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We study the hydrodynamic properties of ultraclean interacting two-dimensional Dirac electrons
with Keldysh quantum field theory. We study it from a weak-coupling and a strong-coupling per-
spective. We demonstrate that long-range Coulomb interactions play two independent roles: (i)
they provide the inelastic and momentum-conserving scattering mechanism that leads to fast local
equilibration; (ii) they facilitate the emergence of collective excitations, for instance plasmons, that
contribute to transport properties on equal footing with electrons. Our approach is based on an
effective field theory of the collective field coupled to electrons. Within a conserving approxima-
tion for the coupled system we derive a set of coupled quantum-kinetic equations. This builds the
foundation of the derivation of the Boltzmann equations for the interacting system of electrons and
plasmons. From this, we explicitly derive all the conservation laws and identify the extra contribu-
tions of energy density and pressure from the plasmons. We demonstrate that plasmons show up in
thermo-electric transport properties as well as in quantities that enter the energy-momentum tensor,
such as the viscosity. In a parallel paper we discuss some of the phenomenology of the corresponding
hydrodynamic equations with an eye on thermo-electric transport properties.

PACS numbers:

I. INTRODUCTION

The conventional theory of electronic transport in
a solid-state setting describes the motion of electrons
in the following way: individual electrons diffuse on
the background of a disordered lattice, primarily scat-
tering from impurities and/or lattice vibrations39? ? .
However, recent years have seen tremendous progress
in realizing electronic transport that follows a different
paradigm: hydrodynamic electrons, meaning electrons
flowing collectively like a viscous liquid, such as water or
honey. This idea has first been discussed in the 1960s by
Gurzhi18. However, the subject has only recently picked
up a lot of pace. This is mostly due to recent advances in
the preparation of ultrapure mono- and bilayer graphene
samples with sufficiently strong interactions1,8,9,11,40? .
The prerequisite for the experimental observation of
electron hydrodynamics is that microscopic momentum-
conserving electron-electron collisions due to Coulomb in-
teractions must be considerably faster than momentum-
relaxing scatterings of electrons from impurities and/or
phonons. This allows to locally establish equilibrium. In
that situation, it is justified to speak of approximate con-
servation laws, sufficient to open the door for the obser-
vation of electron hydrodynamics12,14,15,19,21? . The the-
oretical method used to investigate this hydrodynamic
flow is usually based on the traditional Navier-Stokes
equation which expresses conservation of momentum, en-
ergy and electric charge17,19,20. One way to derive these
hydrodynamic equations from microscopics starts from
the Boltzmann equation21? . There, usually, the effect of
the Coulomb interactions enters only through electron-
electron collisions leading to local equilibrium. This ef-
fect is usually calculated from a weak-coupling perspec-
tive within second-order perturbation theory in the inter-
action strength, referred to as the Born approximation
for the cross-section12–14,16. However, hydrodynamics of
a charged liquid must be expected to behave differently

in many respects from the archetypal example of fluid
like water flow. The reason is that for a charged elec-
tronic system, in addition to said inelastic scatterings,
Coulomb interactions provide also long-range mean-field
forces between electrons. This facilitates the emergence
of collective excitations, for instance plasma oscillations
or plasmons27? ,28. Under the correct circumstances, as
present in the situation studied here, these plasmons be-
have as ‘bona fide’ quasi-particles that have their own
dynamics. This effect is usually not considered in the
context of electron hydrodynamics.

Background and main idea: Strongly correlated
many-particle systems can often be regarded as a col-
lection of weakly interacting excitations. One of the
prime examples of this kind is the Landau Fermi liq-
uid? . Its excitations behave as well-defined entities,
called quasi-particles. This means, the following condi-
tions must be fulfilled: (i) an excitation with momentum
~p possesses a well-defined complex energy spectrum, say
ω(~p) = ε(~p) − iγ(~p), where the imaginary part of the
energy γ(~p) describes the decay rate of the particle, in-
versely proportional to the lifetime of the excitation; (ii)
an excitation must be long lived which means that the de-
cay must be at least underdamped γ(~p)� ε(~p). These re-
quirements usually limit one to the low-frequency and/or
long-wavelength behavior of the system. Under such cir-
cumstances, it is justified to consider the complicated
interacting system as a collection of independent elemen-
tary quasi-particles25. Once this paradigm is adopted
for a given many-body system, there are two main ques-
tions in need of answer: (i) what are the quasi-particles
involved in physical phenomena of interest at the rele-
vant energy scale and (ii) what is the population of these
quasi-particles in each momentum state especially when
the system is exposed to external disturbances? The lat-
ter is quantified by a distribution function f(~x, t, ~p) which
gives the probability density that the particle in a mo-
mentum state ~p is found in a neighborhood of a spatial
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position ~x at time t. For a given non-equilibrium situ-
ation, the time evolution of the distribution function is
described by the Boltzmann equation. The knowledge
of the distribution function and the energy spectrum is
vital to determine all thermodynamic as well as trans-
port properties of the system in a straightforward fash-
ion. The main question we address in this paper are:
(i) what are the quasi-particles involved in hydrodynam-
ical transport phenomena of ultraclean two-dimensional
Dirac electrons at an accessible temperature and (ii) how
do they equilibrate? The conventional theory for hydro-
dynamic behavior in two-dimensional Dirac systems is a
version of a two-component hydrodynamics, consisting
of electrons and holes14,20? . This scenario is very pop-
ular and can formally be derived from a weak-coupling
analysis using a Hartree-Fock-Born approximation. In
that framework, Coulomb interaction plays two different
roles: (i) it is seen by an electron as an internal potential
produced by all the other electrons in the system through
the Hartree term; (ii) Coulomb interaction manifests it-
self as an inelastic and momentum conserving scatter-
ing mechanism12–16 which locally equilibrates the system.
This process is an important requirement for observing
the electron hydrodynamical regime with its fascinating
transport properties19,21? .

Perturbation theory up to, in this case, second order
in the coupling constant is unfortunately unable to de-
scribe many important physical phenomena, such as the
emergence of collective modes. Collective modes, how-
ever, are the hallmark of interacting electronic systems.
One such mode are plasma oscillations, also called plas-
mons. In conventional three-dimensional metals, plas-
mons are a gapped degree of freedom with a large energy
gap, larger than the Fermi energy. This implies that
thermal plasmons cannot be excited at realistic exper-
imental temperatures and hence are largely irrelevant,
both for thermodynamic as well as transport proper-
ties. As an example, aluminium at room temperature
has a ratio of the plasmon gap to the thermal energy
~ωp/kBT ≈ 16 eV/0.25 eV = 64. Consequently, the plas-
mon occupation number is negligibly small, nB(ωp) ≈
10−28, where nB is the equilibrium Bose-Einstein distri-
bution function31. In contrast, in two dimensions, plas-
mons are massless and have a square-root dispersion, i.e.,
ω ∝ √q45–47. This is not only true for Dirac fermions but
for a generic two-dimensional electronic system. Conse-
quently, at accessible temperatures, plasmons can be ex-
cited and thus constitute proper low-energy elementary
excitations. There might be various effects that poten-
tially destabilize the plasmon and broaden their spectral
function such as disorder, electron-phonon, and electron-
electron collision? ? . However, it turns out that the plas-
mons are typically remarkably stable.

The main result in this paper is that we offer a novel
derivation of the equations of hydrodynamics from a
strong-coupling perspective. This results in a combined
description of electrons, holes, and plasmons, that are
coupled to each other. In this description, plasmons enter
on equal footing with the electronic degrees of freedom:
we find that plasmons make a contribution of the same
order of magnitude as the fermionic degrees of freedom

to heat currents as well as the energy-momentum ten-
sor and consequently should show up in measurements
that measure thermal transport but also viscous effects.
The results presented here provide a starting point for
more phenomenological descriptions, including transport
properties, which we present in a parallel paper.

Organization of the paper: We start with Sec. II where
we introduce the model of interacting Dirac fermions and
describe how it connects, for instance, to graphene. We
then proceed to a technical section, Sec. III, where we
review the formalism of real-time quantum field theory.
It is a summary of the most important steps that lead
from a fully quantum mechanical treatment towards the
semiclassical Boltzmann equation. This includes the par-
tition function on the Schwinger-Keldysh time contour,
Sec. III A, as well as the structure of the Green func-
tions on the closed time contour in Sec. III B. We then
discuss the Dyson equation, including the Keldysh or
quantum-kinetic equation in Sec. III C. We proceed to
introduce the Wigner transform and the Moyal product
in Sec. IIID which allows to perform the gradient expan-
sion on the Keldysh equation in Sec. III E. More detailed
accounts of the formalism can be found in Refs.13? ? ? .
This section can be skipped by a reader familiar with
the Schwinger-Keldsyh or Kadanoff-Baym approach. In
Sec. IV, we discuss two-component hydrodynamics as
currently used for the description of graphene. We de-
rive all the equations from the Schwinger-Keldysh ap-
proach and show how the two-component fluid picture
emerges within a weak-coupling approach to second or-
der in the Coulomb interaction. We start with intro-
ducing the non-interacting Green functions in Sec. IVA.
Within weak coupling, Coulomb interactions play two
different roles: (i) It is seen by an electron as an inter-
nal potential produced by all the other electrons in the
system. This is the result of perturbation theory to first
order, called the Hartree-Fock scheme43, where the Fock
term leads to a renormalization of the Fermi velocity? ? .
The potential energy, on the other hand, is referred to
as the Hartree potential. In thermal equilibrium, it is
canceled by a potential from the underlying positively
charged background in which the particles move. How-
ever, it builds the basis for a derivation of the collective
excitations of the fluid25? . This aspect is discussed in
Sec. IVB; (ii) The Coulomb interaction manifests itself as
an inelastic and momentum conserving scattering mech-
anism12–16. This process is an important requirement
for observing the electron hydrodynamical regime since
it leads to local equilibration. In Sec. IVC we discuss the
scattering process in detail. We then derive the ensuing
conservation laws starting from the Boltzmann equation
in Sec. IVD and finish the section with a discussion of
collective modes in Sec. IVE. We find a collective mode
that we later identify with the plasmon. We show explic-
itly that it matches with the strong-coupling treatment
if interpreted correctly.

Low-order perturbation theory is unable to describe
many important physical phenomena, for instance, col-
lective modes, such as plasmons. We address this situa-
tion in Sec. V. We start with a formalized version of the
random-phase approximation (RPA) in Sec. VA. To this
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end, we introduce a new quantum field associated with a
plasmon excitation by means of a Hubbard-Stratonovich
transformation? ? , which is an exact rewriting of the
theory. After integrating out the fermions, the plas-
mons acquire their own dynamics, which is discussed in
Sec. VB. The numerical details of this are discussed in
Sec. VB1 whereas in Sec. VB2 we discuss an analytical
approximation that allows us to make further progress.
An important side product is that we show that there
is also a feedback effect, that renormalizes the fermions
and provides scattering for them, despite having inte-
grated them out at an earlier stage. Importantly, we
can show explicitly that this is not an instance of double
counting, as one might suspect, but is indeed required
to preserve conservation laws. In Sec. VC we find a set
of coupled kinetic equations for electrons, holes, and the
plasmons30,32? . It is important that, within the conserv-
ing approximation, the electrons scatter from plasmons
and vice versa. Using a series of approximations, we de-
rive Boltzmann equations from this effective field theory.
Based on this, we derive the conservation laws of the
system in Sec. VD which indeed show that the fermion
dynamics is strongly influenced by the plasmons. Fur-
thermore, we observe, that the plasmons make a sizable
contribution to the heat current (this provides an alterna-
tive derivation of the heat-current operator starting from
the quantum-kinetic equation) and energy density. Addi-
tionally, it makes similar contributions to the momentum
flux and therefore shows up in quantities related to the
viscosity. This section also confirms that RPA is indeed
a conserving approximation. We conclude our results in
Sec. VI as well as provide an outlook for future work.
The most technical details of the calculations are usually
presented in a number of appendices.

II. THE MODEL

We study a theory of charged Dirac electrons in two
spatial dimensions interacting via long-range Coulomb
interactions. The Hamiltonian is given by

Ĥ = Ĥ0 + Ĥex + ĤI , (1)

with Ĥ0 being the non-interacting part. In coordinate
space, it reads

Ĥ0 =

N∑
i=1

∑
λ,λ′=±

∫
d~x Ψ̂†i,λ(~x)ĤD,λλ′(~x)Ψ̂i,λ′(~x) , (2)

Here ĤD,λλ′(~x) =
(
−i~vF~σ · ~∇− µ

)
λλ′

is the Dirac
Hamiltonian with a Fermi velocity vF and chemical po-
tential µ, and Ψ̂†i,λ(~x) (Ψ̂i,λ(~x)) creates (annihilates) an
electron at a position ~x. The flavor index denoted by
i range from i = 1, ..., N . The symbols λ, λ′ ∈ {+,−}
denote spinor indices.

The static potential energy Vex(~x) is added in order
to take into account the positively charge background in
which the electrons move, i.e.,

Vex(~x) = −n0

∫
d~x′V (~x− ~x′) , (3)

where n0 is the average density of the background ions,
identical to the electron density in thermal equilibrium.
The interaction of the electrons with the inert positively
charged background is explained by

Ĥex =

N∑
i=1

∑
λ=±

∫
d~x Ψ̂†i,λ(~x)Vex(~x)Ψ̂i,λ(~x). (4)

In addition, ĤI is the interaction part of the Hamilto-
nian. The electrons interact via a long-range Coulomb
interaction, which is included in our model by the term

ĤI =
1

2

N∑
i=1

∑
λ,λ′=±

∫
d~xd~x′ Ψ̂†i,λ(~x)Ψ̂†i,λ′(~x

′)V (~x− ~x′)

Ψ̂i,λ′(~x
′)Ψ̂i,λ(~x) .

(5)

Let us emphasize that we assume that the fermions of dif-
ferent flavours are decoupled. The interaction potential
between two electrons of charge e separated by a distance
|~x−~x′| is given by the instantaneous Coulomb interaction

V (~x− ~x′) =
e2

4πε|~x− ~x′| , (6)

where ε is the average dielectric constant. After a
Fourier transformation, the non-interacting Hamiltonian
acquires the form

Ĥ0 =

N∑
i=1

∑
λ,λ′=±

∫
d~p

(2π)2
Ψ̂†i,λ(~p)ĤD,λλ′(~p)Ψ̂i,λ′(~p) ,

(7)
where ĤD,λλ′(~p) = (~vF~σ · ~p− µ)λλ′ and the interaction
part of the Hamiltonian becomes

ĤI =
1

2

N∑
i=1

∑
λ,λ′=±

∫
d~p

(2π)2

d~k

(2π)2

d~q

(2π)2

Ψ̂†i,λ(~k − ~q)Ψ̂†i,λ′(~p+ ~q)V (~q)Ψ̂i,λ′(~k)Ψ̂i,λ(~p).

(8)

The Fourier transformation of the 1/r Coulomb interac-
tion between electrons in two dimensions reads

V (~p) =
e2

2εp
=

2παvF
p

, (9)

where p = |~p| denotes the norm of the two-dimensional
momentum vector. The strength of the Coulomb in-
teraction is usually characterised by the ratio of the
potential energy to the kinetic energy. For the Dirac
fermion, this ratio boils down to the fine structure con-
stant α = e2/4πε~vF . The theory is identical for each
flavor i = 1, .., N .

Let us mention that this model is applicable to low-
energy interacting electrons in graphene where momenta
are measured with respect to the K (K ′) point in the
Brillouin zone. In this case, λ and λ′ denote the pseudo-
spin degree of freedom taking into account the A and
B sub-lattices of the hexagonal lattice. The number of
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fermion is then N = 4 and it corresponds to spin and
valley degrees of freedom. It was found that vF ≈ 106

m/s, and ε = ε0εr measures the average value of the
dielectric constant of materials above and below it, e.g.,
ε = 1 for suspended graphene in vacuum and ε ≈ 7 for
graphene sandwiched in hBN layers. Thus for these two
cases, α = 2.2 and α ≈ 0.3, respectively21.

III. THE FORMALISM

In this section we review the basics of non-equilibrium
field theory. More detailed accounts can be found in
excellent books, Refs.13? ? ? ? . In Sec. III A we start
with a discussion of the generating function of the Green
functions on the Schwinger-Keldysh closed time contour.
This builds the basis of the whole approach. We then
move on to discuss the structure of the Green function
and the Keldysh representation in Sec. III B. In Sec. III C
we discuss the Dyson equation for interacting problems,
as well as the quantum-kinetic or Keldysh equation. In
Sec. IIID, we discuss the Wigner transform, including
the gradient expansion and the Moyal product. Finally,
in Sec. III E, we discuss the gradient expansion of the
Keldysh equation, which is essential in the derivation of
the Boltzmann equation.

C+

C−

−∞∞

Figure 1: The closed time integration contour,
C = C+ ∪ C−. The upper branch C+ goes forward from
the initial time (t = −∞) to the final time (t =∞) and
the lower branch C− goes backward from the final time

to the initial time.

