,d) Ca = 10−7 b,e)

Ca = 10−6 c,f) Ca = 5 × 10−5 (Avraam and Payatakes, 1995a).

sented is very similar to the results of Avraam and Payatakes (1995a) for very limited

cases. They studied the effect of disconnected gas bubbles on relative permeability

curves for different bubbles sizes, but only in the viscous-dominated flow regime.

They assumed that gas bubbles were incompressible, which is a good approxima-

tion when the relative variations of absolute pressures of gas bubbles due to the

pressure gradient in water phase and also capillary pressure differences are negli-
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gible. However, at least at pore-scale, this assumption is no valid, because absolute

pressure is known to fluctuate with time and space as Constantinides and Payatakes

(1996) have shown.

Bravo et al. (2007) found that when relative permeability of oil increases, when the

viscosity of gas bubbles is smaller than that of oil, and even relative permeabilities

larger than one can be obtained. In addition, they showed that the effect of gas

bubble size at different gas saturations on relative permeability is not monotonic.

There is a peak of relative permeability in the intermediate bubble size.

Using a dynamic pore-network model, and assuming a constant injection rate

for drainage, Singh and Mohanty (2003) showed that for low capillary numbers, flow

in the wetting phase flow includes only 1% of the total flow. Based on their results,

saturation-relative permeability relationship is a function of capillary number, vis-

cosity ratio and distribution of the pores as shown already by Blunt and King (1990)

and Blunt and King (1991). Their model is based on the pore-network model devel-

oped by King (1987). However, King (1987) did not consider capillary pressure in the

setup of equations. Later, Blunt and King (1991) added capillary pressure as a func-

tion of local pore size and showed that at the same saturation, relative permeability

of the receding phase in low capillary numbers is below those with high capillary

number as shown in Figure 2.40. But for the invading phase, both cases may occur.

They explanation was that at very high rates, flow can proceed through all parts of

the network, including the very small tubes. As Ca decreases, flow is blocked in

some places due to capillary forces. This will tend to decrease the relative perme-

ability of both injected and displaced fluids. At low rates, the injected fluid moves

through only the widest channels, which means an increase of its permeability rel-

ative to the displaced fluid. Thus, at a given saturation, krα must decrease with

the decrease of flow rate, while krα may either increase or decrease. This explana-

tion works for different mobility ratios; so that with the decrease of mobility ratio,

relative permeability of the invading phase will decrease. In addition, nonlinearity

of relative permeability-saturation curve increases with the increase of interfacial

tension.

2.11 Summary

In this review paper we give an overview of various dynamic pore-network models

that have been developed for the study of two-phase flow in porous media (Ta-

ble 2.3). We provide detailed description of various types of network structure,

governing equations, and boundary conditions. One of the major computational

issues in the dynamic pore-network modelling is related to the pressure field cal-
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a) b)

Figure 2.40: Relative permeability-saturation curves for different values of a) Ca number and

b) viscosity ratios (Blunt and King, 1991).

culation. There are two different pressure solver algorithm, namely single-pressure

and two-pressure solvers. The latter one has improved physical-based features and

computationally is more expernsive than the first one. The second computational

issue in the dynamic pore-network modelling is related to the numerical instability

problem under capillary-dominated regimes. This problem, referred to as “capillary

pinning” has been reported in many studies. Semi-implicit saturation update is one

of the solutions that can improve numerical stability of the dynamic pore-network

models.

We also give an overview of various applications for which dynamic pore-

network models have been used. Different aspects of dynamics of two-phase flow

such as pressure field development, macroscopic invasion pattern, effect of capil-

lary number and viscosity ratio on trapping, effect of aspect ratio and coordination

number on trapping, nonequilibrium capillarity effects, coupling coefficients for rel-

ative permeabilities, ganglia movement, and behavior and dependence of interface

velocity have been extensively discussed.

This review shows the capability of pore-network models for giving a better and

extensive insight into a larger number of the physical problems related to two-phase

flow in porous media. This technique can be very useful not only for investigation

of new theories, but also for application in predictive purposes. Although many

improvement in dynamic pore-network modelling is achieved, there is still so much

room for further development, especially for application for predictive purposes.
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Table 2.3: Summary of the developed dynamic pore-network models and their applications, specifications

Model Developer structure Network elements Application Boundary Dimension Structure Pressure
Condition Size solver

Aker et al. (1998b) 2-D, S, R Circular comp. Drainage, flow regime Cons. Flux 60 × 80 A
patterns, front width one-pressure
as a function of Ca

Aker et al. (1998a) 2-D, S, R Circular comp. Drainage, Pressure field Cons. Flux 60×80 A
evolution with time, 40×40 one-pressure
effect of trapping 25×35
on permeabilities

Al-Gharbi and Blunt (2005) 2-D, S, R Triangular comp. Drainage, flow regime Cons. Flux 9×9 A one-pressure
patterns, residual
saturation vs. Ca

Blunt and King (1990) 2-D,3-D, Irr Circular p.th. Drainage, invasion patterns Cons. Flux 80000 B
UnS., Iso. Spherical p.b. fractional flow in a sphere one-pressure

vs. Ca and M ,
relative permeabilities

Bravo et al. (2007) 2-D, S, R Square p.th. Disconnected gas Cons. Flux 50×50 A one-pressure
No p.b. flow in oil flow

Chaouche et al. (1994) 2-D, S, R Circular p.th. Drainage, Effect Cons. Flux 100×21 B
Spherical p.b. of heterogeneity on 100×60 one-pressure

saturation distribution

Constantinides and Payatakes (1991) 3-D, S, Circular comp. Imbibition, coalescence Cons. Flux 100×7×2 A
Dist.R. dependency on topology one-pressure

system dynamics

Constantinides and Payatakes (1996) 3-D, S, Circular comp. Imbibition, steady-state Cons. Flux 30×20×5 A
Dist.R. relative permeabilities one-pressure

vs. system dynamics

Dahle and Celia (1999) 3-D, S, R Circular p.th. Drainage, P c-S curve Cons. Flux 17×17×29 A
No p.b. one-pressure

Dias and Payatakes (1986a) 2-D, S, R Circular comp. Imbibition, effect of Cons. Flux 15×40 A
Ca and M on residual one-pressure
saturation and interface

dynamics

S: Structure, UnS:Unstructured, R:Regular, Irr: Irregular, Comp.:composite, p.th.:pore throat, p.b.:pore body, A: No pore body is assumed, resistance and volume are
assigned only to pore throats, B: No resistance is assigned to pore bodies and no volume is assigned to pore bodies, C: Volume and resistance are assigned to either pore
throats or pore bodies
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Model Developer structure Network elements Application Boundary Dimension Structure Pressure
Condition Size Solver

Dias and Payatakes (1986b) 2-D, S, R Circular comp. Imbibition, effect of Cons. Flux 15×40 A
Ca and M on ganglia one-pressure
mobilization, stranding,

and breakup

Gielen et al. (2004, 2005) 3-D, S,. R Circular p.th. Drainage, nonequilibrium Cons. Pres. 30×30×40 B
Spherical p.b. effects in phase pressures 10×10×82 one-pressure

difference

Hughes and Blunt (2000) 2-D, 3-D, Angular p.th. Imbibition, effect of Cons. Flux 128×128 B one-pressure
S, R Angular p.b. Ca, aspect ratio, 20×20×20

contact angle, initial
saturation on invasion
regime and its pattern

Joekar-Niasar et al. (2010a) 3-D, S., R Square p.th. Drainage, Non-equilibrium Cons. Pres. 35×35×35 B two-pressure
Cubic p.b. effects on phase pressures

difference and interfacial area

Joekar-Niasar and 3-D, S., R Square p.th. Drainage & Imbibition, Cons. Pres. 45×35×35 B two-pressure
Hassanizadeh (2010) Octahedon p.b. Non-equilibrium effects

on phase pressures difference

King (1987) 2-D, Uns., Irr Circular p.th. Drainage, Fractal nature Cons. Pres. N.A. A
of invasion front one-pressure

Knudsen and Hansen (2002) 2-D, R, S Circular comp. Countercurrent flow, Closed 20×40 A
Knudsen et al. (2002) nonequilibrium relative boundaries 40×80 one-pressure

permeabilities

Koplik and Lasseter (1985) 2-D, UnS., Irr Circular p.th. Imbibition, Effect of Ca on Cons. Flux 10×10 -
Spherical p.b. residual saturation, snap-off one-pressure

and piston-like movement

Lam and Horváth (2000) 2-D, S, R Circular p.th., Imbibition, scaling fronts Periodic 1000×200 A
no p.b. boundaries one-pressure

Løvoll et al. (2005) 2-D, S, R Circular p.th., Drainage, gravity and viscous Cons. Press. N.A. A
no p.b. forces on invasion pattern boundaries one-pressure

S: Structure, UnS:Unstructured, R:Regular, Irr: Irregular, Comp.:composite, p.th.:pore throat, p.b.:pore body, A: No pore body is assumed, resistance and volume are
assigned only to pore throats, B: No resistance is assigned to pore bodies and no volume is assigned to pore bodies, C: Volume and resistance are assigned to either pore
throats or pore bodies.
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Model Developer structure Network elements Application Boundary Dimension Structure Pressure
Condition Size Solver

Mogensen and Stenby (1998) 3-D, S, Irr Square p.th., Imbibition, Effect of Ca,M , Cons. Flux 25×25×25 C one-pressure
Cubic p.b. aspect ratio, coordination no.,

on snap-off & piston-like
movement

Nguyen et al. (2004, 2006) 3-D, UnS, Irr Triangular p.th. Imbibition, effect of Cons. Flux. 12349 p.b. one-pressure
Cubic p.b. contact angle, Ca 26146 p.th. C

, aspect ratio on
relative permeabilities

Nordhaug et al. (2003) 3-D, S, R Circular p.th. Drainage, interface velocity Cons. Press. 10×10×50 one-pressure
Spherical p.b. for different regimes B

Payatakes (1982) 2-D, S, R Circular comp. Imbibition, ganglia movement Cons. Flux 15×30 A one-pressure
Spherical p.b.

Pereira et al. (1996) 2-D, S, R Eye-shaped p.th. Drainage, three-phase flow Cons. Press. 50×50 B Three-phase
Spherical p.b pressure

Singh and Mohanty (2003) 3-D, S, R Square p.th. Drainage, Effect of Ca on Cons. Flux. 30×8×8 B. one-pressure
Cubic p.b. residual saturation

Thompson (2002) 3-D, S, R Angular. p.th. Imbibition, Effect flow rate on Cons. Flux. 2000
Cubic p.b water invasion in paper two-pressure

Touboul et al. (1987) 2-D, S, R Circular p.th. Drainage, Effect of pressure on Cons. Flux. 100×100 A one-pressure
Spherical p.b. fingering and stable movement

Valvanides et al. (1998) 3-D, S, R Circular comp. Imbibition, large and small Cons. Flux. 30×20×5 A one-pressure
ganglia dynamics

Van der Marck et al. (1997) 3-D, S, R Circular p.th. Drainage, Pressure field Cons. Flux. 25×25×2 B one-pressure
Spherical p.b. evolution vs. saturation

Vizika et al. (1994) 3-D, S, R Circular comp. Imbibition, Effect of M Cons. Flux. 12×5×2 A one-pressure
and Ca on residual saturation

S: Structure, UnS:Unstructured, R:Regular, Irr: Irregular, Comp.:composite, p.th.:pore throat, p.b.:pore body, A: No pore body is assumed, resistance and volume are
assigned only to pore throats, B: No resistance is assigned to pore bodies and no volume is assigned to pore bodies, C: Volume and resistance are assigned to either pore
throats or pore bodies.
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Chapter 3

Conceptual Pore-NetworkModels

The question is not what you look at, but what you see.

Henry David Thoreau, writer

Abstract

T
ogain insight into relationships among capillary pressure, interfacial area, saturation

and relative permeability in two-phase flow in porous media, we have developed two

types of pore-network models. The first one, called tube model, has only one element

type, namely pore throats. The second one is a sphere-and-tube model with both pore

bodies and pore throats. We have shown that the two models produce distinctly different

curves for capillary pressure and relative permeability. In particular, we find that the

tube model cannot reproduce hysteresis. We have investigated some basic issues such as

effect of network size, network dimension, and different trapping assumptions in the two

networks. We have also obtained curves of fluid-fluid interfacial area versus saturation.

We show that the trend of relationship between interfacial area and saturation is largely

influenced by trapping assumptions.

Through simulating primary and scanning drainage and imbibition cycles, we have gen-

erated two surfaces fitted to capillary pressure, saturation, and interfacial area (P c-Sw-

anw) points as well as to relative permeability, saturation and interfacial area (kr-S
w-

anw) points. The two fitted three-dimensional surfaces show very good correlation with

the data points. We have fitted two different surfaces to P c-Sw-anw points for drainage

and imbibition separately. The two surfaces do not completely coincide. But, their mean

absolute difference decreases with increasing overlap in the statistical distributions of

pore bodies and pore throats. We have shown that interfacial area can be considered as

an essential variable for diminishing or eliminating the hysteresis observed in capillary

pressure- saturation (P c-Sw) and the relative permeability-saturation (kr-S
w) curves.

3.1 Introduction

I
ntwo-phase systems in porous media, the constitutive equation that relates fluid

pressures to saturation plays an important role. Equation 3.1 states that the dif-

ference in fluid pressures, called capillary pressure, is a function of saturation (Bear
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et al., 1968).

Pn − Pw = P c ≡ f(Sw) (3.1)

in which, Pn [ML−1T−2] is the pressure of the nonwetting phase,Pw [ML−1T−2] is

the pressure of the wetting phase, P c[ML−1T−2] is the capillary pressure, and Sw

is the saturation of the wetting phase. This relationship is known to be hysteretic.

For a given soil, many P c-Sw curves pertaining to different drainage/imbibition

stages and histories are possible. Using a thermodynamically-constrained averag-

ing approach, Hassanizadeh and Gray (1990) derived an extended theory of capillar-

ity. According to their results, capillary pressure is not only a function of saturation

but also of specific areas of the three interfaces that are present in a two-phase flow

system:

P c = f(Sw, aαβ);αβ = wn,ws, ns (3.2)

where aαβ[L−1] denotes the specific area of αβ-interface; that is, the area of αβ-

interface per unit volume of the porous medium. Here, subscriptsw, n, and s denote

wetting phase, nonwetting phase, and solid phase, respectively. Later, Hassanizadeh

and Gray (1993a) suggested that the role of ws-and ns-interfaces are not significant

and proposed a simpler relationship:

P c = f(Sw, anw) (3.3)

where anw denotes the specific area of wn-interface, which we refer to it simply as

specific interfacial area in the remainder of this paper. Equation 3.3 prescribes a

surface relating capillary pressure, saturation and interfacial area. Hassanizadeh and

Gray (1993a) conjectured that the resulting surface might be the same for drainage

and imbibition; i.e. it might be devoid of hysteresis. This conjecture has been in-

vestigated in few studies using computational and experimental approaches (see

e.g. Chen and Kibbey, 2006, Held and Celia, 2001, Reeves and Celia, 1996). In experi-

mental studies, many researchers have tried to measure the interfacial area under

static conditions. These techniques are mostly categorized under two main groups;

tracers or imaging techniques. Aqueous tracers have been used by Anwar et al.

(2000), Brusseau et al. (1997), Chen and Kibbey (2006), Karkare and Fort (1996),Kim et al.

(1997), Saripalli et al. (1998), Schaefer et al. (2000), and gas tracers have been used

in some other studies such as Brusseau et al. (2006), Costanza-Robinson and Brusseau

(2002), Kim et al. (1999). Imaging techniques have been used by Al-Raoush and Will-

son (2005a,b), Cheng et al. (2004), Culligan et al. (2004), Montemagno and Pyrak-Nolte

(1995),Wildenschild et al. (2002); and Schnaar and Brusseau (2005, 2006).

Computational approaches have been mainly based on pore-network modelling

or lattice-Boltzmann models. A valuable tool for the theoretical study of two-phase
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flow in porousmedia is pore-networkmodelling (traditionally called pore-scale net-

work modelling, which is unnecessarily long), introduced for the first time by (Fatt,

1956). This tool has been used extensively by many researchers for studying various

processes in porous media (e.g. Blunt et al., 2002, Burganos and Payatakes, 1992, Dias

and Payatakes, 1986a, Gielen, 2007, Reeves and Celia, 1996). In addition to using pore-

network models for theoretical studies, some researchers have tried to develop pre-

dictive models for various purposes. Vogel (1997, 2000), Vogel and Roth (1998) used

the serial sectioning technique to produce a representative pore-network, and mod-

elled soil relative permeability. Hui and Blunt (2000) have also modelled the relative

permeability for a three-phase system using a bundle of tubes of different sizes with

constant triangular cross sections. Blunt et al. (2002) have concluded that by com-

bining an appropriate pore-scale physics with a geologically representative descrip-

tion of the pore space, one can produce capillary pressure and relative permeabil-

ity curves for a given rock without actual measurements. They produced primary

drainage and water-flood relative permeabilities for Berea sandstone using pore-

network modelling. Piri and Blunt (2005a) developed a pore-scale model, which

included all important features of immiscible fluid flow at the pore-scale, such as

wetting layers, spreading layers of the intermediate-wetting phase, hysteresis and

wettability alteration. Themodel computes relative permeabilities, saturation paths,

and capillary pressure for any displacement sequence. They have reported a good

agreement between experiment and simulation results for the relative permeability

in a two-phase (water-wet) system.

Despite the wide interest in measuring and /or calculating specific interfacial

area and capillary pressure, there are surprisingly very few works on the validity

of Equation 3.3. There are some experimental studies where anw-Sw curves are pro-

duced (see e.g. Chen and Kibbey, 2006, Cheng et al., 2004). These curves are all found

to be hysteretic. In the recent experiments by Cheng et al. (2004), anw-P c-Sw surfaces

are obtained. They find that the drainage and imbibition surfaces have a difference

of only 2.77%.

The first theoretical studies of Equation 3.3 were done by Reeves and Celia (1996)

and later by Held and Celia (2001) using pore-network models. They developed a

static pore-scale cubic lattice network model that included spheres and bi-conical

elements representing pore bodies and pore throats, respectively. They did not con-

sider trapping during drainage in their simulations. They could produce smooth

and well-behaved three-dimensional surfaces relating saturation, interfacial area,

and capillary pressure, based on successive drainage and imbibition cycles. The

drainage and imbibition surfaces obtained by Reeves and Celia (1996), however, were

distinctly different. So, they concluded that P c-Sw-anw surface was still hysteretic.

Moreover, they noticed that the surface was not monotonic; for a given anw and
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Sw two different values of P c were possible. This led to the proposition to replace

Equation 3.3 with a relationship for fluid-fluid interfacial area:

anw = F (Sw, P c) (3.4)

Later, Held and Celia (2001) showed that the hysteresis in the anw-Sw-P c surface

could be almost eliminated if a certain choice of fluid displacement parameters is

used. For some specific values for snap-off and local coefficients related to the fluid

configuration, they found a separation of less than 1.5 % between imbibition and

drainage surfaces. Because the required displacement rules were in agreement with

commonly observed experimental condition, they argued that the modelling of hys-

teresis in capillary pressure-saturation curves through inclusion of fluid-fluid inter-

facial area in the formulation of two-phase flow theories is a real possibility. In a re-

cent work, Helland and Skjæveland (2007) have also studied anw-Sw-P c relationship

using mixed-wet triangular bundle of tubes. They have concluded that very dif-

ferent trends in the specific interfacial area vs. saturation curves can occur during

imbibition, depending on the reversal point after primary drainage and the advanc-

ing contact angle. In addition, they found that hysteresis can be present between

imbibition and secondary drainage if contact angle hysteresis is assumed. They also

concluded that a more complex model is required if one is to consider effect of phase

entrapment and snap-off events.

It is evident that the effect of interfacial area on P c-Sw relationship has been

studied in very few works. Also, so far no one has studied the role of interfacial

area in kr-S
w relationship. In this study, we focus on understanding the relation-

ships among interfacial area, capillary pressure, saturation, and relative permeabil-

ity, using pore-network models. We will show that the inclusion of interfacial area

in Sw-P c and kr-S
w relationships may lead to a very significant decrease in the

hysteresis observed in these curves. Two different static pore-networks have been

developed, and the aforementioned relationships have been studied. One is based

on Fatts model and has only one element type, namely pore throat. The second one

is a sphere-and-tube model with both pore bodies and pore throats. We have stud-

ied Representative Elementary Volume (REV) size, side boundaries effect, effect of

trapping assumptions, and the role of pore size distribution in our models. We in-

vestigate the role of interfacial area in qualifying hysteresis observed in P c-Sw and

Sw-kr relationships. To this end, we have produced surfaces linking capillary pres-

sure and saturation to interfacial area (P c-Sw-anw surface) as well as saturation and

relative permeability to interfacial area (Sw-anw-kr surface).
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3.2 Model description

3.2.1 Model structure

We have developed two types of pore-networks. Both of them have a fixed co-

ordination number of six. The first network is based on Fatts model (Fatt, 1956). It

consists of tubes only and is hereafter called the tube network. No volume is assigned

to the nodes, where tubes are connected to each other. The second network consists

of tubes and spheres, which represent pore throats and pore bodies, respectively.

We refer to it as the sphere-and-tube network. The cross section of network elements

is considered to be circular. Radius distribution of pore bodies in the sphere-and-

tube network, and radius distribution of pore throats (tubes) in the tube network

have been generated using a truncated random log-normal number generator. In

the tube network, after generating the radii of the pore throats, their lengths are

determined. We use a relationship between the radius and the length of a pore for

sandy soil suggested by Fatt (1956):

l = Cr−1 (3.5)

in which, l is the pore length [L], C is an empirical constant[L2], and r is the ra-

dius of pore [L]. It is clear that using this relationship, the ends of the tubes do not

necessarily fall on lattice points. In fact, we do not specify how the tubes are geo-

metrically connected to each other. In the sphere-and-tube network, the length of a

pore throat is equal to the spacing of the lattice points minus the sum of radii of the

two neighboring pore bodies. The radius of a pore throat is also determined from

the radii of neighboring pore bodies. In real porous media, it has been observed

that the pore throat radius is correlated with the radii of neighboring pore bodies

(see e.g. Al-Raoush and Willson, 2005a,b). Thus, we have formulated a procedure, ex-

plained in the Appendix A, to determine the radius of a pore throat based on radii

of neighboring pore bodies. The porosity of the network is calculated from the sum

of volumes of all pore bodies and pore throats divided by the total volume of the

lattice. For fluid displacement simulations, the pore network is considered to be

connected at the top to a nonwetting phase reservoir, and at the bottom to a wetting

phase reservoir. Side faces are assumed to be no-flow boundaries.

3.2.2 Trapping assumptions

For drainage, we have employed two different algorithms regarding the trapping

of the wetting phase. In one case, it is assumed that the wetting phase in a pore

can be displaced by the nonwetting phase, only if the former is connected to its
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Figure 3.1: Schematic illustration of the trapping assumptions during drainage

boundary reservoir. This means when the neighboring pore bodies of a pore throats

are filled with the nonwetting phase, that pore throat is considered to be trapped.

We refer to this as tight trapping. For example in Figure 3.1, if we assume tight

trapping, the tube ij will be trapped due to the occupation of the neighboring pore

bodies by invading phase. However, in real porous media, it is possible for the

wetting phase in a trapped pore throat to escape if at least one of the neighboring

pore throats is still connected to the wetting phase reservoir. We refer to this as

loose trapping. So, for example, tube ij in Figure 3.1 may be still drained into tubes

il and jk. If, however, tubes il and jk are also filled with nonwetting phase, the

tubes ij remains trapped. The trapping assumptions can be seen as a consequence

of the real geometrical and topological characteristics of voids. With loose trapping

assumption, possibility of occurrence of an individual trapped pore element is less

than that of the tight trapping cases. Figure 3.2 schematically shows individual and

cluster trapped configurations for loose trapping assumptions.

For imbibition we have applied the tight trapping assumptions, since the wet-

ting phase intends to fill the corners. When the neighboring pore bodies of a pore

throats are filled completely with the wetting phase, that pore throat is considered

to be trapped. In our simulations of imbibition, no snap-off has been considered.

Mahmud and Nguyen (2006) have shown in a recent study that the occurrence fre-

quency of piston-like movement of the wetting phase for contact angles larger than

30 degrees in a spatially uncorrelated network is about twice that of snap-off move-

ments. According to their conclusion, if there is no spatial correlation between the

pores (similar to our pore-network model), the role of snap-off movements in fluid

configuration is not important. Thus we have not considered the snap-off mecha-

nism in our simulations.



3.3. Numerical experiments 83

Connected to the Invading Fluid's 
Reservoir

Connected to the Receding Fluid's 
Reservoir

�������	
�	

��
����	�
��

��������
�	

��
����	�
��

Figure 3.2: Schematic presentation of individual and cluster trapped pore

3.3 Numerical experiments

Conventional drainage and imbibition experiments have been simulated with the

two pore networks. Primary and/or main drainage and imbibition curves as well as

scanning curves are obtained following the procedure described farther below. For

an imposed capillary pressure, the occupancy of pore throats and pore bodies, under

imbibition or drainage and assuming equilibrium, has to be determined. To do so,

we need to have the entry capillary pressure for a pore throat, which is calculated

using Young-Laplace equation:

P c = Pn − Pw =
2σcosθ

r
(3.6)

where σ is the interfacial tension [MT−2], r is the radius of pore [L], and θ is the

contact angle between solid surface and fluid-fluid interface. The entry pressure

of a pore throat in our network is always larger than that of its neighboring pore

bodies, because it has a smaller radius than the connected pore bodies.

At any imposed capillary pressure, saturation of each phase can be easily calcu-

lated as we know the occupancy of the network. We can also calculate the interfacial

areas as we know the location of fluid-fluid interfaces for any given configuration of

fluids. During drainage, interface area is calculated based on the radius of the pore

throats where the interface is located. However, during imbibition we may also

interface in the pore bodies. The interface area in pore bodies is calculated based

on the curvature of interface, which can be obtained from Equation 3.6, for an im-

posed capillary pressure. As shown in Figure 3.3, we have not considered existence

of multiple interfaces in a pore body even if the wetting phase enters a pore body

through two or more pore throat. Area of the interface is calculated based on the
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curvature assigned by the imposed capillary pressure. Thus, at each capillary pres-

sure, corresponding wetting (or nonwetting) saturation and interfacial area will be

known. So, our simulations result in a large number of P c-Sw-anw data points. Us-

ing these data, and producing P c-Sw-anw surfaces for drainage and imbibition, we

can investigate the role of interfacial area in eliminating the hysteresis observed in

P c-Sw curve.

3.3.1 Drainage steps

Initially, the network is assumed to be saturated with the wetting phase. The pres-

sure of the wetting phase reservoir is assumed to be zero and not changing. There-

fore, the pressure of wetting phase in all pores connected to the wetting phase reser-

voir is also zero until a pore becomes trapped. Initially, the pressure of nonwet-

ting phase reservoir is zero, and thus the imposed capillary pressure is also zero.

Primary drainage simulations start by increasing the pressure of nonwetting phase

reservoir until it exceeds the entry pressure of the largest pore throat connected to

the reservoir. As the radius of a pore body is larger than that of a pore throat, the

controlling element is the pore throat. Thus, as soon as the pressure is high enough

to enter a pore throat, nonwetting phase will occupy that pore and the connected

pore body. When no other pores can be occupied in that pressure step, the non-

wetting phase pressure will be increased and more pores will be occupied by the

nonwetting phase. Drainage continues, with incrementally increasing nonwetting

phase pressure, until the last row of pore throats is filled by the nonwetting phase.

Scanning drainage curves are obtained following imbibition simulations by revers-

ing the imbibition process (described below) at various saturations.

3.3.2 Imbibition steps

Imbibition is simulated by decreasing the pressure of nonwetting-phase reservoir

(or increasing the pressure of wetting-phase reservoir), causing the nonwetting

phase to recede. The replacement of the nonwetting phase by the wetting phase

starts from those pore throats that have the highest entry pressure (smallest size).

Then, as shown in Figure 3.3, the wetting phase enters the neighboring pore body

and stops at a position with a curvature corresponding to the imposed capillary

pressure. In each pore body, one interface is permitted, regardless the occupancy

of the connected pore throats. As the capillary pressure is decreased, the wetting

phase gradually fills the pore body. As soon as the interface radius is equal to the

pore body radius, the rest of the pore body and the connected pore throats will be

filled up instantaneously by the wetting phase. Hence, the governing element dur-
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Figure 3.3: Schematic of interface positioning during imbibition. R is radius of pore body, r

is radius of interface dictated by the imposed capillary pressure, and θ is the contact angle.

The pore body will be filled up gradually controlled by r. As soon as r is equal to R, the pore

body will be filled up instantaneously.

ing imbibition is the pore body.

3.3.3 Relative permeability

Relative permeability for each phase is commonly determined as a function of aver-

age saturation. The relationship is known to be hysteretic. We would like to estab-

lish whether wetting-nonwetting interfacial area plays a role in this relationship. In

this section, we describe how relative permeability is determined for a succession

of different fluids configurations in a network, corresponding to the full range of

saturation. As described above, in simulations of drainage and imbibition at any

imposed P c, we obtain a static fluids configuration in the network. For each con-

figuration, we calculate the relative permeabilities for the two phases. This will be

done by assigning a pressure difference within each phase across the network, and

calculating flow rate and consequently relative permeability for each phase. The

flow rate in each pore throat is calculated using the Poiseuilles formula:

qij =
π

8µ
r4ij
Pi − Pj

lij
(3.7)

in which qij is the discharge through the tube from pore body i to j, µ is the viscosity,

Pi and Pj are the pressures in pore bodies i and j, respectively, and lij is the length
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of the pore throat. The volume balance for each pore body i would require:

Ni∑

j=1

qij =
π

8µ

Ni∑

j=1

r4ij
Pi − Pj

lij
= 0 (3.8)

Writing this equation for each pore body results in a set of linear equations, Ax =b,

which can be solved for the pressure in each fluid phase. In matrix A, for a given

phase, only those pore bodies are involved that are connected to both upstream and

downstream reservoirs, as there is no flow in dead-end or isolated pores. Having

determined the pressure field in the network, the total flow rate through the network

for each phase can be calculated.

3.4 Results and discussion

3.4.1 REV in a pore-network model

One of the first questions we investigated was the minimum network size for which

the results become insensitive to the network size. This representative network size

may be considered to correspond to the Representative Elementary Volume (REV)

for the porous medium being modelled. The REV size of the network has been

determined based on the value of irreducible saturation as well as Sw-anw relation-

ship. Determination of REV is also essential for testing the validity of results for a

given statistical distribution and for saving computer time and memory, as we do

not want to work with a too large network. Figure 3.4a shows values of irreducible

wetting phase saturation for different sizes of network. It confirms that irreducible

saturation does not change significantly for cubic networks larger than 40 nodes in

each coordinate direction. Similarly, Figure 3.4b shows that for a specific statistical

distribution of pore elements, the slope of Sw-anw curve is not significantly influ-

enced by the cubic network size larger than 40 nodes. We are also interested to see

what the effect of no-flow side boundaries on the results is. This is done by vary-

ing the size of the network cross section perpendicular to the flow, and comparing

resulting P c-Sw and Sw-anw curves of sphere-and-tube network and tube network,

given in Figures 3.5a and 3.5b, respectively. As it is illustrated, results of networks

with cross sections of 10×40 nodes and 40×40 nodes are almost identical. Thus, we

conclude that there is no effect from assuming no-flow side boundaries of the net-

work. However, as expected, there is a significant difference between the results of

2-dimensional (e.g. 1×40×40) networks and 3-dimensional networks (e.g. 2×40×40

or larger). This is mainly due to the differences in the coordination number. Co-

ordination number for internal nodes of the 1×40×40 network is 4, for 2×40×40
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Figure 3.4: REV definition for networks in terms of irreducible saturation and anw curve. a)

Irreducible saturation vs. size of network b) Specific anw vs. Sw during drainage for tube and

sphere-and-tube networks with different sizes of 40, 20 and 10 nodes.

network is 5 and, for larger networks is 6. A smaller coordination number means

less possibility for escape of the receding phase, and this influences the results sig-

nificantly.
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Figure 3.5: Effect of boundary on P c-Sw and Sw-anw curves for drainage. a) Sphere-and-tube

network. b) Tube network. Dashed lines show Sw-anw relationship, and solid lines show P c-

Sw relationship. The full size network is a cubic 40-node network. The curves are shown for

different cross section sizes normal to the flow direction.

3.4.2 Effect of trapping assumptions

As shown in Figure 3.6a, variation of interfacial area with saturation can be influ-

enced by different trapping assumptions we make in the simulations. Figure 3.6a

shows the variation of interfacial area with saturation under three different assump-
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tions; no trapping, loose trapping and tight trapping. Drainage simulations with

these three assumptions are done up to the irreducible saturation. Under the tight-

trapping assumption, interfacial area increases monotonically with decreasing satu-

ration during drainage, while in no-trapping or loose trapping conditions it reaches

a maximum value. In the saturation range of 100% to 55-60%, all curves are al-

most the same. As the invasion of nonwetting fluid into the porous medium occurs,

more and more interfacial area is created until the clusters of invading fluid recon-

nect. At that stage, in some parts of the network, not only no new interfacial area

is created, but also interfacial area disappears due to the re-connection of invading

clusters. The tight trapping and no-trapping curves show the extremes of anw-Sw

curves for various trapping assumptions. Figure 6a illustrates that the trapping con-

ditions can control the irreducible saturation to be 0%, 15%, or 30% for no-trapping,

loose-trapping, or tight-trapping conditions, respectively.

Qualitative comparison between our results and experiments on real porous me-

dia (Figure 3.6b) suggests that loose-trapping assumption in modelling seems more

in agreement with some real porous media. In addition, the order of magnitude of

specific interfacial area in simulations is in agreement with measurements done us-

ing imaging techniques in real porous media (see e.g. Brusseau et al., 2006, Culligan

et al., 2004, 2006).

3.4.3 P c-Sw and Sw-anw relationships

Figures 3.7 and 3.8 show P c-Sw and Sw-anw curves, respectively, from a series of net-

works with different pore size distributions. These curves have been obtained from

tube and sphere-and-tube networks with loose-trapping assumption. Log-normal

distributions of pore body radii with mean and standard deviation of 0.065 mm and

0.02 mm, respectively, have been employed. In each case, curves for 20 realizations

for uncorrelated networks as well as the average curve with cubic size of either 20

or 40 nodes are shown. With increasing network size, band width of variation of

P c-Sw and Sw-anw curves decreases. This implies that to obtain the average P c-Sw

and Sw-anw curves of a specific pore-network model, with increase of network size,

fewer realizations will be required. Furthermore, our simulations showed (not pre-

sented here) that for larger variances more realizations are required to achieve the

average behaviour.

As seen in Figure 3.7, the two types of networks produce differentP c-Sw curves.

This is partly due to the fact that we assign the same size distribution to pore bodies

in the sphere-and-tube network, and to pore throats in the tube network. Thus, the

minimum size of the pore throats in the tube network is the same as the minimum

pore body size in the sphere-and-tube network. The latter is always larger than the
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Figure 3.6: Qualitative comparison between the model results and experiments for anw-Sw

relationship a) Variation of interfacial area with saturation under drainage for three different

trapping assumptions. Solid black line shows tight trapping, solid gray line shows loose

trapping and dashed gray line shows no trapping. b) Graph of specific interfacial area vs

saturation obtained by microtomography of glass beads (Culligan et al., 2006).

minimum pore throat size in that network. That procedure sometimes results in

very small pore throats. As a result, the range of capillary pressure and interfacial

area in the two networks are quite different.

Figure 3.9a shows that, as there is only one network element (namely pore

throats) in the tube model, it cannot reproduce hysteresis in a P c-Sw curve. Further-

more, as shown in Figure 3.9b, there is a jump in interfacial area at the beginning

of imbibition experiment in the tube network. Since there is no pore body, there is

no gradual change of interfacial area during imbibition, contrary to the sphere-and-

tube network results. As seen in Figure 3.9a, when the controlling elements during

drainage and imbibition are different (as in the sphere-and-tube network), hystere-
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Figure 3.7: P c-Sw curves for drainage with loose trapping assumption. Thin and thick solid

lines show realizations and the average curve, respectively.
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Figure 3.8: Sw-anw curves for drainage with loose trapping assumption. Thin solid and thick

lines show realizations and the average curve, respectively.

sis in P c-Sw curves can be produced. In recent experiments for determining the

Sw-anw relationship (see e.g. Culligan et al., 2004, 2006), it was found that the max-

imum interfacial area occurs at saturations around 30%. Figures 3.8 and 3.9 show

that this maximum value occurs at saturation of 25-30% in the sphere-and-tube and

at saturation of 45-55% in the tube network. It is evident that the behaviour of the
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Figure 3.9: TypicalP c-Sw and Sw-anw curves of drainage and imbibition for tube and sphere-

and-tube networks. a) P c-Sw relationship b) Sw-anw relationship. Solid lines are related

to the tube network and dashed lines show sphere-and-tube network results. Black lines

represent drainage, and gray lines represent imbibition.

sphere-and-tube model is more realistic in representing the soil characteristics than

the tube model. Although this result may have been expected, it is important to

have it established with the aid of model simulation.
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3.4.4 P c-Sw-anw surface

Using data points from primary and scanning curves of drainage and imbibition

simulations in sphere-and-tube network, we can produce a surface relating capil-

lary pressure, saturation and interfacial area. The full set of drainage and imbibition

curves are shown in Figures 3.10a and 3.10b, respectively. The corresponding in-

terfacial area points are plotted in Figure 3.10c. We were able to fit a second-order

polynomial surface to the data points. As shown in Table 3.1, there is a very good

correlation coefficient (0.956) for the fitted surface. We have also fitted two separate

surfaces to P c-Sw-anw drainage and imbibition data points as shown in Figure 3.11.

