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ABSTRACT
We consider the charging of a model capacitor comprised of two planar electrodes and an electrolyte. Upon switching on a voltage difference,
electric double layers build up in this setup, which we characterize with a classical dynamic density functional theory (DDFT) that accounts
for electrostatic correlations and for molecular excluded volume of finite-sized ions and solvent molecules. Our DDFT predicts the electrode
charge Q(t) to form exponentially with two timescales: at early times, the system relaxes on the RC time, namely, λDL/[D(2 + σ/λD)], with
λD being the Debye length, L being the electrode separation, σ being the ion diameter, and D being the ionic diffusivity. Contrasting an earlier
DDFT study, this early-time response does not depend on the applied potential. At late times, the capacitor relaxes with a relaxation time
proportional to the diffusion time L2/D.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0081827

I. INTRODUCTION

The dynamics of electrolytes in narrow confinement underlies
key functionalities in biology and technology. Examples range from
axons firing in the brain1 and plant-cell signaling by plasmodes-
mata2 to capacitive deionization3 and energy storage by superca-
pacitors.4 In the case of supercapacitors, the dynamics of ions in
their porous electrodes can be resolved by molecular simulations5–9

and various experimental techniques, including nuclear mag-
netic resonance spectroscopy,10,11 electrochemical quartz crystal
microbalance,11,12 infrared spectro-electrochemistry,11 and x-ray
diffraction.13 The structure of electrolytes near solid surfaces has
also been studied extensively in the more idealized setting of the
surface force apparatus (SFA).14,15 In the SFA, two atomically flat
surfaces in crossed-cylinder geometry squeeze an electrolyte into
nanometric confinement, while the force required to do so is mea-
sured. Recently, the SFA has been used to study the response
of electrolytes to different time-dependent potential differences

applied to the cylinders.16–18 The experiments of Refs. 17 and 18
with curved electrodes were interpreted using flat-electrode models
[Fig. 1(a)]. Indeed, much of our theoretical understanding of elec-
trolyte dynamics in narrow confinement derives from flat-electrode
models.19–38 However, at high electrolyte concentrations, the rela-
tion between system parameters and ion dynamics is largely unex-
plored, even in simple geometries, because of the strong coupling
between ionic packing, diffusion, and conduction processes.

In this article, we study the model capacitor of Fig. 1(a) with
a dynamic density functional theory (DDFT)39 that accounts for
ion–ion correlations, steric packing effects, and dispersion forces,
which are all important in concentrated electrolytes.30 We go beyond
other DDFT studies on electrolyte relaxation30–38 by characterizing
not only the time-evolution of the concentration profiles of the ionic
species during the electrode charging process but also that of an
explicit solvent. Moreover, we elucidate how the relaxation times
depend on the Debye length, ionic diameters, electrode separation,
and applied potential difference.
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FIG. 1. (a) Model capacitor of two planar electrodes and a three-component elec-
trolyte model of neutral solvent molecules and monovalent cations and anions, all
modeled as spheres of diameter σ. (b) The potential difference V(t) between the
electrodes switches from 0 V to V0 ≠ 0 at time t = 0.

II. MODEL
A. Setup

We consider two blocking, flat, and parallel electrodes
[Fig. 1(a)] subject to a voltage difference V(t) = V0Θ(t), with
Θ(t) being the Heaviside step function and V0 being the step size
[Fig. 1(b)]. The distance between the two electrodes is L along the
x direction; we assume translation invariance in the directions per-
pendicular to x. The gap between the electrodes is filled with a 1:1
electrolyte of cations, anions, and neutral solvent molecules, labeled
i = {+,−, 0}, respectively, with valencies z+ = 1, z− = −1, and z0 = 0,
all modeled as spheres of the same diameter σ. We, thus, have the
following boundary conditions:

ji(0, t) = ji(L, t) = 0, (1a)

