
Theoretical Computer Science 923 (2022) 74–98
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Covering a set of line segments with a few squares ✩

Joachim Gudmundsson a, Mees van de Kerkhof b, André van Renssen a,
Frank Staals b, Lionov Wiratma c, Sampson Wong a,∗
a University of Sydney, Australia
b Utrecht University, Netherlands
c Parahyangan Catholic University, Indonesia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 July 2021
Received in revised form 27 March 2022
Accepted 26 April 2022
Available online 5 May 2022

Keywords:
Computational geometry
Geometric coverings
Data structures

We study three covering problems in the plane. Our original motivation for these problems
comes from trajectory analysis. The first is to decide whether a given set of line segments
can be covered by up to k = 4 unit-sized, axis-parallel squares. We give linear time
algorithms for k ≤ 3 and an O (n log n) time algorithm for k = 4.
The second is to build a data structure on a trajectory to efficiently answer whether any
query subtrajectory is coverable by up to three unit-sized axis-parallel squares. For k = 2
and k = 3 we construct data structures of size O (nα(n) logn) in O (nα(n) log n) time, so
that we can test if an arbitrary subtrajectory can be k-covered in O (logn) time.
The third problem is to compute a longest subtrajectory of a given trajectory that can
be covered by up to two unit-sized axis-parallel squares. We give O (n2α(n) log2 n) time
algorithms for k ≤ 2.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Geometric covering problems are a classic area of research in computational geometry. The traditional geometric set cover
problem is to decide whether one can place k axis-parallel unit-sized squares (or disks) to cover n given points in the
plane. If k is part of the input, the problem is known to be NP-hard [7,16]. Thus, efficient algorithms are known only for
small values of k. For k = 2 or 3, there are linear time algorithms [6,21], and for k = 4 or 5, there are O (n log n) time
algorithms [17,19]. For general k, the O (n

√
k) time algorithm for unit-sized disks [13] can be simplified and extended to

unit-sized axis-parallel squares [1].
Motivated by trajectory analysis, we study a line segment variant of the geometric set cover problem where the input is

a set of n line segments. Given a set of line segments, we say it is k-coverable if there exist k unit-sized axis-parallel squares
in the plane so that every line segment is in the union of the k squares (we may write coverable to mean k-coverable when
k is clear from the context). The first problem we study in this paper is:

Problem 1. Decide if a set of line segments is k-coverable, for k ∈ O (1).

✩ A preliminary version of this work appeared at CIAC’2021 [9].

* Corresponding author.
E-mail addresses: joachim.gudmundsson@sydney.edu.au (J. Gudmundsson), m.a.vandekerkhof@uu.nl (M. van de Kerkhof),

andre.vanrenssen@sydney.edu.au (A. van Renssen), f.staals@uu.nl (F. Staals), lionov@unpar.ac.id (L. Wiratma), swon7907@uni.sydney.edu.au (S. Wong).
https://doi.org/10.1016/j.tcs.2022.04.053
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.04.053
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.04.053&domain=pdf
mailto:joachim.gudmundsson@sydney.edu.au
mailto:m.a.vandekerkhof@uu.nl
mailto:andre.vanrenssen@sydney.edu.au
mailto:f.staals@uu.nl
mailto:lionov@unpar.ac.id
mailto:swon7907@uni.sydney.edu.au
https://doi.org/10.1016/j.tcs.2022.04.053

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 1. A set of 3-coverable segments. Fig. 2. A 2-coverable subtrajectory.

A key difference in the line segment variant and the point variant is that each segment need not be covered by a single
square, as long as each segment is covered by the union of the k squares. See Fig. 1.

Hoffmann [12] provides a linear time algorithm for k = 2 and 3, however, a proof was not included in his extended
abstract. Sadhu et al. [18] provide a linear time algorithm for k = 2 using constant space. In Section 2, we provide a proof
for a k = 3 algorithm and a new O (n log n) time algorithm for k = 4.

Next, we study trajectory coverings. A trajectory T is a polygonal curve in the plane parametrised by time. Let v1, .., vn

and e1, .., en−1 be the vertices and edges of T , respectively. For two points s and t on T , we write s ≺ t if s occurs on T
before t . Any such pair of points then defines a unique subtrajectory T [s, t] of T starting in s and ending in t . See Fig. 2 for
an example. Trajectories are commonly used to model the movement of an object (e.g. a bird, a vehicle, etc) through time
and space. The analysis of trajectories has applications in animal ecology [5], meteorology [22], and sports analytics [8].

To the best of our knowledge, this paper is the first to study k-coverable trajectories for k ≥ 2.
A k-coverable trajectory may, for example, model a commonly travelled route, and the squares could model a method

of displaying the route (i.e. over multiple pages, or multiple screens), or alternatively, the location of several facilities. We
build a data structure that can efficiently decide whether a subtrajectory is k-coverable.

Problem 2. Construct a data structure on a trajectory, so that given any query subtrajectory, it can efficiently answer whether
the subtrajectory is k-coverable, for k ∈ O (1).

For k = 2 and k = 3 we preprocess a trajectory T with n vertices in O (n log n) time, and store it in a data structure
of size O (n log n), so that we can test if an arbitrary subtrajectory (not necessarily restricted to vertices) T [s, t] can be
k-covered.

Finally, we consider a natural extension of Problem 2, that is, to calculate the longest k-coverable subtrajectory of any
given trajectory. This problem is similar in spirit to the problem of covering the maximum number of points by k unit-sized
axis-parallel squares [3,14].

Problem 3. Given a trajectory, compute a longest k-coverable subtrajectory, for k ∈ O (1).

Problem 3 is closely related to computing a trajectory hotspot, which is a small region where a moving object spends a
large amount of time. For k = 1 squares, the existing algorithm by Gudmundsson et al. [10] computes longest 1-coverable
subtrajectory of any given trajectory. We notice a missing case in their algorithm, and show how to resolve this issue in
the same running time of O (n log n). Finally, we show how to compute the longest 2-coverable subtrajectory of any given
trajectory in O (n2α(n) log2 n) time, where α(n) is the extremely slow growing inverse Ackermann function.

Overview In the next section we consider Problem 1. We build up to the k = 4 case by first considering the problem for
k ≤ 3. A simple but crucial observation for k = 4 is that if a set S of segments is 4-coverable then either (a) one square has
to lie in a corner of the bounding box of S or (b) each square has to touch exactly one side of the bounding box of S . The
first case immediately reduces to the case when k = 3 which can be solved in linear time, so the focus of Section 2.3 is to
solve the second case in O (n log n) time.

In Section 3 we turn our attention to Problem 2. We build four basic data structures (Tools 1–4) in O (nα(n) log n) time
that are then combined in Sections 3.1 and 3.2 to produce data structures for k = 2 and k = 3, respectively.

Our main technical contributions are in Sections 4 and 5 where we consider Problem 3 for k ≤ 2. We first note that an
earlier algorithm for k = 1 by Gudmundsson et al. [10] omits a possible scenario. We show how this case can be handled in
O (n log n) time before we show our main result for k = 2, which is an O (n2α(n) log2 n) time algorithm.

2. Problem 1: the decision problem

We first consider the simple case when k = 2 to build intuition for the problem and state several basic properties that
will be used in later sections.
75

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
2.1. Is a set of line segments 2-coverable?

We begin with an observation that applies to any k-covering.

Observation 1. Every k-covering of S must touch all four sides of BB(S).

The reasoning behind Observation 1 is simple: if the covering does not touch one of the four sides, say the left side, then
the covering could not have covered the leftmost vertex of the set of segments. An intuitive way for two squares to satisfy
Observation 1 is to place the two squares in opposite corners of the bounding box. This intuition is formalised in Lemma 1.

Lemma 1 (Sadhu et al. [18]). A set S of segments is 2-coverable if and only if there is a covering with squares in opposite corners of
BB(S).

It suffices to check the two configurations where squares are in opposite corners of the bounding box. For each of these
two configurations, we simply check if each segment is in the union of the two squares, which takes linear time in total,
leading to the following theorem:

Theorem 1. One can compute a 2-covering of a set of n line segments, or report that no such covering exists, in O (n) time.