The mean absolute difference between these two surfaces is 8.5%. We also produced

such surfaces for a pore network with disconnected statistical distributions for pore

bodies and pore throats. As usual, the pore throats are smaller than pore bodies and

their distributions have no overlap. In this case (results are not presented here), the

mean absolute difference between the two surfaces was much larger (about 18%).

These results show that if the size distributions of pore bodies and pore throat are

correlated and show overlap, one may expect less difference between imbibition

and drainage surfaces. As Al-Raoush and Willson (2005a,b) have shown in their ex-

perimental measurements, the size distributions of pore bodies and pore throats do

have a large overlap and it is hard to distinguish pore bodies from pore throats in

real porous media. Thus we expect less difference between imbibition and drainage

surfaces in correlated pore-network models mimicking the reality, as compared to

uncorrelated pore-network models.

3.4.5 kw
r -S

w-anw surface

After calculating relative permeability at various average saturations in the sphere-

and-tube network, we can construct krw-S
w-anw surface similar to work done by

Reeves (1997). Figure 3.12a shows relative permeability-saturation curves for the

two phases during drainage and imbibition. It shows that the hysteresis observed

in the krw-Sw relationship is not as strong as the hysteresis observed in P c-Sw re-

lationship. Figure 3.12b shows a typical kr-anw relationship for the two phases. It

can be observed that at a given interfacial area, two different values for the relative

permeability are possible, and hysteresis observed in kr-a
nw relationship is more

significant than that of kr-S
w relationship. Finally, a three-dimensional representa-

tion of the krw-S
w-anw surface for the wetting phase is shown in Figure 3.12c. We

have fitted a second-order polynomial surface to P c-Sw-anw and krw-S
w-anw simu-

lation data of the sphere-and-tube network with loose-trapping assumption. Statis-

tical properties of the model results and fitted surfaces are shown in Table 3.1. We

see that the correlation coefficients are very high. We also found that the maximum
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Figure 3.10: Relationship among P c (N/m2), Sw, and anw (1/m) for a) Drainage curves b)

Imbibition curves (c) All P c-Sw-anw points with fitted second-order polynomial surface.

deviation happens during the primary drainage at high saturations. The equations

of fitted surfaces are as follows (in SI unit):

anw = 849 + 3858Sw − 0.224P c − 3992Sw2

+ 0.006Sw × P c + (1.28E − 5)P c2

krw = 1.26Sw − (4.39E − 4)anw − 0.32Sw2

+ (2.301E − 4)Sw × anw
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a

z=-0.552+7.404*x+6.15e-5*y-6.712*x*x-2.693e-4*x*y-2.089e-9*y*y

b

Figure 3.11: a) P c-Sw-anw drainage data points with fitted second-order polynomial surface

b) P c-Sw-anw imbibition data points with fitted second-order polynomial surface.

3.5 Summary and conclusions

We have studied relationships among capillary pressure, saturation, and interfa-

cial area (P c-Sw-anw) as well as relative permeability, saturation, and interfacial

area (krw-S
w-anw). To understand how network modelling algorithms influence the

results, two different pore-network models have been developed; a tube network

(similar to Fatts model) which has no pore bodies, and a sphere-and-tube network
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Table 3.1: Statistical properties of the model results and fitted surface

krw-S
w-anw Surface P c-Sw-anw Surface

Item R2=0.991 R2=0.956
Model Results Fitted Surfaces Model Results Fitted Surfaces

No. of Data Points 566 566 11887 11887
Mean 0.160 0.158 534.0 529.9
St. Deviation 0.163 0.162 346.0 343.0

with both pore throats and pore bodies. Our results show that the oversimplification

of the network influences the results significantly. In general, the sphere-and-tube

network produces more realistic results than the tube network. The tube network

is unable to produce hysteresis. Considering hysteresis in P c-Sw relationship as a

basis for resemblance of pore networks to the real porous media, we can conclude

that the two network elements, namely pore throats and pore bodies, are required

to produce hysteresis.

Based on the irreducible saturation for an uncorrelated pore size distribution

with sphere-and-tube lattice geometry, we need about 40 nodes in each direction in

order to have a representative network (REV). With an ensemble of 20 realizations,

we could produce representative P c-Sw-anw curves. The required size of ensemble

decreases with increasing the network size.

Two different trapping algorithms have been employed: loose trapping (which

mimics the escaping of wetting phase via corners of pores) and tight trapping

(which assumes that the wetting phase trapped in a pore cannot escape). Trapping

assumptions can influence significantly the form of Sw-anw curves as well as irre-

ducible saturation. However, the trapping assumption is not important in wetting

saturations larger than 55%. For the case of tight trapping, interfacial area increases

monotonically with decreasing saturation. But, for the case of loose trapping, the

variation is not monotonic and a maximum interfacial area can be observed at sat-

urations around 25-35%, similar to the experiments on the real porous media. It

implies that loose trapping assumption is more in agreement with real conditions.

Using data from the full range of scanning drainage and imbibition simulations,

we have constructed P c-Sw-anw and krw-S
w-anw surfaces. We have fitted a second-

order polynomial to these surfaces, with correlation coefficients of 0.991 and 0.956,

respectively. Furthermore, we have fitted a surface to the P c-Sw-anw data points

for drainage and imbibition, separately. These surfaces have been produced for two

networks with different values of statistical distributions of pore bodies and pore

throats. Results show that with increasing the overlapping part of the pore body

and pore throat size distributions, the absolute difference between the two surfaces
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Figure 3.12: Relationship among krw, Sw and anw. Solid lines correspond to the nonwet-

ting phase and dashed lines correspond to the wetting phase. a) Main and scanning krw-S
w

curves b) Main and scanning krw-a
nw curves (c) Fitted krw-S

w-anw surface with polynomial

equation.

decreases. This implies that in a real porousmedium, where there is no clear distinc-

tion between pore bodies and pore throats, we can expect a smaller difference be-

tween the surfaces. Results of relative permeability-interfacial area show that there

is a stronger hysteresis in krw-anw curves than in krw-S
w curves.

Results of this work suggest that inmultiphase systems, interfacial area can be an

essential variable in P c-Sw and krw-S
w relationships. It can help in diminishing or

eliminating the hysteresis that is commonly observed in P c-Sw and krw-S
w curves.
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Chapter 4

Pore-NetworkModel for a Micro-Model

Models are to be used, not believed.

H. Theil

Abstract

D
evelopment of pore-network models based on detailed topological data of the pore space is

essential for predicting multiphase flow in porous media. In this work, an unstructured

pore-network model has been developed to simulate a set of drainage and imbibition labo-

ratory experiments performed on a two-dimensional micro-model. We used a pixel-based

distance transform to determine medial pixels of the void domain of micro-model.

This process provides an assembly of medial pixels with assigned local widths that sim-

ulates the topology of the porous medium. Using this pore-network model, the capillary

pressure-saturation and capillary pressure-interfacial area curves measured in the lab-

oratory under static conditions were simulated. Based on several imbibition cycles, a

surface of capillary pressure, saturation and interfacial area was produced. The pore net-

work model was able to reproduce the distribution of the fluids as observed in the micro-

model experiments. We have shown the utility of this simple pore-network approach for

capturing the topology and geometry of the micro-model pore structure.

4.1 Objectives

O
ne of the approaches for constructing the pore geometry from the imaging data

is medial axis transform and skeletonization. Computationally, there are two

general methods to find the medial axis of a given geometry: pixel-based and pixel-

freemethods (see e.g. Brady and Asada, 1984,Chang et al., 1999,Montanari, 1969, Saint-

Marc et al., 1993). One may say that pixel-free methods are more precise than pixel-

based methods since their computations are not implemented in a discrete domain.

However, these methods also use pixelized input data acquired from imaging tech-

niques that require approximations in order to transform the data into polyhedrons

and lines. In these methods, mid-points or center lines of the pairs of contour ele-

ments bounding a shape are calculated analytically and are connected to generate
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the skeleton of a given geometry. Compared to pixel-free ones, pixel-basedmethods

are usually simpler and easier to implement. However, since they are implemented

on a discrete domain, they are not guaranteed to follow the exact medial axis. For

skeletonization and finding medial axis, one may use different algorithms such as

thinning algorithm (Lam and Lee, 1992, Smith, 1987), distance transformation, DT

(introduced by Rosenfeld and Pfalz, 1968), and medial axis transform, MAT (intro-

duced by Blum, 1967). Most of the existing pixel-based skeletonization methods

use thinning techniques (Lam and Lee, 1992), which have been used extensively in

many applications in biology, X-ray image analysis, finger print analysis, qualita-

tive metallography, soil cracking pattern, automatic analysis of industrial parts as

well as porous media (Lam and Lee, 1992). Distance transform has also many im-

portant applications in expanding or shrinking objects, reconstructing objects from

parts of a given boundary (Matsuyama and Phillips, 1984) as well as for comput-

ing Voronoi diagrams Ogniewicz and Ilg (1992), Ye (1988). MAT methods have been

used for computing many geometric properties (Chandran et al., 1992, Lee, 1982,Wu

et al., 1986, 1988). In fields related to porous media, some researchers such as Glantz

and Hilpert (2007, 2008), Lindquist (2002) have employed medial axis transform con-

cept to extract topology and geometry of a porous medium. Glantz and Hilpert

(2007) have applied their pixel-free approach to simulate a drainage experiment on

a two-dimensional porous medium composed of circular grains. Subsequently, they

simulated the P c-Sw curve for a drainage experiment in a three-dimensional space

porous medium (Glantz and Hilpert, 2008).

In this work, we use a pixel-based method to develop an unstructured pore-

network model to simulate micro-model experiments performed by Cheng (2002).

Their micro-model had a porosity > 66% and had irregular pore geometry. Porous

media with high porosities (40% to 98%) are found in many industrial applications

such asmetallic thin-fiber material andmetallic powder, which are used in the trans-

portation industry (Dubikovskaya et al., 1990), and in manufacturing capillary struc-

tures (Reimbrecht et al., 2003). Due to these special features of the micro-model, con-

ventional pore-network models with pore body and pore throat elements are not

suitable. Thus, we have employed the medial pixel concept to extract the skeleton

of the micro-model. We have used a pixelized distance transform to identify the me-

dial pixels and the pore width at every pixel. As a result, the real pore geometry and

topology is captured without losing significant information. With our pore network

mode, we have simulated a set of quasi-static drainage and imbibition laboratory

experiments performed on a two-dimensional porous micro-model porous (Cheng

et al., 2004). We demonstrate the capabilities of the model by simulating fluid config-

urations observed in the micro-model as well as by calculating capillary pressure-

saturation (P c-Sw) and interfacial area-saturation (Sw-anw) curves that agree well
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Figure 4.1: a) Pattern of the micro-model, black color shows the solid b) Pore network model

representation as an assembly of the medial pixels (1pixel≈0.3 µm)

with the measured data. A P c-Sw-anw surface for imbibition cycles also agreed

with the experimental data.

4.2 Materials and experiments

Cheng (2002) and Cheng et al. (2004) performed fluid invasion experiments on two-

dimensional micro-models with random pore structures. Details of the fabrication

procedure and the experiments can be found in Cheng (2002). The main objective of

the Cheng (2002) and Cheng et al. (2004) micro-model experiments was to investigate

the conjecture ofHassanizadeh and Gray (1990) that capillary pressure (P c) is not only

a function of saturation (Sw), but also of interfacial area between non-wetting and

wetting phases (anw). Their work provided experimental support for the theoretical

prediction that the capillary-dominated subset plays a role analogous to a state vari-

able. The goal of our study is to use pore network modelling to reproduce the fluid

distributions and the P c-Sw-anw relationship observed in their experiments based

on the pore geometry of the micro-models.

The micro-model measured approximately 600µm × 600 µm with a constant

depth of 1.28 µm (Figure 4.1).

The pores had a rectangular cross-section of variable width but with a constant

height. The porosity of the porous mediumwas around 62%-64%. The micro-model

was completely transparent which enabled direct visualization and imaging of fluid

distributions within the pores using a microscope with a 16x objective and a CCD

camera. From the images of the micro-model, fluid saturation, interfacial area and

interfacial curvature were determined. During the experiments, the micro-model

was placed horizontally on a microscope to avoid the gravitational effects. An ex-
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ternal pressure transducer was used to measure the non-wetting phase (nitrogen)

pressure. The wetting phase (decane) reservoir was open to atmosphere. In the

two-phase displacement experiments of Cheng et al. (2004), nitrogen was used as

the non-wetting phase and decane as the wetting phase. The contact angle of the

wetting phase with the glass is 4.4◦ and with the photoresist material is 4.1◦. The

fluid-fluid interfacial tension is 24.7 dynes/cm. Images of fluid distributions in the

micro-model were recorded for drainage and imbibition cycles.

At the start of a drainage experiment, the micro-model was saturated with the

wetting phase (decane). Non-wetting phase (nitrogen) was injected into the model

by manually increasing the nitrogen pressure in small increments to avoid sudden

flooding of the micro-model. At each pressure step, the system was allowed to equi-

librate. Then, an image and pressure reading were taken. A drainage experiment

was continued until nitrogen gas reached the wetting reservoir. Contrary to stan-

dard capillary pressure cells, there was no hydrophilic membrane placed at the exit.

So, the non-wetting phase entered the wetting reservoir (breakthrough) at which

time the drainage experiment was halted. At the end of drainage test, there was still

a significant amount of the wetting phase present in the micro-model. Then, an im-

bibition experiment was performed by reducing the non-wetting phase pressure in

small increments and at each pressure step allowing the system to equilibrate. The

imbibition experiment was continued until the micro-model was almost 100% satu-

rated with the wetting phase. An archive of the images from the Cheng et al. (2004)

experiments and other micro-model experiments (Chen et al., 2007, Pyrak-Nolte et al.,

2008) have been placed on a website for downloading (Pyrak-Nolte, 2007).

Based on images of the experiments, fluid configurations during imbibition were

more complicated than those observed from the drainage experiments. At the end

of an imbibition experiment, no non-wetting fluid remained in the micro-model.

This suggests that trapping mechanisms were absent in this system. In particular,

fluid movement should have been piston-like with no snap-off occurring. However,

images from imbibition experiments showed that cooperative filling of the pores by

the wetting phase was dominant pore-filling mechanism in this micro-model pore

structure. The image in Figure 4.2 shows an example of cooperative filling in the

micro-model. During imbibition, the wetting-non-wetting interface spans several

pores, whereas during drainage, the interfaces moved in individual pores.

4.3 Pore-network model description

To develop an unstructured pore network, a binary image of the air-filled micro-

model is used. In the image, the pore space (void domain) and its boundaries (solid
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Figure 4.2: An example of cooperative pore filling during imbibition (blue is wetting fluid,

red is nonwetting fluid, hashed is the solid) a) An image of micro-model experiment b)

Schematic presentation of cooperative-filling interface

domain) are visible with a resolution of 0.6µm per pixel (Figure 4.1a). The skele-

ton of the micro-model, and the local pore width are needed to simulate the pore

geometry. We have developed a pore-network model using a pixel-based distance

transform to identify the medial pixels of pores, i.e., the pixels along the center of

the channels that are equidistant from the pore channel walls. This approach is rel-

atively simple compared to pixel-free methods.

4.3.1 Determination of medial pixels

We used a Distance Transform,DT, to generate a distance map from a binary image

of the micro-model. Each pixel in the void domain was given a value indicating

the shortest distance to the solid pixels (pore walls). Then, the value of each pixel

was compared to the value of the neighboring pixels. A so-called flow operator

(Jensen and Domingue, 1988) was applied to define the direction of the maximum

gradient in a two-dimensional space. A search algorithm was used to indentify the

medial pixels. A detailed explanation of the algorithm is given in Appendix B and

an example of the procedure is shown in Figure 4.1(b).

4.3.2 Determination of fluids distribution

Our goal was to obtain the same fluids distributions using our pore network model

as those observed in the micro-model. The fluids distribution is dictated by fluid

pressures imposed on the model, the equilibrium of capillary forces within the

pores, and the history of the displacement. During drainage, only those pores with
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Figure 4.3: Configuration of a meniscus in the corners of a rectangular pore. a is the depth

of micro-model and b is the local pore width. Half of a corner meniscus with rc radius of

curvature has been magnified in the right side. Total length of contact line between solid

and nonwetting phase is denoted by Lns and total length of contact line between nonwetting

phase and wetting phase is referred to as Lnw .

entry capillary pressures smaller than the imposed capillary pressure were invaded

by the non-wetting phase. The entry pressure varies among the pores because the

pores in the micro-model have variable cross sections. Therefore, an entry pressure

was calculated for each cross sections for all of the pores.

The entry pressure depends on the fluid-fluid interfacial tension(σnw), the pore

size, pore geometry, and the contact angle (θ). As shown in Figure 4.3, the pores

in the micro-model have a rectangular cross-section, and their boundary is partly

glass and partly photoresist material. We denote the depth of the micro-model by

a and the pore width by “b”. Because the difference between the contact angles of

the fluid-glass and of fluid-photoresist is insignificant (∼ 0.3◦ degree), we employ a

single value of contact angle in our calculations. The entry pressure,P c
e , for a pore

with rectangular cross section is calculated from the following formula which is

derived in Appendix D.

P c
e = σnw


−(a+ b)cosθ +

√
(a+ b)2cos2θ + 4ab(π

4 − θ −
√

2cos(π
4 + θ)cosθ)

4(π
4 − θ −

√
2cos(π

4 + θ)cosθ)




−1

(4.1)

Thus, for a given P c imposed on the micro-model, the fluid-fluid interface advances

to all cross sections with an entry pressure less than P c (i.e., P c
e ≤ P c), provided the

pore is connected to the wetting phase reservoir. If the interface reaches a diverging
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cross section, the rest of the pore will be filled up by the non-wetting phase. But,

for a (partially) converging pore, the interface will stop at the location where the

corresponding P c
e is equal to P c. It will only move farther after P c is increased

again. When the location of the interface is known, a local pore width is used to

determine the planar arc length of the interface. Because the depth of the mico-

model is constant, the interfacial area of the main terminal interface is simply the arc

length times the micro-model depth. For imbibition, the reverse occurs. The wetting

phase will re-enter smallest pores first. In a diverging pore, the meniscus will stop

at a location whose local P c
e is equal to P c. Converging pores will be completely

filled at once.

4.3.3 Trapping assumptions

In determining the displacement of one phase by another, wemust take into account

that we may have trapping of the wetting phase during drainage and trapping of

the non-wetting phase during imbibition. In general, during drainage, trapping can

occur in two ways. First, wetting phase always exists in the corners of a pore and

the amount of wetting phase in the corners will decrease if P c, is increased and if

the corners are connected to the wetting reservoir. For this type of trapping, there

is always an interface in the crevices called “corner meniscus”. The second type of

trapping is caused by the blockage of some pores. In this case, an interface spans the

pore cross-section and it is called a “main terminal meniscus” (Piri and Blunt, 2005a).

Because of the two-dimensionality of the micro-model and the resolution of images,

only the second-type of trapping is visible. The corner menisci are not observed in

the images and cannot be quantified from the images. Therefore, to simulate the

analysis of the expeirments performed by Cheng et al (2004), our calculations do

not take into account the wetting phase in the corners of the rectangular pores nor

the interfacial area of the corner menisci.

Trapping of main terminal menisci can have a significant effect on fluids dis-

tribution and consequently on the interfacial area-saturation (anw-Sw) relationship

(see e.g. Joekar-Niasar et al., 2008). The trapping assumptions made for simulations

of drainage and imbibition experiments are discussed separately. For drainage ex-

periments, we can consider two different possibilities. One possibility is to assume

that the wetting phase is never trapped. This can be justified based on the fact that

the wetting phase, which always remains present in the corners of pores, provides

a continuous path for the wetting phase to escape to its corresponding reservoir.

This means that the wetting phase can be fully drained from all pores if the im-

posed capillary pressure is sufficiently high. Another possibility is to assume that

the wetting-phase-filled corners of the pores do not act as conduits for the flow of
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the wetting phase. In this case, we can assume that the wetting phase gets trapped

in pores that are not connected to the wetting phase reservoir through other (par-

tially) filled pores. Joekar-Niasar et al. (2008) have shown that the shape of anw-Sw

curve (calculated based on main menisci interface) is dictated by the trapping as-

sumptions. A monotonic increase of interfacial area, with a decrease in saturation

will be obtained if we allow trapping of main terminal menisci. A nonmonotonic

anw-Sw curve, however, is found if we impose a loose or no trapping mechanism.

This occurs because some main terminal interfaces will be reconnected. Such a re-

connection has been observed in the experiments, as illustrated in Figure 4.4, which

shows fluid configurations at two different pressures during the drainage exper-

iment. Based on this observation, no trapping of the wetting phase is assumed

in our simulations. But, to illustrate the effect of the trapping assumption, one of

the drainage simulations has been shown with a simple trapping rule. Based on

this rule, the wetting phase in a cell of the pore network is trapped if there is no

neighboring cell filled with the wetting phase and connected to the wetting phase

reservoir. Trapping mechanisms during imbibition are different and more compli-

cated compared to those that occur during drainage. Previous studies have shown

that displacement mechanisms during imbibition may be attributed to the follow-

ing factors: a) pore size distribution, b) fluid occupancy in pore throats connected

to a pore body, and/or c) pore throat to pore body diameter ratio. Lenormand and

Zarcone (1983, 1984) have suggested different mechanisms for imbibition into a pore

body that depends on the fluid topology of the neighboring pore throats. According

toWardlaw and Yu (1988) and Ioannidis et al. (1991), little variability of pore size, and

small pore body to pore throat diameter ratio are factors that increase the effects of

fluid topology in determining the non-wetting phase withdrawal sequence. Such lo-

cal geometrical features result in a mechanism called cooperative filling. Figure 4.5

shows a schematic of interface configurations subjected to cooperative pore filling

for two different cases. When the ratio of pore body to pore throat diameter is large

(small pore throats), interfaces remain within a pore body. However, when the ratio

of pore body to pore throat diameter is small, imbibition phenomena are controlled

by the fluid topology, and the efficiency of wetting invasion increases significantly

(Mahmud and Nguyen, 2006, Vidales et al., 1998) and the effect of snap-off decreases.

As observed in the micro-model experiments, there is no trapping at the end of the

imbibition experiments. We conclude that snap-off is absent in the experiments and

is not one of the major mechanisms of trapping of nonwetting phase (Chatzis and

Dullien, 1981). Absence of snap-off occurs when the pore body to pore throat di-

ameter ratio is small which results in an interface that bridges over several pores.

This results in a large radius of curvature and consequently a low capillary pres-

sure. The interface will maintain a stable position as well as continuity to the non-
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Figure 4.4: Reconnection of main terminal interfaces due to under untrapped conditions.

Two successive images during drainage experiment show that interfacial area can decrease

due to the interfaces reconnection.

wetting phase reservoir until the global capillary pressure during imbibition is re-

duced enough to allow invasion of wetting phase. Thus in cooperative filling, a low

capillary pressure is required for the wetting phase to fill the pore body completely.

It is difficult and computationally expensive to capture the geometry of inter-

faces based on a cooperative filling mechanism when using a skeleton-based pore-

network model. Thus, cooperative filling has not been modelled explicitly. How-

ever, its effect, namely the decrease in residual non-wetting saturation has been in-

corporated in the model using a local network rule, referred to as forced displace-

ment. This rule allows invasion of the wetting phase into pore as long as it doe not

break the continuity of the non-wetting phase connection to the non-wetting phase

reservoir (i.e. no snap-off occurs during imbibition).
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Figure 4.5: Interfaces at positions of break-off in the pores with different pore to throat diam-

eter ratios; (A) has larger ratio than (B) (Wardlaw and Yu, 1988)

4.3.4 Simulation of experiments

The numerical analysis started with drainage simulations because the micro-models

in the experiments were initially saturated with wetting phase. The wetting phase

pressure was assumed to be zero in the entire pore network. Initially, the pressure

of the non-wetting phase, and thus the network capillary pressure, was set equal to

the entry capillary pressure of the largest pore(s) bordering the non-wetting phase

reservoir. Then, the non-wetting phase pressure was increased incrementally. At

each increment, only those pores connected to the non-wetting phase reservoir are

invaded if their entry pressure was smaller than or equal to the imposed capillary

pressure. At each displacement, saturation and specific interfacial area were calcu-

lated.

Drainage simulations were halted after the breakthrough of the non-wetting

phase. Then, imbibition experiments were simulated by decreasing the non-wetting

phase pressure in small steps. Imbibition always started from the smallest pores

with the highest entry capillary pressure. At each imbibition step, the forced dis-

placement rule was imposed. At the end of imbibition, the drainage simulation was

repeated. We always obtained only the primary drainage curve because at the end of

each imbibition cycle the non-wetting phase has completely exited the micro-model.
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Figure 4.6: Statistical distribution of radii of inscribed circles (half width of pore) of the net-

work model

4.4 Results and discussion

4.4.1 Network analysis

Because the depth of the micro-model was constant, a planar pore size distribution

was used analyze the P c-Sw curve behaviour. Figure 4.6 shows the histogram of

pore widths assigned to the medial pixels of the image of the micro-model. For a

rectangular cross section, Equation 4.1 gives the corresponding entry pressure as a

function of the pore width. The resulting curve is plotted in Figure 4.7. For pore

widths larger than 7µm, only small changes in the entry capillary pressure are re-

quired to invade the non-wetting phase into large pore widths because the depth of

the micro-model (pore height - which controls the entry capillary pressure) is con-

stant.

4.4.2 Fluids distribution snapshots

In Figure 4.8, snapshots of fluid distributions for different saturations from the

micro-model experiments and the corresponding network simulations are shown

for comparison. The simulations are based on the no-trapping assumption. The

first two rows in Figure 4.8 show drainage results and the last two rows show imbi-

bition results. We observe that the simulated fluid distributions qualitatively agree

with the experimentally measured fluid configurations. Cooperative filling of the

pores appears to dominate the fluid configurations in this micro-model.
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Figure 4.7: Entry capillary pressure for a rectangular cross section as a function of porewidth,

normalized with respect to Pc0, which is the entry capillary pressure for a pore with a=b=1.28

µm

4.4.3 P c-Sw curves

In Figure 4.9, we compared P c-Sw curves for drainage and imbibition obtained

from our simulations with the measured curves from the micro-model experiments.

Good agreement between the experimental data and the numerical simulations was

obtained. It is interesting to note that portions of both the drainage and imbibition

curves are flat. During drainge for saturations less than 0.83, the P c-Sw curve are

almost flat. This flat shape of the capillary pressure is caused by the spatial distri-

bution of the micro-model pores. Pore constrictions act as bottlenecks that prevent

the non-wetting phase from further invading the micro-model until the capillary

pressure is high enough to breakthrough the bottleneck pore. After invading the

bottleneck, a large region of the pore space is flooded at almost constant capillary

pressure. Due to the absence of a hydrophilic membrane, breakthrough of non-

wetting phase occurs at a relatively high saturation. This also means that the imbi-

bition curve is not the main imbibition curve but a scanning curve. The flat part of

the imbibition curve occurs above a saturation of 0.78. At this saturation, flooding

of the micro-model by the wetting phase occurred at an almost constant capillary

pressure of 39 kPa. This is the capillary pressure that corresponds to a meniscus

with radius 1.28µm, i.e., the depth of micro-model.
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Figure 4.8: Snapshots of the drainage and imbibition experiments, comparison between ex-

periments and simulations

4.4.4 anw-Sw relationship

In Figure 4.10, anw-Sw data points obtained from the pore-network model are com-

pared to the measured anw S data. As mentioned earlier, pore-network computa-
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Figure 4.9: Measured and simulated P c-Sw data points for drainage and imbibition

Figure 4.10: anw-Sw points resulted from drainage experiments and simulations

tions can be performed with two scenarios: with or without trapping. The effect of

these two scenarios on the anw-Sw relationshipis shown in Figure 4.9. The points ob-

tained from the no-trapping scenario are in good agreement with the experimental

measurements. This indicates that the no-trapping assumption is valid for drainage.

The anw-Sw curves were also calculated for many cycles of drainage and imbibition,

invoking the no-trapping assumption for drainage and the forced displacement as-

sumption for imbibition. The result is shown in Figure 4.11. Interfacial area is under-

estimated by the simulations for imbibition. We hypothesize that this is caused by
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Figure 4.11: Experimental and computational anw-Sw relationship for drainage and imbibi-

tion (circles show experiment data and crosses show simulation data). Interfacial area during

drainage is much less than during imbibition

not accounting for the cooperative filling that occurs during imbibition. Interfaces

that span a number of pores (Figure 4.2) have a larger interfacial area than the inter-

faces that are confined within a single pore.

4.4.5 P c-Sw-anw surface

Several researchers have computationally generated P c-Sw-anw surfaces for either

drainage or imbibition in lattice networks (Held and Celia, 2001, Joekar-Niasar et al.,

2008, Reeves and Celia, 1996) to investigate Hassanizadeh and Gray (1990) conjecture

that that capillary pressure is not only a function of saturation, but also of interfacial

area between non-wetting and wetting phases. In this paper, we produce a P c-Sw-

anw surface using both the main drainage curve and the imbibition scanning curves.

A second-order polynomial surface was fitted separately to the experimental data

and to the simulation data. A high correlation between the fitted surface and data

was observed that corresponded to correlation coefficients for the simulations and

experiments of 0.99 and 0.95, respectively. It has been observed that there are some

fluctuations in the experimental data points, due to limitation in resolution of image

acquisition and accuracy of pressure transducer. Using interpolation, a map of in-

terfacial distribution within the P c-Sw loop is obtained and is shown in Figure 4.12

for both simulations (Figure 4.12a) and experimental data (Figure 4.12b).

We have then subtracted these two maps to obtain a map of normalized dif-

ferences (Figure 4.12c). The average normalized difference is 0.17 and it is larger
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Figure 4.12: Spatial distribution of specific interfacial area (1/m) for a) Simulations b) Exper-

iments and c) Normalized differences between (a) and (b)

only in a very small range at high saturations (0.97 to 1.00), where the magnitude

of interfacial area is small. Based on the analysis done on interfacial area, it can be

concluded that we have been able to define a single descriptive surface for the imbi-

bition curves that also includes the main drainage curve. This conclusion is similar

to that found experimentally by Chen et al. (2007). They showed experimentally

that the P c-Sw-anw surfaces obtained for drainage and imbibition were the same to

within the experimental and analysis error (around 10%-15%). Our computational

results and the work of Chen et al. (2007) suggest that data obtained from either the

drainage process or the imbibition process are sufficient to generate the complete

functional relationship among P c-Sw-anw.
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4.5 Summary and conclusion

In this work, an unstructured pore-network model was developed to simulate the

drainage and imbibition experiments performed on a two-dimensional micro-model

of a porous medium to produce P c-Sw-anw surface. Development of the pore-

network model was based on identifying the medial pixels of a pixelized image of

the pore space in the micro-model. We have employed a simple approach based on

distance transform (DT) to define medial pixels. Using this concept, geometry and

topology of the micro-model are captured with an acceptable accuracy for use in a

pore-network model. We have demonstrated the capability of the model by sim-

ulating the configuration of two immiscible fluids in a micro-model. Our analysis

shows that capillary pressure of the micro-model is controlled by its depth, which

is almost as small as the smallest pore width. In addition, the spatial distribution

of pores with variable widths is such that a constriction (i.e., a bottleneck) controls

the invasion of the non-wetting phase to a significant portion of the micro-model.

Due to the rectangular cross-section of the pores, no trapping of the wetting phase

occured during drainage. The wetting phase in the corners of invaded pores of

the network was always connected to the outflow reservoir. This conclusion was

checked by comparing the computationally obtained anw-Sw relationship for differ-

ent assumptions to the anw-Sw relationship from the experiments. If there is trap-

ping, anw would be monotonically increasing with decreasing saturation. However,

if there is no trapping, the anw-Sw curve is parabolic in shape with a maximum

value at an intermediate saturation (e.g. Joekar-Niasar et al., 2008). The anw-Sw curve

from the micro-model experiments had a parabolic shape, which confirms that no

trapping occurred in micro-model drainage experiments. Finally using our pore-

network model, we reproduced the observed patterns of fluid distribution in the

micro-model for both drainage and imbibitions experiments. We also produced

a P c-Sw-anw surface for imbibition that approximates the measured surface very

closely. This is very encouraging as it suggests that we can use our pore-network

model as a predictive tool.
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Chapter 5

Pore-NetworkModel for Glass Beads

The art of progress is to preserve order amid change and to

preserve change amid order

Alfred North Whitehead, mathematician

Abstract

W
ehave developed a new approach for generating pore throat cross sections of various shapes

based on distributions of shape factors and radii of inscribed circles. These distributions

are obtained from analysis of grains packing. General formulas for calculating geomet-

rical properties and entry capillary pressure for given shape factor and inscribed circle

radius are developed. These relationships are employed in a pore network, which has

a number of special features. In particular, it is highly flexible in terms of location of

pore bodies, variable coordination number, as well as variable cross-sectional shapes. The

pore-network model is employed for simulating the equilibrium distribution of two fluids

in a granular porous medium, under both drainage and imbibition conditions.

The pore-network model is verified by comparing simulation results with experimen-

tal data of quasi-static drainage and imbibition experiments in a glass-bead medium.

The pore-level topology and geometrical description of pore bodies and pore throats, es-

sential for building the network, are rigorously extracted from experimental data using

image analysis (3DMA-Rock software). Calculated capillary pressure-saturation (P c-

Sw) and specific interfacial area-saturation (anw-Sw) curves show very good agreement

with measured ones, for both drainage and imbibition. We show that the shape factor

can significantly influence the form of macroscopic P c-Sw and anw-Sw curves, if the

length and volumes associated to the pore throats is considerable. Furthermore, using

continuous generation of shape factor distribution, the model can be validated against

the grain size distribution. After validating the model against experiments, in addition

to primary and main curves, we simulate many scanning curves to generate P c-Sw-anw

surfaces for drainage and imbibition, separately. Results show that these two surfaces lie

very close to each other, and the average normalized difference is small, in the range

of simulations uncertainty. Our results illustrate that P c-Sw-anw surfaces show very

little hysteresis and, therefore, specific interfacial area can be considered as an essential

variable for reducing or eliminating the hysteresis observed in P c-Sw curves.
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5.1 Introduction

5.1.1 Pore-network modeling

A
mong other sources, pore-scale information is verymuch needed for gaining in-

sight in, and for fundamental understanding of, the physics of flow and trans-

port in porous media. Thus, in recent years, various imaging techniques, such as

X-ray computed microtomography (for recent overview see Kaestner et al., 2008,

Wildenschild et al., 2002) and magnetic resonance imaging (MRI) have been em-

ployed to obtain detailed pore-scale information from many porous media. Com-

bined with pore-scale modelling methods, such detailed information can be used

to understand the interplay of various flow mechanisms and produce data for in-

vestigating macroscale theories. Depending on the pore-scale modelling technique,

pore space geometry can be either used directly or as a simplified network of pores.

Direct simulation techniques, such as Lattice-Boltzmann method (Ahrenholz et al.,

2008, Porter et al., 2009, Schaap et al., 2007, Shan and Chen, 1994), are computation-

ally demanding. Thus, often pore-network models are used where the pore space is

idealized as a network of “pore bodies” and “pore throats”.

Pore-network models - pioneered by Fatt (1956) - have been extensively used to

study a variety of flow and transport phenomena in porous media. They can be

divided into quasi-static and dynamic ones. Quasi-static pore-network models sim-

ulate only equilibrium states of drainage and imbibition processes without solving

the pressure field (see e.g. Fatt, 1956). For a review of the literature, see Celia et al.

(1995) and Blunt (2001). But, dynamic pore-network models simulate the transient

behaviour of (multiphase) flow (see e.g. Dahle and Celia, 1999, Dias and Payatakes,

1986a, Koplik and Lasseter, 1985,Nordhaug et al., 2003).

The main challenge in development of the structure of a pore network is to pre-

serve essential features of the void space (relevant to multiphase flow). While repre-

senting the void space as a network of simplified geometries, it should be tractable

for computations. Major characteristics of a pore network are its topology (i.e. po-

sitioning of pore bodies, and the number and orientation of links) and geometry of

elements.

Regarding the topology, if pore bodies are centered at nodes of a regular lattice,

the network is referred to as a “structured” network. The number of pore throats

connected to a pore body is called “coordination number”. Many pore-network

models have a coordination number of six, with pore throats oriented along the

three principal directions of the lattice. We refer to these as regular networks. But,

there are some network models with variable coordination number and with pore

throats oriented in many directions (see e.g. Joekar-Niasar et al., 2009, Mogensen and
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Stenby, 1998, Piri and Blunt, 2005a,Raoof and Hassanizadeh, 2009,Ryazanov et al., 2009).

Geometry of the network is represented by shape and size of pore bodies and

pore throats. Commonly, all pore bodies in a pore-network model are assigned the

same shape, such as sphere (e.g. Bakke and Øren, 1997, Øren and Bakke, 2002, Reeves

and Celia, 1996) or cube (e.g. Mogensen and Stenby, 1998, Patzek, 2001). In yet some

other models, no pore bodies are defined at all; i.e. no geometry is assigned to the

connection points of pore throats. Instead, a variable cross section is assigned to each

pore throat (see e.g.Dias and Payatakes, 1986a). However, an accurate representation

of the exact geometry of large voids among grains in a real porous medium is not

straight forward. Since pore bodies are the controlling elements during imbibition,

any inaccuracy in representation of pore bodies increases the difficulty of simulation

of the imbibition process.