ϕ(0, t) − ϕ(L, t) = βeV(t), (1b)

where ji(x, t) are the particle flux densities, e is the proton charge,
and β = 1/(kBT) is the inverse thermal energy, with kB being
Boltzmann’s constant and T being the electrolyte temperature.
The local electrostatic potential at position x ∈ [0, L] is given by
(kBT/e)ϕ(x, t), with kBT/e being the thermal voltage and ϕ(x, t)
being the dimensionless electrostatic potential. As the electrodes are
blocking [Eq. (1a)], the number of particles (per unit area) of each
species is conserved. This implies that the following global con-
straints on the time-dependent local concentrations ρi(x, t)must be
satisfied for all times t:

1
L∫

L

0
ρ±(x, t)dx = ρs,

1
L∫

L

0
ρ0(x, t)dx = ρsol. (2)

We refer to the constants ρs and ρsol as the salt and solvent concen-
trations, where we note, however, that they cannot be identified with
the concentrations of a bulk reservoir in osmotic contact with the
confined electrolyte. The local concentrations ρi(x, t) are coupled
to ϕ(x, t) by the Poisson equation and to ji(x, t) by the continuity
equation,

∂2
x ϕ(x, t) = −ρ+(x, t) − ρ−(x, t)

2ρsλ2
D

, (3a)

∂tρi(x, t) = −∂xji(x, t), (3b)

where λD =
√

ε0εrkBT/2e2ρs is the Debye length, with ε0 and εr
being the vacuum and relative permittivity, respectively. For the flux
densities ji(x, t), DDFT asserts that

ji(x, t) = −βDρi(x, t)∂xμi(x, t), (4a)

where D is the diffusion coefficient, presumed equal for all species,
and where the chemical potentials μi follow from the free energy
functional F[ρ+, ρ−, ρ0] as

μi(x, t) = δF[ρ+, ρ−, ρ0]
δρi(x, t) . (4b)

To apply Eqs. (1), (3), and (4), F[ρ+, ρ−, ρ0] must be approximated
aptly.

A general key weakness of the widely used DDFT approach
involves the so-called “adiabatic approximation” that underlies the
derivation of Eq. (4); within DDFT, the actual nonequilibrium cor-
relations are replaced by those of a fictitious equilibrium system
evaluated at instantaneous nonequilibrium density profiles. To rem-
edy this problem, Power Functional Theory (PFT) was recently
proposed as a formally exact alternative to DDFT.40 While it would
be interesting to use PFT to study the charging of our model setup,
unfortunately, no excess power functionals have been developed for
ionic systems yet.

B. DDFT formulation
As mentioned, in our setup with planar electrodes, all density

profiles depend only on the Cartesian coordinate x. Still, to define
F[ρ+, ρ−, ρ0], which accounts for interactions of particles in all three
dimensions, it is convenient to use the position vector r = (x, y, z),
where y and z represent the Cartesian coordinates perpendicular
to x. We choose F[ρ+, ρ−, ρ0], such that μi(r, t) from Eq. (4b) is
given by

μi(r, t) = kBT ln[ρi(r, t)Λ3
i ] + kBTziϕ(r, t) + Vext(r)

+ μLJ
i (r, t) + μcorr

i (r, t) + μhs
i (r, t). (5)

The first term of Eq. (5) is the ideal-gas chemical potential; the ther-
mal wavelength Λi of species i that appears here is irrelevant as it
drops upon calculating the flux densities ji(x, t). The second term
of Eq. (5) is the mean-field electrostatic energy; this term results
from a Coulomb functional that treats electrostatic interactions at
the mean-field level. Inserting the first two terms of Eq. (5) into
Eq. (4a), one finds a flux density due to diffusion and electromi-
gration: ji = −D(∂xρi + ziρi∂xϕ), which for i = {+,−} corresponds
to the Nernst–Planck equation.

Next, the hard-wall electrode surfaces give rise to the following
external potential:

Vext(r)
kBT

=
⎧⎪⎪⎨⎪⎪⎩

∞ (x < σ/2) or (x > L − σ/2),
0 (otherwise).

