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1Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève,
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We describe the signatures of a circularly polarized gravitational-wave background on the timing residuals
obtained with pulsar-timing arrays. Most generally, the circular polarization will depend on the gravitational-
wave direction, and we describe this angular dependence in terms of spherical harmonics. While the
amplitude of the monopole (the overall chirality of the gravitational-wave background) cannot be detected,
measures of the anisotropy are theoretically conceivable. We provide expressions for the minimum-variance
estimators for the circular-polarization anisotropy. We evaluate the smallest detectable signal as a function of
the signal-to-noise ratio with which the isotropic gravitational wave (GW) signal is detected and the number
of pulsars (assumed to be roughly uniformly spread throughout the sky) in the survey. We find that the overall
dipole of the circular polarization and a few higher overall multipoles, are detectable in a survey with ≳100
pulsars if their amplitude is close to maximal and once the isotropic signal is established with a signal-to-noise
ratio ≳400. Even if the anisotropy can be established, though, there will be limited information on its
direction. Similar arguments apply to astrometric searches for gravitational waves.
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I. INTRODUCTION

A gravitational wave passing between the Earth and a
pulsar is known to affect the periodicity of the observed
pulses [1,2]. The effect can be encoded in the timing
residual, defined as the relative difference between the
observed period of pulses and the one produced by the
pulsar. The explorable frequency range roughly goes from a
few nHz to 1 μHz, the lower limit being determined by the
time span of observations and the upper limit by the data
sampling rate. Monitoring and correlating the irregularities
in the signals emitted by different pulsars allows an indirect
study of gravitational waves (GWs) and has led to the idea
of pulsar timing arrays (PTAs) [3–13] to detect gravita-
tional waves at ∼nHz − μHz frequencies. In particular it
may be possible to extract information on the stochastic
gravitational-wave background due to supermassive-black-
hole (SMBH) mergers [14,15]. There are also prospects to
augment PTA measurements with information from stellar
astrometry [16–20].
A stochastic background from SMBH mergers may well

be anisotropic, given the uneven distribution of SMBH
mergers on the sky [21–25] and prior work [26–29] has
developed tools to seek and characterize anisotropies in the
intensity of the GW background with PTAs/astrometry.

However, GWs from SMBH mergers will most generally
be circularly polarized. Therefore, the stochastic GW
background is likely to be circularly polarized, with an
amplitude that varies across the sky. Reference [30]
discussed techniques to seek this circular polarization with
PTAs.
In this paper we revisit the PTA search for circular

polarization with a simple augmentation of recent work
[29] on the detection of angular GW-intensity fluctuations.
Unlike most prior related work, Ref. [29] discussed angular
fluctuations in harmonic space, rather than configuration
space, an alternative approach that provides elegant/
economical mathematical expressions, simple estimates
for signal detectability, and some novel insights. Here,
we show how that work is easily altered to allow a search
for circular polarization. While the results are formally
equivalent to what was presented in Ref. [30], the formal-
ism here allows for more compact mathematical expres-
sions and some associated insights.
Reference [29] idealized measurements of a timing-

residual zðn̂; tÞ as a function of position n̂ on the sky
and time t. The time dependence was then described in
terms of its Fourier amplitudes for frequency f (one real
amplitude for the sine, with respect to some nominal t ¼ 0
time, and another for the cosine for each f). The resulting
Fourier maps zfðn̂) were then decomposed in terms of
spherical-harmonic coefficients zf;lm. Estimators for angu-
lar intensity fluctuations were then constructed from
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bipolar spherical harmonics (BiPoSHs) [31–33], and in
particular from BiPoSHs of even parity.
In this paper, estimators for the circular polarization of

the GW background will be similarly constructed but with a
few notable differences: First, a circularly polarized GW is
a linear combination of two linear polarizations that are out
of phase. Thus, a circular-polarization estimator requires
that we consider the sine and cosine amplitudes together for
any given frequency f, which we do here by allowing zfðn̂Þ
to be complex. We then show that circular-polarization
estimators look identical to those for intensity fluctuations,
but for odd-parity (rather than even-parity) BiPoSHs [34].
The plan of the paper is as follows: We review in Sec. II

the expansion of the timing residuals in terms of spherical
harmonics and review the BiPoSH formalism that will
be used to construct estimators for circular-polarization
anisotropies. Section III presents the model we assume for
the stochastic background and obtains predictions for the
observables for this background. Section IV presents the
estimators for the circular-polarization anisotropies, and
formal expressions for the variances with which these
estimators can be measured. Section V then presents
quantitative results for the smallest detectable circular-
polarization anisotropies, and concluding remarks are
presented in Sec. VI.

