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ABSTRACT
Understanding how electrolyte-filled porous electrodes respond to an applied potential is important to many electrochemical technologies.
Here, we consider a model supercapacitor of two blocking cylindrical pores on either side of a cylindrical electrolyte reservoir. A stepwise
potential difference 2Φ between the pores drives ionic fluxes in the setup, which we study through the modified Poisson–Nernst–Planck
equations, solved with finite elements. We focus our discussion on the dominant timescales with which the pores charge and how these
timescales depend on three dimensionless numbers. Next to the dimensionless applied potential Φ, we consider the ratio R/Rb of the pore’s
resistance R to the bulk reservoir resistance Rb and the ratio rp/λ of the pore radius rp to the Debye length λ. We compare our data to
theoretical predictions by Aslyamov and Janssen (Φ), Posey and Morozumi (R/Rb), and Henrique, Zuk, and Gupta (rp/λ). Through our
numerical approach, we delineate the validity of these theories and the assumptions on which they were based.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094553

I. INTRODUCTION

The dynamics of ions in narrow conducting pores underlies
various technologies including biosensors1 and capacitive energy
storage,2–4 energy harvesting,5 and water deionization.6 Many of
these technologies are based on charging porous electrolyte-filled
electrodes, which is a multi-scale process that involves ionic cur-
rents over millimeters in electroneutral reservoirs and micron-sized
macropores, to form nanometer-sized electric double layers (EDLs)
in the electrodes’ pores.7 Standard electrochemical techniques such
as cyclic voltammetry and impedance spectroscopy characterize the
response of a macroscopic electrode–electrolyte system.8–10 The
microscopic processes underlying charging of pores, possibly of dif-
ferent sizes and shapes, are then measured all at once; disentangling
such microscopic information is not straightforward. Experimental
insight into the charging dynamics at the single-pore level is, thus,
difficult, but progress has been made using nuclear magnetic

resonance experiments (albeit on macroscopic porous
electrodes)11,12 and with the surface force balance apparatus.13

Molecular simulation studies face difficulties opposite to those of
experiments as computational power limits simulations to idealized
systems of several nanometers at most. Specifically, many molecular
dynamics studies considered ionic liquid-filled slit pores with pore
widths comparable to the ion diameters;14–18 cylindrical pores19 and
realistic (but small) porous structures20 were also studied.

These experiments and simulations are often interpreted using
the transmission line (TL) model.21–23 This model asserts (i) that the
charging of a mesoporous electrode filled with a dilute electrolyte
can be characterized through the charging of a single pore and (ii)
that the charging of such a pore can be described by an equivalent
circuit, the transmission line circuit, which distributes the pore’s total
resistance R and capacitance C over smaller circuit elements. In the
limit of infinitely many, infinitesimally small resistors and capaci-
tors, the TL circuit gives rise to the differential “TL equation” [viz.
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Eq. (6)] for the local electrostatic potential in the pore.24 The TL
equation was solved for semi-infinite pores subject to various time-
dependent voltages and currents by Ksenzhek and Stender22 and de
Levie.23 They found that a step potential causes the charge Q on
the pore to increase with a power law, Q∝

√
t. This result can at

best represent a short-time regime since, clearly, the charge cannot
continue to grow indefinitely. Posey and Morozumi25 solved the TL
equation for finite-length pores and found that, on longer timescales,
pores charge exponentially with a timescale proportional to RC [see
Eq. (9)]. These authors also discussed the influence of a bulk reser-
voir of resistance Rb with which the pore is in contact. Gupta and
co-workers studied a pore with overlapping EDLs, for which they
proposed and solved an amended TL equation [see Eq. (17)].26,27

Hundreds of articles have used the TL model and its solutions.
Yet, only a handful studied the microscopic physics underlying
the TL model—ionic currents in a pore and the EDL formation
on its surfaces.26–31 Sakaguchi and Baba numerically solved the
Poisson–Nernst–Planck (PNP) equations to study a finite-length
pore subject to a suddenly-applied potential.28 Their analysis con-
firmed the short-time power-law scaling but not the exponential
relaxation regimes, presumably because ionic charge perturbations
did not yet span the entire pore at the latest times they considered
[cf. Figs. 1(c) and 1(d) therein]. Mirzadeh et al.31 also solved the

FIG. 1. (a) Section view of the microscopic model of two cylindrical pores of length
ℓp and radius rp connected to a cylindrical reservoir of length ℓr and radius r r .
The setup is filled with a 1:1 electrolyte (not shown) with ions of diameter a at
salt concentration cb. (b) Representation of a typical mesh to numerically solve the
modified Poisson–Nernst–Planck equations. (c)–(g) Heat maps of the local electric
potential ϕ(r) inside the positive electrode pore at times t after switching on a
potentialΦ = 10−3 on the electrode, for (c) t = 1 μs, (d) t = 20 μs, (e) t = 50 μs, (f)
t = 100 μs, and (g) t = 1000 μs. We used the ionic diameter a = 0.1625 nm, bulk
salt concentration cb = 0.01M, pore length ℓp = 1 μm, pore radius rp = 50 nm,
and reservoir length and radius ℓr = r r = 2 μm.

PNP equations numerically and showed that the TL model accu-
rately describes pore charging for small applied potentials, not only
for cylindrical pores but also for other geometries.31 Two recent
studies further reinforced the TL equation’s theoretical basis with
first-principles analytical derivations: both starting from the PNP
equations, Henrique et al.27 derived the TL equation and Aslyamov
and Janssen32 derived the finite-length TL results of Posey and
Morozumi.

