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1
Chapter 1

Introduction



1.1 Breast density and the DENSE trial

Breasts contain glandular, connective, and fat tissue. Breast density is a term that
describes the relative amount of these different types of breast tissue as seen on
a mammogram. According to the American College of Radiology there are four
types of breast density, almost entirely fat (A), scattered areas of fibroglandular
density (B), heterogeneously dense (C) and extremely dense (D) (Figure 1.1).
Breast density can be measured visually by the radiologist[1], or semi- or fully
automated using software[2–4].

Figure 1.1: examples of mammography of the four types of breast density, almost entirely fat (A), scat-
tered areas of fibroglandular density (B), heterogeneously dense (C) and extremely dense (D).(source:
UMC Utrecht)

Extremely dense breasts and heterogeneously dense breasts have relatively high
amounts of glandular tissue and fibrous connective tissue and relatively low amounts
of fatty breast tissue. Approximately 29% of the Dutch women between 50 and
75 years have heterogeneously dense breasts and 8% have extremely dense
breasts[5]. Compared to entirely fatty breasts, women with extremely dense
breasts have a 2-6 times higher risk of developing breast cancer[6–10]. Moreover,
it is difficult to detect tumors in these breasts using mammography due to the low
contrast between the fiboglandular tissue and tumor tissue[5, 11, 12]. Conse-
quently, more sensitive techniques such as dynamic contrast-enhanced magnetic
resonance imaging (DCE MRI) are investigated to screen these women[13, 6].
However, DCE MRI is associated with varying specificity to discriminate between
malignant (cancer) and benign (no cancer) lesions[13, 14], while it produces more
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imaging data than a mammographic examination. The Dense Tissue and Early
Breast Neoplasm ScrEening (DENSE) trial investigated whether MRI in addition
to the current screening practice (mammography) results in less interval carcino-
mas. For this purpose, DENSE has two arms in a prospective randomized con-
trolled trial with three screening rounds. In short, if the screening mammogram
shows extremely dense breasts, women were randomly assigned to the control
arm (i.e., conventional screening mammography only) or the MRI arm where they
receive additional bi-annual MRI screening upon invitation. The invitation also
informed women of their breast density and the associated risk of developing
breast cancer. In the first screening round 8061 women were invited for addi-
tional MRI screening, 5276 (66%) were interested and 4783 (59.3%) completed
the MRI examination[15]. All MRI screening images were assessed by experi-
enced breast MR radiologists. In total, 4329 participants had normal breasts on
MRI, the remaining 454 (9.5%) participants were invited for a repeat MRI after six
months or biopsy. Cancer was found in 79 (17.5%) of 454 referred women (i.e.,
16.5/1000 women). No cancer (i.e. false-positive referral) occurred in 375 (82.5%)
women[16]. The results of the first screening round showed that additional MRI
for women with extremely dense breasts significantly reduced the number of in-
terval cancers compared to the control arm[16]. To detect 79 women with breast
cancer, 375 healthy women received an invitation for further work-up. Because
approximately 225.000 women may be eligible for additional MRI screening due
to dense breasts in the Netherlands alone[17], the number of women with false-
positive findings may increase more than twenty-fold.

1.2 MRI screening

The MR images in DENSE were obtained using a multiparametric MRI proto-
col, comprised of T1-weighted dynamic contrast-enhanced image series (DCE),
diffusion weighted images (DWI) and a T2-weighted sequence[6]. The DCE se-
quence is a series of images during which contrast agent is injected. Contrast
dynamics in the breast tissue are visualized by acquiring one high spatial resolu-
tion three dimensional (3D) image before contrast injection, multiple (15-20) 3D
images with a high temporal resolution and lower spatial resolution during con-
trast uptake, followed by 4 to 5 3D images with high spatial resolution after the
contrast is injected. In general, contrast uptake in lesions is higher compared to
that in the surrounding normal tissue. Hence, the DCE images series with high

9



spatial resolution give information about the shape, volume and heterogeneity of
breast lesions[13]. The dynamics of contrast uptake contain important informa-
tion to characterize breast lesions. Three types of contrast dynamics are defined
(Figure 1.2). Type 1 curves show a persistent uptake of contrast agent into the
lesion, type 2 curves show a plateau of contrast uptake after circa 90 s and type
3 show washout of the contrast agent after 90 s. A type 1 curve is an indication
for a benign lesion, type 2 curve lesions have an intermediate risk of malignancy
and lesions showing contrast curve type 3 are probably malignant (Figure 1.3)
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Figure 1.2: Three typical curves of contrast uptake over time in breast lesions. Lesions showing type 1
are probably benign, type 2 lesions have intermediate risk and type 3 lesions are probably malignant.
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Figure 1.3: example of a DCE image series of a malignant lesion showing type 3 enhancement. The
image most left shows the T1-weighted MRI without contrast. Ninety seconds after contrast injection
the second image is made, showing the fast contrast uptake in the lesion in the right breast (left in
image). In the next four images acquired 150 s, 210 s, 270 s, and 330 s after contrast injection, the
image intensity at the location of the lesion reduces. The graph shows the median image intensity in
the region of the malignant lesion at each time point.

DWI shows the diffusion of water in the breast tissue. Using these images it is
possible to calculate an apparent diffusion coefficient (ADC) which is a measure
for the movement of water inside the tissue. In general, less diffusion, movement
of water, is present in malignant tissue due to the fast irregular growth of cancer
tissue (Figure 1.4).

Figure 1.4: ADC map created of DWI images. In the dark gray parts, diffusion is restricted (arrow). In
the bright parts, water diffusion is less restricted. In this example, the malignant lesion (arrow) shows
less diffusion than the surrounding normal tissue.

T1-weighted images sometimes are referred to as “anatomical scan” because
different tissues types are well distinguishable. T2-weighted images show the

11



presence of water in the tissue, and for example can be used to detect cysts,
which are filled with fluid mostly consisting of water[13].

Machine learning and Computer Aided Diagnosis

This thesis focuses on new techniques to automatically reduce false-positive find-
ings in breast MRI screening. Machine learning is a technique for recognizing
patterns in, e.g., medical images. The calculation power of current computers
allows us to use complex machine learning methods to be used in, for example,
computer-aided diagnosis. In computer aided diagnosis (CAD) the outcome of
the computer supports the professional in decisions making (Figure 1.5).

CAD system

Radiologist

Interpretation/
Diagnosis

Figure 1.5: Schematic diagram of a CAD system for medical image interpretation

Computers are able to calculate multiple properties of images, called features,
and use these features to predict whether, for example, a breast lesion is benign
or malignant. These features can be properties describing shape, volume, color,
intensity, intensity changes over time and so on. Machine learning can be used for
multiple purposes. In medical image assessment it is mostly used for detection,
quantification or classification. For example, it is used to detect whether a lesion
is present or to delineate different tissue types (segmentation). Classification can
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be used to predict whether a lesion is benign or malignant. In this thesis we
develop new methods to apply on images acquired using a multi-parametric MRI
sequence.

1.3 Outline of this thesis

In this thesis we will develop and validate artificial intelligence for breast MRI in
women with extremely dense breasts to assist in the identification and character-
ization of breast lesions, thus pursuing reduction of false positive referrals. One
of the first steps in image analysis is the definition of the region of interest. In MR
images, breast tissue is surrounded by skin and the chest wall, consisting of the
pectoral muscles and chest bones. The border between air and breast tissue is
easily distinguishable and detectable using simple techniques. The detection of
the chest wall is, however, more challenging. Multiple methods showed difficulties
to delineate the chest wall, especially in MRI of extremely dense breasts, due to
the lack of contrast between glandular tissue and muscle tissue.
In Chapter 2 we develop and compare multiple automated methods, dedicated to
segment the chest wall in breast MRI of extremely dense breasts.
In Chapter 3 we train and validate a computer aided triaging (CAT) method based
on deep learning, which dismisses breast MRI examinations without lesions from
further radiological review, without dismissing examinations in which malignant
lesions were present.
In Chapter 4, we develop CAD to reduce the number of false positive referrals
without missing any malignant disease.
In Chapter 5, the CAT method of Chapter 3 and the CAD method of Chapter 4
are combined and applied on the MRI data acquired during the second screening
round of the dense trial to investigate the performance of the combination of the
methods.
In Chapter 6, we discuss the benefits of the developed computer aided methods,
the opportunities of these methods for MRI screening and the challenges for the
introduction of the methods in the clinical workflow.
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Chapter 2

Knowledge-based and deep learning-based
automated chest wall segmentation in Magnetic
Resonance Images of extremely dense breasts

Based on: Erik Verburg, Jelmer M. Wolterink, Stephanie N. de Waard, Ivana Išgum, Carla H. van Gils,

Wouter B. Veldhuis, Kenneth G. A. Gilhuijs; Knowledge-based and deep learning-based automated

chest wall segmentation in Magnetic Resonance Images of extremely dense breasts, Medical Physics,

2019, Volume 46 (4405-4416)



2.1 Abstract

Purpose

Segmentation of the chest wall, is an important component of methods for auto-
mated analysis of breast MRI. Methods reported to date show promising results
but have difficulties delineating the muscle border correctly in breasts with a large
proportion of fibroglandular tissue (i.e., dense breasts). Knowledge-based meth-
ods as well as methods based on deep learning have been proposed, but a sys-
tematic comparison of these approaches within one cohort of images is currently
lacking. Therefore, we developed a knowledge-based method and a deep learn-
ing method for segmentation of the chest wall in magnetic resonance imaging
(MRI) of dense breasts and compared their performances.

Methods

Two automated methods were developed, an optimized knowledge-based method
(KBM) incorporating heuristics aimed at shape, location and gradient features,
and a deep learning-based method (DLM) using a dilated convolution neural net-
work. A dataset of 115 T1-weighted MR images was randomly selected from
MR images of women with extremely dense breasts (ACR BI-RADS category 4)
participating in a screening trial of women (mean age 56.6 years, range 49.5-
75.2 years) with dense breasts. Manual segmentations of the chest wall, ac-
quired under supervision of an experienced breast radiologist, were available for
all datasets. Both methods were optimized using the same randomly selected 36
MRI datasets from a total of 115 datasets. Each MR dataset consisted of 179
transversal images with voxel size 0.64 x 0.64 x 1.00 mm3. In the remaining 79
datasets, the results of both segmentation methods were qualitatively evaluated.
A radiologist reviewed segmentation results of both methods in all transversal im-
ages (n=14 141) and determined whether the result would impact the ability to
accurately determine volume of fibroglandular and fatty tissue and whether seg-
mentations masked breast regions that might harbor lesions. When no relevant
deviation was detected, the result was considered successful. In addition, all
segmentations were quantitatively assessed using the Dice similarity coefficient
(DSC) and Hausdorff distance (HD), 95th percentile of the Hausdorff distance
(HD95), false positive fraction (FPF) and false negative fraction (FNF) metrics.
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Results

According to the radiologist’s evaluation, the DLM had a significantly higher suc-
cess rate than the KBM (81.6% vs. 78.4%, p<0.01). The success rate was further
improved to 92.1% by combining both methods. Similarly, the DLM had signifi-
cantly lower values for FNF (0.003±0.003 vs. 0.009±0.011, p<0.01) and HD95
(2.58±1.78 mm vs. 3.37±2.11, p<0.01). However, the KBM resulted in a sig-
nificantly lower FPF than the DLM (0.018±0.009 vs. 0.030±0.009, p<0.01).There
was no significant difference between the KBM and DLM in terms of DSC (0.982±0.006
vs. 0.984±0.008, p=0.08) or HD (24.14±20.69 mm vs. 12.81±27.28 mm, p=0.05).

Conclusion

Both optimized knowledge-based and deep learning-based method showed good
results to segment the pectoral muscle in women with dense breasts. Qualitatively
assessed, the DLM was the most robust method. A quantitative comparison,
however, did not indicate a preference for one method over the other.
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2.2 Introduction

Breast cancer is the most common type of cancer in women in western countries.
Detecting breast cancers at an early stage yields a survival benefit [1]. Mammog-
raphy screening programs exist in many countries. The sensitivity of mammog-
raphy is lower, however, in women with dense breasts (i.e., American College of
Radiology (ACR) class 3 and ACR class 4), which comprises approximately 40%
of the population[2–4]. Moreover, the risk of developing breast cancer is two- to
six-fold higher in women who have a large proportion of fibroglandular tissue in
their breasts (i.e., dense breasts on mammography)[2, 5, 6]. Consequently, more
sensitive techniques such as dynamic contrast-enhanced magnetic resonance
imaging (DCE MRI) are investigated for screening these women[2]. However,
DCE MRI is associated with varying specificity to discriminate between benign
and malignant lesions[7], while it produces more imaging data than a mammo-
graphic examination. Hence, computer-aided diagnosis (CAD) of DCE MRI is
becoming increasingly important to reduce workload and biopsies on benign le-
sion.

A typical first step in CAD of breast MRI is the definition of the breast area, which
is enclosed by air and the chest wall. Several methods have shown good results
to detect the anterior tissue-air boundary[8, 9]. However, detection of the posterior
boundary between the breast and the chest wall, which is in breast MRI images
comprised of the pectoral muscle and sternum, has not been fully resolved[9].
Current methods have reported large challenges to delineate the muscle border
correctly in patients with dense breasts (ACR 4) because the contrast between
muscle and glandular tissue is poor[10–12].

The chest wall is typically delineated using semi-automated computer assisted
methods[13, 14] or automated methods that result in a roughly estimated chest
volume, used by for example CADstream (Merge Healthcare Inc., Chicago, IL)
and DynaCAD (Invivo, Gainesville, FL). Several fully automated detailed methods
have also been reported. These detailed methods can be divided in two groups,
knowledge-based methods and deep learning-based methods. Knowledge-based
methods use intensity operations and gradient signs[15, 16], edge properties[8,
17–20] or a-priori atlases[9, 10]. Deep learning-based methods for chest wall
segmentation have used artificial neural networks in the form of convolutional
neural networks[9, 15, 21]. The performance of these methods is difficult to
compare as for each method results have been reported for different data sets,
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which vary widely in the number of ACR 4 images included. The largest ACR
4 data set on which a knowledge-based method has been evaluated contained
55 cases[17], while the largest data set on which a deep learning-based method
has been evaluated contained 15 ACR 4 cases[21]. The reported Dice similar-
ity coefficient (DSC) of deep learning-based methods to segment the chest wall
in extremely dense breasts is 0.921[21]. The performance of knowledge-based
methods ranges from 0.944 to 0.96[9, 17, 19, 20]. A direct comparison of the two
approaches using a large MRI dataset of ACR 4 breast would shed light on the
advantages and pitfalls of both approaches.
The aim of this study is to compare a knowledge-based and a deep learning-
based approach for segmentation of the chest wall in MR image of extremely
dense breasts. Both methods were optimized and validated using an identical
large dataset. Using a large series of MR images, we pursued to minimize selec-
tion bias and cover the variety of ACR-4 breast types. The secondary objective of
this study was to test the effectiveness of various quantitative metrics to assess
chest wall segmentation results in terms of clinical relevance.

2.3 Materials and Methods

2.3.1 Study population

MRIs were collected from 115 randomly selected participants in the Dense Tis-
sue and Early Breast Neoplasm ScrEening (DENSE) trial, who were examined in
the University Medical Center Utrecht, Utrecht, the Netherlands. The DENSE trial
has been described in detail elsewhere[2]. In short, this multicenter randomized
controlled trial investigates the additional value of MRI screening in Dutch women
with extremely dense breasts (i.e. ACR4). Written informed consent was obtained
from all patients before MRI screening. The trial was approved by the Dutch Min-
ister of Health, Welfare and Sport (2011/19 WBO, The Hague, the Netherlands).
The age of the participants ranged from 49.5 to 75.2 years with an average of
56.6 years. None of the selected participants had a lesion suspected of being
malignant.

2.3.2 MR Imaging

This study used a random subset of 115 T1-weighted MRI breast scans, acquired
in the UMC Utrecht. Each scan consisted of 179 slices. All participants were
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scanned in prone position using a Philips Achieva 3 Tesla MR scanner (Philips
Healthcare, Best, The Netherlands). The image data consisted of high-spatial
resolution transversal images, obtained with a 3D sequence using a dedicated
phased-array bilateral breast coil (Philips SENSE-Breast7TX receive coil) with a
repetition time of 4.95 ms, an echo time of 1.87 ms and a 10°flip angle. Single
slice dimensions were 560 x 560 pixels, the field of view was 360 x 360 mm2 and
the in-plane resolution was 0.64 x 0.64 mm2 with a slice thickness of 1.00 mm.
To train and validate both automated segmentation methods, the dataset was ran-
domly split in a training set of 36 image sets and a validation set of 79 image sets.
Manual reference segmentations of the chest wall were obtained in all datasets
and used as ground truth for optimization and validation. The segmentation was
performed by contouring in 2D transverse images by a Technical Physician (EV)
under supervision of a breast radiologist (SW) who had 6 years’ experience with
breast MRI. Interactive tools such as Livewire[22] and freehand contouring were
used, available in MeVisLab (version 3.0, MeVis Medical Solution AG, Bremen,
Germany).

2.3.3 Methods

Two methods for segmentation of the chest wall were developed for the purpose
of this study: A knowledge based method (Section Knowledge-based chest wall
segmentation) and a deep learning-based method (Section Deep learning based
chest wall segmentation). For both methods the same image-preprocessing step
was used (Section Pre-processing), the performance of the methods was com-
pared (Section Evaluation) and the effect of combination of the methods was re-
viewed.

Pre-processing

Prior to segmentation, data was preprocessed. Preprocessing started with the
automated definition of a rectangular region of interest (ROI), containing the area
between 1 cm anterior of the breast tissue and 5 cm posterior of the intermammil-
lary cleft. First, the MRI volume was separated into foreground and background
voxels using Otsu’s method[23]. Then, three landmarks were automatically de-
tected in the resulting binary images (Figure 2.1). Landmark 1 corresponded
to the most anterior tissue in the image dataset, often the nipple of one of the
breasts. Landmark 2 was the corresponding landmark at the same transversal
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image slice. Landmark 3, was the most posterior air-tissue boundary between
the two detected landmarks, denoting the intermammillary cleft. For all subse-
quent analysis, the MRI volume was cropped to this ROI.

Figure 2.1: The definition of the automatically established ROI. Landmark 1 is the location most an-
terior tissue, landmark 2 the location of the most anterior tissue in the contra lateral part of the same
image slice and landmark 3 the position of the intermammillary cleft. The ROI was defined around the
landmarks and applied to all slices of the dataset.
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Knowledge-based chest wall segmentation

A knowledge-based method was developed to find the curve dividing the chest
wall and breast in each image. The method combined heuristics and dynamic
programming[17, 20, 24] in two steps. First, a cost image was formed. Second,
a path-finding algorithm was used in the cost image to trace the border of the
chest wall. The total cost of a path is the sum of cost values along the path in
the underlying image. A high cost is assigned to locations were the chest wall
is unlikely to be present (e.g., inside the lungs and anterior of the breast). A low
cost is assigned to locations where a clear edge contrast is present. Using this
approach, the shortest path between the two bottom corners of each transversal
slice is forced to go around the lungs and favor a more posterior path which follows
a clear edge as much as possible. All steps of this automated segmentation
were performed using MATLAB (v R2015a; Mathworks, Natick, MA) running on a
desktop PC (Intel Xeon CPU 3.50GHz, 16GB RAM).

Each image was transformed into a cost image, c (Figure 2.2). In c, each voxel
value is inversely proportional to the likelihood that the border between breast and
chest is present at that location. Four three-dimensional image layers (L1 − L4)
formed the cost image. Each layer used image properties to score the cost at
each voxel. The cost function was defined as:

c(x, y, z) = L1(x, y, z)∗(α∗L2(x, y, z)+L3(x, y, z)+γ∗L4(x, y, z)))2+(δ∗f ′(x, y, z))+0.1
(2.1)

Where L1-L4 represent different image properties, x, y and z are the coordinates
of each voxel and α, γ and δ are weighting factors to favor or penalize a specific
layer. Image f’ is the cropped image where voxel intensities were normalized
between 0 (no intensity) and 100 (maximal intensity). Physical path length was
penalized by addition of 0.1 to all voxels in the cost image.
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Figure 2.2: Overview of layers used to form the Cost image, showing input image, A, the layers of
the cost image, L1 to L4 and the resulting cost image, B. L1 contains the edges present in the A, L2
adds information on borders, L3 about vertical position relative to the intermammillary cleft, L4 about
glandular fatty tissue distribution

Layer L1 contains the edges resulting from contrast differences present in the
image f ′. A part of the border of the chest wall in T1-weighted MR images is
located between low image-intensity muscle tissue and high image-intensity fatty
tissue or low image-intensity glandular tissue.

L1(x, y, z) =
{

1− E(x, y, z) where( δf
′

δy ) < 0
1 otherwise

(2.2)

Thus, layer L1 is a binary image where voxels at detected edges at positions with
negative y gradient (anterior-posterior direction) are assigned value 0 and all other
voxels value 1. E is the binary result of the Canny edge detection filter[25] using
hysteresis thresholds Tl = 0.0125 and TU =0.0625 and δ =

√
2 for the Gaussian

smoothing applied to the normalized image f ′. The hysteresis thresholds were
chosen relatively low to include more potential edges.