(6)

For dense electrolytes and ionic liquids, dispersion interac-
tions, electrostatic correlations, and steric repulsions cannot be
ignored.24,30,32,41 We account for dispersion interactions through
the pairwise additive Lennard-Jones (LJ) potential treated at the
mean-field level. Specifically, for a particle of species i = {+,−, 0}
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at position r that interacts with a particle of species j at position rj,
μLJ

i (r, t) is given by the summation of the same LJ potential between
all particles as shown in the following equation:

μLJ
i (r, t) = ∑

j={+,−,0}
∫∣r−rj ∣>σ

ρj(rj)ϕLJ(∣r − rj∣)drj, (7)

where ϕLJ is the pairwise additive LJ potential,

ϕLJ(r) = 4ϵLJ[(
σ
r
)

12
− (σ

r
)

6
]. (8)

To improve on our mean-field treatment of electrostatic inter-
actions, we account for electrostatic correlations through the mean
spherical approximation.30,32,42–44 Their contribution μcorr

i (r, t) to
the chemical potential of ions, i = {+,−}, is expressed as the elec-
trostatic excess correlation of species i, in a reference system at the
average concentration ρs,

μcorr
i (r, t) = kBT ∑

j={+,−}
∫ [ρj(r′) − ρs]ccorr

ij (∣r − r′∣)dr′, (9)

where ccorr
ij (r) is the non-mean-field part of the direct correlation

function for ions of species i and j. ccorr
ij (r) is the direct correlation

function of a reference fluid, which is similar to a bulk reservoir at
the same average concentration for ions. For ccorr

ij (∣r∣), we use the
mean spherical approximation, details of which are in Ref. 30.

Finally, we use the modified fundamental measure theory45 (see
also Ref. 46) to model the steric interactions among particles as hard-
sphere interactions. These interactions contribute to Eq. (5) as

μhs
i (r, t) = kBT∑

α
∫ ξα(r′)ωα

i (∣r′ − r∣)dr′, (10)

in which α = {0, 1, 2, 3, V1, V2} and where

ξ0(r) = − ln[1 − n3(r)],

ξ1(r) = −
n2(r)

1 − n3(r)
,

ξ2(r) = (
ln[1 − n3(r)]

n3(r)
+ 1

1 − n2
3(r)
)n2

2(r) − n2
V2(r)

12πn3(r)
− n1(r)

1 − n3(r)
,

(11)

ξ3(r) = (
ln(1 − n3(r))

18πn3
3(r)

+ 1 − 3n3(r) + [1 − n3(r)]2

36πn2
3(r)[1 − n3(r)]3

)

× (3n2(r)n2
V2(r) − n3

2(r))

+ n0(r)
1 − n3(r)

+ n1(r)n2(r) − nV1(r) ⋅ nV2(r)
[1 − n3(r)]2

,

ξV1(r) = −
nV2(r)

1 − n3(r)
,

ξV2(r) = −(
ln[1 − n3(r)]

n3(r)
+ 1

1 − n3
3(r)
)n2(r)nV2(r)

6πn2
3(r)

− nV1(r)
1 − n3(r)

.

Here, nα(r) are weighted densities defined as

nα(r) =∑
i

nα,i(r) =∑
i
∫ ρi(r′)ωα

i (∣r′ − r∣)dr′. (12)

The weight functions ωα
i of Eq. (12) are provided in Ref. 45. Differ-

ent from the scalar weight functions ωα
i with α = {0, 1, 2, 3}, ωV2

i is
a surface vector weight function related to the variance across the
surface,

ωV2
i (r) =

r
r

δ(r − σ/2), (13)

where δ(r) is the Dirac delta function. Finally, ωV1
i (r) is given by

ωV1
i (r) =

ωV2
i (r)
2πσ

. (14)

C. Implementation
The boundary conditions Eq. (1a) guarantee a fixed number

of particles in our setup, which corresponds to the NVT canonical
ensemble in the realization of DDFT. This implies that we specify
ρs and ρsol as defined in Eq. (2) and calculate the chemical potential
[Eq. (5)] rather than fixing the chemical potentials and calculate the
densities, as is common in equilibrium DFT.