A. The generating function

The central object in the following Schwinger-Keldysh
formalism is the generating function. It allows for the
derivation of Green functions and associated physical ob-
servables by means of functional differentiation. In this
section we review the construction of the partition func-
tion for the theory introduced in Eq. (1). The main idea
is to assume that in the distant past (t = −∞), the sys-
tem was in thermal equilibrium at a specific temperature
T . Its state is fully specified by the quantum-mechanical
density matrix ρ̂ = e−Ĥ0/kBT , where Ĥ0 is the non-
interacting Hamiltonian given by Eq. (2), and kB is the
Boltzmann constant. Henceforth, we use ~ = kB = 1,

unless stated otherwise. The interaction will be switched
on adiabatically to reach its actual strength before the
observation. In addition, external perturbations might
be subsequently established and drive the system away
from equilibrium. The partition function is defined as
Z = Tr[ÛC ρ̂]/Tr [ρ̂] where ÛC = TC exp

(
−i
∮
C
Ĥ(t)dt

)
is the evolution operator along the closed time integration
contour C = C+ ∪ C− depicted in Fig. 1. The operator
TC orders the operators according to the position of their
time arguments on the contour C. The evolution opera-
tor describes the evolution of the system from t = −∞,
where the system is non-interacting and in equilibrium,
towards t = ∞, and back to the equilibrium state at
t = −∞, that is again non-interacting. During the evo-
lution, the system may be exposed to external pertur-
bations, and its response can be examined. As in the
conventional path-integral approach, one discretizes the
closed time contour into M infinitesimal time intervals
and inserts the resolution of unity in the coherent-state
basis at each discrete point in time along the contour.
Subsequently, by taking the continuum limit, we obtain
the generating function written as a functional integral
according to

Z =

∫
Dψ†Dψ exp(iS[ψ†, ψ]) . (10)

In writing down the partition function, we absorb an ir-
relevant normalization constant into the measure. The
total action reads S[ψ†, ψ] =

∮
C
dtL(ψ†, ψ), with the La-

grangian

L(ψ†, ψ) =∫
d~x

N∑
i=1

∑
λ=±

ψ†i,λ(~x, t)i∂tψi,λ(~x, t)− Ĥ(ψ†, ψ) .

(11)

It is convenient to split the action into two parts,
S[ψ†, ψ] =

∫
C+

dt L(ψ†+, ψ+) +
∫
C−

dt L(ψ†−, ψ−). It
is important to note that, while the two parts seem in-
dependent, this is not true due to the special bound-
ary conditions when the contours meet, see discussion
in Ref.? . The first term describes the fermions on the
forward branch of the contour denoted by C+ (the inte-
gration over the time variable extends from −∞ to ∞)
whereas the second term describes the fermions on the
backward branch denoted by C−. We introduced the sub-
script ± for the fermion fields on the different branches.
Thus ψ(†)

+ and ψ(†)
− denote the fermion fields on the for-

ward and backward branches of the contour, respectively.
Moreover, we interchange the limits of the time integra-
tion on the backward branch, leading to an extra minus
sign as the second integral then also goes from −∞ to
∞.

Eventually, we find that the action reads
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S[ψ†, ψ] =

N∑
i=1

∑
λ=±

∫
dtd~x ψ†i,λ+(~x, t)

(
i∂t + ivF ~∇ · ~σ + µ− Vex(~x)

)
ψi,λ,+(~x, t)

−1

2

N∑
i=1

∑
λ,λ′=±

∫
dtd~xd~x′ ψ†i,λ,+(~x, t)ψi,λ′,+(~x, t)V (~x− ~x′)ψi,λ,+(~x′, t)ψ†i,λ′,+(~x′, t)

−
N∑
i=1

∑
λ=±

∫
d~x ψ†i,λ,−(~x, t)

(
i∂t + ivF ~∇ · ~σ + µ− Vex(~x)

)
ψi,λ,−(~x, t)

+
1

2

N∑
i=1

∑
λ,λ′=±

∫
d~xd~x′ ψ†i,λ,−(~x, t)ψi,λ′,−(~x, t)V (~x− ~x′)ψi,λ,−(~x′, t)ψ†i,λ′,−(~x′, t).

(12)

B. Structure of the Green functions

For the ensuing discussion we neglect all internal in-
dices such as flavor and sublattice and only concentrate
on the time arguments. The Green function on the closed
time contour is defined as

iG(~x, ~x′, t, t′) = 〈TCΨ̂(~x, t)Ψ̂†(~x′, t′)〉, (13)

where C and TC have been introduced above. The op-
erator at the earliest time is arranged to the right-most
position. There are in total four different cases:

iG−+(~x, ~x′, t, t′) = 〈Ψ̂(~x, t)Ψ̂†(~x′, t′)〉
iG+−(~x, ~x′, t, t′) = −〈Ψ̂†(~x′, t′)Ψ̂(~x, t)〉
iG++(~x, ~x′, t, t′) = 〈T Ψ̂(~x, t)Ψ̂†(~x′, t′)〉
iG−−(~x, ~x′, t, t′) = 〈T̃ Ψ̂(~x, t)Ψ̂†(~x′, t′)〉. (14)

Here iG−+ implies that the first time argument t is on
the branch C− while the second time argument t′ is on
the branch C+. In this case, the operators are already
arranged in a correct order, so TC can be dropped. Simi-
larly, iG+−(~x, ~x′, t, t′) means that the first time argument
t lies on the forward branch whereas t′ lies on the back-
ward branch. Since in this case t′ is always further on the
contour than t, meaning TC switches the annihilation and
creation operators together with giving an extra minus
sign due to their fermionic nature. Then iG++(~x, ~x′, t, t′)
means that both t and t′ are on the forward branch of
the contour C, and thus the time-contour ordering op-
erator TC becomes a normal time-ordering operator T .
This implies that

iG++(~x, ~x′, t, t′)

= θ(t− t′)iG−+(~x, ~x′, t, t′) + θ(t′ − t)iG+−(~x, ~x′, t, t′) ,

(15)

where θ(t − t′) denotes the Heaviside theta function.
In contrast, for iG−−(~x, ~x′, t, t′), both t and t′ are on
the backward branch. Since the direction of the back-
ward branch is opposite to the direction of the time
axis (the backward branch extends from −∞ to ∞), the
time-contour ordering operator TC becomes an anti-time-
ordering operator, denoted by T̃ . This means that

iG−−(~x, ~x′, t, t′)

= θ(t− t′)iG+−(~x, ~x′, t, t′) + θ(t′ − t)iG−+(~x, ~x′, t, t′) .

(16)

These components satisfy the following relation:

iG++(~x, ~x′, t, t′) + iG−−(~x, ~x′, t, t′)

= iG+−(~x, ~x′, t, t′) + iG−+(~x, ~x′, t, t′) . (17)

The Green functions can straightforwardly be calculated
within the functional-integral formalism according to

iGAB(~x, ~x′, t, t′)

=
1

Z

∫
Dψ†Dψ ψA(~x, t)ψ†B(~x′, t′) exp(iS[ψ†, ψ]),(18)

where A,B = ± here label the branch index of the close-
time contour. The generating function Z is defined in
Eq. (10) together with the action in Eq. (12). It is con-
venient to rotate the fields using the so-called Larkin-
Ovchinnikov transformation

(
ψ+(~x, t)
ψ−(~x, t)

)
=

1√
2

(
1 1
1 −1

)(
ψ1(~x, t)
ψ2(~x, t)

)
and

(
ψ†+(~x, t) ψ†−(~x, t)

)
=

1√
2

(
ψ†1(~x, t) ψ†2(~x, t)

)(1 −1
1 1

)
.
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After this transformation, Eq. (12) reads

S[ψ†, ψ] =

∫ ∞
−∞

dtdt′
[ ∫

d~xd~x′ψ†a,λ,i(~x, t)G
−1
0,ab;λλ′;ij(~x, ~x

′, t, t′)ψb,λ′,j(~x
′, t′)

− 1

2

∫
d~xd~x′ρa(~x, t)D0,ab(~x, ~x

′, t, t′)ρb(~x′, t′)
]
. (19)

Additionally, we have introduced a number of short-hand
notations. The inverse of the non-interacting Green func-
tion for the fermion field reads

G−1
0,ab;λλ′;ij(~x, ~x

′; t, t′) = δijδab ×

×
(
i∂t + ivF ~∇ · ~σ + µ− Vex(~x)

)
λλ′

δ(~x− ~x′)δ(t− t′) .
(20)

The Latin letters (a, b, . . . ) take on the values 1 and 2
labeling the Keldysh indices, the Greek letters (λ, λ′, . . . )
assume ±1 denoting the spinor indices, whereas i, j =
1, .., N denotes the flavor indices. All double indices are
summed over, unless stated otherwise.

The main advantages of the Larkin-Ovchinnikov basis
is that the condition, Eq. (17) is implemented and the
remaining components are independent, meaning

iGab;λλ′(~x, ~x
′, t, t′)

=

〈(
ψ1(~x, t)
ψ2(~x, t)

)(
ψ†1(~x′, t′) ψ†2(~x′, t′)

)〉
=

(
iGR(~x, ~x′, t, t′) iGK(~x, ~x′, t, t′)

0 iGA(~x, ~x′, t, t′)

)
ab

.

(21)

The superscripts R, A and K stand for the retarded,
advanced and Keldysh components of the Green function,
respectively. The Green functions are calculable within
the functional integral formalism according to

iGab(~x, ~x
′, t, t′)

=

∫
Dψ†Dψ ψa(~x, t)ψ†b(~x

′, t′) exp(iS[ψ†, ψ]), (22)

with the action given in Eq. (19). It can be worked out
that the inverse Green function is given by

G−1
ab (~x, ~x′; t, t′)

=

(
(G−1)R(~x, ~x′, t, t′) (G−1)K(~x, ~x′, t, t′)

0 (G−1)A(~x, ~x′, t, t′)

)
ab

,

(23)

where

(G−1)R/A = (GR/A)−1, (24)

and

GR ◦ (G−1)K = −GK ◦ (G−1)A. (25)

The convolution operator ◦ is short for the integration
over space and time coordinates as well as the summa-
tion over the spinor indices. The Keldysh component

(G12;λλ′ ≡ GKλλ′) is usually parametrized in terms of the
retarded and advanced components according to

GKλλ′(~r,
~r′; t, t′) ≡ GR ◦ F − F ◦GA. (26)

Here, F is a Hermitian two-point function. By inserting
this equation into Eq. (25), we find

(G−1)K = (GR)−1 ◦ F − F ◦ (GA)−1. (27)

This shows that the Keldysh component of the Green
function and its inverse can be parametrized in the same
way.

Furthermore, we introduced the density operator
ρa(~x, t) = ψ†b;λ,i(~x, t)γ

a
bcψc;λ,i(~x, t) (all double indices are

summed over) and the Coulomb interaction in Keldysh
space

D0,ab(~x, ~x
′, t, t′) = σxabδ(t− t′)

V (~x− ~x′)
2

. (28)

The vertex operators γ are third rank tensors operating
on the Keldysh space of fermions as well as bosons. They
are defined as γ1

ab = 1ab and γ2
ab = σxab. Let us emphasize

that our choice of convention gives an extra factor 1/2 to
the Coulomb interaction term, i.e., D0,ab ∝ V (~x−~x′)

2 .

C. The Dyson and the quantum-kinetic equation

In the presence of interactions, the Green function
obeys the Dyson equation (pictorially represented in
Fig. 2)

G = G0 +G0
⊗Σ⊗G. (29)

= + Σ

Figure 2: Diagrammatic representation of the Dyson
equation for the fermion Green function.

Here Σ denotes the self-energy which is evaluated order
by order from a perturbative expansion in the interac-
tion. It is represented diagrammatically by a set of one-
particle irreducible diagrams. The convolution ⊗ denotes
integration over time and space, as well as summation of
internal indices, including the Keldysh indices. One can
rewrite Eq. (29) as

G−1 = G−1
0 − Σ. (30)
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The fermion self-energy inherits the Keldysh matrix
structure of the inverse Green function as

Σab;λλ′(~x, ~x
′, t, t′)

=

(
ΣRλλ′(~x, ~x

′, t, t′) ΣKλλ′(~x, ~x
′, t, t′)

0 ΣAλλ′(~x, ~x
′, t, t′)

)
ab

.(31)

For the retarded and advanced components, it conse-
quently enters according to

(G−1)R/A = (G−1
0 )R/A − ΣR/A . (32)

The self-energy plays two major roles: It can affect
the dispersion relation and lead to a finite lifetime.
This is most easily seen in frequency-momentum space.
The modified pole ω = ω(~p) − iγ(~p) is the solution of
(G−1

0 )R(~p, ω) − ΣR(~p, ω) = 0. It gives a new dispersion
relation, ω(~p), as well as a decay rate, γ(~p), of the ex-
citation. When the decay rate is sufficiently small, this
excitation is called a quasi-particle.

The Keldysh component of the Dyson equation leads
to a kinetic equation that governs the time evolution of
the fermion distribution function. As a result, we have

−ΣK = (G−1)K

= (GR)−1 ◦ F − F ◦ (GA)−1 , (33)

where we used the fact that (G−1
0 )K is a pure regulariza-

tion and can be neglected in the presence of interactions,
see Eq. (20). To arrive at the second equality, we use
Eq. (27) and parametrize the Keldysh component of the
inverse Green function in terms of the Hermitian function
F . Subsequently, by substituting Eq. (32) into Eq. (33),
one finds

G−1
0 ◦ F − F ◦G−1

0 = −ΣK + ΣR ◦ F − F ◦ ΣA. (34)

The regularization ±iδ can be omitted from the retarded
and advanced components in the presence of a non-zero
imaginary part of the self-energy. The above equation is
called the quantum-kinetic equation for the distribution
matrix F . The solution of the full quantum kinetic equa-
tion, Eq. (34) is usually exceedingly difficult. However,
after some approximations, discussed below, the quan-
tum kinetic equation reduces to a Boltzmann equation.
The latter can be solved by, for instance, a variational
method39.

Later in this paper, we show that the Coulomb in-
teractions play a role in facilitating the emergence of a
boson associated with the electron density fluctuations.
To this end, we also summarize the salient features of
the Keldysh technique for a bosonic field. Similar to the
fermion Green function, the boson Green function and its
inverse have three non-vanishing components expressed
in the following matrix structure

Dab(~x, ~x
′, t, t′)

=

(
DK(~x, ~x′, t, t′) DR(~x, ~x′, t, t′)
DA(~x, ~x′, t, t′) 0

)
ab

, (35)

and

D−1
ab (~x, ~x′, t, t′)

=

(
0 (D−1)A(~x, ~x′, t, t′)

(D−1)R(~x, ~x′, t, t′) (D−1)K(~x, ~x′, t, t′)

)
ab

,

(36)

together with the following relations

(D−1)R/A = (DR/A)−1, (37)

and

DR ◦ (D−1)K = −DK ◦ (D−1)A. (38)

The interacting Green function is again determined from
a Dyson equation (pictorially represented in Fig. 3)

= + Π

Figure 3: Diagrammatic representation of the Dyson
equation for the boson Green function.

D = D0 +D0
⊗Π⊗D, (39)

with a self-energy Π, which is, in general, approximated
in a perturbative series. The self-energy assumes the
same Keldysh matrix structure as the inverse Green func-
tion to preserve causality, namely

Πab(~x, ~x
′, t, t′)

=

(
0 ΠA(~x, ~x′, t, t′)

ΠR(~x, ~x′, t, t′) ΠK(~x, ~x′, t, t′)

)
ab

. (40)

The poles of the retarded and advanced components are
again shifted by interaction effects leading to a new en-
ergy dispersion and a finite life time for the dressed par-
ticles by means of

(D−1)R/A = (D−1
0 )R/A −ΠR/A. (41)

The Keldysh component of the Dyson equation leads to
a kinetic equation for the boson distribution function B.

D−1
0 ◦B −B ◦D−1

0 = −ΠK + ΠR ◦B −B ◦ΠA. (42)

The left-hand side again describes a streaming term,
whereas the right-hand side accounts for collision events.
The Hermitian function B is employed to parametrize
the Keldysh Green function according to

DK = DR ◦B −B ◦DA. (43)

Before we continue, it is convenient to rewrite the
Keldysh equations, Eqs. (34) and (42). The rewrit-
ing seems arbitrary at this point, but later it will al-
low us to identify the left-hand sides with the stream-
ing terms of a Boltzmann equation, whereas the right-
hand sides will be the collision integrals. We can use the
fact that we can decompose the self-energies according to
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ΣR/A = <ΣR ± i=ΣR and ΠR/A = <ΠR ± i=ΠR. This
allows to rewrite Eq. (34) as[

G−1
0 −<ΣR◦,F

]
= −ΣK + i{=ΣR◦,F}. (44)

and Eq. (42) as[
D−1

0 −<ΠR◦,B
]

= −ΠK + i{=ΠR◦,B}. (45)

Here, we introduced the notation [V ◦,W ] = V ◦W−W ◦V
and {V ◦,W} = V ◦W +W ◦ V , defining the commutator
and anticommutator of the functions V and W with ◦ as
defined before.

D. The Wigner transform and the gradient
expansion

In equilibrium quantum field theory, diagrammatic ap-
proaches are, because of homogeneity, usually carried out
in momentum and energy space instead of coordinate-

space and time, meaning it is a simple Fourier trans-
form. The semiclassical limit, however, is most con-
veniently accessed using the Wigner transform, which
is a mixed representation. We briefly summarize it
here for convenience. A generic space-time function,
g(~x1, ~x2, t1, t2), can be rewritten in terms of center-of-
mass (~r, t) = ((~x1 + ~x2)/2, (t1 + t2)/2) and relative coor-
dinates (~x, τ) = (~x1−~x2, t1− t2). The Wigner transform
is now a Fourier transform over the relative coordinates
while the centre-of-mass coordinates are kept intact.
Consequently, one obtains a function of center-of-mass
spacetime, momentum, and frequency, i.e., g̃(~r, t, ~p, ω) =∫
d~xdτ g(~r, t, ~x, τ) e−i~p·~x+iωτ . There are two impor-

tant Wigner transforms that will be needed later for our
derivation of the Boltzmann equation.

(i) For a two-point function which can be decompose
into an algebraic product of other two-point functions,
i.e., C(~r1, ~r2; t1, t2) = A(~r1, ~r2; t1, t2)B(~r1, ~r2; t1, t2), one
can show that its Wigner transform is given by the
momentum-frequency convolution

C(~r, t, ~p, ω) =

∫
d~p1

(2π)d
dω1

2π
A(~r, t, ~p1, ω1)B(~r, t, ~p− ~p1, ω − ω1).

(46)

(ii) The Wigner transform of the space-time convolu-
tion of two two-point functions i.e., D(~r1, ~r2; t1, t2) =

(A ◦B)(~r1, ~r2; t1, t2) is given by their Moyal product as

D(~r, t, ~p, ω) = A(~r, t, ~p, ω) ? B(~r, t, ~p, ω) = A(~r, t, ~p, ω) exp

(
i

2

(←−
∂ ~r
−→
∂ ~p −

←−
∂ ~p
−→
∂ ~r −

←−
∂ t
−→
∂ ω +

←−
∂ ω
−→
∂ t

))
B(~r, t, ~p, ω) .