Layer L2 also is a binary three dimensional volume which penalizes the edges,
and voxels anterior to the edges found at the transition between tissue and air:
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L2(x, y, z) = G(x, y, z)⊕ SE2 (2.3)

where

G(x, y, z) = A(x, y, z)⊕ SE1 −A(x, y, z) (2.4)

Where A is the complement of the tissue segmentation obtained using threshold
T0 (which is also used during preprocessing). G is the inner border of the volume
segmented as tissue in A, obtained by dilation (⊕) of A with a 3 x 3 x 1 mm3

structuring element, SE1. L2 is the dilation result of G with structuring element
SE2. Element SE2 spans 5.5 x 3.0 x 1.0 mm3 with the origin in the center of the
posterior side of the element. Layer L2 was weighed by an arbitrarily large factor
(α), yielding large cost for the edges found at the transition between tissue and
air.
The third layer, L3, penalized voxels located anterior of the intermammillary cleft,
(Figure 2.3) Voxels in rows located between 15 mm and 30 mm anterior from
the intermammillary cleft were penalized with weighting factor β, while voxels in
rows located more than 30 mm from the intermammillary cleft were penalized with
weighting factor α.

Figure 2.3: Layer L3 illustrated as an overlay on an MR image of the breast, weighting factors are
indicated on the right of the image.

The fourth layer, L4, exploits the fact that the fatty tissue typically has higher
image intensity on T1-weighted images than other anatomical structures. The
image was segmented into three pixel-value classes: low, intermediate, and high
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image intensity, using fuzzy-c means clustering[26] with a fuzziness factor of 2. In
L4, all voxels that are part of the high image-intensity class were set to 1, all other
voxels were set to 0.

The cost image, c, was used for tracking the path that accumulates the smallest
sum of cost values from the left to the right posterior corner. Dijkstra’s algorithm[27]
was used for this purpose. The path finding algorithm was applied to all transver-
sal slices of the cost image separately resulting in one path for each slice. All
paths combined resulted in an irregular three-dimensional surface, P . The sur-
face of this volume was labeled with value 1 and all other voxels in the image with
0.

To remove irregularities from the surface, a 2D surface topography map, H, was
formed from surface P . In H, each pixel was assigned a value equal to the short-
est distance of the surface voxels to the posterior side of the image matrix. A
median filter using a kernel of 15 x 15 mm2 was subsequently applied to the to-
pography map to remove large fluctuations in height. The median filtered surface
topography map, was converted back to a surface M in 3D, where the surface
was labeled with value 1 and the other voxels with value 0. Finally, a new cost im-
age was composed from surface M , the binary result of the Canny edge detection
filter, E, and the first cost image, c:

c2(x, y, z) =


0.1 if M(x, y, z) = 1 or E(x, y, z) = 1
0.01 if M(x, y, z) = 1 and E(x, y, z) = 1
ε ∗ c(x, y, z) otherwise

(2.5)

Here, ε is a weighting factor, set to value 100. Cost image, c2, was used to find
the final chest wall segmentation. First, the path in the middle transversal slice
was tracked. This was repeated slice by slice, taking into account the path found
in the adjacent slice as follows: Before the path in a next slice is tracked, the
corresponding transversal slice in cost image c2 was updated to prevent irregular
surface outcomes. All voxels in c2 located 4 mm or more from the path in the
adjacent slice were maximally penalized using factor α, which arranges that the
resulting path will not deviate more than 4 mm from the path found in the previous
segmented adjacent slide.

Optimal results, in the training data, were achieved using empirically determined
weighting factors α=1e16, β=10, γ=10, δ=2 and ε=100. Robustness of the weight-
ing factors was tested in two ways. First, all possible permutations (repetition
allowed) of weighing factors 2, 10 and 100 for α, β, γ, δ and ε were evaluated to
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segment the training data. This confirmed the chosen selection of weighting fac-
tors which resulted in a median Dice similarity coefficient (DSC)[28] of 0.985. The
DSC is a measure for the overlap of the segmented breast volume and the ground
truth. Median DSC ranged from 0.910 to 0.985 for all other possible permutations
of the weighing factors (Supplemental material: Robustness of the KBM). Sec-
ondly, uniform random noise, with a maximum up to 100% of the weighing factor,
was added to the weighting factors. This did not lead to significantly different re-
sults (p = 0.19) in the training data with a median DSC of 0.983 compared to a
DSC of 0.985 in noiseless images.

Deep learning based chest wall segmentation

The second proposed method uses a dilated convolutional neural network (DCNN)
to segment the chest wall. For this method, we defined chest wall segmentation
as a two-class segmentation problem, where the DCNN should predict a label 0
for voxels anterior to the chest wall and a label 1 for voxels posterior to the chest
wall. In contrast to a non-dilated CNN, a DCNN stacks layers with increasing rates
of dilation, i.e. increasing spacing between kernel elements.
The receptive field is the part of the image taken into account to predict class prob-
abilities for a voxel. By linearly increasing the dilation rate from layers 2 through
7, the receptive field grows exponentially to a final width of 131x131 voxels. How-
ever, the number of parameters in each layer stays the same. The proposed
DCNN provide a receptive field of 259x259 in only 9 layers (Table 1). Without
dilation, a receptive field of this size requires at least 129 layers using 3x3 convo-
lutional kernels. The dilation rate does not affect the number of parameters in a
kernel, but it does lower the number of layers. Hence, a large amount of context
can be taken into account with a low number of trainable parameters, and hence
a reduced chance of overfitting[29, 30].
For each layer of the DCNN used in this study, Table 2.1 lists the number of
convolution kernels, the convolution kernel size, the convolution kernel dilation,
and the number of parameters. In addition, the receptive field at each layer is
listed, i.e. the part of the image that is taken into account to predict a value for a
single voxel. The dilation rate is linearly increased from 1 to 64 between layers 2
and 8. This means that at layer 2, there is no spacing between kernel elements,
and at layer 8, kernel elements are spaced 63 pixels apart. By linearly increasing
the dilation rate the receptive field grows exponentially to a final width of 259x259
pixels. However, the number of parameters in each layer stays the same. To
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preserve translational equivariance, the kernel stride is 1 in all cases. Layers 1 to
10 are each followed by a rectified linear unit (ReLU), while layer 11 is followed by
a sigmoid function. No skip connections were used in the network.

Table 2.1: The convolutional neural network architecture used in this study. For each layer, the con-
volution kernel size, the rate of dilation, the receptive field, the number of output channels and the
number of trainable parameters are listed. The kernel stride is 1 in all cases. Figures in the top row
illustrate the receptive field at each layer shown in orange.

Receptive 
field 

           
Layer 1 2 3 4 5 6 7 8 9 10 11 
Convolution 3 x 3 3 x 3 3 x 3 3 x 3 3 x 3 3 x 3 3 x 3 3 x 3 3 x 3 1 x 1 1 x 1 
Dilation 1 1 2 4 8 16 32 64 1 1 1 
Field 3 x 3 5 x 5 9 x 9 17 x 17 33 x 33 65 x 65 129 x 129 257x257 259 x 259 259 x 259 259 x 259 
Channels 32 32 32 32 32 32 32 32 32 192 3 
Parameters 320 9248 9248 9248 9248 9248 9248 9248 9344 6912 579 

 

Given a 2D input sample of 259x259 pixels, the DCNN in Table 1 will predict a
single value for the center pixel. As the DCNN only uses valid convolutions, no
values will be predicted for the 129 border pixels in each direction. However, any
image larger than 259x259 pixels can also be processed, resulting in a prediction
for the voxels in the center of that image. We use this principle during training and
testing. During training, we provided the DCNN with 409x409 pixel samples and
reference predictions for the 151x151 pixels in the center (Figure 2.4). During
testing, we provided full-size 2D images to the DCNN.To accommodate for the
loss of border pixels, 3D volumes were padded with voxels in each direction prior
to training or testing.

A single DCNN was trained to segment 2D images in three orthogonal directions:
transversal, sagittal, or coronal. For this, the 36 datasets in the training group were
stratified into two groups: a training set containing 35 data sets and a validation
set containing 1 data set. The latter was used for hyperparameter optimization.
The network was trained for 100,000 iterations using the Adam optimizer [31] with
a learning rate of 0.0001. During each training iteration, a mini-batch consisting
of 10 images of size 409x409 pixels and corresponding reference segmentations
of 151x151 pixels (Figure 2.4) was randomly selected from the training set. The
DCNN was trained to minimize the Dice loss [32].
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Figure 2.4: Given an input image of 259x259 pixels, the DCNN will predict a single value. During
training, the DCNN is provided with 409x409 pixel input samples, and a prediction is made for the
151x151 center pixels, with no loss of resolution.

Diceloss = 1−
2

∑
i(As pi ∗Msi)∑
i(As pi ∗Msi)

(2.6)

where As p is the resulting 3D probability volume, Ms is the binary 3D volume of
the manual segmented chest and i is iterating over all voxels. The DCNN was
implemented in Python with PyTorch and experiments were performed using an
NVIDIA Titan X GPU with 12GB RAM.

During testing, the trained DCNN was directly applied to all 2D images along the
three principal axes of the test image to obtain three 3D probability volumes Figure
2.5. These were averaged and thresholded at p=0.5 to obtain a binary prediction.
Finally, to obtain the surface delineating the chest wall, the largest component
with label 1 (i.e., posterior to the chest wall) was identified in the binary prediction.
A morphological erosion was applied to this component and the resulting mask
was subtracted from the component so only the boundary voxels remain without
affecting the border itself.
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Figure 2.5: The dilated neural network segments each dataset along the three principal axes resulting
in three equal volumes with a segmentation result of the chest volume. The three resulting class
probabilities were averaged and thresholded to obtain the final segmentation.

Evalution

The automated segmentation method was validated using qualitative and quanti-
tative metrics. Seventy-nine data sets were automatically segmented for valida-
tion. Quantitatively, the manual and automatic segmentation results were com-
pared using the total 3D chest volume and slice-by-slice 2D chest volume using
four validation metrics: the Dice similarity coefficient (DSC) [28][28], false positive
fraction (FPF) or over-segmentation[17], false negative fraction (FNF) or under-
segmentation[17] and Hausdorff distance (HD). The quantitative results of both
segmentation methods were compared using the Wilcoxon signed rank test, a
p-value of less than 0.05 was considered statistically significant. The DSC met-
ric was calculated using equation 2.7 characterizing an overlap measure, i.e.,
the area agreement, between the automatically (As) and manually (Ms) obtained
chest volumes delineated by the found chest wall border and posterior edge of
the ROI.

DSC = 2(As ∩Ms)
(As+Ms) (2.7)

The FPF and FNF were calculated using equation 2.8 and equation 2.9

FPF = As \Ms

As \Ms+As ∩Ms
(2.8)
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FNF = Ms \As
MS \As+As ∩Ms

(2.9)

Where ∩ denotes the intersection of the set of volume pixels and \ the difference
operator. The fourth metric to score the automatically obtained segmentations
was the HD metric. The HD reflects the maximal Euclidian distance between
manually and automatically delineated borders. The HD is generally sensitive to
outliers, therefore we used the quantile method proposed by Huttenlocher et al.
[33]. According to the Hausdorff distance quantile method, the HD is defined to be
the qth quantile of distances, instead of the maximum. In this study, we selected
the 95th percentile, HD95th
In addition to the quantitatively scoring all segmented slices were scored qualita-
tively by a radiologist. For this purpose, segmentation errors were divided in four
categories:

1. Correctly delineated

2. Under-segmentation: chest wall is segmented as breast tissue.

3. Mild over-segmentation: soft tissue other than breast tissue is segmented
as chest wall, or deviation to target is smaller than 2 mm.

4. Severe over-segmentation: breast tissue is segmented as chest wall.

Any form of over-segmentation, where breast tissue was segmented as chest,
was considered to be worse than under segmentation because it masks breast
tissue and may thus cover breast lesions. Based on the BIRADS atlas[34], where
breast foci have a maximal diameter less than 5 mm and breast lesions have a
maximal diameter of at least 5 mm, we set the threshold between mild and severe
over segmentation at 2 mm to minimize the chance of missing a lesion mass when
mild over-segmentation was present. The qualitative results of both methods were
compared using the McNemar chi squared test where p-value smaller than 0.05
is considered significant. Furthermore, associations between quantitative results
and qualitative results were shown using the Wilcoxon signed-rank test.

2.4 Results

Quantitatively, no significant difference was present between both methods ac-
cording to the DSC and HD metric. Nonetheless, the FPF of the KBM was sig-
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nificantly lower compared than that of the DLM. Both FNF and HD95 were signif-
icantly lower in the DLM compared to the KBM (Figure 2.6). In other words, the
KBM outperformed the DLM in terms of FPF, but the DLM outperformed the KBM
in terms of FNF and HD95.
Qualitatively compared, the DLM performed significantly better than the KBM ac-
cording to the McNemar chi square test, p<0.01. The success rate of the DLM
was higher compared to the success rate of the KBM, 0.82 versus 0.78 respec-
tively (Table 2.2). In 7.9% of the slices both methods were not successful, in
other words 92.1% of the slices were segmented correctly by one of the methods.
We found that the qualitative analysis reflected the numbers found in the quanti-
tative analysis. Slices that were scores as category 1 had the highest DSC, while
slices scored as category 3 and 4 had the highest FPF (Figure 2.7). Upon closer
inspection, we found that the DLM mostly had problems finding the correct chest
wall in MR images of rare anatomy, for example where glandular tissue did con-
tinue deep into the axilla. Conversely, the tendency of the KBM to find a minimum
cost path sometimes resulted in unwanted shortcuts. These occurred when the
pectoral muscle had irregularities, e.g. in or near the shoulder where the detected
border was located posterior of the chest wall border (Figure 2.8).
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Metric DLMa KBMa p-value 
DSC 0.982(0.006) 0.984(0.008) 0.08 
HD (mm) 12.81(27.28) 24.14(20.69) 0.05 
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Figure 2.6: Quantitative results of automated segmentation methods compared to the ground truth.
Result of statistical comparison between methods using the Wilcoxon signed rank test are shown in
the bottom right corner of each graph. The table shows a summary of the quantitative results.
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Table 2.2: Shows an overview of the rating of the radiologist of each segmented slice for both methods.
Category 1 is successful segmented, category 2 is for under segmentation, category 3 mild over
segmentation and category 4 severe over segmentation. As shown in the table 9596 (67.9%) slices
were segmented correctly by both methods and 13029 (92.1%) slices were segmented correctly by at
least one of the proposed segmentation methods.

DLM category 1 DLM category 2 DLM category 3 DLM category 4 Total

KBM category 1 9596 648 413 430 11087

KBM category 2 929 303 120 124 1476

KBM category 3 515 44 120 99 778

KBM category 4 498 66 104 132 800

Total 11538 1061 757 785 14141
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Figure 2.7: Relation between slice by slice quantitative and qualitative scoring. On the x-axis, the 4
categories of quantitative scoring and the qualitative scoring on the y-axis. A significant difference in
performance between DLM (red) and KBM (blue) is shown by the *.
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(a)

(b)

KBM DLM

Figure 2.8: Worst-case segmentations by both approaches. Left the result of the KBM (yellow), right
the result of the DLM (yellow) , A) transversal slice of dataset where the lowest DSC (0.955) occurred
between manual segmentation (green and dashed) and result of DLM (yellow). B) transversal slice of
dataset where the lowest DSC (0.960) occurred between manual segmentation (green and dashed)
and result of KBM (yellow). Segmentation results were dilated for visibility.

2.5 Discussion

This study shows that an optimized knowledge-based method and deep learning
method can trace the chest wall border in 79 independent MRI datasets (i.e., not
previously seen) of extremely dense breasts (i.e., ACR class 4). Both methods
were qualitatively and quantitatively evaluated in data set consisting of 79 new
screening MR images of extremely dense breasts. For the DSC, no significant
difference was found between the two methods. Although the KBM showed better
performance in terms of FPF, the DLM outperformed the KBM in terms of FNF and
HD95.
A number of studies on chest wall segmentation have been published that de-
scribe and evaluate the results in quantitative terms. Only few studies[10, 12, 17]
described the type of segmentation error, while none described the location of the
error. These are important aspects, because some errors may lead to clinically
unacceptable results while others will have negligible clinical impact. The quan-
titative results of other methods are summarized in Table 2.3. As shown, both
methods presented in this study perform at least as well or better than previously
published methods, although the methods are not directly comparable due to the
use of different datasets. For a fair comparison, we additionally implemented a
state-of-the-art knowledge based method and a deep learning based method to
segment the same test data. We chose the KBM method of Milenkovic[20] be-
cause it is the best performing method reported in the literature for extremely
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dense breast images without fat suppression. In addition we chose the widely
used DLM method U-Net[35]. Performances of both methods are shown in Table
2.3.

Table 2.3: Comparison of the achieved metric values († mean and standard deviation or ‡ median
and interquartile range) with those found in the literature. When authors split their results by ACR
category only the results of the segmented ACR 4 cases are mentioned. Methods from literature used
to segment the same test data are indicated by an *.

Author Number
of MRI
datasets

DSC FNF FPF HD95 (mm) HD (mm) ACR 4 Method

Fooladivanda[17]† 55 0.946 (0.03) 0.035 (0.021) 0.072 (0.042) NA NA Yes KB

Gallego
Ortiz[10]†

409 0.88 (0.05) 0.11 (0.05) 0.13 (0.07) NA NA No KB

Gubern
Merida[12]†

50 0.94 (0.03) 0.04 (0.02) 0.07 (0.06) NA NA No KB

Milenkovic[20]† 11 0.949 (0.018) NA NA NA NA Yes KB

Wu[8]† 14 0.944 (0.024) NA NA NA NA Yes KB

Jiang[19]† 8 0.96 (0.011) NA NA NA NA Yes KB

Wei[18]† 99 0.960(0.017) 0.02(0.02) 0.01(0.01) NA NA No KB

Dalmiş[21]† 15 0.921 (0.03) NA NA NA NA Yes ML

Milenkovic[20]*‡ 79 0.956 (0.026) 0.012 (0.006) 0.072 (0.056) 8.42 (4.43) 34.08 (18.63) Yes KB

Ronneberger[35]*‡
(U-Net)

79 0.983 (0.004) 0.003 (0.002) 0.029 (0.007) 2.21 (0.75) 11.93 (43.08) Yes ML

Proposed
methods

DLM‡ 79 0.982 (0.006) 0.003 (0.003) 0.030 (0.009) 2.58 (1.78) 12.81 (27.28) Yes ML

KBM‡ 79 0.984 (0.008) 0.009 (0.011) 0.018 (0.009) 3.37 (2.11) 24.14 (20.69) Yes KB

In problems with small amounts of training data, the large number of trainable
parameters of a U-Net (31 million) could increase the risk of overfitting compared
to a DCNN which is using far fewer trainable parameters (82 thousand). How-
ever, in this study the proposed DLM is on-par with U-Net. The knowledge based
method of Milenkovic performs well, but has significantly lower DSC, and signifi-
cantly higher FNF, FPF and HD95 compared to both proposed methods.

It should be noted that the presented DSC values are of the chest volume were all
DSC values reported by other authors are of the breast volume. This choice was
made because the breast volume is also enclosed by the border between skin and
air whereas the chest volume is only enclosed by the border of the ROI and found
chest wall. Hence, all results were solely based on the chest wall segmentation
and not on segmentation errors of the skin-air border.

To the best of our knowledge, no studies have yet systematically compared opti-
mized knowledge-based heuristic methods and artificial-intelligence methods for
this problem. This study shows that both presented approaches have advantages
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and disadvantages. From a practical point of view, deep learning runs signif-
icantly faster and yields more robust performance in terms of FNF and HD95,
while FPF metric showed a better performance for the KBM. We expect that false
positive results have more severe impact when used in computer aided diagno-
sis because the chance of missing malign lesions increases, while false negative
results will never remove breast lesions. However for fibroglandular volume or
breast parenchyma enhancement measurement (BPE) false negative segmenta-
tion results, which are less present at the DLM, can result in volume over estima-
tion or wrong BPE values. The complementary nature of both methods resulted
in only 7.9% of the slices that were not fully correct segmented when considered
jointly.

Existing methods may show difficulties tracing the chest wall border due to the
lack of contrast between glandular tissue and chest wall tissue[10–12] or they
perform worse in extremely dense cases compared to segmentation in images of
less dense breast[8]. This study showed that the presented methods can trace
the chest wall border in 79 extremely dense breast MRI in an independent test
set. Since extremely dense breasts are considered to be the most difficult cases
for automatic segmentation of the chest wall. It is reasonable to assume the
performance of the KBM will be consistent or better in MR imaging of breasts
with less glandular tissue. However, for the DLM, training data with less glandular
tissue should also be present in the training data before the method is expected
to perform comparable.

Chest wall segmentation often is a preprocessing step in automated analysis of
breast imaging, for example to measure breast volume and glandular tissue vol-
ume or prior to computer aided detection of lesions inside the breast. With the
KBM, where the shortest path could result in unwanted shortcuts, the number
of false positives is reduced but it increased the amount of false negatives. The
DLM suffers from larger false positives fractions but performs better as a whole.
Therefore we prefer to use the KBM when the aim is to detect breast lesions,
because there is less chance a lesion is hidden due to a false positive chest wall
segmentation, but when the aim is to measure breast volumes we prefer the DLM.

As expected there was a relation between the DSC metric and the scoring of the
radiologist. Also the relation between qualitative false positive categories (3 and
4) and false negative category (2) and quantitative metrics FPF and FNF was as
expected.