2.2. Is a set of line segments 3-coverable?

The following lemma is analogous to Lemma 1, but for the k = 3 case.

Lemma 2. A set of segments S is 3-coverable if and only if there is a covering with a square in a corner of the bounding box BB(S).

Proof. By Observation 1, any 3-covering of S touches all four sides of the bounding box. By the pigeon-hole principle, one
of these squares must intersect at least two sides of BB(S).

Consider if these two sides are adjacent. Without loss of generality they are the left and top sides of BB(S). If the top-
left corner of H already coincides with the top-left corner of BB(S) the lemma statement holds. If not, the top-left corner
of H lies outside of BB(S), and thus we can shift H to make the two top-left corners coincide. This increases the area of
BB(S) covered by H, and hence the 3-covering remains valid.

Consider if these two sides are opposite. Without loss of generality they are the top and bottom sides of BB(S). Consider
the square that intersects the left side of BB(S) and shift it to coincide with the top-left corner of BB(S). Since the height
of BB(S) is at most one, we still have a valid 3-covering, and this square intersects three sides of BB(S). �

It suffices to consider four cases, one for each corner of the bounding box. After placing the first square in one of the
four corners, we subdivide each segment into at most one subsegment that is covered by the first square, and up to two
subsegments that are not yet covered. Finally, we use Theorem 1 to decide whether the final two squares can cover all
remaining subsegments.

Subdividing each segment takes linear time in total. There are at most a linear number of remaining subsegments.
Checking if the remaining segments are 2-coverable takes linear time by Theorem 1. Hence:

Theorem 2. One can compute a 3-covering of a set of n line segments, or report that no such covering exists, in O (n) time.

2.3. Is a set of line segments 4-coverable?

By Observation 1, the four squares of a 4-covering must touch all four sides of the bounding box. We have two cases. In
the first case, we have a 4-covering with a square in a corner of the bounding box. In the second case, we have a 4-covering
with each square touching exactly one side of the bounding box.

In the first case we can use the same strategy as in the three squares case by placing the first square in a corner and then
(recursively) checking if three additional squares can cover the remaining subsegments. This gives a linear time algorithm
for the first case.

For the remainder of this section, we focus on solving the second case. Define L, B , T , and R to be the square that
touches the left, bottom, top and right side of the bounding box of S , respectively. See Fig. 3. Without loss of generality,
suppose that T is to the left of B . This implies that the left to right order of the squares is L, T , B , R . Suppose for now
there was a way to compute the initial placement of L. Then we can deduce the position of T as follows.

Lemma 3. Given the position of L, if three additional squares can be placed to cover the remaining subsegments, then it can be done
with T in the top-left corner of the bounding box of the remaining subsegments.
76

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 3. The squares L, T , B and R . Fig. 4. The variables yL , xT and xB .

Fig. 5. The best position for T is in the top left corner of the bounding box of the remaining subsegments.

Proof. Consider the bounding box of the subsegments not covered by L, in particular, the left side of said bounding box.
By definition, there exists a left endpoint of a remaining subsegment that lies on this left side � (the dashed line segment
in Fig. 5). Suppose that the left side of T is to the right of �: then the squares B and R would be even further right than
T , and no square would cover this left endpoint of a remaining subsegment. Hence, if a covering exists, the left side of T
cannot be to the right of �.

Suppose that there exists a covering where the left side of T is to the left of �. Then we can shift T so that its left
side is aligned with �. As in the proof of Lemma 2 the new position covers more of the area of inside the bounding box of
the remaining subsegments, and hence we still have a valid covering. Furthermore, since T is also incident to the top-side
of BB(S) (and L is not incident to BB(S)) it follows that the top-left corner of T now coincides with the top-side of the
bounding box of the remaining subsegments as desired. �

After placing the first two squares, we can place B in the bottom-left corner of the bounding box of the remaining
segments, for reasons analogous to Lemma 3. Finally, we cover the remaining segments with R , if possible.

It follows that the position of L along the left boundary uniquely determines the positions of the squares T , B and R
along their respective boundaries. Unfortunately, we do not know the position of L in advance, so instead we consider all
possible initial positions of L via parametrisation. Let yL be the y-coordinate of the top side of L, and similarly let xT , xB

be the x-coordinates of the left side of T and B , respectively. See Fig. 4.
Finally, we will try to cover all remaining subsegments with the square R . Define xR1 and xR2 to be the x-coordinates of

the leftmost and rightmost uncovered points after the first three squares have been placed. Similarly, define yR1 and yR2 to
be the y-coordinates of the topmost and bottommost uncovered points. Then it is possible to cover the remaining segments
with R if and only if xR1 − xR2 ≤ 1 and yR1 − yR2 ≤ 1.

Since the position of L uniquely determines T , B and R , we can deduce that the variables xT , xB , xR1 , xR2 , yR1 and yR2

are all functions of yL . We will show that each of these functions is piecewise linear and can be computed in O (n log n)

time. We begin by computing xT as a function of variable yL .
Let s ∈ S be a segment, we define f s(y) = minp∈s∧p y≥y px as the leftmost point on s above the horizontal line at height

y, and f (y) = mins∈S fs(y) as the minimum over all segments s. We refer to (the graph of) f as the skyline of S .

Lemma 4. The skyline f of a set S of n segments is a piecewise linear, monotonically increasing function with O (nα(n)) pieces and
can be computed in O (n logn) time, where α(n) is the inverse Ackermann function.

Proof. We first compute the skyline of each individual segments. If the segment has positive gradient, then the skyline
consists of three pieces. If the segment has negative gradient, then the skyline has two pieces. See Fig. 6, (left) and (middle).
Next, we merge the individual skylines into a combined skyline. For any �, the function f (�) takes the value of the leftmost
intersection of the individual skylines with �, i.e. the upper envelope except in the leftwards cardinal direction rather than
the upwards direction. See Fig. 6, (right).
77

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 6. The skyline of a segment with positive gradient (left), a segment with negative gradient (middle) and a set of segments (right).

Fig. 7. The regions A, B and C are above, below, and to the left of the square L (left). The skyline is the leftmost point of region A as yL increases (right).

The skylines of individual segments can be computed in O (n) time, and have a total size of O (n). The leftwards envelope
of the individual skylines has at most O (nα(n)) pieces and can be computed in O (n log n) time [20]. The leftwards envelope
is piecewise linear and a monotonically increasing function. �

Now we can apply Lemma 4 to compute xT as a function of yL .

Lemma 5. The variable xT as a function of variable yL is a piecewise linear, monotonically increasing function of complexity O (nα(n))

and can be computed in O (n logn) time.

Proof. We divide the region inside the bounding box and not covered by L into three subregions. The region A is above
L, the region B is below L and the region C is to the right of L. See Fig. 7 (left). As yL increases, the leftmost point of A
follows the skyline of the segments in A. See Fig. 7, (right). Analogously, as yL increases, the leftmost point of B follows the
skyline of the segments in B , except that the skyline is taken in the downward direction instead. Finally, as yL increases,
the leftmost point of C is a constant. By Lemma 4, the leftmost points of A, B and C are all piecewise linear functions with
complexities O (nα(n)) that can be computed in O (n log n) time. The value of xT is the minimum of these functions, so is a
piecewise linear function of complexity O (nα(n)) and can be computed in O (n log n) time. �

Next, we show that xB is a piecewise linear function of yL , with complexity O (nα(n)), and can be computed in O (n log n)

time.

Lemma 6. The variable xB as a function of variable yL is a piecewise linear function of complexity O (nα(n)) and can be computed in
O (n log n) time.

Proof. For an analogous reason to Lemma 3, we can place B in the bottom-right corner of the remaining segments af-
ter placing L and T . Therefore, xB is the x-coordinate of the leftmost uncovered point after placing L and T . Divide the
remaining region into three subregions: B below L, D to the right of T , and C2 to the right of L and below T . See Fig. 8.

