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Play fighting, the most commonly reported form of social play, involves competition

to gain an advantage (Aldis, 1975), but there are two features that make it different from

serious fighting. First, it is highly pleasurable and associated with a positive affective

state (Vanderschuren et al., 2016). Second, the competition is moderated by cooperation,

ensuring that the interactions have a degree of reciprocity or turn taking between

partners (Palagi et al., 2016a). That is, the player with the advantage may voluntarily

relinquish it, thus allowing a role reversal to occur, with the original defender gaining

the opportunity to become the attacker (Pellis and Pellis, 2017). Thus, although actions

performed during play fighting can be accurately described as involving attack, defense,

and counterattack, the context of their use should not be confused with that of aggression.

For this reason, we will refer to this kind of play as rough-and-tumble play (RTP), to

highlight the cooperative aspect of these interactions. Nonetheless, competition during

RTP can create ambiguity as to whether a partner may be taking unfair advantage

of the situation, with effective communication being important to avoid the risk of

escalating to aggression or to partners being ostracized if they play too roughly (Palagi

et al., 2016b). Creating and resolving ambiguity, which requires balancing competition

and cooperation, also provides a vehicle by which juveniles and adolescents can train

socio-cognitive skills (Pellis and Pellis, 2009, 2017).

Laboratory rats have been an important model species with which to study the

neurobiology of RTP (Siviy and Panksepp, 2011; Siviy, 2016; Vanderschuren et al.,

2016). As shown in Figure 1, RTP in rats involves competition to gain access to the

partner’s nape of the neck, which is nuzzled with the snout if contacted (Pellis and

Pellis, 1987; Siviy and Panksepp, 2011). A variety of tactics are used to attack and defend

the nape, including launching counterattacks following a successful defense (Himmler

et al., 2013; Pellis et al., 2022). Rats are a particularly good model species for studying

RTP, as this behavior not only differs from serious fighting in the ways described above,

but also because serious fighting involves attacking other body targets, namely the

flanks and rump, which are bitten if contacted (Blanchard et al., 1977; Pellis and Pellis,

1987). Consequently, it can be readily discerned when a playful encounter escalates to

serious fighting, as the aggressor switches from attacking the nape to biting the partner’s

posterior (Stark and Pellis, 2020).
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FIGURE 1

A sequence of play fighting is shown for a pair of juvenile rats.

The rat on the left approaches the partner (a), and reaches

toward its nape from the rear (b), but before contact can be

made, the partner rotates around its longitudinal axis (c) to face

its attacker (d). By moving forward, the attacker pushes the

defender onto its side (e). The defender then rolls over onto its

back as the attacker continues to reach for its nape (f–h). Once

in the supine position, the defender launches an attack on its

partner’s nape (i), but fails due to its partner’s use of its hind foot

(j,k). Eventually, the rat on top (l) is pushed o� by the supine

animal (m), which then regains its footing (n). The original

defender then lunges toward its partner’s nape (o). (Reprinted

from Pellis and Pellis, 1987, with permission).

In laboratory rats, RTP begins to emerge in the third week

after birth, peaks in occurrence between the fourth and fifth

week and then declines with the onset of puberty, but continues

into adulthood, albeit at a lower level (Thor and Holloway, 1984;

Pellis and Pellis, 1990, 1997).While themotivation to play can be

modified by early experiences mostly derived from the mother

(Parent and Meaney, 2008; Van Hasselt et al., 2012), once play

begins at around 17 days of age, it takes about 10 days for the

repertoire of tactics used during play to mature fully and this

maturation appears to be little influenced by rearing experiences

(Himmler et al., 2015).

Neither the age-typical changes in the frequency of RTP nor

the availability of the full behavioral repertoire used during RTP

depend on the cortex, but cortical systems, especially those of the

prefrontal cortex, are critical to allow rats to modulate aspects of

their playful responses, depending on their partner’s actions and

their identity (Pellis and Pellis, 2016). Even though both sexes

and all strains of rats thus far studied share the same basic play

repertoire, there are subtle differences that can be informative.