The TL model only applies to pores subject to applied poten-
tials smaller than the thermal voltage (24 mV at room temperature).
Several recent articles moved beyond the TL model and studied the
response of electrolyte-filled pores subject to larger applied poten-
tials, Φ ∼ 1, with Φ the applied potential scaled to the thermal
voltage.31,33,34 Robinson et al. argued that, at large applied poten-
tials, salt depletion from the pores increases their resistivity, slowing
down charging.33 Biesheuvel and Bazant also predicted that, after
initial TL-model behavior, a slower exponential relaxation sets in
with a timescale characteristic of neutral salt diffusion.34 A charging
slowdown with increasing Φ was, indeed, visible in the numerical
PNP solutions of Mirzadeh et al.,31 but the system slowed down less
than predicted by Ref. 34. The authors ascribed this discrepancy to
surface conduction: for moderate Φ, the EDLs present a shortcut for
ions to bypass the dilute center of the pore. Semi-analytical results
of Aslyamov and Janssen32 fully agreed with the numerical results of
Ref. 31.

The PNP equations do not account for electrostatic correla-
tions and the finite size of the ions, so the validity of the mentioned
numerical and analytical studies is limited to cases wherein these
effects can be ignored. The point-ion approximation is justified for
dilute electrolytes and for Φ ∼ 1, but not for concentrated elec-
trolytes or for larger Φ. Accordingly, Niya and Andrews studied the
charging of porous conductive carbon materials35 through the modi-
fied Poisson–Nernst–Planck (MPNP) equations.36 Aslyamov et al.37

used classical density functional theory to study slit pore charging.
They unified all three known charging regimes: the pore’s charge
first increases as if it was semi-infinite (Q∝

√
t), then slows down

and approaches its equilibrium value exponentially with an RC time,
and then slows down even further and equilibrates exponentially
with the salt diffusion timescale.37

In this article, we report comprehensive numerical simulations
of pore charging using the MPNP equations. We consider many dif-
ferent pore and reservoir sizes, ion diameters, ion concentrations,
and applied potentials. We focus our discussion on three dimen-
sionless parameters: the ratio R/Rb of the pore’s resistance R to the
bulk reservoir resistance Rb, the ratio rp/λ of the pore radius rp to
the Debye length λ, and the dimensionless applied potential Φ. We
compare our numerical solutions to theory predictions from Refs.
24, 25, 27, and 32 that have not been tested before.

II. MODEL
A. Setup

We consider two cylindrical metallic pores of equal length ℓp
and radius rp separated concentrically by a cylindrical bulk reser-
voir of length ℓr and radius rr ; see Fig. 1. At the ends of the pores
are caps of length rp/5 with rounded edges of the same radius (the
length of the cap is not counted in ℓp). We also add two “connecting
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regions” of smooth corners of radius rp/5 that link the reservoir
to the two pores. These regions yield faster convergence of our
numerical simulations but have almost no effect on the charging; see
Fig. S1 in the supplementary material. For cases wherein the reser-
voir and pores have the same radius, we exclude the connecting
region between the pore and reservoir. We denote the surfaces of
the two pores by S1 and S2, the boundaries of the reservoir by S3 and
S4, and the boundary of the connecting regions and the caps by S5
and S6. Upon applying a potential between the pores, S1 and S2 will
acquire opposite electric charge, while S3 to S6 remain uncharged.
We focus on the charging of the right pore and use a cylindrical coor-
dinate system and a position vector r = (r, θ, z) such that r = 0 at the
left edge of this pore and such that the z-axis is aligned with the axes
of the pores and reservoir.

The reservoir and pores are filled with a 1:1 electrolyte at a bulk
ion concentration cb. The solvent is treated as a structureless contin-
uum of dielectric constant ε = 6.9× 10−10 F m−1 and solvent viscosity
η = 1.002 × 10−3 Pa s−1 (these values are characteristic for water) at
temperature T = 293 K. The cations and anions carry the charge +e
and −e, with e being the elementary charge. We set the ionic diffu-
sivity to D = 1.34 × 10−9 m2 s−1, which is typical for alkali halides in
water. For simplicity, neither the concentration dependence nor the
effect of confinement is taken into account for the dielectric constant
ε and the diffusivity D. For future reference, we define two timescales
that will appear repeatedly in our discussion,

τI =
2λ
rp

ℓ2
p

D
, τII =

ℓ2
p

D
, (1)

where λ =
√
εkBT/(2e2cb) is the Debye length, with kB being

Boltzmann’s constant.
As our setup has a cylindrical symmetry around the z axis, all

physical observables are independent of the azimuthal angle θ. We
study the time-dependent ionic number densities ρ

±
(r, z, t)—the

local ionic concentrations scaled to cb—and the dimensionless
potential ϕ(r, z, t)—the local electrostatic potential scaled to the
thermal voltage kBT/e. From ϕ(r, z, t), we will determine the right
pore’s surface charge density,

q(z, t) =
εkBT

e
∂rϕ(r ∈ S2, t), (2)

and its total surface charge,

Q(t) = 2πrp∫
S2

dz q(z, t). (3)

For Eq. (2), we used that n ⋅∇ϕ = −∂rϕ on S2, where n is the inward
normal to the surface.

B. Governing equations
We model ρ

±
(r, z, t) and ϕ(r, z, t) through the MPNP equa-

tions,

∇
2ϕ = −

ρ+ − ρ−
2λ2 , (4a)

∂tρ± = −∇ ⋅ j±, (4b)

j
±
= −D[∇ρ± ± ρ±∇ϕ +

a3ρ±∇(ρ+ + ρ−)
1 − a3(ρ+ + ρ−)

], (4c)

where Eq. (4a) represents the Poisson equation, Eq. (4b) is the
continuity equation, and Eq. (4c) is the modified Nernst–Planck
equation.36 Here, j

±
(r, z, t) are the ionic fluxes scaled to cb.