As yL increases, the leftmost point of B moves monotonically to the left, and follows the skyline of the set of segments,
except that the skyline is taken in the downwards direction. By Lemma 4, the leftmost point of B is a piecewise linear
function in terms of yL and can be computed in O (n log n) time.

As yL increases, the position of square T , given by the variable xT moves monotonically to the right, and follows a
skyline of the segments. We have shown in Lemma 5 that xT is a piecewise linear function in terms of yL and can be
computed in O (n log n) time. Similarly, the leftmost point of D is a piecewise linear function in terms of the position of
T and can be computed in O (n log n) time. We compose the leftmost point of D as a piecewise linear function of xT ,
and xT as a piecewise linear function of yL . By Lemma 4, each of these functions are monotonically increasing functions
with complexity O (nα(n)). Composing two monotonic, piecewise linear functions requires a single simultaneous sweep of
the two functions, which takes O (nα(n)) time. Hence, the leftmost point of D is a piecewise linear function and can be
computed in O (n log n) time.
78

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 8. The regions B , D and C2 as defined by L and T .

Fig. 9. The regions D ∪ E ∪ C3 as defined by L, T and B .

As yL increases, the region C2 remains constant, so the leftmost point of C2 remains constant. This point can be com-
puted in O (n) time.

Putting this all together, each of the leftmost points of B , D and C2 are piecewise linear functions in terms of yL and
can be computed in O (n log n) time. Hence, their minimum xB is a piecewise linear function of complexity O (nα(n)) and
can be computed in O (n log n) time. �

Then we compute xR1 , xR2 , yR1 and yR2 in a similar fashion.

Lemma 7. The variables xR1 , xR2 , yR1 , yR2 as functions of variable yL are piecewise linear functions of complexity O (nα(n)) and can
be computed in O (n logn) time.

Proof. We will show that yR1 as a function of yL is a piecewise linear function and can be computed in O (n log n) time.
The other variables follow analogously.

Divide the region to the right of L, T and B into three subregions: D is to the right of L and above B , E to the right of
B , and C3 below D and above B , if it exists. Note that C3 only exists in squares where the height of the bounding box is
greater than two. Otherwise, only the regions D and E exist, as shown in Fig. 9. We compute the topmost points of D , E
and C3 separately, then return their overall topmost point to be the value of yR1 .

As yL increases, the position of square T given by the variable xT moves monotonically to the right and follows the
skyline of the segments. Similarly, as xT moves monotonically to the right, the topmost point of D moves monotonically
to the right. We have shown that each of these monotonic functions are piecewise linear, have complexity O (nα(n)) and
can be computed in O (n log n) time (see Lemma 4). Computing their composition of monotonic, piecewise linear functions
requires a single simultaneous sweep of the two functions, which takes O (nα(n)). Hence, the overall function is piecewise
linear and can be computed in O (n log n).

As yL increases, the topmost point of E is similarly a composition of two skyline functions, which is piecewise linear
and can be computed in O (n log n).

Finally, as yL increases, the topmost point of C3 (if it exists) is constant and can be computed in O (n) time.
Putting this all together, each of the leftmost points of D , E and C3 are piecewise linear functions in terms of yL and

can be computed in O (n log n) time. Hence, their minimum yR1 is a piecewise linear function of complexity O (nα(n)) and
can be computed in O (n log n) time. �

Finally, we check if there exists a value of yL so that xR1 − xR2 ≤ 1 and yR1 − yR2 ≤ 1. If so, there exist positions for L,
B , T and R that cover all the segments, otherwise, there is no such position. This yields the following result:

Theorem 3. One can decide if a set of n segments is 4-coverable in O (n logn) time.
79

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 10. The subtrajectory data structure that returns the bounding box.

Fig. 11. Tool 2 returns the highest intersection of a subtrajectory and a vertical line.

3. Problem 2: the subtrajectory data structure problem

Let T be a piecewise linear trajectory of complexity n. We briefly describe some tools, then we use our tools to construct
data structures for answering if a subtrajectory is either 2-coverable or 3-coverable.

Tool 1. A linear size “bounding box” data structure that can be built in O (n) time and given a pair of query points s ≺ t on T can
return the bounding box of T [s, t] in O (logn) time. See Fig. 10.

Proof. Construct a binary tree on the sequence of edges in T . For each node in the binary tree, the segments that are its
descendants form a contiguous subtrajectory of T . We call such a contiguous subtrajectory a canonical subset. For each
internal node, we compute the bounding box of its canonical subset. If we compute the bounding boxes in a bottom up
fashion, each internal node can be processed in constant time. The overall construction time is O (n).

Given a query subtrajectory, we decompose the subtrajectory into canonical subsets. We query the data structure to
obtain an individual bounding box for each canonical subset. We compute a combined bounding box that contains all
individual bounding boxes. The overall query time is O (log n). �
Tool 2. An O (nα(n) log n) size “upper envelope” data structure that can be built in O (nα(n) logn) time and given a pair of query
points s ≺ t on T and a vertical line can return the highest intersection between the line and subtrajectory T [s, t] (if one exists) in
O (log n) time. See Fig. 11.

Proof. We use an approach similar to Tool 1. We build a binary search tree over segments of T , and associate with each
internal node the subset of all its descendants. We call this the canonical subset associated with this internal node. By
construction, every subtrajectory can be decomposed into a union of O (log n) canonical subsets.

At each internal node, we store the upper envelope of all segments in its canonical subset. This upper envelope can be
represented by an list of its vertices in left-to-right order. Since the upper envelope of n line segments has size O (nα(n)),
the total size of our data structure is O (nα(n) log n). Computing all these upper envelopes can be done in O (nα(n) log n)

time using a bottom up divide and conquer approach [11].
Given a query subtrajectory and a vertical line at x-coordinate x, we can naively answer the upper envelope query in

two steps. First, we decompose the subtrajectory into O (log n) canonical subsets, and find the segment realizing the upper
envelope at x using a binary search in O (log(nα(n))) = O (log n) time. Second, we report the highest intersection point of
the vertical line with the O (log n) segments found. The overall query time for this approach would be O (log2 n) time. A
standard application of fractional cascading [4] reduces the total query time to O (log n). �

Using Tool 2 we can report whether a vertical half-line intersects a subtrajectory. We build Tool 2 in all four cardinal
directions. Similarly, we will build Tool 3 and Tool 4 in all four cardinal directions.
80

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 12. Tool 3 returns the highest subtrajectory vertex in a query slab.

Tool 3. An O (n logn) size “highest vertex” data structure that can be built in O (n logn) time and given a pair of query points s ≺ t on
T and a vertical query slab can return the highest vertex of T in subtrajectory T [s, t] in the slab in O (logn) time. See Fig. 12.

Proof. We store T in the leaves of a balanced binary search tree in order along the trajectory. For each internal node
ν , corresponding to a canonical subset of vertices Tν , we store this set of points ordered on increasing x-coordinate. In
addition, we store their y-coordinates in an array Aν in this order. That is, Aν [i] stores the y-coordinate of the point pi
with the ith-largest x-coordinate among Tν . Each entry in the sequence Tν will store its index in Aν , moreover we assume
that for each index i we can again retrieve the point pi (e.g. by storing another array that stores the original points). We
preprocess Aν for constant time range maximum queries [2], and we build a fractional cascading structure on canonical
subsets Tν [4]. Since each node uses linear space, the total space required is O (n log n). Moreover, by building the sorted
lists Tν in a bottom-up fashion we can build the entire data structure in O (n log n) time as well.