As described by Milenkovic et al.[20], a risk of the dynamic programming ap-
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proach (KBM) is the success of the first slice being segmented: when this seg-
mentation is incorrect, the error will propagate through to the adjacent slice. In this
study we selected the middle transverse slice, because this slice is near iso-center
of the MRI scanner were the signal to noise ratio is optimal. Alternative locations
to start this method are slices more superior or inferior, where the amount of
glandular tissue is reduced. The parameter settings in the KBM were determined
empirically by visual inspection of the layers. In this work, we used a dilated CNN
(DCNN) for segmentation. This architecture has previously shown excellent per-
formance on medical image analysis tasks[29, 30, 36]. The DCNN was trained
to segment 2D slices in the transversal, sagittal, and coronal images. We also
evaluated a DCNN that was trained to only segment transversal, coronal or sagit-
tal slices. This led to significantly lower performance (Supplemental material 2:
Variations on DLM), indicating that there is useful information in a combination of
the planes. To further investigate this, we extended the 2D DCNN to 3D by using
3D convolutional kernels. However, this required compromising on the size of the
receptive field to accommodate limitations in available RAM on a typical GPU.
Therefore, predictions for a voxel depended on a receptive field of 131x131x9
voxels centered at that voxel. This network performed on par with the proposed
DLM for all metrics except the HD95 metric, where it had a significant lower per-
formance (p <0.01) (supplemental material 2: Variations on DLM). In future work,
we may explore other neural network architectures, such as those with multi-scale
patch-based networks[37] or ensembles of different architectures[38] for improved
results. A study limitation is that all data were acquired in the same hospital. It is
known that the variation in MR images quality can be substantial, therefore, for fu-
ture research we advise to increase the variation by using images acquired using
MRI systems from different vendors and from different hospitals. It is conceivable
that the accuracy of segmentation results would be increased with more data, or
the methods become more versatile for different protocols. To achieve this goal,
the KBM may need to adapt its cost functions to different protocols, while the pa-
rameters in the DLM may need to be fine-tuned to generalize across protocols.
In most cases, for the DLM this may mean retraining of the DCNN with the same
hyperparameters. However, if increased complexity of training data can no longer
be accurately represented by the same number of parameters in the network, the
DCNN architecture may need to be adjusted and new hyperparameters may have
to be used. All methods in this study were developed using a training and valida-
tion set, and evaluated on a separate hold-out test set. This paradigm was chosen
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over cross-validation, because knowledge–based methods cannot be developed
in a cross-validated fashion and our aim was to compare methods on exactly the
same test set. Finally the effects of inter- and intra-observer variability in obtaining
the manual ground truth segmentation are unknown in this study and could give
more insight about the differences in performances of the methods.

2.6 Conclusion

We developed two automated methods for segmentation of the chest wall in MR
images of extremely dense breasts. Both methods were evaluated on an in-
dependent dataset of 79 MR examinations, and showed a good performance.
Both methods have their strengths and weaknesses. Hence, we consider that the
KBM is more suitable for methods where the aim is breast lesion detection and
the faster DLM is preferable when measuring breast volumes, which is important
when determining breast density.
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2.7 Supplemental material 1: Robustness of the KBM

During robustness analyses of the KBM method, 81 different KBM methods were
developed with a different combination of the weighting factors 2, 10 and 100 for
parameters β, γ, δ and ε. The train datasets were segmented using all different
models. All possible permutations of the factors and their resulting median DSC
score on the train data are listed in the Table 2.4. In Figure 2.9 an overview of all
DSC results is given in a box plot. Both table and figure show that permutation 41
is the best performing weighting factor combination. Permutation 41 was equal to
the configuration used for the KBM as proposed in the manuscript.

 

Figure 2.9: Boxplot of DSC results in the training data with 81 different KBM models resulting from all
permutations. Permutation numbers correspond with the numbers used in Table 2.4. Permutation 41
(green) was equal to the configuration used for the KBM as proposed in the manuscript.
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Table 2.4: Al possible permutation of weighting factors 2, 10 and 100 for parameters β, γ, δ and ε
with their corresponding DSC result. Each row starts with permutation number, followed by the used
weighting factors and DSC score

# β γ δ ε Median
DSC
result

# β γ δ ε Median
DSC
result

1 2 2 100 10 0.979 42 10 10 2 2 0.980

2 2 2 100 100 0.912 43 100 10 2 10 0.983

3 2 2 100 2 0.910 44 100 10 2 100 0.982

4 10 2 100 10 0.984 45 100 10 2 2 0.981

5 10 2 100 100 0.957 46 2 100 2 10 0.983

6 10 2 100 2 0.930 47 2 100 2 100 0.984

7 100 2 100 10 0.980 48 2 100 2 2 0.983

8 100 2 100 100 0.962 49 10 100 2 10 0.984

9 100 2 100 2 0.962 50 10 100 2 100 0.985

10 2 10 100 10 0.983 51 10 100 2 2 0.984

11 2 10 100 100 0.984 52 100 100 2 10 0.983

12 2 10 100 2 0.955 53 100 100 2 100 0.982

13 10 10 100 10 0.984 54 100 100 2 2 0.983

14 10 10 100 100 0.985 55 2 2 10 10 0.979

15 10 10 100 2 0.980 56 2 2 10 100 0.966

16 100 10 100 10 0.983 57 2 2 10 2 0.953

17 100 10 100 100 0.983 58 10 2 10 10 0.980

18 100 10 100 2 0.982 59 10 2 10 100 0.984

19 2 100 100 10 0.983 60 10 2 10 2 0.954

20 2 100 100 100 0.984 61 100 2 10 10 0.980

21 2 100 100 2 0.983 62 100 2 10 100 0.979

22 10 100 100 10 0.984 63 100 2 10 2 0.981

23 10 100 100 100 0.985 64 2 10 10 10 0.983

24 10 100 100 2 0.985 65 2 10 10 100 0.984

25 100 100 100 10 0.983 66 2 10 10 2 0.955

26 100 100 100 100 0.983 67 10 10 10 10 0.984

27 100 100 100 2 0.983 68 10 10 10 100 0.985

28 2 2 2 10 0.979 69 10 10 10 2 0.980

29 2 2 2 100 0.918 70 100 10 10 10 0.980

30 2 2 2 2 0.930 71 100 10 10 100 0.981

31 10 2 2 10 0.981 72 100 10 10 2 0.984

32 10 2 2 100 0.968 73 2 100 10 10 0.983

33 10 2 2 2 0.936 74 2 100 10 100 0.984

34 100 2 2 10 0.982 75 2 100 10 2 0.983

35 100 2 2 100 0.975 76 10 100 10 10 0.984

36 100 2 2 2 0.963 77 10 100 10 100 0.985

37 2 10 2 10 0.983 78 10 100 10 2 0.984

38 2 10 2 100 0.984 79 100 100 10 10 0.980

39 2 10 2 2 0.969 80 100 100 10 100 0.981

40 10 10 2 10 0.984 81 100 100 10 2 0.984

41 10 10 2 100 0.985
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2.8 Supplemental material 2: Variations on DLM

In the manuscript we presented a 2D DCNN which segments the chest wall in transversal, coronal and sagittal directions
and averages the results. For a performance comparison between different variations of the DLM we used the same train
data and test data. In total, we trained 5 additional DLM methods. In 3 variation we used the same DCNN as presented in
the manuscript, however we trained and tested it only on transversal, coronal or sagittal images. In the fourth variation, we
used the same DNN structure to segmented transversal 2D slices without dilation rate. The last variation of the model was
a 3D DCNN (Table 2.5). Results of all variation compared to the proposed DLM method in the manuscript are summarized
in Table 2.6

Table 2.5: Configuration of the 3D DCNN.

Layer 1 2 3 4 5 6 7 8 9 10

Convolution 3x3x3 3x3x3 3x3x3 3x3x1 3x3x1 3x3x1 3x3x1 3x3x1 1x1x1 1x1x1

Dilation 1x1x1 1x1x1 2x2x2 4x4x1 8x8x1 16x16x1 32x32x1 1x1x1 1x1x1 1x1x1

Field 3x3x3 5x5x5 9x9x9 17x17x9 33x33x9 65x65x9 129x129x9 131x131x9 131x131x9 131x131x9

Channels 32 32 32 32 32 32 32 32 192 3

Parameters 896 27680 27680 9248 9248 9248 9248 9344 6912 579
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Table 2.6: Results of variations of the DLM method as proposed in the manuscript. All methods were compared to DLM, significant differences are marked
by a *. The DLM transversal without dilation was also compared to DLM transversal, here significant differences are marked by a †

Proposed methods Number
of MRI
datasets

DSC p-value FNF p-value FPF p-value HD95 (mm) p-value HD (mm) p-value

DLM 79 0.982 (0.006) - 0.003 (0.003) - 0.030 (0.009) - 2.58 (1.78) - 12.81 (27.28) -

DLM variation
DLM Transversal 79 0.984(0.005) 0.18 0.003(0.003) 0.66 0.028(0.008) 0.31 3.75(6.16) 0.30 18.14(48.85)* 0.03
DLM Coronal 79 0.958(0.012)* <0.01 0.043(0.020)* <0.01 0.038(0.021)* <0.01 11.1(7.10)* <0.01 30.15(35.80)* <0.01
DLM Sagittal 79 0.984(0.005) 0.38 0.006(0.004)* <0.01 0.027(0.007)* <0.01 4.59(3.98)* <0.01 16.98(39.66)* <0.01
DLM Transversal 79 0.971(0.012)*† *<0.01 0.006(0.006)*† *<0.01 0.048(0.021)*† *<0.01 18.98(10.9)*† *<0.01 47.82(27.02)*† *<0.01
without dilation †<0.01 †<0.01 †<0.01 †<0.01 †<0.01
DLM 3D 79 0.984(0.004) 0.05 0.003(0.002) 0.34 0.028(0.006) 0.11 3.47(2.18)* <0.01 23.26(17.33) 0.13
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3.1 Abstract

Background

MRI supplemental screening in women with extremely dense breasts has proved
beneficial. Most MRIs show normal anatomical and physiological variation not
requiring radiological review. Thus, ways to triage these normal MRIs to reduce
radiologist workload are needed.

Purpose

To determine the feasibility of an automated triaging method using deep learn-
ing to dismiss the highest number of MRIs without lesions while still identifying
malignant disease.

Materials and Methods

This secondary analysis of data from the DENSE trial evaluated breast MRIs from
the first screening round of eight hospitals obtained between December 2011 and
January 2016. A deep learning (DL) model was developed to distinguish between
breasts with lesions and breasts without lesions. The model was trained to dis-
miss breasts with normal phenotypical variation and to triage lesions (BI-RADS
2-5) using eight-fold internal-external validation: trained on seven hospitals and
tested on the eighth hospital, alternating such that each hospital once was an ex-
ternal test set. Performance was assessed using receiver-operating characteristic
analysis. At 100% sensitivity for malignant disease, the fraction of examinations
dismissed from radiological review was estimated.

Results

4581 MRI datasets of extremely dense breasts from 4581women (mean age 54.3
years, IQR51.5-59.8) were included. Of the 9162 breasts, 838 had at least one
lesion (BI-RADS 2-5, of which 77 malignant) and 8324 had no lesions. At 100%
sensitivity for malignant lesions, the DL model considered 90.7% (95%CI: 86.7%,
94.7%) of the MRIs with lesions to be non-normal and triaged them to radiological
review. The DL model dismissed 39.7% (95%CI: 30.0%, 49.4%) of the MRIs
without lesions. The DL model had an average AUC of 0.83 (95%CI: 0.80, 0.85)
to discriminate between normal breast MRIs and MRIs with lesions.
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Conclusion

Automated analysis of breast MRI in women with dense breasts dismissed nearly
40% of MRIs without lesions while not missing any malignant disease.
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3.2 Introduction

Mammography is less sensitive in women with extremely dense breasts (Ameri-
can College of Radiology Breast Imaging Reporting and Data System [ACR BI-
RADS] class D) than in women with fatty breasts[1–4]. Moreover, women with
extremely dense breasts have a 3-6 times higher risk of developing breast cancer
than women with almost entirely fatty breasts and a 2-fold higher risk than the
average woman[5, 6]. Recently, a randomized controlled trial showed that sup-
plemental screening with MRI in women between 50 and 75 years of age aids in
detecting breast cancer at an earlier stage and significantly reduces the interval
cancer rate between screening rounds[7].

In the Netherlands, approximately 8 percent of the screening participants have ex-
tremely dense breasts[8]. In a biennial screening program, nearly 82 000 women
are eligible for MRI breast screening in the Netherlands alone[9]. Thus, routine
MRI breast screening of women with extremely dense breasts on a population
scale will be challenging. The workload for MRI operators and radiologists will
increase substantially.

Several research directions aim at reducing the workload of MRI screening. These
efforts include MRI protocols to reduce acquisition time without loss of sensitiv-
ity or specificity[10–14] and computer-aided diagnosis to reduce follow-up activ-
ities on benign findings[15, 16]. In an average-risk population, the vast majority
(90.5%) of women screened with extremely dense breasts do not have findings
that warrant further diagnostic workup[7]. Hence, it is of interest to automatically
triage radiological review of breast MRI to women who have an above-average
likelihood of harboring disease. If such an approach holds potential, health care
resources could be prioritized to these higher-risk women, while reducing follow-
up on benign findings.

This study is the first to investigate image-based triaging on multicenter screen-
ing data of women with extremely dense breasts at average risk. The aim of this
research was to determine the feasibility of automated triaging using deep learn-
ing based on screening breast MRI to reduce the workload and to prioritize the
work of breast MRI radiologists by dismissing the largest number of MRIs without
lesions while still identifying all MRIs with malignant disease.
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3.3 Materials and methods

3.3.1 Participants

In this secondary analysis of data from the first round of the prospective DENSE
trial (ClinicalTrials.gov: NCT01315015), 4 783 MRI data sets were consecutively
included from eight hospitals in the Netherlands between December 2011 and
January 2016. When the MRI data sets were not present in full, they were ex-
cluded from this study. Data generated or analyzed during the study are available
from the corresponding author by request. Participating women were recruited
from the population-based breast cancer screening program in the Netherlands,
which offers biennial mammography to women aged 50-75 years. The median
age was 54 years (IQR 51–59 years)[7]. The trial was approved by the Dutch
Minister of Health, Welfare and Sport (2011/19 WBO, The Hague, the Nether-
lands). According to the Dutch law on Population Studies, the study was hence
waived from ethical review by the local IRB.

3.3.2 Imaging

The breast MRIs were acquired according to fixed imaging protocol described by
Emaus et al[17]. In brief, the full multiparametric MRI protocol consisted of a high
spatial resolution and high temporal resolution T1-weighted dynamic contrast-
enhanced series, T2-weighted sequences and DWI sequences. Fat suppression
was optional for both T1- and T2-weighted sequences.

This study focused only on the pre-contrast and first post-contrast images of the
dynamic contrast-enhanced series at high spatial resolution (flip angle ranged
between 10°and 20°, echo times between 1.7 ms and 2.4 ms and repetition time
between 3.3 ms and 5.5 ms[17]) because these series are typically available in
hospitals where breast DCE MRI is performed. All images were acquired using
a 3-Tesla MRI unit; five hospitals used Philips MRI devices and three hospitals
used Siemens MRI devices. The reconstructed voxel size depended on the MRI
device (Table 3.1). All MRI examinations were performed in the axial plane with
bilateral anatomic coverage, a field strength of 3.0 T, either a seven- or a 16-
channel phased-array dedicated bilateral breast coil. Contrast agent was injected
at a rate of 1 mL/sec to a total dose of 0.1-mmol of gadobutrol (Gadovist; Bayer
AG) per kilogram of body weight.
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Table 3.1: Overview of MRI devices and imaging properties of the dynamic contrast-enhanced series
used during the first round of the DENSE trial

Medical Center # Trial participants MRI device Reconstructed
voxel size
(mm3)

Dimensions
(voxels)

Fat
suppression

1 1615
Philips Achieva 0.89x0.89x0.9 384x384x200 Yes

Philips Ingenia 0.89x0.89x0.9 384x384x200 Yes

2 425

Siemens Magnetom Trio 0.80x0.80x1.0 448x448x176 No

Siemens Skyra 0.80x0.80x1.0 448x448x176 No

Siemens Prisma 0.80x0.80x1.0 448x448x176 No

3 244 Philips Achieva 0.89x0.89x0.9 384x384x200 Yes

4 500 Philips Ingenia 0.89x0.89x0.9 384x384x200 Yes

5 316
Philips Achieva 0.89x0.89x0.9 384x384x200 Yes

Philips Ingenia CX 0.89x0.89x0.9 384x384x200 Yes

6 544 Siemens Verio 0.85x0.85x1.0 448x448x176 No

7 489 Philips Ingenia 0.89x0.89x0.9 384x384x200 Yes

8 650 Siemens Skyra 0.80x0.80x1.0 448x448x160 No

3.3.3 Imaging Analysis in the DENSE trial

Imaging analysis in the DENSE trial is described elsewhere[7]. In brief, all MRIs
were single read, and scored according to the BI-RADS MRI lexicon[18] by 16
trained breast MRI radiologists (among whom W.V.), whose experience ranged
from 5 to 23 years in reading breast MRIs[7]. BI-RADS 3 lesions were double-
read, recommended for repeat MRI after 6 months and subsequent biopsy on
indication. BI-RADS 4 and BI-RADS 5 lesions were always indicated for biopsy.
MRIs were ‘breasts with lesions’ (BI-RADS 2, 3, 4 or 5) or ‘breasts without le-
sions’. After negative biopsy, a participant returned to the screening workflow of
the dense trial. Foci (<5 mm) were not taken into consideration, following con-
sensus on their definition (i.e., focal enhancement too small to characterize any
further[19]).

3.3.4 Deep learning

A method was developed to automatically establish whether an MRI of a breast
contains a lesion, based on a deep learning (DL) model. The model was trained
on left and right breasts separately, and combined into one result per MRI. The
method follows three steps:

1. Image processing consisting of image cropping, registration and MIP cre-
ation (supplemental material 1: Image Preprocessing)
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2. optimization of model architecture

3. internal-external validation[20, 21].

The network, source code and trained weights is fully available (https://github.com/Lab-
Translational-Cancer-Imaging/AI TriagingDENSE)

3.3.5 Model architecture optimization and internal-external val-
idation

The model was developed by separating the DENSE data at hospital level, training
and validating on seven hospitals, and using the remaining one as independent
test hospital. This process was repeated eight times such that each hospital
formed an independent test set (referred to as internal-external validation). The
image data of the 7 hospitals were randomly separated in a train set (80%) and
validation set (20%), the data of fold 8 (i.e., the independent test hospital) was the
test set. Input image parameters and model parameters were part of the search
for the optimal architecture of the neural network (supplemental material 2: CNN
parameter optimization). The binary cross entropy loss function was used for
optimization.
To properly train the neural network, the number of breasts that contain lesions
was balanced against the number of breasts without lesions in the train set of
seven hospitals, using random subsampling of the majority. For training, only one
label ‘yes’ (i.e., lesion(s) present) or ‘no’ (i.e., no lesions present) was used as
reference standard. The model with the smallest validation error was chosen as
the final model. This model was applied to the test hospital. The model yields
probability that a lesion is present in a breast. The maximum from left and right
breast yields the probability that a bilateral MRI contains lesions. Results were
stratified by MRI and lesion. The threshold was set at a value corresponding to
100% sensitivity for malignant lesions in the seven hospitals. Taking stochastical
uncertainty at the extremes into account, the threshold was implemented at the
25th percentile of the probabilities of malignant disease observed in the train set
minus the interquartile range, following the rationale proposed by Tukey[22].

3.3.6 Statistical Analysis

This study used all data acquired from the first screening round of the DENSE
trial, sample size considerations for which are given in[7]. ROC curve analysis
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was performed for each test hospital separately. All results are presented as the
mean values across the eight observations, the confidence intervals for these
means are derived from those eight observations.

Properties of the lesions to triage to radiological review were compared with those
to be dismissed. Lesion size, volume and incidence of mass vs non-mass en-
hancement were compared using the student t-test and the distribution of BI-
RADS score and Background Parenchymal Enhancement (BPE) were compared
using one-way ANOVA. A p-value smaller than 0.05 was considered significant.
In addition, the fraction of MRIs triaged without lesions was stratified by BPE and
compared using one-way ANOVA. The index tests and statistical analyses in this
secondary analysis of the DENSE data[7] were performed by EV and KG using
R-Studio (Version 1.1.383, RStudio, Inc)

Because the model was trained on left and right breasts separately, we examined
potential correlations of predicted lesion presence between left and right breasts
(supplemental material 3: Correlation in predicted lesion presence between left
and right breasts).

Because DL yields “black-box” results, an interpretation step was added to the
network to visualize which image regions are responsible for triggering the MRI
to triage. For this purpose, Deep Shapley Additive exPlanations (SHAP)[23] was
used. In short, Deep SHAP visualizes the contribution of each voxel to the pre-
diction result using a SHAP-map[24]: higher SHAP values correspond to higher
probability of lesion presence. Using this SHAP-map, it was assessed whether
the model prediction of lesion presence was based on plausible image regions.