II. SPHERICAL-HARMONIC EXPANSION AND
BIPOLAR SPHERICAL HARMONICS (BIPOSHS)

We imagine a set of pulsars spread roughly uniformly
across the sky so that the GW-induced timing residual
zðn̂; tÞ can be obtained as a function of time t and position
n̂. The time sequence can then be represented equivalently
in terms of the Fourier components zfðn̂Þ for frequency f,
and the angular pattern can then be represented in terms of
the spherical-harmonics components as

zfðn̂Þ ¼
X∞
l¼0

XL
m¼−l

zf;lmYlmðn̂Þ: ð1Þ

In Ref. [29], it was presumed that zfðn̂Þ could be taken to
be real: the intensity-fluctuation analysis therein could be
performed independently on either the real or the imaginary
part (or equivalently, on the amplitudes of the cosine or
sine of any particular f mode). Thus, in that work (as in
work on CMB temperature fluctuations), we had
z�f;lm ¼ ð−1Þmzf;l;−m. Put another way, the 2lþ 1 inde-
pendent coefficients for any given l could be taken to be
zf;l0, the l real parts

ffiffiffi
2

p
Rezf;lm of zf;lm form > 0, and the

l imaginary components
ffiffiffi
2

p
Imzf;lm for m > 0.

For the analysis here, however, the complexity of
zfðn̂Þ—i.e., the relative amplitudes of the cosine and sine
mode for a given f—is essential. Thus, in this paper, zfðn̂Þ
is most generally complex, and so z�f;lm is not necessarily

equal to ð−1Þmzf;lm. For any given l, there are now
2ð2lþ 1Þ components of zf;lm which can be taken to
be the real and imaginary parts for all −l ≤ m ≤ l.
Also, for notational economy, we suppress below the

subscripts f on the map, the spherical-harmonic coeffi-
cients, and power spectra. It should be understood that
throughout the rest of the paper, it is assumed that the
analysis is done for this one frequency component f. We
then discuss in the Conclusions how to incorporate multiple
frequencies.
A model for the stochastic background makes no

predictions for the specific values of zlm. Rather, it makes
predictions for their correlations. The most general two-
point correlation between any two zlm takes the form (see,
e.g., Refs. [34,35]),

hzlmz�l0m0 i ¼ Clδll0δmm0

þ
X∞
L¼1

XL
M¼−L

ð−1Þm0 hlml0;−m0jLMiALM
ll0 ;

ð2Þ

where the ALM
ll0 are known as bipolar spherical harmonics

(BiPoSH) coefficients [31–33] and hlml0;−m0jLMi are
Clebsch-Gordan coefficients. If the stochastic background
is statistically isotropic and unpolarized, then ALM

ll0 ¼ 0 for
all L ≥ 1. Reference [29] found that anistropies in the
intensity of the GW background resulted in nonzero
BiPoSH coefficients of even parity (i.e., Lþ lþ l0 ¼
even) only. We will see that circular polarization induces
odd-parity BiPoSHs, those with Lþ lþ l0 ¼ odd.

A. Estimators of BiPoSH coefficients

The measured timing-residual coefficients are assumed
to be zdataf;lm ¼ zf;lm þ znoisef;lm with

hznoisef;lmz
�noise
f;l0m0 i ¼ Nzz

f δll0δmm0 ; ð3Þ

with the noise power spectrum Nzz
f independent of l (as

will arise in the idealized scenario of pulsars distributed
roughly uniformly on the sky, with comparable timing-
residual noises). The BiPoSH coefficients are estimated
from data as

dALM
ll0 ¼

X
mm0

zdatalm z�datal0m0 ð−1Þm0 hlml0;−m0jLMi: ð4Þ

The variance of this estimator was evaluated under the null
hypothesis of a Gaussian and isotropic map, in Ref. [34].
That analysis assumed, however, a real map, whereas
we are now taking zðn̂Þ to be complex. As a result there
is no requirement for ALM