(47)

In the cases we are interested in, the function varies
slowly with the center-of-mass coordinates. Conse-

quently, it is legitimate to keep only the lowest-order
gradient terms according to

D(~r, t, ~p, ω) ≈ A(~r, t, ~p, ω)B(~r, t, ~p, ω)− i

2

[
∂~pA(~r, t, ~p, ω)∂~rB(~r, t, ~p, ω)− ∂~rA(~r, t, ~p, ω)∂~pB(~r, t, ~p, ω)

]
+
i

2

[
∂ωA(~r, t, ~p, ω)∂tB(~r, t, ~p, ω)− ∂tA(~r, t, ~p, ω)∂ωB(~r, t, ~p, ω)

]
+ ... . (48)

E. Gradient expansion of the Keldysh equation

The Wigner transform of the Keldysh equation in
Eq. (34), reads

[
G−1

0 −<ΣR?
?,F
]
− = −ΣK? + i{=ΣR?

?,F}+ . (49)

In writing the above equation, we briefly introduced the
notation Σ?. It accounts for the fact that the self-energy
itself has a gradient expansion according to

Σ? ≈ Σ + Σ× + ... (50)

where Σ involves no gradients, while Σ× involves both
one spatial and momentum gradient (or, equivalently, fre-
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quency and time)? ? . To leading order in non-vanishing
gradients we find[

G−1
0 −<ΣR, F

]
+ i
{
∂~x
(
G−1

0 −<ΣR
)
· ∂~pF

−∂~p
(
G−1

0 −<ΣR
)
· ∂~xF − ∂t

(
G−1

0 −<ΣR
)
∂εF

+∂ε
(
G−1

0 −<ΣR
)
∂tF

}
= −ΣK + i{=ΣR, F}

−ΣK× + i{=ΣR×, F}.
(51)

It turns out that the contributions due to Σ× are of
the non-quasi-particle type and vanish once we perform
the quasi-particle approximation. Consequently, we drop
them form our following discussion.

In order to set up a formalism that accommodates for
a two- or even multi-band scenario we make the following
assumption: There is a transformation U~p (in the case of
a Dirac-type theory we specify it later) that projects the
Green function into a diagonal basis according to

g
R/A
0 (~x, ~p, ω) = U†~pG

R/A
0 (~x, ~p, ω)U~p (52)

with gR/A0 (~x, ~p, ω) being a diagonal matrix. While in the
following we present matrix equations, we only concen-
trate on the diagonal elements. Equivalently, we project
the self-energies into the quasi-particle basis according to

σR/A(~x, ~p, ω) = U†~pΣR/A(~x, ~p, ω)U~p . (53)

This leads to

i∂~x
(
g−1

0 −<σR
)
· (∂~pF + i [A~p, F ])

−
(
∂~p
(
g−1

0 −<σR
)

+ i
[
A~p, g−1

0 −<σR
])
· ∂~xF

−∂t
(
g−1

0 −<σR
)
∂εF + ∂ε

(
g−1

0 −<σR
)
∂tF

= −σK + 2i=σRF .

(54)

We observe that two additional terms that involve the
Berry connection A~p = −iU†~p∂~pU~p are obtained. We are
interested here in the solution to zeroth order in A~p that
is

Fλλ′ = F
(0)
λλ′ +O(A~p) = (1− 2fλ(~r, ~p, t))δλλ′ +O(A~p),

(55)
containing only the diagonal elements of the distribu-
tion function. The function f introduced above will later
play the role of the fermionic distribution function and
in equilibrium, it reduces to the Fermi-Dirac distribution.
Within the quasi-particle approximation, fλ is indepen-
dent of the frequency variable. Moreover, it is assumed
to be diagonal in the spinor space. Consequently, only
the main diagonal elements of the self-energies are im-
portant. In total, this leads to

∂ε

(
g−1

0,λλ(~x, t, ~p, ε)−<σRλλ(~x, t, ~p, ε)
)
∂tfλ(~x, t, ~p)

+ ∂~x

(
g−1

0,λλ(~x, t, ~p, ε)−<σRλλ(~x, t, ~p, ε)
)
· ∂~pfλ(~x, t, ~p)

− ∂~p
(
g−1

0,λλ(~x, t, ~p, ε)−<σRλλ(~x, t, ~p, ε)
)
· ∂~xfλ(~x, t, ~p)

= − i
2
σKλλ(~x, t, ~p, ε)−=σR(~x, ~p, t, ε)(1− 2f(~x, t, ~p)) .

(56)

The left-hand side will contain the so-called stream-
ing terms, consisting of three contributions. The first
term describes the time derivative of the distribution
function with the quasi-particle weight ∂ε

(
g−1

0 −<σR
)

=

1− ∂ε<σR. The second term accounts for the change of
the distribution function due to a force ∂~x

(
g−1

0 −<σR
)
,

whereas the last term tracks the change of the distribu-
tion function due to the diffusion of excitations with the
velocity ∂~p

(
g−1

0 −<σR
)
. The right-hand side describes

collisions that drive the system towards equilibrium.
We now consider the Keldysh equation in Eq. (42) of

the plasmon field and we drop the terms from expanding
the self-energies here from the very start. Following the
same steps as for the fermions, we first decompose the
retarded and advanced components of the self-energy ac-
cording to ΠR/A = <ΠR± i=ΠR. This allows us to write
Eq. (42) as[

D−1
0 −<ΠR◦,B

]
= −ΠK + i{=ΠR◦,B}. (57)

After a Wigner transformation and keeping the Moyal
product to first non-trivial order, we obtain

i
{
∂~x
(
D−1

0 −<ΠR
)
· ∂~pB − ∂~p

(
D−1

0 −<ΠR
)
· ∂~xB

−∂t
(
D−1

0 −<ΠR
)
∂ωB + ∂ω

(
D−1

0 −<ΠR
)
∂tB

}
= −ΠK + 2i=ΠRB.

(58)

Next, we use the parametrization

B = 1 + 2b , (59)

where b plays the role of the bosonic distribution func-
tion exactly in equilibrium reduces to the Bose-Einstein
distribution. This leads to

∂ε
(
D−1

0 (~x, t, ~p, ε)−<ΠR(~x, t, ~p, ε)
)
∂tb(~x, t, ~p)

+ ∂~x
(
D−1

0 (~x, t, ~p, ε)−<ΠR(~x, t, ~p, ε)
)
· ∂~pb(~x, t, ~p)

− ∂~p
(
D−1

0 (~x, t, ~p, ε)−<ΠR(~x, t, ~p, ε)
)
· ∂~xb(~x, t, ~p)

=
i

2
ΠK(~x, t, ~p, ε) + =ΠR(~x, ~p, t, ε)(1 + 2b(~x, t, ~p)) .

(60)

The missing piece to transform Eqs. (56) and (60) into
Boltzmann equations is to integrate them over the re-
spective spectral functions, as we will discuss later on.

IV. PART A: ELECTRON-HOLE
HYDRODYNAMICS IN THE WEAK-COUPLING

LIMIT

In this section we review the equations of hydrodynam-
ics in the weakly interacting limit. We first discuss the
non-interacting limit to define the basic Green function
and the projection into the appropriate quasi-particle ba-
sis of electrons and holes. Afterwards we discuss the
Hartree-Fock approximation. We show that this is equiv-
alent to the renormalized collisionless Boltzmann equa-
tion after a series of approximations.
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A. The non-interacting limit

We consider a model of interacting Dirac fermions ac-
cording to Eq. (19) where we first neglect the interac-
tions. By inserting Eq. (20) into Eq. (24), we find the
retarded Green function of the non-interacting Dirac the-
ory according to

G
R/A
0 (~x, ~p, ω) = (ω ± iδ − vF~σ · ~p+ µ− Vex(~x))

−1
.

(61)

It is convenient to work in the quasi-particle basis. There,
the Dirac Hamiltonian as well as the Green function are
diagonal. This leads to

g
R/A
0,λλ′,ij(~x, ~p, ω) =

(
U†~pG

R/A
0,ij (~x, ~p, ω)U~p

)
λλ′

= (ω ± iδ − λvF p+ µ− Vex(~x))−1δλλ′δij ,

(62)

with

U~p =
1√
2

(
− exp(−iθ~p) exp(−iθ~p)

1 1

)
. (63)

Here, p = |~p| and tan(θ~p) = py/px. The dispersion
relation can be extracted from the poles of the Green
function in Eq. (62): the non-interacting Dirac the-
ory has two linear dispersing energy bands ε±(~x, ~p) =
±vF p+Vex(~x)−µ with the local electro-chemical poten-
tial given by µ − Vex(~x). The spectral function, defined

by =gR0,λλ′(~x, ~p, ω) = −πδ(ω − ελ(~x, ~p))δλλ′ , exhibits res-
onances at ω = ε±(~x, ~p). The Wigner transform of the
Keldysh Green function of Eq. (26) reads

gK0,λλ′(~x, t, ~p, ω) = 2i=gR0,λλ′′(~x, ~p, ω)Fλ′′λ′(~x, ~p, ω)

= −2πiδ(ω − ελ(~x, ~p)) (1− 2fλ(~x, ~p, t)) δλλ′ .

(64)

where f(~x, ~p, t) is the Fermi Dirac distribution in equi-
librium. The Keldysh component thus contains the in-
formation about the occupation numbers, whereas the
retarded and advanced components only contain infor-
mation about the resonances and the energy levels.

B. Hartree-Fock approximation: The collisionless
limit

In what follows, we will discuss the corrections of the
energy spectrum due to the Coulomb interaction. To
this end, we study the Hartree and Fock self-energies?
depicted in Fig. 4a and Fig. 4b.

1. The Hartree diagram

The Hartree diagram in Fig. 4a, has the following al-
gebraic expression:

−iΣHab;λλ′(~x, ~x′; t, t′) = −δλλ′δ(~x− ~x′)δ(t− t′)
∫
dt′′d~x′′ γeabD0,ef (~x′, ~x′′, t′, t′′)γfcdG0,dc;λ′′λ′′;ii(~x

′′, ~x′′, t′′, t′′) .

(65)

Since D0,ef (~x, ~x′, t, t′) = σxefδ(t − t′)V (~x−~x′)
2 is off-diagonal in Keldysh space, only two terms survive when we sum

over e and f . This gives

−iΣHab;λλ′(~x, ~x′; t, t′) = −δλλ′δ(~x− ~x′)δ(t− t′)
∫
dt′′d~x′′

V (~x′ − ~x′′)
2

γ1
abγ

2
cdG0,dc;λ′′λ′′,ii(~x

′′, ~x′′, t′′, t′′)

− δλλ′δ(~x− ~x′)δ(t− t′)
∫
dt′′d~x′′

V (~x′ − ~x′′)
2

γ2
abγ

1
cdG0,dc;λλ,ii(~x

′′, ~x′′, t′′, t′′) .

(66)

We find that the second term vanishes due to

γ2
abγ

1
cdG0,dc;λ′′λ′′,ii(~x

′, ~x′, t′, t′) = GR0;λ′′λ′′,ii(~x
′, ~x′, t′, t′) +GA0;λ′′λ′′,ii(~x

′, ~x′, t′, t′)

=

∫
dω

2π

d~p

(2π)2
<GR0;λ′′λ′′,ii(~x

′, t′, ~p, ω) = 0 . (67)

The last equality follows because <GR0;σσ(~x′, t′, ~p, ω) is an
analytic function in either the upper or the lower complex

frequency half-plane. Consequently, we have

−iΣHab;λλ′(~x, ~x′, t, t′) = −δλλ′δ(~x− ~x′)δ(t− t′)δab∫
d~x′′

V (~x′ − ~x′′)
2

GK0;λ′′λ′′,ii(~x
′′, ~x′′; t, t).

(68)
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Finally, after a Wigner transformation, we rotate the self-
energy into the quasi-particle basis. This gives

−iσHab;λλ′(~x, t, ~p, ω) = −i
(
U†~pΣH(~x, t, ~p, ω)U~p

)
λλ′

= −δλλ′δab
∫
d~x′′

V (~x′ − ~x′′)
2

gK0;λ′′λ′′,ii(~x
′′, ~x′; t, t) .

(69)

The Wigner transformation of the Keldysh Green func-
tion with the same time and spatial argument is associ-
ated with the electron density according to

gK0;λ′′λ′′,ii(~x
′′, ~x′′; t, t) = 2in(~x′′, t), (70)

where n(~x′′, t) = n+(~x′′, t) + n−(~x′′, t) defines the to-
tal charge density at position ~x′′ and time t. Here
n+(~x′, t) = N

∫
d~k

(2π)2 f+(~x′,~k, t) is the electron density

and n−(~x′, t) = N
∫

d~k
(2π)2

(
f−(~x′,~k, t)− 1

)
is the hole

density. The electron charge −e is henceforth set to 1.
In total, the Hartree self-energy produces the classical
Coulomb potential of all electrons in the system exerted
on an electron located at a position ~x according to

σHab;λλ′(~x, t, ~p, ω) = δλλ′δab

∫
d~x′V (~x− ~x′)n(~x′, t).

(71)

The Hartree term is real-valued and independent of the
momentum and frequency variables. Furthermore, it is
diagonal in Keldysh space, meaning its Keldysh compo-
nent is zero.

(a) (b)

Figure 4: The self-energies at first order in the
interaction. The left diagram is known as the direct or
Hartree contribution and the right diagram is known as

the exchange or Fock contribution.

2. The Fock diagram

Next, we are going to sketch the calculation of the Fock
self-energy diagram depicted in Fig. 4b. It reads

−iΣFab;λλ′(~x, ~x′; t, t′)
= γαacD0,αβ(~x, ~x′; t, t′)G0,cd;λλ′(~x, ~x

′; t, t′)γβdb.

(72)

After a Wigner transformation followed by a few steps of
algebraic manipulations, we find that

−iΣFab;λλ′(~x, ~p; t, ν)

= δab

∫
d~p1

(2π)2

V (~p− ~p1)

2

∫
dν1

2π
GK0,λλ′(~x, ~p1; t, ν1).

(73)

Subsequently, we transform it into the quasi-
particle basis according to −iσFab;λλ′(~x, ~p; t, ν) =

−i
(
U†~pΣFab(~x, ~p; t, ν)U~p

)
λλ′

. We are interested in ele-
ments on the main diagonal of the spinor space. They
are given by

σFab;λλ(~x, ~p; t, ν) = σF,1ab;λλ(~x, ~p; t, ν) + σF,2ab;λλ(~x, ~p; t, ν),

(74)
where

σF,1ab;λλ(~x, ~p; t, ν) = δabλ

∫
d~p1

(2π)2
cos(θ~p1 − θ~p)

V (~p− ~p1)

2
,

(75)
and

σF,2ab;λλ(~x, ~p; t, ν)

= δab

∫
d~p1

(2π)2

1 + cos(θ~p1 − θ~p)
2

V (~p− ~p1)

2

((1− λ)− 2fλ(~x, t, ~p1)) ,

(76)

where θ~p was introduced in Eq. (63). The first term di-
verges logarithmically and is responsible for the renor-
malization of the Fermi velocity. To see this, we explicitly
substitute the Coulomb potential in Eq. (9) followed by
a transformation of the momentum variable from Carte-
sian to polar coordinates. This gives

σF,1ab;λλ(~x, ~p; t, ν) = λ
αvF
4π

∫
p1dp1dθ

cos θ√
p2 + p2

1 − 2pp1 cos θ

≈ λ
αvF p

4

∫ K
p

dp1
1

p1
=
α

4
ln(K/p)λvF p.

(77)

θ = θ~p1 − θ~p is the angle of the momentum ~p1 measured
with respect to ~p. In order to extract the logarithmic
divergence of this integral, we expanded the square root
to the first power in p/p1, i.e., 1/

√
p2 + p2

1 − 2pp1 cos θ ≈
1/p1 (1 + p cos θ/p1). After the angular integral, we find
the result in the second line of Eq. (77). The divergence
of the integral is cut off at the inverse lattice spacing K.
The lower boundary of integration is consistently set to p
(we require p/p1 � 1). When substituting Eq. (77) into
the Dyson equation, we find

g−1
0 − σF = ω − λ (1 + α ln(K/p)/4) vF p. (78)

the Fermi velocity is renormalized accordingly to vRF =
(1 + α ln(K/p)/4) vF . Such logarithmic renormalization
was first discussed within the renormalization group ap-
proach in Ref.? and measured in graphene in Ref.? . The
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second contribution, Eq. (76), describes the conventional
exchange energy coming from both electrons and holes.
It varies with the doping µ and the temperature T of the
system. Moreover, different from the exchange energy of
a conventional two-dimensional electron gas, there is a
factor (1±cos(θ~p1−θ~p))/2 arising from the wavefunction
overlap, where θ~p1 − θ~p is the angle between ~p and ~p1

44.
In total, it reads

(σF,2)R±±(~p)

= −
∫

d~p1

(2π)2

1± cos(θ~p1 − θ~p)
2

V (~p− ~p1)f0
+(~p1)

+

∫
d~p1

(2π)2

1∓ cos(θ~p1 − θ~p)
2

V (~p− ~p1)(1− f0
−(~p1)).