We first carried out classical density functional calculations in
the NVT ensemble at 0 V. These yielded inhomogeneous equilib-
rium densities, which then served as the initial condition for our
DDFT calculations for finite V0. This voltage difference is shared
equally by both electrodes, as the model cations and anions are iden-
tical except for their charge. At t = 0, we thus set the voltages of the
two electrodes to V0/2 and −V0/2, respectively. In our implementa-
tion of the DDFT (see also Refs. 30 and 32), the ionic density profiles
are discretized through differential time frames. For a time step from
tk to tk+1 = tk + δt, the equation of continuity Eq. (3b) is expressed
as an ordinary differential equation. We use an initial guess from
the fourth-order Adams–Bashforth (AB) predictor for faster conver-
gence of our Picard iterations. We evaluate the densities ρi(r, tk+1)
at time step k + 1 (for k ≥ 2) using the fourth-order Adams–Moulton
(AM) algorithm,

ρi(r, tk+1) = ρi(r, tk) +
δt
24
(9Mi[{ρi(r, tk+1)}, tk+1]

+ 19Mi[{ρi(r, tk)}, tk] − 5Mi[{ρi(r, tk−1)}, tk−1]
+Mi[{ρi(r, tk−2)}, tk−2]), (15)

where Mi[{ρi(r, t)}, t] is the divergence of flux density. The first two
time frames (k = 0 and 1) of the DDFT calculation, for the start of the
charging process, follow from

ρi(r, tk+1) = ρi(r, tk) +
δt
2
(Mi[{ρi(r, tk+1)}, tk+1]

+Mi[{ρi(r, tk)}, tk]), (16)

in which the initial densities ρi(r, t0) are obtained from the equi-
librium density distributions at 0 V. Both ionic and solvent den-
sities are rescaled at every iteration step to conserve the average
densities.
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D. Parameter settings
We use the same LJ potential for the interactions between all

three species, with a well depth ϵLJ = 0.7kBT and interaction range
set by the particle diameters σ. Unless stated otherwise, we use
σ = 0.5 nm, which is typical for ionic liquid molecules.47 We vary
ρs between 0.05 and 3.5 M while keeping the total average con-
centration ρtot = 2ρs + ρsol fixed to ρtot = 0.527σ−3 = 7.0 M through
compensating changes in ρsol. Both ρs and ρsol are varied. Hence,
with the constraint that the total density is fixed, to study the
dependence on salt concentrations for charging dynamics. We set
the temperature to T = 298 K and the plate separation to L = 12σ
and use a fixed relative permittivity εr = 2 and diffusion coefficient
D = 4.3× 10−11 m2 s−1. By doing so, we ignore the salt-concentration
dependence of ε and D,33 which we leave for scrutiny in future
work. Unless otherwise stated, we considered V0 = 1 V. In our time
integration scheme, we use a fixed time step δt = 5 × 10−4τσ , with
τσ = σ2/D being the typical time for an ion to diffuse over its
diameter.

III. RESULTS
A. Density profiles

In Fig. 2(a), we plot the local particle concentration relative to
its average value, ∣ρtot −∑i ρi(x, t)∣σ3, during charging at ρs = 2.0 M.
From the data collapse in this panel for 0 < x < 3σ, we see that this
observable does not vary much with time. By contrast, for the same
ρs, Fig. 2(b) shows that the ionic charge density develops strong
oscillations that signal the formation of increasingly pronounced
alternating layers of cations and anions. Interestingly, the slope of
the envelope of Fig. 2(b) decreases with time, which means that the
decay length of the charging profile increases with time. Figure 2(c)
shows the local charge density (solid lines) and solvent density
(dashed lines) at the late time t = 10τσ for several ρs. As is clear
from the inset of Fig. 2(c), ions form more pronounced layers for
larger ρs.