ll0 to be antisymmetric (for
Lþ lþ l0 ¼ odd) under l ↔ l0 nor for the ALM

ll to vanish
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for lþ l0 þ L ¼ odd. For a complex map and for
Lþ lþ l0 ¼ odd,D���dALM

ll0

���2E ¼ Cdata
l Cdata

l0 ; ð5Þ

where Cdata
l ¼ Cl þ Nzz includes both the signal and the

noise power spectra.
The estimator for the isotropic power spectrum Cl is

cCl ¼
Xl
m¼−l

jzdatalm j2
2lþ 1

− Nzz; ð6Þ

and its variance is

hðΔClÞ2i ¼
1

2lþ 1
ðCdata

l Þ2: ð7Þ

Note that this expression differs from that, more commonly
seen, for the case where zðn̂Þ is real. As discussed above, in
that case, each Cl is estimated from the 2lþ 1 indepen-
dent components of zlm. If zðn̂Þ is complex, though, then
there are 2ð2lþ 1Þ independent components of zlm
yielding a replacement 2lþ 1 → 2ð2lþ 1Þ relative to
the more familiar equation.

III. A POLARIZED BACKGROUND AND ITS
TIMING RESIDUALS

A. Spherical-harmonic coeffcients

Equation (18) in Ref. [29] provides the spherical-
harmonic coefficients, induced by a single gravitational
wave of frequency f propagating in the k̂ direction.
Identifying the GW circular-polarization amplitudes hR ¼
2−1=2ðhþ þ ih×Þ and hL ¼ 2−1=2ðhþ − ih×Þ in terms of the
linear-polarization amplitudes hþ and h×, that expression
can be written1

zlmðk̂Þ ¼ 2−1=2zl
h
hLD

ðlÞ
m2 þ hRD

ðlÞ
m;−2

i
; ð8Þ

where DðlÞ
mm0 ðϕk; θk; 0Þ are the Wigner rotation functions

specified by the three Euler angles ϕk, θk, and ψk ¼ 0 in the
z-y-z convention, and

zl ≡ ð−1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þðl − 2Þ!

ðlþ 2Þ!

s
: ð9Þ

Only harmonics coefficients with l ≥ 2 are generated in the
timing residuals map.

The most general gravitational-wave background is then
described by a superposition of plane waves propagating
along any direction k̂. The spherical-harmonic coefficients
for this background are then

zlm ¼ 2−1=2zl

Z
d3k
ð2πÞ3

h
hLðk⃗ÞDðlÞ

m2ðk⃗Þ þ hRðk⃗ÞDðlÞ
m;−2ðk⃗Þ

i
;

ð10Þ

where we have summed over all GW wave vectors
k⃗ ¼ 2πfk̂.

B. A circularly polarized gravitational-wave
background

We now consider a gravitational-wave background
described by the following wave-amplitude correlations:

hhRðk⃗Þh�Rðk⃗0Þi ¼
1

4
ð2πÞ3δDðk⃗ − k⃗0ÞPhðkÞ½1 − ϵðk̂Þ�;

hhLðk⃗Þh�Lðk⃗0Þi ¼
1

4
ð2πÞ3δDðk⃗ − k⃗0ÞPhðkÞ½1þ ϵðk̂Þ�;

hhRðk⃗Þh�Lðk⃗0Þi ¼ 0: ð11Þ

The “chirality function” ϵðk̂Þ is assumed to depend only on
the direction of propagation, and it parametrizes the degree
of circular polarization for GWs moving in direction k̂.
It can be decomposed in spherical harmonics as

ϵðk̂Þ ¼
X∞
L¼0

XL
M¼−L

ϵLMYLMðk̂Þ: ð12Þ

Comparing to Eq. (13) of [29], where the index L is
constrained to assume strictly positive values (i.e., L ≥ 1),
here the L ¼ 0 term is in principle allowed because it
cannot be reabsorbed into a redefinition of PhðkÞ for both
the right-handed and left-handed power spectra in Eq. (11).
However, we will see that the monopole gives no con-
tribution to the correlators of timing residuals and is
therefore not detectable.
Positivity of power spectra imposes the restrictions

ϵL0 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ð2Lþ 1Þp

(with similar bounds for
ffiffiffi
2

p
ReϵLM

and
ffiffiffi
2

p
ImϵLM forM ≠ 0).2 The correlators between timing

1We correct here a missing factor of two in Eqs. (14) and (15)
of Ref. [29] (that does not affect the final quantitative results for
anisotropy estimators presented there in terms of the signal-to-
noise ratio SNR with which the isotropic signal is detected).