We consider the pores to be uncharged and the electrolyte to
be homogeneous initially. At time t = 0, we apply a positive dimen-
sionless potential Φ to the right pore and a negative dimensionless
potential −Φ to the left pore. This yields the following initial and
boundary conditions:

ρ±(r, t = 0) = 1, (5a)

ϕ(r ∈ S1, t > 0) = −Φ, (5b)

ϕ(r ∈ S2, t > 0) = Φ, (5c)

n ⋅ j
±
(r ∈ {S1,S2,S3,S4,S5,S6}, t) = 0, (5d)

n ⋅ ∇ϕ(r ∈ {S3,S4,S5,S6}, t) = 0. (5e)

Here, Eq. (5d) signifies that all walls are blocking and Eq. (5e) sig-
nifies that surfaces of the caps connecting regions and reservoir
boundaries remain uncharged.

Note that the last term in Eq. (4c)—the term that sets MPNP
apart from PNP—only contributes significantly to j

±
for moderate

applied potentials (Φ ∼ 1 or larger) and is irrelevant for small applied
potentials (Φ≪ 1).

C. Numerical implementation
Numerical simulations for various system parameters

cb, a,Φ, ℓp, rp, ℓr , and rr were performed with COMSOL MULTI-
PHYSICS 5.4. We used a structured nonuniform computational
mesh [see Fig. 1(b)]: coarse in the reservoir domain and finer
near all boundaries, where we used a multilayer rectangular grid
with a progressively finer layer-to-layer spacing. The maximum
element size was 10 μm, while the minimum ranged from 0.17 to
100 nm in the pore domain depending on the Debye length. The
largest salt concentration we considered was cb = 0.1M, for which
λ = 0.959 nm. Hence, the EDL is resolved by at least five grid points.

III. RESERVOIR-DEPENDENT CHARGING
A. TL model

As a first example of numerically-determined pore charging,
Figs. 1(c)–1(g) show the dimensionless potential ϕ(r, z, t) for five
successive times of an electrolyte-filled pore with a bulk concen-
tration cb = 0.01M (so that λ = 3.03 nm), ion size a = 0.1625 nm,
pore length ℓp = 1 μm, pore radius rp = 50 nm, and reservoir dimen-
sions ℓr = 2 μm and rr = 2 μm, subject to a small applied potential
Φ = 10−3. At early times, ϕ(r, z, t)/Φ = 1 in most of the pore, which
implies that the pore’s surface charge density and electric field in the
pore are both zero. However, near the reservoir, a finite electric field
drives counterions into the pore and coions out of it. At later times,
EDLs form in the nanometer vicinity of the pore surfaces, their width
set by the Debye length λ, and the potential ϕ(r, z, t) decreases until
it is zero everywhere except in the EDLs.

The TL model was developed to describe the charging of such
pores. However, instead of the full dimensionless potential ϕ(r, z, t),
the TL equation
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RC∂tψ = ℓ2
p∂

2
zψ, 0 < z < ℓp, (6)

only captures the evolution of ψ(z, t) = ϕ(r = 0, z, t) at the pore’s
centerline. In our case of a cylindrical pore, the pore’s resistance
amounts to R = 𝜚ℓp/(πr2

p), with 𝜚 = λ2
/(εD) being the electrolyte

resistivity. For thin EDLs and small Φ, the pore’s Helmholtz capac-
itance amounts to C = 2πrpℓpε/λ. Their product RC equals τI as
defined in Eq. (1). For this reason, τI is known as the TL timescale.31

However, this is a bit misleading as the dominant relaxation
timescale of a finite-length pore actually also depends on the para-
meters of the reservoir with which it is in contact.24,25 Here, the bulk
resistance Rb dependence enters the problem through the boundary
conditions to which Eq. (6) is subject,24,25,34 viz.,

ψ(z, 0) = Φ, 0 < z < ℓp, (7a)

ℓp∂zψ(0, t) =
R
Rb
ψ(0, t), (7b)

∂zψ(ℓp, t) = 0. (7c)

Here, Eq. (7a) describes the initial condition, Eq. (7b) expresses
Kirchhoff’s current law at the reservoir–pore interface, and Eq. (7c)
accounts for the blocking wall at the end of the pore.

For our setup, the bulk resistance Rb = Rr + Rc consists of two
parts, i.e., the resistance Rr = 𝜚ℓr/(2πr2

r ) of half of the reservoir and
the resistance Rc of the connecting region. This connecting region
is bordered by rounded edges of radius rp/5 centered around z = 0.
The z-dependent radius rc(z) of the connecting region thus satisfies
z2
+ (rc − 6rp/5)2

= r2
p/52. To find Rc, we view the connecting region

as a stack of cylindrical slabs of infinitesimal thickness dz and resis-
tance ρdz/A, with A = πr2

c . We then find Rc = 𝜚∫
0
−rp/5

dz/[πrc(z)]2,
which, upon writing z̄ = z/rp, yields

Rc =
𝜚
πrp
∫

0

−
1
5

dz̄(6/5 +
√

1/52 − z̄ 2)
−2
≈

𝜚
πrp
× 0.109. (8)

We, thus, find Rb = Rr(1 + Rc/Rr), where Rc/Rr ≈ 0.218 × r2
r /(rpℓr).

In our calculations below, this term varies between Rc/Rr = 1.09
(for rr = ℓr = 1 μm and rp = 200 nm) and Rc/Rr = 54.5
(for rr = ℓr = 50 μm and rp = 200 nm). Hence, for very wide
reservoirs, the tiny connecting region can constitute the major part
of the bulk resistance, Rb ≈ Rc. However, the pore’s resistance is
always vastly larger than that of the connecting region, Rc ≪ R, so
in cases where Rb ≈ Rc, we have Rb ≪ R.