To answer a query, we find the O (log n) nodes whose canonical subsets make up the query subtrajectory. For each such
node ν , the points from Tν that lie in the query slab are stored consecutively in Tν (and Aν). So, using the fractional
cascading structure we can find, the index iν of the leftmost point among Tν that lies in the vertical query slab. This takes
O (log n) time in total. Similarly, we get the index jν of the rightmost point from Tν in the query slab. We can then query
the range maximum structure on the array Aν with the range iν, .. jν to find the point with maximum y-coordinate in
constant time. We do this for all O (log n) nodes and report the highest point found. It follows that this is the highest vertex
on the query subtrajectory that also lies in the query slab. �
Tool 4. An O (n logn) size “highest vertex” data structure that can be built in O (n logn) time and given a pair of query points s ≺ t on
T and a query quadrant Q = [Q x, ∞) × [Q y, ∞) can return the highest vertex of T in T [s, t] ∩ Q in O (logn) time.

Proof. We again store the vertices of T in the leaves of a balanced binary search tree in order along the trajectory. For
each internal node ν , consider the function fν(x) expressing the maximum y-coordinate among the points in Tν right of
the vertical line at x. Observe that this function is piecewise constant, monotonically decreasing, and has complexity O (n).
We store the graph of this function fν by storing an ordered sequence of its breakpoints, which allows us to evaluate fν(x)
for some value x in O (log n) time by a binary search. The data structure uses O (n log n) space, and can be built in O (n log n)

time (e.g. again by sorting the points on increasing x-coordinate in a bottom up fashion).
To answer a query, we find the O (log n) nodes whose canonical subsets make up the query subtrajectory. For each such

node ν , we evaluate fν(Q x), and compute the maximum over all nodes. If this value is at least Q y the corresponding point
is the highest vertex of the query subtrajectory in quadrant Q , and hence we can report it. If the value is smaller than Q y

the quadrant is empty. The query time is O (log2 n) time, which we can reduce to O (logn) using fractional cascading [4]. �
Using a data structure analogous to Tool 4 we can also report the lowest point on the query subtrajectory in a quadrant

[Q x, ∞) × [Q y, ∞).

3.1. Query if a subtrajectory is 2-coverable

We start with a lemma to help us apply Tool 2 to the boundary of the union of two axis aligned unit squares.

Lemma 8. The union U = H1 ∪ H2 be of two axis aligned unit squares has constant complexity, every edge uv of U is axis aligned,
and at least one of the half-lines −→uv and −→vu does not intersect the interior of U . See Fig. 13, (left).

Proof. The only non-trivial part of the Lemma is to argue that for every edge uv either −→uv or −→vu does not intersect
the interior of U . Assume w.l.o.g. that uv is part of the boundary of H1 (and thus lies outside of H2), and assume that −→uv
intersects the interior of U (otherwise the claim already holds). It follows that −→uv intersects the interior of H2. By convexity
of H2 it then follows −→vu does not intersect the interior of H2, otherwise uv would be contained in H2. This completes the
proof. �
81

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 13. The union of two squares and the half-lines that do not intersect the interior (left). One of the four half-lines on the boundary of the union of two
squares (right).

Fig. 14. The boundary pieces of the union and the cardinal directions we can extend the boundary piece indefinitely.

Now we are ready to prove the main result of Section 3.1.

Theorem 4. Let T be a trajectory with n vertices. After O (nα(n) logn) preprocessing time, T can be stored using O (nα(n) logn)

space, so that deciding if a query subtrajectory T [a, b] is 2-coverable takes O (logn) time.

Proof. Our construction procedure is to build Tool 1, and Tool 2 for all four cardinal directions. Our query procedure consists
of three steps. First, we use Tool 1 to compute the bounding box of the subtrajectory. Second, we apply Lemma 1 to obtain
a configuration of two squares. Finally, we check if the subtrajectory is inside the union of the two squares. We do so by
using Tool 2 to check if the subtrajectory passes through any of the four half-lines on the boundary of the union, see Fig. 13,
(right). The construction procedure takes O (nα(n) log n) time and space. The query procedure takes O (log n) time. �
3.2. Query if a subtrajectory is 3-coverable

We start with a lemma analogous to Lemma 8, but for three squares.

Lemma 9. The union U = H1 ∪ H2 ∪ H3 be of three axis aligned unit squares has constant complexity, every edge uv of U is axis
aligned, and there is at most one edge uv for which both the half-lines −→uv and −→vu both intersect the interior of U . See Fig. 14.

Proof. Assume, by contradiction, that there are two edges u1 v1 and u2 v2 for which both rays intersect the interior of U .
Assume without loss of generality that u2 v2 lies on the top side of H2 (otherwise rotate the plane), and that u2 lies left

of v2. Since the squares are all convex, it now follows that: (i) −−→u2 v2 and −−→v2u2 do not intersect the interior of H2, and (ii)
that they cannot both intersect the same Hi . So, assume without loss of generality that −−→u2 v2 intersects H3 and that −−→v2u2
intersects H1. It then follows that the left to right ordering of (the centers of) the squares is H1, H2, H3. Furthermore, (the
center of) H2 is the lowest center among the three squares.

We now argue that u1 v1 cannot also be horizontal. Via the same reasoning as above, −−→u1 v1 and −−→v1u1 must hit different
squares, and thus u1 v1 must lie on the middle square H2. In particular, since H2 is the lowest square and the squares
have the same size, v1u1, it must lie on the top side of H2 as well (the horizontal line through the bottom side does not
intersect H1 or H3). That implies that two oppositely oriented rays (e.g. −−→u2 v2 and −−→v1u1) intersect the same square (e.g.
H3). However, since all squares have the same size we again get a contradiction.

So u1 v1 is vertical, with say u1 below v1. We once again have that −−→u1 v1 and −−→v1u1 must intersect different squares.
Moreover, the centers of these squares must lie on the same of the vertical line through u1 v1. Consider the case that
these centers lie right of this line. The other case is symmetric. It now follows that u1 v1 must lie on the leftmost square
H1, and that the square below u1 v1 must be H2. More specifically, u1 must lie on or above the top side of H2 (again
since the squares have the same size). Similarly, v1 must lie below the bottom side of H3. However, this implies that the
bottom side of H3 lies above the top side of H2, and thus the horizontal ray −−→u2 v2 does not intersect the interior of H3.
Contradiction. �
82

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 15. The second and third squares in one of two configurations.

Now we can prove the main result of Section 3.2.

Theorem 5. Let T be a trajectory with n vertices. After O (nα(n) logn) preprocessing time, T can be stored using O (nα(n) logn)

space, so that deciding if a query subtrajectory T [a, b] is 3-coverable takes O (logn) time.

Proof. Our construction procedure is to build Tool 1, and Tools 2, 3, and 4 in all four cardinal directions. The total prepro-
cessing time and space usage is O (nα(n) log n).

Our query procedure consists of three steps. The first step is to place the first square in the corner of the bounding box.
The second step is to place the second and third squares in one of two configurations, see Fig. 15. The third step is to check
if the configuration of three squares covers the subtrajectory.

In the first step, we use Tool 1 to compute the bounding box of the query subtrajectory, and then apply Lemma 2 to
place the first square in a corner of the bounding box.

In the second step, we compute the bounding box of the uncovered segments after placing the first box. Then we apply
Lemma 1 to place the final two squares in opposite corners of the bounding box of the uncovered subsegments. See Fig. 15.
Suppose we placed a square in the top-left corner in the first step. We have two cases for the topmost uncovered point: it
is either a vertex of the subtrajectory, or the intersection of a subtrajectory edge with the left or bottom side of the top-left
square. The first case can be handled by two queries to Tool 4. The second case can be handled by querying Tool 2 along
the right or bottom boundaries of the top-left square, and taking the highest of these points. We apply the same procedure
in all four cardinal directions to obtain the bounding box of the uncovered subsegments, as required.

For the third step, we check if a given configuration U =H1 ∪H2 ∪H3 of three squares covers the subtrajectory T [a, b].
The approach is similar to the two square case: we check if the starting point a lies inside U , and if the subtrajectory ever
exits U . We use a combination of Tools 2, 3 and 4, to achieve this.

By Lemma 9 there is at most one edge uv on the boundary of U for which both rays −→uv and −→vu hit the (interior of) U .
Hence, for all edges other than uv we can check if the subtrajectory exits U using an appropriate copy of Tool 2. Observe
that if the subtrajectory does not intersect the boundary of U in any edge other than uv then either it exits U through uv
and does not return, or it exits and reenters U through uv . In both cases a vertex of T [a, b] (possibly its endpoint) must lie
in the connected component of BB(T [a, b]) \U that is incident to uv . We can check this using Tools 3 and 4.