Similarly, different choices are made for the shape of pore throats. In many mod-

els, all pore throats are assigned the same cross-sectional shape (e.g. Reeves and Celia,

1996). But pore networks where different cross-sectional shapes are assigned to

various pore throats have been also developed. We refer to them as “mixed cross-

sectional” pore networks (Bakke and Øren, 1997,Øren and Bakke, 2002, Patzek, 2001).

The cross-sectional shape of a pore throat is commonly parametrized by means

of a shape factor. In two dimensions, the shape factor is defined as the ratio of cross-

sectional area (A) to the square of the perimeter (P ); G = A/P 2. The influence of

shape factor on the entry capillary pressure, conductance, residual saturation, and

interfacial area of a pore with triangular cross section was first studied by Mason

and Morrow (1991). Since then, shape factor has been used for specification of pore

throats shapes especially in quasi-static pore-network models.

Bakke and Øren (1997) developed a pore-network model with mixed cross sec-

tions for actual sandstones. However, the range of shape factor that was recovered

in their model was very limited (to 0.0481,which corresponds to an equilateral trian-

gle). In a model by Man and Jing (2000), pore throats were assigned star-shape cross

section with four vertices. However, the authors chose pore throat cross sections

in an arbitrary fashion and did not compare their P c-Sw curves with experiments.

Patzek (2001) developed a network with cubic pore bodies and four different polyg-

onal cross sections for pore throats. He simulated relative permeability-saturation

(kr-S
w) and capillary pressure-saturation (P c-Sw) relationships for Bentheimer sand-

stone. The author did not specify how the choice of specific cross-sectional shapes

for pore throats and pore bodies was related to the sandstone geometrical proper-

ties. Piri and Blunt (2005a) developed a pore-network model for two- and three-

phase flow for a mixed-wet porous medium. They chose circular, square, and tri-

angular shapes for pore throat cross sections, and simulated relative permeability

curves for Berea sandstone. Sholokhova et al. (2009) developed a model with three
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different cross sections (triangle, rectangle and ellipse) to study single-phase ab-

solute permeability. They compared their results with the experimental data for

Fontainebleau sandstone. Ryazanov et al. (2009) developed an unstructured irregular

network with star-shape pore throats without including pore bodies. The structure

were derived from image analysis of Berea sandstone.

In all above-mentioned pore-network models the full range of shape factor dis-

tribution was not continuously generated. Since, for G > 0.0481 triangular cross

sections cannot be used, regular polygons are applied. Consequently, the resulting

network has a stepped shape factor distribution instead of a continuous one. In fact,

for a given shape factor, many different (combinations of) cross-sectional shapes are

possible. Therefore, one should investigate the effect of number of vertices of a pore

throat cross section on the macroscale porous media properties.

5.1.2 Objectives

The focus of this work is two-fold.

a. We develop a well-defined procedure for the selection of the cross-sectional

shape of pore elements based on image analysis data. Contrary to the previous pore

networks, in this work, the choice of pore cross sections is linked either to the local

shape factor or to the overall shape factor distribution. This allows us to recover the

full shape factor distribution continuously and avoid an arbitrary selection of polyg-

onal cross sections. Furthermore, this approach gives us information about the gains

size distribution, which can be checked against the actual grain size distribution.

We carefully select a mix of pore throat cross sections - irregular or regular hy-

perbolic polygons. This allows us to match pore-space topological and geometrical

data obtained frommicro-tomographic imaging for any given value of shape factor.

We develop formulas for the entry capillary pressure of various shapes, which can

be solved numerically. Pore bodies are represented by prolate spheroids. In this

work, we have employed 3DMA-Rock software (Lindquist, 2009) for image analysis.

b. Pore-networkmodels have beenmainly used to study standard concepts such

as relative permeability and capillary pressure-saturation relationships. Here, we

also study the role of fluid-fluid interfacial areas in elucidating and parameterizing

capillary effects in a two-phase flow. In particular, we investigate the conjecture by

Hassanizadeh and Gray (1990, 1993a) that specific interfacial area, anw (defined as the

amount of fluid-fluid interfacial area per unit volume of the porous medium) is a

major state variable in two-phase flow and the main variable for proper modelling

of capillary hysteresis.

This conjecture has been investigated earlier by Held and Celia (2001), Joekar-

Niasar et al. (2008, 2009), Reeves and Celia (1996) using pore-network models. Held
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and Celia (2001), Reeves and Celia (1996), and Joekar-Niasar et al. (2008) used regular

structured pore networks with circular cross sections. Reeves and Celia (1996) and

Joekar-Niasar et al. (2008) concluded that hysteresis can be significantly reduced by

including anw to generate one surface defined F (P c, Sw, anw) = 0. Joekar-Niasar

et al. (2008) showed that with increase of aspect ratio (ratio of pore body radius to

pore throat radius), effect of anw in reducing the hysteresis decreases. However,

their results were not compared with experiments. All these models lack some ma-

jor structural features such as angularity of the cross sections and irregularity of the

network. Thus, it is not clear whether the conclusions would hold in a real porous

media with an unstructured irregular and angular pore network.

The only published comparison between pore-network results and experimental

data in this regard is the work by Joekar-Niasar et al. (2009) who simulated drainage

and imbibition experiments, performed in a two-dimensional micromodel. They

generated imbibition and drainage P c-Sw-anw surfaces and found that including

anw reduced hysteresis. Since the micro-model was two-dimensional and had high

porosity, the experiments had very uncommon features as follow. The saturation of

the wetting phase changed between 0.68 and 1.0, so the range of saturation in P c-

Sw-anw surface was too limited. Due to the high porosity and small aspect ratio, the

nonwetting phase did not trap at all during imbibition (no snap-off). This is very

uncommon in practice. Furthermore, due to two-dimensionality of the model, the

hysteresis in P c-Sw curves was not significant (only about 20%) and the flow path

was restricted to a three-dimensional medium.

In this work, we have developed a three-dimensional irregular unstructured

pore-networkmodel and validated it against experimental data. Data were obtained

from air-water drainage and imbibition experiments in a glass-bead column and re-

ported in Culligan et al. (2004). We compare our results against measured capillary

pressure-saturation (P c-Sw) and specific interfacial area-saturation (anw-Sw) curves

during both drainage and imbibition and found very good agreement. Then, we

generated P c-Sw-anw surfaces for drainage and imbibition and study the conjecture

developed by Hassanizadeh and Gray (1990, 1993a).

5.2 Pore-network model

5.2.1 Pore network structure and geometry

We develop an irregular and unstructured pore-network model. Pore bodies are

represented by prolate spheroids and pore throats by tubeswith n-hyperbolic polyg-

onal cross sections (n denotes the number of vertices). Pore throat cross sections do

not vary along their lengths. The topological and geometrical properties of the pore
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Figure 5.1: Shape factor range for different cross sections; for each cross section zone (y-axis),

the potential range of shape factor (G) has been shown in dashed-line.

network are recovered from image analysis.

In the following parts, we present the formulations required for defining pore

throat and pore body geometries.

Pore throats

Cross section determination Cross sections of pore throats are chosen such that

the full range of shape factor, (G = A/P 2), calculated from image analysis, is recov-

ered. The range of shape factor values for various cross sections is shown in Fig-

ure 5.1. Generally, with increasing of number of vertices, the shape factor increases

as shown in Figure 5.1. A circle has the maximum shape factor, equal to 0.0795. For

very elongated geometries (those with a small area but a large perimeter) the shape

factor approaches zero.

In this study, we consider two general types for cross sections; irregular hyper-

bolic triangles (n = 3) and regular hyperbolic polygons with number of vertices

n ≥ 3 as shown in Figures 5.2(a) and (b), respectively. In irregular hyperbolic tri-

angles, edges have different lengths (and radii of curvature). We consider only the

case that the corner angles are zero. The range of shape factor values for various

cross sections used in our network are shown in Figure 5.1. We choose irregular



5.2. Pore-network model 123

Figure 5.2: Cross sections of pore throats for a) irregular hyperbolic triangle generated by

three different tangential circles (soddy circles), b) regular hyperbolic polygon with five ver-

tices. The hyperbolic polygon B1..5 has an inscribed radius R and a half corner angle ϕ. The

edge radius of curvature is R1.

hyperbolic triangles for shape factors less than 0.0163, and regular hyperbolic poly-

gons otherwise. In regular hyperbolic polygons, all edges have the same length and

the same radius of curvature. The corner angles are also equal and can be zero or

larger (Figure 5.2(b)). For a given inscribed circle with radius R, by changing the

corner angle, we can change the radius of curvature of edges, perimeter, area, and

consequently shape factor G.

For a given cross section type, with increasing the corner angle from zero to the

maximum possible value of (n−2
n π), the cross section changes from a regular hyper-

bolic polygonal cross section to a regular polygonal cross section, and the shape fac-

tor increases. The choice of cross section type is based on the measured shape factor

distribution of the pore throats acquired by image analysis. Geometrical proper-

ties and entry capillary pressures of these two general cross sections are obtained as

described below.

Irregular hyperbolic triangles When three circles with different radii, namely R1,

R2,R3 are tangential to each other, they close off a specific geometrical shape among

themselves (hatched region in Figure 5.2(a)). This is typically the cross section of a

pore throat in a granular medium. This shape can be uniquely characterized by the

radius of its inscribed circle R and its shape factor G. In principle, for a desired set
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of values for R and G, it is possible to calculate radii R1, R2, R3, and angles α, β,

and γ (shown in Figure 5.2(a)). The required equations, derived in Appendix E.1,

are given below. They constitute a set of six nonlinear coupled equations that can

be solved numerically using the Newton-Raphsonmethod.

R =
R1R2R3

R1R2 +R2R3 +R1R3 + 2
√
R1R2R3(R1 +R2 +R3)

(5.1)

sinα =
2
√
R1R2R3(R1 +R2 + R3)

(R1 +R2)(R1 +R3)
(5.2)

sinβ =
2
√
R1R2R3(R1 +R2 + R3)

(R1 +R2)(R2 +R3)
(5.3)

sin γ =
2
√
R1R2R3(R1 +R2 + R3)

(R2 +R3)(R1 +R3)
(5.4)

α+ β + γ = π (5.5)

G =

√
R1R2R3(R1 +R2 +R3) − 0.5(R2

1α+R2
2β +R2

3γ)

(R1α+R2β +R3γ)2
(5.6)

Regular hyperbolic polygons (n vertices) A regular hyperbolic polygon is en-

closed among three or more intersecting circles of equal radius. For example, Fig-

ure 5.2(b) shows a hyperbolic pentagonal cross section generated by five intersecting

circles with radius R1. A regular hyperbolic polygon is uniquely characterized by

its inscribed radius R, shape factor G, and number of vertices n. Thus, for given R,

G, and n, the following set of equations can be solved to determine R1 and ϕ. ϕ is

the angle between the tangent at a vertex and the line connecting the vertex to the

center of the cross section.

G =
cos2 ϕ cot π

n − π(1
2 − 1

n ) + ϕ− 0.5 sin 2ϕ

4n[π(1
2 − 1

n ) − ϕ]2
(5.7)

R1 = R
sin π

n

cosϕ− sin π
n

(5.8)

Detailed explanation for the derivation of this set of equations is given in Ap-

pendix E.2. Note that for a regular polygon, ϕ = π
2 − π

n , R1 = ∞, and G =
cot π

n

4n .

Pore bodies

The pore bodies are chosen to have the shape of a prolate spheroid with equatorial

radii a and b, where a ≤ b (Figure 5.3). The volume of a prolate spheroid is equal to
4
3πa

2b.
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Figure 5.3: Schematic configuration of an interface within a pore body (assumed as a prolate

spheroid) during imbibition.

5.2.2 Invasion criteria

In multiphase flow, the invasion is locally controlled by capillary pressure, i.e. the

difference between nonwetting and wetting phase pressures. Pore throats control

the invasion during drainage, and pore bodies during imbibition. Thus, network

models require knowledge of the pore throat entry capillary pressure (for drainage),

and the pore body filling capillary pressure (for imbibition).

Pore throat invasion

Figure C.1 shows the schematic cross section of a pore throat filled with nonwetting

and wetting fluids. The fluid-fluid interface has a radius of curvature rc. We denote

the area occupied by the nonwetting phase by An and the length of contact lines be-

tween various phases by Lns, Lnw, and Lws (Figure C.1). The relationship between

the entry capillary pressure (P c
e ) and geometrical parameters is found by examining

force balance under equilibrium conditions (see Appendix C). This results in:

P c
e

σnw
=

1

rc
=
Lnw + Lns cos θ

An
(5.9)

where, σnw is the interfacial tension. This equation is equally valid for regular and

irregular hyperbolic polygons.

Irregular hyperbolic triangle According to Equation 5.9, Lnw, Lns, andAn should

be known for a given cross section, in order to calculate rc. The formulas for calcu-

lation of these terms are given in Table F.1 based on the geometries given in Fig-

ures F.1(a) and (b). Detailed explanation for the derivation of the these formulas is

given in Appendix F.
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Substitution of Lnw, Lns, and An from Table F.1 into Equation 5.9 results in a

highly nonlinear equation for rc involving nine other unknowns, namely εi, εi
i, ε

i
i+1

(i = 1, 2, 3). That equation, therefore, has to be supplemented with the following

nine equations:

tan εi
i =

rc sin εi

Ri cos(θ + εi)
, i = 1, 2, 3 (5.10a)

tan εi
i+1 =

rc sin εi

Ri+1 cos(θ + εi)
, i = 1, 2, 3 (ε34 = ε31, R4 = R1) (5.10b)

εi + εi
i + εi

i+1 =
π

2
− θ, i = 1, 2, 3 (ε34 = ε31) (5.10c)

Thus, Equations 5.9 and 5.10 form a set of 10 equations to be solved for rc, ε
i, εi

i,

and εi
i+1 (i = 1, 2, 3). The resulting nonlinear system of equations has been solved

numerically using NLEQ1S (Nowak and Weimann, 1991), which employs the global

affine invariant Newton algorithm. Detailed explanation for the derivation of the

set of equations is given in Appendix F. Once rc is known, entry capillary pressure

P c
e can be calculated.

Regular hyperbolic polygon Figure F.1(c) shows the vertex of a regular hyperbolic

polygon filled by the wetting phase. Similar to the approach used for irregular hy-

perbolic triangle and according to Figures 5.2(b) and F.1(c), Lnw, Lns, and An may

be written as functions of geometrical parameters, as derived in Appendix F and

shown in Table F.1.

Substitution of Lnw, Lns, and An in Equation 5.9 results in a nonlinear equation

for rc involving two other unknowns, namely ε and ε′. That equation, therefore, has

to be supplemented with the following two equations in order to solve for rc, ε, and

ε′.

sin ε

sin 2(ϕ+ ε′)
=

R1 sin ε′

rc sin(ε+ ε′ + θ)
(5.11a)

2ε′ + ε =
π

2
− θ − ϕ (5.11b)

We solve this set of equations numerically using standardNewton-Raphsonmethod.

Pore body filling

Since the entry capillary pressure of pore bodies is smaller than that of pore throats,

pore bodies are filled spontaneously under drainage. However, during imbibition

they are filled gradually. For the fluid-fluid interface shown in Figure 5.3, assuming
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that the interface is normal to the equatorial radius a, we can calculate the filling

capillary pressure under imbibition. Here also, Equation 5.9 applies. An and Lns

are given by the following formulas:

An = πa′b′ (5.12a)

Lns ≈ π
√

2(a′2 + b′2) (5.12b)

where a′ and b′ are shown in Figure 5.3. Based on Equations 5.9 and 5.12, and

introducing Γ = a/b = a′/b′, it follows that

P c

σnw
=

1

rc
=

√
2(1 + Γ2)

a′
, Γ =

a

b
=
a′

b′
(5.13)

For a given rc and a
′, we can approximate volume of the wetting fluid by:

Vw ≈ 4

3
πa′b′(a−

√
a2 − a′2) (5.14)

5.2.3 Translation of pore space data into the pore network

Relationships presented so far are employed in development of pore-network ele-

ments by analyzing 3-D microtomography images. We need the following informa-

tion:

• Skeleton of the porous medium (connectivity information of pore bodies to

pore throats)

• Pore body center coordinates and their coordination number.

• Pore unit volumes; this is the volume delineated by the narrowest cross sec-

tions of all pore throats connected to a pore body. Figure 5.4 shows schemati-

cally such a pore unit in two dimensions.

• Equatorial radii of pore bodies. Three principal diameters are determined for

each pore unit by measuring the pore width through the centroid of pore unit

in each of the principal directions. One half of the two smallest principal

diameters are assigned as equatorial radii a, b of the representative prolate

spheroids.

• Pore throat cross-sectional area and the corresponding shape factor. They

should be determined so that the total volume of void space is conserved in

the network model. Thus, length of pore throats in the pore-network model

will be determined such that the volume of each and every pore-unit is the
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Figure 5.4: Schematic presentation of pore units in bright color and grains in dark color.

same as the volume of corresponding pore body and corresponding part of

connected pore throats.

The procedure for generation of the pore-network model is as follows: In the

first step, exact topology of the porous medium is translated into the pore network;

i.e. skeleton of the porous medium resulted from image analysis is used to de-

termine number of pore bodies, number of pore throats, and connectivity. Next,

using a search algorithm and with sequential numbering of pore bodies and pore

throats, the connectivity matrix (showing which pore body is connected to which

pore throat) is generated. As a result, the coordination number distribution of the

porous medium is generated in the pore network. Furthermore, in the analysis, we

determine which pore throats are located on the boundary of the imaged section.

In the second step, local geometrical information is assigned to the pore network

elements. The volumes of pore units are estimated by analysis of the 3-D microto-

mography images using 3DMA-Rock software. Calculated equatorial radii a and b

determine the volume (Section 5.2.1) of each pore body. The difference between the

pore unit volume and pore body volume (referred to as “excess volume”) should be

assigned to the pore throats. Excess volume of each pore unit will determined the

length of pore throats located in that pore unit. Knowing the cross-sectional area of

pore throats from image processing and assuming that all pore throats within a pore

unit have the same length, the length of pore throats belonging to a pore unit can be

determined. Finally, the total length of a pore throat is obtained by adding the two

pore throat lengths from the two neighboring pore units.

As the last step, cross section geometry of each pore throat should be determined.

Using the shape factor and cross sectional area of pore throats, geometry of the cross
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Table 5.1: Specifications of air-water experiments in glass beads.

Property Value Unit

Porosity 0.34
Sample height (imaged section) 6.1 × 10−3 m
Sample diameter 6.9 × 10−3 m
Water dynamic density 1.002× 10−3 Pa.s
Air dynamic density 1.86 × 10−6 Pa.s
Air-water interfacial tension (σnw) 0.7275 N/m
contact angle (θ) 0 − 4 degree

sections can be determined using the approach proposed in Section 5.2.1.

We used 3DMA-Rock software (Lindquist, 2009) for image analysis. This software

employs a voxel-based medial axis approach to extract topological and geometri-

cal properties of a porous medium. Detailed information about application of this

software can be found in Prodanović et al. (2006, 2007).

5.3 Case study:two-phase experiments in packed glass

beads

5.3.1 Materials and experiments

We analyze a set of air and water displacement experiments carried out in a syn-

thetic porous medium (Culligan et al., 2004). The medium consisted of packed soda

lime glass beads with three size classes, 0.6, 0.85 and 1.0-1.4mm in diameter. Poros-

ity of the column was 34%. The beads were packed in a column of 7mm in diameter

and 70mm in length. The column was connected to the atmosphere on the top, and

to a water reservoir at the bottom. Experiment specifications are shown in Table 5.1.

The column was packed dry and subsequently filled with water. Primary drainage,

main imbibition, and main drainage experiments were performed. To prevent air

from entering the water reservoir, a semi-permeable membrane was placed at the

bottom of the column. Experiments were performed by pumping a known amount

of water in or out of the medium. After shutting off the pump, the system was al-

lowed to equilibrate. Then, fluid pressuresweremeasured and a 5-mm section of the

column was imaged using X-ray microtomography for each P c-Sw point in the ex-

periments (image voxel length was 17 µm). The three-dimensional images allowed

to quantify fluids distribution and determine saturation and specific interfacial area
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Table 5.2: Classification of cross sections based on the shape factor distribution.

Zone Shape Factor (G) Cross Section

1 G < 0.0163 irregular hyperbolic triangle (3 vertices)
2 0.0163 ≤ G < 0.0217 regular hyperbolic triangle (3 vertices)
3 0.0217 ≤ G < 0.0244 regular hyperbolic polygon (4 vertices)
4 0.0244 ≤ G < 0.0688 regular hyperbolic polygon (5 vertices)
5 0.0688 ≤ G circle

for each equilibrium point. Water pressure was measured directly above and below

the imaged section as well as in the water line outside of the column. This proce-

dure was repeatedmultiple times in each cycle to obtain enough points to construct

a complete drainage or imbibition curve.

5.3.2 Numerical simulations

As explained before, the imaged section of glass beads was translated into the pore-

network model. Figure 5.5(a) shows the shape factor distribution for pore throat

cross sections as computed with 3DMA-Rock. Based on this shape factor distribu-

tion, we select the cross-sectional shapes as shown in Table 5.2. A small range of the

distribution falls outside the theoretical upper limit (0.0795). This is attributed to the

finite resolution of the image and the fact that the bottlenecks between pore units are

not necessarily planar surfaces. This range is represented by circles in our model.

Figure 5.5(a) shows that the majority of pore throats (97.2%) can be reproduced us-

ing regular hyperbolic polygonal cross sections with five vertices. Figure 5.5(b)

shows the coordination number distribution of the glass beads sample as computed

with 3DMA-Rock. It should be noted that the most frequent coordination numbers

are 3 and 4 for this medium. There is also a coordination number of 113, which

is related to a large pore in the glass beads connected to many other neighboring

pores. Results of image analysis shows that there are 367 pore bodies and 1302 pore

throats. Total volume of the void space is 31.85mm3. Out of this volume, 26.64mm3

are assigned to the pore bodies and 5.21mm3 to the pore throats.

Boundary conditions

Pore throats connected to the side boundaries are closed in order to mimic the ex-

periments. Reservoirs of fluids are each at a constant pressure. Top and bottom pore

throats might be assumed to be connected to reservoirs of nonwetting fluid (air) and
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Figure 5.5: a) Shape factor distribution for pore throats in the glass-bead medium. Pore

throats classification (zone numbers are given in circles) has beenmade according to Table 5.2.

b) Coordination number frequency (% number of pore bodies) of the glass beads sample.

wetting fluid (water). As mentioned earlier, the scanned section simulated by our

model is only a small part of a larger column. Since capillary forces are dominant

in the experiments, there is a capillary fingering regime in the column. Thus only

a few pores on the scanned column section are in contact with the invading phase

reservoir. It means that our assumption for “connectivity of the boundary pores”

to the nonwetting fluid reservoir is unclear. Two different assumptions for accessi-

bility of the boundary pores might be considered: a) assuming all pores on the top

boundary of the scanned section are in contact with the nonwetting fluid reservoir.

b) assuming only one of more largest pores on the boundary of the scanned section

are in contact with the nonwetting phase reservoir. The effect of these assumptions

on P c-Sw and anw-Sw curves and the correct choice in this regard will be discussed
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in Section 5.4.2.

Simulation of primary and main drainage

At the start of primary drainage, the pore network is fully saturated with the wet-

ting phase (water). For the main drainage, the wetting phase is initially present in

some pores, as determined at the end of an imbibition simulation. The pressure of

the wetting phase reservoir is assumed to be zero and not changing. The pressure

of the nonwetting phase reservoir is initially set to zero, and thus the imposed cap-

illary pressure is also zero. Drainage simulation starts by increasing the pressure of

the nonwetting phase reservoir to the entry capillary pressure P c
e of the largest pore

throat connected to the reservoir (Equation C.1). As the entry capillary pressure of

a pore body is smaller than that of a pore throat, the controlling element is the pore

throat. Thus, as soon as the pressure is high enough to enter a pore throat, because

the pore throat has a constant cross section, nonwetting phase would occupy that

pore throat and the connected pore body. When no other pores can be occupied in

that pressure step, the corresponding capillary pressure, saturation, and interfacial

area are calculated. The incremental increase in nonwetting phase pressure is con-

tinued, allowing for more pores to be occupied by the nonwetting phase. Simulation

of drainage scanning curves is more complex than primary drainage curve. Since

each drainage scanning curve starts from an equilibrium imbibition point, fluid con-

figuration should be captured properly. There may be some trapped nonwetting

phase at the beginning of drainage scanning curve. Therefore, a search algorithm is

required to determine these trapped nonwetting blobs. Invasion can happen only

from those pores which are in contact with the nonwetting reservoir, and in the pro-

cess of invasion, they will connect to the trapped nonwetting phase blobs.

Simulation of imbibition

The fluid configuration at the end of the primary drainage simulations is used as

the starting condition for main imbibition. The pressure of nonwetting phase reser-

voir is decreased, causing the nonwetting phase to recede. The replacement of the

nonwetting phase by the wetting phase starts from those pore throats that have

the highest entry pressure (smallest size). Since there are many pore throats with

angular cross sections, the wetting phase is always present in the corners. With

decreasing of the capillary pressure, the wetting phase content in the corners of

pore throats will increase, eventually filling the pore throat. A pore throat with a

noncircular cross section will be filled completely by the wetting phase only if the
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following criterion is met (Vidales et al., 1998).

P c ≤ σnw

R
(cos θ − sin θ) (5.15)

Where R is the radius of inscribed circle. For circular cross sections, a pore throat

will be fully filled if P c ≤ 2σnw

R cos θ. Once a pore throat connected to the wetting

phase reservoir is filled, the wetting phase enters the neighboring pore body and

stops at a position with a curvature corresponding to the imposed capillary pressure

(for which a′ is calculated from Equation 5.13). For sake of simplicity of geometrical

configurations, we assume that only one interface may exist in each pore body. As

the capillary pressure is decreased further, the wetting phase gradually fills the pore

body. As soon as the interface radius is equal to the pore body maximum radius

(Equation 5.13), the rest of the pore body and the connected pore throats fill up in-

stantaneously by the wetting phase. Similar to the drainage experiment, for a given

boundary pressure, when no other pores can be filled, capillary pressure, satura-

tion, and interfacial area are calculated. Simulation of imbibition scanning curves is

not different frommain imbibition curve. The only difference is the starting wetting

phase saturation.

The simulation of the full cycle of primary drainage and main imbibition took

less than 2 minutes on Intel(R) CPU 6600, 2.4GHz with 2GB RAM.

Calculation of saturation, capillary pressure and specific interfacial area

Under static conditions, and in the absence of gravity, capillary pressures, P c, at

all interfaces are the same, equal to the difference between nonwetting and wetting

fluid reservoir pressures, (P c = Pn − Pw). Saturation of each phase can be easily

calculated from the geometry and fluid occupancy of pore bodies and pore throats.

We can also calculate the interfacial areas as we know the location of fluid-fluid in-

terfaces within pore throats and pore bodies. Two different interface types may be

identified: “arc menisci (AM)”, formed along pore throat edges, and “main terminal

menisci (MTM)”, spanning the cross section of a pore body or a pore throat (Mason

and Morrow, 1987). The area of “AM” is calculated from total length of nonwetting-

wetting phase lines and length of pore throats. Behaviour ofMTM during drainage

and imbibition is different. During drainage, within a pore body filled with the non-

wetting phase, there is MTM at the entrance of a pore throat, which is not invaded

yet. Since the exact geometry of the interface is complicated, we approximate its area

during drainagewith that of the pore throat cross section; thus, effectively assuming

a flat interface. However, during imbibition theMTMwill be situated within a pore

body. The area of a MTM within a prolate spheroidal pore body can be calculated
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Figure 5.6: Comparison between grain size distribution resulted from the model and the

experimental data.

using Equation 5.12(a) and the volume of the wetting phase can be calculated using

Equation 5.14.

5.4 Results and discussions

5.4.1 Grain size distribution

The hyperbolic polygon shapes chosen for the pore throat cross sections in our

model were characterized by semi-circular edges. In our model, radii of the edges

were calculated from the shape factor distribution. The consistency of the pore-

network model with the actual soil sample can be examined by comparing the cal-

culated radii of edges and nominal grain size distribution as shown in Figure 5.6.

The histogram distribution in Figure 5.6 has been generated for the three classes

of grain size mentioned in the experimental data. There is a very good agreement

between the model and the actual sample. This shows that generation of the cross

sections in the model is consistent with grain sizes while the shape factor distribu-

tion is fully recovered from image analysis.

5.4.2 Effect of boundary pore connectivity

As explained in Section 5.3.2, not all boundary pores are necessarily connected to

the nonwetting phase reservoir. We did some simulations to analyze effect of this

connectivity boundary pore(s) on P c-Sw and anw-Sw curves. Our analysis (not pre-

sented here) shows that assuming all boundary pores connected to the nonwetting
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phase has a significant influence on anw-Sw curve. If all pore bodies located on the

boundary are assumed to be connected to the nonwetting phase reservoir, initially

there will be a significant amount of interfacial area, which is not in agreement with

data. But, if we assume only few of the largest boundary pore(s) be connected to

the reservoir, creation of specific interfacial area occurs gradually as the pressure is

increased. This analysis shows that the imaged section of glass-bead column is not

so large to be insensitive to the boundary conditions. However, the effect of bound-

ary condition on anw-Sw has been minimized by assuming the largest pore to be

connected to the nonwetting phase reservoir.

5.4.3 Effect of shape factor and pore shape on P c, Sw, and anw

Asmentioned in Section 5.1, up to now only shape factor (G) has been introduced in

the development of pore-network models. But, geometrical shape (number of ver-

tices n) and shape factor (G) are the two parameters that control the entry capillary

pressure (P c
e ), (corner) wetting phase saturation (şw), and specific interfacial area

(a̧nw) associated with arc menisci (AM). These effects are illustrated for a single pore

throat as well as for the whole network.

First, effects of n andG on entry capillary pressure, corner wetting phase satura-

tion, andAM area for a single pore are shown. We consider a number of pore throats

with a unit length, and the same cross-sectional area (Atot). All pores have regular

hyperbolic polygon shape with different values for G and n. Corner saturation is

defined as the ratio of cross-sectional area of wetting phase to total cross-sectional

area of a pore throat,Aw/Atot. Figures 5.7(a) and 5.7(b) show variations of the corner

saturation (şw) as a function of shape factor (G) and number of vertices (n) for two

different situations, rc = 0.5Req , and rc = 0.15Req, respectively. Req is defined as

the radius of a circle with area of Atot, i.e. Req =
√
Atot/π. These figures show that

şw strongly depends onG and n. This dependence, however, decreases asG and/or

n increase. At larger capillary pressures (rc = 0.15Req), there is a non-monotonic

dependence. As the number of vertices increases, more wetting phase can be kept

in the corners (larger şw) for a given shape factor. In both cases, for large number of

vertices, şw approaches zero because the cross section approaches a circle.

Although in this work the geometries of pore throats’ cross sections have been

idealized, these results may illustrate the origin of uncertainties in some applica-

tions of predictive pore-network models. If in a real porous medium the volume

of pore throats compared with pore bodies is considerable, shape of the cross sec-

tion can influence the accuracy of quantitative assessment. For instance, while in all

simulations shown in Figure 5.7, cross section areas are the same, residual wetting

phase saturations are significantly different for a given shape factor. This effect can
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Figure 5.7: Effect of shape factor and number of vertices on corner saturation, şw, in a pore

throat for a) Radius of curvature rc = 0.5Req , b) Radius of curvature rc = 0.15Req . All cross

sections have the same cross-sectional area Atot.

be evenmore significant for quantitative assessment of relative permeability curves,

where kα ∝ Sα. As Figure 5.7 shows at small capillary pressures (high wetting

phase saturation), effect of shape of cross sections is important. Simulations of rel-

ative permeabilities using pore-network models show that the largest inaccuracies

occur at high saturations, especially for the wetting phase permeability (e.g. Blunt

et al., 2002, Valvatne and Blunt, 2004). This implies that for predictive pore-network

modelling, in addition to G, the number of vertices (n) should be included in the

development of pore networks.

Fluid-fluid interfacial area in a pore throat contributes to the AM area. For a sin-

gle pore throat, effect of G and n on AM is investigated by examining a̧nw, defined
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Figure 5.8: Effect of shape factor and number of vertices on a) nonwetting-wetting corner

specific interfacial area a̧nw in a pore throat for radius of curvature rc = 0.5Req , b) entry

capillary pressure. Entry capillary pressures have been normalized with the entry capillary

pressure for a circular tube with cross-sectional area equal to Atot. All cross sections have the

same cross-sectional area denoted by Atot.

as the ratio of the length of nonwetting-wetting line (Lnw) to the total cross-sectional

area,Atot. Variations of a̧
nw with G and n for rc = 0.5Req is shown in Figures 5.8(a).

As it can be observed, a̧nw varies monotonically with G values and increases as the

number of vertices increases. With increase of capillary pressure (decrease of rc),

corner specific interfacial area decreases. Our analysis (not presented here) shows

that with the increase of P c by a factor of three, the specific interfacial area decreases

by about half. Effect of geometrical shape and shape factor on specific interfacial
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area will be important in those porous media that have long pore throats. In such

porous media, AM area can be even smaller that AM area. This has been shown by

Raeesi and Piri (2009); depending on the geometry and topology of a porousmedium,

interfacial area associated with the arc menisci can be larger than the interfacial area

associated with the area of MTM . Raeesi and Piri (2009) have simulated AM and

MTM area in two mixed cross-sectional pore-network models based on Berea sand-

stone and Saudi Aramco sandstone, and show that the area of AM is larger than the

area ofMTM .

Finally, the effect ofG and n on entry capillary pressure for a single pore throat is

shown in Figure 5.8(b). Here, entry capillary pressures have been normalized with

the entry capillary pressure for a circular tube with the same cross-sectional area

(Atot). It is evident that the entry capillary pressure decreases monotonically with

the increase inG and/or n. Obviously, as the number of vertices increases, the entry

capillary pressure approaches that of a circular cross section.

To see the effect of shape of cross section on macroscale P c-Sw and anw-Sw

curves, we have simulated drainage experiments with three different networks con-

sisting of circular cross sections, mixed polygonal cross sections, and mixed hyper-

bolic polygonal cross sections. Figures 5.9(a) and 5.9(b) show P c-Sw and anw-Sw

curves, respectively, compared to the experimental data. It is obvious that includ-

ing the hyperbolic polygonal cross section significantly improves the agreement be-

tween simulations and experiments, especially for P c-Sw curves.

In simulations shown in Figure 5.9, all networks have the same skeleton (coor-

dination number distribution), void volume, and pore throat cross sectional area

distribution. Since the network is small (364 pore bodies), effect of pore geometries

are pronounced. A network with all pores having circular cross sections cannot re-

cover the shape factor distribution. So, for a given cross-sectional area, it results

in a smaller entry capillary pressure than the other shapes. In addition, there is no

saturation associated with the wetting phase in the corners. The difference between

results for a mixed polygonal network and mixed hyperbolic polygonal network

for large saturations is not significant. However, at small saturations, smallest pores

need to be invaded. Obviously for high capillary pressures, a network with hyper-

bolic polygonal cross sections can keepmore wetting phase in the corners compared

with other types of networks. Effect of n on the specific interfacial area values over

the whole domain is not very significant. This is because in glass beads, the volume

of pore throats compared with the volume of pore bodies is not significant. Thus,

area of AM is much smaller than the area ofMTM .
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Figure 5.9: Effect of selection of pore throat cross section on a) P c-Sw drainage curve and b)

anw-Sw drainage curve.

5.4.4 P c-Sw and anw-Sw curves

We employ insights obtained from the study of effects of boundary pores and cross

section geometry to simulate the experimental data. Thus, P c-Sw and anw-Sw

curves have been obtained for primary drainage and main imbibition processes us-

ing a network with mixed hyperbolic polygonal pore throats and a single pore con-

nected to the boundary. Results are shown in Figures 5.10(a) and 5.10(b). The agree-

ment with measured curves are excellent. This is a particularly significant result

for imbibition curves as many pore-network models have had difficulty to match

imbibition data points for capillary pressure.

Figure 5.10(a) shows that there is a strong hysteresis in P c-Sw curves resulted

from drainage and imbibition (up to 100%). The magnitude of this hysteresis is
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Figure 5.10: Comparison between simulations and experiments for drainage and imbibition

a) P c-Sw curves b) anw-Sw curves.

larger than that of P c-Sw curves resulted from sand pack columns (Valvatne and

Blunt, 2004); which is due to the larger aspect ratio of pores in glass bead packing.

Compared with P c-Sw curves, there is more discrepancies between anw-Sw

curves especially during imbibition. This is due to the small size of the domain

and simplified geometries assumed for the interface. Nevertheless, accuracy of the

model in prediction of anw is good. Such model can be a powerful tool for generat-

ing input data such as P c-Sw-anw surface needed for new macroscopic multiphase

flow simulators such as Niessner and Hassanizadeh (2008, 2009). They solved multi-

phase flow and transport equations including interfacial area as a new state variable.
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5.4.5 P c-Sw-anw surfaces

After having validated the model against experimental data, we can use it to in-

vestigate role of specific interfacial area in removing or reducing the hysteresis in

capillary pressure-saturation curves. We have simulated many scanning loops of

drainage and imbibition and have calculated equilibrium values of P c, Sw, and anw.

