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Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations
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Chiral magnets, such as MnSi, display a rich finite temperature phase diagram in an applied magnetic field.
The most unusual of the phases encountered is the so-called A Phase characterized by a triangular lattice of
skyrmion tubes. Its existence cannot be captured within a mean-field treatment of a Landau-Ginzburg functional,
but thermal fluctuations to Gaussian order are required to stabilize it. In this paper, we go beyond Gaussian order
in a fully nonperturbative study of a three-dimensional lattice spin model using classical Monte Carlo simulations.
We demonstrate that the A Phase is, indeed, stabilized by thermal fluctuations, and furthermore, we reproduce
the full phase diagram found in experiments. The thermodynamic signatures of the helimagnetic transition upon
cooling from the paramagnet are qualitatively consistent with experimental findings and lend further support to
the Brazovskiı̌ scenario, which describes a fluctuation-driven first-order transition due to the abundance of soft
modes.
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I. INTRODUCTION

Chiral magnets, such as MnSi or Fe1−xCoxSi, have received
a lot of interest recently,1–4 mainly by virtue of them showing
a thermodynamic phase, which is characterized by a lattice
consisting of tubes of magnetic skyrmions. Besides the very
existence of this phase, there seems to be a huge potential to
use these materials for spintronics applications.5

The lack of inversion symmetry in the crystalline structure
of these magnets gives rise to weak Dzyaloshinskii-Moriya
(DM) coupling. The competition of this interaction with the
much stronger ferromagnetic (FM) exchange results in a
twist in the magnetic order, leading to helical order. Since
the DM coupling is weak compared to the FM exchange
coupling, there are long modulation periods of many lattice
constants, e.g., in the chiral magnet prototype MnSi, the
modulation period is about 190 Å, whereas, the lattice constant
is only 4.6 Å.1 The competition between these two types of
interactions determines the length of the magnetic spirals but
not their direction. Consequently, one expects a large ground-
state degeneracy at zero magnetic field. This degeneracy is,
however, lifted by weak crystal anisotropies, which provide an
easy axis for the ordering wave vector (e.g., [111] in MnSi).
As a direct consequence, the phase with helical order has a
single ordering wave vector. Additionally, if a finite magnetic
field is applied, it becomes energetically favorable to have the
ordering wave vector point in the direction of the magnetic
field. All spins then point in a plane perpendicular to the field,
and the system can gain energy by simply tilting all spins
continuously out of that plane in the direction of the field,
leading to a spiraling umbrella structure. This state is referred
to as the conical phase. Depending on the direction of the field,
the phase transition between these two phases is either first
order or a crossover and occurs at some field value Bc1 where
the energy gain from tilting all spins towards the field becomes
larger than the crystal anisotropy energy difference between
the two directions of the ordering wave vector. Figures 1(a)
and 1(b) schematically show the magnetization structure in
these two phases.

In 2009, neutron refraction experiments on MnSi (Ref. 1)
discovered a new thermodynamic phase at intermediate fields
and temperatures just below Tc ≈ 30 K. This phase is charac-

terized by a periodic structure of tubes of skyrmions, which are
arranged on a triangular lattice [see Fig. 1(c)]. Consequently,
this phase is referred to as the skyrmion lattice phase or
the A Phase. The skyrmion lattice phase can be pictured
as a superposition of three helices with equal pitch length
and a relative angle of 120◦ in the plane perpendicular to
the magnetic field. Whereas, in mean-field theories based on
a minimal Landau-Ginzburg theory for anisotropic noncen-
trosymmetric magnets, the skyrmion lattice was argued to be
a stable solution, this phase does not appear as a stable phase
and always is slightly higher in its free energy than the conical
phase for cubic systems,6,7 such as MnSi. Although it was
argued that this phase could still be stabilized by long-ranged
interactions8,9 or extra phenomenological parameters10 in the
free-energy functional, Mühlbauer et al.1 found that a very
natural alternative mechanism to stabilize the skyrmion phase
is given by thermal fluctuations to a Gaussian level on top of
the mean-field theory.