All in all we make a constant number of queries to Tools 1, 2, 3, and 4, each of which takes O (log n) time. Hence, we
can test if a query subtrajectory is 3-coverable in O (log n) time. �
4. Problem 3 for k = 1: a longest 1-coverable subtrajectory

In this section we compute a longest k-coverable subtrajectory T [p∗, q∗] of a given trajectory T for k = 1. Note that the
start and end points p∗ and q∗ of such a subtrajectory need not be vertices of the original trajectory. Gudmundsson, van
Kreveld, and Staals [10] presented an O (n log n) time algorithm for the case k = 1. However, we note that there is a mistake
in one of their proofs, and hence their algorithm misses one of the possible scenarios. We show how this case can also be
handled in O (n log n) time, thus correcting their mistake.

Gudmundsson, van Kreveld, and Staals state that there exists an optimal placement of a unit square, i.e. one such that
the square covers a longest 1-coverable subtrajectory of T , and has a vertex of T on its boundary [10, Lemma 7]. However,
that is incorrect, as illustrated in Fig. 16. Let p(t) be a parametrisation of the trajectory. Fix a corner c of the square and
shift the square so that c follows p(t). Let q(t) be the point so that T [p(t), q(t)] is the maximal subtrajectory contained in
the square, and let φ(t) be the length of this subtrajectory. This function φ is piecewise linear, with inflection points not
only when a vertex of T lies on the boundary of the square, but also when p(t) or q(t) hits a corner of the square. The
argument in [10] misses this last case. Instead, the correct characterization is:

Lemma 10. Given a trajectory T with vertices v1, .., vn, there exists a square H covering a longest 1-coverable subtrajectory so that
either:

• there is a vertex vi of T on the boundary of H, or
• there are two trajectory edges passing through opposite corners of H.
83

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 16. An optimal placement that has no vertex on the boundary of the square.

Proof. Proof by contradiction. Assume that H∗ is an optimal square (i.e. covering a longest 1-coverable subtrajectory), and
there is no optimal square satisfying the conditions in the lemma statement. Since H∗ is optimal, the longest contiguous
subtrajectory T ∗ = T [p∗, q∗] in H∗ must touch two opposite sides of H∗ . Assume without loss of generality that these
sides are horizontal.

Let H′ = H∗ and let T ′ be a maximal length sub-trajectory in H′ , such that initially T ′ = T ∗ . It is easy to see that we
can shift H′ horizontally—while keeping T ∗ inside it—until either a vertex of T ′ lies on (a vertical side of) ∂H′ or p∗ lies
on a corner of H′ . In the former case we immediately obtain a contradiction. In the latter case, translate H′ while keeping
the starting point p′ of T ′ on the same corner of H′ (moving the starting point of T ′ earlier or later). Let φ(t) denote the
length of T ′ as a function of the starting time t = tp′ of T ′ . Function φ has break points when: (i) p′ or q′ crosses a vertex,
(ii) H′ gets a vertex of T ′ on its boundary, or (iii) when the side of H′ containing q changes. Since φ is (piecewise) linear,
we can either increase or decrease t without decreasing φ(t) until φ is at a break point. At such a break point H′ has a
vertex of T ′ on its boundary (cases (i) and (ii)) or q lies in a corner of H′ (case (iii)). In the former case we arrive at a
contradiction. In the latter case, observe that p also lies in a corner of H′ (by definition of φ). If this corner is opposite
to that of q we satisfy the second condition of the lemma, and thus arrive at a contradiction as well. Otherwise, the two
corners lie on the same side, say the top side, of H′ , and thus we can shift H′ upwards while covering T ′ , until a vertex
of T ′ now lies on the bottom side of H′ . Hence, we also arrive at a contradiction in this final case. This completes the
proof. �

To compute a longest 1-coverable subtrajectory we now have two cases, as described by Lemma 10. In the first case,
i.e. when there is a vertex vi on the boundary of H , we use the existing algorithm of Gudmundsson et al. [10] to compute
the longest 1-coverable subtrajectory. It remains to handle the second case, i.e. when there are two trajectory edges passing
through opposite corners of H . We begin by showing a useful lemma.

Lemma 11. Given a pair of non-parallel edges ei and e j of T , there is at most one unit square H such that the top left corner of H lies
on ei , and the bottom right corner of H lies on e j .

Proof. Let p be the top-left corner of H and q be the bottom right corner of H . Consider as p moves along the edge ei .
Then q also moves along a straight segment, e′

i , that is a translated copy of ei . By the conditions of the lemma, q also lies
on e j . Therefore, q must be the intersection of e′

i and e j , if one exists, and the observation follows. �
It follows that any pair of edges ei, e j of T generates at most a constant number of additional candidate placements that

we have to consider. Let Hi j denote this set. Next, we argue that there are only O (n) relevant pairs of edges that we have
to consider.

We define the reach of a vertex vi , denoted r(vi), as the vertex v j such that T [vi, v j] can be 1-covered, but T [vi, v j+1]
cannot. Let Hi =H(i−1) j denote the set of candidate placements corresponding to vi and v j = r(vi). Analogously, we define
the reverse reach rr(v j) of v j as the vertex vi such that T [vi, v j] can be 1-covered, but T [vi−1, v j] cannot, and the set
H′

j = H(i−1) j . Finally, let H = ⋃n
i=1 Hi ∪ H′

i be the set of placements contributed by all reach and reverse reach pairs. By
Lemma 12, Hi consists of at most one element. Similarly, H ′

i consists of at most one element. Therefore, H is the union of
2n sets, each with at most one element, so |H | = O (n).

Lemma 12. Let p∗ ∈ ei and q∗ ∈ e j lie on edges of T , and let H be a unit square with p∗ in one corner, and q∗ in the opposite corner.
We have that H ∈H.

Proof. Observe that vertices vi+1 and v j are inside H whereas vi and v j+1 are outside of H . See Fig. 17. We now distin-
guish between two cases, depending on whether v j is reachable from vi or not.

If v j is reachable from vi then v j+1 is not (otherwise T [vi, v j+1] ⊃ T [p∗, q∗] is 1-coverable, and thus T [p∗, q∗] is not
a longest 1-coverable subtrajectory). Hence, v j = r(vi) is the reach of vi , and thus H ∈Hi ⊆H.

If v j is not reachable from vi , then T [vi, v j] cannot be 1-covered. However, since vi+1 and v j are contained in H the
subtrajectory T [vi+1, v j] can be 1-covered. It follows that vi+1 is the reverse reach of v j , and thus H ∈H′ ⊆H. �
j

84

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 17. An optimal hotspot H .

Fig. 18. A vertex event (left), a reach event (middle), and a bounding box event (right).

Once we have the reach r(vi) and the reverse reach rr(vi) for every vertex vi we can easily construct H in linear time
(given a pair of edges ei, e j we can construct the unit squares for which one corner lies on ei and the opposite corner lies
on e j in constant time). We can use Tool 1 to test each candidate in O (log n) time. So all that remains is to compute the
reach of every vertex of T ; computing the reverse reach is analogous.

Lemma 13. We can compute r(vi), for each vertex vi ∈ T , in O (n logn) time in total.

Proof. We can prove this result using a sliding window approach. For v1 we just naively test the subtrajectories T [v1, v j],
starting with j = 1 until we find a T [v1, v j+1] that we can no longer cover. Hence r(v1) = v j . To compute the reach of
vi+1, we now simply continue this procedure starting with v j = r(vi). In total this requires O (n) calls to Tool 1, which take
O (log n) time each. This proves the result. �

Lemma 13 gives the following result.

Theorem 6. Given a trajectory T with n vertices, there is an O (n logn) time algorithm to compute a longest 1-coverable subtrajectory
of T .