B. Charge and salt density relaxation
With the ionic density profiles at hand, we determine ϕ(x, t) by

Eq. (3a) and the electrode surface charge density by Gauss’s law,

Q(t) = − ε0εrkBT
e

∂xϕ(x = 0, t). (17)

Figure 3(a) shows Q(t) in units of e/σ2 for several ρs. As our
system relaxes slower for more dilute electrolytes, we determined
Q(t) up to t = 20τσ for 3.5 M and up to t = 300τσ for 0.05 M. We
denote the electrode charge at the end of these charging processes by
Qeq; in Fig. 3(a), we see that Qeq increases with ρs and then saturates.

Figure 3(b) shows that the scaled electrode charge 1 −Q(t)/Qeq
(solid lines) relaxes biexponentially, which is consistent with previ-
ous studies.19,20,23,24,48 The same panel also shows the normalized
concentration (c(t) − ceq)/(c(0) − ceq) (dashed lines), with c(t)
being the total particle concentration in the middle of the slit,

c(t) = ∑
i∈{+,−,0}

ρi(x = L/2, t) (18)

FIG. 2. Profiles of (a) the deviation of the total concentration from its average value
and (b) the charge density at several times t after switching on a potential differ-
ence of 1 V between the two planar electrodes separated by a distance L = 12σ at
a salt concentration ρs = 2.0 M. The main panels show the region near one elec-
trode surface; the insets present the same profiles across the whole system. (c)
The local solvent density (dashed lines) and charge density (solid lines) for several
ρs at the late time t = 10τσ . Charge densities ρ

+
− ρ
−

are further presented in the
inset.

and c(0) and ceq being the initial and final values of c(t). At late
times, the ionic concentration and ionic charge in Fig. 3(b) decay
with similar slopes; hence, they then have similar relaxation times.

Next, Fig. 3(c) shows the scaled charge density 1 −Q(t)/Qeq for
several V0. This panel shows that the scaled charge density relaxes
biexponentially, with slower relaxation at late times. This late-time
slow-down sets in earlier and more prominently for larger V0. Note
that the early-time data in Fig. 3(c) collapses over a wide range
of V0: this is in contrast to a previous DDFT study30 that found
V0-dependent early-time relaxation. We return to this discrepancy
in Sec. IV. As we show below, our findings are in line with solutions
to the Poisson–Nernst–Planck (PNP) equations, both linearized22

and into the nonlinear regime.19
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FIG. 3. (a) The areal electrode charge Q(t) as a function of time t after the volt-
age switch to V0 = 1 V for several average ion concentrations ρs. (b) The scaled
electrode charge density (solid lines) and the total concentration at the middle of
the slit (dashed lines) for ρs = 1.0, 2.0, and 3.5 M. (c) The scaled electrode charge
density for ρs = 1.0 M and applied voltages between V0 = 0.02 and 1 V.

C. Relaxation timescales
To characterize the biexponential decay of Q(t), we introduce

the instantaneous relaxation time

τ(t) = −[dln(1 −Q(t)/Qeq)
dt

]
−1

(19)

shown in Fig. 4(a) for the parameters of Fig. 3(b). Notably, τ(t)
transitions between early- and late-time plateaus whose heights are
denoted by τ1 and τ2, respectively. We see that τ1 decreases with
increasing ρs and that τ2 is similar for ρs = 1.0 M and ρs = 2.0 M,
consistent with the observed similar slopes for 1 −Q(t)/Qeq in
Fig. 3(b).

The relaxation time τ1 is explained well by a simple equiva-
lent circuit. The capacitance of each of the two electric double layers
(EDLs) in our system can be approximated by a series connection
of two Helmholtz capacitors, one of width λD for the diffuse part

FIG. 4. (a) Instantaneous relaxation time function τ(t) normalized by λDL/(2D).
(b) The initial relaxation time τ1 scaled by D/(λDL) vs 1/(2 + σ/λD) from DDFT
(red circles) and analytical theory (blue triangles) for salt concentrations between
0.05 and 3.5 M. (c) The late-time relaxation time τ2D/L2 vs L for various ρs and
σ. (d) τ2D/L2 vs ρmax

s for various σ as indicated in units of nm, with L = 15 nm;
the dashed line represents the analytical prediction from Ref. 20, corrected with a
factor π2 from Ref. 48.
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of the EDL and one of width λS for the charge-free Stern layer next
to the electrode. In our case, the ions of diameter σ lead to a Stern
layer of width λS = σ/2 [cf. Fig. 2(b)]. Multiplying the electrolyte’s
areal resistance R = λ2