2For a given value of L, the precise bounds on ReϵLM and
ImϵLM have a weak dependence on M that is related to the
maximum of the associated Legendre polynomial (in absolute
value) and to the coefficient entering the spherical harmonics
YLMðk̂Þ. For M ¼ 0 the calculation exactly gives the simple
aforementioned result. For M ≠ 0, analytic (but more cumber-
some) expressions for the bounds can be derived for a few values
of M, although in general one has to rely on numerical
evaluations. Since the numerical results do not change much
with respect to the case M ¼ 0, we use the same reference value
for all M.
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residual-coefficients are then evaluated using Eq. (10) and
are given by

hzlmz�l0m0 i ¼ 1

8
zlzl0

Z
d3k
ð2πÞ3 PhðkÞ

�
DðlÞ

m2ðk̂ÞðDðl0Þ
m02ðk̂ÞÞ

�

×

�
1þ

X
LM

ϵLMYLMðk̂Þ
�

þDðlÞ
m;−2ðk̂ÞðDðl0Þ

m0;−2ðk̂ÞÞ
�

×

�
1 −

X
LM

ϵLMYLMðk̂Þ
��

:

The integration over directions k̂ leads to correlators of the
form in Eq. (2) with

Cl ¼ z2l
4ð2lþ 1Þ I; ð13Þ

and

ALM
ll0 ¼

1 − ð−1Þlþl0þL

2
ð−1Þl−l0 ð4πÞ−1=2ϵLM

1

4
zlzl0HL

ll0I;

ð14Þ

where we defined HL
ll0 as the following Wigner-3j symbol

HL
ll0 ≡

�
l l0 L

2 −2 0

	
; ð15Þ

and introduced I ≡ ½4π=ð2πÞ3� R k2dkPhðkÞ.
The coefficient ½1 − ð−1Þlþl0þL�=2 selects only odd-

parity BiPoSHs (odd values of lþ l0 þ L). Comparing
to Eq. (22) of Ref. [29] and the discussion therein, we see
that the correlations induced by circular-polarization
anisotropies differ from those of intensity anisotropies
in the parity of the BiPoSHs allowed (odd for circular
polarization and even for intensity). The other difference is
that ALM

ll0 is not degenerate here with ALM
l0l (as it is for the

intensity estimator), as zðn̂Þ here is taken to be the complex
sum of the amplitudes of the sine and cosine of the
frequency f.

IV. CHIRALITY ESTIMATORS

Estimators for the chirality coefficients ϵLM are obtained
in direct analogy with Ref. [29] for a survey parametrized
by the signal-to-noise ratio (SNR) with which the isotropic
GW background is detected and the maximum multipole
moment lmax (which is lmax ∼

ffiffiffiffiffiffi
Np

p
for a sky map withNp

pulsars distributed roughly uniformly on the sky) accessible
with the survey. The SNR is obtained by summing in
quadrature the SNRs for each accessible multipole l,
assuming an error on Cl given by Eq. (7) with

Cdata
l ¼ Nzz, corresponding to the null hypothesis of no

gravitational-wave background. The resulting SNR for the
frequency channel f is [29,36] [noting the extra factor of 2
for the complexity of zðn̂Þ],