(79)

After a series of manipulations, we find

(σF,2)R±±(~p)

= −αvF
4π

∫
dp1

√
p1

2p

(
g

(
p2 + p2

1

2pp1

)
± h

(
p2 + p2

1

2pp1

))
f0

+(~p1)

+
αvF
4π

∫
dp1

√
p1

2p

(
g

(
p2 + p2

1

2pp1

)
∓ h

(
p2 + p2

1

2pp1

))
(1− f0

−(~p1)),

(80)

with

g(x) =

∫ 2π

0

dθ√
x− cos θ

,

h(x) =

∫ 2π

0

dθ cos θ√
x− cos θ

. (81)

We proceed by evaluating the p1-integral numerically.
We show in Fig. 5 the exchange energies for electrons,
(σF,2)R++, and holes, (σF,2)R−−, at the chemical potential
µ/T = 1 for various values of momenta. We see that
the self-energy becomes less important at high momenta.
In Fig. 6 we show the spectral function of the electrons
with and without the Fock correction. Since the exchange
energy is a real-valued function, there remains the delta-
peak feature manifested as the blue line in the middle
of the plot. Compare to the spectral function of the
non-interacting theory in Fig. 6 (a), the exchange energy
plays two roles: (i) it shifts the chemical potential and
(ii) it increases the Fermi velocity44. However, the effect
of (σF,2)R±±(~p) is relatively small compared to the Fermi
velocity renormalization coming from the logarithmic di-
vergence. Therefore, we keep only the latter effect in the
following. In practice, this leads to replacing vF with vRF ,
the renormalized Fermi velocity, in all expressions.

3. Energy spectrum

We are now ready to evaluate the energy spectrum of
quasi-electrons and quasi-holes in equilibrium within the
Hartree-Fock approximation. The dispersion relation of

Figure 5: Exchange self-energies for Dirac fermions with
the chemical potential µ/T = 1 as functions of wave
vector q/T . The fine structure constant α is chosen to
be 1. The blue curve represents (σF,2)R++ showing the
exchange energy correction of the electrons. The orange
curve shows (σF,2)R−− the exchange energy of the holes.

the excitations can be found from the roots of the inverse
Green function. In the presence of the interaction, the
inverse Green function is the solution of the Dyson equa-
tion in Eq. (32). We first transform the Dyson equation
into the quasi-particle basis, which leads to

(g−1)Rλλ′ = (g−1
0 )Rλλ′ − (σH)Rλλ′ . (82)

where the retarded component of the Hartree self-energy
is given by the first row and first column element of
Eq. (71) that is (σH)Rλλ′ = σH11,λλ′ . This gives

(g−1)Rλλ′(~x, t, ~p, ω) =
(
ω + iδ ∓ λvRF p+ µ− Vex(~x)

−
∫
d~x′V (~x− ~x′)n(~x′, t)

)
δλλ′ ,

(83)

where n(~x, t) is the total electron density. By inserting
Vex(~x) from Eq. (3), we find that

(g−1)
R/A
λλ′ (~x, t, ~p, ω) = ω± iδ−λvRF p+µ−V H(~x, t), (84)

where the Hartree potential V H(~x, t) is defined as

V H(~x, t) =

∫
d~x′V (~x− ~x′) (n(~x′, t)− n0) . (85)

The Hartree term represents the potential energy of an
electron at a position ~x. This potential is produced by
all other electrons with the density n(~x′, t) at the other
positions ~x′ through the Coulomb interaction. This con-
tribution is partially canceled by the potential Vex(~x)
arising from the interaction between electrons and the
underlying jellium background. This fixed uniformly dis-
tributed positively charged background guarantees the
over-all electrical neutrality of the system. Here n0 is
the ion charge density which is identical to the electron
charge density in thermal equilibrium. Hence, in global



13

(a)

(b)

Figure 6: Spectral function at µ/T = 1 and α = 1. (a)
The spectral function of the non-interacting electrons
follows =gR0 (~q, ω) = −2πiδ(ω − vF q + µ). The blue line
in the middle of the plot manifests the delta peak at
ω = vF q − µ (vF is set to 1 in the plot). (b) The

spectral function with the inclusion of the exchange
conventional energy in Eq. (79). Since the exchange
energy is a real-valued function, the spectral function
still has the delta-peak feature as shown by the blue

line in the middle of the plot.

thermal equilibrium, the Hartree potential vanishes and
thus the energy spectrum of electrons is given by

ελ(~p) = λvRF p , (86)

as expected.

4. The kinetic equation for Dirac fermions

Next, we derive the Bolzmann equation within the
Hartree-Fock approximation. To this end, we consider

Eq. (56). Using the Hartree-Fock approximation in
Eq. (84), we find

∂ε
(
g−1

0 − (<σH)R
)

= 1,

∂~p
(
g−1

0 − (<σH)R
)

= −λvRF p̂,
∂~x
(
g−1

0 − (<σH)R
)

= −∂~xV H(~x, t). (87)
We first substitute these derivatives into Eq. (56) followed
by a multiplication of the resulting equation with the
spectral function =g−1

λλ (~p, ε) = −2πiδ(ε − λvRF p). Subse-
quently, we integrate it over the frequency which amounts
to the quasi-particle approximation. In the end, we ob-
tain the mean-field collisionless Boltzmann equation, also
known as the Vlasov equation? , for electrons (λ = +)
and holes (λ = −)

∂tfλ(~x, t, ~p) + λvRF p̂ · ∂~xfλ(~x, t, ~p)

− ∂~xV H(~x, t) · ∂~pfλ(~x, t, ~p) = 0,(88)

where p̂ denotes the unit vector in the direction of
the momentum ~p. In the above equation, the equi-
librium value of the distribution functions is given by
f0
λ(~p) = (1 + exp(

λvRF p−µ
T ))−1. The potential V H(~x, t) =∫

d~x′V (~x − ~x′)δn(~x′, t) results from the Hartree self-
energy, where δn = n − n0 is the density fluctuation.
This potential is also the solution of the classical Poisson
equation for the internal electric field.

To summarize, we found that the Hartree-Fock dia-
grams lead to the Vlasov equation.

C. Second-order perturbation theory: Born
approximation

An important role in hydrodynamic systems is played
by the relaxation processes towards local equilibrium
that conserve particle number, momentum, and energy.
These collisions occur beyond first order in the interac-
tion, Eq. (5). The lowest non-vanishing order is sec-
ond order and the contributions are pictorially shown
in Fig. 7. This is called the Born approximation for
the cross section12–14,16. In principle, these diagrams
play two roles: (i) they describe the aforementioned re-
laxations due to collisions and (ii) they renormalize the
quasi-particle properties? ? .

The calculation of these diagrams is tedious but
straightforward. Here we summarize our final results and
present the full derivation in Appendix A. The Boltz-
mann equation reads
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∂tfλ(~x, t, ~p) + λvRF p̂ · ∂~xfλ(~x, t, ~p)− ∂~xV
H(~x, t) · ∂~pfλ(~x, t, ~p)

= −
∫

d~k1

(2π)2

d~q

(2π)2
2πδ(λε~k − λ1ε~k−~q − λ2ε~k1+~q + λ3ε~k1)Rλλ1λ3λ2

(~k,~k1, ~q)[
fλ(~k)fλ3(~k1)(1− fλ1(~k − ~q))(1− fλ2(~k1 + ~q))− (1− fλ(~k))(1− fλ3(~k1))fλ1(~k − ~q)fλ2(~k1 + ~q)

]
,

(89)

where we introduced the shorthand notation

Rλλ1λ3λ2
(~k,~k1, ~q) = 2

[
|Tλλ1λ3λ2

− Tλλ2λ1λ3
|2 + (N − 1)

(
|Tλλ1λ3λ2

|2 + |Tλλ2λ1λ3
|2
) ]
. (90)

In this expression, we have used

Tλλ1λ2λ3
(~k,~k1, ~q) =

V (~q)

2
Mλλ1

~k,~k−~qM
λ2λ3

~k1,~k1+~q
, (91)

where the coherence factor M comes from the overlap of
the single-particle wavefunctions. It is defined according
to

Mλλ1

~k,~k1
=
(
U†~kU~k1

)
λλ1

. (92)

For brevity, we suppress the space and time variables of
the distribution functions in the collision terms and have
in mind that they all depend on the same set of variables
that is (~x, t). The collision does not shift the center-
of-mass and time coordinates. This effect indeed exists,
but it will show up at higher order in the gradient expan-
sion? . We can understand this collision integral in the
following way: an electron in band λ with momentum ~k

is scattered into band λ1 and momentum ~k+~q by a colli-
sion with another electron in band λ3 and state ~k1 which
is itself scattered into the energy band λ2 and state ~k1−~q.
For this event to take place, the initial states ~k and ~k1

have to be filled and the final states ~k−~q and ~k1 +~q must
be empty. Thus, the factors fλ(~k) and fλ3

(~k1) are the
occupation numbers of these state and 1−fλ1(~k−~q) and
1−fλ2

(~k1 +~q) are the probabilities for the final states to
be unoccupied. The conservation of energy is taken into
account by the delta function. The transition probability
of this event is Rλλ1λ3λ2 . In total, we find that Coulomb
interaction enters the Boltzmann transport equation in
two ways: (i) as the Hartree potential produced by all
the other particles in the system and (ii) inelastic and
momentum-conserving electron-electron scatterings lead-
ing to local equilibration. Let us note that within this
approximation, the contribution from the real part of the
second-order diagrams to the left-hand side of Eq. (89)
is neglected.

Finally, let us note that the Born approximation is
valid only when the kinetic energy of the electrons is
large compared to the Coulomb interaction potential39.
For the Dirac system, the ratio of the potential energy
to the kinetic energy is characterized by the fine struc-
ture constant α = e2/4πεvF . In condensed-matter sys-
tems, this constant is not necessarily small (for graphene
α ≈ 0.3 − 2.2). In such a strong interaction limit, a

perturbative series expansion in α may break down. In-
stead one can employ an alternative perturbative expan-
sion in the other parameters. In the subsequent section,
we will employ the random-phase approximation (RPA)
and show that it gives a different, more complicated pic-
ture than the Hartree-Fock-Born result presented in this
section.

(a) (b)

(c)

Figure 7: Self-energy to second order in the interaction.

D. Conservation laws

The collision integral on the right-hand side of the
Boltzmann equation in Eq. (89), henceforth denoted
Cλ[f ](~k), has conservation laws encoded in it. These con-
servation laws are important for two reasons: (i) They
allow for an identification or derivation of physical quan-
tities such as charge and current densities; (ii) it provides
the basis of the derivation of conservation laws and even
transport phenomena. When a system is driven away
from equilibrium, the first thing that happens is that
collisions drive the system to local equilibrium. After-
wards, there is a much slower return to global equilib-
rium. The latter describes transport processes and is
governed by the conservation laws. The conserved quan-
tities in the system under consideration are particle num-
ber, momentum, and energy. The conservation laws of
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electric charge, momentum, and energy are obtained by
multiplying the Boltzmann equation in Eq. (89), by 1, ~p
and ελ(~x, ~p) = λvRF p + V H(~x) and then integrating the
resulting equations over all momentum ~p as well as sum-
ming over energy bands ± and flavors. This leads to the
following collisional invariants

N
∑
λ=±

∫
d~p

(2π)2
Cλ[f ](~p) = 0, (93)

N
∑
λ=±

∫
d~p

(2π)2
~pCλ[f ](~p) = 0, (94)

and

N
∑
λ=±

∫
d~p

(2π)2
ελ(~x, ~p)Cλ[f ](~p) = 0. (95)

(i) The continuity equation of charge can be obtained by
integrating the Boltzmann equation in Eq. (89), over mo-
mentum ~p followed by a summation over the band index
and flavor index, see Eq. (93). In contrast to the case of a
one band system, there is a subtle point here relating to
the infinite number of particles in the filled band which
is unbounded from below. This infinite constant van-
ishes upon differentiation and does not contribute to the
continuity equation. Therefore, we can subtract the infi-
nite contribution coming from the Dirac sea and instead
consider the population of holes defined as f(~x, t,~k)− 1.
First, we consider the time-derivative term. Integrating
this term over all states gives

N
∑
λ=±

∫
d~p

(2π)2
∂tfλ(~x, t, ~p)

= ∂t N

∫
d~p

(2π)2

[
f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)

]
.(96)

We denote the charge density by

n(~x, t) = N

∫
d~p

(2π)2
[f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)] .

(97)
The second term can be integrated in a similar fashion
and gives

N
∑
λ=±

∫
d~p

(2π)2
λvRF p̂ · ∂~xfλ(~x, t, ~p)

= ∂~x · N
∫

d~p

(2π)2
vRF p̂

[
f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)

]
.

(98)

This term can be identified with the charge current den-
sity

~j(~x, t) = N

∫
d~p

(2π)2
vRF p̂

[
f+(~x, t, ~p)− (f−(~x, t, ~p)− 1)

]
.

, (99)

The momentum-derivative term vanishes upon integra-
tion

−N
∑
λ=±

∫
d~p

(2π)2
∂~xV

H(~x, t) · ∂~pfλ(~x, t, ~p)

= −N
∑
λ=±

∫
d~p

(2π)2
∂~p ·

[
∂~xV

H(~x, t)fλ(~x, t, ~p)
]

= 0 ,

(100)

since it is a total derivative. Combining the above equa-
tions together with Eq. (93), we find the continuity equa-
tion for the electric charge according to

∂tn(~x, t) + ∂~x ·~j(~x, t) = 0. (101)

It is worthwhile noting here that the particle density is
conserved locally.

(ii) Momentum conservation can be obtained by multi-
plying the Boltzmann equation in Eq. (89) by momentum
before integrating the resulting equation over all states,
see Eq. (94). The time-derivative term yields

N
∑
λ=±

∫
d~p

(2π)2
~p∂tfλ(~x, t, ~p)

= ∂t N

∫
d~p

(2π)2
~p
[
f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)

]
.

(102)

This allows to define the momentum density,

~n~p(~x, t) = N

∫
d~p

(2π)2
~p
[
f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)

]
.

(103)
The space-derivative term can be similarly integrated and
gives

N
∑
λ=±

∫
d~p

(2π)2
~p λvRF p̂ · ∂~xfλ(~x, t, ~p)

= ∂~x · N
∫

d~p

(2π)2
vRF ~pp̂

[
f+(~x, t, ~p)− (f−(~x, t, ~p)− 1)

]
.

(104)

From this result, we define the momentum-flux tensor,

~~Π(~x, t) = N

∫
d~p

(2π)2
vRF ~pp̂

[
f+(~x, t, ~p)− (f−(~x, t, ~p)−1)

]
.

(105)
The momentum-derivative term yields

−N
∑
λ=±

∫
d~p

(2π)2
~p∂~xV

H(~x, t) · ∂~pfλ(~x, t, ~p)

= ∂~xV
H(~x, t)N

∫
d~p

(2π)2
[f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)]

= ∂~xV
H(~x, t)n(~x, t).

(106)

which defines a force term. Finally, combining the above
equations, we find the momentum equation according to

∂t~n
~p(~x, t) + ∂~x · ~~Π(~x, t) = −∂~xV H(~x, t)n(~x, t). (107)
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This has a straightforward interpretation. The momen-
tum of the electron fluid in any given volume element
can be changed in two ways: (i) by means of momen-
tum flow through the volume boundary accounting for
the space-gradient term and (ii) by the internal electric
field. Locally, the momentum density is not conserved
and changed by the internal electric force −∂~xV H(~x, t).
This internal force, however, does not affect the total
momentum of the entire system. We still expect that the
total momentum of the system is conserved. This can be
shown explicitly by integrating the momentum equation
over all space. The integration of the momentum-flux
gradient results in a surface term which vanishes. The
Hartree force term also vanishes. To see this, we con-
sider the property of the Coulomb potential

∂~x
1

|~x− ~x′| = − ~x− ~x′
|~x− ~x′|3 = −∂~x′

1

|~x− ~x′| . (108)

Based on this, one can show explicitly that∫
d~x∂~xV

H(~x, t)n(~x, t)

=

∫
d~xd~x′∂~xV (~x− ~x′)(n(~x′, t)− n0)n(~x, t) = 0.

(109)

Combining all the above equations, we obtain

∂t ~P = 0, (110)

where the total momemtum of the entire system is given
by

~P (t) =

∫
d~x ~n~p(~x, t). (111)

(iii) Similarly, energy conservation is obtained by mul-
tiplying the Boltzmann equation, Eq. (89) by energy
ε(~x, ~p) followed by integrating and summing the equa-
tion over all states, see Eq. (95). The time-derivative
term yields

N
∑
λ=±

∫
d~p

(2π)2
ελ(~x, ~p)∂tfλ(~x, t, ~p)

= ∂t N

∫
d~p

(2π)2

[
ε+(~x, ~p)f+(~x, t, ~p)

+ε−(~x, ~p)(f−(~x, t, ~p)− 1)
]
. (112)

This defines the energy density according to

nε(~x, t) = N

∫
d~p

(2π)2

[
ε+(~x, ~p)f+(~x, t, ~p)

+ ε−(~x, ~p)(f−(~x, t, ~p)− 1)
]
.(113)

The spatial derivative leads to

N
∑
λ=±

∫
d~p

(2π)2
ελ(~x, ~p) λvRF p̂ · ∂~xfλ(~x, t, ~p)

= ∂~x · N
∫

d~p

(2π)2
vRF p̂

[
ε+(~x, ~p)f+(~x, t, ~p)

− ε−(~x, ~p)(f−(~x, t, ~p)− 1)
]
− ∂~xV H(~x, t) ·~j.(114)

We find that it consists of two terms. The first term de-
scribes a divergence of an energy current density defined
as

~jε(~x, t) = N

∫
d~p

(2π)2
vRF p̂

[
ε+(~x, ~p)f+(~x, t, ~p)

− ε−(~x, ~p)(f−(~x, t, ~p)− 1)
]
, (115)

whereas the second term describes Joule heating due to
the internal force. Next, we consider the momentum-
derivative term and find that it can also be rewritten as
Joule heating due to the internal Coulomb force.

−N
∑
λ=±

∫
d~p

(2π)2
ελ(~x, ~p) ∂~xV

H(~x, t) · ∂~pfλ(~x, t, ~p)

= ∂~xV
H(~x, t) ·~j . (116)

This term will thus be canceled by the second term on the
right-hand side of Eq. (114). Combining these equations,
we find the continuity equation of energy:

∂tn
ε(~x, t) + ∂~x ·~jε(~x, t) = 0. (117)

Eqs. (101), (107), and (117) constitute the main equa-
tions of electron hydrodynamics and can be used to de-
rive the Navier-Stokes equations. Let us emphasize once
again that, in contrast to the hydrodynamic equations
of usual fluids, electrons interact among themselves via
long-range Coulomb interactions and this effect shows up
on the right-side of the momentum equation in Eq. (107).