5. Problem 3 for k = 2: a longest 2-coverable subtrajectory

In this section we reuse some of the observations from Section 4 to develop an O (n2α(n) log2 n) time algorithm to
compute a longest k-coverable subtrajectory for k = 2. In particular, we will compute the first such longest 2-coverable
subtrajectory T [p∗, q∗] of T , and the squares H1 and H2 that cover T [p∗, q∗] (and such that p∗ ∈ H1). We refer to
T [p∗, q∗] as the optimal subtrajectory.

Our algorithm to compute T [p∗, q∗] consists of five steps. In Section 5.1, we construct a discrete set S of candidate
starting points on T . In Section 5.2, we prove p∗ ∈ S , where p∗ is the starting point of the optimal trajectory and S is the
set of candidate starting points. In Section 5.3, we generalise the notion of the reach, and we generalise Lemma 13 to obtain
an algorithm for computing the reach. In Section 5.4 we show how to compute all six types of candidate starting points
efficiently. Finally, in Section 5.6, we compute the reach of all candidate starting points to obtain the optimal subtrajectory.

5.1. Identifying the set of starting points

In this section we identify a discrete set S of candidate starting points on T . In the subsequent section we prove p∗ ∈ S .
We define six types of events, depending on different types of starting points, as follows.

Given a trajectory T , p is a

vertex event (see Fig. 18 (left)) if and only if
p is a vertex of T .
85

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 19. Examples of a bridge event (left), and an upper envelope event box (right).

Fig. 20. Examples of the three types of special configuration events.

reach event (see Fig. 18 (middle)) if and only if
r(p) is a vertex of T , and no point q ≺ p satisfies r(q) = r(p).

bounding box event (see Fig. 18 (right)) if and only if
the topmost vertex of T within the subtrajectory T [p, r(p)] has the same y-coordinate as p.

bridge event (see Fig. 19 (left)) if and only if
• the point p is the leftmost point on T [p, r(p)], and
• the point p is one unit to the left of a point u ∈ T [p, r(p)], and
• the point u is one unit above the lowest vertex of T in the subtrajectory T [p, r(p)].

upper envelope event (see Fig. 19) if and only if
• the point p is the leftmost point on T [p, r(p)], and
• the point p is one unit to the left of a point u ∈ T [p, r(p)], and
• the point u is an vertex on the upper envelope of T [p, r(p)].

special configuration event (see Fig. 20) if and only if
there is a covering of squares H1 and H2 so that H1 contains the top-left corner of H2, and either:

• point p is in the top-right corner of H1 and r(p) is in the bottom-left corner of H1, or
• point p is in the top-left corner of H1 and the trajectory T passes through the bottom-right corner of H1, or
• point p is in the top-left corner of H1, r(p) is in the bottom-right corner of H2, and the trajectory T passes through

the two intersections of H1 and H2.

Next, we use these six event types to define the set of candidate starting points in Definition 1. Note that in Definition 1,
we generalise bounding box, bridge, upper envelope and special configuration events to include the events for all four
cardinal directions, not just the upwards cardinal direction. For example, a point p for which the bottom-most vertex of
T [p, r(p)] also has y-coordinate p y is also a bounding box event.

Definition 1. Let T1 be a copy of T with the following additional points added to the set of vertices of T1:

• all the vertex, reach, bounding box, and bridge events of T for all four cardinal directions.

Next, let T2 be a copy of T1 with the following additional points added to the set of vertices of T2:

• all the upper envelope events of T1 for all four cardinal directions.

Finally, let T3 be a copy of T2 with the following additional points added to the set of vertices of T3:

• all the special configuration events of T2 for all configurations of H1 and H2.

Finally, we define S to be the vertices of T3. This completes the characterization of S , the set of candidate starting points.
86

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 21. An example of a bridging point t for the starting point p.

Fig. 22. The three cases for the point t that is lost when moving H1 to the left.

5.2. Proof that p∗ ∈ S

In this section, we prove that the starting point p∗ of the optimal subtrajectory is a candidate starting point in S . Our
main strategy is to argue that if p∗ is not a vertex of T2, either p∗ or q∗ must be in a corner of one of the two squares
(Lemma 16). Using a careful analysis, we then argue that the solution must actually be a special configuration event, and
thus p∗ ∈ S . Next, we define bridging points, which help us to establish some useful technical lemmas.

Given a point p, a point t ∈ T [p, r(p)] is said to be a bridging point for point p if there exists covering H1 ∪ H2
of T [p, r(p)] so that, assuming p is on the boundary of H1:

• The point t lies on the boundary of both H1 and H2, and
• The points t and p are on opposite sides of H1.

See Fig. 21 for an example. For a covering H1 ∪H2 of T [p, r(p)] = T [p, q], a side of H1 and H2 that contains p (respectively
q) is a p-side (respectively q-side). A side that contains a bridging point is a b-side. If two sides are part of the same square
and have the same orientation (vertical or horizontal), they are opposite to each other.

Observation 2. A bridging point x either lies on both the upper and right envelopes of the subtrajectory, or on both the lower and left
envelopes of the subtrajectory.

Lemma 14. Let T [p, q] be an optimal 2-coverable subtrajectory and assume that p is not a vertex of T2. There is a covering of T [p, q]
by squares H1 ∪H2 so that any side opposite to a p-side must either be a b-side or a q-side.

Proof. Assume without loss of generality that p lies on the left side of H1. We now argue that the right side of H1 is a
b-side or a q-side.

Since p is not a vertex of T2, it lies between two consecutive vertices si and si+1 of T2, as shown in Fig. 22. The segment
si si+1 is a line segment. Consider the situation if we moved H1 to the left by an arbitrarily small amount. This would allow
us to cover additional length of si si+1 on the left side of H1. Since T [p, q] is optimal, there must be a point t ∈ T [p, q]
on the right side of H1 that does not lie in the interior of H2 which is lost even as we move left by an arbitrarily small
amount. There are three possible cases for this point t , as shown in Fig. 22:

Case t is a vertex v of T : This would make p an upper envelope event for vertex v . This would mean that p is a vertex of
T2, which contradicts the lemma statement. Hence, this case cannot actually occur.

Case t is point q: This means the right side of H1 is a q-side, as desired.
Case t is an interior point of T : This means T , in particular T [p, q], continues into H2 at t . This means t must lie on the

boundary of H2, and thus the right side of H1 is a b-side, as desired.
87

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 23. Cases when the point p is not in a corner and there is a bridging point.

Fig. 24. The new squares HL and HR are constructed to the left and right of H1 respectively.

Note that if p lies on a corner of H1, say e.g. the top-left corner, there are two p-sides. Using the same argument as
above, it then follows that the bottom-side of H1 must also either be a q-side or a b-side. �
Lemma 15. Let T [p, q] be an optimal 2-coverable subtrajectory and assume that p is not a vertex of T2. There is a covering of T [p, q]
by squares H1 ∪H2 so that any side of H2 opposite to a b-side must be a q-side.

Proof. Let t be a bridging point that lies on the right side of H1, and the top side of H2. The other cases are symmetric.
We then have to show that the bottom side of H2 is a q-side.

To this end we move H1 left by an arbitrarily small amount and then move H2 upwards by an arbitrarily small amount
to cover the neighborhood of the bridging point. By the same argument as in Lemma 14, there must be a point on T [p, q]
that we lost on the bottom edge of H2. There are two cases as shown in Fig. 23.

The first case is if the point on the bottom edge of H2 is a vertex. Refer to the left diagram in Fig. 23. This would make
p a bridge event and thus a vertex of T2, which would be a contradiction. Thus, the trajectory T must exit the covering
H1 ∪H2 on the bottom edge. The point on the bottom edge is q and so the bottom side of H2 is a q-side, as required.

In case t also lies on a second side of H2, say the left side, then we also have to argue that the right side of H2 is a
q-side. Suppose that the right side of H2 does not contain q, then it must contain a vertex w of T [p, r(p)] (otherwise we
could again shift H2 left). However, since p lies on the left side of H1 (by definition of t), this would make p a reach event
of w , and thus a vertex of T2. Contradiction. �

Next we use the above lemmas to show that either p or q is in a corner of H1 or H2.