For example, under some rearing and testing conditions, males

initiate more nape attacks (Thor and Holloway, 1984), and in

early adulthood are more likely to use defensive tactics that

makes their RTP seem rougher (Pellis, 2002). Similarly, there are

differences across strains in the relative frequency of nape attacks

and in the use of defensive tactics that lead to evading contact or

promoting close-quarter wrestling (Himmler et al., 2016). These

differences have provided valuable tools for using sex and strain

differences to identify the roles of specific neural systems and

neural networks in regulating particular aspects of play (Siviy,

2020; VanRyzin et al., 2020).

Given that RTP is naturally occurring, no experimental

training is needed to teach the animals to play. Moreover, as rats

have a degree of sophistication in their RTP that is comparable

to that of many primates and other social mammals (Pellis and

Pellis, 2017), they are an ideal laboratory species to study not

only play, but also, by extension, aspects of the social brain

that make play possible. For example, the development of the

medial prefrontal cortex (mPFC) and associated socio-cognitive

skills is influenced by the experience of RTP with peers in the

juvenile period (about 28–40 days post birth; Bell et al., 2010;

Baarendse et al., 2013; Schneider et al., 2016), and the mPFC has

a crucial role in coordinating actions with partners as juveniles

and as adults in both playful and non-playful social interactions

(Bell et al., 2009; Van Kerkhof et al., 2013; Himmler et al., 2014;

Stark and Pellis, 2020). That is, social play is a valuable window

into the social brain. Two recent developments illustrate the

opportunities provided by the study of play in rats.

Individual di�erences and the drivers
of play

Even within members of the same sex and same strain, not

all individuals play to the same degree—some rats consistently

play more than others (Lampe et al., 2017; Lesscher et al.,

2021). Such individual differences provide an opportunity to

refine the search for the neural mechanisms that regulate

play. For instance, attack and defense during RTP tend to

involve independent mechanisms (Himmler et al., 2016).Within

a strain, high players not only initiate more nape attacks,

but also preferentially use a different suite of the rat-typical

defensive tactics than do low players (Pellis et al., 2022).

As the use of ultrasonic vocalizations (USV) can be critical

for communication during play, facilitating role reversals and

avoiding escalation to aggression (Kisko et al., 2017; Burke et al.,

2020), rats with different styles of RTP may need to modify

their use of such calls (Pellis et al., 2022) to play together

effectively, making RTP in rats a useful window into subtle social

communication processes.
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There is strong evidence that the difference in launching

nape attacks is linked to differences in mesolimbic dopamine

activity (Vanderschuren et al., 2016; Siviy, 2020). That

mesolimbic dopamine activity does not just affect the launching

of nape attacks, but also the motivation to engage in play,

has been shown by operant conditioning methods, in which

dopamine manipulations affect how hard rats will work for the

reward of access to a playmate (Achterberg et al., 2016). While

opioid systems have been implicated in the rewards derived

from engaging in play (Vanderschuren et al., 2016; Achterberg

et al., 2019), exactly which neural circuits are associated with

what types of playful actions and styles of play remains

to be investigated. In addition, how cortical and subcortical

neural circuits that are known to be involved in regulating

affective and aversive USV (Brudzynski, 2013) are modulated to

accommodate different styles of play remains to be determined.

However, attempts to explain the neural mechanisms associated

with individual differences in RTP have started to emerge in the

literature (e.g., Reppucci et al., 2020).

Group dynamics and partner choice

Initial studies of play in rats involved observing them in

their home enclosures with the whole litter present to assess the

occurrence of RTP (Baeninger, 1967; Meaney and Stewart, 1981;