3.4 Results

3.4.1 Participant Characteristics

In total, 4 581 of 4 783 MRI datasets (95.8%) of extremely dense breasts were
included of 4 581 women aged between 50 and 75 years old (median age 54.3
years, IQR 51.5-59.8). Datasets were excluded (n=202) because the T1-weighted
MRI data were not available in full due to incomplete acquisition or incomplete
data transfer. Of the 9 162 extremely dense breasts (left and right), 838 breasts
had at least one lesion (BI-RADS 2 or higher) and 8 324 breasts had no lesions.
Seventy-seven malignant lesions were detected in 76 MRIs in the DENSE trial.
Fifteen of these received BI-RADS-5 score, 57 BI-RADS 4, and 5 received an ini-
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tial BI-RADS 3 score, upgraded to BI-RADS 4 on the 6-month-follow-up MRI (Ta-
ble 3.2). Histopathology workup was based on core biopsies. Findings detected
by the model but not found by radiologists in the DENSE trial, were considered
unproven study findings, and did not trigger further patient workup.

Table 3.2: total number of single breasts in MRIs during training, stratified by lesion presence and
BI-RADS score.

Medical
Center

No
lesion
present

Lesion presence Total

BI-RADS 2 BI-RADS 3 BI-RADS 4 BI-RADS 5

1 2 861 106 68 (4) 136 (23) 11 (8) 3 182

2 700 44 20 (1) 24 (7) 2 (1) 790

3 441 9 14 16 (2) 0 480

4 901 43 15 24 (3) 3 (2) 986

5 524 61 9 11 (2) 1 (1) 606

6 1 002 2 8 22 (4) 0 1 034

7 727 50 11 14 (5) 2 (2) 804

8 1 168 42 18 51 (10)* 1 (1) 1 280

Total 8 324 357 163 (5) 298 (56)* 20 (15) 9 162(76)*

the number of breasts in which a malignant lesion is present is shown in parentheses. *one breast in
the dataset contained two malignant lesions.

3.4.2 Result of model architecture optimization

The best performing neural network architecture contained five blocks of two con-
volutional layers followed by one 2x2 max pooling layer (Figure 3.1). All convo-
lutional layers were followed by a rectified linear unit (ReLU), while the last layer
was a dense layer with softmax activation function. The total number of trainable
parameters of the architecture was 1 345 922. A full overview of the optimized
parameters is shown in supplemental material 2: CNN parameter optimization.
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Figure 3.1: Schematic illustration of model architecture. Convolutional layers are shown by “Conv”,
the final layer is the softmax activation function.

3.4.3 Performance of DL model

The average performance of the model across test hospitals was AUC=0.83 (95%CI
0.80-0.85) (Figure 3.2). At the threshold that detects all cancers 90.7% (95%CI:
86.7%, 94.7%) of the MRIs with lesions were considered to be non-normal (i.e.,
contained BI-RADS 2, 3, 4 or 5 lesions), and would be triaged to radiological
review. Conversely, 39.7% (95%CI: 30.0%, 49.4%) of the MRIs without lesions
would be dismissed. Because the model was trained to dismiss breasts with nor-
mal phenotypical variation and triage lesions, 88.4% (95%CI: 81.4%, 95.3%) of
the BIRADS-2 MRIs exceeded the threshold to be considered normal and were
triaged to radiological review. Among the largest groups here were fibroadenoma,
indeterminate mass lesions and cysts.

BI-RADS 2 lesions were more likely to be dismissed (15.0% [95%CI: 6.0%, 23.9%])
than BI-RADS 4 lesions (8.8% [95%CI: 4.4%, 13.2%])and BI-RADS 5 lesions
(0%), p=0.001. We found no evidence of differences in lesion volume (p=0.06)
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and lesion size (p=0.49). Non-mass lesions were more often dismissed than
mass lesions (p=0.01). No evidence was found that BPE levels had impact on
dismissal of lesions (Table 3.3). MRIs without lesions and minimal BPE were
more often dismissed than MRIs without lesions and more severe BPE (p<0.001,
Table 3.4).

The interpretable AI (SHAP) correctly visualized the image locations responsi-
ble for the prediction result (Figure 3.3), and correctly showed which breast was
responsible for the triaging. SHAP values corresponding with low lesion proba-
bility were diffusely distributed. At higher probabilities of lesion presence, SHAP
indicated that the model based its results on locations where lesions are present.

ROC curves separated by hospital
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Hospital 3 AUC=0.81 (0.73−0.89)

Hospital 4 AUC=0.77 (0.71−0.83)
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Hospital 6 AUC=0.84 (0.77−0.90)

Hospital 7 AUC=0.82 (0.77−0.88)

Hospital 8 AUC=0.82 (0.78−0.86)

Figure 3.2: Receiver Operating Characteristics (ROC) curves of the eight hospitals. Each curve is the
result of testing on one of the participating hospitals in the DENSE trial using internal-external valida-
tion. The curves show the sensitivity and the specificity of the method to distinguish between MRIs
with lesions and MRIs without lesions. The area under the ROC curve (AUC) and 95% confidence
interval are shown.
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Figure 3.3: Examples of SHAP overlay images. On the left the maximum intensity image (MIP) and on
the right the MIP with SHAP overlay. Positive SHAP values (red) show areas that contribute to a high
probability of lesion presence, negative SHAP values (blue) show locations with reduced probability.

ABCA Sagittal MIP of contrast enhanced breast MRI of an invasive ductal carcinoma in a 57-year-old
woman with BI-RADS 4 score. The DL yielded a probability of lesion presence of 90%. Positive
SHAP values (red) are shown to coincide with the location of the lesion.

B Sagittal MIP of contrast enhanced breast MRI of a breast without lesions in a 53-year-old
woman with BI-RADS 1 score. The DL yielded a probability of lesion presence of 11%. Nega-
tive SHAP values (blue) are diffusely distributed in the breast region.

C Transversal MIP of contrast enhanced breast MRI of a ductal carcinoma in situ in a 65-year-old
woman with BI-RADS 4 score). The DL yielded a probability of lesion presence of 32%: the
lowest probability value among all breasts with malignant disease in the current study. Positive
SHAP values (red) are shown to coincide with the location of the lesion.
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Table 3.3: Lesions to triage to radiological review using deep learning and those to be dismissed

Lesion or breast property To triage to radiological review To dismiss from radiological review p-value

Volume
(cm3, average and confi-
dence interval)

0.59
(95%CI: 0.33, 0.86)

0.33
(95%CI: 0.19, 0.48)

p=0.06

Size
(largest diameter, cm, av-
erage and confidence in-
terval)

1.31
(95%CI: 1.19, 1.42)

1.22
(95%CI: 0.96, 1.48)

p=0.49

Mass /non mass
Mass 88.7%

(95%CI: 82.2%, 95.2%)
11.3%
(95%CI: 4.7%, 17.8%) p=0.01

Non-mass 73.6%
(95%CI: 63.5%, 83.7%)

26.4%
(95%CI: 13.3%, 36.5%)

BI-RADS score
BI-RADS 2 85.0%

(95%CI: 76.1%, 94.0%)
15.0%
(95%CI: 6.0%, 23.9%)

p=0.001
BI-RADS 3 88.3%

(95%CI: 80.3%, 96.2%)
11.7%
(95%CI: 3.8%, 19.7%)

BI-RADS 4 91.2%
(95%CI: 86.8%, 95.6%)

8.8%
(95%CI: 4.4%, 13.2%)

BI-RADS 5 100.0%
(95%CI: 100%, 100%)

0%
(95%CI: 0%, 0%)

Background Parenchymal
Enhancement

Minimal 84.3%
(95%CI: 74.1%, 94.4%)

15.7%
(95%CI: 5.6%, 25.9%)

p=0.70
Mild 94.0%

(95%CI: 90.4%, 97.6%)
6.0%
(95%CI: 2.4%, 9.6%)

Moderate 96.3 %
(95%CI: 89.0%, 100%)

3.7%
(95%CI: 0.0%, 11.0%)

Marked 86.1 %
(95%CI: 70.9%, 100%)

13.9%
(95%CI: 0.0%, 29.1%)

*numbers are shown at the 100% sensitivity operating threshold.

3.5 Discussion

An automated method was developed to triage breast MRIs of women with ex-
tremely dense breasts to radiological reading, aiming to dismiss normal MRIs (i.e.,
without BI-RADS 2,3,4 or 5 lesions). A deep learning (DL) model was trained to
discriminate between breasts with lesions (in 785 MRIs) and breasts without le-
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Table 3.4: MRIs without lesions to triage to radiological review using deep learning and those to be
dismissed.

Background
Parenchymal
Enhancement

To triage to radiological re-
view

To dismiss from
radiological review

p-value

Minimal 39.1%
(95%CI: 27.9%, 50.3%)

60.9%
(95%CI: 49.7%, 72.1%)

p<0.001Mild 67.3%
(95%CI: 54.7%, 79.9%)

32.7%
(95%CI: 20.1%, 45.3%)

Moderate 77.4%
(95%CI: 60.1%, 94.8%)

22.6%
(95%CI: 5.2%. 39.9%)

Marked 78.7%
(95%CI: 60.3%, 97.1%)

21.3%
(95%CI: 2.9%, 39.7%)

sions (in 3 796 MRIs). MRIs were consecutively included from the first screening
round of the DENSE trial. The model dismissed 39.7% (95%CI: 30.0%, 49.4%)
normal breast MRIs without missing any malignant disease using internal-external
validation in eight hospitals with various MRI devices. At this operating threshold,
90.7% (95%CI: 86.7%, 94.7%) of the MRIs with lesions would be triaged for con-
firmation by a radiologist. The methods performance, expressed by the area un-
der the ROC curve, was 0.83 (95%CI: 0.80, 0.85). Accurate dismissal of normal
MRIs without lesions depended somewhat on presence of BPE (i.e., a larger frac-
tion of MRIs was dismissed when BPE was minimal). Although the model triaged
a complete bilateral MRI even when only one of the breasts contained lesions,
the method visualized the locations of the lesions that triggered the triaging. Only
automated reduction of patient motion was applied as preprocessing. MRI qual-
ity was not curated in any other way. Hence, the data contained typical artifacts
that occur in daily clinical practice, and the performance was deemed represen-
tative for typical screening MRIs. Multiple other publications reported findings on
detection and classification of breast lesions on MRI[25–29]. These studies are
difficult to compare to the current study because they do not report the fraction
of correctly identified breasts that do not contain lesions. The most comparable
approach to our study was used by Gubern-Mérida et al.[25]. This study did not
aim, however, at detection of normal breasts, and reported seven false-positive
findings on average in breasts without lesions.
The explainable DL (using SHAP) provided fast interpretation of why the system
reached the decision to triage an MRI. The challenge here is to increase the con-
fidence of the system in the “gray zone” of normal anatomical and physiological
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variation in dense breasts that can also be subtle signs of underlying malignant
disease. The system was set to the safest operating threshold to prevent false-
negative dismissals. The setting may be optimized over time as the volume of
training data increases.
The best performance was achieved using three MIP directions (transversal, sagit-
tal, and coronal), indicating that useful information exists in the combination of
these planes. More complexity in the model, i.e., more convolutional layers, addi-
tional dense layers, or additional input channels, did not improve the performance.
Our study has limitations. The available sample size for training varied in each
fold during internal-external validation. The largest fraction of data was obtained
in hospital 1. Hence, the smallest fraction of training data was available for this
hospital. To overcome this, it is possible to sub split the data of hospital one in
multiple folds. The disadvantage of sub splitting during training is that not all folds
are from different hospitals. It was therefore not our primary method of analysis.
In addition, the results from individual folds in the internal-external validation did
not indicate reduced model performance for the first hospital.
Our results are based on data obtained during the first round of the DENSE
screening trial. The number of detected malignant lesions was smaller in sub-
sequent biennially screening rounds of DENSE compared with the first round[30].
Cancers were smaller and less developed in the subsequent rounds. Therefore,
we plan to further validate the performance of the model on data of subsequent
rounds. The model should also be validated in consecutive datasets of varying
quality from more hospitals, for example to assess the minimal quality require-
ments, and to further document the robustness and usability in clinical practice.
Such information will be essential for certification of the AI for clinical use in the
future.
Future research could focus on post-hoc analysis of triaged lesions into benign
or malignant classes using computer-aided diagnosis. In addition, prospective
controlled trials and registration studies will have to demonstrate that the AI is at
least as effective at dismissing normal MRIs as the expert breast radiologist.
In conclusion, a deep learning model was developed that identified breast MRIs
without cancer with high certainty. Using internal-external validation, the method
identified nearly 40% of the MRIs with normal anatomical and physiological vari-
ation in women with extremely dense breasts without missing any malignant dis-
ease.
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3.6 Supplemental Material 1: Image pre-processing

3.6.1 mage preprocessing

The image preprocessing consisted of three steps:

1. Fully-automated cropping of images to the breast region using dynamic
programming[31].

2. Image registration to correct for motion, which uses a non-rigid B-spline
transformation in a multiresolution scheme[25, 32].

3. Creation of 2D maximum intensity projections (MIP) from subtracted datasets
of the left and right breast separately in three directions (coronal, sagittal,
and transversal). The size of the cropped images depends on individual
breast size. Thus, the images were extended by zero padding to achieve
uniform dimensions of 256 x 256 pixels. No downscaling was applied.

The results of the three automated steps were visually checked by a technical
physician (E.V., 6 years of experience) under supervision of a breast MRI radiolo-
gist (W.V., 11 years of experience). No manual corrections were required.
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3.7 Supplemental Material 2: CNN parameter opti-
mization

Convolutional neural networks VGG16 and VGG19 DL models were used as ba-
sis for model development[33]. The model architecture was optimized using the
Neural Network Intelligence tool (NNI, Version 1.0, Microsoft) in combination with
the Tree-structured Parzen Estimator (TPE) tuner[34] with a maximum of 500 tri-
als. Experiments were performed using an NVIDIA GeForce RTX2080 GPU. The
trainset of the first fold was used by the NNI to determine the optimal network
architecture. The same architecture was used in all subsequent folds.

VGG networks consist of blocks of convolutional layers followed by a max pooling
layer. Both the number of blocks and the number of convolutional layers were
optimized. Also, the size of the layer, the convolutional kernel size, the number
of dense layers in front of the last layer, the size of the dense layer, dropout rate,
optimizer and loss function were optimized. The input was optimized for direction
of the MIP and the number of directions. More specifically, during optimization,
input varied from single MIP image only (in coronal, transversal, or sagittal direc-
tion), all combinations of two MIP images, and three MIP images from the same
breast. When multiple MIPs of a breast were used as input, the multiple outputs
were averaged per breast. Image normalization and augmentation settings were
also optimized. Experiments were performed using an NVIDIA GeForce RTX2080
GPU. The trainset of the first fold was used by the NNI to determine the optimal
network architecture. The same architecture was used in all subsequent folds.

The best performing neutral-network architecture contained five blocks of two con-
volutional layers followed by one 2x2 max pooling layer. Each convolutional layer
contained 128 filters using 3x3 convolutional kernels. All convolutional layers were
followed by a rectified linear unit (ReLU), while the last layer was a softmax activa-
tion function. The mini batch size was 2, the maximal number of epochs was 20,
the Adam optimizer[35] was used and the leaning rate was optimized at 8.12·10-
5. No dense layers were added and no kernel dilation was applied. The kernel
stride was 1 in all cases (Table 3.5). The total number of trainable parameters of
the network was 1 345 922.

The optimal input to the model was found to contain 2D orthogonal maximum in-
tensity projection (MIP) images of contrast uptake in both breasts (left and right)
separately. Best results were obtained when the model was trained on MIP im-
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ages in all three directions (i.e., transversal, sagittal, and coronal)[31], indicating
that there is useful information in a combination of these planes to incorporate
3D information. Contrast uptake images were obtained by subtraction of the pre-
contrast DCE MRI series from the first post contrast series. Intensities of the MIP
images were normalized to zero mean unit variance. The results of the model
were averaged in the three directions to obtain one probability of lesion presence.
The number of breasts as part of training group, validation group and test group
varied for each fold of the internal external validation (Table 3.6)
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Table 3.5: Overview of the varied parameters and optimal parameters of the best performing architec-
ture and input image settings as selected by NNI.

Parameter Options NNI optimized
Model architecture parameters

Number of blocks of convolutional lay-
ers followed by a max pooling layer

2, 3, 4, 5 5

Number of convolutional layers in a
block

2, 3 ,4, 5 2

Layer size 64, 128, increasing over blocks* 128

Kernel size 3, 5 3

Number of dense layers 0 , 1, 2 0

Size of dense layer 16,32,64 NA

Dropout rate in dense layer Between 0 and 0.5 NA

Optimizer Adam, AdaMax, AdaGrad,
AdaDelta, Stochastic gradient de-
scent, Stochastic gradient descent
with Nesterov momentum

Adam

Loss function Binary crossentropy, Tversky with al-
pha variating between 0.5 and 0.9

Binary crossentropy

Mini batch size 2,4,8 2

Learning rate Between 0.00001 and 0.001 0.0000812

Model input parameters
MIP directions Sagittal, transversal, coronal, Sagit-

tal + transversal, sagittal + coro-
nal, transversal + coronal, sagittal +
transversal + coronal

sagittal + transversal +
coronal

Normalisation None, zero-mean unit variance Zero-mean unit variance

Augmentation None, Flip left-right,
flip left-right up-down,
flip left right up-down and translation,
flip left right up-down and translation
and rotation

None

*Increasing over blocks means that the first block of convolution layers followed by a max pooling
layer has a layer size of 32, the second block has a layer size of 64, the third has a layer size of 128,
the fourth has layer size of 256, and the fifth has a layer size of 512. Which is identical to the VGG

architecture.
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Table 3.6: Number of breasts part of training group, validation group and test group during the internal
external validation

Internal external validation fold number
Training (80%) Validation (20%) Test
Number
of breasts
with le-
sions

Number
of breasts
without
lesions

Number
of breasts
with le-
sions

Number
of breasts
without
lesions

Number
of breasts
with lesions

Number of
breasts with-
out lesions

1 414 414 103 103 321 2 863

2 598 598 150 150 90 700

3 639 639 160 160 39 441

4 602 602 151 151 85 901

5 605 605 151 151 82 524

6 645 645 161 161 32 1 002

7 609 609 152 152 77 727

8 581 581 145 145 112 1 168
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3.8 Supplemental Material 3: Correlation in predicted
lesion presence between left and right breasts

Because the model was trained on left and right breasts separately, we verified
that the DL output for bilateral MRIs is not biased towards similar results in left and
right breast by correlation through participant. For this purpose, the correlation in
predicted lesion presence between left and right breasts of the same participants
was calculated using the Spearman correlation.
We did not find evidence of correlations in predicted lesion presence between left
and right breasts in bilateral MRIs. The correlation in lesion probability left and
right was moderate when lesions were absent (Spearman’s correlation coefficient
r= 0.56, p<0.01). The correlation in MRIs with bilateral lesions was also moderate
(Spearman’s correlation coefficient, r = 0.69, p<0.01). We found no evidence of
correlation in women with unilateral lesions (Spearman’s correlation coefficient r
= 0.06, p<0.01).
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Computer-aided diagnosis in multi-parametric MRI
screening of women with extremely dense breasts

to reduce false positive diagnoses
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4.1 Abstract

Objective

To reduce the number of false positive diagnoses in the screening of women with
extremely dense breasts using Magnetic Resonance Imaging (MRI), we aimed to
predict which BI-RADS-3 and BI-RADS-4 lesions are benign. For this purpose,
we use computer-aided diagnosis (CAD) based on multi-parametric assessment.

Materials and Methods

Consecutive data were used from the first screening round of the Dense Tissue
and Early Breast Neoplasm ScrEening (DENSE) trial. In this trial, asymptomatic
women with a negative screening mammography and extremely dense breasts
were screened using multi-parametric MRI. In total, 4783 women, aged 50-75
years, enrolled and were screened in 8 participating hospitals between Decem-
ber 2011 and January 2016. In total 525 lesions in 454 women were given a
BI-RADS 3 (n=202), 4 (n=304) or 5 score (n= 19). Of these lesions, 444 were
benign and 81 were malignant on histologic examination. The MRI protocol con-
sisted of five different MRI sequences: T1-weighted imaging without fat suppres-
sion, diffusion-weighted imaging, T1-weighted contrast-enhanced images at high
spatial resolution, T1-weighted contrast-enhanced images at high temporal res-
olution, and T2-weighted imaging. A machine learning method was developed
to predict, without deterioration of sensitivity, which of the BI-RADS 3 and BI-
RADS 4 scored lesions are actually benign and could be prevented from being
recalled. BI-RADS 5 lesions were only used for training, because the gain in pre-
venting false-positive diagnoses is expected to be low in this group. The CAD
consists of two stages: feature extraction and lesion classification. Two groups
of features were extracted; the first based on all multi-parametric sequences, the
second based only on sequences that are typically used in abbreviated MRI pro-
tocols. In the first group, 49 features were used as candidate predictors: 46 were
automatically calculated from the MR images, supplemented with 3 clinical fea-
tures (age, BMI and BI-RADS score). In the second group, 36 image features
and the same 3 clinical features were used. Each group was considered sepa-
rately in a machine-learning model to differentiate between benign and malignant
lesions. We developed a Ridge regression model using 10-fold cross validation.
Performance of the models was analyzed using an accuracy measure curve and
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receiver-operating characteristic analysis.