Lemma 16 (The corner lemma). Suppose p is not a vertex of T2 and T [p, q] is optimal. Then we have that either p is in a corner of H1
or H2 or that q is in a corner of H1 or H2 .

Proof. We assume by contradiction that p is not a vertex of T2, and there is a covering H1 ∪H2 of the subtrajectory T [p, q]
where neither of p nor q are in a corner of H1 or H2. We show that this implies that the subtrajectory T [p, q] cannot be
optimal.

We have two cases. Either the point p lies on the left side of H1 or the right side of H1. All other cases are symmetric.

Case 1: p is on the left side of H1. The left side of H1 is a p-side, so by Lemma 14, the right side of H1 is either a q-side
or a b-side. We consider two subcases.
Case 1.1: p is on the left side of H1 and q is on the right side. See Fig. 24.

We show that T [p, q] cannot be optimal by constructing an earlier subtrajectory with the same length as T [p, q]. We
do this by constructing a subtrajectory covered by a square slightly to the left of H1, and another subtrajectory covered
by a square slightly to the right of H1.
88

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 25. New hotspot positions for starting slightly before and after p.

If there is a vertex on the left side of H1, then that would make p a bounding box event and a vertex of T1. If there
is a vertex on the right side of H1, then that would make p an upper envelope event and vertex of T2. Since p is not a
vertex of T2, we must have that there are no vertices on the left side or the right side of H1.

Now, take H1 and move it left and right by the same arbitrarily small amount, and call these new squares HL and
HR respectively. For HL on the left diagram of Fig. 24, because there are no vertices or bridging points on the right edge,
we can choose the movement small enough so that the gray diagonally shaded region is empty. We can do the same for
HR on the right diagram, because there are no vertices on the left edge, so we can choose the movement small enough
so that the gray diagonally shaded region is also empty. So the only lengths gained or lost are those on the segment ep

that contains p, or the segment eq that contains q.
Suppose that T [p, q] has length L and by assumption is maximal. Let the length of trajectory we gain with HL on

segment ep be �p and the length of trajectory we lose on segment eq be �q . By symmetry and the fact that p and q are
not in corners of H1, we have that HR loses the same amount �p and gains the same amount �q . Therefore, we have
trajectories close to T [p, q] with lengths L, L − �p + �q and L + �p − �q respectively. Since L is maximal, we must have
�p = �q . But now we have an earlier trajectory with the same length as T [p, q], so T [p, q] is not optimal.
Case 1.2: p is on the left side of H1 and there is a bridging point on the right side. See Fig. 25.

It follows from Observation 2 that this bridging point must lie on the top side of H2 (as it must lie on the upper and
right envelopes of T [p, r(p)]). Then, Lemma 15 tells us that the bottom side of H2 must be a q-side.

We now follow a similar shifting argument as before. This time we shift both H1 and H2. We move H1 left to form
HL1 , and H2 up to form HL2 and cover the part of the upper envelope left uncovered by HL1 . We apply the opposite
movements to obtain HR1 and HR2 respectively.

Again, the gray regions on the left and right sides of H1 are empty if we choose the movement small enough,
otherwise p would be a vertex of T2. For H2 we have an analogous reason but this time it would make q a vertex of T2.
Therefore, the only parts of the trajectory gained or lost are those close to p or q. By the same argument as before, these
lengths �p and �q are the same for HL1 ∪ HL2 and HR1 ∪ HR2 . Therefore, we again deduce that in order for T [p, q] to
be optimal, �p and �q must be equal, but then T [p, q] is not the earliest optimal trajectory.

Case 2: p is on the right side of H1. By Lemma 14, the left side of H1 is a q-side, since it cannot be a b-side (by Obser-
vation 2). The proof of this case is exactly the same as Case 1. We use the same construction as the one shown in
Fig. 24.

In all cases, if p is not a vertex of T2 and p and q are not in corner positions of H1 and H2, then T [p, q] is not an
optimal subtrajectory. �

Finally, we show that p is not only a corner of H1 or H2, but also that p is in fact a special configuration event.

Lemma 17. Suppose that T [p, q] is optimal and that p is not a vertex of T2. Then p is a special configuration event.

Proof. By Lemma 16, we must have p or q be in a corner of H1 or H2. Without loss of generality, suppose that p is in
a corner of H1. Up to rotation this leaves only two cases, either p is in the top-left corner of H1, or p is in the top-right
corner of H1.

Case 1: p is in the top-left corner. Consider the sides opposite to p on H1. These would be the bottom side and right
side of H1. Lemma 14 implies both these sides must contain either q or a bridging point. Since T [p, r(p)] enters H2, at
least one of these two sides must contain a bridging point.

Moreover, applying Lemma 15 to the bridging point implies that q is in fact on the square H2 and not H1. Therefore,
both sides opposite p contain a bridging point, and q is on H2. There are two subcases. Either there are two different
bridging points on the bottom and right sides of H1, or there is a single bridging point in the bottom-right corner of H1.
See Fig. 26.

In the first subcase, there are two different bridging points on the bottom and right sides of H1, see Fig. 26 left.
Therefore, there are two bridging points, on the top and left edges of H2. We apply Lemma 15 on the two bridging points.
89

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 26. The special configuration events in Case 1.

Fig. 27. The special configuration event in Case 2.

The bridging point on the top edge of H2 implies that q must be on the bottom edge of H2, whereas the bridging point
on the left edge implies that q must be on the right edge of H2. So q is in the bottom-right corner of H2. Therefore, p is a
special configuration event.

In the second subcase, there is a single bridging point in the bottom-right corner of H1. See Fig. 27 right. This makes p
a special configuration event.

Case 2: p is in the top-right corner. Lemma 14 implies that the left and bottom edges of H1 must contain either q or
a bridging point. However, by Observation 2, the left edge of H1 cannot contain a bridging point, and thus q lies on H1.
Supposing there was a bridging point on the bottom edge of H1, Lemma 15 would again imply that q is on the right edge
of H2, contradicting the fact that q is on the left edge of H1. Therefore, there are no bridging points, p is in the top-right
corner of H1 and q is on the bottom-left corner of H1. See Fig. 27. This makes p a special configuration event. �

By Lemma 17, the starting point of the optimal subtrajectory is either a vertex of T2 or a special configuration event.
Hence, the starting point p∗ of the optimal subtrajectory must be a vertex of T3, and thus p∗ ∈ S . We summarise with the
following Theorem.

Theorem 7. The set S of vertices of T3 is guaranteed to contain the starting point of a longest coverable subtrajectory of T .

5.3. Computing the reach of a point

In this section we describe how, given a candidate starting point p, we can compute the longest 2-coverable subtrajectory
starting at p. We modify the data structure in Theorem 4, i.e. the data structure for answering whether a given subtrajectory
is 2-coverable, to answer such reach queries. We do so by applying parametric search to the query procedure. Note that
applying a simple binary search will give us only the edge containing r(p). Furthermore, even given this edge it is unclear
how to find r(p) itself, as the squares may still shift, depending on the exact position of r(p).

Lemma 18. Let T be a trajectory with n vertices. After O (nα(n) logn) preprocessing time, T can be stored using O (nα(n) logn) space,
so that given a query point p on T it can compute the reach r(p) of p in O (log2 n) time.

Proof. We would like to compute the maximum value q ∈ [0, 1] so that T [p, q] is 2-coverable. The decision version of this
optimisation problem is to decide whether a given subtrajectory T [p, q] is 2-coverable. This decision version is monotone
since for any q′ with q ≺ q′ , the subtrajectory T [p, q′] contains the subtrajectory T [p, q]. After O (nα(n) logn) preprocessing
time Theorem 4 gives us a comparison-based algorithm, the query procedure, that solves the decision problem in O (log n)

time. The sequential version of parametric search [15] states that if T is the running time of the sequential algorithm, the
optimisation algorithm takes O (T 2) time. In our case, the reach can be answered in O (log2 n) time as required. �
90

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Corollary 1. Given a trajectory T , and a set of m candidate starting points on T , we can compute the longest 2-coverable subtrajectory
that starts at one of those points in O (nα(n) logn + m log2 n) time.