Results are plotted in Figures 5.11(a) and (b) for drainage and imbibition, respec-

tively, where contours of anw are shown in P c-Sw plane. The shade coding shows

specific interfacial area for a given pair of capillary pressure and saturation. The

natural neighbor interpolation method (Sibson, 1981) has been used to generate the

surfaces. The corresponding surfaces have been depicted in Figures 5.11(a) and (b)

by showing contour lines of equal specific interfacial area. The correlation coeffi-

cient between the two surfaces was found to be 95%. Next, the difference between

imbibition and drainage surfaces has been normalized by drainage surface as plot-

ted in Figure 5.11(c). As it can be observed, the maximum difference in main loop

of drainage and imbibition curves is about 25%. The average normalized differ-

ence over the entire surface is about 15%. To investigate in more detail causes of

difference between drainage and imbibition surfaces, we have included normalized

difference between experimental data and simulations (Figure 5.11(d)). The aver-

age normalized difference in this figure is 19%, which is very close to the average

difference calculated in Figure 5.11(c) with similar spatial trend in error variation.

We should note that the maximum difference is observed in the range of capillary

pressure-saturation where no data point exists. Thus, it could be mainly an artifact

of the interpolation. A similar trend was found by Joekar-Niasar et al. (2009) (Figure

12c, page 10), which was also due to lack of imbibition data points in that region.

Comparing Figure 5.11(c) with 5.11(d), one can observe that the difference between

the simulated drainage and imbibition surfaces is very close to the uncertainty range

of modelling procedure.

The maximum differences in P c-Sw and anw-Sw curves in micro-model simu-

lations of Joekar-Niasar et al. (2009) were about 20% and 300%, respectively. None

of these values are common in real three-dimensional porous media. Nevertheless,

the reduction in difference between anw = f(P c, Sw) surfaces over the whole loop

of drainage and imbibition (Sw ∈ [0.65, 1]) was considerable (Joekar-Niasar et al.,

2009). In this work, the maximum differences between P c-Sw and anw-Sw curves

(i.e. the hysteresis effect) are 100% and 50%, respectively. Whereas, the difference

between anw = f(P c, Sw) surfaces over the whole loop of drainage and imbibition

(Sw ∈ [0.15, 1]) is about 15%. This is a major reduction of hysteretic behaviour. Thus,

we can conclude that anw = f(P c, Sw) surfaces are almost identical within exper-

imental and computational uncertainties; i.e. the hysteresis in P c-Sw-anw surfaces
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Figure 5.11: Contours of specific interfacial area and normalized differences shown in the

capillary pressure-saturation plane. a) Simulated P c-Sw-anw surface for drainage, b) Simu-

lated P c-Sw-anw surface for imbibition, c) Difference between (a) and (b) normalized by (a),

d) Difference between simulations and experimental data normalized by experimental data.

Color coding in (a) and (b) shows specific interfacial area, and in (c) and (d) it shows the

normalized difference. All surfaces have been generated using natural neighboring interpo-

lation.

for the main loop is negligible. One should note that these results are related to a

three-dimensional unstructured and irregular porous medium, which is topologi-

cally and geometrically very different from previous works such as Held and Celia

(2001), Joekar-Niasar et al. (2008, 2009), Reeves and Celia (1996).
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5.5 Summary and conclusions

One of the goals of the study has been to determine whether shape factor alone is

enough to characterize the pore geometry of a granular porous medium. In partic-

ular, the role of actual shape of pores is investigated.

In this paper, a geometry-based approach has been proposed for generation of

pore throat cross sections so that the whole range of shape factor distribution can be

reproduced. Three different general shapes for pore throats have been considered:

irregular hyperbolic triangles, regular hyperbolic polygons, and circles. General for-

mulas for calculation of geometrical properties and entry capillary pressure of these

geometries are derived. Effects of shape factor as well as cross-sectional shape on

entry capillary pressure, corner saturation and corner interfacial area have been in-

vestigated for a single pore throat. We have shown that in addition to shape factor,

the shape of cross section (number of vertices) has a significant effect on entry capil-

lary pressure, corner saturation, and arc menisci area. These parameters can be very

important in porous media with long pore throats and may contribute significantly

to the total pore volume.

We have developed an irregular unstructured mixed cross-sectional pore-

network model, with the pore bodies in the shape of prolate spheroids and pore

throats having a mix of cross sectional shapes described above. The model has been

used for simulating drainage and imbibition experiments carried out by Culligan

et al. (2004) in a glass-bead column. The capability of the pore-network model for

simulating a real porous medium has been successfully verified, as we reproduce

the measured P c-Sw and anw-Sw curves very well. Moreover, grain size distribu-

tion inferred from our pore-network model is in close agreement with the measured

distribution. We have shown that the inclusion of shape factor distribution and

cross-sectional shape in the generation of pore network significantly influence P c-

Sw curves. Depending on the number of vertices of a cross section and volume and

length associated with the pore throats, shape factor distribution and cross-sectional

shape can significantly influence anw-Sw curves.

Another goal of this work is to investigate the role of specific interfacial area

in reducing the hysteresis in P c-Sw curves for a real porous medium. Using this

pore-network model, we have generated P c-Sw-anw surfaces for drainage and im-

bibition, separately. Comparison between these two surfaces shows that they are

highly correlated (r2 = 0.95), and the normalized difference is small, in the range

of uncertainty of model calculations. Our results show that in glass beads with un-

structured irregular network with mixed cross sections, the hysteresis in P c-Sw-anw

curves ismuch smaller than the hysteresis in P c-Sw curves. The largest relative error

between anw = f(P c, Sw) surfaces is found at large saturations, where the specific
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interfacial area is very small. Finally, we emphasize that the proposed approach for

generating pores cross sections, based on the continuous recovery of shape factor

distribution, is essential for the development of predictive pore-network models.
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Chapter 6

Nonequilibrium Effects in Capillarity and
Interfacial Area

Observations always involve theory.

Edwin Hubble, astronomer

Abstract

C
urrent theories of two-phase flow in porous media are based on the extended Darcy’s law,

and an algebraic relationship between capillary pressure and saturation. Both of these

equations have been challenged in recent years, primarily based on theoretical works us-

ing a thermodynamic approach, which have led to new governing equations for two-phase

flow in porous media. In these equations, new terms appear related to the fluid-fluid in-

terfacial area and non-equilibrium capillarity effects. Although there has been a growing

number of experimental works aimed at investigating the new equations, a full study of

their significance has been difficult as some quantities are hard to measure and exper-

iments are costly and time consuming. In this regard, pore-scale computational tools

can play a valuable role. In this paper, we develop a new dynamic pore-network model

for simulating two-phase flow in a porous medium. Using this tool, we investigate re-

lationships among average capillary pressure, average phase pressures, saturation, and

specific interfacial area. We provide evidence that average capillary pressure-saturation-

interfacial area points fall on a single surface regardless of flow conditions and fluid

properties. We demonstrate that the traditional capillary pressure-saturation relation-

ship is not valid under dynamic conditions, as predicted by the theory. Instead, one has

to employ the non-equilibrium capillary theory, according to which the fluids pressure

difference is a function of the time rate of saturation change. We study behaviour of non-

equilibrium capillarity coefficient, specific interfacial area, and its production rate versus

saturation and viscosity ratio.

A major feature of our pore-network model is a new computational algorithm, which

considers capillary diffusion. Pressure field is calculated for each fluid separately, and

saturation is computed in a semi-implicit way. This provides more numerical stability,

compared with previous models, especially for unfavorable viscosity ratios and small

capillary number values.
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6.1 Objectives

The focus of this work is two-fold. The major goal is to investigate theories

for two-phase flow in porous media including interfacial area and the side-

goal is to present a new numerical algorithm for two-phase dynamic pore-network

modelling.

Investigation of theories for two-phase flow In the extended theories of two-

phase flow in porous media, there are new variables and parameters, which are

experimentally difficult to be investigated. Major objectives of this work are as fol-

lows:

• Investigation of uniqueness of Equation 1.6 under equilibrium and non-

equilibrium conditions during drainage.

• Investigation of the validity of Equation 1.7.

• Proposing an explicit formula for the dependence of the interfacial area pro-

duction term (in Equation 1.4) on saturation and its time rate of change.

Hassanizadeh and Gray (1993b) state that P c-Sw-anw relationship is supposed to be

an intrinsic property of the fluids-solid system and valid under all thermodynamic

conditions. The latter issue has not been investigated yet as all measurements of

the P c-Sw-anw relationship have been carried out under equilibrium conditions.

So, one goal of the present paper is to determine specific interfacial area, aver-

age capillary pressure, and saturation under various dynamic conditions as well

as quasi-equilibrium situation, albeit for drainage only, and determine whether all

data points fall on a single anw-P c-Sw surface.

Equation 1.7 has been the subject of many studies in recent years, both com-

putationally (see e.g. Dahle et al., 2005, Das et al., 2006, Gielen et al., 2005, Manthey

et al., 2005) and experimentally (see e.g. Berentsen and Hassanizadeh, 2006, Bottero and

Hassanizadeh, 2006, Hassanizadeh et al., 2004, O’Carroll et al., 2005, Oung et al., 2005).

Nevertheless, there are still open questions regarding the dependency of τ on vari-

ous factors. In the present paper, we investigate the dependency of τ on saturation

as well as fluids viscosity ratio.

Regarding Equation 1.4, although there has been considerable progress in re-

cent years in finding ways of measuring specific interfacial area (see e.g. Brusseau

et al., 1997, 2006, Chen et al., 2007, Chen and Kibbey, 2006, Cheng et al., 2004, Costanza-

Robinson and Brusseau, 2002, Culligan et al., 2004, 2006), there is yet no experimen-

tal (or computational) study of the interface production term. One of the goals of

the present paper is to study the dynamics of fluid-fluid interfaces and to provide
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insight in the dependence of this production term on other primary variables. In

particular, the dependence of Enw on saturation and its time rate of change and vis-

cosity ratio will be studied. This term is very important because it prescribes the

appearance and disappearance of interfaces as the two-phase flow occurs.

Computational improvement of two-phase dynamic pore-network modelling

Despite the fact that numerous dynamic pore-network models have been proposed

over the years, the quasi-static models have remained dominant, largely because

of computational tractability. In particular, the strong nonlinearity at the pore-scale

causes severe stability problems in dynamic pore-network models. In this paper, we

propose a computational algorithm, which is different from the previous dynamic

pore-network models, in the following aspects:

(a) Similar to Thompson (2002), and in contrast to all other dynamic pore-network

models, we assign a separate pressure field to each phase within both pore bodies

and pore throats, and include local capillary pressures in pore bodies. We include a

snap-off criterion to account for the effect of pore geometry on flow.

(b) The computational algorithm for saturation update is improved in order to

have numerical stability in simulations even for capillary-dominated flow. A semi-

implicit approach is used in the saturation update. Thus, the resulting set of equa-

tions for fluid pressures contain both advection-type terms (corresponding to vis-

cous forces) and diffusion-type terms (corresponding to capillary forces). This gives

more versatility to our formulation so that competition between viscous forces and

capillary forces is properly modelled. We will show that in contrast to previous

studies (see e.g. Al-Gharbi and Blunt, 2005, Thompson, 2002), we can obtain a full

consistency between fluid occupancy at equilibrium resulted from quasi-static sim-

ulations and dynamic simulations for the same boundary conditions.

(c) We improve significantly computational efficiency in pressure field calcula-

tions. Using total pressure definition (phase pressures weighted with saturation),

calculation of phase pressures is done in a cheaper way compared with previous

dynamic pore-network models. In addition, the model has been tested for both fa-

vorable and unfavorable viscosity ratios, which is numerically stable.

(d) Tracking fluid-fluid interfaces in pore throats is computationally expensive.

Allocating zero filling time for pore-throats allows us to model a much larger do-

main. On the other hand, we consider infinite conductance (zero flow resistance) in

pore bodies.
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6.2 Classification of dynamic pore-network models

Dynamic pore-networkmodels differ among themselves in three main features: net-

work structure, geometry of the elements, and computational algorithm for solving

the pressure field. A brief description of these features in various dynamic pore-

network models developed so far is given in this section.

6.2.1 Network structure

The network structure is characterized by the positioning of nodes and the number

and orientation of links. If the nodes are positioned at the vertices of a regular lattice,

the network is referred to as a “structured” one, and otherwise it is “unstructured”.

If all nodes have the same number of links connected, the networked is “isotropic”,

and otherwise it is “anisotropic”. Dynamic pore-network models developed to date

are mostly structured and isotropic. However there are some cases, which are struc-

tured and anisotropic (e.g. Mogensen and Stenby, 1998), unstructured and isotropic

(e.g. Blunt and King, 1991, King, 1987), and unstructured and anisotropic (e.g. Koplik

and Lasseter, 1985, Thompson, 2002).

6.2.2 Geometry of the elements

Conventional pore-network models consist of pore bodies, which are connected to

each other by pore throats. Geometry of pore-network models can be studied based

on two different aspects of these network elements: volumes and cross-sectional

shapes assigned to them.

First, volumes assigned to elements: In this regard, there are three different

types of network models as described below.

i) Pore bodies have volume but no resistance; pore throats have negligible vol-

ume but offer resistance to flow. This assumption will help to save computation

time and memory in simulations, since it is not necessary to track interfaces within

pore throats. Also, pressure drop within pore bodies can be neglected so that a sin-

gle pressure values can be assigned to (each fluid within) a pore body. Examples are

the works by Blunt and King (1990), Gielen et al. (2005).

ii) Both pore bodies and pore throats have volume and resistance. Almost none

of dynamic pore-network models reported in the literature correspond to this case.

The only exceptions, to our knowledge, are Mogensen and Stenby (1998) and Singh

and Mohanty (2003). However, they have not shown gains of their models compared

with previous ones.

iii) A pore body and a pore throat are combined into one element that has both

volume and resistance. Combined pore throat-pore body elements may have a vary-
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ing cross section. No specific properties, such as volume and resistance, are assigned

to the connection points. This structure has been used in pore-network models of

Payatakes and co-workers (see e.g.Dias and Payatakes, 1986a,b,Valvanides et al., 1998)

as well as in works by Aker et al. (1998a,b),Al-Gharbi and Blunt (2005),Dahle and Celia

(1999), Knudsen and Hansen (2002), Knudsen et al. (2002), among others.

Second, geometry of elements, cross section; The geometry chosen for pore

bodies and pore throats has consequences for the computational algorithm. Due to

the significant simplicity of circular cross section, most dynamic network models

have a circular cross section. However, there are a few models with angular cross

sections. Valvanides et al. (1998) and Al-Gharbi and Blunt (2005) have assumed trian-

gular cross sections, whereas Mogensen and Stenby (1998), Hughes and Blunt (2000),

Singh and Mohanty (2003) and Gielen et al. (2005) have assumed cubic pore bodies,

and parallelopiped pore throats. Pereira et al. (1996), Van der Marck et al. (1997), and

Thompson (2002) have also considered other angular cross sections. The main reason

for using angular cross sections is to allow existence of corner flow along edges of a

pore element. In angular cross sections, it is possible to have two fluids simultane-

ously present at any given cross section, with the wetting phase filling the corners.

6.2.3 Computational algorithms

There are two general algorithms for solving the pressure field in a dynamic pore-

network model, single-pressure and two-pressure algorithms. These are explained

in detail in the following.

Single-pressure algorithm In this algorithm, regardless of the occupancy of pore

bodies, a single pressure is assigned to each pore body. This single-pressure algo-

rithm is generally applied in following three different approaches.

i) It is assumed that each pore body or pore throat is occupied by one fluid only

at a time. This is generally applied to networks with circular cross sections (e.g.Aker

et al., 1998a,b, Van der Marck et al., 1997).

ii) It is assumed that both fluids can be present within a pore body but not within

a pore throat. Then, it is assumed that the local capillary pressure is negligible.

Therefore, to each pore element a single pressure is assigned (e.g. Gielen et al., 2005).

iii) It is assumed that an equivalent fluid can be defined having a single pres-

sure. Thus, pore bodies and pore throats are filled with the equivalent fluid and

an equivalent conductivity is assigned to each pore throat (e.g. Al-Gharbi and Blunt,

2005,Mogensen and Stenby, 1998).

In all three approaches, the following volume balance equation for pore bodies
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is solved:
Ni∑

j=1

Qij = 0 (6.1)

where, Ni is the number of pore throats connected to pore body i, and Qij

[
L3T−1

]

is the volumetric fluxes through pore throat ij. This flux is calculated by means of

Washburn equation (Washburn, 1921):

Qij = Keq
ij

(
∆pij − pc

ij

)
(6.2)

∆pij = pi − pj (6.3)

where,Keq
ij

[
M−1L4T

]
is an equivalent conductivity, which is a function of the pore

throat radius, pore throat length, fluid viscosities and location of the meniscus in

the pore throat; and pc
ij

[
ML−1T−2

]
is the effective capillary pressure (depending

on the number of interfaces located) between pore bodies i and j.

Obviously, corner flow is not included in Washburn formulation. Nevertheless,

Equation 6.2 has been modified and used for angular cross sections, using concept

of equivalent phase (see approach iii above). It is assumed that a pore throat is filled

simultaneously by two fluids, each fluid having its own conductivity. In the pore

bodies on the two sides of a pore throat, each phase has its own pressure, which

drives the flow. But, to simplify the problem and decrease computational effort, a

single (virtual) pressure is assigned to the two fluids in pore bodies. Equation 6.1

is then applied to calculate the flow. It is assumed that a pore throat is filled with

a single fluid with the equivalent conductivity Keq
ij . This is achieved by averaging

conductivities of phases using the rule of equivalent resistor for electrical resistor

circuits. So, instead of solving for two pressure fields, one can solve for a single

pressure field (see e.g. Al-Gharbi and Blunt, 2005, Bravo et al., 2007, Mogensen and

Stenby, 1998).

The advantage of single-pressure approach is that it simplifies the problem and

reduces computational effort. But, it also has some disadvantages. For example, no

local capillary pressure for pore bodies can be defined. This means that no infor-

mation from the interface behaviour under dynamic conditions can be gained using

this type of dynamic pore-network models. Moreover, this approach exhibits some

inconsistent behaviours in fluids occupancy in the network. In particular, snapshots

of fluid occupancy obtained from quasi-static and dynamic pore-network models,

for the same boundary conditions, are not the same. If we do not assign any dy-

namics to the contact angle, one would expect to obtain the same equilibrium fluid

occupancy resulting from quasi-static pore-network model as from a dynamic pore-

network model for the same boundary conditions. However, Al-Gharbi and Blunt
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(2005) showed that employing the concept of equivalent phase pressure solver in-

duced an inconsistent behaviour in fluid occupancy in their dynamic pore-network

model.

Two-pressure algorithm In this algorithm, when a pore body is filled with two

fluids, each fluid is assumed to have its own pressure. To our knowledge, this con-

cept was employed for the first time by Thompson (2002), who defined variable local

capillary pressures in pore bodies and solved the pressure field for both phases sep-

arately. The local capillary pressure for pore body i is defined as:

pc
i = pn

i − pw
i = f(sw

i ) (6.4)

A fluxQα
ij is assigned in a pore throat ij for each phase separately. Then, Equation 6.1

is replaced by following total volume balance for pore i:

Ni∑

j=1

(Qn
ij +Qw

ij) = 0 (6.5)

Moreover, a separate volume balance for each phase in a pore body is employed:

Vi
∆sα

i

∆t
= −

Ni∑

j=1

Qα
ij , α = w, n (6.6)

where, Vi is the volume of pore body i, sα
i is the saturation of phase α in pore body i,

and Qα
ij is the volumetric flux of phase α in pore body i, given by Equation 6.7. The

latter is given by an equation similar toWashburn formula:

Qα
ij = −Kα

ij∆p
α
ij , α = w, n (6.7)

where Kα
ij is a function of geometry and fluid occupancy of pore throats. This for-

mulation allows us to include mechanisms related to the local capillary pressure

(such as snap-off, counter-current flow) in simulations.

6.3 Model description

In this paper, we employ the two-pressure algorithm. The procedure and results are

described in detail below.
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6.3.1 Model features

Structure and geometry For predictive purposes, where pore-network models are

used to simulate a specific porous medium, the network should be based on the

real connectivity of pores (topology), aspect ratio (i.e. pore body radius divided by

pore throat radius), and shape of pores (geometry). Due to the following reasons,

structure of network (coordination number) can be considered as a minor issue in

this study. a) We are interested in studying qualitative behaviour of new theories

of two-phase flow, and we prefer to eliminate effects of heterogeneities in our sim-

ulations. b) Mogensen and Stenby (1998) studied effects of pores connectivity (coor-

dination number) and aspect ratio using pore-network modelling. They found that

with increase of capillary number, effect of variation of coordination number on dy-

namics of the system and residual saturation decreases. c) For theoretical purposes,

generally regular lattice with fixed coordination number has been used, which com-

putationally is simpler than the irregular unstructured networks.

Our pore-network model has a three-dimensional regular lattice structure with

fixed coordination number of six. Pore bodies have cubic shape and pore throats

have square cross sections. Figure 6.1 shows a schematic presentation of two pore

bodies and the connected pore throat. The size distribution of pore bodies is given

by a truncated log-normal distribution, with no spatial correlation, expressed by:

f(Ri;σnd) =

√
2exp

[
− 1

2

(
ln

Ri
Rm

σnd

)2
]

√
πσ2

ndRi

[
erf

(
ln Rmax

Rm√
2σ2

nd

)
− erf

(
ln

Rmin
Rm√
2σ2

nd

)] (6.8)

in which Ri is the radius of inscribed sphere in a pore body (so, the cube side length

is 2Ri), Rmin is the the lower range of truncation, Rmax is the upper range of trun-

cation, Rm is the mean of inscribed sphere radii, and σnd is the standard deviation.

Radius and length of pore throats connecting the pore bodies are determined based

on the size of neighboring pore bodies. Spacings between the layers of the network

in x-, y- and z-directions are chosen to be variable. Let the spacings between layers

i and i+1 in the three directions be denoted by λx,i, λy,i, and λz,i. Then, designating

each pore body by its lattice indices, namely i, j, and k, lattice spacings are defined

as follows:

λx,i = max{R(i, j, k) +R(i+ 1, j, k) : j = 1, ny, k = 1, nz}, i = 1, nx (6.9a)

λy,j = max{R(i, j, k) +R(i, j + 1, k) : i = 1, nx, k = 1, nz}, j = 1, ny (6.9b)

λz,k = max{R(i, j, k) +R(i, j, k + 1) : i = 1, nx, j = 1, ny}, k = 1, nz (6.9c)
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Figure 6.1: Geometrical configuration for determining the pore throat radius (rij) based on

pore bodies radii, Ri and Rj .

where nx, ny , and nz denote the number of pore bodies in x, y, and z directions,

respectively. Then, length of the pore throats is determined. Based on the length

of a pore throat and sizes of its neighboring pore bodies, the size of that pore throat

cross section is determined (for more detailed explanation refer to Joekar-Niasar et al.,

2008). Consider two pore bodies i and j, with a centre-to-centre distance d (see Fig-

ure 6.1), and inscribed pore radii Ri and Rj , respectively. We define the dimension-

less R̃i and R̃j as follows:

R̃i = Ri/d, R̃j = Rj/d (6.10)

We can calculate dimensionless inscribed radius of the pore throat ij, r̃ij , as follows:

r̃ij = ̺i̺j(̺
1/n
i + ̺

1/n
j )−n, n > 0 (6.11)

̺i =
R̃i sin(π/4)

(1 − R̃i cos(π/4))n
(6.12)

̺j =
R̃j sin(π/4)

(1 − R̃j cos(π/4))n
(6.13)

where n is a parameter, which can control ratio between the radii of pore bodies and

pore throat. It should be larger than zero. Larger n results in smaller pore throats.

In this work, we select n = 0.1 to have a significant overlapping between pore body

and pore throat radii distributions. Resulted aspect ratio varies between 2.2 and 3.4.

Boundary conditions It is assumed that the network is connected to a nonwetting

phase reservoir on one side and a wetting phase reservoir on the other side. Dirich-
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let boundary conditions are imposed at these boundaries. We refer to difference

between the two boundary pressures as the global pressure difference P c
global. After

breakthrough of the pore throat ij at the lower boundary by the nonwetting fluid,

we assign the same capillary pressure to both sides of the outlet pore throat, deter-

mined by the upstream pore body; pc
i = pc

j . Side boundary conditions are assumed

to be periodic.

Assumptions The following assumptions are imposed in the computational algo-

rithm and network development:

• The volume of pore throats is negligible compared to the volume of pore bod-

ies. Thus, the time required for filling a single pore throat is negligible com-

pared to that of a pore body. Also, this volume is not included in the compu-

tation of network saturation.

• Hydraulic resistance to flow in pore bodies is assumed to be negligible com-

pared to that of pore throats.

• Fluids are assumed immiscible and incompressible, and the solid matrix is

assumed to be rigid.

• Flow in the pore throats is assumed to have low Reynolds number such that

transient effects can be neglected at pore scale. This allows us to useWashburn

equation for fluid fluxes through pores.

• No gravity effect has been considered in the simulations. Flow occurs due to

the pressure difference across the boundaries. Adding gravity does not con-

stitute any major complication in the code. But it does not affect results and

conclusions.

System parameters and specifications Tables 6.1 and 6.2 show the fluid properties

and network specifications used in the simulations, respectively.

6.3.2 Local rules

Capillary pressures for pore bodies and pore throats Since pore bodies in our

model are cubic, the wetting phase is always residing in the corners and along edges

(see Figure G.1). The saturation of the pore body (i.e. volume of the wetting fluid di-

vided by the volume of the pore body) depends on the prevailing capillary pressure.

For a given capillary pressure, curvature of the interface in the vertices and edges of

the cube can be calculated and, consequently, the corresponding saturation can be
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Table 6.1: Fluid properties in the simulations

Specification Symbol Value Unit

Contact angle θ 0.0 degree
Interfacial tension σnw 0.0725 kgs−2

Wetting fluid viscosity µw 0.001 kgm−1s−1

Non-wetting fluid viscosity µn 0.0001,0.001, 0.01 kgm−1s−1

Table 6.2: Network parameters

Specification Symbol Value Unit

Lattice dimension 3D: 35×35×35 -
(2D only for Figure 6.8) 2D:70×70

Lattice size 3D: 6×6×6 mm3

2D:12.5×12.5 mm2

Min. pore body inscribed radius Rmin 0.0408 mm
Max. pore body inscribed radius Rmax 0.234 mm
Mean pore body inscribed radius Rm 0.114 mm

Standard deviation 0.169 mm

estimated. In Appendix G, details of derivation of the (local) pc
i -s

w
i relationship for

a cubic pore body are presented. The resulting equation for pc
i in terms of the radius

Ri of the inscribed sphere of the pore body i and the local wetting phase saturation,

is:

pc
i (s

w
i ) =

2σnw

Ri(1 − exp(−6.83sw
i ))

(6.14)

A capillary pressure should be also assigned to a pore throat once it is invaded and

both phases are present. We assume that capillary pressure in a pore throat is equal

to the capillary pressure of the upstream pore body.

Minimum wetting phase saturation in a pore body Obviously it is impossible

to displace the wetting phase from the corners of a cube completely. We assume

that each pore body has a minimum saturation sw
i,min, that depends on the imposed

global pressure difference (P c
global defined in § 6.3.1) as well as the blockage of the

invading fluid. The capillary blockage of invading fluid (P c
eblock

) is also a global

variable, defined to be the minimum entry capillary pressure of all pore throats that
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are connected to the nonwetting phase and not invaded yet. Thus, using the pc
i -s

w
i

relationship given by Equation 6.14, the local minimum wetting phase saturation in

a pore body may be determined as follows:

sw
i,min = − 1

6.83
ln(1 − 1

Ri

2σnw

min{P c
global, P

c
eblock

} ) (6.15)

Entry capillary pressure for a pore throat We assume that a pore throat will be

invaded by the nonwetting phase when the capillary pressure in a neighboring pore

body becomes larger than the entry capillary pressure of the pore throat. The latter

can be calculated as follows (due to Ma et al. (1996),Mayer and Stowe (1965), Princen

(1969a,b, 1970)):

pc
e,ij =

σnw

rij

(
θ + cos2 θ − π/4 − sin θ cos θ

cos θ −
√
π/4 − θ + sin θ cos θ

)
(6.16)

where rij is the radius of inscribed circle of the pore throat cross section, and θ is the

contact angle.

Conductivities of pore throats Conductivities of pore throats are determined

based on the fluid occupancy and size of the pore throat. One of the following

two different states may occur during drainage.

a) Pore throat is occupied by the wetting phase only. For this case, the following

equation was obtained by Azzam and Dullien (1977):

Kw
ij =

π

8µwlij
(reff

ij )4 (6.17)

Kn
ij = 0

where µw is the viscosity of the wetting phase, lij is the length of pore throat, and

reff
ij =

√
4

π
rij (6.18)

b) Pore throat is invaded by the nonwetting phase, thus both phases may be

flowing. Then, following Ransohoff and Radke (1988) we can write:

Kw
ij =

4 − π

βµwlij
(rc

ij)
4 (6.19)

Kn
ij =

π

8µnlij
(reff

ij )4 (6.20)
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where

rc
ij =

σnw

pc
ij

(6.21)

reff
ij =

1

2
(

√
r2ij − (4 − π)rc2

ij

π
+ rij) (6.22)

In Equation 6.19, β is a resistance factor that depends on geometry, surface rough-

ness, crevice roundness and other specifications of the cross section. Detailed ex-

planation about β can be found in Zhou et al. (1997). As mentioned earlier, the pore

throat capillary pressure pc
ij is set equal to the capillary pressure of the upstream

pore body.

Snap-off During drainage, if the local capillary pressure in a pore throat becomes

smaller than a critical value of capillary pressure (defined below), the corner inter-

faces become unstable and snap-off will occur. Ignoring dynamics of contact angle,

the criterion for snap-off in a square cross section pore throat has been defined as

follows (Vidales et al., 1998):

pc
ij ≤ σnw

rij
(cos θ − sin θ) (6.23)

After snap-off, the pore throat will be filled with the wetting phase again, and

nonwetting-phase becomes disconnected, receding in the neighboring two pore

bodies.

6.3.3 Computational procedure

Pressure field solver Equations 6.4, 6.6, and 6.7 form a determinate set to be solved

for sw
i , p

w
i , and pn

i . But, to reduce the computational demand, the equations are

reformulated in terms of total pressure (saturation-weighted average pressure, p̄i)

defined in each pore body as:

p̄i = sw
i p

w
i + sn

i p
n
i (6.24)

Using Equation 6.4 and sn
i +sw

i = 1, we get the following equations for pressures

of wetting and nonwetting phases:

pw
i = p̄i − sn

i p
c
i (6.25)

pn
i = p̄i + sw

i p
c
i (6.26)
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For each pore body i, we know that the summation of fluxes of the two phases

should be zero, as specified by Equation 6.5. Substituting from Equation 6.7 into

Equation 6.7, we obtain:

Ni∑

j=1

[
Kn

ij(p
n
i − pn

j ) +Kw
ij(p

w
i − pw

j )
]

= 0 (6.27)

Substituting Equation 6.25 and Equation 6.26 in Equation 6.27 results in an equa-

tion for p̄i:

Ni∑

j=1

(Kw
ij +Kn

ij)(p̄i − p̄j) =

−
Ni∑

j=1

[(Kn
ijs

w
i −Kw

ij(1 − sw
i ))pc

i + (Kw
ij(1 − sw

j ) −Kn
ijs

w
j )pc

j ] (6.28)

In this equation, the right-hand side as well as the coefficients of the left-hand side

depend on local saturation only. This linear system of equations is solved for p̄i by

diagonally-scaled biconjugate gradientmethod using SLATECmathematical library

(Fong et al., 1993).

Saturation update After calculating p̄i, pressure of phases can be back-calculated

explicitly using Equation 6.25 and Equation 6.26. Then Equation 6.7 can be used to

calculate Qα
ij . Afterwards, Equation 6.6 can be solved for new saturations in an ex-

plicit way based on saturation values from the previous time step. This procedure,

however, will result in numerical problems for a capillary-dominated flow regime,

as mentioned in Thompson (2002). He found that the explicit saturation update was

not numerically stable for very small capillary numbers and he could not success-

fully simulate the capillary-dominated flow. In addition, he could not observe con-

sistency between near-equilibrium snapshots resulted from dynamic simulations

and quasi-static ones. Therefore, we have developed a semi-implicit approach to

control the nonlinearities under such flow conditions. Summing Equation 6.7 for

the two phases, and writing pw
i in terms of pn

i and pc
i , we obtain the following rela-

tionship for the total flux Qtot
ij = Qn

ij +Qw
ij through a pore throat:

Qtot
ij = (Kn

ij +Kw
ij)(p

n
i − pn

j ) −Kw
ij(p

c
i − pc

j) (6.29)

Then, defining Kn
ij + Kw

ij = Ktot
ij and resubstituting for Qn

ij from Equation 6.7,
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we can write:

Qtot
ij =

Ktot
ij

Kn
ij

Qn
ij −Kw

ij(p
c
i − pc

j) (6.30)

Rewriting the above equation for Qn
ij , we get a formula analogous to the

fractional-flow equation:

Qn
ij =

Kn
ij

Ktot
ij

Qtot
ij +

Kw
ijK

n
ij

Ktot
ij

(pc
i − pc

j) (6.31)

Substituting Equation 6.31 in the Equation 6.6 results:

Vi
∆sw

i

∆t
−

Ni∑

j=1

(
Kn

ij

Ktot
ij

Qtot
ij +

Kw
ijK

n
ij

Ktot
ij

(pc
i − pc

j)

)
= 0 (6.32)

The capillary pressure term can be approximated to the first order by

pc
i − pc

j =
∂pc

ij

∂sw
ij

(sw
i − sw

j ) (6.33)

where,
∂pc

ij

∂sw
ij

is calculated from the upstream pore body.

Finally, after substitution of Equation 6.33 in Equation 6.32, we get the following

discretized form of a semi-implicit equation for saturation update:

Vi
(sw

i )k+1 − (sw
i )k

∆t
−

Ni∑

j=1

(
Kn

ij

Ktot
ij

Qtot
ij +

Kw
ijK

n
ij

Ktot
ij

∂pc
ij

∂sw
ij

(
(sw

i )k+1 − (sw
j )k+1

)
)

= 0 (6.34)

where superscript k denotes time step level. In this equation, all coefficients are

evaluated at time step k, so that equation above may be recast into a linear equation

matrix:

 Vi

∆t
−

Ni∑

j=1

Kn
ijK

w
ij

Ktot
ij

∂pc
ij

∂sw
ij


 (sw

i )k+1 +




Ni∑

j=1

Kn
ijK

w
ij

Ktot
ij

∂pc
ij

∂sw
ij


 (sw

j )k+1 = (6.35)

Vi

∆t
(sw

i )k +

Ni∑

j=1

Kn
ij

Ktot
ij

Qtot
ij

One should note that sinceQtot
ij andKα

ij are calculated from time step k, this scheme
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is not fully implicit. Here also the diagonally-scaled biconjugate gradient method

from SLATECmathematical library (Fong et al., 1993) is used.

Time step The time step is determined on the basis of time of filling of pore bod-

ies by the nonwetting phase or wetting phase, denoted by ∆ti. The wetting phase

saturation of a pore body varies between 1 and sw
i,min as we assume that a pore

body may be drained down to the minimum saturation. On the other hand, we al-

low for imbibition to occur locally in some pore bodies, in which case the wetting

phase saturation in a pore body can go back to 1. Then, the global time step will be

the minimum value of all local time steps. So, we calculate ∆ti for all pore bodies,

depending on the process, from the following:

∆ti =





Vi

qn
i
(sw

i − sw
i,min) for local drainage, qn

i > 0

Vi

qn
i

(1 − sw
i ) for local imbibition, , qn

i < 0
(6.36)

where, the accumulation rate of the nonwetting phase is defined as qn
i =

∑Ni

j=1Q
n
ij .

Then, the time step is chosen to be the minimum ∆ti.

∆tglobal = min{∆ti} (6.37)

It should be noted that we have imposed a truncation criterion of 10−6 for sat-

uration when it is close to sw
i,min or 1. Also note that in Equation 6.36, there is a

correspondence between saturation change (numerator) and the accumulation rate

of nonwetting phase (denominator). That is, when local saturation is close to the

limits, the accumulation rate of nonwetting phase is also very small. This means

that ∆ti always remains finite and nonzero.

6.4 Drainage simulations and analysis

6.4.1 General procedure

Initially, the network is fully saturated with the wetting phase. Simulation of

drainage starts with raising the pressure of the nonwetting phase reservoir. When

the global pressure difference, P c
global, becomes larger than the entry pressure of the

largest pore throat connected to the nonwetting phase reservoir, drainage starts. In

quasi-static simulations, the global pressure difference is increased incrementally.

At the end of each step, when there is no flow (static conditions), the overall satu-

ration of the network is determined. Then, global pressure difference is increased

again.
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Figure 6.2: Quasi-static P c-Sw curves for different network sizes.

In order to have representative results for a network with a given statistical dis-

tribution, the network must have a minimum size, corresponding to the REV (Rep-

resentative Elementary Volume)(Bear, 1972). REV size was determined by perform-

ing quasi-static drainage simulations for a network with different sizes but with the

same statistical parameters. Results are shown in Figure 6.2. It is evident that P c-Sw

curve changes with the network size until a network size of 35×35×35 pore bodies.

For larger network sizes, the curves are almost identical. Therefore, a network with

35 pore bodies in each direction was used in our simulations.

6.4.2 Averaging procedure

Our simulations result in local-scale variables such as pressure, saturation, and

fluxes. These have to be averaged over the network to obtain macroscopic variables.

Average saturation is simply defined as follows.

Sw =
V w

V w + V n
=

∑npb

i=1 s
w
i Vi∑npb

i=1 Vi

(6.38)

Sn = 1 − Sw

in which npb is the total number of pore bodies. The total flux across any given sur-

face is equal to the sum of fluxes of all pore throats intersecting that surface. The

averaging of pressure is, however, less straightforward. Commonly, average pres-

sure is obtained using an intrinsic phase average operator (see e.g. Whitaker, 1977).