Posey and Morozumi solved Eqs. (6) and (7) (albeit in different
notation) and found25

ψ(z, t)
Φ

= ∑
j≥1

4 sin βj cos [βj(1 − z/ℓp)]

2βj + sin 2βj
exp(−

t
τj
), (9a)

with timescales τj = τI/β2
j and βj solutions of

βj tan βj =
R
Rb

. (9b)

As discussed in Ref. 24, the early-time charging behavior of the
TL, Eq. (6), is not affected by the Neumann boundary condition,

Eq. (7c), which, for all practical purposes, can be taken toward
ℓp →∞. A solution to the TL equation for these settings was
presented in Eq. (6) of Ref. 24,

ψ(z, t)
Φ

= 1 − erfc

¿
Á
ÁÀ z2

ℓ2
p

RC
4t

+ exp(
R
Rb

z
ℓp
+

R2

R2
b

t
RC
)

× erfc
⎛

⎝

¿
Á
ÁÀ z2

ℓ2
p

RC
4t
+

R
Rb

√
t

RC
⎞

⎠
. (10)

We find the total surface charge Q(t) = −∫
t

0 dt′I(t′) on the pore,
with I(t) = −(kBT/e)ℓp∂zψ(0, t)/R the ionic current into the pore,
as

Q(t) =
kBT

e
CΦ
⎡
⎢
⎢
⎢
⎢
⎣

√
4t
πRC

−
Rb

R

+
Rb

R
exp(

R2

R2
b

t
RC
)erfc

⎛

⎝

R
Rb

√
t

RC
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (11)

When the bulk resistance is negligible compared to the resistance of
the pore, R≫ Rb, Eq. (11) reduces to

Q(t) =
kBT

e
CΦ
√

4t
πRC

, (12)

which is the ∝
√

t behavior discussed before.28 When the reservoir
resistance is not small, R ∼ Rb, we find the early-time behavior by
expanding Eq. (11) for t/(RC) ≪ 1,

Q(t) =
kBT

e
Φ
Rb
[t +O(t3/2

)]. (13)

B. Comparing numerical MPNP solutions
to TL-model predictions

We numerically solve Eqs. (4) and (5) for a narrow reservoir
(R/Rb = 2) and a wide reservoir (R/Rb = 420.16) and plot the result-
ing centerline potential ϕ(r = 0, z, t) in Fig. 2 (solid lines). In the
same figure, we plot Eq. (9) (dashed lines). In both panels, we see
that, from t = 10−4 s onward, Eq. (9) agrees well with the numer-
ical data although slightly better for the narrower reservoir. The
early times t = 10−7 and 10−5 s are captured much worse, especially
near the pore mouth at z = 0. We also show the centerline poten-
tial ϕ(r = 0, z, t = 0) (black lines) at the moment of switching on
the potential difference. To determine ϕ(r = 0, z, t = 0), rather than
Eqs. (4) and (5), we solved the Laplace equation

∇
2ϕ(r, z, t) = 0, (14a)

ϕ(r ∈ S1, t > 0) = −Φ, (14b)
ϕ(r ∈ S2, t > 0) = Φ, (14c)

n ⋅ ∇ϕ(r ∈ {S3,S4,S5}, t > 0) = 0, (14d)

which is based on the right-hand side of the Poisson Eq. (4a) being
zero at t = 0. Figure 2(a) shows that the potential in the reservoir
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FIG. 2. Position dependence of the relative potential on the central axis at different
times after switching on a voltage (a) for a narrow reservoir r r = rp and in (b)
for a wide reservoir r r = 50rp (b). The other parameters are set to Φ = 10−3,
rp = 200 nm, ℓp = ℓr = 10 μm, and cb = 0.001M. We show numerical solutions to
the MPNP Eq. (4) for t = 10−7, 10−5, 10−4, 10−3, 10−2, and 10−1 s (solid colored
lines) and analytical predictions from Eq. (9) (dashed lines) for the same times.
We also show a numerical solution to the Laplace equation Eq. (14) (black), which
corresponds to t = 0.

is linear in the special case rr = rp, but not if the reservoir is much
wider than the pore, as in Fig. 2(b). This may be one reason caus-
ing the worse performance of the TL model for the wide reservoir,
as Refs. 27 and 34 motivated Eq. (7b) by the potential being linear
in the reservoir. As Eq. (7b) can also be derived directly from the TL
circuit—containing a single resistor to model the whole bulk reser-
voir24— we conclude that this circuit does not capture the early-time
charging of pores coupled to wide reservoirs. Next, the black line in
Fig. 2(b) shows that the potential in the pore (0 < z < ℓp) deviates
from ψ(z = 0, t) = Φ at t = 0. Hence, the initial condition, Eq. (7a),
used in the TL model does not correspond to the numerical simula-
tions. The discrepancy between Eq. (9) and the MPNP at early times
must, therefore, at least be partially caused by the inaccurate initial
condition, Eq. (7a).

Figure 3 shows the early-time behavior of Q(t) for the same
parameters as we used in Fig. 2. Here, the black line corresponds to
rr = 10 μm, for which R/Rb = 420.16, and the red line corresponds to
rr = 200 nm, for which R/Rb = 2. Square-root charging (Q∝

√
t) is

visible for rr = 10 μm up to about t = 10−2 s, when the exponen-
tial charging starts. This square-root charging is in line with the
theoretical prediction Eq. (12) for R/Rb ≫ 1. For rr = 200 nm, the
early-time charge accumulation scales linearly, in line with Eq. (13)
for R/Rb ∼ 1.