DL/(ε0εrD) by the total areal capacitance
C = ε0εr/[2(λD + λS)] then yields RC = λDL/[2D(1 + λS/λD)]—the
same expression follows from the linearized PNP equations.19,21,22

Figure 4(b) shows τ1 (red circles) scaled by D/(λDL) vs
1/(2 + σ/λD) for different ρs. With this scaling and axes, the
RC timescale (blue triangles) falls on the diagonal. As we used
Helmholtz’s simple expression for the EDL capacitance, the above
equivalent circuit can only be expected to describe our model’s
relaxation for applied potentials smaller than the thermal volt-
age (≈26 mV). Surprisingly, however, even at voltages as high as
V0 = 1 V as applied here, the DDFT data collapse onto the blue
diagonal. To our knowledge, this constitutes the first numerical
evidence that the EDL capacitors with finite-size ions relax with the
RC time λDL/[2D(1 + λS/λD)] of Refs. 19, 21, and 22. Note how
Fig. 4(a) underlines the importance of the τ1 timescale: τ1 describes
the relaxation of Q(t) up to t/τσ ≈ 0.1, by which time Q(t) has
almost reached its final value, Q(0.1τσ) ≈ 0.8Qeq.

The larger late-time relaxation time τ2 is caused by the adsorp-
tion of salt in the EDL: a dip in the salt concentration near the
EDL at early times is filled by salt fluxes on the diffusion time.19

Figure 4(c) shows τ2D/L2 vs L for ρs = 0.5, 1.0, 2.0, and 3.5 M. These
curves being flat confirms the diffusive scaling τ2 ∝ L2/D. Kilic
and co-workers proposed a modified PNP model, for which they
found τ2 = (1 − 2ρs/ρmax

s )L2/(4D).20 The maximal concentration
ρmax

s = η/(2 × 1/6πσ3) amounts for our setup to ρmax
s = 1/(

√
2σ3),

where we used the density of hexagonal close packing η = π/(3
√

2).
Figure 4(d) shows numerical τ2D/L2 data (symbols) and the theoret-
ical prediction (1 − 2ρs/ρmax

s )/(4π2) (dashed line), both vs ρs/ρmax
s .

Note that we added a factor π2 ≃ 10 after the analytical derivation
of Ref. 48. With this factor included, we observe good agreement
between the numerical data and analytical prediction.

IV. DISCUSSION
We found in Fig. 3(c) that 1 −Q(t)/Qeq for different applied

potentials V0 collapse on a single curve at early times; hence, the
timescale τ1 of the early-time relaxation does not depend on V0.
We found the same V0-independent early-time charging for other
salt concentrations, also when we changed the time step of our
DDFT implementation. These findings contrast Fig. 8 of Ref. 30,
where charge relaxation did not collapse on a single curve at early
times; hence, their relaxation timescale was V0-dependent. Yet, as
already acknowledged by these authors,49 Ref. 30 considered a dif-
ferent measure for the surface charge: instead of the surface charge
density Q(t) from Gauss’s law [Eq. (17)], they considered the total
accumulated ionic charge in half of the system,

Qions(t) = e∫
L/2

0
[ρ+(x, t) − ρ−(x, t)] dx. (20)

Equations (17) and (20) are equivalent if the electric field at the cen-
ter of the cell vanishes, ∂xϕ(x = L/2, t) = 0.49 However, there is no
reason to surmise this to be the case in our system, as the elec-
trodes are of opposite polarity. [The energy stored in a capacitor

FIG. 5. Panel (a) compares the electrode charge Q(t) (solid) and the accumulated
ionic charge Qions(t) (dashed) in units of e/σ2 as a function of time t for ρs = 3.5 M
and electrode voltages between V0 = 0.02 and 1 V. Panel (b) shows the same
Q(t) and Qions(t) data, scaled to their respective equilibrium values. Panel (c)
shows the same Qions(t) data in panel (b) but only for up to t/τσ = 3.