In order to make this argument stronger, it is desirable
to use an approach which is not based on Gaussian fluctua-
tions but, instead, incorporates the thermal fluctuations in a
nonperturbative manner, namely, classical Monte Carlo (MC)
simulations. Simulations for two-dimensional systems3,11 have
been performed before and, indeed, have found a stable
skyrmion lattice phase. The phase diagrams obtained are in
excellent agreement with recent experiments3 on thin films
of Fe0.5Co0.5Si, even though the itinerant character of the
underlying electronic system is not taken into account in
these studies. A major reason why these studies have not
been extended to three-dimensional systems yet (except for
an energy minimization simulation12 that does not take into
account thermal fluctuations) is the high computational effort:
Large system sizes are required to account for the long spatial
modulations. A further complication stems from the fact that
one has to be very careful in choosing effective parameters of
the underlying lattice-spin model.

In this paper, we fill this void and perform a MC study
for three-dimensional chiral magnets. We confirm that the
effect of thermal fluctuations, indeed, is what stabilizes
the skyrmion phase.1 Overall, we find excellent agreement
with the experimentally observed phase diagram as well as
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with nontrivial thermodynamic signatures across the phase
boundary from the paramagnet into one of the respective
ordered phases. For zero magnetic field, the transition from
the paramagnet into the helimagnet is a fluctuation-driven
first-order transition and can be described in terms of the
Brazovskiı̌ scenario.13 Some of the experimental features of
this transition have proven hard to capture in purely analytical
approaches,14 however, the Monte Carlo approach captures all
the qualitative features.

The organization of the paper is as follows: We start with
a discussion of the model and the method. Most importantly,
we introduce a minimal lattice model, which is consistent
with the system symmetries and, consequently, the Ginzburg-
Landau functional. We, furthermore, introduce the Metropolis
algorithm together with the algorithm which is required to
overcome the large hysteresis in the underlying system. From
there, we move to the global phase diagram of a chiral magnet
in an applied magnetic field and compare it to experimental
findings. We close with a comparison of some thermodynamic
quantities to the experimental findings in zero and nonzero
fields as we go across the thermal transition from the high-
temperature paramagnet towards one of the ordered phases. We
find excellent agreement with experiments, which lends further
support to the relevance of our approach to this problem,
despite the rather small lattice sizes.

II. MODEL AND METHODS

A. The lattice Hamiltonian

Assuming a slow variation in the spin textures, one can
resort to a coarse-grained continuum model for the description
of the magnetic properties of chiral magnets. The commonly
used one assumes the form (cf. Refs. 3 and 15)

H =
∫

d3r
[

J

2a
[∇M(r)]2 − B · M(r)

a3

+ K

a2
M(r) · [∇ × M(r)]

]
, (1)

consisting of ferromagnetic exchange J , magnetic field B,
and a DM interaction K . Above, a is the typical distance
over which the spin structure can be treated as uniformly
ordered allowing for the coarse-graining procedure. This
effective model has to be understood in connection with
the renormalization-group meaning that terms accounting for
the actual microscopic lattice structure can be dropped by
virtue of them being irrelevant at the critical point. They can,
however, be important for a faithful description deep inside the
ordered phase. Instead of the full B20 structure of MnSi, one
compactifies the above continuum theory onto a simple cubic
lattice (which, in principle, has inversion symmetry, unless
explicitly broken, as we do below). The construction principle
is that the effective low-energy theory, which can be derived
from the lattice Hamiltonian, agrees with the above model
up to terms which are irrelevant in the renormalization-group
sense.

As a compactified lattice implementation of the continuum
model, we extend the lattice Hamiltonian that was proposed in

Ref. 11 to three-dimensional systems,

H = −J
∑

r

Sr · (Sr+x̂ + Sr+ŷ + Sr+ẑ)

− B ·
∑

r

Sr − K
∑

r

(Sr × Sr+x̂ · x̂

+ Sr × Sr+ŷ · ŷ + Sr × Sr+ẑ · ẑ), (2)

where x̂, ŷ, and ẑ are the basis vectors of the simple cubic
lattice.

In the following, we discuss how to extend this model in
order to get rid of discretization errors, which turn out to be
large and decisive in the cases considered below.