C. Dependence of the charging time on R/Rb

We further study the dependence of the charging time of pore
charging on the size of the reservoir. Figure 4(a) shows the nor-
malized surface charge Q(t)/Qeq as a function of time for different
reservoir radii rr and lengths ℓr ; the legend is arranged in the order
of increasing Rr = 𝜚ℓr/(2πr2

r ). Here, Qeq is the charge Q(t) at the
final timestep. We further set rp = 200 nm and cb = 10−3 M such that
λ/rp = 20.7; hence, the EDLs are nonoverlapping. In the figure, we
see that Q(t)/Qeq does not vanish at t = 0, which was already sug-
gested by the aforementioned deviations from ψ(z = 0, t = 0) = Φ in
Fig. 2(b). Charging relaxation curves overlap for the six smallest Rr ,
implying that the reservoir has no significant influence. Conversely,
for the three largest reservoir resistances, the charging is increasingly
slow. This slowdown is also visible in Fig. 4(b), where we plot the
same data now as ln(1 −Q(t)/Qeq). The data in Fig. 4(b) vary lin-
early vs time on timescales τI [Eq. (1)], indicating that the surface
charge relaxes exponentially on this timescale. To characterize this
exponential charging in more detail, we introduce the instantaneous
numerical relaxation-time function,

τnum(t) = [
d ln(1 −Q(t)/Qeq)

dt
]

−1

. (15)

FIG. 3. Log–log plots of the normalized surface charge density Q(t)/Qeq, for a
wide reservoir with r r = 10 μm (black) and a narrow reservoir with r r = 200 nm
(red). The other parameters are set to cb = 10−3 M, ℓp = 10 μm, rp = 200 nm,
Φ = 10−3, a = 0.1625 nm, and ℓr = 10 μm.
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FIG. 4. (a) The normalized surface charge density Q(t)/Qeq vs time, and the (b)
surface charge relaxation vs time scaled by τI for different reservoir radii r r and
lengths ℓr . The other parameters are set to ℓp = 10 μm, rp = 200 nm, Φ = 10−3,
a = 0.1625 nm, and cb = 10−3 M.

For a purely exponential charging process, τnum(t) takes a constant
value. In reality, however, τnum(t) is time dependent: Fig. 5(a) shows
the instantaneous relaxation time function τnum(t), Eq. (15), for
several reservoir radii rr and lengths ℓr corresponding to the same
parameters of Fig. 4. We see that τnum(t) grows during the early
power-law charging (see Fig. 3) until it reaches a plateau around
t = 10−3–10−1 s whose height we denote by τ̄. (At late times,
Q(t) ≈ Qeq and the numerical derivative becomes erratic.) We found
that we can effectively determine τ̄ from the intersections of τnum(t)
with t (red dashed lines) at which time τnum = τ̄. Figure 5(b) shows
τ̄/τI vs Rb/R (red triangles) determined in this way. We see that
τ̄/τI does not depend on Rb/R for small values thereof and increases
linearly with Rb/R at large values. In the same panel, we show the
late-time relaxation timescale τ1 = τI/β2

1 of Eq. (9) (black line), for
which we numerically solved transcendental Eq. (9b). Reference 24
showed that τ1 can also be decently approximated by

FIG. 5. (a) The instantaneous relaxation time τnum(t) vs time, using the same
line styles and parameters as in Fig. 4, and (b) corresponding numerical charg-
ing timescale τ̄ scaled by τI (red triangles) vs the ratio of reservoir resistance to
pore resistance Rb/R. The other parameters are set to ℓp = 10 μm, rp = 200 nm,
Φ = 10−3, a = 0.1625 nm, and cb = 10−3 M. We also show a case with
overlapping EDLs (green dots) for which cb = 10−6 M. Finally, we show
theoretical predictions from Eq. (16) (dashed blue line) and Eq. (9b) (black
line).

τ1 ≈ RC(
4
π2 +

Rb

R
). (16)

Figure 5(b) shows that both τ1 determined numerically from
Eq. (9b) and its approximation [Eq. (16)] (blue dashed line) agree
well with τ̄(t).

Instead of τ1, Posey and Morozumi studied the time at which
their ψ(z = ℓp, t) curve inflected. Their Fig. 10 of this “delay time”
vs log(Rb/R) is constant for Rb/R≪ 1 and increases Rb/R≫ 1. Our
Fig. 5(b) (and Fig. 3 of Ref. 24) is thus related but not identical to
Posey and Morozumi’s Fig. 10.
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IV. DEPENDENCE ON EDL OVERLAP λ/rp
A. Theory

Recent work by Fernandez et al.27 generalized the TL model
to arbitrary values of λ/rp. They found the following centerline
potential:

ψ(z, t)
Ψ

= I0(
rp

λ
)
−1
+ [1 − I0(

rp

λ
)
−1
]

×∑
j≥1

4 sin βj cos[βj(1 − z/ℓp)]

2βj + sin 2βj
exp(−

t
τj
), (17a)

where the timescales τj with j = 1, 2, . . . read

τj =
I1(rp/λ)
I0(rp/λ)

τI

β2
j

, (17b)

where I0 and I1 are modified Bessel functions of the first kind and
where βj are the solutions of

βj tan βj =
ℓp

ℓs

r2
s

r2
p

. (17c)

In Eq. (17c), ℓs and rs are the length and radius of a “stagnant diffu-
sion layer” (SDL), a thin region in the reservoir next to the pore over
which the potential supposedly drops to zero. As already noted in
Ref. 27, the right-hand side of Eq. (17c) is effectively a ratio R/RSDL
of the pore resistance to the SDL resistance. As we did not account
for any physical mechanisms (e.g., convection) by which the poten-
tial would drop to zero faster than at the center of our reservoir,
in Sec. II, we preferred using the reservoir size in lieu of the SDL
width. In other words, we prefer replacing RSDL by Rb. With this
identification, we see that Eq. (17) reduces to Eq. (9) when rp ≫ λ.