However, recently it has been shown that the intrinsic phase average pressure intro-
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duces numerical artefacts when both pressure and saturation are spatially variable

(see Nordbotten et al., 2007, 2008). Instead, a centroid-corrected averaging operator

has been suggested by Nordbotten et al. (2008) to alleviate problems associated with

intrinsic phase averaging. Nevertheless in this work, we still use intrinsic phase av-

erage for a pore body i with volume of Vi and α-phase pressure of p
α
i as, this is still

most commonly used:

Pα =
1

δV α

∫

δV α

PαdV =

∑npb

i=1 p
α
i s

α
i Vi∑npb

i=1 s
α
i Vi

, α = n,w (6.39)

Commonly, the macroscale capillary pressure is defined to be the difference in the

average pressures of nonwetting and wetting phases. But as we show later, this is

not a correct definition of macroscopic capillary pressure. Here, we propose to de-

fine macroscopic capillary pressure based on the average of local capillary pressures

of pore bodies, weighted by the corresponding interfacial area,Anw
i :

P c =

∑npb

i=1 p
c
iA

nw
i∑npb

i=1A
nw
i

(6.40)

Calculation of interfacial area in pore bodies is explained in Appendix H.

6.5 Results and discussion

6.5.1 Quasi-static vs. dynamic simulation

As explained before, previous dynamic pore-networkmodels failed to simulate very

slow flow (very small capillary numbers) properly. As Thompson (2002) and Al-

Gharbi and Blunt (2005) found that application of dynamic pore-network models for

very small capillary numbers (relatively low flow velocities) was not numerically

successful and severe instability problems were observed. To show capability of

the proposed algorithm in simulating capillary dominated flow, P c-Sw curve has

been produced using the dynamic pore-network model with very small nonwetting

phase reservoir pressure increments. Simultaneously, for the same network P c-Sw

curve has been generated using a quasi-static pore-network model. As it can be

observed in Figure 6.3, the equilibrium points resulted from both models are the

same. That is, if there is no dynamic effect in contact angle, there will be a full

agreement between quasi-static and dynamic pore-network models. We found that

equilibrium fluid configurations resulted from both models (not shown here) are

the same. This simulation was done for a 20-pore body cubic lattice network. The

simulation took 46 hours on Intel(R) CPU 6600, 2.4GHz with 2GB RAM, which is
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Figure 6.3: Comparison between equilibrium points resulted from quasi-static and dynamic

pore network models for the same boundary conditions in a 20-pore body cubic lattice net-

work.

significantly more time-consuming compared with viscous-dominated flow.

Figure 6.3 shows some interesting features resulted by interfaces behaviour in

a near-to-equilibrium system. Average phase pressure difference, Pn − Pw (Equa-

tion 6.39), and average capillary pressures P c (Equation 6.40) are the same, and

their values are fluctuating around the quasi-static model P c-Sw curve. The dips

visible in Figure 6.3 are due to the relaxation of the interfaces behind the invading

fronts. This phenomenon has been observed in micromodel experiments reported

by Pyrak-Nolte (2007). However, as we increased the aspect ratio (radius of pore

body to radius of pore throat), these dips disappeared, but more fluctuations in dy-

namic P c-Sw curve were observed.

6.5.2 Non-equilibrium effects in average phase pressures

In this section, we investigate the validity of non-equilibrium capillarity in Equa-

tion 1.7 and the behavior of non-equilibrium capillarity coefficient (τ ). To do so, we

have determined the change of saturation with time under various dynamic condi-

tions and have prepared corresponding plots of average phase pressure difference

versus saturation.

As explained before, by imposing a large global pressure difference on the

network domain, it is possible to simulate dynamic two-phase flow drainage ex-

periments. We have considered two fluids with three different viscosity ratios

(M = µn/µw = 0.1, 1, 10) and five different global pressure difference values (10,

15, 20, 25 and 30 kPa). Computational time increases with decrease of viscosity ra-
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tio and decrease of global pressure difference. The simulations took about 10 to 70

hours on Intel(R) CPU 6600, 2.4GHz with 2GB RAM.

Commonly, for viscosity ratios less than unity, the displacement shows insta-

bility. We found that for given flow conditions, saturation changes with time for

M = 1 andM = 10 were very similar. The breakthrough saturations forM = 1 and

M = 10, were not so different for different global pressure differences. While, for

M = 0.1, the breakthrough saturation decreased significantly for larger global pres-

sure differences. Breakthrough saturation for favorable viscosity ratio were smaller

than the unfavorable viscosity ratio (in the same network), due to the stable front

invasion forM ≥ 1 and viscous fingering forM < 1.

Curves of average fluid pressure difference (based on Equation 6.39) versus av-

erage saturation are shown in Figure 6.4. It is clear that the curves are strongly

dependent on boundary conditions. The differences in fluid pressures are found to

be higher for larger global pressure differences, which also lead to larger saturation

changes. This behaviour agrees with Equation 1.7, which suggests larger pressure

differences for large saturation changes under drainage.

As it can be observed in Figure 6.4, higher viscosity ratio can also cause higher

pressure build-up. Higher viscosity ratios mean less snap-off occurs and fewer

pores will be partially filled and disconnected from the reservoir. The decline in the

fluid pressure differences as residual saturation is approached, is due to the non-

wetting phase breaking through the outflow boundary of the averaging window.

After breakthrough, average phase pressure difference decreases due to the direct

connection of nonwetting phase to the lower (outflow) boundary, which entraps

wetting phase in the corners. Thus wetting fluid will gain a higher pressure com-

pared to non-trapped wetting phase. Consequently, the average pressure difference

approaches the P c-Sw curve. Decline in the fluid pressure differences as residual

saturation in the averaging window is reached, has been studied analytically by

Nordbotten et al. (2008) who found qualitatively the same behaviour.

According to Equation 1.7, the deviation of the macroscopic pressure difference

from the macroscopic capillary pressure is related to the time rate of change of sat-

uration. Hassanizadeh and Gray (1993a) have suggested that τ is a non-negative non-

equilibrium capillarity coefficient that may still depend on saturation. To imple-

ment this equation for practical purposes, it is crucial to determine the dependency

of this coefficient on medium and/or fluid properties. To compute τ , first a set of

∂Sw/∂t values is calculated for a given saturation (and constantM ). Then, from cor-

responding curves in Figure 6.4, P c and Pn − Pw are found at that saturation (for a

given viscosity ratioM ). This results in a graph of Pn − Pw − P c vs. ∂Sw/∂t (not

shown here) for the given saturation values and viscosity ratios. The slopes of the

resulting curves gives the values of τ at different saturations. Results are plotted in
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Figure 6.4: Average phase pressure difference curves, P n − P w, calculated using Equa-

tion 6.39 and average capillary pressure curves, P c, calculated using Equation 6.40 for five

different global pressure differences and viscosity ratios a) M = 0.1, b) M = 1 and c)M = 10.

Figure 6.5. It is evident that the dynamic effect is stronger for higher viscosity ratios.

This is because for viscous fluids, it takes much larger time for the equilibrium fluid

configuration to be reached. Decrease of τ after breakthrough is not relevant and is

not a property of the porous medium, but is due to the drainage front reaching the



168 6. Nonequilibrium Effects in Capillarity and Interfacial Area

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.00 0.20 0.40 0.60 0.80 1.00
Saturation (S

w
)

(P
a
.s

)
M=0.1

M=1

M=10

Figure 6.5: Variation of non-equilibrium capillarity coefficient, τ , as a function of saturation

for different viscosity ratios M = 0.1, 1, 10. The vertical axis is shown in logarithmic scale.

boundary of the domain (see also the explanation given in relation to the decline

of pressure differences at low saturation in Figure 6.4). For M≥1, non-equilibrium

capillarity coefficient increases with decrease of wetting phase saturation, which is

similar to the findings of Mirzaei and Das (2007) in their column-scale drainage sim-

ulations (using a continuum model) for favorable viscosity ratio. But, this trend is

reversed forM = 0.1. This trend can be interpreted based on the empirical equation

suggested by Stauffer (1978) for unsaturated soil. Based on the drainage experiments

done on fine sand in an air-water system, he suggested the following equation.

τ =
αǫµ

λk

(
pc

ρg

)2

(6.41)

where α is assumed to be a constant equal to 0.1 for granular soils, ǫ is porosity, µ is

the water viscosity, λ and pc are the coefficients in Brooks-Corey formula (Brooks and

Corey, 1964), k is the saturated permeability, ρ is the water mass density, and g is the

gravity. For the case of two-phase flow, µ can be replaced by µeff , the saturation-

weighted average viscosity of the two-fluids, which is very much dependent on

the flow regime. For a stable invasion, where a piston-like movement is dominant,

viscosity can be weighted linearly with saturation: µeff = µnSn + µwSw. How-

ever, for viscous fingering regime, some researchers such as Koval (1963) have sug-

gested some other empirical relationships for effective viscosity (see e.g. Fayers et al.,

1990). In all equations, effective viscosity is suggested to be a function of saturation.

Considering τ ∝ µeff , it can be concluded that ∂τ/∂Sw ∝ ∂µeff/∂S
w. The term

∂µeff/∂S
w will be positive for unfavorable viscosity ratio, since both wetting phase
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saturation and effective viscosity decrease with decreasing of wetting phase satura-

tion. In addition, difference between magnitudes of ∂τ/∂Sw for different viscosity

ratios is significant. From Figure 6.5, we can determine that ∂τ/∂Sw for M = 10

is almost 10 times larger than that of M = 1. This is qualitatively consistent with

Equation 6.41, where effective viscosity for M = 10 is almost 10 times larger than

that ofM = 1 for intermediate and low range of wetting phase saturation.

6.5.3 On the existence of P c-Sw-anw surface

As discussed in § 1.1 (page 1), the main underlying concept in Equation 1.7 is that

capillary pressure is an intrinsic property of the fluids-solid system, and thus it

should be a function of state variables only (namely, saturation, temperature, and

specific interfacial area); it should not depend on initial or boundary conditions and

other parameters that control transient flow conditions such as viscosity. Here, we

investigate this conjecture for the case of primary drainage.

First, consider the average capillary pressure P c defined by Equation 6.40. Plots

of P c versus average saturation under various dynamic conditions are shown in

Figure 6.6(a), where also the quasi-static capillary pressure is plotted. It is evident

that average capillary pressure-saturation relationship is not unique, as depends on

transient flow conditions as well as fluids viscosity ratio. This apparently contra-

dicts the concepts presented above according to which capillary pressure curve is

an intrinsic property of the fluids-solid system. But, in fact the theory prescribes

that the capillary pressure is a function of specific interfacial area as well as satura-

tion (see e.g. Hassanizadeh and Gray, 1993a, Held and Celia, 2001, Joekar-Niasar et al.,

2008, 2009, Reeves and Celia, 1996). So, differences observed in P c-Sw curves could

be due to the fact that specific interfacial area is different under different dynamic

conditions.

Figure 6.6(b) shows specific interfacial area values for different viscosity ratios

at different saturations for a three-dimensional network used in previous simula-

tions. In addition, relationship between specific interfacial area and saturation re-

sulted from static simulations has been shown as a thick solid line. According to

the conjecture of Hassanizadeh and Gray (1993b), if P c-Sw-anw surface were an in-

trinsic property of the porous medium, all the points for all non-equilibrium and

equilibrium conditions should be located on a single surface. To investigate this, a

second-order polynomial surface was fitted to all P c-Sw-anw data points presented

in Figures 6.6(a) and 6.6(b), which is shown in Figure 6.6(c). Note that the selection

of a polynomial function for fitting is arbitrary and only for simplicity in presen-

tation. This surface is highly correlated with the data points (R2 = 0.95 and the

average relative error is about 14%). The behaviour of the surface is very similar
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Figure 6.6: a) Macroscopic capillary pressure, defined by Equation 6.40, for five different

global pressure differences and three different viscosity ratios M = 0.1, 1, 10 compared with

quasi-static capillary pressure curve in a 3D (35×35×35) network, b) Quantitative compari-

son between quasi-static and dynamic specific interfacial area-saturation curves for the same

fluid-solid properties and boundary conditions mentioned in (a). c) A second-order poly-

nomial surface fitted to all P c-Sw-anw data points resulted from dynamic and quasi-static

simulations shown in (a) and (b) (R2 = 0.95).

to the P c-Sw-anw surfaces shown in Held and Celia (2001), Joekar-Niasar et al. (2008,

2009), Porter et al. (2009), Reeves and Celia (1996), although they only simulated P c-

Sw-anw equilibrium points.

The uniqueness of P c-Sw-anw surfaces under all equilibrium and non-

equilibrium conditions, drainage and imbibition processes has not been yet fully

investigated. We have used DYPOSIT model (with the properties given in the next

chapter) to generate P c-Sw-anw surface data points under primary drainage and
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main imbibition processes. The data points have been plotted for drainage and im-

bibition processes separately, as shown in Figures 6.7(a) and (b), respectively. As

it can be observed, data points resulted from drainage simulations create a well-

behaved surface. This trend is less visible for imbibition simulations due to the

limited range of saturation, covered by the experiments. However, there is still a

smooth and meaningful trend in variation of interfacial area with capillary pres-

sure and saturation. The interesting aspect of these results is that although the data

points are resulted from different viscosity combinations (M = 0.1, 1, 10), all the

points are still located in a well-behaved surface. Qualitatively there is a reasonable

agreement between the trends of both data sets. Obviously, with the increase of

wetting fluid saturation, specific interfacial area decreases.

As Figure 6.6(b) shows, specific interfacial area has larger values for smaller vis-

cosity ratios, as a result of instability and fingering. For unfavorable viscosity ratio

(M = 0.1), local entry capillary pressures of pore throats and their connectivity

(topology and geometry) control the invasion. According to results shown in Fig-

ure 6.6(b), the largest specific interfacial area has been created in the quasi-static

simulation, where only capillary forces are controlling the invasion. In other words,

it seems that for a given saturation value, with decrease of viscous forces compared

with capillary forces, more interfacial area is created.

Significant variation of specific interfacial area with viscosity ratio and flow con-

ditions in Figure 6.6(b) suggests that invasion mechanism and system parameters

have a major effect on interfacial area evolution under dynamic conditions. This is

illustrated in Figure 6.8, where we have shown different snapshots of fluid distribu-

tion for drainage. These simulations were performed in a two-dimensional network

with size of 70 × 70 pore bodies. Snapshots are shown for P c
global = 20kPa and

at wetting phase saturations of 0.9, 0.5 and 0.3. As shown in Figure 6.8, under fa-

vorable conditions (M ≥ 1), interface front is stable with less fingering. For small

global pressure difference, more fingering occurs compared to high global pressure

differences for a given (favorable) viscosity ratio. This is because, with more inva-

sion of the nonwetting fluid, more energy dissipation occurs and consequently at

low saturations more fingering can occur. Under unfavorable conditions (M < 1),

however even large global pressure difference can not stabilize the interface front.

This is because front basically follows the local variations in pore throat sizes within

the pore-network (Aker et al., 1998b).

6.5.4 Production rate of specific interfacial area vs. saturation

As explained in § 1.1, in the new theory of two-phase flow, the interfacial area pro-

duction term Enw (Equation 1.4) plays a significant role. Since there is no quan-



172 6. Nonequilibrium Effects in Capillarity and Interfacial Area

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

12

20
22

24
26

28
30

32
34

36
38

40

a)

S
p
e
c
if
ic

In
te

rf
a
c
ia

l
A
re

a
(1

/m
m

)

Cap
illa

ry
Pr

es
su

re
(k

Pa
)

Saturation (S w
)

0.0
0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

12

20
22

24
26

28
30

32
34

36
38

40

b)

S
p

e
c
if
ic

In
te

rf
a

c
ia

l
A

re
a

(1
/m

m
)

Capilla
ry

Pre
ss

ure
(k

Pa)

Saturation (S w
)

Figure 6.7: Three-dimensional presentation of all data points resulted from a) drainage and

b) imbibition simulations.

titative information available about this term yet, we have used our pore-network

model to get some insight about its dependence on other primary variables. In par-

ticular, the dependency of Enw on saturation and its time rate of change, and on

viscosity ratio will be studied.

The procedure for the estimation of Enw is as follows. If in Equation 1.4, we

neglect the advective flux term, the production term may be calculated as the rate
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Figure 6.8: Qualitative comparison of macroscopic interface topology for M = 0.1, 1 and 10

in a 2D (70×70) network at three different saturations.

of change of specific interfacial area with time. The production rate of specific in-

terfacial area (Enw) is plotted as a function of saturation in Figure 6.9. It is evident

that Enw decreases with the decreasing of saturation. We also see that it is much

larger for M = 0.1 than for M = 10 and M = 1. Figure 6.9 also shows that Enw

depends on the imposed boundary pressure, which in turn causes different rate of

change of saturation, ∂Sw

∂t . Therefore, based on Figure 6.9 and change of saturation

with time, one can construct a relationship betweenEnw and−∂Sw

∂t for different sat-

urations. The results (not presented here) show that at saturations lower than 0.9,

we can roughly define a linear relationship between Enw and −∂Sw

∂t :

Enw = −G∂S
w

∂t
(6.42)

where G
[
L−1

]
is a material coefficient, which itself is a function of saturation as

well as viscosity ratio, as shown in Figure 6.10. We suggest a linear relationship

between G and saturation: G(Sw,M) = a + b.Sw, where values of “a” and “b”

depend on viscosity ratio and are reported in Figure 6.10. A relationship similar to

Equation 6.42 was employed by Niessner and Hassanizadeh (2008) in a model based

on the new theory of two-phase flow.
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Figure 6.9: Plots of production rate of specific interfacial area Enw, versus saturation for

a)M = 0.1 b)M = 1 c)M = 10 and for various values of global pressure difference.

6.6 Summary and conclusions

A DYnamic POre-network model for SImulating Two-phase flow in a porous

medium, referred to as DYPOSIT has been developed. The combination of features
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Figure 6.10: Relationship between G and the wetting phase saturation for different viscosity

ratios.

included in this model has not been offered in previous network models. The net-

work elements have square cross sections, as a result of which both phases can be

simultaneously present within a pore body or pore throat. Local capillary pressure

in the pore elements is taken into account. Two different pressure fields are assigned

to each phase and solved using a robust algorithm. The model is numerically stable

for a wide range of viscosity ratios and under different dynamic conditions (vis-

cous dominated or capillary dominated). The model is used to simulate drainage

experiments with Dirichlet boundary conditions. It is applied to study dynamics of

specific interfacial area, average capillary pressure, average phase pressure differ-

ences, functionality of non-equilibrium capillarity coefficient as well as production

rate of interfacial area.

Macroscopic capillary pressure is defined as the average of local capillary pres-

sure at all interfaces weighted with the area of the interface. We have shown that

neither average capillary pressure-saturation curves, nor specific interfacial area-

saturation curves, are not unique, but they depend on flow dynamics as well as

fluid-solid properties. However, it is shown that capillary pressure-saturation-

interfacial area surface for primary drainage is an intrinsic property of the porous

medium, independent of fluid properties and dynamic conditions. The difference

between average phase pressures, however, is found to be dependent on boundary

pressures and time rate of change of saturation as prescribed by the dynamic capil-

lary theory. Our results illustrate that the non-equilibrium capillarity coefficient is a

function of saturation as well as viscosity ratio.

Dynamics of interfacial area show that with decrease of the viscosity ratio, spe-

cific interfacial area increases, which is a consequence of the invasion mechanism.
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However, in all dynamic cases, specific interfacial area is smaller than that under

quasi-static conditions. With decrease of the viscosity ratio, effect of the intrinsic

properties of medium (geometry and topology) on the creation of interfacial area in-

creases. The production rate of specific interfacial area for different viscosity ratios

has been studied and quantified. With the decrease of the viscosity ratio, production

rate of the specific interfacial area increases. The production rate is found to have

an almost linear relationship with the time rate of change of saturation. This linear-

ity coefficient is a function of saturation as well as the viscosity ratio. The dynamic

pore-network model developed here is capable of simulating complex problems of

flow of two fluid phases in porous media including non-equilibrium capillarity ef-

fects and dynamics of interfaces. In future research, our model will be applied to a

larger domain in order to simulate column experiments and investigate validity of

full system of equations of extended Darcy’s law Equations 1.1 and 1.2.
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Chapter 7

Capillarity Effects under Drainage and
Imbibition

The scientist is not a person who gives the right answers,

he’s one who asks the right questions.

Claude Lévi-Strauss, anthropologist

Abstract

W
ehave developed a DYnamic POre-network model for SImulating Two-phase flow in

porous media (DYPOSIT). Employing improved numerical and geometrical features in

the model provides a physical-based pore-scale simulator. This computational tool is ap-

plied in several numerical experiments (primary and main drainage, main imbibition) to

investigate validity of the central equation in classical two-phase flow simulations, called

capillary pressure curve. Traditional multiphase formulations state that macroscopic

capillary pressure is only a function of saturation. Some theoretical and experimental

studies have shown that this assumption is invalid and capillary pressure is also related

to the variation of saturation with time in the domain, referred to as “non-equilibrium

effect”. In this study, effect of fluid properties and macroscopic interface topology on

the qualitative behaviour of non-equilibrium capillarity coefficient as well as its unique-

ness under different processes (drainage, imbibition) have been investigated. Although,

at pore scale local equilibrium conditions for fluid-fluid interfaces (constant contact an-

gle, validity of Young-Laplace Equation) are assumed, non-equilibrium effects can be

observed in average fluids pressure difference, which is resulted from the macroscopic

interface topology. Other aspects of the dynamics of two-phase flow such as trapping,

saturation profile, etc are also studied.

7.1 Introduction

Non-equilibrium capillarity coefficient

E
quation 1.7 (page 3) has been the subject of many studies in recent years, compu-

tationally using Darcy-scalemodels (see e.g.Das et al., 2006,Manthey et al., 2005),
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and pore-scalemodels (see e.g.Dahle et al., 2005,Gielen et al., 2005, Joekar-Niasar et al.,

2010a) as well as experimentally (see e.g. Berentsen and Hassanizadeh, 2006, Bottero,

2009, Bottero and Hassanizadeh, 2006,Camps-Roach et al., 2010,Hassanizadeh et al., 2004,

O’Carroll et al., 2005,Oung et al., 2005). Hassanizadeh et al. (2002) reviewed extensively

the experimental works in which non-equilibrium effects have been observed.

Dahle et al. (2005) developed a bundle-of-tube model to investigate the variation

of τ with variance of radii distribution and with saturation under drainage process.

They found that τ increases with decrease of wetting fluid saturation and with in-

crease of variance. In another study, Joekar-Niasar et al. (2010a) investigated variation

of τ with viscosity ratio (M ) and saturation during drainage using a dynamic pore-

network model. Viscosity ratio is defined as the ratio of nonwetting fluid viscosity

(µn) to the wetting fluid viscosity (µw). Joekar-Niasar et al. (2010a) found a similar

trend for variation of τ with saturation as Dahle et al. (2005) did. In addition, they

found that larger values of viscosity ratio results in larger values of τ . In another

study, Manthey et al. (2005) studied variation of τ with permeability, heterogeneity

and entry capillary pressure during drainage. They employed a continuum-scale

two-phase simulator in which local capillary pressure was defined based on Brooks-

Corey relation. Based on volumetric phase averaging, they determined the magni-

tude and behaviour of τ .

Although some aspects of non-equilibrium capillarity effect has been studied,

there is still much room for further studies. There is still no study on the combined

effect of saturation, effective viscosity, and viscosity ratio on the variation of τ or on

the presence of hysteresis on τ -Sw relationship.

Objectives

The main objectives of this paper are as follow:

• Developing a dynamic pore-network model for simulating two-phase flow

(DYPOSIT) with improved numerical algorithms for computing pressure

fields and updating the saturation. Using this algorithm, the transient be-

haviour of capillary pressure under different flow regimes and viscosity ra-

tios can be simulated. To mimic large pore spaces among the solid grains in a

granular medium, the shape of pore bodies has been selected as truncated oc-

tahedrons. This is a modification of the geometry compared with Joekar-Niasar

et al. (2010a), in which pore bodies were represented as cubes.

• Studying the evolution of average fluids pressure difference (Pn − Pw) with

time and saturation under favorable (M ≥ 1) and unfavorable (M < 1) condi-

tions for primary and main drainage as well as main imbibition processes.
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• Analysis of the validity of Equation 1.7 during imbibition as well as drainage.

Up to now, behaviour of τ has been studied only during primary drainage.

We are interested in analyzing existence of τ under conditions where the local

equilibrium at interfaces is still assumed (so, for example, dynamics of contact

angle is neglected).

• Analysis of the variation of τ with viscosity ratio and saturation during pri-

mary and main drainage and main imbibition.

7.2 Model description

7.2.1 Model features

Structure and geometry We have also developed a regular three-dimensional lat-

tice network with fixed coordination number of six. Pore bodies and pore throats

are presented by “truncated octahedron” and “parallelepiped”, respectively. This al-

lows simultaneous existence of both fluids in a single pore element. The octahedron

pore bodies can be unequally truncated since they are connected to pore throats of

different sizes, as shown in Figure 7.1(a). Truncated parts of the octahedron have

the shape of square pyramids with base width of 2rij (where rij is equal to the ra-

dius of inscribed circle of the pore throat ij) as shown in Figure 7.1(a). The radius

of the inscribed sphere of a pore body, Ri, and the radius of the inscribed circle of

the cross section of pore body, R′
i, are shown in Figure 7.1(b). It should be noted

that Ri =
√

6
3 R

′
i. A cross section through the vertices of a pore body and the pore

throat connecting them is shown in Figure 7.1(c). The size distribution of pore bod-

ies is specified by a truncated log-normal distribution, with no spatial correlation,

expressed by Equation 6.8. Spacings between the pore body layers of the network

in x-, y- and z-directions are chosen to be variable. Let the spacings between layers

k and k + 1 in the three directions be denoted by λx,k, λy,l, and λz,m. Then, desig-

nating each pore body by its lattice indices, namely k, l, and m, lattice spacings are

given as follow:

λx,k =
√

2max{R′(k, l,m) +R′(k + 1, l,m) : l = 1, ny,m = 1, nz}, k = 1, nx (7.1a)

λy,l =
√

2max{R′(k, l,m) +R′(k, l + 1,m) : k = 1, nx,m = 1, nz}, l = 1, ny (7.1b)

λz,m =
√

2max{R′(k, l,m) +R′(k, l,m+ 1) : k = 1, nx, l = 1, ny},m = 1, nz (7.1c)

where nx, ny , and nz denote the total number of pore bodies in x, y, and z directions,

respectively. If there is no spacing between vertices of square cross sections shown

in Figure7.1(c), the distance between centres of pore bodies will be equal to
√

2 times
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Figure 7.1: a) Schematic presentation of a pore body and its connected pore throats. Trun-

cated parts of the pore body have the width of 2rij , which is the inscribed radius of pore

throat ij. b) Cross sections of the pore body along the vertices and through the edges. Radius

of inscribed sphere is denoted by R and radius of inscribed circle in the cross section along

vertices is denoted by R′ c) Cross section of two pore bodies and connected pore throats.

Geometrical configuration for determining the pore throat radius (rij) based on pore bodies

radii, R′
i =

√
6

2
Ri and R′

j =
√

6

2
Rj .

the summation of cross section inscribed radii. Based on the length of a pore throat

and sizes of its neighboring pore bodies, radius of the inscribed circle in a pore

throat cross section is determined (for more detailed explanation, see Joekar-Niasar

et al., 2008, and § 6.3.1, page 154).

Fluids and network parameters and specifications Table 7.1 shows fluids and net-

work properties used in the simulations. Viscosity of the nonwetting fluid is kept

constant and equal to 0.001 and viscosity ratio is defined as theM = µn

µw . Statistical
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Table 7.1: Fluid and network properties used in the simulations.

Parameter Symbol Value Unit

Contact angle θ 0.0 degree
Interfacial tension σnw 0.0725 kgs−2

Wetting fluid viscosity µw 0.0001,0.001, 0.01 kgm−1s−1

Non-wetting fluid viscosity µn 0.001 kgm−1s−1

Total no. of pore bodies nz 45 -
in flow direction
Total no. of pore bodies nx, ny 35 -
in lateral directions
Domain Size - 1.9×1.9×2.37 mm3

Permeability K 1.43×10−12 m2

Table 7.2: Statistical properties of the radii of inscribed spheres of pore bodies (Ri), and of

inscribed circle of pore throats rij , and aspect ratio distribution Rasp.

Specifications
Ri rij Rasp

(mm) (mm)

min 0.0077 0.0048 1.55
max 0.0200 0.0162 4.00
mean 0.0125 0.0084 2.25

st. deviation 0.0028 0.0017 0.38

properties of pore bodies, pore throats, and aspect ratio distributions are shown

in Table 7.2. Aspect ratio is defined as pore body inscribed sphere radius divided

by pore throat radius. Corresponding to Table 7.2, Figures 7.2(a) and (b) show the

aspect ratio distribution as well as pore body-pore throat size distributions, respec-

tively . Aspect ratio is controlled by the parameter n given in Equation 6.11. In this

work, we have set n = 1.0.

7.2.2 Local rules

Details about the governing equations can be found in § 6.3.3, page 159. The local

rules are given in the following sections.

Capillary pressure curves for pore bodies and pore throats Local capillary pres-

sure within a pore is a function of the curvature of fluid-fluid interface through
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Figure 7.2: Network geometry properties a) Aspect ratio distribution b) Pore body and pore

throat distributions.

Young-Laplace equation, regardless of whether drainage or imbibition occurs. How-

ever, during imbibition, topology of fluid-fluid interfaces is much more compli-

cated.

Interfaces may be categorized in two different types: “arc menisci (AM)”, formed

along the edges, and “main terminal menisci (MTM)”, spanning the pore throat cross

section during drainage (Mason and Morrow, 1987). Behaviour of “MTM” during

drainage and imbibition is different. During drainage, a MTM is formed at the en-

trance to a pore throat within a pore body filled with the nonwetting fluid. How-

ever, during imbibition a MTM can be formed such that it spans over a pore body

and connected pore throats; this is referred to as “cooperative filling” (Lenormand

and Zarcone, 1984).

In any case, for a given fluid-fluid interface position within a pore body, we can

determine corresponding capillary pressure and saturation. Therefore, for a given

pore body, a unique relationship between capillary pressure and local saturation
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can be obtained. Local pc
i -s

w
i curves for drainage and imbibition are discussed and

derived below.

Drainage During drainage, the invasion of a pore throat by the nonwetting fluid,

and consequently the movement of main terminal menisci, is controlled by the en-

try capillary pressure. In drainage, an interface is located within a pore body. If

a pore body is filled with both fluids, the wetting fluid is residing along edges of

the pore bodies (see Figures I.1(b) and (c) in I.1). The saturation of the pore body

(i.e. volume of the wetting fluid divided by the volume of the pore body) depends

on the prevailing capillary pressure. For a given capillary pressure, the curvature

of interfaces in the edges of the pore body can be calculated and, consequently, the

corresponding saturation can be estimated. In I.1, details of derivation of the (local)

pc
i -s

w
i relationship for an octahedron pore body are presented.

The resulting pc
i -s

w
i relationship in terms of the radiusRi of the inscribed sphere

of the pore body i and other geometrical parameters is:

pc
i = 2σnwκi, κi =





( 1
rij

− 1
Ri

)(
sw

i −sdr
i

1−sdr
i

)3.5 + 1
Ri

sw
i ≥ sdr

i

1
Ri

(
sw

i

sdr
i

)a

, a = 1
2.98sdr

i
−3.85

smin
i < sw

i < sdr
i

(7.2)

in which, sdr
i is the wetting fluid saturation corresponding to the inscribed sphere of

the pore body, given by Equation I.2, and smin
i is the minimum possible saturation

in a simulation given by Equation 7.3. The resulting curve is shown in Figure I.2(a).

Obviously, it is impossible to completely displace the wetting fluid from the cor-

ners of a pore body. We assume that each pore body has a minimum saturation

sw
i,min, which depends on the imposed global pressure difference (P c

global defined in

§ 7.3.2) as well as the blockage of the invading fluid. The capillary pressure blockage

of the invading fluid (P c
eblock

) is also a global variable, defined to be the minimum

entry capillary pressure of all pore throats neighbouring the vicinity of the nonwet-

ting fluid but not invaded by it yet. Thus, using the pc
i -s

w
i relationship given by

Equation 7.2, the local minimum wetting fluid saturation in a pore body may be

determined as follows:

sw
i,min = sdr

i

(
Ri

2σnw
min{P c

global, P
c
eblock

}
)2.98sdr

i −3.85

(7.3)

A capillary pressure should be also assigned to a pore throat once it is invaded

and both fluids are present. We assume that the capillary pressure of a pore throat

pc
ij is equal to the capillary pressure of the upstream pore body.
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Imbibition During imbibition, locations of interfaces are not only controlled by

the geometry of pore bodies and pore throats, but also by local fluid configuration

in pore throats connected to a pore body (Lenormand and Zarcone, 1984). One of

the mechanisms that controls configuration of fluid-fluid interfaces in a pore body

during imbibition is “cooperative pore filling”. Lenormand and Zarcone (1984) ob-

served in micro-model experiments that, depending on the number of pore throats

filled with the nonwetting fluid, the topology of local main terminal interface can

change. They defined a so-called I-mechanism for pore filling, where I represents

number of pore throats filled with the nonwetting fluid. They showed that with

the decrease of I, radius of interface may decrease, resulting in an increase of local

capillary pressure as shown schematically in Figure 7.3. Some researchers such as

Hughes and Blunt (2000), Øren et al. (1998) suggested simple algebraic equations for

pore filling mechanism, regardless of the geometry of pore bodies and pore throats.

These relations do not apply to all pore spaces. For example, they do not apply to

high-porosity domains with small aspect ratio, such as micro-model experiments of

Pyrak-Nolte (2007) , as illustrated in simulations of the imbibition process by Joekar-

Niasar et al. (2009).

We define local capillary pressure-saturation relationship as a function of satu-

ration as well as pore throats filling. Details of derivation of local pc
i -s

w
i relation-

ship during imbibition are given in I.2. Finally, we have suggested the following

relationships which results in a trend consistent with experimental observations of

Lenormand and Zarcone (1984):

pc
i = 2σnwκi

κi =





(
1

rij
− 1

Ri

(
simb

i

sdr
i

)a)(
sw

i −simb
i

1−simb
i

)3.5

+ 1
Ri

(
simb

i

sdr
i

)a

sw
i ≥ simb

i

1
Ri

(
sw

i

sdr
i

)a

, a = 1
2.98sdr

i −3.85
smin

i < sw
i < simb

i

(7.4)

where simb
i is the pore body saturation at which one pore throat is still filled with the

nonwetting fluid. It should be noted that this saturation is not predetermined in the

simulations. Its value for each pore body will be determined during the simulation.

Other local rules such as entry capillary pressure, pore throat conductivities and

snap-off conditions are given in § 6.3.2, page 156.
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Figure 7.3: Pore filling mechanisms during imbibition referred to I-mechanism. Wetting fluid

is shown as hashed areas. With decrease of number of pore throats filled with the nonwetting

phase, radius of the interface may decrease. Consequently capillary pressure assigned to the

interface can increase (due to Lenormand and Zarcone, 1984).

7.3 Simulations and analysis

7.3.1 Network size

To analyze Darcy-scale equations using pore-network models, the size of the pore-

network should be at least one REV. REV size was determined by performing quasi-

static drainage simulations in networks with different sizes but with the same sta-

tistical parameters. Our simulations show that the REV size for these statistical pa-

rameters is a cube with length of 35 pore bodies. However, we have added five

buffer layers at each boundary to reduce the boundary effect. Thus the network has

a length of 45 pore bodies along the main flow direction. The buffer layers are not

included in the averaging window.

7.3.2 Boundary conditions

For our simulations, we assume that the network is connected to a nonwetting fluid

reservoir on one side and a wetting fluid reservoir on the other side. Fluid pres-

sures are specified at these boundaries. Side boundary conditions are assumed to

be periodic.

For drainage and imbibition simulations the following procedure is followed:

a) Drainage: Pressure at the nonwetting fluid reservoir is fixed to Pn
top and pres-

sure at the wetting fluid reservoir is fixed to zero. The difference between the two

boundary pressures during drainage is referred to as “global pressure difference”

P c
global=P

n
top. After the nonwetting fluid breaks into the wetting fluid reservoir a

boundary condition for its pressure is needed. One may choose to set it equal to the

wetting fluid boundary pressure. But, this will cause an unrealistic relaxation of the
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nonwetting fluid pressure field throughout the network. Instead, we have chosen

to set the gradient of capillary pressure within an invaded pore throat (connected to

the wetting fluid boundary) to be equal to zero (
∂P c

ij

∂lij
).

b) Imbibition: Similar to the drainage process, pressure at the nonwetting fluid

reservoir is fixed to Pn
top and pressure at the wetting fluid reservoir is fixed to zero.

However, Pn
top should be so small that imbibition process can occur continuously.

During imbibition similar to the drainage, it is assumed that
∂pc

ij

∂lij
= 0 as long as a

pore throat at the nonwetting fluid boundary is filled with both fluids.

7.3.3 Drainage simulations

For primary drainage, the network is initially fully saturated with the wetting fluid.