SNR ¼
�Xlmax

l¼2

ð2lþ 1Þ
�
Cl

Nzz

	
2
�1=2

≃
πI

6
ffiffiffi
3

p
Nzz

: ð16Þ

The approximation holds for any lmax given that the sum is
dominated very heavily by the lowest-l terms.
Following the analysis in Ref. [29], the minimum-

variance estimator for each chirality amplitude ϵLM is

dϵLM ¼
P

ll0 ðdϵLMÞll0 ðΔϵLMÞ−2ll0P
ll0 ðΔϵLMÞ−2ll0

; ð17Þ

where

ðdϵLMÞll0 ¼ ð−1Þl−l0
4

ffiffiffiffiffiffi
4π

p dALM
ll0

zlzl0HL
ll0I

; ð18Þ

is the contribution of each ll0 pair to the estimator, and

ðΔϵLMÞ2ll0 ¼
64πCdata

l Cdata
l0

ðzlzl0HL
ll0IÞ2

¼ 16π3

27

Cdata
l Cdata

l0

ðzlzl0HL
ll0 Þ2ðSNRÞ2ðNzzÞ2 ; ð19Þ

is the variance of each of these contributions. The variance
of the combined estimator dϵLM is then

ðΔϵLMÞ−2 ¼
X
ll0

ðΔϵLMÞ−2ll0 : ð20Þ

It is independent of M. The l;l0 sums here are over
lþ l0 þ L ¼ odd. Since the ALM

ll0 are not necessarily
antisymmetric in l;l0 (since zðn̂Þ is not real here), the
sums are over all l;l0 pairs (not just those with l0 ≥ l as
in Ref. [29]).
Using Eqs. (13) and (16) we can express Eq. (20) in

terms of the SNR for the detection of the isotropic
unpolarized signal and, furthermore, the noise power
spectrum Nzz cancels out from the final result, leaving
us with

ðΔϵLMÞ−2¼
27

16π3
X
ll0

ðzlzl0HL
ll0 Þ2

�
1

SNR
þ3

ffiffiffi
3

p

2π

z2l
2lþ1

	−1

×

�
1

SNR
þ3

ffiffiffi
3

p

2π

z2l0

2l0 þ1

	−1
: ð21Þ
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This expression can then be evaluated for any nominal SNR
with which the isotropic signal is detected and taking the
sums up to lmax ∼ N1=2

p , with Np the number of pulsars.
This expression evaluates, in the limit SNR → ∞, to

ðΔϵLMÞ−2 →
1

4π

X
ll0

ð2lþ 1Þð2l0 þ 1ÞðHL
ll0 Þ2; ð22Þ

and in the limit SNR → 0 to

ðΔϵLMÞ−2 →
27

16π3
SNR2

X
ll0

ðzlzl0HL
ll0 Þ2: ð23Þ

V. RESULTS

A. Monopole is not observable

As anticipated in Sec. III, the monopole term ϵ00 is not
observable. This is because the L ¼ M ¼ 0 BiPoSH
coefficients, A00

ll ¼ ð−1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
Cl, all have l ¼ l0

and therefore always have Lþ lþ l0 ¼ even. This agrees
with a similar conclusion in Ref. [30] obtained using
overlap reduction functions.

B. Dipole anisotropy

We now consider the lowest observable multipole, the
dipole L ¼ 1. Given the triangle constraint jl − l0j ≤ L
and lþ l0 þ L ¼ odd, only l ¼ l0 contributes to the sum.
We then use ðH1

llÞ2 ¼ 4½lðlþ 1Þð2lþ 1Þ�−1 to obtain for
the smallest detectable (at 3σ) signal,

ϵ1M;min ¼ 3Δϵ1M

¼ 1

2

ffiffiffi
π

3

r �Xlmax

l¼2

2lþ 1

½ðlþ 2Þðl − 1Þ�2½lðlþ 1Þ�3

×

�
1

SNR
þ 6

ffiffiffi
3

p ðl − 2Þ!
ðlþ 2Þ!

�
−2
�

−1=2
: ð24Þ

We can understand this result analytically by considering
the asymptotic behaviors in the limits of high and low
signal-to-noise. When SNR → ∞ and lmax ≫ 1 the sum in
Eq. (24) converges to3

ϵ1M;min ≃
3

ffiffiffi
π

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnlmax þ 2γE − 5=2

p ; as SNR → ∞: ð25Þ

In the low-SNR limit we find

ϵ1M;min ≃
13.2
SNR

; as SNR → 0: ð26Þ

Figure 1 shows the smallest detectable dipole coefficient
ϵ1M;min as a function of the isotropic signal SNR, for a
few values of lmax. The value ðSNRÞhigh at which ϵ1M;min

reaches its asymptotic value can be evaluated by looking at
the second line of Eq. (24) and estimating the minimum
value of SNR such that the addend 1/SNR can be neglected.
This simple guess leads to4