E. Collective modes

Now that we have the fundamental equations of hydro-
dynamics of weakly interacting charged Dirac electrons,
let us study some of its properties. As will be presented
in Appendix B, there are three independent hydrody-
namic variables. Here we choose the set of independent
variables consisting of the charge density (n), the energy
density (nε) and the hydrodynamic velocity ~u in terms of
which the other quantities can be written. To linear or-
der in ~u, we find that the charge current density is given
by ~j = n~u. The momentum flux is associated with the
pressure by means of Πij = Pδij where the pressure is
in turn proportional to the energy density according to
P = nε/2. One of the consequences of the linear spec-
trum of Dirac electrons is that the momentum density
is decoupled from the charge current. Instead, it is pro-
portional to the energy currents according to n~p = ~jε/v2

F
where the energy current is given by jε = (P + nε)~u .
We now consider an electron fluid at rest with constant
n = n0, nε = nε0, and ~u = 0. We are interested in small
fluctuations around the constant and homogeneous solu-
tion, and put n = n0 + δn nε = nε0 + δnε and assume
small ~u. We insert this solution into the hydrodynamic
equations in Eqs. (101, (107), and (117). By keeping
terms up to linear order in the fluctuations, we obtain

∂tδn(~x, t) + n0∂~x · ~u(~x, t) = 0,

(P0 + nε0)∂t~u(~x, t)/v2
F + ∂~xδP (~x, t) = −∂~xV H(~x, t)n0,

∂tδn
ε(~x, t) + (P0 + nε0)∂~x · ~u(~x, t) = 0. (118)
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The solutions to these equations are propagating waves.
As an ansatz, we insert δn(~x, t)

~u(~x, t)
δnε(~x, t)

 =

 δn(~p, ω)
~u(~p, ω)
δnε(~p, ω)

 ei~p·~x−iωt (119)

into the linearized hydrodynamic equations in Eq. (118).
This leads to

−iωδn(~p, ω) + in0pu‖(~p, ω) = 0 ,

−iωP0 + nε0
v2
F

~u(~p, ω) + i~p δP (~p, ω) =

− i2παvF ~p
p

δn(~p, ω)n0 ,

−iωδnε(~p, ω) + (P0 + nε0)ipu‖(~p, ω) = 0 . (120)

Here, we define u‖ = ~u · ~p/p which gives the component
of the hydrodynamic velocity in the direction of the mo-
mentum ~p. We are interested in the longitudinal propa-
gating modes, so we project the momentum equation on
the momentum direction ~p/p. This gives

−iωP0 + nε0
v2
F

u‖(~p, ω)+ip δP (~p, ω) = −i2παvF δn(~p, ω)n0.

(121)
Together with the other two equations, we find that −iω in0p 0

i2παvFn0 −iω P0+nε0
v2F

ip/2

0 ip(P0 + nε0) −iω

 δn(~p, ω)
u‖(~p, ω)
δnε(~p, ω)

 =

0
0
0

 .

(122)
These equations have three solutions when the frequen-
cies of the fluctuations satisfie the dispersion relations

ω(~p) = 0

ω±(~p) = ±
√

2παv3
Fn

2
0p/(P0 + nε0) + v2

F p
2/2.(123)

We observe, that in the long wavelength limit, there is
a square-root dispersion which represents the hydrody-
namic plasmon. At charge neutrality, n0 = 0, the dis-
persion becomes linear representing sound waves with a
velocity given by vF /

√
2.

This result, as we will see later, is in disagreement
with the calculation within the RPA. The RPA calcula-
tion predicts the existence of thermal plasmons at charge
neutrality and at non-zero temperature. The key step to
reconcile these results relies on the observation that, for
Dirac electrons, the momentum density and charge cur-
rent are decoupled. This is in stark contrast to one-band
systems with a parabolic dispersion where the momen-
tum density is proportional to the charge current. To this
end, let us additionally consider an equation of motion
for the charge current, which is obtained by multiplying
the Boltzmann equation, Eq. (89), by the corresponding
group velocity ∂~pελ(~x, ~p) = λvRF p̂ and integrating the re-
sulting equation over all states. The time-derivative term
yields

N
∑
λ=±

∫
d~p

(2π)2
λvRF p̂∂tfλ(~x, t, ~p) = ∂t~j(~x, t). (124)

The space-derivative term can be similarly integrated and
gives

N
∑
λ=±

∫
d~p

(2π)2

(
vRF
)2
p̂p̂ · ∂~xfλ(~x, t, ~p) = ∂~x · ~~Ξ(~x, t) ,

(125)

where we define a second-rank tensor according to

~~Ξ(~x, t) =

N
∑
λ=±

∫
d~p

(2π)2
v2
F p̂p̂

[
f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)

]
.

(126)

The momentum-derivative term yields

−N
∑
λ=±

∫
d~p

(2π)2
λvRF p̂∂~xV

H(~x, t) · ∂~pfλ(~x, t, ~p) =

∂~xV
H(~x, t) · ~~Λ(~x, t) .

(127)

where another second-rank tensor has components given
by

Λij(~x, t) =

N

∫
d~p

(2π)2

(
δij
p
− pipj

p3

)
[f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)] .

(128)

In contrast to the conserved quantities discussed in the
previous section, the group velocity is not a collisional
invariant. Therefore, the current density is not con-
served by electron-electron interactions. This is partic-
ularly true at charge neutrality. The integration of the
collision term is, in general, very complicated, especially
since the distribution function is unknown. For the pur-
pose of this discussion, we resort to the relaxation-time
approximation and assume that

∑
λ=±

∫
d~p

(2π)2
λvRF pCλ[f ](~p) ≈ −

~j

τ
. (129)

The value of the relaxation time τ may be approximated
by the corresponding element of the collision operator
in the Boltzmann equation (see for example in Ref.14).
Finally, combining the above calculations, we find the
equation of motion for the charge current as

∂t~j(~x, t) + ∂~x
~~Ξ(~x, t) + ∂~xV

H(~x, t)
~~Λ(~x, t) = −

~j(~x, t)

τ
.

(130)

To linear order in ~u, we find that Ξij = nv2
F /2 δij which

is proportional to the charge density and Λij = N
4πN δij

where N =
∫
dp
[
f0

+(~p)− (f0
−(~p)− 1)

]
= T log(2 +

2 coshµ/T ). Here f0
λ(~p) = (1 + exp(λvF p−µT ))−1 is the

Fermi-Dirac distribution function.
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We are again interested in small density fluctuations
around the constant and homogeneous value. Conse-
quently, we assume n = n0 + δn and small ~u. We in-
sert this solution into the current Eq. (130) and keep the
terms to linear order in the fluctuations. This gives

n0∂t~u(~x, t) +
v2
F

2
∂~xδn(~x, t) + ∂~xV

H(~x, t)
N

4π
N

= −n0~u(~x, t)

τ
. (131)

The solution to this equation are propagating waves of
the form (

δn(~x, t)
~u(~x, t)

)
=

(
δn(~p, ω)
~u(~p, ω)

)
ei~p·~x−iωt. (132)

We insert this solution into the linearized current
Eq. (131) and obtain

−iωn0~u(~p, ω) + i
v2
F

2
~pδn(~p, ω) + i

2παvF ~p

p
δn(~p, ω)

N

4π
N

= −n0~u(~p, ω)

τ
.

(133)

Next, we project the equation on the momentum direc-
tion ~p/p, This gives

−iωn0u‖(~p, ω) + i
v2
F

2
pδn(~p, ω) + i2παvF δn(~p, ω)

N

4π
N

= −n0u‖(~p, ω)

τ
.

(134)

Together with the continuity equation, we find that( −iω in0p

iαvF
N
2 N + i

v2F
2 p −iωn0 + n0/τ

)(
δn(~p, ω)
u‖(~p, ω)

)
=

(
0
0

)
.

(135)
For this equation to be valid, the frequency of the density
fluctuations has to satisfy the dispersion relation

ω±(~p) = − i

2τ

±
√
N

2
αvFTp log(2 + 2 coshµ/T ) +

v2
F p

2

2
− 1

4τ2
.

(136)

Note that, in the long-wavelength limit, we recover the
previous hydrodynamic result.

V. PART B: ELECTRON-HOLE-PLASMON
HYDRODYNAMICS IN THE STRONG

COUPLING LIMIT

In the previous section we focused on the weak-
interaction limit of the action in Eq. (19). We analyzed
the theory by a straightforward pertubative expansion
in the coupling constant. We now consider a system of

0 0.5 1 1.5 2
−1

0

1

2

3

p/T

ω
/
T

<ω(p)
=ω(p)

Figure 8: The figure shows the real and imaginary part
of the frequency of the density fluctuations as a

function of momentum at the charge neutrality point.
In the plot, the momentum and frequency are in the
units of T . The values the parameters are chosen for
illustrative purpose: α = 0.3, 1/τ = T , and N = 4. In
the case of graphene N = 4 counting spin and valley

degrees of freedom.

fermions interacting strongly via long-range Coulomb in-
teractions. It is well known, that the interactions be-
tween electrons can generate plasma oscillations. Un-
der certain circumstances, these plasma oscillations act
as proper quasi-particles, as we will show below. De-
scribing these oscillations starting from Eq. (19) requires
to go beyond pure perturbation theory and to resort to
a resummation scheme, such as the random-phase ap-
proximation (RPA)27. Formally, this can be achieved by
a Hubbard-Stratonovich transformation? , which is the
formulation we choose here. The results in the following
sections are the most important new results of this paper.

A. The effective field theory: The random-phase
approximation

We introduce a real scalar boson field φa(~r, t) to decou-
ple the quartic Coulomb interaction using the Hubbard-
Stratonovich identity

exp

(
− i

2

∫
dtdt′d~xd~x′ρa(~x, t)D0,ab(~x, ~x

′, t, t′)ρb(~x′, t′)

)
=

∫
Dφ exp

(
i

2

∫
dtdt′d~xd~x′φa(~x, t)D−1

0,abφb(~x
′, t′)

−i
∫
dtd~xφa(~x, t)ρa(~x, t)

)
. (137)

All the manipulations in this section are performed on
the Schwinger-Keldysh closed time contour, meaning the
indices a and b are the previously defined Keldysh indices.
In writing down Eq. (137), we absorb an irrelevant nor-
malization constant into the functional integration mea-
sure. The real scalar field is conjugate to the electron
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density and therefore directly captures the dynamics of
the plasmons. Therefore, we henceforth refer to this bo-
son field as the plasmon field. Inserting the identity of
Eq. (137) into the partition function of Eq. (10) leads to

Z =

∫
Dψ†DψDφ exp(iS[ψ†, ψ, φ]) , (138)

where the action reads

S[ψ†, ψ, φ] =

∫ ∞
−∞

dtdt′
[ ∫

d~xd~x′ψ†a,λ(~x, t)
(
G−1

0,ab;λλ′ − γcabδλλ′φc(~x, t)δ(~x− ~x′)δ(t− t′)
)
ψb,λ′(~x

′, t′)

+
1

2

∫
d~xd~x′φa(~x, t)D−1

0,ab(~x, ~x
′, t, t′)φb(~x

′, t′)
]
.

(139)

Philosophically, we have traded a theory of electrons in-
teracting amongst themselves for a field theory where
electrons interact with the electric potential and the plas-
mon field.

1. Green functions

The bare inverse Green function of the boson field
reads D−1

0,ab(~x, ~x
′, t, t′) = 4εσxabδ(~x−~x′)δ(t− t′)

√
−∇2/e2.

The square root of the Laplacian,
√
−∇2, can be under-

stood in the following way: it is the inverse Fourier trans-
form of the absolute value of the momentum, p ≡ |~p|.
The Fourier transform of D−1

0,ab(~x, ~x
′, t, t′) consequently

is given by

D−1
0,ab(~p, ω) = σxab2V

−1(~p) = σxab2p/2παvF . (140)

There are two things worthwhile noting here. First,
this zeroth-order Green function has no dynamics. The
dynamics will only be generated upon integrating out
fermions or, equivalently, in perturbation theory. Second,
it comes with a factor of 2 due to our choice of conven-
tion that D0,ab ∝ V (~x − ~x′)/2, see Eq. (28). There also
is the fermionic propagator, that we have to evaluate in
the effective field theory of the plasmons. To obtain this
field theory, we have to integrate out the fermions. This
suggests that the fermionic propogator is given by the
non-interacting one and all the renormalization effects
are in the plasmon sector. This, however, is not true,
and the generated dynamics feeds back into the fermion
sector. To see this, it proves advantageous to introduce
source terms in the action in Eq. (139), according to

SJ [ψ†, ψ] =

∫
dtd~x

(
ψ†a(~x, t)Ja(~x, t) + J†a(~x, t)ψa(~x, t)

)
.

(141)

This allows to recover the fermionic Green function for
any level of approximation of the plasmon field, even once
the electrons are integrated out. This is very important in
the section about the coupled quantum kinetic equations.
The generating function for the fermionic Green function
reads

Z[J, J†] =

∫
Dψ†DψDφ exp(iS[ψ†, ψ, φ] + iSJ [ψ†, ψ]) .

(142)
From this, we can determine the fermion Green function
by means of a functional derivative with respect to the
source field, according to

iG(~r, ~r ′, t, t′) =
−1

Z[J, J†]
δ2 Z[J, J†]

δJ(~x′, t′)δJ†(~x, t)

∣∣∣
J=J†=0

.

(143)
We continue to integrate out the fermion fields, which
gives an effective theory of the boson field associated with
the density fluctuations. We find

Z[J, J†] =

∫
Dφ exp(iSeff [φ, J, J†]), (144)

with the effective action given by

Seff [φ, J, J†] = −iTr
[
ln
(
−iG−1

)]
+

1

2

∫
dtdt′d~xd~x′φa(~x, t)D−1

0,ab(~x, ~x
′t, t′)φb(~x

′, t′).

−
∫
dtdt′d~xd~x′J†(~x, t)G(~x, ~x′, t, t′;φ)J(~x′, t′).(145)

where the Green function Gab;λλ′(~x, ~x′, t, t′;φ) is a func-
tional of the plasmon field? as

G−1
ab;λλ′(~x, ~x

′, t, t′;φ) = G−1
0,ab;λλ′(~x, ~x

′, t, t′)− γcabφc(~x, t)δλλ′δ(~x− ~x′)δ(t− t′) . (146)
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While this is formally exact, the presence of the dynamical field requires an approximation scheme to evaluate it.
Using Eq. (143) and the generating function introduced in Eq. (144), we find that the fermion Green function can be
calculated according to

Gab;λλ′(~x, ~x
′, t, t′) =

∫
Dφ Gab;λλ′(~x, ~x ′, t, t′;φ) exp(iSeff [φ, 0, 0]) .

(147)

This equation consequently shows in a very explicit man-
ner that the generated plasmon dynamics feeds back into
the fermion dynamics through the field φ and its associ-
ated dynamics encoded in Seff . Consequently, the next
step is to determine Seff .

2. The saddle-point equation

The effective action Seff , introduced formally in
Eq. (145), can be obtained after integrating out the
fermions. It is exact but also very complicated. The
problem is that the trace cannot be evaluated in an easy
manner due to the presence of the plasmon field in the
Green function of the fermions. Consequently, we require
an approximation scheme. The saddle-point contribution
to the partition function is given by the configuration
that minimizes the action Seff [φ, 0, 0] (formally this ma-

nipulation is equivalent to Hartree or mean-field approx-
imation). This can be obtained from the condition

δSeff [φ, 0, 0]

δφ

∣∣∣
〈φ〉

= 0 (148)

This directly leads to

〈φc(~x, t)〉 =

−i
∫
dt′d~x′D0,cd(~x, ~x

′; t, t′)Gab;λλ(~x′; ~x′, t′, t′; 〈φ〉)γdba.