Simulation of drainage starts with raising the pressure of the nonwetting fluid reser-

voir, and establishing a global pressure difference,P c
global, across the network. When

the pressure difference is larger than the entry pressure of the largest pore throat

connected to the nonwetting fluid reservoir, drainage starts. In quasi-static simu-

lations, the nonwetting fluid reservoir pressure is increased in incremental steps so

that the network is invaded in steps. At the end of each step, when there is no flow

(static conditions), the overall saturation of the network and average specific inter-

facial area are determined. Then, global pressure difference is increased again. In

dynamic simulations, the imposed P c
global is so large that the whole network (or a

large part of it) could be flooded in one step. The simulations are continued till the

change of average saturation in a selected averaging window is negligible.

For main drainage simulations, the initial saturation occupancy is based on the

last snapshot of the quasi-static main imbibition experiment. The simulation proce-

dure is otherwise similar to the primary drainage simulation.

7.3.4 Imbibition simulations

Consider a pore network filled by the nonwetting fluid at the end of a (main or pri-

mary) drainage experiment. The wetting fluid is still present along edges of pore

bodies and pore throats. Starting from an equilibrium condition, all pore bodies

have the same capillary pressure. The global capillary pressure is decreased by re-

ducing the nonwetting fluid reservoir pressure or increasing the wetting fluid reser-

voir pressure. A decrease in the global capillary pressure causes the interfaces to

relax gradually and main imbibition experiment will start. The imbibition simu-

lation will stop when all pore throats at the outflow boundary (nonwetting fluid

reservoir) are fully filled with the wetting fluid.
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For the quasi-static imbibition simulations, an approach similar to the drainage

has been employed. Averaging procedure has been explained in details in § 6.4.2,

page 163.

7.4 Results and discussion

7.4.1 Non-equilibrium capillarity effects

As mentioned in the Introduction, in standard models of two-phase flow in porous

media, the difference in fluid pressures, Pn − Pw, is assumed to be a function of

saturation. In this section, we show that the curves of Pn − Pw versus Sw depend

strongly on boundary conditions and dynamics of the system, as shown by Yang

et al. (2009) for bundle-of-tube model. We performed a large number of dynamic

primary drainage, main drainage, and main imbibition simulations for fluids with

different viscosity ratios and under a range of global pressure difference values.

For every simulation, we calculated the variations of average saturation and the

“fluids pressure difference” with time. From those results, plots of Pn − Pw versus

saturation were made.

For primary and main drainage simulations, three different global pressure dif-

ferences were imposed over the domain: 45, 60 and 90 kPa. The entry capillary

pressure is 15 kPa. For main imbibition, four different global pressure differences

were imposed over the domain, equal to +5, 0, -5, -10 kPa. Also, all simulations

were performed for three different viscosity ratios (ratio of viscosity of the nonwet-

ting fluid to that of the wetting fluid): M = 0.1, 1, and 10. Computational time

increased with decrease of viscosity ratio and decrease of global pressure difference.

Each simulation can take 24 to 72 hours on Intel(R) CPU 6600, 2.4GHz with 2GB

RAM.

Plots of Pn − Pw as well as P c versus average saturation, Sw, are shown in Fig-

ure 7.4. It is clear that the curves of Pn−Pw versus Sw strongly depend on boundary

conditions. The behaviour of average fluids pressure difference compared with P c-

Sw curve is in agreementwith Equation 1.7: at a given saturation, the fluids pressure

difference is larger than the capillary pressure during drainage and smaller during

imbibition. The differences are larger for larger nonwetting fluid boundary pressure

during drainage and for large wetting fluid boundary pressure during imbibition.

These curves are used later to calculate non-equilibrium capillarity coefficient, τ .

Resulting Pn − Pw curves also depend strongly on viscosity ratio and effec-

tive viscosity. In order to explain this, let us define the effective viscosity as

µeff = µnSn + µwSw. It must noted that this definition is most suitable for a sta-

ble invading front where a piston-like movement is dominant. For unstable fronts
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Figure 7.4: Average phase pressure difference curves, P n − P w, calculated using Equa-

tion 6.39 (page 164) and P c-Sw curves for three different global pressure differences during

primary and main drainage and four different global pressure differences during primary

imbibition for viscosity ratios a) M = 0.1, b) M = 1 and c) M = 10 and for µn = 0.001Pa.s.
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e.g. in a viscous fingering regime, some researchers, such as Koval (1963), have sug-

gested other empirical relationships for effective viscosity (see e.g. Fayers et al., 1990).

During both drainage and imbibition, the effective viscosity changes considerably

if fluid viscosities are not equal. During primary drainage, effective viscosity is

initially equal to µw, which is chosen to be different in simulations with different

viscosity ratios (i.e. nonwetting fluid saturation is kept constant and µw is varied

to get variousM values). As the drainage proceeds effective viscosity decreases for

M = 0.1 and increases forM = 10. At the end of drainage, the effective viscosity is

almost equal to µn.

Figure 7.4 shows the effect of viscosity ratio and µeff on the transient behaviour

of fluids pressure difference. During drainage, initially (i.e. at higher saturations),

Pn −Pw is larger for smallM and smaller for largerM (for equal µn). This is due to

the fact that the pressure drop over the whole domain forM = 10 is smaller than the

other cases. The decline in the fluids pressure difference during drainage as residual

saturation is approached, as an artefact of the intrinsic phase averaging. As the non-

wetting fluid invades the network, the wetting fluid pressure behind the invasion

front increases along with the nonwetting fluid pressure. As a result, after break-

through, the average fluid pressure difference may even decrease. Consequently,

the average pressure difference approaches the P c − Sw curve.

7.4.2 Effect of viscosity ratio on fluid distribution

Fluid entrapment at pore scale, and consequently fluid distribution at macro-scale

is controlled by pore- scale invasion mechanisms, such as piston-like movement

and snap-off. The importance of these mechanisms varies depending on the process

(drainage or imbibition). For instance, snap-off is more important during imbibition

than drainage, since the nonwetting fluid is the receding one. As a result, at the end

of imbibition process, a significant amount of the nonwetting fluid remains behind

as the residual saturation. Due to the importance of imbibition in reservoir engi-

neering, the dependence of residual saturation on capillary number, viscosity ratio,

contact angle and pores aspect ratio has been studied significantly (see e.g. Dias and

Payatakes, 1986a,b, Hughes and Blunt, 2000, Mogensen and Stenby, 1998, Vizika et al.,

1994).

In this section, the effects of capillary number, global pressure difference, and

viscosity ratio on snap-off and residual saturation and saturation profile are stud-

ied. Because in simulations with constant boundary pressure, flow rate, and thus

capillary number change continuously, first we performed some additional imbi-

bition simulations with a constant wetting fluid flux boundary condition. In this

simulations, a constant pressure at the nonwetting fluid boundary and a constant



190 7. Capillarity Effects under Drainage and Imbibition

flux at the wetting fluid boundary were specified. By performing imbibition simu-

lations at various fluxes, the nonwetting fluid residual saturation was determined

as a function of capillary number (plotted in Figure 7.5), for the (imbibition favor-

able) case of M = µn

µw = 0.1. This figure shows that with the increase of capillary

number, the residual nonwetting fluid saturation decreases. The largest decrease

occurs for capillary numbers between 10−6 and 10−4. At higher capillary numbers,

the snap-off mechanism is suppressed.

In our main simulations, with constant boundary pressures, capillary number

varied significantly as imbibition occurred. This is made apparent in Figure 7.6,

where capillary number is plotted for various viscosity ratios and global pressure

difference values as a function of wetting fluid saturation during imbibition. It is

evident that the largest variation occurs in the case of M = 10. This case is also

the most sensitive to the global pressure difference. A larger global pressure differ-

ence results in higher capillary number and thus a lower residual nonwetting fluid

saturation. This is because with the increase of capillary number, the probability of

snap-off decreases and consequently flooding efficiency increases.

Similar effects can be observed when examining the average saturation profile

along the network, shown in Figure 7.7. Here, the saturation is averaged over a

cross section of the network located at position x and then plotted against x/l at dif-

ferent times, and for two different viscosity ratios. An interesting result here is the

non-monotonic behaviour of saturation forM = 10. This is because snap-off is sup-

pressed with invasion of the wetting fluid as the capillary number increases. More-

over, the saturation front for the case ofM = 10 is steeper than forM = 1.0. This is

because the resident nonwetting fluid is more viscous forM = 10 than forM = 1.0

and thus local imbibition is resisted. The fact that viscosity ratio greatly affects fluid

occupancy in the network is illustrated in Figure 7.7(c) where the histogram of the

local pore body saturation at the end of imbibition process, for ∆P = −10kPa, is

shown. It is clear that with the decrease of viscosity ratio (more viscous wetting

fluid), less snap-off occurs and larger flooding efficiency is resulted. To show the

effect of viscosity ratio on saturation profile during drainage, saturation profiles for

M = 1.0 and 0.1 for ∆P = 45kPa have been shown in Figure 7.8. As it can be

seen, forM = 0.1, the invading front is unstable and the slope of the front is much

smaller than for M = 1.0. The comparison between invasion front for these two

cases shows how significant the effect of local heterogeneities on saturation profile

is. Consequently, the flooding efficiency is smaller for M = 0.1 compared with

M = 10. However, due to the fact that, during imbibition, snap-off is the major

mechanism that controls the entrapment of the nonwetting fluid, effect of viscosity

ratio on residual saturation is more significant during imbibition than drainage.
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Figure 7.5: Effect of capillary number on residual nonwetting saturation for M = 1.0.

7.4.3 Dependence of τ on viscosity ratio and saturation

According to Equation 1.7, the deviation of non-equilibrium fluids pressure differ-

ence from the macroscopic capillary pressure is related to the time rate of change of

saturation. Hassanizadeh and Gray (1993a) have suggested that the non-equilibrium

capillarity coefficient, τ , is a non-negative function of saturation. For the application

of this equation for practical purposes, it is crucial to determine the dependency of

this coefficient on medium and/or fluid properties. To compute τ at a given satu-

ration, a plot of Pn − Pw versus ∂Sw/∂t at that saturation must be made. This is

done by starting from one of the graphs is Figure 7.4 for a given viscosity ratio. At

a given saturation, different values of Pn − Pw − P c can be obtained pertaining to

different global pressure differences. Corresponding values of ∂Sw/∂t are known

for that saturation. Note that such plots are made for drainage and imbibition sep-

arately, whereby the corresponding (drainage or imbibition) P c-Sw curve is used to

calculate Pn − Pw − P c.

By plotting Pn − Pw − P c versus ∂Sw/∂t at various values of Sw and fitting

a linear relationship to the data points, τ is found as the slope of the fitted line.

Results for primary and main drainage as well as for main imbibition are plotted in

Figures 7.9(a) and (b), respectively. Under drainage, the fitted line passed through

the origin for different M values, as it should. However, under imbibition, there

was an intercept. This means that for the curve to go through the origin (Pn −Pw −
P c = 0 and ∂Sw/∂ = 0) a nonlinear relationship should be employed. However,

with increase of the pressure gradient, this nonlinearity decreases, as the capillary

forces are suppressed by the viscous forces. Two different aspects of these data are
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important; a) order of magnitude of the non-equilibrium capillarity coefficient τ b)

its variation with saturation for different viscosity ratios.

Values of τ obtained here (ranging from 100 to 1000Pa.s for M = 1.0) are in

agreement with results obtained in other pore-network modelling studies as shown

in Table 7.3. The dimensions of our network correspond to a porousmedium sample

size of 1.9×1.9×1.9mm3 with an intrinsic permeability of 1.43×10−12m2. While the

permeability corresponds to a fine sand, the sample size is very small. The general

understanding is that the magnitude of τ increases with the size of the observa-

tion or averaging window and is inversely correlated with permeability. Dahle et al.

(2005), using a bundle-of-tube model, concluded that τ value can be proportional

to L2, where L is the length of averaging window. A similar result was found by

Manthey et al. (2005) based on simulations at continuum scale. In laboratory exper-

iments by Hassanizadeh et al. (2004), the value of τ for a fine sand sample of 3cm in

height was found to be 5×105Pa.s. The pressure measurements were actually done

by transducers with a diameter of around one centimeter. Using similar transduc-

ers in experiments with the same fine sand, Bottero and Hassanizadeh (2006) found a

τ -value of around 1-2 × 105 Pa.s. But, when Bottero (2009) upscaled the results to

the column scale (18cm), the average τ -value was found to be 1-2 × 106 Pa.s.
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Figure 7.6: Variation of capillary number during imbibition under constant pressure bound-

ary conditions for a) M = 0.1 ,b) M = 1.0 ,c) M = 10 and M = µn/µw . With decrease of

nonwetting phase saturation for M = 1.0 and M = 10, flow rate of wetting phase increases.
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Dark-colored curves show the wetting phase saturation distribution at the time of break-

through of the wetting phase. Light-colored curves show the saturation profile at earlier

times. c) Distribution of local saturation of pore bodies at the end of main imbibition simula-

tions for M = 0.1, 1, 10 for ∆P = −10kPa. For M = 0.1, more pore bodies are fully imbibed

compared with M = 1 and 10.
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invasion front is unstable and effect of porous medium topology to create viscous fingering
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Table 7.3: Values of τ in literature for computational and experimental works.

Reference Exp. Process Fluids M P d(kPa) K (m2) τ (Pa.s) ∂τ
∂Sw Domain

Type ×10−12 Dimensions (cm)

Dahle et al. (2005) BTM Drain - 1 0.8 4.7 274 ≪ 0 0.1 (L)
Gielen et al. (2005) PNM Drain Oil-water 10 5 - 1.2 × 105 < 0 0.3 × 0.3 × 1
Gielen (2007)
Joekar-Niasar et al. (2010a) PNM Drain - 1,10 4 150 900,2750 ≪ 0 0.5 × 0.5 × 0.5
Joekar-Niasar et al. (2010a) PNM Drain - 0.1 4 150 350 ≫ 0 0.5 × 0.5 × 0.5
Das et al. (2007) CM Drain Oil-PCE-Water > 0.6 1.2 5 105 to 107

≪ 0
Manthey et al. (2004) Lab Drain PCE-Water 0.9 5.58 3 2 to 7 × 104 < 0 -

> 0
O’Carroll et al. (2005) Lab Drain PCE-Water 0.8 2.1 15.8 5.64 × 107

≪ 0 5.07(D),9.62(L)
O’Carroll et al. (2005) Lab Drain PCE-Water 0.8 2.4 12.6 1.99 × 107

≪ 0 5.07(D),9.62(L)
Bottero and Hassanizadeh (2006) Lab Drain PCE-Water 0.9 6 - 105 to 107

≪ 0 9.8 (D),19(L)
Bottero (2009)
Camps-Roach et al. (2010) Lab Drain Air-Water 0.02 2.2 53 2 × 105to106

≫ 0 10 (D),20(L)
Camps-Roach et al. (2010) Lab Drain Air-Water 0.02 4.6 14.7 105to8 × 105

≫ 0 10 (D),20(L)

BTM: Bundle of tubes, PNM: Pore-network model, CM: Continuum model, Lab: Laboratory experiment
D: Diameter, L: Length
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Figure 7.9 shows that the dynamic effect is stronger for larger effective viscosity

values (τ(M = 0.1) > τ(M = 1) > τ(M = 10)). This agrees with the explanation

given by Barenblatt et al. (2003), who stated that dynamic effects in capillary pressure

are related to the finite time required for the fluids in the pore structure to rearrange

themselves. Indeed, for larger effective viscosity values, more time is required for

fluids to reach the equilibrium condition, which corresponds to a larger τ value.

Entov (1980) has reported that τ ∝ µl2

k∆P c , in which k is the permeability, µ is the

(effective) viscosity, l is the length of the averaging domain, and∆P c is the deviation

from the equilibrium capillary pressure for a given saturation.

Results show that For M ≥ 1, non-equilibrium capillarity coefficient increases

with decrease of wetting fluid saturation, which is similar to most findings as re-

ported in Table 7.3. This was found by Bottero and Hassanizadeh (2006) for PCE-water

(M = 0.9), Mirzaei and Das (2007) in their column-scale drainage simulations (us-

ing a continuum model) as well as Joekar-Niasar et al. (2010a) in their pore-network

model simulations for favorable viscosity ratio. But, this trend is reversed for

M = 0.1 as reported in Camps-Roach et al. (2010), Joekar-Niasar et al. (2010a). Camps-

Roach et al. (2010) found that τ decreases with decrease of saturation for air-water

drainage experiments. These trends are in agreement with the empirical equation

suggested by Stauffer (1978) for unsaturated soil. Based on drainage experiments

done on fine sand in an air-water system. His equation can be modified for two-

phase flow in the following simple manner:

τ =
αǫµeff

λk

(
P c

d

ρg

)2

(7.5)

where α is a constant, ǫ is porosity, λ and P c
d are the coefficients in Brooks-Corey for-

mula (Brooks and Corey, 1964), k is the saturated permeability, ρ is the water mass

density, and g is the gravity. This equation suggests that the change of τ with sat-

uration is proportional to the change of µeff with saturation. Recalling the simple

linear algebraic equation for µeff (although it is not valid for all invasion regimes),

we can write:
∂µeff

∂Sw
= µw − µn (7.6)

, which means that ∂τ
∂Sw (∝ ∂µeff

∂Sw ) is negative forM > 1 and positive forM < 1:

∂τ

∂Sw
∝
{
µw − µn ≤ 0 ,M ≥ 1

µw − µn > 0 ,M < 1
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7.5 Summary and conclusion

We have developed a DYnamic POre-network model for SImulating Two-phase

flow (DYPOSIT) to investigate non-equilibrium effects in pressure field under dif-

ferent dynamic conditions. The pore-network model consists of truncated octahe-

dron pore bodies and parallelepiped pore throats. The angularity in cross sections

allows for simultaneous flow of both nonwetting and wetting fluids. This means

that capillary diffusion in the network is properly taken into account. The pressure

field is computed for each fluid separately to consider counter-current flow within

pore throats. To improve numerical stability of the model under capillary domi-

nated flow, a semi-implicit algorithm is employed. This allows us to simulate flow

dynamics for different flow regimes and viscosity ratios for drainage as well as im-

bibition.

Several numerical simulations for primary drainage, main imbibition, and main

drainage are implemented. We find that in spite of the fact that we have not included

local-scale dynamics of the interface (such as dynamics of contact angle), the aver-

age fluids pressure difference is significantly distinct from the capillary pressure.

We have calculated non-equilibrium capillarity coefficient (τ ) versus saturation for

three different viscosity ratios under Dirichlet boundary conditions. Our analysis

shows that deviation of fluids pressure difference from capillary pressure, mainly

originates from the invasion mechanism. It means that in capillary fingering regime

or viscous fingering regime less dynamic effect is resulted compared with stable

front regime. Furthermore, our analysis shows a strong dependence of τ on viscos-

ity ratio as well as effective viscosity. Due to this fact, τ values under drainage and

imbibition processes are different.

Variation of τ with saturation is strongly dependent on the viscosity ratio. This

is in agreement with laboratory experiments reported in Table 7.3. We have ana-

lyzed uniqueness of τ value under drainage and imbibition processes. Although

the order of magnitude of τ during drainage and imbibition for a given viscosity

ratio does not change significantly, the curves for primary drainage and main imbi-

bition are not identical. This is due to the fact that effective viscosities and viscosity

ratios are different under drainage and imbibition. It is known that viscosity ra-

tios smaller than one can create unstable invading front during both drainage and

imbibition. This has been also illustrated by our simulations. Moreover, we have

shown that snap-off is highly related to the viscosity ratio and capillary number.

A viscous fingering during imbibition under Dirichlet boundary conditions creates

non-monotonic distribution of trapped nonwetting fluid. With invasion of the wet-

ting fluid during imbibition, flooding efficiency increases and less nonwetting fluid

remains in the domain.
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The size of the averaging window used here was 35×35×35 pore bodies. This

represents one Representative Elementary Volume (REV) and it sufficed for the pur-

pose of investigating non-equilibrium capillarity effect. For the study of Darcy’s law

and the role of interfacial area in the modelling multiphase flow, a larger domain

must be used. It should be so large that gradients in average pressure, saturation,

interfacial area, etc can be calculated. The model is robust and computationally ef-

ficient to make this possible. Further applications of this model will be presented in

further publications.
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Chapter 8

Role of Specific Interfacial Area in Two-Phase
Flow

What is is what must be.

Gottfried Wilhelm von Leibnitz, philosopher and

mathematician

Abstract

Itis widely accepted that the description of multiphase flow in porous media has some

major shortcomings. In the classical Darcy’s equation for multiphase flow in porous

media, it is assumed that the gravity and the gradient in fluid pressure are the only

driving forces and resistance to the flow is parameterized by a coefficient called (rela-

tive) permeability, which is considered to be a function of saturation. It is conceivable

that, in multiphase flow, other driving forces may also exist. This would mean that such

non-equilibrium effects are lumped into a permeability coefficient. Indeed, many stud-

ies have shown that the relative permeability coefficient generally depends not only on

saturation, but also pressure gradient and/or flow rate, viscosity ratio, flow history, etc.

Through the application of rational thermodynamics a theory of two-phase flow had been

developed in which interfacial areas were introduced as separate thermodynamic entities

and their macroscale effects were explicitly included. This theory includes new driving

forces whose significance need to be established yet. Due to the experimental limitations,

the behavior and validity of these equations have not been investigated in detail. We em-

ploy the DYPOSIT model - a DYnamic POre-network SImulator for Two-phase flow - to

analyze and quantify the extended theories for two-phase flow in porous media. A long

pore network was used, which represents as a one-dimensional porous medium column.

This model provides pore-scale distribution of local phase pressures, capillary pressure,

interfacial area, saturation, and flow rate. Using averaging operators, this information

is upscaled and one-dimensional macroscale distributions of these variables are obtained.

This information is used then to analyze the behavior of extended equations.

Results show that the classical two-phase flow equations fail to described the transient

behaviour of two-phase flow. Transient phase permeability especially for nonwetting fluid

is very different from that steady-state permeability curves. Including interfacial area,

the coefficients in extended equations are quantified and parameterized. Variations of

the coefficients as a function of saturation are very well-behaved. Furthermore, using
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the new coefficients it is possible to explain either transient or steady-state flow regimes,

which is a new achievement.

8.1 Objectives

The purpose of this work is to provide insights into the behaviour and poten-

tial significance of various terms in the extended theories of two-phase flow

in porous media, presented above. We implement transient drainage simulations

in a long pore network representing a one-dimensional column. Then, a moving

REV averaging procedure is formulated that results in the macroscale fields of flu-

ids pressures, velocities, saturation, and specific interfacial area. With extensive

analysis of these data, functional dependencies and magnitudes of coefficients Ψαa,

ΨαS , Ψαa, Ψnw, Knw, and Enw are obtained.

8.2 Model description

The dynamic pore-network model DYPOSIT is used here. Details of the model are

given in Joekar-Niasar et al. (2010a). Here, a summary of main features, equations,

and algorithms are provided.

8.2.1 Structure and geometry

The network is based on a regular three-dimensional lattice with fixed coordination

number of six. Table 8.1 shows fluid and network properties used in the simulations.

Length of the network in the flow direction is equal to 210 pore bodies. Over the

network cross section normal to the flow direction, there are 30× 30 pore bodies.

We select a viscosity ratio (defined as µn/µw) equal to one.

Pore bodies and pore throats are represented by “cubes” and “parallelepipeds”,

respectively. The size distribution of pore bodies is specified by a truncated log-

normal distribution, with no spatial correlation. Statistical properties of radii of pore

body inscribed spheres, pore throat inscribed circles, and aspect ratio distributions

are shown in Table 8.2. Aspect ratio is defined as the pore body inscribed sphere

radius divided by pore throat radius. Corresponding to Table 8.2, Figures 8.1(a) and

(b) show the pore body and pore throat size distributions as well as aspect ratio

distribution.
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Parameter Symbol Value Unit

Contact angle θ 0.0 degree
Interfacial tension σnw 0.0725 kgs−2

Wetting fluid viscosity µw 0.001 kgm−1s−1

Non-wetting fluid viscosity µn 0.001 kgm−1s−1

Total no. of pore bodies nz 210 -
in flow direction
Total no. of pore bodies nx, ny 30 -
in lateral directions
Network Size - 7.28×1.08×1.08 mm3

Permeability K 6.56×10−12 m2

Entry capillary pressure P c
d 14 kPa

Table 8.1: Fluid and network properties used in the simulation.

Specifications
Ri rij

(mm) (mm)
min 0.008 0.005
max 0.018 0.013
mean 0.012 0.008

st. deviation 0.003 0.0017

Table 8.2: Statistical properties of the radii of inscribed spheres in pore bodies (Ri) and in-

scribed circles in pore throats rij .

8.3 Simulations and analysis

8.3.1 Network size and boundary conditions

To analyze Darcy-scale equations using pore-network models, size of the pore-

network should be at least one REV. The REV size was determined by performing
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quasi-static drainage simulations in networks with different sizes but the same sta-

tistical parameters. Our simulations showed that the REV size for these statistical

parameters is a cube with 30 pore bodies in each directions. So, the cross section

was selected to be 30×30 pore bodies and the length of the model in the flow direc-

tion was chosen to be 210 pore bodies. The simulation of drainage process in this

network took more than three weeks using one processor of an AMD Opteron 2218

computer with 6GB RAM.

For our simulations, we assumed that the network was connected to a nonwet-

ting phase reservoir on one side and a wetting phase reservoir on the other side.

Phase pressures were specified at these boundaries. Side boundary conditions were

assumed to be periodic.

Dirichlet boundary conditions were assigned to the inflow and outflow bound-

aries. The pressure of the nonwetting phase reservoir was denoted by Pn
top and the

pressure of the wetting phase reservoir was set to zero. The difference between the

two boundary pressures during drainage is referred to as “global pressure differ-

ence” P c
global. P

c
global in our simulation was set to 30kPa. Once the nonwetting phase

reached a pore throat at the wetting-phase boundary, it was assumed that the gradi-

ent of capillary pressure within the invaded pore throat was equal to zero (
∂pc

ij

∂lij
= 0).

This was done to prevent a sudden relaxation of interfaces after breakthrough of the

nonwetting fluid.

8.3.2 Drainage simulations

The network was assumed to be initially fully saturated with the wetting phase.

Simulation started with raising the pressure of the nonwetting phase reservoir to

Pn
top, and establishing a global pressure difference,P c

global, across the network. When

the imposed pressure difference was larger than the entry pressure of the largest

pore throat at the nonwetting phase reservoir boundary, drainage would start. In

quasi-static simulations, the nonwetting phase reservoir pressure was increased in

incremental steps so that the network would be invaded in steps. At the end of

each step, when there was no flow (static conditions), the overall saturation and the

specific interfacial area were determined. Then, the global pressure difference was

increased again. Each global pressure difference corresponds to a saturation value.

The capillary pressure-saturation data points formed the quasi-static P c-Sw curve.

In transient simulations, the imposed P c
global was chosen to be so large that thewhole

network could be flooded in one transient step. The simulations were continued till

the change of average saturation in the whole network was not significant.
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8.3.3 Steady-state phase permeability curves

Relative permeability for each phase is commonly determined from steady-state

flow experiments as a function of average saturation. A steady-state flow experi-

ment at a given average saturation (or a given capillary pressure) was simulated as

follows. As described above, in quasi-static simulations, we obtained an equilib-

rium configuration of fluids in the network at a given P c
global. That equilibrium

configuration was frozen and a small pressure gradient for each phase imposed

across the selected section of the network, where both phases formed a continu-

ous path. The pressure gradient was chosen such that the imposed P c
global was kept

unchanged at the boundaries. Also, it was assumed to be so small that fluid con-

figurations were not affected. Therefore, Equations 6.4-6.7 would apply with the

left-hand side of Equation 6.6 (mentioned in page 153) being zero. The solution of

resulting equations provided steady-state pressure fields for the two phases. Then,

total flow through the network for each phase was calculated. Then. following clas-

sical Darcy’s law, the phase permeability Kα was calculated as −µαvα/(∂pα/∂x).

One should note that since the pore throats have square cross sections, wetting fluid

is always connected to the reservoir but its conductance decreases with increase of

global capillary pressure P c
global.

8.3.4 Averaging procedure and averaging operators

Our simulations resulted in the fields of local variables, such as pressures, satu-

rations, and fluxes, at consecutive time steps. These were then averaged over an

averaging domain moving along the network. That is, at any given time, t, the

averaging domain was moved along the network pore layer by pore layer; thus, de-

termining average variables as a function of distance x (position of the center of the

averaging domain, see Figure 8.2). This allowed us to obtain gradients of average

variables as well as their time derivatives. The averaging domain size was chosen

to be 30×30×30 pores, which we had determined to be the REV size. Thus, for our

network with the length of 210 pore bodies, this procedure resulted in 180 values

for each average variable, at any given time. Average values were determined for

saturation, specific interfacial area, pressure, fluid velocities, and interface velocity,

following formulas presented below.

Average saturation was simply defined as the ratio of the total volume of the
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Figure 8.2: a) Schematic presentation of averaging domain moving along the flow direction.

b) For calculating the gradient of average variables, average values at two neighbouring do-

mains centered at x − δ/2 and x + δ/2 are used.

wetting phase present within the averaging domain to the total pore volume.

Sw =

∑npb

j=1 s
w
j Vj

∑npb

j=1 Vj

(8.1)

Sn = 1 − Sw

where Vj is the volume of pore body j and npb is the total number of pore bodies

of the averaging domain centered at x. The gradient of saturation for domain was

calculated from the average saturations of domains centered at x− δ/2 and x+ δ/2,
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as shown in Figure 8.2(b):

∂Sw

∂x
=
Sw

x+δ/2 − Sw
x−δ/2

δ
. (8.2)

where δ is the length of the averaging domain.

The averaging of pressure is less straightforward. Commonly, average pressure

is obtained using an intrinsic phase average operator (see e.g.Whitaker, 1977). How-

ever, recently it has been shown that the intrinsic phase average pressure introduces

numerical artefacts when both pressure and saturation are spatially variable (see

Korteland et al., 2009,Nordbotten et al., 2007, 2008). Instead, a centroid-corrected aver-

aging operator has been suggested by Nordbotten et al. (2008) to alleviate problems

associated with intrinsic phase averaging. Nevertheless, in this work, we decided

to use intrinsic phase average, as it is still the most commonly used operator. This

choice does not affect the issues and concepts studied here.

Pα =

∑npb

j=1 p
α
j s

α
j Vj

∑npb

j=1 s
α
j Vj

, α = n,w (8.3)

Specific interfacial area was calculated by summing all interfacial areas in an

averaging domain divided by its total volume:

anw =

∑npb

j=1 A
nw
j

V
(8.4)

where Anw
j is fluid-fluid interfacial area in a pore body j. Gradients of fluids pres-

sures and specific interfacial area over the domain were also calculated using equa-

tions similar to 8.2. The average phase velocity for the domain centered at x was

defined as follows:

vα =

∑npth

j=1 v
α
j s

α
j Vj

∑npth

j=1 s
α
j Vj

, α = n,w (8.5)

where vα
j is the local velocity in the pore throat j for fluid α, and Vj is the volume of

the pore throat j. This velocity is averaged over the pore throats considering their

orientations.

The macroscopic velocity of fluid-fluid interfaces can be determined in two dif-

ferent ways: it can be based either on the average of velocities of individual inter-

faces or on the time rate of change of the centroids of all interfacial areas within the

averaging domain. Considering the first option, it is indeed possible to calculate the

velocity of individual interfaces within the network. However, this velocity fluctu-
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ates strongly. The reason is that interfacesmove in the form of Haines jump. As long

as the local capillary pressure is smaller than the entry capillary pressure of a pore

throat, the pore interface is stagnant. But, once the interface moves it moves very

fast. At any given time, only few interfaces can move, which temporarily may have

large velocities. These velocities depend on the global capillary pressure, interfacial

tension, pore size, as well as viscosity ratio. Lu et al. (1995) found that for ethanol-air

system with a viscosity of 0.0119 Pa.s, in a pore with radius of 0.05 cm, the velocity

of capillary rise can reach 20 cm/s. So, these velocities are not really representa-

tive of all fluid-fluid interfaces in the averaging domain. We believe that the second

option is physically more acceptable and in line with the classical definition of the

average velocity of a collection of masses: it is equal to the time rate of change of

their centre of mass. Therefore, we have chosen to determine the macroscale veloc-

ity of interfaces from the position of centre of mass of interfaces in the averaging

domain in two consecutive time steps. Given the fact that we assumed that fluid-

fluid interfaces have a constant mass density, the macroscopic interfacial velocity

was defined as follows:

wnw =
1

tk+1 − tk






∑npb

j=1 xjA
nw
j

∑npb

j=1 A
nw
j




k+1

−



∑npb

j=1 xjA
nw
j

∑npb

j=1 A
nw
j




k

 (8.6)

where xj denoted the position of interfaces in pore body j, the superscript k de-

notes the time step. Note that in this calculation, only the interfaces in the pore

bodies were included. Interfaces in pore throats, did not move from one time step

to another.

For calculating the divergence of product of interfacial area and its velocity,

∇(anw
i wnw

i ), appearing in Equation 1.4, we employ the 1-D equivalent of the di-

vergence theorem:

∂(anwwnw)

∂x
=

1

δ




npb∑

j=1

(Anw
j wnw

j )|D.B. −
npb∑

j=1

(Anw
j wnw

j )|U.B.


 (8.7)

where U.B. , and D.B. denote the downstream and upstream boundaries, respec-

tively.

8.4 Results and discussion

The extended two-phase flow equations involve new variables such as velocity of

fluid-fluid interfaces or their rate of production, as well as new coefficients. In this
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Figure 8.3: Averaged characteristic curves for a moving averaging domains along the do-

main. The bars at each saturation show the minimum and maximum value resulted at that

saturation. a) Capillary pressure-saturation curve b) Permeability for each fluid versus satu-

ration.

section, the behaviour of these new variables are investigated and values of new

coefficients are quantified. The major interest in this work is to gain an insight into

the role of fluid-fluid interfaces in the description of two-phase flow.

8.4.1 Investigation of Darcy’s law

Equilibrium conditions

As explained in the previous section, capillary pressure-saturation (P c-Sw) curves

were determined under quasi-static conditions and phase permeability-saturation

(kα-Sw) curves were obtained through steady-state flow simulations of primary

drainage. These curves were computed for each and every moving averaging do-

main along our network. As a result of this procedure, 180 average curves were

produced. The mean of resulting curves are shown in Figures 8.3, where the range

of variations is shown by vertical bars. It is obvious that there is no significant vari-

ation in these characteristic curves over the whole network.

Under no-flow conditions, we have vα = 0 and ∂P α

∂x = 0, but we may still have

gradients in saturation and specific interfacial area. Thus, from Equation 1.1, as

there is no gravity in our simulations, we obtain:

ΨαS

Ψαa
= −

anw
,x

Sw
,x

α = w, n (8.8)

From our simulation results, we can calculate the r.h.s of this equation for many



210 8. Role of Specific Interfacial Area in Two-Phase Flow

-120

-100

-80

-60

-40

-20

0

0 0.2 0.4 0.6 0.8 1

Saturation (S
w
)

Figure 8.4: Variation of anw
,x versus Snw

,x for all snapshots using Equations 8.2,8.1, and 8.4.

averaging domains along the network, under various conditions. The results are

plotted in Figure 8.4 for the wetting phase. It is evident that this curve is well-

behaved and it can be fitted with a simple formula:

ΨwS

Ψwa
=

α

Swβ
[1/mm] (8.9)

where α has the dimension of [1/L] and β is a dimensionless coefficient. For the

curve presented in Figure 8.4, we have α = −19.9mm−1 and β = 0.574.

Transient conditions; standard Darcy’s law

The relative permeability curve, measured under steady state flow conditions, is

also used in the standard flow conditions, is als used in the standard Darcy’s law

under transient flow conditions. Here, we show that this assumption is generally

not valid. In our transient simulations, we determined the phase permeability Kα

by calculating−µαvα/∂Pα/∂x for many averaging domains along the network (the

same procedure that we followed to obtain curves shown in Figure 8.3). The mean

of resulting curves are plotted in Figure 8.5, along with the steady-state curves.

It is evident that steady-state and transient curves are significantly different. spe-

cially for the nonwetting phase, the transient permeability curve is totally different

from steady-state curve. In particular, it has a non-monotonic behavior and is much

larger than the steady-state values for medium and high wetting phase saturations.
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Figure 8.5: Ratio of α-phase flux to the α-phase pressure gradient under transient conditions,

referred to as transient phase permeability. It is compared with steady-state permeability

curves. The bars show the range of variation of 10 to 90% of the data points at the given

saturation.

This is also the range that fluid-fluid interfaces are generated and the system is very

dynamic.

As mentioned above, the permeability values are determined for a large number

of averaging domains. The variations from the mean values are shown by means

of vertical bars for the steady-state curve and by vertical boxes for the transient

curves. The boxes in Figure 8.5 show the 10% and 90% probability of the occurrence

for all transient phase permeabilities. As it can be seen, there is a huge variation

in the magnitude of the transient phase permeability. As mentioned before, in our

simulations capillary number was variable; it decreased with the invasion of the

nonwetting fluid.

Also, it can be observed that under transient flow conditions, for Sw > 0.5, the

there is linear relationship between the transient wetting phase permeability and

saturation. This is qualitatively in agreement with steady-state experimental obser-

vations of Constantinides and Payatakes (1996) and simulation results of Tsakiroglou

et al. (2003) who observed that with the increase of capillary number (increase of
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viscous forces), the nonlinear behaviour of relative permeability decreases.

Furthermore, we note that as the residual saturation is approached, the transient

nonwetting phase permeability also approaches the steady-state values. This is be-

cause the fluids configuration is well developed under those conditions, and non-

equilibrium effects become negligible. The foregoing results point to the fact that

the standard Darcy’s law is not valid under transient flow conditions. We there-

fore investigate the role of additional terms in the extended Darcy’s law given by

Equation 1.1.