ðSNRÞhigh ≃
ðlmax þ 2Þ!
ðlmax − 2Þ! : ð27Þ

The sensitivity of a PTA to a circular-polarization dipole is
maximized once an SNR of this value is reached.
If we surmise (optimistically) an lmax ≃ 20 (correspond-

ing to Np ∼ 400 pulsars), then Eq. (25) evaluates to
ϵ1M;min ≃ 2.5, which is about 1.2 times the largest value,
ϵ1M;max ¼

ffiffiffiffiffiffiffiffiffiffi
4π=3

p
, that this amplitude can have. We thus

conclude that an individual component ϵ1M of the circular-
polarization dipole is not detectable.
However, if we simply want to establish the existence of

a circular-polarization dipole, without any constraint to its
direction, we will evaluate the overall dipole amplitude,

dc ¼
�X

M
jϵ1Mj2

�
1=2

: ð28Þ

Since this is obtained as the sum, in quadrature, of the three
ϵ1Ms, the smallest detectable dc is about a factor of

ffiffiffi
3

p
smaller, implying (with lmax ≃ 20) that a dipole as small as

FIG. 1. The smallest detectable (at the 3σ level) circular-
polarization dipole ϵ1M (normalized to its maximum allowed
value ϵ1M;max ¼

ffiffiffiffiffiffiffiffiffiffi
4π=3

p
), as a function of the SNR with which

the isotropic GW background is detected, for several values of the
maximum timing-residual multipole moment lmax.

3Here, γE is Euler’s constant and the finite correction
2γE − 5=2 ≃ −1.35 is relevant as it gives a 13.6% correction
on ϵ1M;min for lmax ¼ 20.

4The value of ϵ1M;min at ðSNRÞhigh differs from the true
asymptotic value only by 1% for lmax ¼ 20 and 5% for lmax ¼ 3.
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0.7 times the maximal dipole can actually be detected. If the
local GW background, at the frequency considered, is
dominated by a single source or handful of sources, such a
circular-polarization dipole is certainly conceivable and so
worth seeking. On the other hand, the results discussed so
far only hold for very large SNR, such that ϵ1M;min reaches
its asymptotic value (for example, when lmax ≃ 20,
Eq. (27) gives ðSNRÞhigh ≃ 1.8 × 105). For lower values
of SNR there is less room for the observation of the dipole
and one can establish numerically a threshold for the
overall dipole detection. The corresponding minimal con-
ditions for detection are a number of pulsars Np ≳ 100

(i.e., lmax ≳ 10) and a very clear detection of the isotropic
GW background with SNR≳ 400. More precisely, for
lmax ¼ 10 and SNR ¼ 400 only an overall dipole equal
to 0.98 times the maximal value can be detected.

C. Other multipoles

Results for the detectability of higher order multipoles
can be inferred by numerically evaluating the general
expression in Eq. (21). Figure 2 shows the smallest
detectable multipole coefficients ϵLM;min [normalized to
their maximum possible values ϵLM;max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ð2Lþ 1Þp

]
as a function of the isotropic signal SNR, for several values
of the multipole L and assuming lmax ¼ 20.
The plot and the numerical analyis seem to imply that,

for a given lmax, some of the higher-order multipoles have a
better detectability than the dipole in the high-SNR regime,
because their ratio ϵLM;min=ϵLM;max reaches a lower asymp-
totic value. For lmax ¼ 20 the asymptotic value for the
minimum quadrupole ϵ2M;min (for any givenM component)
is just above the maximal ϵ2M;max ¼

ffiffiffiffiffiffiffiffiffiffi
4π=5

p
, while for the

overall quadrupole [defined similarly to Eq. (28)] an
amount as small as 0.45 times the maximal quadrupole