Reference 27 already plotted ψ(z, t) from Eq. (17) vs z for sev-
eral times and found good agreement with numerical solutions of
the PNP equations. Here, we discuss the dependence of the late-time
relaxation time τ1 on the various system parameters.

B. R/Rb dependence for λ/rp ≫ 1
When λ/rp ≫ 1, we have that I1(rp/λ)/I0(rp/λ) ≈ rp/(2λ) so

that the late-time relaxation time can be determined from Eq. (17b)
as τ1 = τII/β2

1. We solved the MPNP equations for different ℓr and
rr and we set ℓp = 10 μm, cb = 10−6 M, and rp = 200 nm, so that
rp/λ = 0.66. From these numerical solutions, we determined τ̄/τII ,
which we plot with green dots in Fig. 5(b). We see that these scaled
data overlap with the τ̄/τI data determined in Sec. III C for λ/rp ≪ 1.

C. λ/rp dependence for R/Rb ≫ 1
Next, we considered many different cb, rp, ℓp, and a. In all cases,

R/Rb ≫ 1; the smallest value considered was R/Rb ≈ 193.80. For
such large R/Rb, we can use that in the limit of R/Rb →∞; Eq. (17c)
is solved by β1 = π/2 and

τ1 =
4
π2

I1(rp/λ)
I0(rp/λ)

τI. (18)

First, we investigate how the electrolyte concentration affects
the charging dynamics. Figure 6 shows the surface charge density
Q(t)/Qeq vs time for several cb. We see that charging goes faster at
higher electrolyte concentrations, which agrees with the τI timescale
[Eq. (1)] from TL theory. Moreover, this panel shows that the charge
data collapse for concentrations below 10−5 M, for which Debye
lengths are comparable to or larger than the pore radii.

We then drew figures similar to Fig. 6 for cases wherein we
varied ℓp, rp, and a; see panels (a), (b), (d), (e), (g), and (h) of Fig.
S2 in the supplementary material. From these data, we determined
the respective numerical charging timescales τ̄, which we have col-
lected in Fig. 7(a). We see there that τ̄ is independent of cb for dilute
electrolytes, while τ̄ ∼ c−0.5

b for concentrated electrolytes. Moreover,
the numerical relaxation time vs electrolyte concentration for three
ion diameters a = [0.1625, 0.3, 0.5] nm and a pore size of ℓp = 10 μm
and rp = 200 nm collapse onto a single curve in Fig. 7(a). The inde-
pendence of the charging process on the ion diameter is also visible
in the supplementary material in Figs. S2(g)–S2(i), where Q(t)/Qeq
and τ̄ are unaffected by a over a wide a-range. This independence
is easy to understand: for the small potential Φ = 10−3 considered
here and in Fig. S2, MPNP and PNP are essentially the same, and
PNP does not depend on a. Next, Fig. 7(b) presents the same τ̄ data
as Fig. 7(a), but now normalized by τI [Eq. (1)] and now vs rp/λ.
With this scaling, data for the different pore sizes and ionic diam-
eters collapse onto a single curve that accurately agrees with τ1/τI
from Eq. (18). To understand Fig. 7(b) qualitatively, note that the
ratio of Bessel functions in Eq. (18) behaves as

I1(rp/λ)
I0(rp/λ)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

rp

2λ
for rp ≪ λ,

1 for rp ≫ λ.
(19)

With Eq. (18), we then find

FIG. 6. The normalized surface charge density Q(t)/Qeq vs time for various
electrolyte concentrations of cb = (10−6

− 4) M, with τI given by Eq. (1). The
other parameters are set to ℓp = 10 μm, rp = 200 nm, a = 0.1625 nm, Φ = 10−3,
lr = 10 μm, and r r = 10 μm.
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FIG. 7. (a) Numerical relaxation τ̄ of our pore setup for Φ = 10−3 and various
pore sizes and ion diameters a, plotted against cb. Panel (b) shows the same data
as (a), normalized by τI and plotted against rp/λ. The reservoir size was set to
ℓr = 10 μm and r r = 10 μm. The legend in panel (b) also applied to panel (a).

τ1

τI
=

4
π2 ×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

rp

2λ
for rp ≪ λ,

1 for rp ≫ λ,
(20)

which agrees with the scaling observed in Fig. 7(b).
The rp/λ-dependent charging dynamics of our pore-reservoir-

pore setup is reminiscent of the charging of an electrolyte between
two planar electrodes separated by a distance L—for which L/λ is
a key parameter. For the latter setup, the linearized PNP equations
can be solved with a Laplace transformation, which was first done
approximately by Bazant et al.38 and later exactly by Janssen and
Bier39 and Palaia.40 In particular, Ref. 39 predicted the following
late-time relaxation timescale,

τp =
λ2

D(1 +M 2
1λ2/L2)

, (21a)

M1 ≡

⎧⎪⎪
⎨
⎪⎪⎩

M1 for L/λ <
√

3,

im̃1 for L/λ >
√

3,
(21b)

where M1 and m̃1 are the smallest solutions of two transcendental
equations,

tan M =M(1 +M2λ2
/L2
), (21c)

tanh m̃ = m̃(1 − m̃ 2λ2
/L2
). (21d)

Equation (21) has the following limiting behavior:

τp =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

4L2

π2D
[1 +O(L/λ)2

] for L/λ≪
√

3,

λL
D
[1 +O(λ/L)] for L/λ≫

√
3.