Transient conditions; extended Darcy’s law

As mentioned before, many computational and experimental studies have shown

that the relative permeability in the classical Darcy’s law strongly depends on tran-

sient flow variables such as flow velocity and/or pressure gradient. We believe this

is because pressure gradient is not the only driving force for two-phase flow. In-

deed, as suggested by Equation 1.1, gradients in saturation and specific interfacial

area also contribute to the flow. But, because they are absent in classical Darcy’s law,

their role has to be taken over by the relative permeability. In order to investigate

this conjecture, we use results of transient conditions to determine the significance

of extra terms in Equation 1.1. First, the values of coefficients ΨαS and Ψαa need to

be determined.

In the previous subsection, the ratio of ΨαS

Ψαa for each phase was obtained; thus,

only two independent coefficients (one coefficient per phase) should be determined.

Once again, for any given set of boundary conditions, vα, Pα
,x, a

nw
,x , and Sw

,x can be

calculated. WithKα already known as a function of Sw for steady-state simulations,

the other two coefficients can be calculated. The results are shown Figure 8.6. As it

can be observed, the variation of material parameters, Ψαa and ΨαS with saturation

is very well behaved. One should note that values of these parameters are resulted

from many different averaging domains, with very different capillary numbers. It

means that transient conditions of the system does not influence significantly the

variation of these parameters. The large variations in the values of these parameters

at large saturations are strongly dependent on the size of the averaging domain.

With the increase of the size of averaging domain, these variations will decrease.

To show the importance of the gradient of pressure compared to the new terms

in the extended Darcy’s law, we have presented their ratio in Figure 8.7. In Fig-

ure 8.7(a), the ratio
P w

,x

−Ψwaanw
,x −ΨwSSw

,x
versus saturation, and in Figure 8.7(b) the ratio

−Ψnaanw
,x +ΨnSSw

,x

P n
,x

versus saturation have been presented. It is clear that the effect of

the new terms is basically negligible for the wetting phase, but very significant for

the nonwetting phase. This means that the deviation of the fluid flux calculated from
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the classical Darcy’s law from the “true value” is not as significant for the wetting

phase as for the nonwetting fluid flux. In Figure 8.7(b), the ratio
−Ψnaanw

,x +ΨnSSw
,x

P n
,x

starts from a very large number at high saturations, and decreases as steady-state

conditions are approached. This implies that for an improved estimation of fluid

fluxes under transient conditions, especially for nonwetting fluid, the gradient of

the interfacial area and saturation should be included.

8.4.2 Interfacial area equations

The introduction of specific interfacial area as a state variable into the theories of

multiphase flow necessitates new set of governing equations to model its evolution.

These are given by Equations 1.2 and 1.4. These equations also involve new mate-

rial properties, which are the macroscopic interface velocity, interfacial conductivity

tensor, macroscale interfacial tension, material coefficient Ψnw, and the interfacial

production term Enw. In this section, results of transient drainage simulations are
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inverse in figure (b).

used to calculate these properties and investigate their behavior.

Macroscopic interface velocity

Using Equation 8.6, the macroscopic interface velocity was calculated for many av-

eraging domains with time. We then looked into possible relationships between in-

terface velocity and other quantities. We found a meaningful relationship with the

saturation and time rate of change of saturation. The resulting plot is shown in Fig-

ure 8.8(a). As it can be observed, there is an almost linear relationship between the

interface velocity and time rate of saturation change. We should point out the small

negative interface velocities obtained at large saturations. This is caused by the fact

that when interfaces have just entered the averaging domain, it is possible that local

and temporary imbibition occurs, i.e. the nonwetting fluid may temporarily move

back and out of the domain. In the intermediate saturation range, the interface ve-

locity reaches its maximum value. Nordhaug et al. (2003) also calculated variation of

interface velocity with saturation, using a pore-network model with circular cross

sections and a size of 10 × 10 × 50 pore bodies, elongated in flow direction. They

studied variation of the interface velocity under different dynamic conditions (capil-

lary number and viscosity ratio). Although the algorithm for calculation of interface

velocity in their network was different from our approach, they got a qualitatively

similar behavior for interface velocity especially under capillary-dominated flow

conditions. However, due to the small size of their averaging domain (10 × 10 × 10

pores), there was a boundary effect in their results, which caused an overshoot of

interface velocity at large saturations (Sw > 0.9).
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of Figure 8.5.

Interface conductivity and material coefficient Ψnw

After calculating fluid-fluid interface velocities at different saturations under vari-

able dynamic conditions, it is possible to estimate the conductivity of interfaces.

To lump effect of interfacial tension in the interface conductivity term, for a one-

dimensional domain we can rewrite Equation 1.2 as follows:

wnw = −knw(anw
,x + ψnwSw

,x) (8.10)

where knw[L3/T ] = σnwKnw and ψnw = Ψnw/σnw. First, the coefficient ψnw is

obtained from the equilibrium conditions, where the interfaces do not move and

wnw is equal to zero. Under these conditions, we have:

ψnw = −
anw

,x

Sw
,x

= − α

Swβ
(8.11)

where the r.h.s of this equation follows from Equation 8.9. Next, the interfacial con-

ductivity knw can be determined from Equation 1.2, under transient conditions. All

terms in Equation 1.2 can be calculated for a large number of averaging domains

and at various times; allowing us to find values of knw for a wide range of dynamic

conditions. The result is plotted as a function of average saturation in Figure 8.8(b).

It is evident that the interface conductivity is an increasing function of wetting fluid
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saturation. One should note that, except for the range of Sw > 0.9, the variation in

values of interface conductivity estimated under various transient conditions is not

significant. This shows that this coefficient is a reasonably well-behaved function of

saturation under a wide range of dynamic conditions. Larger variations of interface

conductivity for Sw > 0.9 is due to the variations of interface velocity, and hav-

ing negative values in Figure 8.8(a), which is caused by local temporary imbibition

during the early stages of invasion. This effect reduces dramatically as soon as the

nonwetting phase saturation becomes significant in the averaging domain.

Production rate of interfacial areas

We use Equation 1.4 to calculate the production term, Enw. Thus, we have to esti-

mate the change of specific interfacial area with time (∂anw/∂t) as well as the flux

of interfacial area (∂(anwwnw)/∂x). Both of these quantities can be calculated for

a large number of averaging conditions. The resulting production rate is plotted

in Figure 8.9 as a function of average saturation and its time rate of change. This

figure shows that Enw depends linearly on the time rate of saturation change. Fur-

thermore, it reaches its maximum value in the range of intermediate saturations.

This is due to greater possibilities for the creation of invasion sites at intermediate

saturations. At high wetting fluid saturations, only few pores are filled with the

nonwetting fluid, thus small amount of interfacial area is created. With the invasion

of the nonwetting fluid, more pores will be filled, each of them acting as the launch-

ing site for the invasion of many other pores by the nonwetting fluid. This causes

a faster creation of interfacial area. Eventually the interfacial area associated with

the main terminal interfaces will start to become less and less, as many of them will

coalesce with each other. Thus, the production rate of specific interfacial area will

decrease.

8.5 Concluding remarks

We have simulated two-phase drainage experiments using a long dynamic pore-

network model, called DYPOSIT, under constant pressure boundary conditions.

The model has a cross section of 30×30 pore bodies and 210 pore bodies in flow

direction. The analyses are based on volumetric averaging in a moving averaging

domain with the size of 30×30×30 pore bodies. The averaging is done along the

domain in many time steps. Because of imposed boundary conditions (i.e. constant

pressures) the flow velocity varies considerably with time as the nonwetting fluid

invades the domain. As a result, the capillary number also change through the net-

work with time from 2 × 10−5 to 5 × 10−7. So the calculated material properties are
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Figure 8.9: Dependence of production rate of specific interfacial area versus saturation and

change of saturation with time based on Equation 1.4 and calculated using Equations 8.4 and

8.7 for all simulation snapshots and averaging domains.

obtained for a wide range of capillary numbers.

We have used our results to investigate thermodynamically-based theories of

two-phase flow in porous media, where the fluid-fluid specific interfacial area is in-

cluded as a new state variables. First, we have showed that if the standard Darcy’s

law is used under transient conditions, then the phase conductivity of the nonwet-

ting phase will be a nonmonotonic function of saturation. Also, the wetting phase

conductivity determined under transient conditions will be significantly different

from the steady-state phase conductivity. We believe this is because of the fact that

in the standard Darcy’s law the pressure gradient is assumed to be the only driving

force for the flow. But, we know that in two-phase flow, the movement of interfaces

and energies associated with them significantly affect the flow of phases. The new

terms in the extended Darcy equation are believed to account for such effects. These

terms introduce gradients in the saturation and specific interfacial area as extra driv-

ing forces. We have shown that including these terms allows us to use steady-state

relative permeability curve for transient flow conditions. We have determined the

values of material coefficients associated with extra terms. We have found that they

are well-behaved functions of saturation. Next, various coefficients appearing in the

equations governing the evolution of interfaces were determined. One of these coef-

ficients was the interface conductivity. Our results show that interface conductivity

is an increasing function of wetting phase saturation. We have also determined the

rate of production of specific interfacial area. Our results show a linear relationship

between production rate of fluid-fluid interfaces and change of saturationwith time.
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It is also shown that although interfaces may have high velocities at the moment of

Haines jump, the macroscopic interface velocities are strongly correlated with the

time rate of saturation change. Variation of macroscopic interfacial velocity with

saturation - in an averaging domain - is nonmonotonic, having a maximum in the

intermediate saturations.

These analyses lead us to a new understanding that including gradient of inter-

facial area and gradient of saturation in the new equations can implicitly account

for the moving boundary between the two fluids during drainage. This feature is

absent in the classical equations for two-phase flow. Dependence of the new param-

eters on fluid and porous medium properties is an important issue, which should

be investigated in future. It must be noted that here we did not investigate the non-

equilibrium capillarity effect (the second term in the r.h.s of Equation 1.7) as this was

done extensively in an earlier work by Joekar-Niasar et al. (2010b) and Joekar-Niasar

and Hassanizadeh (2010).



Chapter 9

Concluding Remarks

The important thing is never to stop questioning.

Albert Einstein, physicist

9.1 Towards a better understanding of multiphase flow

U
nderstanding the physics of multiphase flow in porous media is important in

many fields such as hydrogeology, reservoir engineering, biomechanical engi-

neering, fuel cells, and other industrial applications. Current theories of multiphase

flow are based on Darcy’s law, which assumes that the only driving forces for flow

of each fluid are the gravity and the gradient in fluid pressure. The resisting force is

assumed to be linearly proportional to the relative fluid velocity with respect to the

solid. One may expect many other factors to affect the balance of forces in the case

of multiphase flow. Among these are interfacial forces that govern the distribution

of interfaces in the porous medium. In fact, through the application of rational ther-

modynamics, Hassanizadeh and Gray (1990, 1993a) developed a theory of two-phase

flow in which interfacial areas were introduced as separate thermodynamic entities,

possessing mass, momentum, and energy. They derived momentum balance equa-

tions not only for phases, but also for interfaces, and macroscale effects of interfacial

forces were explicitly included.

Some of the equations proposed in the extended Darcy’s law, such as “non-

equilibrium capillarity effect in fluid pressures difference” and “role of interfacial

area is removing hysteresis in capillary pressure curves” have been partially studied

numerically or experimentally. But the full set of equations has not been analyzed.

The full set of equations can be summarized in the following conjectures.

• In multiphase flow in porous media, gravity and fluid pressure gradient are

not the only forces. There are other sources of forces, such as interfacial forces.

• Capillary pressure and saturation are related to each other through fluid-fluid

interfacial area to generate a unique surface under drainage and imbibition.



220 9. Concluding Remarks

Thus, interfacial area can remove the hysteresis observed in P c-Sw curves un-

der drainage and imbibition.

• There is not a unique capillary pressure-saturation curve. Depending on the

time rate of saturation change, different capillary pressure-saturation curves

can be resulted.

To understand the physics of the problem and evaluate these hypotheses, pore-

network modelling technique has been employed. This technique allows us to sim-

ulate the flow processes at pore scale. The pore-scale information can be averaged

to obtain macroscale data for further analysis. Since pore-network modelling is

computationally cheaper than the other pore-scale simulators (such as Lattice Boltz-

mann, Smooth Particle Hydrodynamics, etc), it allows us to simulate large domains.

Two different objectives have been followed in this research.

9.2 Theory analysis

The behavior of extended Darcy’s law has been studied using different pore-

network models. Role of specific interfacial area in removing hysteresis has been

investigated by quasi-static pore-network models in three different porous media:

hypothetical porous media, a two-dimensional micro-model, a glass-bead column.

The hypothetical network was structured and regular. Pore bodies and pore

throats were represented by sphere and circular tubes. Using this model, the re-

lationships among capillary pressure, saturation, and interfacial area (P c-Sw-anw)

as well as relative permeability, saturation, and interfacial area (kw
r -S

w-anw) were

studied. The results showed that aspect ratio has a major effect on significance of

hysteresis in P c-Sw and kw
r -Sw curve, so that in a tube network (no pore body),

hysteresis was almost eliminated. Furthermore, trapping mechanism can influence

significantly the form of Sw-anw curves as well as irreducible saturation. Using data

from the full range of scanning drainage and imbibition simulations, we have con-

structed P c-Sw-anw and kw
r -S

w-anw surfaces. Results show that with decreasing the

pore aspect ratio, the absolute difference between the two surfaces decreases, and

basically interfacial area can diminish or eliminate the hysteresis that is commonly

observed in P c-Sw and kw
r -Sw curves. But, since the network was idealized, more

detailed investigation based on a more realistic porous medium was required.

Thus, this conjecture was analyzed in a two-dimensional micro-model. An un-

structured pore-network model was developed to simulate the drainage and im-

bibition experiments performed on a two-dimensional micro-model of a porous

medium to produce P c-Sw-anw surface. Our analysis showed that capillary pres-

sure of the micro-model was controlled by its depth, which was almost as small
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as the smallest pore width. Using the pore-network model, we reproduced the ob-

served patterns of fluid distribution in the micro-model for both drainage and im-

bibitions experiments. We also produced a P c-Sw-anw surface for imbibition that

approximates the measured surface very closely. This is very encouraging as it sug-

gests that we can use our pore-network model as a predictive tool for testing the

behaviour of micro-models, before manufacturing.

Finally, the role of interfacial area in removing the hysteresis was investigated

for a glass-bead column. In this case study, the porous medium was completely

unstructured and irregular. In addition, the cross sections of the pores were angu-

lar, which allows simultaneous existence of both fluids. Using the generated pore-

network model, P c-Sw-anw surfaces for drainage and imbibition were produced,

separately. Comparison between these two surfaces showed that they are highly

correlated (r2 = 0.95), and the normalized difference is small, in the range of uncer-

tainty of model calculations. Our results show that in glass beads with unstructured

irregular network with mixed cross sections, the hysteresis in P c-Sw-anw curves is

much smaller than the hysteresis in P c-Sw curves. The largest relative error between

anw = f(P c, Sw) surfaces is found at large saturations, where the specific interfacial

area is very small.

To investigate the non-equilibrium capillarity effects and their dependence, a

DYnamic POre-network Simulator for Two-phase flow (DYPOSIT) was developed.

It was applied to study dynamics of specific interfacial area, average capillary pres-

sure, average phase pressure differences, functionality of non-equilibrium capil-

larity coefficient as well as production rate of interfacial area. Macroscopic capil-

lary pressure was defined as the average of local capillary pressure at all interfaces

weighted with the area of the interface. We showed that neither average capillary

pressure-saturation curves, nor specific interfacial area-saturation curves, are not

unique, but they depend on flow dynamics as well as fluid-solid properties. How-

ever, it is shown that capillary pressure-saturation-interfacial area surface for pri-

mary drainage is an intrinsic property of the porous medium, independent of fluid

properties and dynamic conditions. The difference between average phase pres-

sures, however, is found to be dependent on boundary pressures and time rate of

change of saturation as prescribed by the dynamic capillary theory. We found that in

spite of the fact that we have not included local-scale dynamics of the interface (such

as dynamics of contact angle), the average fluids pressure difference is significantly

distinct from the capillary pressure. Our results illustrate that the non-equilibrium

capillarity coefficient is a function of saturation as well as viscosity ratio. Dynamics

of interfacial area show that with decrease of the viscosity ratio, specific interfa-

cial area increases, which is a consequence of the invasion mechanism. However,

in all dynamic cases, specific interfacial area is smaller than that under quasi-static
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conditions. With decrease of the viscosity ratio, effect of the intrinsic properties of

medium (geometry and topology) on the creation of interfacial area increases. The

production rate of specific interfacial area for different viscosity ratios has been stud-

ied and quantified. With the decrease of the viscosity ratio, production rate of the

specific interfacial area increases. The production rate is found to have an almost lin-

ear relationship with the time rate of change of saturation. This linearity coefficient

is a function of saturation as well as the viscosity ratio.

In another set of simulations, several numerical experiments for primary

drainage, main imbibition, andmain drainage are implemented. We calculated non-

equilibrium capillarity coefficient (τ ) versus saturation for three different viscosity

ratios under Dirichlet boundary conditions. Our analysis shows that deviation of

fluids pressure difference from capillary pressure, mainly originates from the inva-

sion mechanism. It means that in capillary fingering regime or viscous fingering

regime less dynamic effect is resulted compared with stable front regime. Further-

more, our analysis shows a strong dependence of τ on viscosity ratio aswell as effec-

tive viscosity. Due to this fact, τ values under drainage and imbibition processes are

different. Variation of τ with saturation is strongly dependent on the viscosity ratio.

This is in agreement with laboratory experiments reported in Table 7.3. We have an-

alyzed uniqueness of τ value under drainage and imbibition processes. Although

the order of magnitude of τ during drainage and imbibition for a given viscosity

ratio does not change significantly, the curves for primary drainage and main imbi-

bition are not identical. This is due to the fact that effective viscosities and viscosity

ratios are different under drainage and imbibition. It is known that viscosity ra-

tios smaller than one can create unstable invading front during both drainage and

imbibition. This has been also illustrated by our simulations. Moreover, we have

shown that snap-off is highly related to the viscosity ratio and capillary number.

A viscous fingering during imbibition under Dirichlet boundary conditions creates

non-monotonic distribution of trapped nonwetting fluid. With invasion of the wet-

ting fluid during imbibition, flooding efficiency increases and less nonwetting fluid

remains in the domain.

Finally, the pore-network model was employed to simulate drainage process in

a long domain. The model had a cross section of 30×30 pore bodies and 210 pore

bodies in flow direction. Different aspects of the fluid-fluid interfaces such as their

velocity (and dependence on change of saturation with time) and production rate

have been analyzed. Results show a linear relationship between production rate

of fluid-fluid interfaces and change of saturation with time. It is also shown that

although interfaces may have high velocities at the moment of Haines jump, the

macroscopic interface velocities are strongly correlated with the time rate of satu-

ration change. Variation of macroscopic interfacial velocity with saturation - in an
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averaging window - is nonmonotonic, having a maximum in the intermediate satu-

rations.

Given the fact that intrinsic phase averaging is the most common approach,

transient two-phase drainage and extended two-phase flow equations (proposed

by Hassanizadeh and Gray (1990, 1993a)) have been investigated using this averag-

ing operator. Macroscopic analysis of transient two-phase drainage shows that, as

expected, there is a significant dynamic effect on fluid permeabilities, especially on

nonwetting-fluid transient permeability. This can not be captured properly using

the classical two-phase flow equations. On the other hand, Hassanizadeh and Gray

(1990, 1993a) have conjectured that specific interfacial area should be explicitly in-

cluded in the governing equations for an adequate description of the multiphase

flow in porousmedia. However, these equations include new coefficients, which are

not well defined in terms of the macroscopic fluid and solid properties. Averaging

all the variables and relating them to the averaged fluxes given in Equation 1.1, we

quantified the coefficients ΨαS and Ψαa (given in Equation 1.1) so that the equality

between averaged flux and gradients of saturation, interfacial area, and pressures

can be obtained. The dependence of new coefficients on saturation seems very well-

behaved. In spite of the fact that the capillary number varies during the simulations,

the dependencies of the parameters on the averaged saturation seem independent

of the dynamics of the system.

These analyses lead us to a new understanding that including gradient of inter-

facial area and gradient of saturation in the new equations can implicitly account

for the moving boundary between the two fluids during drainage. This feature is

absent in the classical equations for two-phase flow. Dependence of the new param-

eters on fluid and porous medium properties is an important issue, which should

be investigated in future.

9.3 Improving pore-network modelling technique

From the technical point of view, new geometrical and computational approaches

were developed. These methodologies provide more accurate representative pore-

network models for specific cases and predictive purposes.

For generation of two-dimensional pore-network model based on the image, a

medial axis-based approach was employed. A simple approach based on distance

transform (DT) was employed to define medial pixels. Using this concept, geome-

try and topology of the micro-model are captured with an acceptable accuracy for

use in a pore-network model. We have demonstrated the capability of the model

by simulating the configuration of two immiscible fluids in a micro-model. The ca-
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pability of the pore-network model for simulating a real porous medium has been

successfully verified, as we reproduce the measured P c-Sw and anw-Sw curves very

well.

For granular porous media, a new approach for generation of cross sections

based of shape factor distribution was proposed. We studied whether shape fac-

tor alone is enough to characterize the pore geometry of a granular porous medium.

A geometry-based approach was proposed for generation of pore throat cross sec-

tions so that the whole range of shape factor distribution can be reproduced. Three

different general shapes for pore throats have been considered: irregular hyperbolic

triangles, regular hyperbolic polygons, and circles. General formulas for calcula-

tion of geometrical properties and entry capillary pressure of these geometries were

derived. Effects of shape factor as well as cross-sectional shape on entry capillary

pressure, corner saturation and corner interfacial area were also investigated for a

single pore throat. We showed that in addition to shape factor, the shape of cross

section (number of vertices) has a significant effect on entry capillary pressure, cor-

ner saturation, and arc menisci area. These parameters can be very important in

porous media with long pore throats and may contribute significantly to the total

pore volume. We have developed an irregular unstructured mixed cross-sectional

pore-network model, with the pore bodies in the shape of prolate spheroids and

pore throats having a mix of cross sectional shapes described above. The model

has been used for simulating drainage and imbibition experiments carried out by

Culligan et al. (2004) in a glass-bead column. The capability of the pore-network

model for simulating a real porous medium has been successfully verified, as we

reproduce the measured P c-Sw and anw-Sw curves very well. Moreover, grain size

distribution inferred from our pore-network model is in close agreement with the

measured distribution. We have shown that the inclusion of shape factor distribu-

tion and cross-sectional shape in the generation of pore network significantly in-

fluence P c-Sw curves. Depending on the number of vertices of a cross section and

volume and length associated with the pore throats, shape factor distribution and

cross-sectional shape can significantly influence anw-Sw curves. Finally, we empha-

size that the proposed approach for generating pores cross sections, based on the

continuous recovery of shape factor distribution, is essential for the development of

predictive pore-network models.

Up to now many dynamic pore-network models fail to simulate capillary-

dominated flow or unfavorable conditions, due to the numerical problems. We have

developed a DYnamic POre-network model for SImulating Two-phase flow (DY-

POSIT) during drainage and imbibition under different dynamic conditions (cap-

illary numbers and viscosity ratios). The combination of features included in this

model has not been offered in previous network models. The network elements
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have square cross sections, as a result of which both phases can be simultaneously

present within a pore body or pore throat. Pore throats are represented by par-

allelepiped, and pore bodies can be represented by truncated octahedron or cube.

Local capillary pressure in the pore elements is taken into account. Two different

pressure fields are assigned to each phase and solved using a robust algorithm. To

improve numerical stability of the model under capillary dominated flow, a semi-

implicit algorithm is employed. This allows us to simulate flow dynamics for dif-

ferent flow regimes and viscosity ratios for drainage as well as imbibition.

As a future step, the dynamic pore-network model can be developed to a more

realistic representative porous media. Employing the hyperbolic cross sections in

the dynamic pore-network models can be a step forward. Furthermore, there are

still many complexities and questions in the extended two-phase flow equations

that worth to be studied. These can include the effect of fluid and porous medium

properties on the behaviour of the involved parameters, effect of averaging operator

on them and finally, the effect of size of the domain on the macroscopic behaviour

of the the parameters.
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Appendix A

Calculation of Pore Throat Radii

For our sphere-and-tube network, we specify a size distribution for the pore bodies.

Then, the radius of a pore throat is determined from the radii of the two neighboring

pore bodies. We do this following a scheme adopted from Acharya et al. (2004) and

explained below.

Consider two pore bodies i and j, with a center-to-center distance d (see Fig-

ure A.1a), and pore sizes Ri and Rj , respectively. Along the line connecting the

centers of the two nodes, we can define the dimensionless coordinate ξ:

ξ = x/d, 0 ≤ ξ ≤ 1 (A.1)

We consider two arbitrary curves with order of n > 0, tangent to the pore bodies

(see Figure A.1) with the following equations:

ρ1(ξ) = ρi(1 − ξ)n, for 0 ≤ ξ ≤ 1 (A.2)

ρ2(ξ) = ρjξ
n, for 0 ≤ ξ ≤ 1 (A.3)

where parameters ρi and ρj (see Figure A.1b) need to be determined following the

procedure explained below. The points of contact of these curves with the pore bod-

ies i and j are denoted by a and c, respectively. The points a and c are determined so

that the angle between the radii passing through these points and the horizontal axis

is π/4. The two curves intersect each other at point b. The projections of these points

on the dimensionless coordinate axis ξ are denoted by ã, b̃ andc̃ (see Figure A.1b).

At point b, we have ρ1(̃b) = ρ2(̃b). So using Equations A.2 and A.3 we can determine

b̃:

ρ1(1 − b̃)n = ρj b̃
n −→ b̃ =

(ρi/ρj)
1/n

1 + (ρi/ρj)1/n
(A.4)

We now need to calculate ρα(α = i, j). From geometrical considerations, we can

write for pore body i:

ã = R̃i cos(π/4), ρ1(ã) = R̃i sin(π/4) (A.5)
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Figure A.1: Geometrical configuration of relationship between pore body and pore throat

radii in sphere-and-tube network a) Geometrical configuration for determining the pore

throat radius. b) Schematic definition of functions used for determining the radius of pore

throat. Radius of pore throat is determined at intersection of the two curves (point b) using

the dimensionless configuration in (b)

where R̃α = R̃α/d is the dimensionless radius. In addition, from Equation A.3 we

can write:

ρ1(ã) = ρi(1 − ã)n (A.6)

Substituting Equation A.5 in Equation A.6, we can calculate ρi:

ρi =
R̃i sin(π/4)

(1 − R̃i cos(π/4))n
(A.7)

In a similar fashion, ρj is calculated:

ρj = R̃j sin(π/4)/(1 − R̃j cos(π/4))n (A.8)

Combining Equations A.8, A.3, and A.4, the radius at the intersection point b, which

is taken to be the pore throat size, will be given by:

ρ(b) = ρiρj(ρ
1/n
i + ρ

1/n
j )−n, n > 0 (A.9)
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Determination of Medial Pixels

Our approach for identifying medial pixels is explained in three parts. First, the

micro-model domain decomposition is introduced. Then, the distance transform

(DT) is explained, and finally a flow operator, which is used for determining the

medial pixels, is covered.

a) Micro-model domain decomposition Let Ωt ∈ R
2 include all pixels existing in

themicro-model domain including solid domainΩs ∈ R
2 and void domainΩv ∈ R

2.

Void domain can include two different phase domains: nonwetting phase Ωnw ∈ R
2

and wetting phase Ωw ∈ R
2. Thus, we may write:

Ωv := Ωnw ∪ Ωw (B.1)

Ωt := Ωv ∪ Ωs := Ωnw ∪ Ωw ∪ Ωs (B.2)

As a short-hand notation, we can write:Ωt :=
⋃

Ωα : α = w, nw, s. Each pixel i,

shown as Pα
i , belongs to a domain α. In a two-dimensional domain, Pα

i can have

a maximum of eight neighbors which belong to domain α. The set of those pixels

neighboring Pα
i and belonging to the domain α, is denoted by N

α
i . In addition, total

number of elements of set N
α
i is denoted by |Nα

i |.
Thus, boundary pixels for the domain α can be identified as follows:

∂Ωα := {Pα
i ∈ Ωα : |Nα

i | < 8}, α = nw,w, s (B.3)

For example, pixel P0 is not a boundary pixel in Figure B.1(a), but in Figure B.1(b) it

is a boundary pixel.

b) Distance transform Let the Euclidean distance between the centers of two pix-

els Pα
i and Pα

j be denoted by d(Pα
i , P

α
j ). Distance tranform,DT, is calculated as the

minimum Euclidean distance between the center of a pixel in the void domain and

pixels of solid boundary.

DT (P v
i ) = min{d(P v

i , P
s
j ) : ∀P s

j ∈ ∂Ωs} (B.4)
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Figure B.1: Definition of a boundary pixel, a)P α
0 is not a boundary pixel |Nα

i | = 8 b)P α
0 is a

boundary pixel,|Nα
i | = 5 < 8, colors show the arbitrary phases.

Figure B.2: a) Binary presentation of a porous medium, black is the solid domain and white

is the void domain b) Spatial distribution of the distance transform

Result of distance transformation for a given void domain (e.g. Figure B.2a) will be

a distance map as shown in Figure B.2(b). In this figure, pixels with a larger distance

from the nearest solid boundary pixels are shown in a brighter color.
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Figure B.3: Direction numbering for flow operator; the same color code is used in Figure B.4

and B.5.

c) Flow operator Within the distance map, each pixel located in the void domain

will have a distance value larger than zero. If we assign this value as the height of

that pixel, we can create a mountain chain. The ridge of mountain chain is the locus

of pixels with the largest DT value (i.e. the largest distance from solid boundary).

To determine pixels located on the ridge, a flow operator is defined. Flow operator,

F, is used to determine the direction (DIR) of maximum downward slope between

the centers of a pixel and its neighboring pixels (Jensen and Domingue, 1988). Since

each pixel of void domain has at most eight neighbors in the void domain, there will

be a maximum of eight possible directions as shown in Figure B.3. Flow operator

can be written as follows:

F(P v
i ) = DIR(max{

DT (P v
i ) −DT (P v

j )

d(P v
i − P v

j )
: j ∈ N

v
i }) (B.5)

Let the complete set of F(P v
i ) consisting of non-repeating members be denoted by

F := {0, 1, 2, 3, 4, 5, 6, 7} and its cardinality,|F|, is of maximum eight. For example,

Figure B.4(b) shows the flow operator implemented on a hypothetical distance map

presented in Figure B.4(a). In this figure, pixel (4,2), for example has three different

types of neighbors, namely 2, 6, and 7; thus F(4,2) := {2, 6, 7} and |F(4,2)| = 3. All

pixels with a common flow direction form a direction cluster; e.g. there are four

direction clusters in Figure B.4(b), each designated with its own color. This color

code is used in examples shown in Figures B.3 to B.5. Thus, flow operator, F, creates
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Figure B.4: An example: a) Spatial distribution of distance transform b) Result of flow oper-

ator based on distribution in (a)

durection clusters (i.e. clusters of pixels with a common flow direction). Each cluster

will be bounded by its boundary pixels. These pixels may see solid boundary pixels

in their neighboring cells (e.g. close circles in Figure B.5) or may see more than

one type of other clusters in their neighboring cells (e.g. open circles in Figure B.5).

Finally, using a search algorithm, it is possible to find the medial pixels (e.g. the

dashed path crossing through the open circles in Figure B.5).

Due to the variability of the pore width in the domain, image analysis should be

done at such a resolution that pixel size is smaller than the minimum pore width.

The finer the discretization of the domain is, the more precise the pore network will

be. In our study, each pixel has a size of 0.3µm. Sensitivity analysis, based on the

P c-Sw curves has shown that this resolution is in acceptable range for generation of

the pore network model.
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Figure B.5: Result of flow operator for domain presented in Figure B.2, dashed path rep-

resents medial path required for the simulation. Close circles show those cluster boundary

pixels, neighboring solid domain pixels. Open circles show cluster boundary pixels, where at

least three different clusters are neighboring each other.





Appendix C

Balance of Forces for an Interface

Calculation of entry capillary pressure for various cross sections is based on the

MS-P (Mayer-Stowe-Princen) method, suggested by Ma et al. (1996),Mayer and Stowe

(1965), Princen (1969a,b, 1970), which follows from the balance of forces for contact

lines. When the nonwetting phase invades a tube with an angular cross section,

the wetting phase remains behind in the corners along the tube. The longitudinal

curvature of the resulting fluid-fluid interface inside the tube is zero. For a regular

hyperbolic polygonal cross section, let radius of curvature of the interface within the

cross section be denoted by rc (see Figure C.1). Then, the entry capillary pressure is

equal to:

P c
e = Pn − Pw =

σnw

rc
(C.1)

in which, Pn is pressure of the nonwetting phase, and Pw is the pressure of the

wetting phase. Now, consider an nw-interface formed at the entrance of the tube.

This interface will move into the tube (i.e. nonwetting phase invades the tube) only

if the entry capillary pressure given by Equation C.1 is reached. At that instance, the

Figure C.1: A typical regular hyperbolic polygonal cross section filled with the wetting and

nonwetting phases. The nonwetting-wetting interface has a radius of curvature denoted by

rc and the nonwetting area is denoted by An.
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following balance of forces for the interface can be written:

(Pn − Pw)An = Lnwσ
nw + Lnsσ

ns − Lnsσ
ws (C.2)

where An is that part of a cross section filled with nonwetting phase, Lns is the total

length of solid-fluid-fluid contact line, Lnw is the total length of arc cut through the

fluid-fluid interface in the corners.

From Young equation, we have the following relationship:

σns = σnwcosθ + σws (C.3)

Substituting Equation C.3 in Equation C.2 will result in:

(Pn − Pw)An = σnw(Lnw + Lns cos θ) (C.4)

Combination of Equations C.1 and C.4 results in:

Lnw + Lns cos θ

An
=

1

rc
(C.5)

In Equation C.5, Lnw and Lns depend on cross-sectional geometry and also fluid oc-

cupancy. Geometrical relationships between these terms and rc should be calculated

for each cross-sectional group separately as shown in Section 5.2.2.



Appendix D

Entry Capillary Pressure for a Rectangular
Cross Section

In this appendix, the equation for entry capillary pressure of a tube with rectangular

cross section is derived. In a rectangular cross section with the corner angle of π/2

and contact angle of θ, we consider the half corner angle as shown in Figure 4.3.

Then, we can write the following geometrical relations:

AH =
√

2 cos(π/4 + θ)rc (D.1)

To calculate the area covered by the nonwetting phase,Anw, we need to substitute

the areas of the four corners filled by the wetting phase for the rectangular area,ab,

First, area of half-corner triangle will be:

s△AHO = (
√

2/2)r2c cos(π/4 + θ) cos θ (D.2)

Area of ANH is calculated as follows:

SAHN = (
√

2/2)r2c cos(π/4 + θ) cos θ − 0.5r2c(π/4 − θ) (D.3)

Considering the total area of a rectangular, S = ab, total area of nonwetting fluid

is:

Anw = ab− 4r2c [
√

2 cos(π/4 + θ) cos θ − (π/4 − θ)] (D.4)

In addition, we will have:

Lnw = 8rc(π/4 − θ) (D.5)

Lns = 2(a+ b) − 8
√

2 cos(π/4 + θ)rc (D.6)

Substituting Equations D.4, D.5 and D.6 in Equation C.5 will result:

8(π/4 − θ)rc + [2(a+ b) − 8
√

2 cos(π/4 + θ)rc] cos θ

ab− 4r2c [
√

2 cos(π/4 + θ) cos θ − (π/4 − θ)]
=

1

rc
(D.7)
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This equation can be solved for rc to obtain:

rc =
−(a+ b) cos θ +

√
(a+ b)2 cos2 θ + 4ab[π

4 − θ −
√

2 cos(π
4 + θ) cos θ]

4(π
4 − θ −

√
2 cos(π

4 + θ) cos θ)
(D.8)

Finally, entry capillary pressure can be calculated using Equations C.1 and C.1.



Appendix E

Geometry of Hyperbolic Polygons

E.1 Irregular hyperbolic triangles

For a set of Soddy circles shown in Figure 5.2(a), the inscribed radius, R, can be de-

termined based on the radii of the three tangent circles.