(149)

This is a self-consistency equation for the local charge
density. Philosophically, Eq. (149) corresponds to a self-
consistent version of the Hartree diagram previously dis-
cussed in Sec. IVB. The fermion propagator at this level
of approximation reads

G−1
ab;λλ′(~x, ~x

′, t, t′; 〈φ〉) = G−1
0,ab;λλ′(~x, ~x

′, t, t′)− γcab〈φc(~x, t)〉δλλ′δ(~x− ~x′)δ(t− t′) . (150)

The expectation value of the plasmon field can now be
identified with the self-energy within the Hartree approx-
imation, already given in Eq. (65). It thus recovers the
dispersion of Eq. (86). We proceed to expand the plas-

mon field in deviations from the mean-field value, i.e.,
φa(~x, t) = 〈φa(~x, t)〉 + φ′a(~x, t) where 〈φa(~x, t)〉 is the
saddle-point configuration and φ′a is associated with fluc-
tuations around the saddle point. As a result, we have

G−1
ab;λλ′(~x, ~x

′, t, t′;φ) = G−1
ab;λλ′(~x, ~x

′, t, t′; 〈φ〉)− γαabφ′α(~x, t)δλλ′δ(~x− ~x′)δ(t− t′) . (151)

We proceed to expand the effective action, Eq. (145),
to second order in the fluctuations φ′. Substituting
Eq. (151) into Eq.(145) and using the series expansion

of the logarithm schematically, we suppress the Keldysh
indices here, we find to second order in fluctuations that

Seff [φ, 0, 0] = −iTr
[
ln
(
−iG−1(〈φ〉+ φ′)

)]
+

1

2

∫
dtdt′d~xd~x′ (〈φa(~x, t)〉+ φ′a(~x, t))D−1

0,ab(~x, ~x
′t, t′) (〈φb(~x′, t′)〉+ φ′b(~x

′, t′))

≈ −iTr[ln(−iG−1(〈φ〉))] + iTr[G(〈φ〉)φ′] +

∫
dtdt′d~xd~x′〈φa(~x, t)〉D−1

0,ab(~x, ~x
′; t, t′)φ′b(~x

′, t′)

+iTr[
1

2
G(〈φ〉)φ′G(〈φ〉)φ′].

(152)
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Here, we use for brevity the shorthand notation
G−1(〈φ〉) ≡ G−1

ab;λλ′(~x, ~x
′, t, t′; 〈φ〉). The first term gives

an irrelevant constant which will be absorbed in the func-
tional integration measure. The linear terms in the fluc-
tuations sum to zero at the saddle point. Their can-
celation is equivalent to the saddle-point condition in
Eq. (149). The remaining term, consequently, is the
last term in Eq. (152). It is the term that accounts for
quadratic fluctuations around the saddle point. At the
same time, however, it determines the effective plasmon
propagator with the RPA approximation according to

Seff [φ′] =

1

2

∑
a,b=1,2

∫
dtdt1d~xd~x

′φ′a(~x, t)D−1
ab (~x, ~x′; t, t′)φ′b(~x

′, t′) ,

(153)

where the inverse plasmon Green function satisfies

D−1
ab (~x, ~x′, t, t′) = D−1

0;ab(~x, ~x
′; t, t′)−Πab(~x, ~x

′, t, t′).
(154)

The self-energy Π has the diagrammatic representation
shown in Fig. 10b. It is commonly referred to as the
polarization diagram. The corresponding algebraic ex-
pression reads

Πab = −iNTr[γaG(~x, ~x′, t, t′, 〈φ〉)γbG(~x′, ~x, t′, t, 〈φ〉)].
(155)

The retarded component of Eq. (154) gives dynamics
to the plasmon: it allows to determine the dispersion
and decay rate of the plasmons in the next section. Its
Keldysh components has the form of Eq. (42) which will
be the starting point for the derivation of the Boltzmann
equation for the plasmons. Now that we have the above
effective action of the plasmon and its dynamics, it is time
to return to the fermion Green functionGab;λλ′(~x, ~x′, t, t′)
in Eq. (147). We can graphically represent the fermion
Green function expansion in terms of φ′ according to
Fig. 9. We now have to ‘average’ this fermion propa-
gator over the Gaussian action of the bosons and resum
it. It turns out that we have to choose the series corre-
sponding to the Fock-like diagram, Fig. 10a, to obtain a
conserving approximation? . This is also known as the
GW approximation. The resulting Green function is the
solution of the Dyson equation

G−1
ab;λλ′(~x, ~x

′, t, t′) =

G−1
ab;λλ′(~x, ~x

′; t, t′; 〈φ〉)− Σab;λλ′(~x, ~x
′, t, t′) ,

(156)

where

Σab;λλ′(~x, ~x
′, t, t′) =

i
(
γαG(~x, ~x′, t, t′; 〈φ〉)γβ

)
ab;λλ′

Dαβ(~x, ~x′, t, t′) .(157)

The Dyson equations in Eqs. (154) and (156), together
with the self-energies in Eqs. (155) and (157), are the
minimal set of equations that describes the interplay be-
tween the collective modes and the single-particle com-
ponents of the interacting Dirac electron. This approxi-
mation can be derived from a single free energy diagram.

= +

φ′

+

φ′ φ′

+ . . .

Figure 9: Diagram representing the solution of the
Dyson equation (151) in terms of a series expansion of

the quantum fluctuation φ′.

Σ =

(a) electron self-energy

Π =

(b) Boson self-energy

Figure 10: Self-energy for electron and plasmon fields
within the RPA approximation. The set of the

GW-diagram and polarization function constitutes a
conserving approximation.

It was shown in Ref.? that this implies that it consti-
tutes a conserving approximation. As such, it respects
the conservation laws of total energy and momentum in
the combined system of electrons and plasmons, as we
show explicitly in Sec. VD.

B. The plasmons

In this section we discuss the plasmon dynamics at
non-zero temperature and non-zero chemical potential.
To that end, we analyze the polarization function nu-
merically. We then proceed to find an approximate ana-
lytical description that we use to determine the plasmon
spectrum and the quasi-particle life-times.

1. Non-zero temperature polarization function

Here, we consider the retarded component of the po-
larization function, Eq. (155), at non-zero temperature.
After a Wigner transformation, we obtain

ΠR(~p, ω)

= −iN
∫

d~q

(2π)2

dν

2π

[
GRλλ′(~p+ ~q, ω + ν, 〈φ〉)GKλ′λ(~q, ν, 〈φ〉)

+ GKλλ′(~p+ ~q, ω + ν, 〈φ〉)GAλ′λ(~q, ν, 〈φ〉)
]
.

(158)

Here, for brevity, we suppress the space and time vari-
ables of the functions involved. Next, we use the trans-
formation matrix in Eq. (63) to transform the objects
within the polarization function into the quasi-particle
basis. After that, we integrate over the frequency vari-
able ν by making use of the Dirac delta function coming
from gK0 . Finally, by a straightforward algebraic manipu-
lation, we find the polarization function expressed in the
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form of the Lindhard formula

ΠR(~p, ω) =

2N
∑

λλ′=±1

∫
d~q

(2π)2

Fλλ′(~p, ~q) (fλ(~q)− fλ′(~p+ ~q))

ω + i0+ + λvRF q − λ′vRF |~p+ ~q| .

(159)

The coherence factor is defined according to

Fλλ′(~p, ~q) =
1

2
(1 + λλ′ cos(θ~p+~q − θ~q)) . (160)

Let us note that, strictly speaking, compared to the con-
ventional Lindhard formula, there is an extra factor 2 in
our result. This is consistent within our convention that
the inverse bare boson Green function comes with the
same factor, i.e., D0 ∝ V (~x− ~x′)/2.

The polarization function at zero temperature and ar-
bitrary chemical potential (Πµ,0) can be calculated ex-
actly. Here, we focus on non-zero temperatures. There
is no analytical expression for the non-zero temperature
polarization. However, there exists a relation between
zero temperature and non-zero temperature polarization
functions47,

ΠR
µ,T (~p, ω) =

∫ ∞
0

dµ′
∑
λ=±1

ΠR
µ′,0(~p, ω)

4T cosh2
(
µ′+λµ

2T

) . (161)

Using this, we numerically solve the polarization func-
tion at arbitrary temperatures and subsequently replace
it in the Dyson equation in Eq. (154). This allows us
to determine the energy dispersion (ωp) and the decay
rate (γp) of the plasmon mode. The plasmon frequency
(ω = ωp− iγp) is obtained by equating the inverse Green
function to zero.

(D−1)R(~p, ω) = (D−1
0 )R(~p, ω)−Π(~p, ω) = 0. (162)

Defined this way, the decay rate γp is positive. If the
damping is sufficiently weak (γp � ωp), one can expand
the polarization function to leading order in γp

Π(~p, ωp − iγp)
≈ <Π(~p, ωp)− iγp∂ω<Π(~p, ω)

∣∣∣
ω=ωp

+ i=Π(~p, ωp).

(163)

The energy of the plasmon can be determined from the
real part of Eq. (162)

(D−1
0 )R(~p, ωp)−<Π(~p, ωp) = 0 , (164)

whereas the decay rate is a solution of the imaginary part

γp =
=Π(~p, ω)

∂ω<Π(~p, ω)

∣∣∣∣∣
ω=ωp

. (165)

In general, the non-interacting Green function, D−1
0 can

be a function of both momentum ~p and frequency ω.
However, in our case D−1

0 describes the bare Coulomb
potential which is non-dynamical and hence does not de-
pend on the frequency variable. Fig. 11 (a) shows the real

(a)

(b)

Figure 11: Polarization function, (a) real part and (b)
imaginary part, at a non-zero temperature and chemical
potential. We show the polarization function when the

chemical potential µ/T = 1.

part of the polarization function at non-zero chemical po-
tential in the momentum-frequency plane. Solutions to
Eq. (164) exist only when <Π > 0. This is the case in the
upper triangle of the plot in Fig. 11 (a). As discussed be-
fore, a stable plasmon requires =Π ≈ 0. In Fig. 11(b) we
plot the imaginary part of the polarization function at the
same value of parameters as in Fig. 11 (a). Although it is
not zero, it is still negligibly small in the low-momentum
limit. As a result, one may expect a long-wavelength un-
derdamped plasmon mode with for all pratical purposes
almost infinitely long life time. This implies that plas-
mons behave like quasi-particles for practical matters.

In the next section, we find an approximate descrip-
tion of the dispersion of the plasmon and its decay rate
in the low-momentum limit. We furthermore determine
the value of the momentum cutoff beyond which the plas-
mons are overdamped.

2. Analytical approximation

In this section, we will evaluate the energy spectrum
and decay rate of the plasmon in the long-wavelength
limit. To this end, we first decompose the polar-
ization function into a sum of two terms accordingly
to ΠR(~p, ω) = ΠR

+(~p, ω) + ΠR
−(~p, ω). The first term,

Π+(~p, ω), describes the contribution from intraband
particle-hole pairs (λ′ = λ), whereas Π−(~p, ω) comes
from the interband transitions (λ′ = −λ). The imagi-
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Figure 12: Spectral function of the plasmon at a
non-zero temperature and chemical potential µ/T = 4.
The value of fine structure constant is chosen to mimic

graphene device sandwiched in hBN (α = 0.3).
.

Figure 13: Spectral function of the plasmons at various
electron chemical potential at a small value of

momentum q/T = 2.5

. Here the fine structure constant α = 0.3.

nary part of the polarization function accordingly reads

=ΠR(~p, ω) = =ΠR
+(~r, t) + =Π−(~p, ω) (166)

and it amounts to a decay rate of the plasmon mode with

=ΠR
±(~p, ω) = −2Nπ

∑
λ=±1

∫
d~q

(2π)2
Fλ ±λ(~p+ ~q, ~q)[

fλ(~q)− f±λ(~p+ ~q)
]
δ(ω + ελ(~q)− ε±λ(~p+ ~q)).(167)

The conservation of energy enters through the delta func-
tion with the argument ω+λvRF q−λ′vRF |~p+~q|. This func-
tion forms either an ellipse or a hyperbola in the qxqy-
plane. It may be easy to see this by means of a transfor-
mation of the momentum variables into the elliptic coor-
dinate system, (θ, µ), where θ ∈ [0, 2π) and µ ∈ [0,∞).
When λ = − and λ′ = +, this equation forms an ellipse
with the value of µ determined by coshµ = ω/p. The
size of the ellipse depends on the value of coshµ ≤ 1. We
find that when ω is slightly bigger than p, the available
phase space is restricted since the size of the ellipse is

small whereas when ω is much bigger than p, the avail-
able phase space in turn grow bigger and allows the decay
process more likely to occur. However, when λ′ = λ, this
equation becomes an equation of a hyperbola centered
at (−px/2,−py/2). The width of the hyperbola is deter-
mined from the ratio of the frequency to the momentum
given by cos θ = λω/p. Therefore, the available phase
space for a plasmon with the energy ω to decay into two
fermions with the energies λp and λ|~p + ~q| is extended.
This process is thus the main mechanism for plasmon
decay. We expand all the quantities appearing in the
polarization function up to first order in ~p. This gives

F±±(~p, ~q) =
1

2
(1 + cos (θ~p+~q − θ~q)) ≈ 1,

F±∓(~p, ~q) =
1

2
(1− cos (θ~p+~q − θ~q)) ≈

1

4

(
~p · ~∇~qθq

)2

,

fλ(~p+ ~q) ≈ fλ(~q) + ~p · ~∇~qfλ(~q),

ελ(~p+ ~q) ≈ ελ(~q) + ~p · ~∇~qελ(~q). (168)

By substituting Eq. (168) into the imaginary part of the
polarization followed by a straightforward calculation, we
find

=ΠR(~p, ω) ≈ −2N

16

p2

ω

(
f+(|ω/2|)− f−(|ω/2|)

)
, (169)

which provides the main contribution to the decay rate
whereas =ΠR

+(~p, ω) gives an unimportant correction. In
thermal equilibrium, the distribution function becomes
the Fermi-Dirac distribution function at a temperature T
and chemical potential µ, i.e., fλ(ω) = 1

exp((ω−µ)/T )+1) .
We present more details of the calculation in Appendix D.

At zero temperature, this becomes

=ΠR
−(~p, ω) ≈ −2N

16

p2

ω
Θ(|ω| − 2|µ|). (170)

It vanishes when |ω| < 2|µ|, meaning in that region a
long-lived plasmon mode exists. The real part of the
polarization function is given by

<ΠR
±(~p, ω)

= 2N
∑
λ=±1

∫
d~q

(2π)2
Fλ ±λ(~p, ~q)

fλ(~q)− f±λ(~p+ ~q)

ω + λvRF q ∓ λvRF |~p+ ~q| .

(171)

We substitute these expressions into Eq. (168) followed
by expanding its denominator to first order in p/ω. Based
on numerics, we expect to find a stable plasmon mode in
this limit. We can approximate the expression as

<ΠR
+(~p, ω)

≈ 2N
∑
λ=±1

∫
d~q

(2π)2

−~p · ~∇~qfλ(~q)

ω

[
1 +

~p · ~∇~qελ(~q)

ω

]
,

(172)

which results in

<ΠR
+(~p, ω) ≈ 2Np2

4πω2
N , (173)
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where N = T log (2 + 2 coshµ/T ). When the Dirac sys-
tem is exposed to external perturbations, the polarization
function varies in position and time via the distribution
function. In that case N =

∫
dq
[
f+(~q)−(f−(~q)− 1)

]
. In

contrast, the interband term gives a logarithmic correc-
tion which will be neglected from evaluating the plasmon
energy as

<Π−R(~p, ω) ≈ Np2

2π

∫
dq
[
f+(~q)−f−(~q)

][ 1

4
(
vRF
)2
q2 − ω2

]
.

(174)
At non-zero doping and zero temperature, we find
that <ΠR

−(~p, ω) = Np2

16πω log
(∣∣∣ω−2µ
ω+2µ

∣∣∣). If we substitute
Eqs. (173) and (140) into Eq. (164), we obtain the dis-
persion relation of the plasmon at non-zero T ,

ωp(~p) =

√
N

2
αTp log (2 + 2 coshµ/T ) , (175)

with the decay rate

γp =
πωp(~p)

2

16 log(2 + 2 coshµ/T )

(
f+(ωp(~p)/2)−f−(ωp(~p)/2)

)
.

(176)
It is worthwhile pointing out that Eq. (175) agrees with
the plasmon dispersion from the beyond hydrodynamic
treatment in Eq. (136) in the collisionless regime. In
Fig. 14a and Fig. 14b, we show the dispersion relation and
the decay rate of the plasmon for a relatively small fine
structure constant of α = 0.3, solved numerically from
the Dyson equation in Eq. (162). The dispersion follows
a square-root relation in the small momentum limit, as in
the approximate solution. In that limit, the plasmon be-
comes one of the relevant quasi-particles for the interact-
ing Dirac electron since its decay rate is parametrically
small. Fig. 14b shows that the decay rate as obtained
from Eq. (165) is much smaller than the plasmon energy,
see Fig. 14a. Additionally, we plot the spectral functions
of the plasmons at non-zero chemical potential in the qω-
plane in Fig. 12. It shows that the spectral function is
pronounced in the small momentum region. Therefore, it
is possible to treat the plasmon as a proper quasi-particle
emerging from the interacting Dirac electron gas. This
also allows to define a cutoff. It follows from the condi-
tion that at the momentum cutoff pc, we have pc

ωp(~p) = 1

which invalidates the quasi-particle picture. As a result,
we find pc = N

2 αT log(2 + 2 coshµ/T ). It is interesting
to note that the combination of the linear dispersion re-
lation for electrons and the plasmon dispersion kinemat-
ically allows a plasmon to decay into two electrons and
hence contribute to its lifetime. Moreover, we observe
that the plasmon decay rate decreases significantly and
therefore our quasi-particle assumption is more accurate
as the electron density increases. This can be clearly seen
in Fig.(13). We show the spectral function of the plas-
mons at various electron chemical potential (µ/T ). We
find that the spectral function at a high doping away from
the Dirac point manifests a narrow spike shape resemble
the Dirac delta function.

(a) Energy dispersion

(b) decay rate

Figure 14: Numerical solution of the Dyson equation
(162) at µ/T = 3 Here we choose a relatively small

value of the fine structure constant α = 0.3.

C. Coupled kinetic equations

The starting point of our discussion is the gradi-
ent expanded version of the plasmon Keldysh equation,
Eq. (60). We have estimated the real part of the polar-
ization in the long-wavelength limit given by Eq. (173).
Using it here leads to

D−1
0 −<ΠR =

p

πα
− 2Np2

4πω2
N =

p

παω2

(
ω2 − ω2

p(~p)
)
.

(177)
As a result, the derivatives appearing on the left-hand
side of the above Keldysh equation are obtained as fol-
lows

∂ω
(
D−1

0 −<ΠR
)

=
Np2

πω3
N ,

∂~p
(
D−1

0 −<ΠR
)

=
p̂

πα
− Npp̂

πω2
N ,

∂~x
(
D−1

0 −<ΠR
)

= − Np2

2πω2
∂~xN . (178)

We substitute these expressions into Eq. (60). Next, we
divide the resulting equation by the spectral weight that
is ∂ω(D−1

0 − <ΠR) and evaluate the resulting equation
on-shell at the frequency ω = ωp(~p). We assume that
the excitations are long-lived and therefore the spectral
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function is sharply peaked at the energy dispersion ωp(~p).
Finally, we obtain the Boltzmann equation for the plas-

mons according to

∂tb(~x, ~p, t) +
ωp(~p)

2p
p̂ · ∂~xb(~x, ~p, t)−

ωp(~p)

2N ∂~xN · ∂~pb(~x, ~p, t)

= −2απ2Nωp(~p)

p

∫
d~q

(2π)2
Fλλ′(~p+ ~q, ~q)δ(ωp(~p) + ελ(~q)− ελ′(~p+ ~q))[

fλ(~q)
(

1− fλ′(~p+ ~q)
)
b(~p)−

(
1− fλ(~q)

)
fλ′(~p+ ~q)

(
1 + b(~p)

)]
.