B. Finite-size effects and anisotropies

The pitch length of the helices is determined by the ratio
K/J . We choose K/J = tan(2π/10) ≈ 0.727 to obtain a pitch
length of ten lattice sites for a helix propagating in the [100]
direction at zero field.11 We have found that the maximal lattice
size tractable in reasonable CPU time is given by N = 303

spins, which already hosts up to nine skyrmion tubes in total
(however, for isolated cases, we have checked our results
against simulations on lattices of size N = 403 with agreeing
results). We use periodic boundary conditions since open
boundary conditions lead to polarized spins on the boundaries
due to missing next-neighbor FM and DM interactions, which
make them profit maximally from the Zeeman energy. Since
it is impossible to choose parameters such that helices, e.g.,
in the [111] and [100] directions fit perfectly on the lattice,
at the same time, one would expect strong finite-size effects.
However, we found that this turned out not to be a major
complication in our simulations.

The discretization of the continuum model, on the other
hand, creates anisotropies which have to be taken seriously.
This can be seen as follows: On the lattice, the FM Heisenberg
term in Eq. (2) after Fourier transform reads

HFM = J
∑

k

αkS(k) · S(−k), (3)

where

αk = −[cos(kxa) + cos(kya) + cos(kza)]

= −3 + a2

2

(
k2
x + k2

y + k2
z

) − a4

24

(
k4
x + k4

y + k4
z

) + O(k6),

(4)

which implies that all kinds of high orders in momentum terms
are generated (the constant term only shifts the energies). If we
contrast this from the Fourier transform of the first term in the
continuum model Eq. (1), we see that only the quadratic terms
are present. One would not be worried about the higher-order
terms in the series if the ordered state was described by a
uniform spin texture: For instance, the critical properties of
the purely ferromagnetic Heisenberg lattice model and the
Landau-Ginzburg functionals are in perfect agreement with
each other, and the anisotropies do not play a role at all. This,
in general, is not true, especially if the critical modes do not
become soft at zero momentum as is the case for the simple
Heisenberg ferromagnet, but at a finite-ordering wave vector,
henceforth, called Q. Since we use relatively small lattice
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FIG. 1. (Color online) (a) Schematic of the magnetization in the helical phase. (b) Schematic of the magnetization in the conical phase.
(c) Averaged magnetization in the skyrmion phase in two different crystal planes for (J,K,B,T ) = (1, tan(2π/10),0.18,0.82). The
magnetization in the direction of the external field vanishes along the yellow tubes. (d) Bragg intensity patterns projected into the (001) plane
(which is ⊥B) (left) and the (010) plane (right). Parameters are (J,K,B,T ) = (1, tan(2π/10),0,0) (helical phase), (1, tan(2π/10),0.18,0.82)
(skyrmion phase), and (1, tan(2π/10),0.18,0) (conical phase).

sizes, |Q|a, in general, is on the order of �1, which is not a
small number. Consequently, the contribution of the higher-
order terms is not negligible and spoils our analysis. In order
to compensate for these induced anisotropies, we add next-
nearest neighbor interactions H ′ to our Hamiltonian. These
terms are chosen such that they do not break symmetries of
the underlying system and give a better approximation to the
continuum field theory in the sense of rendering corrections
from higher orders of the expansion small. They assume the
form

H ′ = J ′ ∑
r

Sr · (Sr+2x̂ + Sr+2ŷ + Sr+2ẑ)

+K ′ ∑
r

(Sr × Sr+2x̂ · x̂ + Sr × Sr+2ŷ · ŷ

+ Sr × Sr+2ẑ · ẑ). (5)

The full αk of the Heisenberg term, see Eq. (3), is now given
by

αk = −3(J − J ′) + a2

2
(J − 4J ′)

(
k2
x + k2

y + k2
z

)

− a4

24
(J − 16J ′)

(
k4
x + k4

y + k4
z

) + O(k6). (6)

This immediately shows that we can compensate the
anisotropies to leading order by choosing J ′ = J/16. Repeat-
ing the same procedure for the DM term leads to K ′ = K/8.

Another way to think about this compensation is that the
approximation of the gradient terms in the continuum model
Eq. (1), solely by next-neighbor interactions as in Eq. (2),
is not accurate if the spin configuration varies significantly
from site to site. If we could simulate larger lattices, we
could use a smaller value of K , which, in turn, increases the
modulation period of the helices. The spin configuration would
then vary more smoothly, and consequently, the approximation

in Eq. (2) becomes better. To summarize, the purpose of
the next-nearest-neighbor interaction terms J ′ and K ′ is to
improve the approximation of the gradient terms in Eq. (1) by
compensating the relatively short pitches in our simulation.