R =
R1R2R3

R1R2 +R2R3 +R1R3 + 2
√
R1R2R3(R1 +R2 +R3)

(E.1)

The area of the △ABC may be written as follows:

A△ABC =
√
R1R2R3(R1 +R2 +R3) (E.2)

On the other hand, using laws of sines in △ABC, we can write the following three

equations:

R1 +R2

sin γ
=
R2 +R3

sinα
=
R1 +R3

sinβ
=

(R1 +R2)(R2 +R3)(R1 +R3)

2
√
R1R2R3(R1 +R2 +R3)

α+ β + γ = π (E.3)

The area and perimeter of the irregular hyperbolic triangle, the hatched part of Fig-

ure 5.2(a), is denoted by as Ahatched and Phatched, respectively. They can be written:

Ahatched =
√
R1R2R3(R1 +R2 +R3) − 0.5(R2

1α+R2
2β +R2

3γ) (E.4)

Phatched = R1α+R2β +R3γ (E.5)

Finally, the shape factor, G, can be calculated, as:

G =

√
R1R2R3(R1 +R2 +R3) − 0.5(R2

1α+R2
2β +R2

3γ)

(R1α+R2β +R3γ)2
(E.6)

For given values of G and R, we can solve Equations E.1,E.3 and E.6 numerically,

using Newton-Raphsonmethod, to calculate R1,R2, R3, α, β, and γ.
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E.2 Regular hyperbolic polygons

To relate the shape factor to geometry of a cross section, the area and perimeter

should be calculated. The area of the n-hyperbolic polygon (B1..Bn) in Figure 5.2(b)

can be calculated as follows:

AB1..Bn
= AA1..An

− n×A△A1A2B1
− n×A2A2B1B2

(E.7)

Because ∠A2B1O = π/2 + ϕ and φ = π/n, we obtain:

β = π(
1

2
− 1

n
) − ϕ (E.8)

In addition, we note that tanφ = tan π
n = R1 sin β

R+R1(1−cos β) , which results in:

R1 = R
sin π

n

cosϕ− sin π
n

(E.9)

The area of a n-polygon, with edge length s is:

AA1..An
=
n

4
s2 cotπ/n = nR2

1 cos2 ϕ cot
π

n
(E.10)

and the areas of △A1A2B1 and 2A2B1B2 may be written as follows, respectively:

A△A1A2B1
= 0.5R2

1 sin 2ϕ (E.11)

A2A2B1B2
= R2

1β (E.12)

Using Equations E.9, E.10,E.11, and E.12, Equation E.7 may be written as:

AB1..Bn
=

nR2 sin2 π
n

(cosϕ− sin π
n )2

[
cos2 ϕ cot

π

n
− π(

1

2
− 1

n
) + ϕ− 0.5 sin 2ϕ

]
. (E.13)

Then, the perimeter of a n-hyperbolic polygon is obtained from:

PB1..Bn
= 2nR

sin π
n

cosϕ− sin π
n

[π(
1

2
− 1

n
) − ϕ] (E.14)

Based on Equations E.13 and E.14, the shape factor can be written as follows:

G =
A

P 2
=

cos2 ϕ cot π
n − π(1

2 − 1
n ) + ϕ− 0.5 sin 2ϕ

4n[π(1
2 − 1

n ) − ϕ]2
(E.15)
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For given values of n and G, Equation E.15 can be solved numerically to calculate

ϕ and subsequently the geometry of the cross section will be define from Equa-

tion E.9.





Appendix F

Entry Capillary Pressure for a Hyperbolic
Cross Section

F.1 Irregular hyperbolic triangles

Consider the vertex i of an irregular hyperbolic triangle filled by the wetting phase,

shown in Figure F.1. We need to calculate the area of the wetting phase in the corner

as well as the length of nonwetting-wetting interface. Let εi
j denote the angle made

by the tangent at vertex i and line connecting vertex i to the intersection of interface

with edge j (e.g. lineBN orBN ′ in Figure F.1). Also, let εi denote the angle between

the tangent to the interface at its intersection with the edge i and the line connecting

both ends of the interface (line NN ′ in Figure F.1). Then in the triangle△BNN ′, we

can write:

εi + εi
1 + εi

2 =
π

2
− θ, (i = 1, 2, 3) (F.1)

, where θ is the fluid-fluid-solid contact angle.

Based on law of sines, we have:

BN

sin(εi + εi
2 + θ)

=
BN ′

sin(εi + εi
1 + θ)

=
NN ′

sin(εi
1 + εi

2)
(F.2)

Radii of arcs BN , BN ′, and NN are R1, R2, and rc, respectively. Since angles

∠N ′ON ,∠ABN , and∠BA′N ′ are denoted by εi, εi
1, ε

i
2, respectively, wemay rewrite

Equation F.2, as follows:

R1 tan εi
1 = R2 tan εi

2 =
rc sin εi

cos(θ + εi)
, i = 1, 2, 3 (F.3)

Now, the area of the wetting phase (hatched part in Figure F.1(b)) should be calcu-

lated. That is equal to the area of the triangle BNN ′ minus the total areas of the

circular segments created by chords BN , BN ′, and NN ′, denoted by Acs
BN , Acs

BN ′ ,
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Acs
NN ′ , respectively:

Ai
w = A△BNN ′ −Acs

BN −Acs
BN ′ −Acs

NN ′ (F.4)

With some manipulation, we can write the following equation for Ai
w.

Ai
w = 2rcR1 sin εi sin εi

1 cos εi
2 −R2

1(ε
i
1 − 0.5 sin 2εi

1)

−R2
2(ε

i
2 − 0.5 sin 2εi

2)

−r2c(εi − 0.5 sin 2εi) (F.5)

Next, the area of that part of pore throat cross section filled by the nonwetting phase

(An in Figure F.1) can be calculated by subtracting the total wetting phase area from

the pore cross-sectional area (given by Equation E.4), Ahatched:

An = Ahatched −
3∑

i=1

Ai
w (F.6)

Total length of the nonwetting-wetting interface, Lnw, would be estimated simply

as follows:

Lnw = 2rc

3∑

i=1

εi (F.7)

Using Equation E.5 and considering the geometry given in Figure F.1, the length of

the nonwetting-solid interface can be calculated.

Lns = R1α+R2β +R3γ − 2

3∑

i=1

(
Riε

i
i +Riε

i−1
i

)
, ε01 = ε31 (F.8)

Substituting Equations F.6, F.7, and F.8 in Equation C.5 results in a new equation,

which relates all εi
j |i = 1, 2, 3, j = 1, 2 and εi|i = 1, 2, 3 to the radius of curvature of

the interface rc. Te resulting equation, together with Equations F.1 and F.3, can be

solved numerically to calculate rc. Subsequently, it is possible to calculate the entry

capillary pressure from Equation C.1.

F.2 Regular hyperbolic polygons

The procedure for calculation of entry capillary pressure for a regular hyperbolic

polygonal cross section, is similar to the method used for regular hyperbolic polyg-

onal cross sections. There are few differences in geometry that should be taken into
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consideration. Considering Figure F.1(c), since the geometry is regular, R1 = R2 =

.. = Rn. Therefore, all ε
i
j = ε′, (j = 1, 2, i = 1, 2, .., n) are equal and denoted by ε′. In

addition, ∠NBN ′ in Figure F.1(c) will be equal to 2(ε′ + ϕ). The angle ε′ is referred

to the angle made by the tangent at a vertex and line connecting the vertex to the

intersection of interface and edge. For △BNN ′ we can write 2ε′ + ε = π
2 − θ − ϕ.

Based on the law of sines in△BNN ′ we may write:

rc sin ε

sin 2(ϕ+ ε′)
=

R1 sin ε′

sin(ε+ ε′ + θ)
, 2ε′ + ε =

π

2
− θ − ϕ (F.9)

Next, for the area of the wetting phase, Ai
w, we can write:

Ai
w = 2rcR1 sin ε sin ε′ cos(ε′ + ϕ) −2R2

1(ε
′ − 0.5 sin 2ε′)

−r2c(ε− 0.5 sin2ε) (F.10)

Knowing the area of a regular hyperbolic cross section from Equation E.13, AB1..Bn
,

the area of the nonwetting phase in this cross section can be calculated as follows:

An = AB1..Bn
− nAi

w (F.11)

The total length of the nonwetting-wetting interface,Lnw , is simply given by:

Lnw = 2nrcε (F.12)

According to Equation E.14, the total length of Lns is given by:

Lns = PB1..Bn
− 4nR1ε

′ (F.13)

Substituting Equations F.11, F.12, and F.13 in Equation C.5 results in a new equation,

which relates ε′ and ε to the radius of curvature of the interface rc. The resulting

equation and Equation F.9 can be solved numerically to calculate rc. Finally, the

entry capillary pressure is calculated from Equation C.1.
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Figure F.1: a) Schematic presentation of interfaces in an irregular hyperbolic triangle b) Ge-

ometry of an interface and wetting phase in vertex 1. Center of the arcs with radiiR1, R2, and

rc are denoted by A, A′, and O, respectively (see also Figure 5.2(a)). The angle εi
j is referred

to the angle made by the tangent at vertex i and line connecting vertex i to the intersection of

interface with edge j. The angle εi is referred to the angle between the tangent to the inter-

face at its intersection with the edge i and the line connecting both ends of the interface. c)

Geometry of a fluid-fluid interface and the wetting phase in the vertex of a regular hyperbolic

polygon. The geometry is defined by half corner angle, ϕ, contact angle, θ, interface radius of

curvature, rc, inscribed radius R, and edge radius of curvature, R1 (see also Figure 5.2(b))
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Table F.1: Formulas for An, Lns and Lnw for different cross sections.

Irregular Hyperbolic Triangle Regular Hyperbolic Polygon

An =
√
R1R2R3(R1 +R2 +R3) An =

nR2 sin2 π
n

(cos ϕ−sin π
n

)2

[
cos2 ϕ cot π

n − π(1
2 − 1

n ) + ϕ− 0.5 sin 2ϕ
]

−0.5(R2
1α+R2

2β +R2
3γ) −2nrcR1 sin ε sin ε′ cos(ε′ + ϕ)

−
∑3

i=1

[
2rcRi sin εi sin εi

i cos εi
i+1

]
+2nR2

1(ε
′ − 0.5 sin2ε′)

+
∑3

i=1

[
R2

i (ε
i
i − 0.5 sin 2εi

i)
]

+nr2c(ε− 0.5 sin 2ε)

+
∑3

i=1

[
R2

i+1(ε
i
i+1 − 0.5 sin 2εi

i+1)
]

+
∑3

i=1

[
r2c (εi − 0.5 sin 2εi)

]
,

(ε34 = ε31, R4 = R1)

Lns = R1α+R2β +R3γ Lns = 2nR
sin π

n

cos ϕ−sin π
n

[π(1
2 − 1

n ) − ϕ] − 4nR1ε
′

−2
∑3

i=1

(
Riε

i
i +Riε

i−1
i

)
, (ε01 = ε31)

Lnw = 2rc
∑3

i=1 ε
i Lnw = 2nrcε





Appendix G

pc
i-s

w
i Relationship for a Cubic Pore Body

Consider a cube with its inscribed sphere radius equal to Ri; so the edge length is

equal to 2Ri. If the nonwetting phase volume is larger than the volume of inscribed

sphere (i.e. sw
insc. ≤ 1 − π

6 = 0.48), the fluid interfaces are pinned into the corners.

However, for sw
insc. > 1 − π

6 = 0.48, they are not pinned into the corners. Therefore,

for the variation of local capillary pressurewith saturation, we identify two different

zones as shown in figure G.3, and described below.

G.1 Capillary pressure for 0 < swi ≤ 0.48 (zone I)

In a cube, interfaces can be formed along its 12 edges as well as in its 8 corners as

shown in figure G.1. Edge interfaces form part of a cylindrical surface. Therefore,

they have only one finite radius of curvature. Corner interfaces form part of a spher-

ical surface and thus, have two identical finite curvatures. Assuming a contact angle

of zero, edge interfaces form one fourth of a cylinder whereas corner interfaces are

one eighth of a sphere (see figure G.1). Let us denote the radius of curvature of cor-

ner interfaces by rci,1. Then, the total volume of the wetting phase in the corners

Figure G.1: A pore body occupied by the nonwetting phase (in the middle) and the wetting

phase in corners and edges. There are wetting-nonwetting interfaces in 8 corners with mean

radius of rci,1 and in 12 edges with mean radius of rci,2.
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would be equal to the volume of a cube with dimensions 2rci,1 minus the volume

of a sphere with radius rci,1:

V w
corner = (8 − 4

3
π)rc3i,1 (G.1)

Length of an edge interface is equal to the cube size, 2Ri, minus two times the radius

of corner interfaces:

Ledge = 2(Ri − rci,1) (G.2)

Thus, if we denote the radius of curvature of an edge interface by rci,2, the total

volume of wetting phase in the edges will be:

V w
edge = 12Ledgerc

2
i,2(1 − π

4
) (G.3)

Total volume of wetting phase in the pore body is thus obtained by summing (G.1)

and (G.3):

V w
i = (8 − 4

3
π)rc3i,1 + 24(Ri − rci,1)rc

2
i,2(1 − π

4
) (G.4)

Since we assume that the capillary pressure in a pore body is the same everywhere,

the capillary pressures of edge and corner interfaces must be equal. Thus, pc
i =

2σnw

rci,1
= σnw

rci,2
, which gives rci,1 and rci,2 in terms of pc

i . Substituting for rci,1 and

rci,2 in (G.4) and dividing both sides by the total volume of the cubic pore body,

8R3
i , we obtain the following pc

i -s
w
i relationship for a pore body if sw

i ≤ 0.48:

sw
i =

(2 + 1
6π)(2σnw

pc
i

)3 + (6 − 3
2π)Ri(

2σnw

pc
i

)2

8R3
i

(G.5)

The case of rci,1 = Ri corresponds to the situation that the nonwetting phase occu-

pies the inscribed circle of the pore body.

G.2 Capillary pressure for 0.48 < swi ≤ 1 (zone II)

When the fluid interfaces are not pinned into the corners, one may choose from the

following two approaches:

a) The simplest approach is to assign a constant capillary pressure equal to

2σnw/Ri to the pore body if sw
i ≥ 0.48 as shown in figure G.3 (the horizontal line in

zone II).

b) A second approach is to assume that a capillary pressure varies with satu-

ration. At the moment of invasion of nonwetting fluid into a pore body, the local



G.3. Local pc
i -s

w
i relationship for the full range of saturation 253

capillary pressure is close to the (entry) capillary pressure of the pore throat from

which the fluid enters th pore body (figure G.2). So, it is larger than the entry cap-

illary pressure of the pore body, which is associated with that of inscribed circle.

As the interface moves into the pore body, it will expand and its capillary pressure

decreases. We assume that the interface goes through the following stages:

- First, as it enters the pore body, its radius remains unchanged, equal to the

radius of the pore throat, rij (interface 1 in figure G.2(a)). So, for the range sw
i ≥

1− 2
3π(

rij

2Ri
)3, the local capillary pressure will be equal to the entry capillary pressure

of the pore throat; pc
i = pc

e,ij .

- From this point on, the radius of interface increases. For a given radius of

curvature rci,1, the nonwetting fluid will be present within a truncated sphere, as

shown in figure G.2(b). Defining r̃ci,1 = rci,1/2Ri and r̃ij = rij/2Ri, s
w
i can be

calculated as follows:

sw
i = 1 − π

8

(
2

3
r̃c3i,1 − r̃c2i,1

√
r̃c2i,1 − r̃2ij +

1

3

(
r̃c2i,1 − r̃2ij

) 3

2

)
(G.6)

and pc
i = 2σnw

rci,1
.

- At some point, the interface touches the sides of the pore body cube. Its ra-

dius of curvature is then equal to Ri (interface 2 in figure G.2(a)) and wetting

phase saturation at this point is obtained from (G.6) by setting rci,1 = 1; it is

sw
i = 1 − π

12 + π
8

√
1 − r̃2ij − π

24 (1 − r̃2ij)
3/2. From this point on, the nonwetting

phase is contact with the side walls of pore body (relative to the pore throat) and it

continues moving into the pore body, at the constant radius, until it is fully inscribed

within the pore body. So, the wetting phase saturation reduces to 0.48. In this range

the local capillary pressure remains constant equal to pc
i = 2σnw

Ri
.

A plot of the local capillary pressure as a function of saturation for these two

approaches has been shown in figure G.3. As it can be observed, depending on

the size of pore throat, the second approach can result in different pc
i -s

w
i curves.

With the increase of ratio of pore throat to pore body radii, the curves from the two

approaches get closer to each other.

G.3 Local pci-s
w
i relationship for the full range of satu-

ration

Finally, to investigate effect of these two assumptions on average behaviour of the

model during drainage, a number of simulations were performed, with viscosity ra-

tio set equal to 0.1 and the global pressure difference (P c
global) set to 10kPa. Change
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rijh

rci,1

a) b)

12

Pore body i

Pore throat ij

2Ri

Figure G.2: a) Expansion of an interface into a pore body before inscribing in it b) Parame-

terization of the interface for calculating the volume of nonwetting phase, h is the height of

dome inside a pore throat (truncated part of the sphere), rc1 is the radius of the expanding

nonwetting sphere, and rij is the pore throat radius.
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Figure G.3: Local pc
i -s

w
i curve during drainage for approach #1 (broken curve) and approach

#2 (continuous curves). For approach #2 three different curves for three different aspect ratios

have been shown.

of saturation with time as well as change of average capillary pressure with satu-

ration are shown in figure G.4. As it can be observed the choice of local capillary

pressure curve for the range 0.48 ≤ sw
i ≤ 1 is really small. This is due to the fact that

only few pores are partially filled in this range. As the simulation with the second

approach is more time-consuming (it requires smaller time steps), we have used the

curve from the first approach in all simulations in this paper.

The resulting pc
i − sw

i curve for the full range of saturation was fitted by the
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FigureG.4: Effect of local pc
i -s

w
i curve on variation of saturation and capillary pressure versus

time (M = 0.1, P c
global = 10kPa, r/R = 0.45).

following continuous function:

pc
i =

2σnw

Ri(1 − exp(−6.83sw
i ))

(G.7)

The radius of curvature of corner interfaces is then approximated by the following

formula:

rci,1 =
2σnw

pc
i

= Ri(1 − exp(−6.83sw
i )) (G.8)
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As mentioned earlier, the volume of pore throats is assumed to be negligible com-

pared to the volume of pore bodies. Thus, we neglected saturation of fluids in the

pore throats. Similarly, we have not considered the interfacial area present in pore

throat corners in our calculations.

There are two different types of capillary interfaces is a pore body, interfaces in

corners and edges, and interfaces covering the entrance of pore throats that are not

invaded yet. These two types are referred to as “corner interfaces” (arc menisci) and

“main terminal menisci”, respectively (Mason and Morrow, 1987).

H.1 Corner interfaces

Given a pore body with inscribed radius Ri filled with nonwetting and wetting

phases, nonwetting phase volume can be smaller or larger than the inscribed sphere

volume. If the nonwetting phase volume is smaller than or equal to the vol-

ume of inscribed sphere, we assume that it occupies a sphere, whose radius is

Ri,eq = Ri(
6
π (1 − sw

i ))1/3. The corresponding interfacial area will be 4πR2
i,eq . If the

nonwetting phase volume is larger than or equal to the volume of inscribed sphere,

the wetting phase occupies geometries that were described in Appendix G. The in-

terfaces will have the mean radius given by (G.8). Therefore, total interfacial area in

corners of a pore body will be equal to 4πR2
i,eq + 6πRi,eq(Ri −Ri,eq) for nonwetting

phase saturations larger than the inscribed sphere. The results are summarized as

follows:

Ri,eq =

{
Ri(

6
π (1 − sw

i ))1/3 sw
i ≥ 0.48

Ri(1 − exp(−6.83sw
i )) sw

i < 0.48
(H.1)

Anw
i =

{
4πR2

i,eq sw
i ≥ 0.48

4πR2
i,eq + 6πRi,eq(Ri −Ri,eq) sw

i < 0.48
(H.2)
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H.2 Main terminal menisci

Consider a pore body i, partially occupied by the nonwetting phase, and a pore

throat ij, which is not invaded yet. Opening of the pore throat ij is thus covered

by a meniscus, to which we refer to as “main terminal meniscus”. The geometry

of the main terminal meniscus is simply assumed to be a part of a sphere with a

radius of curvature Rdm equal to 2σnw/pc
i similar to the interface within the pore

throat in figure G.2(b). Thus, the area of the main terminal meniscus will be equal

to 8π
(

σnw

pc
i

)2
(

1 −
√

1 − (
rijpc

i

2σnw )2
)
.



Appendix I

Local pc
i-s

w
i Relationship for an Octahedron

Pore Body

I.1 Local pci-s
w
i relationship under drainage

Consider the octahedron shown in Figure 7.1 to be associated with pore body i. As

mentioned earlier, the size of a pore body is specified by the radius of inscribed

sphere of the octahedron, Ri. So the length of a typical edge O1A is equal to αi =√
6Ri. Total volume of an an octahedron is then given by Voct.hedi

=
√

2
3 a

3
i = 4

√
3R3

i .

Next, consider the corners to be truncated by pore throats connecting to the pore

body. A pore throat ij results in a pyramid with square base and edge length 2rij
to be cut off the octahedron (rij is the radius of inscribed circle of the pore throat).

The height of the pyramid will be equal to
√

2rij .Thus, the volume of the truncated

section is equal to 4
√

2
3 r3ij . So, the volume of the truncated octahedron forming pore

body i is given by:

Vi = 4
√

3R3
i −

4
√

2

3

∑

j∈Ni

r3ij (I.1)

During primary drainage, the wetting fluid saturation of a pore body varies from 1

to residual value Smin
i specified below. An important intermediate saturation corre-

sponds to the situation that the nonwetting fluid fills up the inscribed sphere of the

pore body. Denoted by sdr
i , the corresponding wetting fluid saturation is given by:

sdr
i = 1 − 4πR3

i

3Vi
= 1 − πR3

i

3
√

3R3
i −

√
2
∑

j∈Ni
r3ij

(I.2)

For the derivation of local capillary pressure-saturation curves, we identify two dif-

ferent ranges as described below.
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I.1.1 Capillary pressure for the range sdr
i ≤ sw

i ≤ 1 (zone 1)

We assume that the entrance of nonwetting fluid into a pore body and the position of

fluid-fluid interfacemay be idealized by sequences shown in Figure I.1(a). Position 1

shows the moment of invasion of nonwetting fluid into the pore body. The interface

has the same radius of curvature as when it was in the pore throat ij and the local

capillary pressure is the same as the (entry) capillary pressure of the pore throat,

denoted by pc
e,ij (the starting point of pc

i -s
w
i curve in Figure I.2(a) at sw

i = 1). We

assume that as the interfacemoves into the pore body, its radius remains unchanged

until position 2 is reached. At this point, the saturation of nonwetting fluid in the

pore body is equal to 2
3π

r3

ij

Vi
. Thus, for the range 1 ≥ sw

i ≥ 1 − 2
3π

r3

ij

Vi
, the local

capillary pressure will be constant equal to the entry capillary pressure of the pore

throat; pc
i = pc

e,ij (see the plateau in Figure I.2(a)). As the interface moves into

the pore body, it will expand and its capillary pressure decreases (interface 3 in

Figure I.1(a)). To simplify the geometry of the interface, we assume that from this

saturation onwards, the nonwetting fluid fills up a sphere of increasingly larger

radius until it fills up the inscribed sphere of the pore body, at which point the

wetting fluid saturation is sdr
i given by Equation I.2.

If the radius of such an intermediate sphere is rc
i , then the wetting fluid satura-

tion in this range is given by the following relation:

sw
i = 1 − 4πrc

i
3

3Vi
(I.3)

In this range, as rc
i increases, the local capillary pressure, given by pc

i = 2σnw/rc
i

decreases until sdr
i is reached (see Figure I.2).

The irregular shape of the resulting curves is approximated by the following

formula for the range 1 to sdr
i for sake of computational efficiency.

sw
i = sdr

i + (1 − sdr
i )

1 − sdr
i − 4πrc

i
3

3Vi

1 − sdr
i − 4πr3

ij

3Vi

(I.4)

I.1.2 Capillary pressure for the range 0 < sw
i ≤ sdr

i (zone 2)

Once the nonwetting fluid fills the inscribed sphere, and after that, the wetting fluid

will be present only along the edges of the pore body. So, interfaces will be formed

along pore body’s 12 edges as well as in the opening of pore throats not invaded

by the nonwetting fluid yet. The latter interfaces are formed in the vertices of the

truncated octahedron (where non-invaded pore throats are connected). Edge and

vertex interfaces are shown in Figures I.1(b) and (d), respectively.
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Figure I.1: Schematic presentation of interfaces in a pore body a) Expansion of an interface

into a pore body before filling the inscribed sphere b) and c) Interface geometry along the

edges d) Interface geometry in a vertex of pore body when the corresponding pore throat is

filled with wetting phase.

Edge interfaces form part of a cylinder (with only one finite radius of curvature),

and vertex interfaces form part of a spherical surface. When all pore throats have

been invaded by the nonwetting fluid, there will be no vertex interface in a pore

body.

Let the radius of edge interfaces be denoted by rc
i . We assume that the radius

of curvature of interfaces along the edges is negligible compared rc
i . As shown in

Figure I.1(b), we denote the half corner angle of all edges by β and half angle of

interfaces by α. We can show that ∢NMO = β = 0.5 cos−1(−1/3) = 0.9553, and

∢NOM = α = (0.61548 − θ). For given β and rc
i , area of theMNM ′N ′ is equal to

2 × (A△MNO −A2ONM ′), which are themselves defined as follow:

A△MNO = 0.5rc
i
2 sinα cos θ

sinβ
(I.5)

A2ONM ′ = 0.5rc
i
2α (I.6)

Consequently, the cross-sectional area of residual wetting fluid may be written as:

Awet
i = rc

i
2

(
sinα cos θ

sinβ
− α

)
(I.7)
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Total length of edges filled with the wetting fluid is given by:

Li = 12
√

6Ri − 8
∑

j∈Ni

rij (I.8)

With the total pore body volume given by Equation I.1, the saturation of wetting

fluid in the pore body is determined as:

sw
i =

3
√

2rc
i
2
(
3
√

6Ri − 2
∑

j∈Ni
rij

)(
sin α cos θ

sin β − α
)

3
√

6R3
i − 2

∑
j∈Ni

r3ij
(I.9)

This relation is valid only when all pore throats connected to the pore body i are in-

vaded by the nonwetting fluid, so that there is no vertex interface in that pore body.

This may not be the case when the nonwetting fluid has filled only the inscribed

sphere of the pore body (rc
i = Ri) for which sw

i = sdr
i given by Equation I.2. In fact,

substituting rc
i = Ri in Equation I.9, results in a saturation different from sdr

i . We

denote this saturation by s∗i . Forcing saturation to vary between sdr
i and smin

i (the

latter one was defined by Equation 7.3), results in the following equation:

sw
i = smin

i +
sdr

i − smin
i

s∗i − smin
i

×



3
√

2
(
3
√

6Ri − 2
∑

j∈Ni
rij

)(
sin α cos θ

sin β − α
)

4κ2
i (3

√
6R3

i − 2
∑

j∈Ni
r3ij)

− smin
i


 (I.10)

This relationship is shown as a thick curve in Figure I.2(a).

I.1.3 Local pc
i -s

w
i relationship for the full range of saturation

Finally, to reduce the computational efforts, we have chosen to fit one single curve

to pc
i for the full range of saturation. Equation 7.2 shows the fitted pc

i -s
w
i relationship

for the full range of saturation in a pore body. This relationship is shown by a thin

curve in Figure I.2(a).

I.2 Local pci-s
w
i relationship under imbibition

Local variation of capillary pressure is much more complex under imbibition than

drainage. As mentioned in Section 6.3.2, interface topology, and consequently capil-

lary pressure in a pore body are controlled by the number of pore throats which are
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Figure I.2: Local pc
i -s

w
i curves during drainage (a) and imbibition (b). Thick curves show the

analytical calculations and thin curves show the fitted curves.

still (partially) filled by the nonwetting fluid. Introducing Z as the total number of

pore throats connected a pore body, and I as the number of pore throats (partially

filled by the nonwetting fluid), the following zones are introduced to defining local

pc
i -s

w
i relationship:

• All pore throats are (partially) filled by the nonwetting fluid, I = Z (Zone 1)

• More than one of the pore throats and not all of them are (partially) filled by

the nonwetting fluid, 1 < I < Z (Zone 2)

• Only one pore throat is (partially) filled by the nonwetting fluid, I = 1 (Zone

3)
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I.2.1 All pore throats (partially) filled by the nonwetting fluid, I =

Z (zone 1)

In this range all pore throats are (partially) filled by the nonwetting fluid and pc
i -s

w
i

relationship is the same as Zone 2 (0 < sw
i ≤ sdr

i ) for drainage process. Thus, pc
i -s

w
i

curve follows the same curve shown in Figure I.2(a) till one of the pore throats is

fully filled by the wetting fluid.

I.2.2 More than one of the pore throats and not all of them (par-

tially) filled by the nonwetting fluid, 1 < I < Z (zone 2)

As long as all the pore throats are (partially) filled by the nonwetting fluid, the wet-

ting fluid will be present only along the 12 edges of the pore body. When nonwetting

fluid recedes completely from one of the pore throats, an interface will be created in

the opening of that pore throat. This vertex interfaces is shown in Figure I.1(d). For

simplicitly, we assume that all wetting fluid’s volume existing in that pore body will

remain in that vertex. If nonwetting fluid recedes from two or more pore throats, the

wetting fluid will be distributed among them. Knowing the volume of the wetting

fluid and the number of pore throats nonwetting fluid has receded from, radius of

the curvature of the interface can be estimated. Refer to Figure I.1(d), let’s denote

the length of edge of pyramid O1A
′B′C′D′ base by a′. We can calculate a′ based on

the geometry of pore body, pore throats, and the number of pore throats partially

filled with nonwetting fluid (I), as follows:

a′ =


 3

√
2

6 − I
sw

i Vi +
8

6 − I

6−I∑

j=1

r3ij




1/3

(I.11)

in which Vi can be calculated from Equation I.1. Using the value of a′, mean radius

of caurvature of the interface is given by rc
i = a′

2 cos(θ+sin−1

√
3

3
)
. As it can be seen with

decrease of I , a′ will decrease and consequently capillary pressure will increase.

This trend is shown schematically in Figure I.2(b) as a step-wise curve. The jumps

in the curve occur when the nonwetting fluid recedes from one of the pore throats

(I decreases), and refer to Equation I.11, radius of curvature decreases. We follow

this trend till only one of the pore throats remains filled with the nonwetting fluid.

There is a qualitative consistency between the trend of this local pc
i -s

w
i curve with

the experimental observations of Lenormand and Zarcone (1984), who observed with

decrease of number of pore throats (partially) filled with the nonwetting fluid, local

capillary pressure may increase.
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I.2.3 Only one pore throat (partially) filled by the nonwetting

fluid, I = 1 (zone 3)

When only one of the pore throats is (partially) filled with the nonwetting fluid, the

behaviour of the interface follows the explanations given in Zone I during drainage.

I.2.4 Local pc
i -s

w
i relationship for the full range of saturation

As mentioned before, the variation of capillary pressure with saturation is very ir-

regular and it depends on the fluid occupancy of pore throats. The thick curve in

Figure I.2(b) shows an example of this curve for a pore body. But, handling such a

discontinuous curve in the pore-network model is nontrivial. Thus, to reduce the

computational efforts, we have chosen to fit one single curve to pc
i for the full range

of saturation. Equation 7.4 shows the fitted pc
i -s

w
i relationship for the full range of

saturation in a pore body. This relationship is shown by a thin curve in Figure I.2(b).

The fitted curve results decrease of capillary pressure with increase of saturation to

a minimum capillary pressure. This minimum capillary pressure occurs at a satu-

ration corresponding to the start of Zone 3 during imbibition, where only one pore

throat is (partially) filled by the nonwetting fluid. We denote this saturation by simb
i

as shown in Figure I.2(b).
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Horváth, V. K., and H. E. Stanley (1995), Temporal scaling of interfaces propagating in porous

media, Phys. Rev. E, 52(5), 5166–5169, doi:10.1103/PhysRevE.52.5166.

Hughes, R. G., andM. J. Blunt (2000), Pore scalemodeling of rate effect in imbibition, Transport

in Porous Media, 40, 295–322.

Hui, M. H., and M. J. Blunt (2000), Pore-scale modeling of three-phase ow and the effects of

wettability, 2000SPE/DOE improved oil recovery symposium, Tulsa, Oklahoma.

Ioannidis, M. A., I. Chatzis, and A. C. Payatakes (1991), A mercury porosimeter for inves-

tigating capillary phenomena and microdisplacement mechanisms in capillary networks,

Journal of Colloid and Interface Science, 143, 22–36.

Jensen, S. K., and J. O. Domingue (1988), Extracting topographic structure from digital ele-

vation data for geographic information system analysis, Photogrammetric Engineering and

Remote Sensing, 54, 1593–1600, doi:10.1007/s11242-007-9191-7.

Joekar-Niasar, V., and S. M. Hassanizadeh (2010), Effect of fluids properties on non-

equilibrium capillarity effects; dynamic pore-network modelling, International Journal of

Multiphase Flow, p. submitted.

Joekar-Niasar, V., S. Hassanizadeh, and A. Leijnse (2008), Insights into the relationships

among capillary pressure, saturation, interfacial area and relative permeability using pore-

network modeling, Transport in Porous Media, 74(2), 201–219.

Joekar-Niasar, V., S. M. Hassanizadeh, L. J. Pyrak-Nolte, and C. Berentsen (2009), Simulating

drainage and imbibition experiments in a high-porositymicromodel using an unstructured

pore network model,Water Resources Research, 45, W02,430, doi:10.1029/2007WR006641.



274 BIBLIOGRAPHY

Joekar-Niasar, V., S. M. Hassanizadeh, and H. K. Dahle (2010a), Non-equilibrium effects in

capillarity and interfacial area in two-phase flow: Dynamic pore-network modelling, Jour-

nal of Fluid Mechanics, doi:10.1017/S0022112010000704.
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Karkare, M. V., and T. Fort (1996), Determination of the air–water interfacial area in wet un-

saturated porous media, Langmuir, 12, 2041–4044.

Kim, H., P. S. C. Rao, and M. D. Annable (1997), Determination of effective air–water interfa-

cial area in partially saturated porous media using surfactant adsorption, Water Resources

Research, 33, 2705–2711.

Kim, H., P. S. C. Rao, and M. D. Annable (1999), Gaseous tracer technique for estimating

air–water interfacial areas and interface mobility, Soil Sci. Soc. Am. J., 63, 1554–1560.

King, P. R. (1987), The fractal nature of viscous fingering in porousmedia, Journal of Physics.A,

Mathematical and General, 20, L529–L534.

Knackstedt, M., C. Arns, A. Limaye, A. Sakellariou, T. Senden, A. Sheppard, R. Sok,

W. Pinczewski, and G. Bunn (2004), Digital core laboratory: properties of reservoir core

derived from 3d images, Journal of Petroleum Technology, 56, 66–68.

Knudsen, H. A., and A. Hansen (2002), Relation between pressure and fractional flow in two-

phase flow in porous media, Physical Review E, 65, 056,310 1–056,310 10.

Knudsen, H. A., E. Aker, and A. Hansen (2002), Bulk flow regimes and fractional flow in 2d

porous media by numerical simulations, Transport in Porous Media, 47, 99–121.

Knutson, C. E., C. J. Werth, and A. J. Valocchi (2001), Pore-scale modeling of dissolution from

variably distributed nonaqueous phase liquid blobs, Water Resources Research, 37, 2951–

2963.

Koplik, J., and T. J. Lasseter (1985), Two-phase flow in random network models of porous

media, Society of Petroleum Engineers Journal, 25, 89–110, doi:10.2118/11014-PA.

Korteland, S., S. Bottero, S.M. Hassanizadeh, and C.W. J. Berentsen (2009), What is the correct

definition of macroscale pressure?, Transport in Porous Media, doi:10.1007/s11242-009-9490-

2.



BIBLIOGRAPHY 275

Koval, E. J. (1963), A method for predicting the performance of unstable miscible displac-

ments in heterogenous media, Trans. AIME, 219, 145–150.
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Samenvatting

De gangbare theorieën voor tweefasen stroming in poreuze media zijn gebaseerd op uitbrei-

dingen van de klassieke vergelijking die de stroming van grondwater beschrijft: de Wet van

Darcy. Deze vergelijking veronderstelt een algebrasche relatie tussen de capillaire druk en

de verzadiging van de bevochtigende fase in het poreuze medium. Reeds in de jaren 60

zijn er tweefasen experimenten uitgevoerd die dynamische effecten aantoonden die niet met

de gangbare theorieën verklaard en gemodelleerd konden worden. Dit heeft geleid tot een

herformulering van de wiskundige vergelijkingen voor tweefasen stroming, welke in het bij-

zonder gebaseerd zijn op thermodynamische principes en wetmatigheden.

In dit proefschrift worden deze nieuwe vergelijkingen voor meerfasen stroming in

poreuze media bestudeerd. Om een grondig inzicht te verkrijgen in de meerfasen processen

en om het meerfasen (dynamisch) stromingsgedrag te kunnen modelleren (voorspellen)

wordt gebruik gemaakt van numerieke porienetwerk modellen. Dit, om zowel gemiddelde

quasistatische als gemiddelde dynamische relaties tussen de capillaire druk en de verzadig-

ing, als mede het specifiek grensvlakoppervlak (interfacial area) tussen de verschillende fasen

in het poreuzemedium, te kunnen bepalen. Zowel voor drainage als invasie van de vloeistof-

fen. Andere verschijnselen die met de porienetwerk modellen bestudeerd zijn: immobilisatie

(trapping), verzadigings profielen, niet-evenwichts processen m.b.t. de vloeistofdrukken en

het specifiek grensvlak oppervlak tussen de vloeistoffasen.

Naast de genoemde studie van de fysica van meerfasen stroming zijn er enige technieken

ontwikkeld om poreuze media meer realistisch te presenteren in porienetwerk modellen.

Met name gaat het hier om het definiëren van de topologie en de geometrie van poreuze

media. Quasistatische simulaties zijn uitgevoerd in drie typen poreuze media: een hypo-

thetisch poreus medium, een tweedimensionaal micromodel en een driedimensionale glas-

parelkolom. De porienetwerk modellen zijn gevalideerd d.m.v. vergelijking met experi-

mentele gegevens van meer-fasen experimenten. Bovendien is een realistisch dynamisch

porienetwerk ontwikkeld met verbeterde numerieke en geometrische eigenschappen. De in

dit proefschrift gepresenteerde dynamische porienetwerk modellen maken het mogelijk re-

alistische meerfasen stroming in poreuze media te simuleren voor een range van capillaire

getallen en viscositeitsverhoudingen, voor zowel drainage als invasie van niet-mengende

vloeistoffen in een poreus medium.
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