(179)

The left-hand side of the equation describes the changes
of the distribution function by the streaming of the plas-
mon distribution with the group velocity ~vp = ωp(~p)p̂/2p.
This is consistently identical to calculating the group ve-
locity from taking a derivative of the plasmon energy with
respect to its momentum, i.e., ~vp = ∂~pωp(~p). The fluc-
tuations of the underlying electron density have an effect
on the plasmon dispersion and enter as a force given by
~F = −ω~p∂~xN2N . Next, let us examine how the plasmon

and the electrons coexist in the system. To this end, we
consider the Keldysh equation of the fermions given by
Eq. (156). We proceed in exactly the same steps as in
the previous section to arrive at the kinetic equation for
the fermions in Eq. (56). Below, we only show the final
result and give its full derivation in Appendix E. We find
that

∂tfλ(~x, t, ~p) +
(
λvF p̂+ λ∂~p<σR(~x, t, ~p)

)
· ∂~xfλ(~x, t, ~p)− ∂~x

(
V H(~x, t) + λ<σR(~x, t, ~p)

)
· ∂~pfλ(~x, t, ~p)

= −2απ2

∫
d~q

(2π)2

ωp(~q)

q
Fλλ′(~p+ ~q, ~q)δ(ωp(~q) + ελ(~p)− ελ′(~p+ ~q))[

fλ(~p)
(

1− fλ′(~p+ ~q)
)
b(~q)−

(
1− fλ(~p)

)
fλ′(~p+ ~q)

(
1 + b(~q)

)]
−2απ2

∫
d~q

(2π)2

ωp(~q)

q
Fλλ′(~p− ~q, ~q)δ(−ωp(~q) + ελ(~p)− ελ′(~p− ~q))[

fλ(~p)
(

1− fλ′(~p− ~q)
)(

1 + b(~q)
)
−
(

1− fλ(~p)
)
fλ′(~p− ~q)b(~q)

]
. (180)

In this expression, V H(~x, t) is the Hartree potential as
defined in Eq. (85) and

<σR ≈ πα

2p

∫
d~q

(2π)2

q

ωp(~q)
(1 + 2b(~q)) sin2 θ (181)

is the correction to the fermion energy resulting from the
electron-plasmon interactions in the GW approximation.
We evaluate this self-energy using the long-wavelength
approximation of the plasmon dispersion, Eq. (175). We
define the angle θ between ~p and ~q. Details of the calcu-
lation are presented in Appendix (E). The collision term
comes from the Fock-like diagram shown in Fig. 10a. It
is a sum of two terms. The first term describes a scat-
tering process of an electron from the momentum state
~p into another momentum state ~p + ~q by absorbing a
plasmon of momentum ~q. The second term describes an
emission of a plasmon of momentum ~q from an electron
of momentum ~p and as a result the electron scatters into
the momentum state ~p − ~q. We need to write these two

terms of the collision integral separately because from the
perspective of the electron in ~k, the two events, the emis-
sion and absorption of a plasmon are essentially different.
The coupled system of Boltzmann equations in Eq. (179)
and Eq.(180) constitutes one of the central results of this
paper.

D. Conservation laws

In this section we check whether our level of ap-
proximation indeed respects all the conservation laws.
Compared to the weak-coupling consideration based on
Eq. (89) we now have two coupled Boltzmann equations,
Eq. (179) and Eq. (180). Let us denote the collision inte-
grals, i.e., the right-hand side of the Boltzmann equations
of Eq. (179) and Eq. (180) by Cb[f, b](~p) and Cfλ [f, b](~p),
respectively. The collision integrals again have three col-
lisional invariants that correspond to the conservation of
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electric charge, momentum, and energy. In that order,
they read ∑

λ=±

∫
d~p

(2π)2
Cfλ [f, b](~p) = 0 , (182)

∑
λ=±

∫
d~p

(2π)2
~p Cfλ [f, b](~p) +

∫
d~p

(2π)2
~p Cb[f, b](~p) = 0 ,

(183)
and ∑

λ=±

∫
d~p

(2π)2
ελ(~p)Cfλ [f, b](~p)

+

∫
d~p

(2π)2
ωp(~p)C

b
λ[f, b](~p) = 0 , (184)

and these statements can be checked in a straightforward
manner. By integrating Eq. (180) over all momenta ~p
and then summing over the energy bands ± we obtain
the continuity equation of charge

∂tn(~x, t) + ∂~x ·~j(~x, t) = 0, (185)

where the total charge density is given by

n(~x, t) = N

∫
d~p

(2π)2
[f+(~x, t, ~p) + (f−(~x, t, ~p)− 1)] ,

(186)
whereas the total charge current density reads

~j(~x, t) = N

∫
d~p

(2π)2
(vF p̂+ ∂~p<σR+)

(f+(~x, t, ~p)− (f−(~x, t, ~p)− 1)) .

(187)

In writing the above expression, we again subtract the
infinite contribution from the Dirac sea and define the
distribution function of holes as f−(~x, t) − 1. This is
allowed since subtracting this infinite constant does not
affect the conservation law.

In addition, we multiply Eq. (179) and Eq. (180) by
momentum ~p and then integrate the resulting equations
over all momentum ~p. We add them together and find
the law of momentum conservation as

∂t~n
~p(~x, t) + ∂~x · ~~Π(~x, t) =

−∂~xV H(~x, t)n(~x, t)−
∫

d~p

(2π)2

ωp(~p)

2

∂~xN
N b(~x, t, ~p)

−N
∫

d~p

(2π)2
∂~x<σR(~x, t, ~p) (f+(~x, t, ~p) + (1− f−(~x, t, ~p))) .

(188)

The right-hand side of the equation has three terms. The
first term is an internal force due to the Hartree poten-
tial from the other electrons. The second term describes
a force on a plasmon due to electron inhomogeneity. It is
proportional to a gradient of the electron distribution
function via ∂~xN where N =

∫
dq
[
f+(~x, t, ~q) + (1 −

f−(~x, t, ~q))
]
. The third term is a reaction on the force

in the second term. The total momentum density is

~n~p(~x, t) = N

∫
d~p

(2π)2
~p
[
f+(~x, t, ~p)− (1− f−(~x, t, ~p))

]
+

∫
d~p

(2π)2
~p b(~x, t, ~p), (189)

and the total momentum flux is

~~Π(~x, t) = N

∫
d~p

(2π)2
(vF p̂+ ∂~p<σ)~p

(f+(~x, t, ~p) + (1− f−(~x, t, ~p)))

+

∫
d~p

(2π)2
~vp ~p b(~x, t, ~p). (190)

Here ~vp = ωp(~p)p̂/2p defines the group velocity of a plas-
mon. We find that the total momentum density is not
locally conserved but changed by the internal electric
forces on the right-hand side of the equation. However,
integrating over all space ~x, the force terms vanish and
the Hartree potential cancels by virtue of being a total
derivative, ∫

d~x∂~xV
H(~x, t)n(~x, t) = 0. (191)

In contrast, the other two forces do not vanish individu-
ally, but instead cancel each other as

−
∫
d~x

∫
d~p

(2π)2

ωp(~p)

2

∂~xN
N b(~x, t, ~p)

−N
∫
d~x

∫
d~p

(2π)2
∂~x<σR(~x, t, ~p)

(
f+(~x, t, ~p)

+(1− f−(~x, t, ~p))
)

= 0. (192)

On general grounds, this is a result of the Kadanoff-Baym
conditions for approximate Green function to maintain
the macroscopic conservation laws? . As we discussed
earlier, a self-energy included in the approximate Green
function must be generated from a diagram of a free en-
ergy functional and the contributions from those self-
energies generated from the same free-energy diagram
will cancel out to ensure the conservation laws. We find
the conservation of total momentum of the electrons

∂t ~P = 0 , (193)

where the total momemtum of the whole system

~P =

∫
d~x ~n~p(~x, t). (194)

Next, we multiply the electron Boltzmann equation of
Eq. (179) by the energy ελ(~x, t, ~p) = λp + V H(~x, t) +
λ<σR(~x, t, ~p), integrate the resulting equation over all
momentum ~p and then sum over the energy bands ±.
Similarly, we multiply the plasmon Boltzmann equation
of Eq. (179) by its energy dispersion given by ω(~x, ~p, t) =√

N
2 αpN (~x, t) and integrate over the momentum. We
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add the resulting equations together, and find the con-
servation law of energy for the total system.

∂tn
ε(~x, t) + ∂~x ·~jε(~x, t) = 0, (195)

where the total energy density is

nε(~x, t) = N

∫
d~p

(2π)2

[
ε+(~x, t, ~p)f+(~x, t, ~p)

−ε−(~x, t, ~p)(1− f−(~x, t, ~p))
]

+

∫
d~p

(2π)2
ω(~x, t, ~p)b(~x, t, ~p),

(196)

and the total energy current density is

~jε(~x, t) = N

∫
d~p

(2π)2

[
~v+ε+(~x, t, ~p)f+(~x, t, ~p)

−~v−(~x, t, ~p)ε−(~x, t, ~p)(1− f−(~x, t, ~p))
]

+

∫
d~p

(2π)2
~vpωpb(~x, t, ~p). (197)

VI. CONCLUSION AND OUTLOOK

In this work we have studied the basic equations of
hydrodynamics in ultraclean interacting two-dimensional
Dirac systems. Our approach was based on non-
equilibrium quantum field theory. We first derived the
hydrodynamic equations in weakly interacting systems,
based on low-order perturbation theory. This allows to
recover mostly known literature expressions. In the sec-
ond part we go beyond a weak coupling analysis. We use
the random-phase approximation which naturally leads
to the notion of a coupled field theory of electrons, holes,
and plasmons. Contrary to in three dimensional met-
als, the emerging plasmons constitute proper low-energy
degrees of freedom without an excitation gap. Further-
more, these plasmons are stable and do not decay eas-
ily. Based on this, we study a set of coupled Boltzmann

equations. We explicitly establish in that framework,
that the approach provides a consistent conserving ap-
proximation which respects the conservation of electrical
charge, momentum, and energy. Our main findings are
that, compared to weak-coupling theories, there are di-
rect low-energy contributions of the plasmons to the heat
current and the energy-momentum tensor that have to
be treated on equal footing with electronic excitations.
In a companion paper we show that this implies that
they should be measurable in transport experiments in
encapsulated graphene devices that achieve the hydrody-
namic regime. While we do not expect a similarl effect
in three-dimensional metals, we expect an enhancement
close to the Dirac point of three dimensional Dirac and
Weyl systems or in bilayer graphene systems. A study
of the thermo-electric transport properties of this theory
has appeared recently32. There also is part I of this pa-
per that studies the most salient features of the coupled
theory on a phenomenological level.
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Appendix A: Derivation of the collision integral of Eq.(89)

The algebraic expression for the diagram in Fig. 7a is given by

−iΣ(2a)
ah (~x, ~x′; t, t′) = −iN

∫
dt1dt2d~x1d~x2 γ

a′

abγ
b′

cdγ
c′

efγ
d′

ghD0,a′b′(~x, ~x1; t, t1)D0,γδ(~x2, ~x
′; t2, t

′)

G0,bg(~x, ~x
′; t, t′)G0,de(~x1, ~x2; t1, t2)G0,fc(~x2, ~x1; t2, t1). (A1)

After a Wigner transformation, its Keldysh component in the quasi-particle basis reads

(σ
(2a)
λλ )K(~x,~k, t, ω) = iN

∫
d~k1

(2π)2

d~q

(2π)2
2πδ(ω − λ1ε~k−~q − λ2ε~k1+~q + λ3ε~k1)|Tλλ1λ2λ3(~k,~k1, ~q)|2(

Fλ3
(~x, t,~k1)− Fλ2

(~x, t,~k1 + ~q) + Fλ1
(~x, t,~k − ~q)

[
Fλ2

(~x, t,~k1 + ~q)Fλ3
(~x, t,~k1)− 1

])
.

(A2)

Here we assume that the distribution function within the quasi-particle approximation has no off-diagonal elements in
the spinor space. Furthermore, we introduce the shorthand notation for the Coulomb interaction transition probability
amplitude

Tλλ1λ2λ3
(~k,~k1, ~q) =

V (~q)

2
Mλλ1

~k,~k−~qM
λ2λ3

~k1,~k1+~q
, (A3)

where the coherence factor coming from the overlap of the wavefunction is defined according to

Mλλ1

~k,~k1
=
(
U†~kU~k1

)
λλ1

. (A4)

The retarded component of the self-energy is given by

2i=(σ
(2a)
λ )R(~k, ω) = iN

∫
d~k1

(2π)2

d~q

(2π)2
2πδ(ω − λ1ε~k−~q − λ2ε~k1+~q + λ3ε~k1)|Tλλ1λ2λ3

(~k,~k1, ~q)|2(
Fλ2

(~x, t,~k1 + ~q)Fλ3
(~x, t,~k1)− 1 + Fλ1

(~x, t,~k − ~q)
[
Fλ3

(~x, t,~k1)− Fλ2
(~x, t,~k1 + ~q)

])
.

(A5)

The algebraic expression for the diagram in Fig. 7b is given by

−iΣ(b)
ah (~x, ~x′; t, t′) = i

∫
dt1dt2d~x1d~x2γ

a′

ab γ
b′

cdγ
c′

efγ
d′

ghD0,a′c′(~x, ~x2; t, t2)D0,b′d′(~x1, ~x
′; t1, t

′)

G0,bc(~x, ~x1; t, t1)G0,de(~x1, ~x2; t1, t2)G0,fg(~x2, ~x
′; t2, t

′). (A6)

After a Wigner transformation, the Keldysh component of the self-energy in the quasi-particle basis reads

(σ
(2b)
λ )K(~x,~k, t, ω) = −i

∫
d~k1

(2π)2

d~q

(2π)2
2πδ(ω − λ1ε~k−~q − λ2ε~k1+~q + λ3ε~k1)Tλλ1λ3λ2

(~k,~k1, ~q)T
∗
λλ2λ1λ3

(~k,~k1,~k − ~q − ~k1)(
Fλ3

(~x, t,~k1)− Fλ2
(~x, t,~k1 + ~q) + Fλ1

(~x, t,~k − ~q)
[
Fλ2

(~x, t,~k1 + ~q)Fλ3
(~x, t,~k1)− 1

])
,

(A7)

whereas the retarded component of the self-energy is given by

2i=(σ
(2b)
λ )R(~k, ω) = −i

∫
d~k1

(2π)2

d~q

(2π)2
2πδ(ω − λ1ε~k−~q − λ2ε~k1+~q + λ3ε~k1)Tλλ1λ3λ2(~k,~k1, ~q)T

∗
λλ2λ1λ3

(~k,~k1,~k − ~q − ~k1)(
Fλ2

(~x, t,~k1 + ~q)Fλ3
(~x, t,~k1)− 1 + Fλ1

(~x, t,~k − ~q)
[
Fλ3

(~x, t,~k1)− Fλ2
(~x, t,~k1 + ~q)

])
. (A8)

The algebraic expression for the diagram Fig. 7c is given by

−iΣ(c)
ah (~x, ~x′; t, t′) = i

∫
dt1dt2d~x1d~x2 γ

a′

abγ
b′

cdγ
c′

efγ
d′

ghD0,a′d′(~x, ~x
′, t, t′)D0,b′c′(~x1, ~x2; t1, t2)

G0,bc(~x, ~x1; t, t1)G0,de(~x1, ~x2; t1, t2)G0,fg(~x1, ~x
′; t2, t

′). (A9)
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This contribution to the collision intergral is omitted because 2i=(σ
(2c)
λ )R and (σ

(2c)
λ )K are both zero. After combining

these contributions from the diagram in Figs. 2a-2c and substituting the distribution function to zero order in the
Berry connection given by Eq. (55), we find the collision integral for electron-electron scattering within the Born
approximation. Hereafter we for brevity suppress space and time variables in the distribution function since the
collision integral is local in spacetime.

σKλ (~p)− 2i=σRλ (~p)(1− 2fλ(~p)) (A10)

= −8i

∫
d~k1

(2π)2

d~q

(2π)2
2πδ(ω − λ1ε~k−~q − λ2ε~k1+~q + λ3ε~k1)[

N |Tλλ1λ3λ2
(~k,~k1, ~q)|2 − Tλλ1λ3λ2

(~k,~k1, ~q)T
∗
λλ2λ1λ3

(~k,~k1,~k − ~q − ~k1)
]

[
fλ(~k)fλ3

(~k1)(1− fλ1
(~k − ~q))(1− fλ2

(~k1 + ~q))− (1− fλ(~k))(1− fλ3
(~k1))fλ1

(~k − ~q)fλ2
(~k1 + ~q)

]
.

(A11)

We make connection to the Golden rule result by shifting the variables appropriately, This gives

σKλ (~p)− 2i=σRλ (~p)(1− 2fλ(~p)) = −4i

∫
d~k1

(2π)2

d~q

(2π)2
2πδ(ω − λ1ε~k−~q − λ2ε~k1+~q + λ3ε~k1)[

|Tλλ1λ3λ2
(~k,~k1, ~q)− Tλλ2λ1λ3

(~k,~k1,~k − ~q − ~k1)|2 + (N − 1)
(
|Tλλ1λ3λ2

(~k,~k1, ~q)|2 + |Tλλ2λ1λ3
(~k,~k1,~k − ~q − ~k1)|2

)]
[
fλ(~k)fλ3

(~k1)(1− fλ1
(~k − ~q))(1− fλ2

(~k1 + ~q))− (1− fλ(~k))(1− fλ3
(~k1))fλ1

(~k − ~q)fλ2
(~k1 + ~q)

]
.

(A12)

We then multiply Eq.(A12) by the spectral function followed by an integration over the frequency. In the end, we
obtain a coupled system of Boltzmann equations for electrons (λ = +) and holes (λ = −).