C. Determination of thermodynamic phases
and the MC algorithm

The different phases in our problem can be distinguished
either from the real-space spin textures or, more easily, from
the spin structure factor in reciprocal space. We calculate
the average spin configuration 〈Sr〉 usually from 2000 spin
configurations separated by 30 lattice sweeps and then Fourier
transform the average configuration into momentum space,

〈Sk〉 = 1

N

∑
r

〈Sr〉 exp(−ik · r). (7)

Afterwards, we analyze the Bragg intensity profile I (k) ∝
‖〈Sk〉‖2, which corresponds to what is measured in neutron-
scattering experiments. A single helix with wave vector Q is
characterized by two Bragg spots sitting at Q and −Q (as
required by the real order parameter). The helical and conical
phases can, thus, easily be distinguished by the direction of
Q (although Q is parallel to the magnetic field in the conical
phase, it is along [111] in the helical phase). The skyrmion
lattice phase has a richer structure and is easily identified by
its six Bragg spots, which are arranged on a regular hexagon
in the plane perpendicular to B. The real-space spin structures
for the skyrmion lattice phase as well as the Bragg intensity
patterns for all three phases are shown in Fig. 1.

We determine the spin configurations using a single-site
Metropolis algorithm. The model at hand turns out to be very
hysteretic, that means the observed state depends crucially on
the path on how that state was reached from the paramagnetic
phase. In fact, we checked that even parallel tempering MC
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(PTMC) is not able to describe, e.g., the phase transition from
the skyrmion to the conical phase. In order to overcome this
and to ensure consistency in our phase diagram, we use three
different schemes in parallel: (i) Simulated annealing, meaning
cooling at a constant field. (ii) Simulated annealing to the
target temperature at zero field followed by slowly increasing
the field. (iii) Simulated annealing to a target temperature at
a high field (such that we always remain in the spin-polarized
phase) followed by decreasing the field.

If no unique state is reached for all three schemes, this
means the single-site Metropolis algorithm is trapped in a
metastable state for at least one scheme. We then compare the
measured energies for the different states at fixed T and B

and take the state with the lowest energy 〈E(T )〉 as the true
thermodynamic state.

III. GLOBAL PHASE DIAGRAM

Our main result is the nonperturbative determination of
the phase diagram associated with the free-energy functional
introduced in Eq. (1), see Fig. 2.

As mentioned in Sec. II B, we have to account for the
presence of discretization errors by subtracting the quartic
terms of the nearest-neighbor interaction. To show that our
simulations are severely hampered by these effects, we
have determined the (B,T )-phase diagram with and without
anisotropy compensation.

In both cases, our simulation finds all three ordered phases
found in the experiment on MnSi (Fig. 1 for their real- and
reciprocal-space signatures). In particular, we find a helical
phase for small magnetic fields, even though our Hamiltonian
does not provide any explicit anisotropies that favor a certain
crystal direction. These anisotropies are, however, automati-
cally generated in the lattice model due to discretization errors
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FIG. 2. Phase diagram with anisotropy compensation for
(J,K) = (1, tan(2π/10)). Next-nearest-neighbor interactions are
chosen according to Sec. II B as J ′ = J/16 and K ′ = K/8. The
points show the calculated phase boundaries (see Sec. III for details),
and the error bars represent the distance of points in the (B,T ) plane
that was used. The line is a guide to the eye. The inset shows the
phase diagram without anisotropy compensation.

and seem to favor propagation in the [111] direction in our
case as explicit in Fig. 1.

Most importantly, our simulation shows a stable skyrmion
phase at intermediate fields. Figure 2 shows the phase diagram
obtained with anisotropy compensation. The skyrmion phase
is stable only in a small pocket close to Tc (cf. Fig. 2) as also ob-
served experimentally. Without the anisotropy compensation,
on the other hand, the skyrmion phase remains stable even
for T → 0 (cf. inset in Fig. 2), which is in disagreement with
experiments. We conclude that the discretization anisotropies,
indeed, spoil our analysis, and the true phase diagram is
only obtained after compensation of these effects to leading
order. The real-space spin configuration of the skyrmion phase,
obtained from our MC simulations, is shown in Fig. 1.