Results

Of the total number of BI-RADS 3 and BI-RADS 4 lesions referred to additional
MRI or biopsy, 425/487 (87.3%) were false positive. The full multi-parametric
model classified 176 (41.5%) and the abbreviated-protocol model classified 111
(26.2%) of the 425 false-positive BI-RADS 3 and BI-RADS 4 scored lesions as
benign without missing a malignant lesion. If the full multi-parametric CAD had
been used to aid in referral, recall for biopsy or repeat MRI could have been
reduced from 425/487 (87.3%) to 311 / 487 (63.9%) lesions. For the abbreviated
protocol, it could have been 376 / 487 (77.2%)

Conclusion

Dedicated multi-parametric CAD of breast MRI for BI-RADS 3 and 4 lesions in
screening of women with extremely dense breasts has the potential to reduce
false positive diagnoses and consequently to reduce the number of biopsies with-
out missing cancers.
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4.2 Introduction

Women with extremely dense breasts (Breast Imaging Reporting and Data Sys-
tem (BI-RADS) class D), i.e., breasts containing a large amount of fibroglandular
tissue, have a 3-6 times higher risk of developing breast cancer than women
with very fatty breasts s. Moreover, these cancers are harder to detect on mam-
mography due to the low contrast between fibroglandular tissue and tumor tissue
and overlapping tissue[1]. Consequently, additional screening modalities, such as
magnetic resonance imaging (MRI) have been proposed.

MRI is known to be a sensitive method to detect lesions. Several studies showed
that additional MRI screening increases the number of detected malignancies[2–
5]. However, MRI is also associated with lower specificity than mammography[5,
6]. Moreover, MRI is more costly and time-consuming than mammography. The
effectiveness of additional MRI for the screening of women with extremely dense
breasts is the main research aim of the Dense Tissue and Early Breast Neoplasm
ScrEening (DENSE) trial in the Netherlands. Within the framework of this ran-
domized controlled trial, 4,783 women with extremely dense breasts have been
screened using additional MRI after a negative screening mammography[7, 8].

As anticipated, additional breast cancers were detected; in the first round of this
trial the cancer detection yield with MRI after negative mammography was 79 in
4,783 women, or 16.5/1000 screens[8]. Subsequently, women in the MRI-arm
experienced a significantly lower number of interval cancers than those in the
control arm[8]. However, in total, 454 women (9.5%) were referred for additional
diagnostics after MRI. BI-RADS 3 lesions led to recommendation for repeat MRI
screening after 6 months and subsequent biopsy on indication. For women with
BI-RADS 4 or BI-RADS 5 lesions, biopsy was indicated.

For women with BI-RADS 4 or BI-RADS 5 lesions, biopsy was indicated. As
expected, the percentage of benign findings in BI-RADS 3 and BI-RADS 4 scored
women was high. No malignant lesion was present in 97% of BI-RADS-3 scored
women (146 out of 150) and 79% of the BI-RADS-4 scored women (226 out of
286). In BI-RADS 5 scored women 17% (3 out of 18) had no malignant lesions.
Especially in BI-RADS 3 and BI-RADS 4 scored women, increased specificity
would lead to reduced follow up activities.

Reports on different, heterogeneous populations of women showed potential for
computer-aided diagnosis (CAD) to improve the specificity of breast MRI[9–11].
To the best of our knowledge, no studies focused explicitly on a consecutively in-
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cluded screening population of asymptomatic women with extremely dense breasts
and average risk.

Typically, CAD for breast MRI is based on dynamic contrast-enhanced T1-weighted
images[12], but combination with other sequences have been used as well (i.e.,
multi-parametric MR imaging)[11, 13, 14]. In particular, high-temporal resolu-
tion dynamic contrast-enhanced series (fast-DCE)[13], diffusion-weighted imag-
ing (DWI)[15] and T2-weighted imaging[16] have shown complementary value to
discriminate between malignant and benign lesions. To reduce the number of
false positive diagnoses in the MRI screening of women with extremely dense
breasts, the aim of this study is to predict which BI-RADS 3 and BI-RADS 4 le-
sions are benign using multi-parametric CAD.

4.3 Materials and Methods

4.3.1 Study population

Clinical data and MRIs were obtained during the first round of the DENSE trial.
The DENSE trial has been described in detail elsewhere[7]. In short, this multi-
center randomized controlled trial investigates the additional value of MRI screen-
ing in Dutch women with extremely dense breasts (i.e., BI-RADS D and normal
mammography). Written informed consent was obtained from all women before
MRI screening. The trial was approved by the Dutch Minister of Health, Welfare
and Sport (2011/19 WBO, The Hague, the Netherlands). In this study, all image
datasets were acquired between 22 December 2011 and 22 January 2016. All
women with lesions that were scored as BI-RADS 3, 4 or 5 on MRI were included
in the analysis described here. Some women with an indication for biopsy (31 of
331) did not undergo a biopsy because, for example, the lesion was not/no longer
visible on additional imaging, the biopsy was technically not possible (in which
case short-term follow-up imaging was applied), or the lesion was known to be
benign from the patient records from another hospital[8]. The median age of the
participants was 54 years (range 49 to 75 years)

4.3.2 Study population

All breast MR images were acquired according to a fixed imaging protocol as de-
scribed by Emaus et al[7]. In summary, the examinations were performed with a
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3.0 T (Achieva or Ingenia) system from Philips or a 3.0 T (Trio, Verio or Skyra) sys-
tem from Siemens using a dedicated phased-array bilateral breast coil. Images
were acquired in axial planes. The MR imaging protocol consisted of DWI, T1-
weighted imaging without fat suppression, DCE-MR, and an optional T2-weighted
sequence. DCE-MR consisted of a high-spatial-resolution pre-contrast image, fol-
lowed by a high-temporal-resolution series after contrast agent injection, followed
by 4 or 5 high-spatial-resolution images. Fat suppression was optional during
DCE-MR acquisition. The high-temporal-resolution series were acquired in 3.9
to 5.1 s intervals and consisted of 15 to 19 post-contrast acquisitions. Contrast
agent was injected at a rate of 1 mL/sec to a total dose of 0.1 mmol of macrocyclic
GBCA gadobutrol (Gadovist®, Bayer AG, Leverkusen, Germany) per kilogram of
body weight. DWI was acquired with a minimum of two b-values and a maximal
b-value of at least 800[7].

4.3.3 Methods

A CAD model was developed and tested to predict whether lesions on MRI in
women with extremely dense breasts are benign or malignant. The first stage of
the CAD workflow was image processing (section Image processing) followed by
automated calculation of features from all BI-RADS 3, 4 and 5 lesions (section
3.3.2). The features were used to train and validate the model using cross valida-
tion (section 3.3.3). These steps were repeated for a subset of images typically
available in abbreviated MRI protocols[9, 17], i.e. T2-weighted imaging, DWI and
DCE-MR imaging consisting of high-temporal-resolution series, and one pre- and
one post-contrast image with a high spatial resolution.

Image processing

Seven consecutive image processing steps were performed: (1) Image registra-
tion of DCE-MR series, (2) lesion segmentation, (3) DCE-MR image normaliza-
tion, (4) aorta segmentation, (5) chest wall segmentation and extraction of pec-
toral muscle intensity, (6) calculation of apparent diffusion coefficient (ADC) and
(7) registration of lesion mask to ADC map.

1 Image registration of DCE-MR images: All post-contrast DCE-MR images with
high spatial resolution were registered to their pre-contrast counterparts using a
non-rigid B-spline transformation in a multi-resolution scheme[18].
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2 Lesion segmentation: The semi-automated segmentation method proposed by
Alderliesten et al.[19] was used for lesion segmentation of mass lesions as well as
non-mass lesions. Lesions were detected by breast radiologists associated with
the DENSE trial, and whose experience ranged from 5 to 23 years[8]. A seed
point was manually placed at or near the lesion by Technical Physician (EV). Sub-
sequently, constrained volume growing was performed in the DCE-MR series.
This step resulted in a segmented lesion volume in 3D. Segmentations were re-
viewed by a trained breast radiologist (WBV) and corrected when necessary by
adding or replacing seed points.

3 DCE-MR image normalization: Although all images where acquired according
to the screening protocol, some variations were present in the settings of the
different MRI devices used, mainly flip angle and repetition time. Changes in in-
tensity due to the inflow of contrast agent depend on these settings, and may
therefore differ between hospitals. Hence, we normalized intensities by calcu-
lating the signals that would be acquired at a standard flip angle and repetition
time[20, 21]. All DCE images with high spatial resolution were harmonized to a
standard flip angle of 10° and a standard repetition time of 3.78 ms. All DCE
images with high temporal resolution were harmonized to a standard flip angle of
10° and a standard repetition time of 2.17 ms.

4 Aorta segmentation: Contrast uptake speed in the lesion is related to contrast
uptake in the descending aorta of the subject. Accordingly, the descending aorta
was segmented in the DCE-MR images with high temporal resolution. The aorta
was located on the basis of its tubular shape. We used the Hough transform to
detect one circle with a diameter between 1 and 5 cm in each transversal slide in
the last post-contrast series of the fast acquisition. A linear Hough transform was
used to detect the main axis of the descending aorta. All found circles centered
at the detected main axis were defined as the contours of the descending aorta.

5 Chest wall segmentation and extraction of pectoral muscle intensity: T2-weighted
image intensities were normalized to the intensity of the pectoral muscle(16).
First, the pectoral muscle was automatically detected in the T1-weighted images
without fat suppression using dynamic programming[22]. Next, the detected chest
wall was re-sampled to the dimensions of the T2-weighted image. The median
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intensities (MI(d)) of the voxels located at nearest distance d=0, 1, 2 . . . n mm
medial from the chest wall in the T2-weighted image were calculated. The pec-
toral muscle intensity was defined as MI(d) where the first local minimum or local
maximum was present in MI(d).

6 Calculation of apparent diffusion coefficient: ADC values for all voxels in the DWI
images of each subject were calculated using a linear least squares estimator
based on QR decomposition. ADC values were computed using the non-weighted
image (b-value = 0) in combination with all individual diffusion-weighted images
(b-value > 0), which resulted in one ADC map per subject.

7 Registration of lesion mask to ADC map: DWI images are susceptible to arti-
facts such as geometric distortions due to magnetic susceptibility differences[23].
This geometric distortion was corrected by registration as follows: First the T2-
weighted images were registered to the corresponding DWI image with b-value
0 or 50. Non-rigid B-spline transformation in a multi resolution scheme was
used[18]. Because the lesion mask is inherently aligned with the lesion on T2-
weighted imaging, the transformation from T2 to DWI was applied to the lesion
mask in order to align the mask with the lesion on ADC. Manual adjustment was
applied by a Technical Physician (EV) when necessary.

Image registration was performed using Elastix (version: 4.7)[24], MeVisLab (ver-
sion 3.0, MeVis medical Solution AG, Bremen, Germany) in combination with
Python (version 2.7, Python Software Foundation) with packages ‘numpy’ (v1.15.1)
and ‘scipy’ (v1.1.0) was used for lesion segmentation, image normalization and
aorta segmentation. Chest wall segmentation and ADC map calculation were
performed using MATLAB (v R2017a; Mathworks, Natick, MA).

Feature extraction

In total, 49 features were calculated and used to train the CAD model. All 46
MRI-based features were obtained automatically. Twenty-two features describing
morphology and contrast dynamics of the lesion were computed from the high-
spatial DCE images[12, 25].
Six contrast uptake features were computed from the fast-DCE images using a
method based on the work of Dalmiş et al[13]. Here, time-related features were
expressed relative to the start of contrast uptake in the detected descending aorta.
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Nine ADC features and nine T2 intensity features were computed (see Table,
Supplemental Material 1: Description of image features). In addition to image
features, three clinical features were considered in the model: BI-RADS score (3,
4 or 5), age, and body mass index (BMI).
Missing features (506 out of 24 794) caused by missing images (n=369), deviating
imaging (n=108), or missing clinical information (BMI only, n=29) were multiply
imputed (5 imputation sets).
A second feature set was extracted using only images that are available in abbre-
viated breast MRI protocols. Processing step 2, lesion segmentation, and feature
extraction were repeated using only the first post contrast images of the high-
spatial-resolution dynamic image series. This feature set consisted of 36 image
features and the same 3 clinical features.
Feature extraction was performed using MeVisLab (version 3.0, MeVis medical
Solution AG, Bremen, Germany), Python (version 2.7, Python Software Founda-
tion) with packages ‘numpy’ (v1.15.1) and ‘scipy’ (v1.1.0) and R (version 3.1.3, R
Foundation for Statistical Computing, Vienna, Austria) with the packages ‘psych’
(v1.5.8) and ‘Mice’ (v2.25) was used for data imputation.

Training and validation

Outliers in feature values were defined as values deviating more than 3 standard
deviations of the mean value. All feature values were normalized to values be-
tween 0 and 1. All BI-RADS 3, 4 and 5 lesions were used to train the model. The
set was divided into ten folds, each fold contained 7 or 8 malignant and 40 or 41
benign lesions to maintain the prevalence of malignancy observed in the DENSE
study. To train the prediction model, nine folds were used to fit a logistic regression
model (the training set) the other fold was used as a validation set. BI-RADS 5
lesions were removed from the validation set, because in future application of the
model, the gain of preventing false positive diagnosis is expected to be low in this
group. Cross-validation was repeated 10 times, each fold was used as validation
set once. Before model fitting, feature values labeled as outliers in the training set
were censored by clipping the extreme values[26]. To prevent overfitting, model
weights were reduced for each fit using Ridge regression[27]. By iterating over
all folds, cross-validated probabilities were obtained for all lesions. The results of
five imputation sets were combined using Rubin rules[28, 29]. The regularization
parameter in the Ridge feature selection was determined using a second 10 fold
cross-validation loop over the training data, using the deviance as performance
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measure. The regularization parameter was selected 1 standard error above the
parameter with lowest error. Hence, we chose the simplest model whose accu-
racy was comparable with the best model[30]. The posterior probabilities of the
model to predict the presence of malignant disease in BI-RADS 3 and 4 lesions
were summarized in an accuracy measure curve (AMC)[31] and receiver operator
characteristic (ROC) curve. An AMC shows the percentage of correctly predicted
malignant lesions and correctly predicted benign lesions for a range of values of
the probability threshold (pt) using:

Sensitiviy(pt) = TP (pt))
TP (pt) + FN(pt) (4.1)

Specificity(pt) = TN(pt))
TN(pt) + FP (pt) (4.2)

PPV (pt) = TP (pt))
TP (pt) + FP (pt) (4.3)

NPV (pt) = TN(pt))
TN(pt) + FN(pt) (4.4)

where TP is the number of true positives, TN the number of true negatives, FP
the number of false positives and FN the number of false negatives for each
probability threshold. In each decision curve, three operating points were se-
lected, at a sensitivity level of 100%, 99% and 95% respectively. The models
were compared using the McNemar chi-square test, a p-value less than 0.05 was
considered significant.

Training and validation were performed using R (version 3.1.3, R Foundation for
Statistical Computing, Vienna, Austria) with the packages ‘psych’ (v1.5.8), ‘glm-
net’ (v2.0-5), and ‘pROC’ (v1.8)

4.3.4 Results

In the total screening population of 4783 women, 81 malignant lesions were found
in 79 women and 444 benign lesions were found in 390 women. Fifteen women
had both a malignant and a benign lesion. Four malignant lesions in three women
were excluded because the images were not available. Fifteen benign lesions
were excluded: Images of 9 lesions were not available for this study, one lesion
was imaged using a deviant MRI protocol and five lesions could not be exam-
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ined due to imaging artifacts affecting correct segmentation or feature extraction.
Image artifacts were caused by movement of the woman during imaging. The de-
viant images or artifacts did not alter the ability of the radiologist to score the im-
ages; however, the images were unusable for the automated method presented.
In summary, 429 benign and 77 malignant lesions were available for this study
(Table 4.1, Table 4.2 and Table 4.3). Most lesions were scored BI-RADS 4: 293,
while 194 lesions were scored BI-RADS 3 and 19 lesions were scored BI-RADS
5 (Table 4.2).

The accuracy measure curve and corresponding ROC curve (Figure 4.1) show
feasibility to increase the specificity using CAD. An accuracy measure curve and
ROC curve were obtained for the subgroup of all BI-RADS 3 and BI-RADS 4
lesions. The presented model outputs a probability of malignancy for each le-
sion. Cut-off thresholds in this probability define the sensitivity and specificity of
the model. We chose three cut-off thresholds corresponding to sensitivity 100%,
99%, and 95%. The cut-off thresholds are shown in the accuracy measure curves
(Figure 4.1). Corresponding specificity at each threshold is shown in Table 4.4.

The full multi-parametric model classified 176/425 (41.5%) of the false-positive BI-
RADS 3 and BI-RADS 4 scored lesions as benign without missing a malignancy.
Of the total group of lesions referred to additional MRI or biopsy, 425/487 (87.3%)
were false-positive. With additional CAD used before referral, this fraction may
be reduced to 311/487 (63.9%). For the abbreviated protocol model, the referrals
would be 376 instead of 487 (77.2%). Examples of lesions that were false positive
and correctly identified as such by computer aided diagnosis are shown in Figure
4.2 and Figure 4.3.
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Table 4.1: Lesion types of BI-RADS 3, 4 and 5 lesions. Results were obtained from the pathology
reports after biopsy.

Benign lesions 429

Adenomyoepithelioma 2

Adenosis 24

Apocrine metaplasia 14

Atypical ductal hyperplasia 5

Cholesterol crystal 1

Cylindrical cell metaplasia 1

Cyst 8

Fat necrosis 1

Fibroadenoma 40

Fibrosis 35

Hemangioma 2

LCIS* 4

Lipoma 3

Lobular hyperplasia 1

Lobular neoplasia 4

Lobulitis 3

Lymph node 5

Mastopathy 27

Normal breast tissue 23

Papilloma 18

Usual ductal hyperplasia 32

Unknown** 176

Malignant lesions 77

Ductal carcinoma in situ 13

Invasive ductal carcinoma 35

Invasive ductal lobular carcinoma 5

Invasive intracystic papillary carcinoma 2

Invasive lobular carcinoma 13

Invasive mucinous carcinoma 1

Invasive tubular carcinoma 8

*In the DENSE trial LCIS is considered a benign lesion[8], conform Dutch guidelines[32].
**No biopsy result was available for these lesions. No biopsy performed after BI-RADS 3 score

(n=153), the lesion was not/no longer visible on additional imaging (n=16), biopsy result
unknown(n=7)82



Table 4.2: Overview of all lesions used for development of the CAD model stratified by BI-RADS score
and Mass or Non Mass Enhancing lesions (NME).

BI-RADS score Number
of benign
lesions

Number
of
malignant
lesions

3
Mass 105 3

NME 84 2

4
Mass 168 47

NME 68 10

5*
Mass 4 14

NME 0 1

total 429 77

*only used for model training, not for model testing.

Table 4.3: Comparison between malignant and benign lesions used for this study; median feature
values and interquartile range are shown. For statistical comparison the Kruskal Wallis test was used,
p<0.05 was considered significant.

Benign Malignant

Number of lesions 429 77

Lesion volume (cm3) 0.18 (0.10-0.36) 0.33 (0.16-0.77) p<0.001

BMI 22.25 (20.75-24.01) 22.86 (21.48-24.95) p=0.013

Age (years) 53.05 (50.90-56.90) 54.80 (51.30-61.70) p=0.008
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Full protocol

Abbreviated protocol

Figure 4.1: Accuracy measure curve of the CAD model and corresponding ROC curve using all MRI
imaging series (top row) and abbreviated imaging series (bottom row). The blue curve denotes speci-
ficity, the yellow curve the positive predictive value (PPV), the green curve the sensitivity and the red
curve the negative predictive value (NPV). One standard deviation corrected for multiple imputation
using Rubin rules is shown using dashed curves. The vertical gray lines indicate the cut-off threshold
probabilities (pt) corresponding to sensitivity 100%, 99.0% and 95.0% from left to right.
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Table 4.4: Overview of correctly classified benign BI-RADS 3 and 4 lesions and corresponding levels
of correctly classified malignant lesions for both models. Results denote mean ± 1 standard deviation.
Models were compared using the McNemar chi-square statistic.

Correctly
classified
malignant
lesions

Correctly classified benign BI-RADS 3 and 4
lesions

Full protocol Abbreviated protocol

100.0% 41.5% ± 3.2% 26.2% ± 3.2% p<0.01

99.0% 45.8% ± 3.5% 36.6% ± 3.0% p<0.01

95.0% 52.4% ± 3.1% 44.3% ± 3.6% p<0.01

Figure 4.2: Maximum intensity projection of a14 mm false-positive lesion in a 59 year old woman who
was referred to biopsy. The BI-RADS 4 classified lesion (right breast) was a benign fibrotic lesion
(arrow). The computer-aided diagnosis correctly classified it as benign with probability of malignancy
of 2.5%.
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Figure 4.3: Maximum intensity projection of a 10 mm false-positive lesion in a 52 year old woman
who was referred to biopsy. The BI-RADS 4 classified lesion (left breast) was a benign fibroadenoma
(arrow). The computer-aided diagnosis correctly classified it as benign with probability of malignancy
of 2.1%.

4.4 Discussion

From a screening population of 4783 women, MR images of 77 malignant breast
lesions and 429 benign lesions were used to create a multi-parametric CAD model
based on Ridge regression, to identify benign disease with high certainty. The
model may have potential to reduce follow up on benign BI-RADS 3 and BI-RADS
4 lesions: 41.5% reduction for the full multi-parametric protocol and 26.2% for the
abbreviated protocol model, without missing a malignant lesion.