Appendix B: Hydrodynamic variables

The underlying assumption for the electron hydrodynamics is that inelastic electron-electron collisions occur much
faster than momentum-relaxing scatterings of electrons against impurities and/or phonons. As a result, electrons
establish the local equilibrium and the corresponding distribution function can be written as

fλ(~p) =
1

exp(λvF p−µ−~u·~pT ) + 1
. (B1)

We insert this distribution function into the charge density defined in Eq. (97)

n(~x, t) = N

∫
d~p

(2π)2
[f+(~x, t, ~p)− (1− f−(~x, t, ~p))]

= N

∫
d~p

(2π)2

[
1

exp(vF p−µ−~u·~pT ) + 1
− 1

exp( vF p+µ+~u·~p
T ) + 1

]

= N

∫
d~p

(2π)2

[
1

exp(vF p−µT ) + 1
− 1

exp( vF p+µT ) + 1

]
+O(u)

=
N

2π

∫
pdp

[
1

exp( vF p−µT ) + 1
− 1

exp( vF p+µT ) + 1

]
+O(u2)

=
NT 2

2πv2
F

(
−Li2(−eµ/T ) + Li2(−e−µ/T )

)
. (B2)

To arrive at the third line, we expand the distribution functions to linear order in u.

1

exp(vF p−µ−~u·~pT ) + 1
≈ 1

exp( vF p−µT ) + 1
+

exp( vF p−µT )(
exp( vF p−µT ) + 1

)2 ~u · ~pT +O(u2). (B3)

After performing the angular integral, the terms linear in ~u vanish. The remaining integrals can be written in terms
of the polylogarithmic function by means of∫ ∞

0

dx
xn−1

ex−µ + 1
= −Γ(n)Lin(−eµ). (B4)
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Next, let us evaluate the charge current density defined in Eq.(99)

~j(~x, t) = N

∫
d~p

(2π)2
vF p̂

[
f+(~x, t, ~p) + (1− f−(~x, t, ~p))

]
= N

∫
d~p

(2π)2
vF p̂

[ 1

exp( vF p−µT ) + 1
+

exp( vF p−µT )(
exp(vF p+µT ) + 1

)2 ~u · ~pT +
1

exp(vF p+µT ) + 1
− exp( vF p+µT )(

exp(vF p+µT ) + 1
)2 ~u · ~pT ]

.

The terms of zeroth order in ~u vanish after the angular integration. We observe that the charge current is parallel to
the hydrodynamic velocity ~u. Its component is given by

~j(~x, t) = ~j(~x, t) · ûû = N

∫
d~p

(2π)2
vF p̂ · ûû

[ exp( vF p−µT )(
exp(vF p−µT ) + 1

)2 ~u · ~pT − exp( vF p+µT )(
exp(vF p+µT ) + 1

)2 ~u · ~pT ]
=

NvFu

4π2T

∫
p2dpdθ cos2 θ

[ exp( vF p−µT )(
exp( vF p−µT ) + 1

)2 − exp( vF p+µT )(
exp(vF p+µT ) + 1

)2 ]û
=

NvF~u

4πT

∫
p2dp

[ exp( vF p−µT )(
exp( vF p−µT ) + 1

)2 − exp( vF p+µT )(
exp( vF p+µT ) + 1

)2 ]
=

NT 2~u

4πv2
F

∫
x2dx

[ exp(x− µ/T )

(exp(x− µ/T ) + 1)
2 −

exp(x+ µ/T )

(exp(x+ µ/T ) + 1)
2

]
= −NT

2~u

4πv2
F

∫
x2dx

d

dx

[ 1

exp(x− µ/T ) + 1
− 1

exp(x+ µ/T ) + 1

]
=

NT 2~u

2πv2
F

∫
xdx

[ 1

exp(x− µ/T ) + 1
− 1

exp(x+ µ/T ) + 1

]
=

NT 2~u

2πv2
F

[
− Li2(−eµ/T ) + Li2(−e−µ/T )

]
= n(~x, t)~u. (B5)

The other quantities can be calculated in a similar way. We find that to linear order in ~u the energy density is
given by

nε(~x, t) = −NT
3

2πv2
F

Γ(3)
[
Li3(−eµ/T ) + Li3(−e−µ/T )

]
. (B6)

The momentum flux defines the pressure by means of

Πij(~x, t) = −NT
3

4πv2
F

Γ(3)
[
Li3(−eµ/T ) + Li3(−e−µ/T )

]
δij =

nε(~x, t)

2
δij ≡ P (~x, t)δij . (B7)

The momentum density and the energy current read

n~p(~x, t) = −NT
3~u

4πv4
F

Γ(4)
[
Li3(−eµ/T + Li3(−e−µ/T ))

]
=
nε(~x, t) + P (~x, t)

v2
F

~u, (B8)

~jε(~x, t) = −NT
3~u

4πv2
F

Γ(4)
[
Li3(−eµ/T ) + Li3(−e−µ/T )

]
= v2

Fn
~p(~x, t). (B9)

Appendix C: Properties of real boson Green functions

According to Eq.(35), the Keldysh component of the boson Green function is in the first row and the first column.
By making use of the reality of the fields, one conclude from the definition that

DK(~x1, ~x2, t1, t1) =

∫
Dφ φ1(~x1, t1)φ1(~x2, t2) exp(iS[φ])

=

∫
Dφ φ1(~x2, t2)φ1(~x1, t1) exp(iS[φ])

= DK(~x2, ~x1, t2, t1). (C1)
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Consider their Wigner transformation

DK(~x1, ~x2, t1, t2) =

∫
d~p

(2π)2

dω

2π
DK(~x, t, ~p, ω)ei~p·(~x1−~x2)−iω(t1−t2), (C2)

DK(~x2, ~x1, t2, t1) =

∫
d~p

(2π)2

dω

2π
DK(~x, t, ~p, ω)e−i~p·(~x1−~x2)+iω(t1−t2), (C3)

which implies that

DK(~x, t, ~p, ω) = DK(~x, t,−~p,−ω). (C4)

We find that, in the long-wavelength limit, the plasmon retarded Green function read

DR(~q, ν) =
παν2

q

1

(ν + iδ)2 − ω2
p(~q)

=
παν

2q

(
1

ν + iδ + ωp(~q)
+

1

ν + iδ − ωp(~q)

)
. (C5)

As a result, the imaginary part is given by

=DR(~q, ν) = −π
2αν

2q
(δ(ν + ωp(~q)) + δ(ν − ωp(~q))) . (C6)

which is an odd function of the frequency and momentum variables

=DR(−~q,−ν) = −=DR(~q, ν). (C7)

It follows that

B(−~q,−ν) = −B(~q, ν). (C8)

Appendix D: Derivation of the polarization function in the long-wavelength limit

In this appendix, we derive the polarization function in the long-wavelength limit presented in the main text. Our
starting point is the Lindhard formula in Eq. (159). Let us first calculate the real part of the polarization. The main
contribution is from the intraband transition, when λ = λ′. It reads

<Π+
R(~p, ω) ≈ N

∑
λ=±1

∫
d~q

(2π)2

−~p · ~∇~qfλ(~q)

ω

[
1 +

~p · ~∇~qελ(~q)

ω

]
,

=
N

ω2

∫
d~q

(2π)2

[
f+(~q)(~p · ~∇~q)2ε+(~q)− (1− f−(~q)) (~p · ~∇~q)2ε−(~q)

]
,

=
Np2

ω2

∫
qdqdθ

(2π)2

[
f+(~q) + (1− f−(~q))

] sin2 θ

q

=
Np2

4πω2

∫
dq
[
f+(~q) + (1− f−(~q))

]
= − Np2

4πω2
T
[
Li1
(
−eµ/T

)
+ Li1

(
−e−µ/T

) ]
=

Np2

4πω2
T
[

log
(

1 + eµ/T
)

+ log
(

1 + e−µ/T
) ]

=
Np2

4πω2
T
[

log (2 + 2 coshµ/T )
]
. (D1)

In contrast, the interband contribution, when λ = −λ′, gives a logarithmic correction which will be neglected in
evaluating the plasmon energy dispersion. For the case of non-zero dopings, at zero temperature, this interband
contribution reads Np2

16πω log
(∣∣∣ω−2µ
ω+2µ

∣∣∣).
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Next, we consider the imaginary part of the polarization function. The main contribution to the imaginary part is
from the interband transition, when λ = −λ′. This gives

=Π−R(~p, ω) ≈ −Nπ
∑
λ=±1

∫
d~q

(2π)2

1

4

(
~p · ~∇~qθ~q

)2 [
fλ(~q)− f−λ(~q)

]
δ(ω + ελ(~q)− ε−λ(~q)),

= −Nπ
∫

d~q

(2π)2

1

4

p2

q2
cos2(θ)

[(
f+(~q)− f−(~q)

)
δ(ω + ε+(~q)− ε−(~q)) (D2)

+
(
f−(~q)− f+(~q)

)
δ(ω + ε−(~q)− ε+(~q))

]
,

= −N
16
p2

∫
dq

q

[(
f+(~q)− f−(~q)

)
δ(ω + 2q) +

(
f−(~q)− f+(~q)

)
δ(ω − 2q)

]
,

= −N
16
p2

∫
dq

q

(
f+(~q)− f−(~q)

)(
δ(ω + 2q)− δ(ω − 2q)

)
,

= −N
16
p2

∫
dq

q

(
f+(~q)− f−(~q)

)1

2

(
Θ(−ω)δ(q + ω/2)−Θ(ω)δ(q − ω/2)

)
,

= −N
16
p2

∫
dq

q

(
f+(~q)− f−(~q)

)1

2

(
Θ(−ω)δ(q + ω/2)−Θ(ω)δ(q − ω/2)

)
(D3)

=
N

16

q2

ω

(
1

e
|ω|/2−µ

T + 1
− 1

e
−|ω|/2−µ

T + 1

)
. (D4)

In the limit of zero temperature, this becomes

=ΠR(~q, ω) ≈ −N
16

q2

ω
Θ(|ω| − 2|µ|), (D5)

which was found previously in46. It vanishes when |ω| < 2|µ|, consequently, the long-lived plasmon mode exists in
this region. By substituting the real part in Eq.(D1) and the imaginary part in Eq.(D4) into Eq.(165), we find the
decay of plasmon. It reads

γp(~q) = − πωp(~q)
2

8T log(2 + 2 coshµ/T )

(
1

e
|ωp(~q)|/2−µ

T + 1
− 1

e
−|ωp(~q)|/2−µ

T + 1

)
. (D6)

Appendix E: Derivaltion of Eq.(180)

The GW diagram in Fig.(10a) is interpreted into the expression in Eq.(157). From that, we obtain the retarded
and Keldysh components.

ΣR(~x, ~x′, t, t′) = i
[
DK(~x, ~x′, t, t′)GRφ (~x, ~x′, t, t′) +DR(~x, ~x′, t, t′)GKφ (~x, ~x′, t, t′)

]
,

(E1)

and

ΣK(~x, ~x′, t, t′) = i
[
DK(~x, ~x′, t, t′)GKφ (~x, ~x′, t, t′) +

(
DR(~x, ~x′, t, t′)−DA(~x, ~x′, t, t′)

) (
GRφ (~x, ~x′, t, t′)−GAφ (~x, ~x′, t, t′)

) ]
.

(E2)

In writing down the Keldysh component of the self-energy above, we use again the fact that a product of retarded
and advanced Green functions vanishes. We proceed with a Wigner transformation followed by transforming the
self-energy into the quasi-particle basis. Within such a basis, the off-diagonal elements are irrelevant. This gives

σRλλ(~p, ω) =
[
U~pΣR(~p, ω)U†~p

]
λλ

= i

∫
d~q

(2π)2

dν

2π
Fλλ′(~p− ~q, ~p)

[
DK(~q, ν)gRφ,λ′(~p− ~q, ω − ν) +DR(~q, ν)gKφ,λ′(~p− ~q, ω − ν)

]
,

σKλλ(~p, ω) =
[
U~pΣK(~p, ω)U†~p

]
λλ

= −4i

∫
d~q

(2π)2

dν

2π
Fλλ′(~p− ~q, ~p)=DR(~q, ν)=gRφ,λ′(~p− ~q, ω − ν)

[(
1 + 2b(~q, ν)

)(
1− 2fλ′(~p− ~q, ω − ν)

)
+ 1
]
.

(E3)
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where the retarded component of the plasmon Green ’s function, DR, is determined by an inverse of Eq.(177).

DR(~q, ν) =
παν2

q

1

(ν + iδ)2 − ω2
p(~q)

. (E4)

The Keldysh component is calculated by the Wigner transform of Eq.(43).

DK(~q, ν) = 2i=DR(~q, ν)(1 + 2b(~q)). (E5)

By substituting the self-energy into the right-hand side of the Keldysh equation, we obtain the collision terms in
Eq.(180).

Next, we consider the right-hand side of the equation on which there are two renormalization effects arises from the
real part of the self-energy: (i) Fermi velocity renormalization given by λvF p̂ + ∂~p<σRλλ(~x, t) and (ii) internal forces
among electrons themselves and from plasmons given by −∂~x<σRλλ(~x, t). We will evaluate the self-energy here using
the same approximation as we use for plasmon. To this end, let us consider

σRλλ(~p, ω) =
[
U~pΣR(~p, ω)U†~p

]
λλ

= i

∫
d~q

(2π)2

dν

2π
Fλλ′(~p− ~q, ~p)

[
DK(~q, ν)gRφ,λ′(~p− ~q, ω − ν) +DR(~q, ν)gKφ,λ′(~p− ~q, ω − ν)

]
(E6)

The real part of the self-energy is written as a sum of two terms.

<σRλλ(~p, ω) = σ(1)(~p, ω) + σ(2)(~p, ω), (E7)

where below we evaluate it on-shell at ω = ελ(~p).

σ(1)(~p, ελ(~p)) =

∫
d~q

(2π)2

dν

2π
Fλλ′(~p− ~q, ~p)

[π2αν

q
(δ(ν + ωp(~q)) + δ(ν − ωp(~q)))B(~q, ν)

1

ελ(~p)− ν − ελ′(~p− ~q)

= −
∫

d~q

(2π)2
Fλλ′(~p− ~q, ~p)

παωp(~q)

2q
B(~q,−ωp(~q))

1

ελ(~p) + ωp(~q)− ελ′(~p− ~q)

+

∫
d~q

(2π)2
Fλλ′(~p− ~q, ~p)

παωp(~q)

2q
B(~q, ωp(~q))

1

ελ(~p)− ωp(~q)− ελ′(~p− ~q)

= −
∫

d~q

(2π)2
Fλλ′(~p+ ~q, ~p)

παωp(~q)

2q
B(−~q,−ωp(~q))

1

ελ(~p) + ωp(~q)− ελ′(~p+ ~q)

+

∫
d~q

(2π)2
Fλλ′(~p− ~q, ~p)

παωp(~q)

2q
B(~q, ωp(~q))

1

ελ(~p)− ωp(~q)− ελ′(~p− ~q)

=

∫
d~q

(2π)2
Fλλ′(~p+ ~q, ~p)

παωp(~q)

2q
B(~q, ωp(~q))

1

ελ(~p) + ωp(~q)− ελ′(~p+ ~q)

+

∫
d~q

(2π)2
Fλλ′(~p− ~q, ~p)

παωp(~q)

2q
B(~q, ωp(~q))

1

ελ(~p)− ωp(~q)− ελ′(~p− ~q)
(E8)

Now we expand the denominators in both terms and find that

σ(1)(~p, ελ(~p)) ≈
∫

d~q

(2π)2

παωp(~q)

2q
B(~q, ωp(~q))

1

ωp(~q)

[
1− ελ(~p)− ελ(~p+ ~q)

ωp(~q)
− 1 +

−ελ(~p) + ελ(~p− ~q)
ωp(~q)

]
≈
∫

d~q

(2π)2

παωp(~q)

2q
B(~q, ωp(~q))

1

ω2
p(~q)

(~q · ∂~p)2
ελ(~p)

= λ
πα

2p

∫
d~q

(2π)2

q

ωp(~q)
B(~q, ωp(~q)) sin2 θ (E9)

where θ is an angle between ~p and ~q. This is the result correct up to the lowest order in q/ωp(~q) where q and ωp(~q)
are plasmon momentum and energy.

σ(2)(~p, ελ(~p)) =

∫
d~q

(2π)2

dν

2π
Fλλ′(~p−~q, ~p)

παν

2q

(
1

ν + ωp(~q)
+

1

ν − ωp(~q)

)
(2πδ(ελ(~p)− ν − ελ′(~p− ~q))(1− 2fλ′(~p− ~q)))

(E10)
The second term is of next order in q/ωp(~q), we therefore neglect it.

σ(2)(~p, ελ(~p)) ≈
∫

d~q

(2π)2

πα

2q

~q · ∂~pελ(~p)

ωp(~q)

(
1− ~q · ∂~pελ(~p)

ωp(~q)
− 1− ~q · ∂~pελ(~p)

ωp(~q)

)
(1− 2fλ(~p− ~q))

≈ −
∫

d~q

(2π)2

πα

q

(
~q · ∂~pελ(~p)

ωp(~q)

)2

(1− 2fλ(~p− ~q)). (E11)


	I introduction
	II The model
	III The formalism
	A The generating function
	B Structure of the Green functions
	C The Dyson and the quantum-kinetic equation
	D The Wigner transform and the gradient expansion
	E Gradient expansion of the Keldysh equation

	IV Part A: Electron-hole hydrodynamics in the weak-coupling limit
	A The non-interacting limit
	B Hartree-Fock approximation: The collisionless limit
	1 The Hartree diagram
	2 The Fock diagram
	3 Energy spectrum
	4 The kinetic equation for Dirac fermions

	C Second-order perturbation theory: Born approximation
	D Conservation laws
	E Collective modes

	V Part B: Electron-hole-plasmon hydrodynamics in the strong coupling limit
	A The effective field theory: The random-phase approximation
	1 Green functions
	2 The saddle-point equation

	B The plasmons
	1 Non-zero temperature polarization function
	2 Analytical approximation

	C Coupled kinetic equations
	D Conservation laws

	VI Conclusion and Outlook
	VII Acknowledgments
	 References
	A Derivation of the collision integral of Eq.(89)
	B Hydrodynamic variables
	C Properties of real boson Green functions
	D Derivation of the polarization function in the long-wavelength limit 
	E Derivaltion of Eq.(180)