This behavior has to be contrasted from previous analyses in
the case of two-dimensional thin-film systems. In numerical
simulations for two-dimensional systems or thin films with
the field perpendicular to the plane, one did not encounter
the need for anisotropy compensation. This is related to the fact
that, there, the conical phase ceases to exist (since, in the
conical phase, the spin texture likes to propagate along the
magnetic field) and no competition between the conical and
the skyrmion phase takes place. Consequently, the skyrmion
phase remains stable for T → 0.3

To summarize, we reproduce the full phase diagram of
three-dimensional helical magnets in a nonperturbative man-
ner, which holds beyond mean-field plus low-order fluctuation
analysis. Our analysis conclusively shows that the original
claim that thermal fluctuations lower the free energy of the
skyrmion phase as compared to the conical phase within a finite
pocket, which was based on the lowest nontrivial order in an
expansion around the mean field,1 is correct, and higher-order
corrections do not spoil the picture.

IV. THERMODYNAMICS ACROSS THE
TEMPERATURE-DRIVEN PHASE TRANSITION

Besides the phase diagram, we have studied the
temperature-driven phase transition into the helical, conical,
or skyrmion lattice phase (depending on the magnetic field)
using PTMC.

The thermal transition at higher fields looks like a standard
second-order phase transition. At lower fields, upon decreasing
temperature, there is an incipient behavior reminiscent of
a second-order phase transition. This behavior is controlled
by the standard Wilson-Fisher fixed point. Upon decreasing
temperature further below the Wilson-Fisher scale, there
is a second regime in which the system realizes that the
critical modes do not go soft at a point in momentum
space but, instead, on a whole sphere. Consequently, there
is an abundance of soft modes, which eventually drives the
transition first order. The scenario outlined has been put forth
by Brazovskiı̌ 13 and was recently studied in great detail in
the context of MnSi.14 The thermodynamic properties of the
transition obtained from MC show striking similarities with
the experimental findings16–20 and the Brazovskiı̌ scenario.
We have studied two thermodynamic quantities, the specific
heat cV and longitudinal susceptibility χzz (B = B ẑ). In MC,
both these quantities can be calculated from simple averages
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FIG. 3. (Color online) Top panel: Specific heat calculated from
Eq. (8) for different magnetic fields and with anisotropy compensation
according to Sec. II B. Error bars have been calculated using the
jackknife method. An offset of 0.5 has been introduced to separate
different curves for the specific heat. The critical temperature was
found to be 0.925 J at zero magnetic field. Bottom panel: Comparison
of the specific heat and magnetic susceptibility calculated from MC
Eq. (8) (red dots) with experimental findings for MnSi (black dots,
taken from Ref. 14). T0 was used as a fitting parameter, being T0 =
0.350 J for cV and T0 = 0.148 J for χzz. At the moment, we have no
explanation for the discrepancy.

according to

cV (T ) = 〈E2〉 − 〈E〉2

NT 2
, χzz(T ) =

〈
M2

z

〉 − 〈Mz〉2

NT
. (8)

Figure 3 shows the specific heat calculated from our
simulations as well as a comparison of χzz to experimental
findings for MnSi at zero field taken from Ref. 14. The specific
heat for low fields clearly shows a first-order peak on the
low-temperature side of the seeming second-order transition.
For higher fields, there is the tendency for a vanishing
first-order peak, which is an indication that the transition
turns second order. As mentioned before, PTMC is not able to
resolve the transition from the skyrmion to the conical phase,
and thus, we do not observe any sign of this phase transition
in our simulations. The longitudinal susceptibility compares
well to the experimental data, in fact, we find the characteristic
drop in the susceptibility at TC as well as the characteristic
inflection point at slightly higher temperatures.19 In all cases,
the MC data compare favorably to experiments.

V. CONCLUSION

In this paper, we have analyzed a discretized version of a
widely used continuum model that describes chiral magnets,
such as, e.g., MnSi. This effective model neglects the fact that
these systems, in general, are not insulators but are metallic
in character. We used classical MC to determine the phase
diagram and studied thermodynamic quantities across the
thermal transition, such as the specific heat and the longitudinal
susceptibility. From a simulation point of view, we identified
the crucial role of lattice discretization anisotropies. After
appropriate compensation, we were able to reproduce the
experimental phase diagram of MnSi qualitatively and have
conclusively demonstrated that thermal fluctuations alone are
sufficient to stabilize the skyrmion and that this assertion
holds beyond Gaussian level. The calculated specific heat and
longitudinal susceptibility show remarkable agreement with
the experimental data as well as recent analytical approaches.
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