Although the performance of the full-protocol model and the abbreviated-protocol
model is comparable in terms of AUC (0.85 vs 0.84), the number of detected
benign lesions without missing malignant lesions was observed to be higher in
the full-protocol model (p <0.01). These results suggest that the high-resolution
post contrast images contain information to increase the specificity to identify be-
nign disease at high sensitivity. We observed comparable performance between
mass and non-mass lesions, indicating that the features accurately describe both
types of lesions (Supplemental Material 2: Performance in mass and non-mass
enhancing lesions).

To our knowledge, this study is the first to apply a multi-parametric CAD model
in unselected homogeneous data obtained from a multicenter screening trial in
women with extremely dense breasts. The performance of presented models,
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(AUC of 0. 85 ± 0.04 and 0.84 ± 0.04) based on DCE, fast-DCE, ADC, T2 and clin-
ical data, is on par to that of other published methods in other study populations.
Dalmiş et al. used deep learning on fast-DCE, T2 and DWI and obtained an AUC
of 0.852[9]. Other authors designed multi-parametric models using fewer image
sequences for feature extraction, e.g. DCE and T2-weighted images[11, 33, 34],
resulting in AUCs of 0.88 ± 0.01[11], 0.83 ± 0.03[33] or 0.85 ± 0.03[34]. Using
only DCE yielded comparable results (AUC of 0.85)[35]. However, the above re-
sults might not be directly comparable to our results because they were based
on single institution data. In addition, the current study omitted BI-RADS 2 and 5
lesions. The rationale for this omission is that the problem of false positives does
not occur in BI-RADS 2 and BI-RADS 5. BI-RADS 2 lesions are not referred and
by definition, BI-RADS 2 lesions are nearly always benign. BI-RADS 5 lesions are
nearly always malignant. By omitting these categories, the CAD is tested on the
most difficult and clinically relevant cases.

In this study, the risk of overfitting was reduced using Ridge regression[36]. Fea-
tures with the largest regression weights were signal enhancing ratio, top washout,
volume uptake and volume washout from the DCE image series, the maximum
slope and general slope from the fast-DCE, and the 75th percentile of ADC val-
ues in the lesion. T2 features did not have high weighting in the model.

We did not use deep learning because the number of malignant lesions was rela-
tively small for such an approach. Deep learning can outperform linear regression
methods when the number of training data is large enough to avoid overfitting[11].
Currently, however, the literature does not indicate a clear benefit of deep learn-
ing over radiomics for this problem, other than that deep-learning models are less
time-consuming to construct. The largest study on deep learning to discriminate
between benign and malignant disease on MRI uses 1294 cases[11], and yields
comparable performance (AUC of 0.88). A potential risk of deep learning is, how-
ever, that the millions of parameters that describe the data may cause unnoticed
bias in the detection of malignant disease in populations for which the model was
not explicitly trained. Although all MRI data were acquired according to the same
protocol, variation was introduced between institutions because MRI scanners
from different vendors were used. Moreover, some MRI settings varied across
hospitals, e.g., the use of fat suppression, flip angle and repetition time. We used
a data harmonization step between MRI scanners to counter the effect of some
of these variations.

This study also has some limitations. We were not able to validate the method
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in an unseen dataset, but used cross-validation. In future research, the CAD
model should be validated in an independent population of women with extremely
dense breasts. Another potential limitation is that we used lesions found only
during the first round of the screening trial. We have not yet investigated whether
the machine-extracted phenotype of lesions detected in subsequent, or incident,
screening rounds is representative of that detected in the first round. For instance,
lesions may be smaller on average in subsequent screening rounds, and perhaps
also more aggressive. The tumors in the first, or prevalent round, may comprise
of relatively slow-growing, less aggressive tumors that have been present for a
long time. We describe computerized analysis of MR images with BI-RADS score
of the radiologist as input. CAD is, however, typically implemented as an aid to
radiologists, using the computer as second opinion. This interaction has not yet
been investigated.
In conclusion, we developed a CAD method based on ridge regression to identify
benign lesions with high certainty in multi-parametric breast MR screening of ex-
tremely dense breasts, thus pursuing to reduce the number of recalls on benign
lesions. Using internal validation, the method showed potential to reduce referral
of benign BI-RADS 3 and BI-RADS 4 lesions without loss of sensitivity.
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4.5 Supplemental Material 1: Description of image
features

Table 4.5: Overview of imaging features with a short description for each feature. Features are
grouped by MRI sequence.

DCE[25, 12] DCE (contin-
ued)

1 Circularity Measure for how similar the tumor shape is
to a sphere

20 Mean smooth-
ness

Maximum mean radial gradient intensity

2 Irregularity Measure for the roughness of the tumor sur-
face

21 Standard de-
viation Radial
gradient his-
togram analysis
frame 2*

Standard deviation radial gradient histogram analysis
at time point with maximum value

3 Volume Volume of the tumor 22 Radial gradient
histogram anal-
ysis frame 2*

Radial gradient histogram analysis at time point with
maximum value

4 Largest diameter Largest distance between voxels pairs in the
tumor segmentation

Fast-DCE[13]

5 Uptake Average of (I1-I0)/I0 over the tumor voxels; I0
and I1 are the precontrast and the first post-
contrast signal intensities

1 Maximum slope Maximum slope of uptake contrast agent in lesion
volume

6 Washout* Average of (I4-I1)/I1 over the tumor voxels;
I1 and I4 are the first and last postcontrast
signal intensities

2 Time of maxi-
mum slope

Time between maximum slope of contrast uptake in
descending aorta and lesion volume

7 Signal enhancing
ratio (SER)*

Average of (I1-I0)/(I4-I0) over the tumor vox-
els; I0, I1 and I4 are the, precontrast and first
and last postcontrast signal intensities

3 Time to en-
hancement

Time between maximum contrast uptake in descend-
ing aorta and start contrast uptake in lesion volume

8 Top uptake Average uptake of the top 10 percent en-
hancing tumor voxels

4 Washout Intensity gradient at last time point of Fast-DCE

9 Top washout* Average washout of the top 10 percent en-
hancing tumor voxels

5 General slope Maximal slope of contrast uptake in lesion between
time point aorta and any other time point during con-
trast uptake.

10 Volume uptake Volume of tumor in washin image 6 Maximum
enhancement

Maximal normalized intensity in lesion volume

11 Largest diameter
uptake

Largest diameter of tumor in washin image T2 All T2 intensities are normalized to the intensity of the
pectoral muscle(15)

12 Volume washout* Volume of tumor in washout image 1 Minimum inten-
sity

Minimum intensity in lesion volume

13 Largest diameter
washout*

Largest diameter of tumor in washout image 2-8 5th, 10th, 25th,
50th, 75th, 90th
and 95th per-
centile

Percentile of the intensities present in the lesion vol-
ume

14 Mean sharpness /
margin gradient

The sharpness of the uptake of contrast at
the tumor margin

9 Maximum
intensity

Maximal intensity in lesion volume

15 Variance of sharp-
ness / variance of
margin gradient

The variance in sharpness of uptake of con-
trast at the tumor margin

ADC

16 Variation sharp-
ness

Variance of sharpness at time point with
maximum mean sharpness

1 Minimum inten-
sity

Minimum intensity in lesion volume

17 Mean sharpness
frame 2*

Mean sharpness at first post-contrast 2-8 5th, 10th, 25th,
50th, 75th, 90th
and 95th per-
centile

Percentile of the intensities present in the lesion vol-
ume

18 Variance sharp-
ness frame 2*

Variation sharpness at first post-contrast 9 Maximum
intensity

Maximal intensity in lesion volume

19 Variation smooth-
ness

Maximum standard deviation radial gradient
histogram (RGH) values, see

*only used for model training, not for model testing.
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4.6 Supplemental Material 2: Performance in mass
and non-mass enhancing lesions

The performance of both the full protocol model and the abbreviated protocol
model showed no differences between mass and non-mass enhancing (NME)
lesions.

 
(a) ROC curve of the full protocol model. In red the
performance on all lesions, in green on the subset of
mass enhancing lesions and in blue the performance
of the model on NME lesions

 

(b) ROC curve of the abbreviated protocol model. In red
the performance on all lesions, in green on the subset
of mass enhancing lesions and in blue the performance
of the model on NME lesions

For more detail we also show the DCA of the different lesion subsets. As shown
in the Table 4.6 and Table 4.7, the performance measure of correctly classified
benign BI-RADS 3 and 4 lesions is comparable to the overall performance of the
model.

93



Table 4.6: DCA curve results of different subgroups of lesions, all lesions (top row), mass lesions
(middle row) and NME lesions (bottom row) for both proposed models

 Full protocol Abbreviated protocol 
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Table 4.7: Overview of correctly classified benign BI-RADS 3 and 4 lesions for the subset of lesions
and corresponding levels of correctly classified malignant lesions for both models. Results denote
mean ± 1 standard deviation. Models were compared using the McNemar chi-square statistic.

Correctly clas-
sified malignant
lesions

Correctly classified benign BI-RADS 3 and 4 lesions

All lesions

Full protocol Abbreviated protocol

100.0% 41.5% ± 3.2% 26.2% ± 3.2% pc0.01

99.0% 45.8% ± 3.5% 36.6% ± 3.0% p<0.01

95.0% 52.4% ± 3.1% 44.3% ± 3.6% p<0.01

Mass lesions

Full protocol Abbreviated protocol

100.0% 41.6% ± 3.7% 27.6% ± 3.6% p<0.01

99.0% 46.1% ± 3.8% 37.3% ± 3.4% p<0.01

95.0% 52.1% ± 3.4% 44.7% ± 3.6% p<0.01

NME lesions

Full protocol Abbreviated protocol

100.0% 41.2% ± 3.2% 23.8% ± 4.8% p<0.01

99.0% 45.4% ± 5.5% 35.3% ± 4.6% p<0.01

95.0% 52.8% ± 5.1% 43.7% ± 5.5% p<0.01
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5.1 Abstract

Background

Computer-Aided Triaging (CAT) and Computer-Aided Diagnosis (CAD) of screen-
ing breast MRI have shown potential to reduce the workload of radiologists in
the context of dismissing normal breast scans and dismissing benign disease in
women with extremely dense breasts.

Purpose

To validate the potential of integrating CAT and CAD to reduce workload and
workup on benign lesions in the second screening round of the DENSE trial, with-
out missing cancer.

Methods

We included 2901 breast MRI scans, obtained from eight hospitals in the Nether-
lands. CAT and CAD were previously developed on data from the first screening
round. CAT dismissed examinations without lesions. MRI examinations triaged
to radiological reading were counted and subsequently processed by CAD. The
number of benign lesions correctly classified by CAD was recorded. The false-
positive fraction of the CAD was compared with that of unassisted radiologi-
cal reading in the second screening round. Receiver Operating Characteristics
(ROC) analysis was performed and the generalizability of CAT and CAD were
assessed by comparing results from first and second screening rounds.

Results

CAT dismissed 950/2901 (32.7%) examinations with 49 lesions in total, none were
malignant. Subsequent CAD classified 132/285 (46.3%) lesions as benign without
misclassifying any malignant lesion. Together, CAT and CAD yielded significantly
less false-positive lesions, 53/109 (48.6%) vs 89/109 (78.9%) (p=0.001) than ra-
diological reading alone. CAT had smaller area under the ROC curve (AUC) in
the second screening round compared to the first, 0.83 versus 0.76 (p=0.001).
CAD was not associated with significant differences in AUC (0.857 versus 0.753,
p=0.08). At the operating thresholds the performances of CAT (39.7% versus
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41.0%, p=0.70) and CAD (41.0% versus 38.2%, p=0.62) were successfully repro-
duced in the second round.

Conclusion

The combined application of CAT and CAD showed potential to reduce workload
of radiologists and to reduce number of biopsies on benign lesions.
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5.2 Introduction

Contrast-enhanced MRI may be used in combination with X-ray mammography to
screen asymptomatic women for breast cancer. Supplemental MRI screening in
women with extremely dense breasts improved the detection of cancer[1]. Similar
observations were reported for women at increased life-time risk. Nonetheless,
breast MRI screening has lower specificity compared to mammography[1, 3, 4]
and it invokes additional workload.
To reduce the workload of breast MR radiologists, researchers have focused on
automated lesion detection[5, 6]. One focused on identifying normal scans using
Computer-Aided-Triaging (CAT)[7]. Computer-Aided Diagnosis (CAD) of dynamic
contrast-enhanced MRI[8, 9] and multi-parametric MRI[1, 10] were found to fur-
ther increase specificity[11–15].
A recently reported CAT - developed on data from 4 783 MRI examinations from
the first screening round of the DENSE trial - dismissed approximately 40% of
normal breast examinations without dismissing malignant disease[7]. In addition
to CAT, CAD was developed on the same data to distinguish between 444 benign
and 81 malignant lesions. It is yet unknown whether CAD is complementary to
CAT to increase the positive-predictive value of MRI screening in women with
extremely dense breasts while maintaining high negative-predictive value, and
minimizing the number of normal scans to be read by radiologists.
The aim of this study is to validate the potential of combining CAT with CAD in the
second screening round of DENSE to minimize work load as well as minimizing
the number of biopsies on benign lesions without dismissing malignant breast
disease.

5.3 Materials and Methods

We validate the potential impact of combined CAT and CAD in the second screen-
ing round of the DENSE trial, and compare it to radiological reading without com-
puter assistance. Impact is expressed in terms of reduction in 1) MRI scans with
normal anatomy read by radiologists; 2) false-positive referrals to further diagnos-
tic work-up with additional MRI or biopsy. Both CAT and CAD were previously
trained on MRI scans from the first screening round only.
First, we briefly describe the design of the DENSE trial, followed by description of
the study participants, MRI acquisition parameters, unassisted radiological read-
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ing (i.e., the reference standard), CAT and CAD, followed by the combination of
the methods.

5.3.1 DENSE trial

The DENSE trial (ClinicalTrials.gov: NCT01315015) investigates whether addi-
tional MRI-screening of asymptomatic women with extremely dense breasts (i.e.,
ACR BI-RADS category 4 measured with Volpara software) reduces the number
of interval cancers [16]. Participating women had extremely dense breasts with-
out lesions suspected of malignancy on mammography. The first results of the
DENSE-trial confirmed the hypothesis of detection of additional breast cancers
and the reduction of interval cancers. In the first round of screening, the cancer-
detection yield with MRI after negative mammography was 79 in 4783 women, or
16.5/1000 screens[1].

The current validation study focused primarily on the screening data from the
second round. No prior AI studies have been performed on these data before.
The screened data acquired in the first round were included in two prior AI studies,
one on AI -triaging[7], the other on computer-aided diagnosis[15].

5.3.2 participants

Participants (between 50 and 75 years of age) were included from the national
population-based mammography screening program. From the 4783 participants
in the first MRI screening round of DENSE, 3436 women participated in the sec-
ond MRI round between 6 September 2014 and 17 April 2019 [17]. To be eligible
for the second MRI round they had been participating in the national program,
again with a normal mammography result (i.e., no referral). Written informed con-
sent was obtained from all women before screening. The trial was approved by
the Dutch Minister of Health, Welfare and Sport (2011/19 WBO, The Hague, the
Netherlands). According to the Dutch law on population studies, the study was
waived from ethical review by the local institutional review board.

5.3.3 MRI Acquisition

MRI examinations were performed in eight hospitals in the Netherlands using the
same MRI protocol in each screening round. The protocol has been described
in detail elsewhere[16]. In short, T1-weighted images were acquired without fat
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suppression, followed by dynamic T1-weighted imaging, consisting of one pre
contrast series at high spatial resolution and 15 to 20 fast acquisitions after con-
trast administration. Four to five post-contrast series at high spatial resolution
followed. Fat suppression was optional. In addition, diffusion-weighted series
were acquired using two or three b-values. T2-weighted acquisition was optional.
Contrast agent was injected at rate of 1 mL/sec to a total dose of 0.1-mmol of
gadobutrol (Gadovist; Bayer AG, Leverkusen, Germany) per kilogram of body
weight. Images were acquired using a 3-Tesla MRI unit; five hospitals used
Philips MR devices (Eindhoven, the Netherlands), the other three hospitals used
Siemens devices (Erlangen, Germany).

5.4 Methods

5.4.1 Unassisted radiological reading

In the DENSE trial, breast MR examinations were read by trained breast MR
radiologists (with experience from 5 to 23 years[1]). In short, MRI examinations
were single read, and scored according to the BI-RADS MRI lexicon [18]. Only
BI-RADS 3 lesions were double read (consensus reading), in these cases MRI
was repeated after 6 months. Women with BI-RADS 4 or BI-RADS 5 lesions were
always recommended to undergo biopsy.

5.4.2 CAT

The method previously developed[7] to dismiss the largest number of normal
breast MRI examinations without dismissing malignant disease was applied, with-
out modifications, to the second screening round. In short, the probability of lesion
presence was estimated using deep learning. This was done for each breast sep-
arately. The probability was established in three MIP images of contrast-agent
uptake in orthogonal directions (transversal, sagittal and coronal), and the three
results were averaged. The probability per examination was equal to the highest
probability in the left or right breast.
During model development on first screening round data, eight-fold internal-external
validation was used, i.e., in each fold, data of one hospital were hold out as test
data and the data of the remaining hospitals were used to train the convolutional
neural network (CNN). Hence, eight CNNs were developed (one for each fold).
When the probability of lesion presence was less than an operating threshold
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(established in the first screening round data), the breast examination was con-
sidered normal[7].

5.4.3 CAD

Previously, a method was developed to distinguish between benign and malignant
breast lesions on multi-parametric MRI[15]. In short, lesion segmentation was fol-
lowed by feature extraction and classification into benign or malignant groups.
Lesion segmentation used constrained volume growing from a manually placed
seed point[19] at or near the lesion by a technical physician (E.V.) under supervi-
sion of a breast MR radiologist (W.V.). The features were extracted from the seg-
mentation results and the MR images. In addition, clinical features were used (i.e.,
age, BMI, and BIRADS)[15]. Training and testing was initially done on the first-
round screening data only using Ridge-regression modelling with 10-fold cross
validation to estimate probability of malignancy. In the current study, we retrained
the Ridge-regression model on the first-round data and applied the model to the
second-round screening data. An operating threshold in the probability was cho-
sen in first screening round data at which all malignant lesions were correctly
identified.

5.4.4 Combination of computer assisted triaging and computer-
aided diagnosis

The current validation study applied CAT and CAD to the second round (Figure
5.1), using the operating points established in the first round[15, 7]. Scans con-
sidered to be normal by CAT were recorded and dismissed from further analysis.
Scans considered to contain lesions were matched against the lesions detected
by radiologists in the second screening round of the trial. These lesions were then
offered to the CAD. Lesions considered to be benign and those considered to be
malignant were recorded.
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Figure 5.1: Combination of computer-aided triaging and computer-aided diagnosis applied to the
second screening round of the DENSE trial. Breasts with probability of lesions lower than operating
threshold T were dismissed by CAT for processing by CAD. If the probability of malignant disease was
larger or equal to operating threshold C, the lesion was classified as malignant.

5.4.5 Avoiding bias

Because all participants in the second screening round were also screened in the
first round, bias may occur when the round-1 model is validated on the round-
2 data. Hence, the round-1 model was retrained on the round-1 data to avoid
such bias, following the steps outlined below. To train the CAT model on the data
from the first screening round, internal-external validation was used, meaning that
the model was trained on data from seven hospitals and tested on data from the
eighth hospital, alternating such that each hospital was used once as an external
test set. Internal-external validation thus yielded eight models, and each model
was constructed without overlap of women in training and test set. The overall
performance of CAT in the first screening round was then estimated by averaging
the performance of the eight models. To validate the CAT on the data from the
second screening round, we used the same eight internal-external validation folds
from the first round. That is, each of the eight CAT models from the first round was
applied - without additional training - to the corresponding hospital in the second
round. Hence, no woman in the first or second round was ever assessed by a
model that included their training data. Again, the overall performance of the CAT
in the second round was then assessed by averaging the performance of the eight
models. To validate the CAD, we also took measures to avoid overlap in women in
the training and test set: for each lesion detected in the second screening round,
the first-round training data of that patient was removed from the CAD model
before it was applied to the second-round screening data. Although BIRADS
scores of radiologists are used by the CAD[15], these scores were ignored in this
combined CAT/CAD assessment to mimic prospective autonomous application
where radiologists have not yet assigned BIRADS scores. For this purpose, the
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CAD model was established for each hospital separately using the first-round
screening data without the BIRADS scores.

5.4.6 Statistics

The performance of combined CAT and CAD was compared with that of unas-
sisted radiological reading during the DENSE trial. This was done as follows:
CAT either detects no lesions in an examination or lesions in one or both breasts.
These occurrences were counted separately, but the results are presented at ex-
amination level, i.e., whether one or more lesions are present in both breasts in
the same examination according to the CAT. In addition, the number of correctly
classified benign lesions by the CAD were counted. The false-positive rate of the
CAD was compared with the false-positive rate of unassisted radiological reading
(i.e., the rate of recalled suspicious lesions that turned out to be benign) using
McNemar tests. A p-value of less than 0.05 was considered statistically signifi-
cant.
The reproducibility of CAT and CAD separately were established by comparing the
results from the first and second screening round. For this purpose, differences in
area under the receiver operating characteristic (ROC) curve (AUC) were tested
using the paired student t test (8 CAT models) or deLong test (1 CAD model). The
percentage of examinations dismissed and the percentage of examinations with
lesions that would be offered to radiologists by CAT were recorded and compared
using paired student t test.
The CAD developed on the first round, was applied to BI-RADS 3, 4 and 5 lesions
in round 2. In addition to AUC, Positive Predictive Value (PPV) and percentage
of correctly classified benign lesions were compared between rounds using Mc-
Nemar tests. It was verified that the negative predictive value (NPV) of CAT and
CAD for malignant disease is 100%, as established in the first screening round.