can be detected. As for the dipole, also higher order
multipoles reach the asymptotic regime only at very large
SNR, of the order of ðSNRÞhigh defined in Eq. (27). It can
be seen from Fig. 2 that, assuming lmax ¼ 20, when
SNR≲ 100 (certainly including more realistic values of
SNR) the dipole has the lower, and thus the best, value of
ϵLM;min=ϵLM;max for a single M component, although such
SNR is not good enough for single M detections. For
lmax ¼ 10 (corresponding to Np ¼ 100) and SNR ¼ 400,
which are the threshold values mentioned at the end of
Sec. V B, an overall quadrupole equal to 0.72 times the
maximal value is observable, and overall multipoles up to
L ¼ 8 and close to their respective maximal values can also
be detected. Unless the isotropic signal SNR is increased
to even more non-realistic values, the conclusions about
detectability of dipole and higher multipoles presented here
could be altered only with an exponentially large number of
pulsars (or, as alluded to below, by co-adding multiple
frequencies in the event that multiple frequencies have
similar SNR).

VI. CONCLUSIONS

We have augmented prior work [29] to develop estima-
tors and evaluate the detectability with PTAs of circular-
polarization anisotropies in the stochastic GW background.
We confirm with this new formalism earlier findings [30]
that the circular-polarization monopole is not detectable.
We evaluate the smallest detectable circular-polarization
dipole anisotropy and find that its overall amplitude (i.e.,
without constraints to the direction) is conceivably detect-
able if it is close to maximal, if the isotropic signal is
detected at the ≳400σ level, and at least Np ∼ 100 pulsars
are observed. In those conditions also a few higher overall
multipoles can be detected. The results suggest an only
logarithmic improvement in the sensitivity with the number
of pulsars. A certain improvement can be obtained with
increased overall signal, but it would be pushed to even
more nonrealistic values.
As suggested by Fig. 1 of Ref. [6], the Square Kilometer

Array (SKA) should be sensitive to a GW background with
a power spectrum roughly four orders of magnitude smaller
than the current upper bound [11], and similar sensitivities
might be achieved by PTAs supported by a Next-
Generation Very Large Array [37]. The signal-to-noise
ratio required to detect the circular polarization is thus
conceivable in the SKA era.
We have throughout assumed that the analysis was

performed with just one frequency f, whereas in practice
there may be many frequency channels available. The
analysis can, however, be done individually for each
available frequency and the results then added in quad-
rature. If the stochastic background is assumed to be
uncorrelated at different frequencies, then the signal-to-
noise with which a circular-polarization anisotropy can be

FIG. 2. The smallest detectable (at the 3σ level) circular-
polarization multipoles ϵLM [normalized to their maximal
values ϵLM;max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ð2Lþ 1Þp

], as a function of the SNR
with which the isotropic GW background is detected, for
several values of L and assuming a maximum timing-residual
multipole moment lmax ¼ 20.
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detected will be the sum, in quadrature, of the signal-to-
noise for each individual channel f. If these signal-to-
noises are comparable for all of the available frequencies,
then the SNR could conceivably be increased by a factor of
the square root of the number of frequencies (a number of
order 100 for 10 years of observations with a two-week
cadence). In practice, though, the signal (the stochastic GW
background) and noise are likely to have different fre-
quency dependences, and if so, the overall SNR is
dominated by only one, or perhaps a handful, of frequen-
cies. In this case, the estimates of the detectability of the
circular-polarization dipole (and higher moments) pre-
sented here might be improved, but probably by no more
than a factor of a few.
On the other hand, we have considered an idealization of

the measurements in which pulsars are roughly uniformly
distributed on the sky and observed with comparable
timing-residual noise. In practice, the distribution is not
uniform, and the timing-residual noises vary from one
pulsar to another. These complications are straight-
forward to deal with using techniques [30] already devel-
oped. These complications will, however, degrade the

sensitivities to circular polarization relative to those
obtained with the idealizations adopted here.
Finally, we have focused here on the PTA characteriza-

tion of a stochastic GW background. There is, however, a
close correspondence between PTA searches and astrom-
etry searches (see, e.g., Ref. [20]). Circular-polarization
estimators for astrometry searches should thus be similarly
obtained, and the quantitative conclusions about detect-
ability are similar. It may also be interesting in future work
to investigate the possibility to co-add information on
circular-polarization and intensity anisotropies that may
arise if the local signal is due to a handful of nearby
SMBH pairs.
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