(22)

For four values between L/λ = 11 and 32, Asta et al.41 showed with
lattice Boltzmann electrokinetics simulations that Eq. (21) predicted
the relaxation timescale more accurately than the well-known RC
time λL/D. To our knowledge, the predictions of Refs. 39 and 40
for L/λ < 1 have not been numerically tested. Therefore, we used
the same MPNP implementation as before to simulate the charging
dynamics of two flat plates over a wide range of L and cb. Figure 8(a)
shows numerical results for the numerical charging timescale τ̄. We
observe that τ̄ ∼ c−0.5

b for most cases except for extremely dilute elec-
trolytes in narrow confinement. Figure 8(b) shows that the same data
collapse onto a single curve when we scale τ̄ by λL/D and plot these
data against L/λ. The data (symbols) in this panel agree excellently
with the theoretical prediction of Eq. (21) (line).

V. CHARGING AT MODERATE APPLIED
POTENTIALS Φ ∼ 1

Porous electrodes subject to moderate to large potentials are
known to acquire charge “biexponentially,” that is, the surface
charge is a sum of (at least) two exponential functions with two
different timescales.7,14,17,34,37,42 From the modeling point of view,
relaxation of porous electrodes on two timescales was first predicted
by Biesheuvel and Bazant.34 Mirzadeh and co-workers numerically
solved the PNP equations and found the outcome of biexponential
charge buildup—namely, charging slowdown—but did not disen-
tangle the two exponential regimes. Aslyamov and Janssen32 studied
a slit pore of width H with thin EDLs (H ≫ λ), for which they
derived

Q(t)
Qeq

≃ 1 −
8
π2 [exp(−

π2

4
1

cosh(Φ/2)
t
τI
)

+
4λ
H

sinh2
(
Φ
4
) exp(−

π2

4
t
τII
)] +O(η2

), (23)

where the discarded higher-order terms involve a Dukhin number,

η = 4 exp(
Φ
2
)
λ
rp

. (24)

For the thin EDLs considered in Ref. 32, τII ≫ τI [cf. Eq. (1)],
which means that Eq. (23) predicts relaxation on two well-separated
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FIG. 8. (a) Numerical relaxation τ̄ for planar electrodes subject to Φ = 10−3

with various separated distance L plotted against cb. (b) The same data in (a)
normalized by λL/D, plotted against L/λ.

timescales (unless Φ≫ 1). The second exponential term goes with
exactly the same timescale as we found in Eqs. (17) and (20). In these
equations, however, the τII timescale was caused by EDL overlap,
while, here, it is caused by moderate applied potentials. Note that, in
Eqs. (23) and (24), we replaced the pore width H of Ref. 32 by our
pore radius rp. We did this because a slit and a cylindrical pore have
hydraulic radii H/2 and rp/2,30 respectively, so that H and rp play
similar roles.

Figure 9 shows the charge buildup of our setup (lines) for
Φ = 0.001, 0.01, 0.1, 1, 2, and 4 for a wide reservoir (rr = 10 μm) (a)
and a narrow reservoir (rr = 200 nm) (b) as determined numerically
solving the MPNP equations. We also plot Eq. (23) (symbols) for the
same Φ. For the wide reservoir [Fig. 9(a)], the numerics agree with
Eq. (23) well except for Φ = 4. We see that, up to about t = 0.05 s,
1 −Q(t)/Qeq relaxes exponentially with a Φ-dependent slope, in
agreement with the first line of Eq. (23). (For Φ = 4, the slowdown
is less than predicted.) Thereafter, a second, slower exponential

FIG. 9. Surface charge relaxation at different values of applied potentials Φ and
for different reservoir sizes of (a) r r = 10 μm and (b) r r = 200 nm. Lines rep-
resent results from MPNP, dashed lines represent results from PNP, and dots
portray Eq. (23). Parameters are set to ℓp = 10 μm, ℓr = 10 μm, a = 0.1625 nm,
rp = 200 nm, and cb = 10−3 M, such that rp/λ = 20.7, i.e., nonoverlapping EDLs.

relaxation emerges, which becomes more important with increasing
Φ, in line with the sinh2

(Φ/4) term in Eq. (23).
While Eq. (23) was derived from the PNP equations, the other

data in Fig. 9 were determined numerically from the MPNP equa-
tions. For comparison, we also show numerical solutions of the PNP
equations [Eq. (4) without the last term of Eq. (4c)] with dashed lines
in Fig. 9(a). The data for 1 −Q(t)/Qeq are almost the same for PNP
and MPNP. This is not surprising as, for the a = 0.1625 nm and
cb = 10−3 M considered here, we have volume fraction v = 2a3

cb = 5.17 × 10−6; Fig. (5) of Ref. 43 shows that the capacitance of
the modified and regular Poisson Boltzmann theory hardly differs
for Φ < 10 for such a small v. Concluding, the difference between
PNP and MPNP does not explain the discrepancy between the dots
and lines in Fig. 9(a) at Φ = 4.

From Eq. (24), we see that the accuracy of Eq. (23) depends both
on the surface potential and the EDL overlap. For Φ = 2, we find
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FIG. 10. Evolution of normalized cation (solid lines) and anion (dashed lines) den-
sities along the r axis at the orifice for different reservoir sizes of (a) r r = 10 μm
and (b) r r = 200 nm under applied potentials Φ for an electrolyte concentration of
cb = 10−3 M. The other parameters are set to ℓp = 10 μm, rp = 200 nm,
ℓr = 10 μm, Φ = 10−3, and a = 0.1625 nm.

the smallish Dukhin number η = 0.52, which explains the decent
agreement between the analytical and numerical results observed
in Fig. 9(a) for that Φ value. Conversely, Φ = 4 yields η = 1.43, and
O(η2

) terms are thus no-longer small compared to the other terms in
Eq. (23), which are O(η) and O(1). This explains the discrepancies
in Fig. 9(a) between Eq. (23) and the numerical solutions atΦ = 4. As
η∝ c−1/2

b , one would expect the agreement between Eq. (23) and the
numerical solutions to improve with increasing cb, which we, indeed,
observe below (cf. Fig. 11).