Pellis and Pellis, 1983). Such a collective paradigm, although

naturalistic, makes testing the effects of specific treatments on

play nearly impossible. Consequently, a dyadic paradigm was

developed—rats are tested in pairs in an enclosure to which

they have been habituated following a period of social isolation

to increase their motivation to engage in play (Panksepp and

Beatty, 1980; Panksepp, 1981). This dyadic paradigm has now

become the most widely used experimental paradigm for testing

RTP in rats (Pellis et al., 2022). Variations on the theme include

the length of pre-test social isolation and whether experimental

rats are tested with a same condition partner, an untreated

partner, or both. In addition, rats can be partnered either

with a familiar rat or a stranger. As the rats in the dyadic

paradigm are tested for a fixed duration (5–20min being most

common), the effects on both the overall amount of play, as

measured by the number of nape attacks launched, and the style

of play, as measured by the frequency of use of the different

defensive tactics, can be compared between experimental and

control pairs. This level of control is especially important for

pharmacological manipulations, as the animals need to be tested

when the drug reaches its peak effects on the brain (e.g.,

Field and Pellis, 1994; Achterberg and Vanderschuren, 2020).

However, the downside to the level of control achieved by the

dyadic paradigm is that the rats lose the ability to choose their

play partner, as it is the experimenter who selects the partner.

Not all partners are equally attractive as play mates

(Holloway and Suter, 2004; Pellis et al., 2006). When rats are

tested in groups, in which multiple partners are available, play

is not distributed evenly. Rather, some partners are favored over

others, and this is not simply a by-product of which of the

animals are in closest proximity—rats will leave the company

of animals in one part of the enclosure and travel to the other

side to initiate play with a particular animal (Pellis et al., 2022).

That is, some potential play partners are preferred over others.

Experimental manipulations may alter the ability of rats to

discriminate between partners (Pellis et al., 2006), and this may

go undetected in the standard, dyadic play paradigm, in which

interaction with only one partner is possible, potentially leading

to the false conclusion that the experimental manipulation has

no effect as the amount of play is the same as that of the

control. Thus, multi-animal paradigms are needed to offset the

disadvantages that have come with the advantages gained from

the dyadic paradigm. Indeed, more sophisticated methods are

becoming available for continuous recording and scoring of

behavior in a home cage (Greico et al., 2021). A combination

of dyadic testing, enabling more control in how a particular rat

deals with a particular partner, and home cage, group testing,

allowing the animal to exercise control over with whom to play

and where, will capture the advantages of both approaches,

and so assess a deeper analysis of the effects of treatments on

social behavior.

Combining naturalistic observations
with experimental manipulations

As indicated by the two examples above, so-called outliers in

naturally occurring behavior like RTP can be highly informative

about underlying biological processes, rather than, as is typically

the case in many contrived experiments, being viewed as noise

that interferes with the interpretation of results and future

replication. However, while outliers can focus our attention on

phenomena that may be missed when comparing group means,

some degree of experimental control over the behavior may be

needed to identify what is most relevant to the animals. That

is, naturalistic observations and experimental manipulations

can be used together in an iterative manner. An example will

illustrate this synergy.

In a group setting, rats preferentially play with particular

partners (Pellis et al., 2022), but what makes one partner more

attractive than another? As indicated above, some rats are

more playful than others and also have differing styles of play.

Therefore, one possibility is that rats seek out partners with

congruent styles of play. If this is so, this could be tested in a

dyadic setting by matching congruent and incongruent pairs.

However, this is still contaminated by the fact that the rat has

no choice but to play with the partner available—and in such

a context, both partners may need to make compromises in

how they play. Another approach is to allow the subject to play

with rats having different play styles, and then give the subject

a choice in an operant conditioning paradigm. If play style is

important, then the rat should be willing to work harder to
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access the partner with their preferred style. Similarly, other

features of potential partners could be tested.

Studying RTP can be a valuable tool both for basic research

on communication and other processes that are involved

in regulating social behavior (Palagi et al., 2016b), and for

translational research on neurodevelopmental disorders (Burke

et al., 2017). Indeed, identifying that turn taking, as shown

by the occurrence of role reversals, is a key feature of RTP

that promotes the development of socio-cognitive skills (Pellis

et al., 2019; Stark et al., 2021), has been important for

engineering therapeutic play contexts that similarly promote the

development of those skills in children (e.g., Diamond et al.,

2007; Nijhoff et al., 2018).
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