depends on Q(t) rather than on Qions(t), making Q(t) more rel-
evant for applications.] As shown in Fig. 5(a), Qions(t) (dashed) is
systematically lower than Q(t) at various electrode voltages. Next,
Figs. 5(b) and 5(c) show the scaled and shifted electrode charge
density [1 −Q(t)/Qeq] and the corresponding scaled total ion accu-
mulation [1 −Qions(t)/Qions,eq]. We observe that, at late times, Q
and Qions relax with the same relaxation time and that Qions over-
shoots, while Q does not. Most importantly, at early times, data for
the scaled charge and accumulated ion densities collapse for differ-
ent V0. Hence, the difference between Eqs. (17) and (20) does not
underlie the V0-dependent early-time relaxation found in Ref. 30.

V. CONCLUSION
Using DDFT, we have studied the response of electrolytes

between two flat electrodes to a suddenly applied voltage difference
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for a wide range of electrolyte concentrations. Near the charged elec-
trodes, we found alternating layers of cationic and anionic charge,
in line with density functional theory studies of the equilibrium
EDL.30,32,41,50 Our work showed how this layered structure builds
up on two characteristic timescales, τ1 and τ2. Contrasting a prior
DDFT study,30 we find that the early-time relaxation time τ1 does
not depend on the applied voltage: We showed that τ1 agrees—over
a wide range of average concentrations and even for V0 as large as
1 V—with the RC time λDL/[2D(1 + λS/λD)], which follows from
the linearized PNP equations.19,21,22 DDFT predictions for the late-
time relaxation time τ2 are decently captured by predictions from the
modified PNP theory.20 Hence, even though the PNP and modified
PNP theory do not describe ion layering in the EDL,41 these theo-
ries do predict the same timescales of EDL formation as our more
accurate DDFT.

SUPPLEMENTARY MATERIAL

The supplementary material contains three videos to reinforce
our findings.

Video 1 presents the transient dimensionless electrostatic
potential ϕ(x, t) and anionic flux density j−(x, t) of a slit system with
separation L = 12σ filled with a pure ionic liquid (ρs = 3.5 M). We
do not show the cationic density flux j+(x, t)—for which j+(L − x, t)
= j−(x, t) holds, as cations and anions are modeled as equal-sized,
oppositely charged spheres. j−(x, t) > 0 shortly after applying the
voltage difference, which means that anions move uniformly toward
the electrode at x = 0 (from right to left). Around t > 0.1τσ , j−(x, t)
oscillates across the whole slit with a wavelength close to the ion
size σ. For these times, the EDL rearranges into cation-rich and
anion-rich layers. From t = 1.0τσ onward, j−(x, t) is directed to both
electrodes, changing sign in the middle of the slit. From Fig. 4(a) of
the main text, we see that these times correspond to the diffusive τ2
relaxation.

Video 2 is identical to Video 1, except for a larger electrode sep-
aration of L = 24σ. Oscillations in j−(x, t) appear in Video 2 later
(t = 0.15τσ) than in Video 1 (t = 0.1τσ). From comparing the time
at which the potential ϕ(x = σ/2, t) drops below zero in Video 2
(t = 0.1τσ) and in Video 1 (t = 0.035τσ), we again see that the EDL
develops slower for larger electrode separation.

Video 3 is identical to Video 1, except for a smaller salt concen-
tration ρs = 1 M. Comparing Videos 1 and 3, we see that the EDLs
develop faster for smaller salt concentration, in line with Fig. 4(a) of
the main text. In the video, we also present the solvent density flux
j0(x, t). We see that j0(x, t) oscillates at early times with a period
comparable to the particle size. Around t = 0.1τσ , the period of these
oscillations starts to increase, until t = 2.5τσ , when j0(x, t) is uni-
formly directed toward the center x = L/2 of the slit, hence opposite
to the anionic flux density.
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