For the narrow reservoir (R/Rb = 2), the agreement in Fig. 9(b)
between the numerics and Eq. (23) is much worse than in Fig. 9(a).
This was already anticipated in Ref. 32. The model therein did not
explicitly treat the reservoir but instead postulated the ionic number
density at the pore mouth (z = 0) to instantaneously adapt to the
equilibrium Gouy–Chapman solution,

ρ±(x) = (
1 + tanh(Φ/2) exp(−x/λ)
1 − tanh(Φ/2) exp(−x/λ)

)

∓2

, (25)

with x being the distance from the electrode surface. Reference 32
suggested that this postulate would work better for a larger
R/Rb—which we, indeed, observe now in Fig. 9—as this implies
that the reservoir is essentially in quasi-equilibrium while the pore
charges. To explicitly check the validity of the postulate in Ref. 32,
in Fig. 10, we compare Eq. (25) for x = rp − r to MPNP density
profiles at the orifice (z = 0) for the case of (a) a wide and (b) a nar-
row reservoir. We see that ρ

±
(rp − r, z = 0, t), indeed, approach their

steady-state profiles much faster for the wide than for the narrow
reservoir. For the wide reservoir, the density profiles at the orifice are
almost equilibrated at t = 10−8 s, while the rest of the pore relaxes
five orders of magnitude slower with τ1 = 2.89 × 10−3 s. From the
point of view of the rest of the pore, the orifice thus relaxes instan-
taneously. Finally, we note that the late-time ion densities are closer
to the Gouy–Chapman prediction for the narrow than for the wide
reservoir. While postulating instantaneously-relaxed ion densities at
the orifice may thus be justified when R≫ Rb, these densities may
deviate slightly from those deeper in the pore.

In Fig. 11, we again consider various potentials, now for
three different cb. As anticipated, Eq. (23) describes the numerical

FIG. 11. Surface charge relaxation at different values of applied potentials Φ at electrolyte concentrations of (a) 10−2 M, (b) 10−4 M, and (c) 10−6 M. The other parameters
are set to ℓp = 10 μm, ℓr = 10 μm, rp = 200 nm, and a = 0.1625 nm.
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solutions better at higher cb. For cb = 10−2 M, we see in Fig. 11(a) that
the pore relaxes biexponentially with two vastly different timescales.
Here, Eq. (23) describes the numerical solutions even at Φ = 4, for
which, now, η = 0.45 is, indeed, still smallish. For cb = 10−4 M, we see
in Fig. 11(b) that the pore still relaxes biexponentially, but that two
timescales differ less than for cb = 10−6 M [Fig. 11(c)]. We under-
stand this with Eq. (23), wherein τI decreases with cb, while τII
does not depend on it. For cb = 10−6 M, we see that analytical and
numerical predictions for 1 −Q(t)/Qeq do not agree at all.

VI. CONCLUSIONS
Numerically solving the modified Poisson–Nernst–Planck

(MPNP) equations, we have studied the charging dynamics of two
cylindrical electrolyte-filled pores on either side of a cylindrical elec-
trolyte reservoir, subject to a sudden potential difference. The pores
charge exponentially with different timescales, whose dependence
on the various system parameters we scrutinized.

For small applied potentials, we found quantitative agreement
between our numerical solutions of the MPNP equations and the
analytical result by Janssen24 for the bulk-resistance dependence of
the TL timescale, both for overlapping and nonoverlapping EDLs.
We showed that, contrary to conventional wisdom,27,34 the poten-
tial in the reservoir is not linear when the reservoir is wider than
the pore: it decays much faster into the reservoir. We also discussed
the influence of the reservoir resistance on the early-time charg-
ing behavior of our system: for R/Rb ≫ 1, we recovered the known
Q∝

√
t charging of Ref. 28; for R/Rb ∼ 1, we found a new linear

scaling behavior Q∝ t. In several ways, our work, thus, highlights
the importance of the electrolyte reservoir on the pore’s charging
dynamics, which was ignored in many prior studies. Furthermore,
we compared Posey and Morozumi’s TL equation solution to our
MPNP data and found that their solution generally works well
at late times and in the interior of the pore; differences between
the MPNP data and the TL model were visible at early times
and especially near the pore’s orifice. Future TL models should,
thus, pay close attention to the boundary and initial conditions
used.

For moderately strong applied potentials, we compared our
numerical solutions to a recent theoretical prediction of Aslyamov
and Janssen.32 We found good agreement between these methods for
small Dukhin numbers η, but only if the pore resistance R was vastly
greater than the reservoir resistance Rb. Discrepancies between these
methods for R ∼ Rb were traced to the postulate in Ref. 32 that the
density profiles at the pore’s orifice relax instantaneously, which we
showed to be reasonable only for R≫ Rb. Future work could, thus,
try to generalize the findings of Ref. 32 for cases where R ∼ Rb. We
hope that the insights from our numerical study motivate further
work, not only on improved theoretical models but also on new
experiments that probe porous electrode charging at the single-pore
level.

SUPPLEMENTARY MATERIAL

See the supplementary material for the effects of the pore cap,
pore size parameters, and ionic diameter on the pore charging
process.
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