5.5 Results

5.5.1 DENSE trial and unassisted radiological reading

In total, 2 901 (84.4%) MRI examinations of 3 436 women in the second screen-
ing round were included. Five-hundred-thirty-five women were excluded because
their data could not be retrieved in full from participating hospitals. Unassisted by
CAT or CAD, radiologists reported 334 lesions in 303 (of 2901) women. Three
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women had three lesions and 25 had two lesions. Twenty lesions were malig-
nant, 314 were benign (Table 5.1). The lesions were scored BI-RADS 2 (n=225),
BI-RADS 3 (n=21), BI-RADS 4 (n=82) and BI-RADS 5 (n=6).
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Table 5.1: Type of lesions in second screening round. Results were obtained from biopsy.

Benign lesions 314

Adenosis 2

Apocrine metaplasia 3

Atypical ductal hyperplasia 2

Cylindrical cell metaplasia 1

Cyst 3

Epithelia proliferation 1

Fibroadenoma 5

Fibrosis 8

Hemangioma 1

LCIS* 1

Lymph node 2

Mastopathy 4

Normal breast tissue 3

Papilloma 3

Periductitis 1

Sclerosis 5

Usual ductal hyperplasia 7

BI-RADS 2 (no biopsy) 225

BI-RADS 3 (no biopsy) 21

Unknown 16

Malignant lesions 20

Ductal carcinoma in situ 6

Invasive carcinoma (not otherwise specified) 8

Mixed invasive ductal and lobular carcinoma 2

Invasive lobular carcinoma 3

Invasive tubular carcinoma 1

*In the DENSE trial LCIS is considered a benign lesion[1], conform Dutch and international
guidelines[20].
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5.5.2 CAT

The performance of CAT in the second screening round is shown in Table 5.2.
CAT showed a smaller area under the ROC curve in the second screening round
than in the first screening round (0.76 versus 0.83, p=0.001) (Figure 2). We found
no evidence of differences in performance at the operating threshold (p=0.70). In
the second round 41.0% (95% CI: 30.4 - 51.6) of the examinations without any le-
sions would be dismissed compared to the 39.7% (95% CI: 30.0 - 49.4) in the first
screening round[7]. The percentage of examinations with lesions that would con-
tinue to radiological review was also not different (p=0.07) in the second screening
round (85.6% [95% CI: 79.2 - 92.0] versus 90.7% [95% CI: 86.7 - 94.7]) in the first
screening round. No examinations with malignant disease were dismissed, i.e.,
NPV=100%.

Table 5.2: Results of triaging in first and second round data.

First-round data Second- round data p-value

AUC 0.83 (0.80-0.85) 0.76 (0.72-0.81) p=0.001

Percentage of dismissed
examinations without
lesion

39.7 (30.0-49.4) 41.0 (30.4-51.6) p=0.70

Percentage of examina-
tions with lesions triaged
to radiological review

90.7 (86.7-94.7) 85.6 (79.2-92.0) p=0.07
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ROC curves separated by hospital
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Hospital 4 AUC=0.77 (0.71−0.83)
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Hospital 6 AUC=0.84 (0.77−0.90)

Hospital 7 AUC=0.82 (0.77−0.88)

Hospital 8 AUC=0.82 (0.78−0.86)

Figure 5.2: ROC curves of Computer-Aided Triaging for the task of distinguishing between examina-
tions with lesions (benign and malignant) and examinations without lesions, applied to first (left) and
second (right) screening-round data. The 95% confidence intervals are shown in the legend.
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ROC curves separated by hospital
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Figure 5.3: ROC curves of Computer-Aided Triaging for the task of distinguishing between exam-
inations with lesions (benign and malignant) and examinations without lesions, applied to second
screening-round data. The 95% confidence intervals are shown in the legend.

5.5.3 CAD

CAD, applied on all lesions in the dataset, classified 34 lesions (12 BI-RADS 3
and 22 BI-RADS 4) correctly as benign, and 75 as malignant (7 BI-RADS 3, 62
BI-RADS 4 and 6 BI-RADS 5) of which 20 (17 BI-RADS 4 and 3 BI-RADS 5)
were malignant at histology. An increase in PPV was observed compared with
unassisted radiological reading in both screening rounds, p <0.001 (Table 5.3).

At the established operating point, the CAD shows no difference in results in the
second screening round compared to the first round (p=0.08) (Table 5.3, Figure
5.4).
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Table 5.3: Results of CAD and radiological reading in data from first and second screening round of
DENSE. PPV=positive-predictive value, CAD= Computer-aided diagnosis

First-round data Second- round data p-value

AUC 0.86 (0.81-0.90) 0.75(0.64-0.86) p=0.08

Benign lesions classified
as benign by CAD

41.0% (36.3%-45.8%, 176 of 429) 38.2% (28.1%-49.1%, 34 of 89) p=0.62

PPV of CAD (BI-RADS 3-5) 23.6% (22.2%-25.1%; 77 of 326) 26.7%(23.6%-30.0%; 20 of 75) p <0.001

PPV of radiological read-
ing (BI-RADS 3-5)*

15.2% (14.4%-16.1%; 77 of 506) 18.4%(15.9%-21.1%; 20 of 109) p <0.001

*Percentages can differ from earlier publication[15] because not all examination of screening round 2
were included.

Figure 5.4: ROC curves of Computer-Aided Diagnosis for the task of distinguishing between benign
and malignant lesions, applied to first and second screening round data. The shade regions represent
the 95% confidence intervals.
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5.5.4 Combination of computer-assisted triaging and computer-
aided diagnosis

Combined CAT and CAD confirms potential to dismiss a subset of examinations
and lesions for further assessment without missing any malignant disease (Figure
5.5). CAT would dismiss 950 / 2 901 (32.7%) examinations. Thirty-eight of 950
dismissed examinations (4.0%) contained one or more benign lesions. None were
malignant.

In the remaining 1951 examinations, 265 examinations contained 285 lesions.
CAD classified 132/285 (46.3%) of these lesions as benign. No malignant lesions
were called benign. At best, the combination of CAT and CAD would yield 53/109
(48.6%) false-positive referrals to additional MRI screening or biopsy, compared
to 89/109 (78.9%) for radiologists without computer assistance (p=0.001).
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Figure 5.5: A comparison of the workload of the radiologist in terms of reading and workup with and
without computerized analysis.
NOTE: Two benign lesions that CAD would classify as probably malignant were dismissed by CAT,
which explains why CAD classifies only 73 of the 75 as malignant as stated in the CAD results section.

5.5.5 Discussion

Adding MRI to breast cancer screening programs for women with extremely dense
breasts will result in increased workload for radiologists. In order to reduce this
workload and also the false-positive rate methods were developed for computer-
assisted triaging (CAT) and computer-aided diagnosis (CAD)[7, 15]. Here we
show that CAT and CAD developed on data from the first screening round of the
DENSE trial, reproduce robustly in the second screening round: combined CAT
and CAD has potential to reduce the workload of radiologists by 32.7% (950 of
2 901) by dismissing normal examinations without dismissing cancers. In the
remaining scans considered to require reading, 132/285 (46.3%) lesions were
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correctly identified as benign without missing cancers.

The combination of methods shows potential to reduce false-positive referrals by
40.4% (36 of 89).

Of the 89 benign lesions referred to biopsy or additional MRI after unassisted
radiological reading, three benign lesions could be dismissed by CAT (3.4%), fol-
lowed by 33 by CAD (36.0%), totaling 39.4%. To the best of our knowledge, no
other groups than Verburg et al. and Dekker et al.[15, 21], reported on reduction
of false-positive referrals in the MR screening of women with extremely dense
breasts. For other breast MR indications, on the basis of smaller and more het-
erogeneous populations, reductions have been reported of 12 /24 (50.0%) with
CAD[22], and 17/24 (70.8%) with proton MR-spectroscopy[23].

Although several studies reported on false-positive rates for computer-aided de-
tection, none described the number of correctly identified normal breasts[6, 24–
28].

Although the percentage of dismissed examinations without lesion did not dif-
fer between screening rounds (p=0.70), the AUC showed a difference (p=0.001).
This indicates that differences are present in the appearance of lesions in round
1 and those in round 2. This may be caused by differences between a prevalent
screening round and an incident screening round: lesions in the incident round
became visible in a time span of two years where lesions in the prevalent round
may have existed for a longer period of time.

Whereas the concept of automatically dismissing normal breast MRI examina-
tions is attractive to reduce radiologist workload, and may be feasible from a tech-
nical perspective, challenges remain to clinical implementation. In current practice
every screening image has to be interpreted by a trained physician. Before the
required paradigm shift for implementation would be accepted by patients, clini-
cians and policy makers must address multiple issues like safety, accountability
and quality [29]

This study also has limitations. Participants of the second round of the DENSE
trial also participated in the first round; data were acquired in the same hospitals
using the same MRI devices with identical sequences. The number of malignant
lesions in the second screening round was limited. To further investigate robust-
ness, methods should be tested on data acquired under more various conditions.

Future studies could focus on application of presented methodology to other
screening populations, such as women at high life-time risk of developing breast
cancer. Also, the level of automation can be further increased; current operator
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involvement was twofold: providing manual location of lesions for the CAD and
manual identification of BIRADS-2 lesions after CAD. Future research will focus
on automating these steps as well.
In conclusion, combining CAT and CAD has the potential to both reduce workload
and reduce the number of biopsies without dismissing malignant breast disease.

115



References

[1] M. F. Bakker et al., “Supplemental mri screening for women with extremely dense breast tissue,”
New England Journal of Medicine, vol. 381, no. 22, pp. 2091–2102, 2019.

[2] E. Warner et al., “Systematic review: Using magnetic resonance imaging to screen women at
high risk for breast cancer,” Annals of Internal Medicine, vol. 148, no. 9, pp. 671–679, 2008.

[3] S. Saadatmand et al., “Mri versus mammography for breast cancer screening in women with
familial risk (famrisc): a multicentre, randomised, controlled trial,” The Lancet Oncology, 2019.

[4] G. L. Menezes et al., “Magnetic resonance imaging in breast cancer: A literature review and
future perspectives,” World journal of clinical oncology, vol. 5, no. 2, pp. 61–70, 2014.

[5] G. Maicas et al., “Deep reinforcement learning for active breast lesion detection from dce-mri,”
Medical Image Computing and Computer Assisted Intervention MICCAI 2017, pp. 665–673,
Springer International Publishing, 2017.

[6] A. Vignati et al., “Performance of a fully automatic lesion detection system for breast dce-mri,”
Journal of Magnetic Resonance Imaging, vol. 34, no. 6, pp. 1341–1351, 2011.

[7] E. Verburg et al., “Deep learning for automated triaging of 4 581 breast mris from the dense trial,”
Radiology, vol. Ahead of print, no. -, pp. –, 2021.

[8] K. G. A. Gilhuijs, M. L. Giger, and U. Bick, “Computerized analysis of breast lesions in three
dimensions using dynamic magnetic-resonance imaging,” Medical Physics, vol. 25, no. 9,
pp. 1647–1654, 1998.

[9] E. Honda, R. Nakayama, H. Koyama, and A. Yamashita, “Computer-aided diagnosis scheme
for distinguishing between benign and malignant masses in breast dce-mri,” Journal of digital
imaging, vol. 29, no. 3, pp. 388–393, 2016.

[10] H. Rahbar and S. C. Partridge, “Multiparametric mr imaging of breast cancer,” Magnetic reso-
nance imaging clinics of North America, vol. 24, no. 1, pp. 223–238, 2016.
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6
Chapter 6

Discussion



6.1 Conclusion

In this thesis we investigated computerized decision support for radiologic review
of MRI screening examinations of women with extremely dense breasts. Results
show promising potential to reduce the number of false positive findings and to
prioritize the workflow.
First, chest wall segmentation in MRI of extremely dense breasts can be chal-
lenging because the contrast between muscle and glandular tissue is poor. Two
methods were developed to accomplish this task: the knowledge based method
(KBM) and the deep learning based method (DLM). These methods had similar
performance: Dice similarity coefficient (DSC) metric of 0.982 and 0.984, respec-
tively (Chapter 2).
Secondly, computer-aided triaging (CAT) was developed to dismiss normal breast
examinations (i.e., examinations that show no lesions) from radiological review
without missing malignant disease. The method showed potential to dismiss
39.7% of normal bilateral breast examinations (Chapter 3).
Thirdly, we addressed computer-Aided diagnosis (CAD) to distinguish between
benign and malignant lesions in the first round of the dense trial. The presented
method was able to correctly classify 41.5% (176 of 425) of benign BI-RADS 3
and BI-RADS 4 lesions as benign without missing malignant lesions (Chapter 4).
Fourthly, we combined CAT and CAD and validated the methods on the second
screening round of the DENSE trial. This showed feasibility to dismiss 41.0%
normal examinations without missing cancer, followed by correct identification of
46.3% (132 of 285) benign lesions by CAD. (Chapter 5).

6.2 Discussion

Although the DENSE trial showed that MRI screening in women with extremely
dense breasts reduces the number of interval cancers, it also confirmed the
limited specificity to detect breast cancer. Of the 4783 women screened, 454
women were referred to additional follow up, resulting in cancer detection in 79
women and reduction of the number of interval cancers from 4.9 to 0.8 per 1000
screenings[1].
In a first advice to the secretary of health of the Netherlands[2], the Dutch health
council concluded that the benefits of MRI screening of women with extremely
dense breasts (i.e., early detection of breast cancers), barely outweigh the disad-
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vantages (i.e., false-positive outcomes, overdiagnosis, overtreatment, emotional
and physical burden, workload and costs). They recommended to first investigate
less expensive alternatives such as contrast enhanced mammography before in-
vesting in the infrastructure and staff for nationwide MRI screening. In addition,
they expected that future developments in diagnostics, risk stratification and ar-
tificial intelligence may improve the cost-benefit balance of MRI screening. The
Dutch government later accepted a resolution to make MRI screening available
for women with extremely dense breast, pending supplemental investigation that
compares contrast-enhanced mammography with MRI. Multiple approaches con-
tribute to optimizing the cost-benefit of MRI, for example: methods to reduce the
number of false positive referrals, methods to optimize the workflow, and meth-
ods to improve selection of the screening population. This thesis attempted to
reduce the number of false-positive referrals, hence leading to less emotional
and physical burden of screening participants and reduced clinical workload and
costs. Both are important for a successful screening program. High emotional
and physical burden will negatively affect the willingness of participants to take
part in screening. Reduction of the number of additional MRI examinations and
biopsies on benign lesions due to false-positive referral will also reduce the work-
load and costs. In addition, triaging of screening images allows the radiologists to
prioritize their workload in order to optimize the workflow. Although MRI screen-
ing of women with extremely dense breasts already focuses on the additional
risk caused by breast density, further risk stratification should improve the selec-
tion of the screening population to further increase the specificity and to reduce
overdiagnosis and cost. First results of risk stratification in data acquired in the
DENSE trial showed that the Tyrer-Cuzick 5-year[3] and BSCS 5-year[4] breast
risk estimates have significantly higher cancer detection rates in the highest risk
quartiles[5].

6.2.1 Opportunities for improvements

The methods developed in this thesis contain several aspects that can be further
improved. In the following paragraphs, the opportunities for improvement for the
segmentation to automatically delineate the chest wall in MRI images, the CAT to
triage and the CAD to classify lesions are discussed. In the last paragraph we
discuss the possibility for workflow automation of combined CAT and CAD.
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Segmentation

Multiple automated segmentation methods demonstrated performances compa-
rable to that of humans[6–8]. As presented in Chapter 2 of this thesis, the
segmentation of the chest wall can be successfully performed using knowledge-
based and deep-learning based methods, however some room for improvement
was found to be present. The performance of machine learning depends on the
quality of and variation in the training data. To improve the methods, more train-
ing data that covers a larger variation of anatomical properties, MRI quality and
MRI acquisitions are required. Hence, more complex methods, for example deep
learning with more layers or knowledge-based methods with more input features,
can be trained to improve, taking risk of overtraining into account.
In addition to the performance of the segmentation method, the methods could
also be expanded to segment more tissue types. When all tissue types in the
breast are segmented this can be used to harvest features for other purposes like
triaging, risk stratification or diagnosis.

CAT

To our knowledge, the work presented in this thesis was the first to report on CAT
for MRI screening images of women with extremely dense breasts. We were able
to dismiss 39.7% (95%CI: 30.0%, 49.4%) of (bilateral) breast examinations with-
out lesions without missing any malignant lesions. Although the absolute number
of examinations that could be dismissed in nationwide screening of women with
extremely dense breasts using CAT may be substantial, there is room for further
improvement.
The MRI protocol in the DENSE trial was extensive. Nonetheless CAT only
used 2D maximum intensity projections in three directions of the subtracted pre-
contrast and post-contrast image series. These images typically show relatively
high contrast uptake in lesions. Extending the training data with additional MRI
sequences and using a more complex model to represent the 3D data is likely to
improve the performance of the CAT.

CAD

Since onset of widespread clinical use of breast MRI, CAD has been investigated
to assess breast lesions on MRI. Already in 1998 and 1999 authors were able to
train models with decent performances on small cohorts of symptomatic women.
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Later, multiple authors developed additional CAD methods using several tech-
niques, all resulting in comparable results (Table 6.1)

Table 6.1: Overview of performances of CAD methods developed between 1998 and 2020. Metric
Area under the ROC curve (AUC) reflects the performance of the model.

Author Year AUC Benign Malignant Multicenter Method

Gilhuijs[9] 1998 0,96 13 15 No Stepwise multiple regression

Penn[10] 1999 0,86 20 32 No Logistic Regression

Gilhuijs[11] 2002 0,95 40 40 No Logistic Regression

Chen[12] 2004 0,86 44 77 No Linear Discriminant Analysis

Chen[13] 2006 0,85 44 77 No Fuzzy C-Means

Newell[14] 2010 0,86 28 88 No Artificial Neural Network

Bhooshan[15] 2011 0,85 86 110 No Artificial Neural Network

Hoffmann[16] 2013 0,87 23 61 No Quadratic discriminant analysis

Wang[17] 2014 0,74 31 131 No Random forest

Gallego-Ortiz[18] 2014 0,9 100 143 No Random forest

Razavi[19] 2016 0,9 38 68 No Random forest

Gallego-Ortiz[20] 2017 0,83 382 245 No Boosted classification tree

Ji[21] 2019 0,89 496 1483 No Support Vector Machine

Dalmis[22] 2019 0,85 149 368 No Convolutional Neural Network

Truhn[23] 2019 0,88 507 787 No Convolutional Neural Network

Truhn[23] 2019 0,81 507 787 No Lasso regression

Verburg[24] (this thesis) 2020 0,85 429 77 Yes Ridge regression

In the past 22 years, the size of data sets grew and the models became more
complex, however the performance of the models did not improve noticeably. Al-
though the results are difficult to compare because different data sets were used,
the question arises whether we have reached the limits of the performance of CAD
models in breast MRI. We believe that room for improvement could be present in
capturing data complexity (1), data curation (2) and bias prevention (3).

Capturing data complexity

Distinguishing benign from malignant lesions based on MRI examinations is a
complex challenge. More than 20 years of development did not result in a model
with performance matching that of pathology. It would appear that we may not
be able to fully extract the required information from the MRI examinations for
this purpose. A possible explanation is that although MRI has sub-millimeter res-
olution, the amount of information in one voxel is still substantially smaller than
the amount of biological information in the cells that span one voxel dimension.
Additional detailed information is not accessible for MRI. New MRI techniques to
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image other elements like fluorine, phosphor, sodium and carbon, may contribute
to a solution.
Another part which may be considered too simplistic is the ground truth. In gen-
eral, and in this thesis, we assume that there a two types of lesions, malignant
and benign, however in reality this is more complex. Malignant is defined as tend-
ing to infiltrate, metastasize, and terminate fatally, however some lesions defined
as malignant will never progress to invasive disease[25]. A more complex ground
truth will make it possible to distinguish more types of lesions and possibly give
new insights in differentiating features.

Data curation

Important sources of variation are the MRI-devices from multiple vendors and
qualitative nature of MRI data, where voxel values often do not contain more in-
formation than image intensity. The large amount of variation present in MRI
data obtained under different circumstances makes it complex to create a single
model for lesion classification. Although the MRI protocol of the DENSE trial is
standardized, some variation was present between the datasets acquired in the
different hospitals. The T2-weighted sequence was optional and therefore not
always present, T1- and T2-weighted images were acquired with and without fat
suppression and DWI sequences were acquired with 2, 3 or 4 b-values. Moreover,
some differences occurred in image dimensions and timing of dynamic series.
In this thesis we used methods for data harmonization and standardization. This
resulted in a CAT that performed well on data acquired in a hospital of which
no data was present in the training data. However, there was still a difference
in performance on data acquired in different hospitals. For CAD the differences
between hospitals were not visible because the data was pooled and randomly
assigned to one of the 10 folds used during cross validation. Improving the harmo-
nization, and thereby further reducing the variation in the data, will likely improve
a model’s performance. Another, less feasible solution, is to limit the variation in
the data at the source.
Harmonized data will be present when identical MRI devices with identical se-
quences are used. However this may not be feasible because of the preference
of hospitals and because it will limit the development of new MRI applications and
techniques in screening.
MR image intensities do not have physical units. In addition, inhomogeneities in
the magnetic field of an MRI device affect the voxel intensity. Data normalization
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methods were developed to reduce this source of variation[26]. In addition, new
quantitative techniques are being developed to prevent the bias at the source[27–
29]. Using these methods it may be possible to replace the reconstructed qualita-
tive voxel intensities with quantitative values of the proton density, the longitudinal
(T1) and transverse (T2) relaxation rates. Less variation will be present in quanti-
tative MRI images, thus reducing the need for data harmonization.

Bias prevention

Reported CAD models (Table 6.1) have been trained using relatively small datasets,
which may not be representative for the general population of subjects of interest.
The CAD developed in this thesis was trained to classify lesions in asymptomatic
women with extremely dense breasts. Although the database of lesions was large
(n=506), it did not cover the complete spectrum of possible lesion types. To pre-
vent bias, larger data sets which contain data of more lesions types are required.
Preferably, training data obtained from multiple hospitals using multiple vendor
MRI devices and larger heterogeneity in participant population should be used to
improve the performance.

Workflow automation

In addition to performance, also the usability of the presented methods in this
thesis can be improved. This thesis shows that the combination of CAT and CAD
has complimentary value. Although the larger part of the method was automated,
still some manual steps were required. The lesion seed point was placed man-
ually. Future developments of the presented CAT and CAD should focus on fully
automating the workflow. The results of the chestwall segmentation (Chapter
2) should be used to select a region of interest which can be input for the CAT
(Chapter 3), and the output of the CAT should be used for lesion localization
required for the CAD (Chapter 4).

Seed point placement can be automated with use of the SHAP output from the
CAT. SHAP highlights the areas in the breast responsible for the output of the
CAT. In most cases the lesion, when present, is indicated by SHAP and this infor-
mation can be used to replace the manual input for the lesion seed point. Fully
automated flow can assist the radiologist in two ways. First it can prioritize the
workflow, and secondly it has the potential to reduce false positive referrals. It is,
however, important to investigate the ratio of false positive lesions localized based
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on triaging. Other studies showed 4 to 6 false positives at sensitivity of 0.89-0.94
for lesions detection[30–32].

6.2.2 Future perspective

In this thesis we showed the potential of computerized analysis applied to screen-
ing MRI of women with extremely dense breasts by detecting examinations with-
out lesions and to reduce false positive referrals. Before these methods can be
implemented in clinical practice they have to be extensively validated because er-
rors by the models can result in missing a malignant lesion. In other words, the
sensitivity of the models for detection of malignant lesions should at least be as
good as the sensitivity of a well-trained radiologist.

First, the interaction of the computerized models with radiologists needs to be
investigated in the clinical workflow. In this thesis we demonstrated the proof of
concept of autonomous analysis, but did not investigate the interaction between
the software and the radiologists.

Secondly, the stability of the methods could be investigated by testing on consec-
utively included data of women scanned for breast cancer in additional medical
centers. Newly developed software methods and vendor agnostic artificial intelli-
gence platforms could make it possible to apply computerized methods on med-
ical images in the clinical workflow. Another important aspect to consider is the
ethical side. It is theoretically possible that the models do miss a malignant lesion
by dismissing an examination with malignant lesions or classifying a malignant
lesion as benign. In this thesis we present results when 100% of the malignant
lesions are triaged to radiological review. The thresholds of what is acceptable
are hard to set (100% or less), in our opinion we should always strive to detect all
malignant lesions.

Disadvantages of MRI screening are the acquisition time and the workload for ra-
diologist caused by the large amount of acquired data. To reduce acquisition time
and limit the amount of acquired data, studies have investigated abbreviated and
high-temporal resolution MRI protocols for breast cancer diagnosis and screen-
ing. In abbreviated protocols the number of acquisitions is reduced to typically
one pre-contrast and one post-contrast T1-weighted imaged, sometimes comple-
mented with a T2-weighted image[33, 34].

In this thesis we show that segmentation of the chest wall, CAD to distinguish
benign lesions from malignant lesions and computer aided triaging to dismiss
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breasts without lesion all could be used on data acquired using an abbreviated
protocol. In addition, the CAD (Chapter 4) also demonstrated additional value
of a full parametric MRI protocol over an abbreviated protocol: The specificity at
100% sensitivity for malignant lesions decreased from 41.5% to 26.2% when only
features from an abbreviated protocol were used. Hence, the larger acquisition
time and workload of the radiologist in a full multiparametric protocol may result
in less false-positive referrals to biopsy or additional MRI screening without loss
of sensitivity for malignant lesions, which would also save time and resources.
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English summary

Women with extremely dense breasts (Breast Imaging Reporting and Data Sys-
tem [BI-RADS] class D), that is, breasts containing a large amount of fibroglandu-
lar tissue, have a 2 to 6 times higher risk of developing breast cancer than women
with very fatty breasts. Moreover, these cancers are harder to detect on mam-
mography due to the low contrast between fibroglandular tissue and tumor tissue
and overlapping tissue. Additional MRI screening for these women has proven to
detect additional cancers and reduce the number of interval cancers at the cost
of false positive referrals and increased workload.

In this thesis the data acquired during the first and second screening round of
the DENSE trial was used to develop and validate two computerized methods
to reduce the number of false positive referrals and to triage the acquired MRI
screening examinations.

The DENSE trial MRI protocol consisted of 5 different MRI sequences: T1-weighted
imaging without fat suppression, diffusion-weighted imaging, T1-weighted contrast-
enhanced images at high spatial resolution, T1-weighted contrast-enhanced im-
ages at high temporal resolution, and T2-weighted imaging.

A typical first step in computerized methods often is the definition of the region
of interest, the breast tissue. Breast tissue is surrounded by skin and the chest
wall, especially the latter is challenging to delineate in patients with dense breasts
because the contrast between muscle and glandular tissue is poor. The aim of
Chapter 2 was to develop and compare a knowledge-based (KBM) and a deep
learning-based approach (DLM) for segmentation of the chest wall in MR images
of extremely dense breasts.

The KBM used shape, location, and gradient features, and the deep learning-
based method (DLM) used a dilated convolution neural network. A data set of
115 T1-weighted MR images was randomly selected from MR images of women
with extremely dense breasts participating in the DENSE trial. Manual segmen-
tations of the chest wall, acquired under supervision of an experienced breast
radiologist, were available for all data sets and used as ground truth. Both meth-
ods were optimized using the same randomly selected 36 MRI data sets. In the
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remaining 79 data sets, the results of both segmentation methods were qualita-
tively evaluated. A radiologist reviewed the segmentation results of both methods
in all transversal images (n = 14 141). It was determined whether the result would
impact the ability to accurately determine the volume of fibroglandular and fatty
tissue and whether breast regions that might harbor lesions were masked by the
segmentation result. In addition, all segmentations were quantitatively assessed
using the Dice similarity coefficient (DSC) and Hausdorff distance (HD), false pos-
itive fraction (FPF), and false negative fraction (FNF) metrics.

According to the radiologist’s evaluation, the DLM had a significantly higher suc-
cess rate than the KBM (81.6% vs 78.4%, p <0.01). The success rate was further
improved to 92.1% by combining both methods. Similarly, the DLM had signifi-
cantly lower values for FNF (0.003 ± 0.003 vs 0.009 ± 0.011, p <0.01) and HD95
(2.58 ± 1.78 mm vs 3.37 ± 2.11, p <0.01). However, the KBM resulted in a signif-
icantly lower FPF than the DLM (0.018 ± 0.009 vs 0.030 ± 0.009, p <0.01).There
was no significant difference between the KBM and DLM in terms of DSC (0.982
± 0.006 vs 0.984 ± 0.008, p = 0.08) or HD (24.14 ± 20.69 mm vs 12.81 ± 27.28
mm, p = 0.05).

Both optimized KBM and DLM showed good results to segment the pectoral mus-
cle in women with dense breasts. Qualitatively assessed, the DLM was the most
robust method. A quantitative comparison did not indicate, however, a preference
for one method over the other.

To reduce the workload and to prioritize the work of breast MR radiologists, in
Chapter 3 automated triaging (CAT) is pursued that dismisses the highest num-
ber of examinations without lesions while still identifying all examinations with
malignant disease.

A convolutional neural network (CNN) was developed to distinguish between breasts
with lesions (n=838 BI-RADS 2 through 5, of which 77 malignant), and breasts
without lesions (n= 8 324). The CNN was trained and validated using eight-
fold internal-external validation. Here, the CNN is trained on seven hospitals and
tested on the eighth hospital, alternating such that each hospital is tested once
on independent data. The performance was assessed using receiver-operating
characteristic (ROC) analysis. At 100% sensitivity for malignant disease, we es-
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timated the fraction of examinations that would be dismissed from radiological
review.

At the operating point that detects all cancers, the DL model considered 90.7%
(95%CI: 86.7%,94.7%) of the MRIs with lesions to be non-normal (i.e., contained
BI-RADS 2, 3, 4 or 5 lesions), and triaged them to radiological review. The DL
model dismissed 39.7% (95%CI: 30.0%, 49.4%) of the MRIs without lesions.

In Chapter 4 a multiparametric machine-learning method was developed to pre-
dict, without deterioration of sensitivity, which of the BI-RADS 3- and BI-RADS
4-scored lesions are actually benign and could be prevented from being recalled.

In total, 506 lesions in 436 women were given a BI-RADS 3, 4 or 5 score. Of these
lesions, 429 were benign and 77 were malignant on histologic examination. The
CAD consists of 2 stages: feature extraction and lesion classification. Two groups
of features were extracted: the first based on all multiparametric MRI sequences,
the second based only on sequences that are typically used in abbreviated MRI
protocols. In the first group, 49 features were used as candidate predictors: 46
were automatically calculated from the MRI scans, supplemented with 3 clinical
features (age, body mass index, and BI-RADS score). In the second group, 36
image features and the same 3 clinical features were used. Each group was con-
sidered separately in a machine-learning model to differentiate between benign
and malignant lesions. We developed a Ridge regression model using 10-fold
cross validation.

Of the total number of BI-RADS 3 and BI-RADS 4 lesions referred to additional
MRI or biopsy, 425/487 (87.3%) were false-positive. The full multiparametric
model classified 176 (41.5%) and the abbreviated-protocol model classified 111
(26.2%) of the 425 false-positive BI-RADS 3– and BI-RADS 4–scored lesions as
benign without missing a malignant lesion. If the full multiparametric CAD had
been used to aid in referral, recall for biopsy or repeat MRI could have been re-
duced from 425/487 (87.3%) to 311/487 (63.9%) lesions. For the abbreviated
protocol, it could have been 376/487 (77.2%).

In Chapter 5, the CAT of Chapter 3 and CAD of Chapter 4 were integrated to one
flow were first the images were triaged and lesion triaged to radiological review

134



were classified by the CAD. The combined method was trained on the data of the
first round and applied on second round data.

We estimate the impact of combined CAT and CAD in data from the second
screening round of the DENSE trial and compare it with conventional radiolog-
ical reading. We included all 2 901 breast MRI scans from the second round,
obtained from eight hospitals in the Netherlands. The reproducibility of CAT and
CAD were assessed by comparing results from the first and second screening
rounds.

In second screening round examinations CAT would dismiss 950/2 901 (32.7%)
examinations. Subsequent CAD would classify 132/285 (46.3%) of the non-
dismissed lesions as benign without misclassifying any malignant lesion as be-
nign. Combined CAT and CAD would result in significantly less false-positive
lesions, 53/334 (15.9%) vs 89/334 (26.6%) (p=0.001) compared with the results
from radiological reading.
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Nederlandse samenvatting (Dutch summary)

Vrouwen met zeer dicht borstweefsel (Breast Imaging Reporting and Data Sys-
tem [BI-RADS] klasse D), dwz. borsten die veel klieren en weinig vet bevatten,
hebben 2 tot 6 keer zoveel kans op het krijgen van borstkanker dan vrouwen
met borsten die vooral uit vetweefsel bestaan. Daarnaast is kanker moeilijker
te ontdekken in een mammogram omdat er weinig verschil is in contrast tussen
klierweefsel en tumorweefsel. Het is bewezen dat aanvullende MRI screening,
voor vrouwen met zeer dicht borstweefsel, extra kankers opspoort en het aantal
gevonden kankers tussen screeningsronden verminderd, maar het zorgt ook voor
meer fout positieve doorverwijzingen en meer werkdruk in het ziekenhuis.

In dit proefschrift is de data verzameld van de eerste en tweede ronde van de
DENSE trial. Deze data is gebruikt om geautomatiseerde methoden te ontwikke-
len die het aantal fout positieve verwijzingen verminderen en voor de triage van
de MRI onderzoeken naar radiologen. Het DENSE trial MRI protocol bestond uit
5 verschillende MRI opnamen: T1-gewogen beelden zonder vet-onderdrukking,
diffusie gewogen, T1-gewogen beelden met een hoge spatiele resolutie en con-
trast middel, T1-gewogen beelden met een hoge temporele resolutie en contrast
middel en T2-gewogen beelden.
De eerste stap in geautomatiseerde methoden is vaak het identificeren van het
gebied van interesse, het borstweefsel. In MR afbeeldingen wordt de borst om-
ringd door huid en de borstwand. Vooral de borstwand is uitdagend om te lokalis-
eren in MR afbeeldingen van borsten met zeer dicht borstweefsel omdat er bi-
jna geen contrastverschil is tussen spierweefsel en klierweefsel. Het doel in
Hoofdstuk 2 was het ontwikkelen en vergelijken van een op kennis gebaseerde
methode (KBM) en een op deep-learning gebaseerde methode (DLM) voor het
segmenteren van de borstwand in MR afbeeldingen van borsten met zeer dicht
borstweefsel.

De KBM maakt gebruik van vorm, locatie en gradiënt eigenschappen, en de
DLM gebruikt een convolutioneel neuraal netwerk. Een dataset van 115 T1-
gewogen MR beelden van borsten met zeer dicht borstweefsel werd willekeurig
geselecteerd uit de MR beelden van de DENSE trial. Een handmatige segmen-
tatie van de borstwand die was gemaakt onder supervisie van een ervaren ra-
dioloog was beschikbaar voor elke dataset. De handmatige segmentatie werd
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gebruikt om de resultaten van de automatische segmentaties mee te vergelijken.
Een willekeurig geselecteerde dataset van 36 MR beelden werd gebruikt voor het
optimaliseren van beide methoden. De resultaten van beide werden geëvalueerd
in de overige 79 datasets. Segmentatieresultaten van beide methoden werden
beoordeeld door een radioloog in alle transversale afbeeldingen (n = 14 141).
Van elke segmentatie werd de invloed op het uitrekenen van klierweefselvolume
en vetweefselvolume bepaald. Daarnaast werd beoordeeld of de segmentatie de
detectie van borstlaesies zou kunnen beı̈nvloeden. Ook werden alle segmentaties
kwantitatief beoordeeld met behulp van de Dice coëfficiënt (DSC), Hausdorff af-
stand (HD) en 95ste percentiel van de Hausdorff afstand (HD95), de fout-positief
fractie (FPF) en de fout-negatief fractie (FNF).

Volgens de evaluatie van de radioloog had de DLM een significant hogere suc-
cesratio dan de KBM (81.6% tegenover 78.4%, p<0.01). De succesratio verbetert
tot 92.1% als je beide methoden samen gebruikt. De DLM had significant lagere
waarden voor FNF (0.003 ± 0.003 tegenover 0.009 ± 0.011, p<0.01) en HD95
(2.58 ± 1.78 mm tegenover 3.37 ± 2.11, p<0.01). De KBM daarentegen, be-
haalde een significant lagere FPF dan de DLM (0.018 ± 0.009 tegenover 0.030 ±
0.009, p<0.01). Er was geen significant verschil in de vergelijking tussen de KBM
en DLM in termen van DSC (0.982 ± 0.006 tegenover 0.984 ± 0.008, p = 0.08) of
HD (24.14 ± 20.69 mm tegenover 12.81 ± 27.28 mm, p = 0.05).

Beide geoptimaliseerde methoden resulteerden in goede segmentaties van de
borstwand in MR beelden van vrouwen met zeer dicht borstweefsel. Kwalitatief is
de DLM de meest robuuste methode, kwantitatief was geen van beide methodes
beter dan de andere.

Om de werkdruk te verlagen en het werk van de radioloog te prioriteren is automa-
tische triage (CAT) het doel van Hoofdstuk 3. Hierbij worden zoveel mogelijk MRI
onderzoeken zonder laesies afgevangen en alle onderzoeken met kwaadaardige
tumoren doorgestuurd.

Een convolutioneel neuraal netwerk (CNN) werd ontwikkeld dat onderscheid kan
maken tussen borsten met laesies (n=838 BI-RADS 2 tot en met 5, waarvan 77
kwaadaardig), en borsten zonder laesies (n= 8 324). Het CNN werd getraind
en gevalideerd met behulp van een achtvoudige interne-externe validatie. Hier-
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bij werd het CNN getraind op data uit zeven ziekenhuizen en getest op de data
van het achtste ziekenhuis. Dit werd herhaald zodat data van elk ziekenhuis 1
keer werd gebruikt als test data. De methode werd beoordeeld door gebruik te
maken van de receiver-operating karakteristiek (ROC) analyse. De fractie van
afgevangen MRI onderzoeken werd ingesteld op het drempelwaarde waarbij de
sensitiviteit voor het doorsturen van kwaadaardige tumoren de radioloog 100% is.
Op de drempelwaarde waarbij alle kankers werden gedetecteerd, werd 90.7%
(95%CI: 86.7%,94.7%) van de MRI-onderzoeken met laesies als niet normaal
geclassificeerd (dus een BI-RADS 2, 3, 4 of 5 laesie), en derhalve doorgestu-
urd naar beoordeling door een radioloog. Het CNN ving 39.7% (95%CI: 30.0%,
49.4%) van de MRI onderzoeken zonder laesies af.
In Hoofdstuk 4 werd een Computer Aided Diagnosis methode (CAD) ontwikkeld
om te voorspellen welke BI-RADS 3- en BI-RADS 4-gescoorde laesies goedaardig
zijn en in principe dus niet doorgestuurd hoeven worden voor vervolgonderzoek.

In totaal kregen 506 laesies in 436 vrouwen een BI-RADS 3, 4 of 5 score. Van
deze laesies waren er 429 goedaardig en 77 kwaadaardig volgens histologische
beoordeling. De CAD bestaat uit 2 stadia: het verkrijgen van bruikbare waarden
(features) voor het model en laesie classificatie. Er werden twee groepen fea-
tures verzameld, de eerste gebaseerd op alle multiparametrische MR beelden,
de tweede gebaseerd op alleen de beelden die onderdeel zijn van een verkort
MRI protocol. In de eerste groep werden 49 features gebruikt als mogelijke voor-
speller: 46 daarvan werden automatisch bepaald uit de MR beelden en de andere
3 waren klinische features (leeftijd, Body-mass index [BMI] en BI-RADS score).
In de tweede groep werden 36 features bepaald uit MR beelden, ook deze wer-
den aangevuld met bovengenoemde 3 klinische features. Beide groepen werden
onafhankelijk van elkaar gebruikt in een machine-learning model om het onder-
scheid te maken tussen goedaardige en kwaadaardige laesies. Hiervoor werd
een Ridge regressie model ontwikkeld in combinatie met 10-voudige kruisvali-
datie.

Van het totaal aantal BI-RADS 3– en BI-RADS 4–gescoorde laesies dat werd
doorgestuurd voor een extra MRI of biopsie waren er 425/487 (87.3%) fout posi-
tief. Het volledige multiparametrische model classificeerde 176 (41.5%) laesies
als goedaardig en het verkorte-protocol model classificeerde 111 (26.2%) van de
425 fout-positief BI-RADS 3– en BI-RADS 4–gescoorde laesies als goedaardig
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zonder een kwaadaardige laesie te missen.

In Hoofdstuk 5 werden de CAT van Hoofdstuk 3 en de CAD van Hoofdstuk
4 geı̈ntegreerd in één werkstroom waarbij eerst de beelden werden gepriori-
teerd met triage en daarna de doorgestuurde laesies werden beoordeeld door
de CAD. Beide methoden werden getraind op data uit de eerste screening ronde
en toegepast op data uit de tweede screening ronde van de DENSE trial.
De impact van de gecombineerde toepassing van CAT en CAD op de data van de
tweede screening ronde van de DENSE trial werd bepaald door het te vergelijken
met conventionele beoordeling door een radioloog. In totaal werden 2901 borst
MRI onderzoeken uit de 8 deelnemende ziekenhuizen geı̈ncludeerd. Daarnaast
werd de reproduceerbaarheid van CAT en CAD methode beoordeeld door de re-
sultaten van beide methoden te vergelijken tussen eerste en tweede ronde van
de DENSE trial.

CAT ving in de tweede screening ronde 950/2 901 (32.7%) MRI onderzoeken
af. CAD was daarna in staat om 132/285 (46.3%) van de doorgestuurde lae-
sies te classificeren als goedaardig zonder een enkele kwaadaardige laesie als
goedaardig te classificeren. Gecombineerd gebruik van CAT en CAD zou kun-
nen resulteren in significant minder fout-positief doorgestuurde laesies, 53/334
(15.9%) tegenover 89/334 (26.6%) (p=0.001) van de beoordeling door de radi-
oloog.
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