5.4. Computing the set of starting points

Next, we bound the number of events, and thus the number of candidate starting points. We also provide algorithms for
computing the events, and we analyze the running times of our algorithms. Combining this with our result from Corollary 1
gives us an efficient algorithm to compute the optimal 2-coverable subtrajectory. Section 5.4.1 is dedicated to reach events,
Section 5.4.2 to bounding box events, Section 5.4.3 to bridge events, Section 5.4.4 to upper envelope events, and Section 5.4.5
to special configuration events.

5.4.1. Reach events

Lemma 19. Given a trajectory with n vertices, there are at most O (n) reach events which can be computed in O (n log2 n) time.

Proof. Suppose p is a reach event and r(p) is a vertex. The vertex r(p) uniquely defines p since it is the earliest point on
the trajectory T that reaches r(p). Since there are n vertices, there are at most O (n) reach events.

The running time is immediately implied by Corollary 1, as we are computing the reaches of all the vertices. �
5.4.2. Bounding box events

Lemma 20. Given a trajectory with n vertices, there are at most O (n) bounding box events.

Proof. Suppose p is such a bounding box event. Let the first and last vertices of T in the subtrajectory T [p, r(p)] be vi
and v j . We prove that the pair of vertices vi and v j uniquely determines p. Then we prove that there are at most O (n)

possible choices of the pair vi and v j .
Suppose vi and v j are given. Let vi−1 be the vertex preceding vi , then p must lie on the segment vi−1 vi . The vertex v L

is the unique leftmost vertex between vi and v j . Now, v L determines the x-coordinate of p, and since p lies on vi−1 vi , we
have the unique position for p. Therefore, the vertices vi and v j uniquely determine p.

Analogous to in Section 4 there are O (n) relevant pairs of vertices vi , v j that we have to consider, and each pair (vi, v j)

uniquely determines the bounding box event p, we have that there are at most O (n) bounding box events. �
Lemma 21. Given a trajectory with n vertices, one can compute all bounding box events in O (n log2 n) time.

Proof. From the proof in Lemma 20, we know that p can be determined by the pair (vi, v j). We also proved the relationship
between the pair (vi, v j) and the longest coverable vertex-to-vertex subtrajectory starting at either vi or ending at v j . As a
consequence of Lemma 18, we can compute all longest coverable vertex-to-vertex subtrajectories starting at each vertex vi
in O (n log2 n) time. Those ending at vertex v j can be handled analogously.

For each of the O (n) pairs of vertices (vi, v j) we use the same method as in Lemma 20 to determine the bounding
box event p. We use the bounding box data structure to query v L in O (log n) time. This determines the x-coordinate
of p. Then we compute p by computing the intersection of the two lines: the vertical line through v L and the trajectory
edge vi−1 vi . �
5.4.3. Bridge events

Lemma 22. Given a trajectory with n vertices, there are at most O (n) bridge events.

Proof. Let the first and last vertices in the subtrajectory T [p, r(p)] be vi and v j . By Lemma 20, there are O (n) relevant
pairs of vertices (vi, v j). It suffices to show that for each pair (vi, v j) there are only a constant number of bridge events.
The pair (vi, v j) determines the leftmost vertex v L on T [vi, v j]. If x is in T [vi, v j] then it is the unique point on the upper
envelope of T [vi, v j] one unit to the right of v L . Otherwise, x is on vi−1 vi or v j v j+1 and one unit to the right of v L . There
are at most two possible positions for the bridging point x. Thus there are a constant number of bridge events for each of
the O (n) pairs (vi, v j). �
Lemma 23. Given a trajectory with n vertices, one can compute all bridge events in O (n log2 n) time.

Proof. In a similar manner to the proof of Lemma 21, we begin by computing all pairs (vi, v j) in O (n log2 n) time. For each
pair (vi, v j) we compute the vertex v L in O (logn) time with the bounding box data structure. Consider two cases. If x is in
T [vi, v j] we query the upper envelope of T [vi, v j] in O (log n) time with the upper envelope data structure. Otherwise, if
91

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 28. Three upper envelope events p1, p2, p3 so that u(p1), u(p2), u(p3) are alternating.

x is not in T [vi, v j], then x is on vi−1 vi or v j v j+1 and we can compute the intersection in O (1) time using BB(T [vi, v j]).
Therefore, the running time is O (n log2 n) time in total. �
5.4.4. Upper envelope events

Lemma 24. Given a trajectory with n vertices, there are O (n2α(n)) upper envelope events of T , where α is the inverse Ackermann
function.

Proof. For each upper envelope event p of the trajectory T , let u(p) be the segment of T on the upper envelope of
T [p, r(p)] that is one unit to the right of p. If there are multiple such segments, take any of them. As p ranges from the
earliest upper envelope event to the last one, u(p) is a sequence of segments. It suffices to show that u(p) is bounded from
above by O (n2α(n)). We achieve this by showing that the sequence of segments u(p) is a Davenport-Schinzel sequence of
order s = 4 [20].

Recall that a Davenport-Schinzel sequence of order s = 4 has no alternating subsequences of length s + 2 = 6. The
subsequence cannot occur anywhere in the sequence even for non-consecutive appearance of the terms. Our first step is to
show that if the sequence a, b, a occurs (not necessarily consecutively) then the first two elements of the sequence must
be x-monotone, in that the first element is to the left of the second element. Our second step is to deduce a contradiction
from an alternating and x-monotone subsequence of length five.

Suppose that a, b, a is a subsequence of u(p), then there exist three upper envelope events p1 ≺ p2 ≺ p3 along the
trajectory T so that u(p1), u(p2), u(p3) = a, b, a. In other words, segment a = u(p1) = u(p3) whereas segment b = u(p2).
Suppose for the sake of contradiction that p2 is to the left of p1. See Fig. 28.

Recall that since p1 is an upper envelope event, p1 is the leftmost point of T [p1, r(p1)]. But p2 is to the left of p1, so we
must have that p2 /∈ T [p1, r(p1)], and therefore r(p1) ≺ p2. Moreover, for any point p, we have p ≺ u(p) ≺ r(p). Combining
these, we get:

u(p1) ≺ r(p1) ≺ p2 ≺ p3 ≺ u(p3) = u(p1).

This is a contradiction, so p1 is to the left of p2. Therefore, whenever the alternating subsequence u(p1), u(p2), u(p3) =
a, b, a occurs, the first two elements p1 and p2 are x-monotone.

Now suppose we have an alternating subsequence a, b, a, b, a, b of length 6. Let the subsequence be u(p1), u(p2), u(p3),

g(p4), g(p5), g(p6). By the property above, we have that p1, p2, p3, p4 and p5 are x-monotone. Since u(p1) = g(p5) = a,
the segment a spans the entire x-interval from u(p1) to g(p5). But now u(p2) = g(p4) = b, which means that segment b is
above segment a at u(p2) and g(p4). Since a and b are straight, this implies that b is also above a at u(p3). But u(p3) = a,
which is a contradiction. Therefore the alternating subsequence of length 6 does not occur and u(p) is a Davenport-Schinzel
sequence of order s = 4. �
Lemma 25. Given a trajectory with n vertices, one can compute all upper envelope events in O (nα(n) log2 n) time.

Proof. We begin with a preprocessing step. We compute a set S of all vertex events, reach events, and bounding box events
of T . Since there is one reach event per vertex there are O (n) reach events, and combined with Lemma 24, this means that
S has size O (n).

The set S has three properties. The first property is that between any two consecutive events si and si+1, the trajectory
T is a straight segment, since all vertices of T are in S . The second property is that for the set of points p ∈ T [si, si+1],
their sets of reaches {r(p) : p ∈ T [si, si+1]} must lie on a straight segment of T . The reason for this is that if there were a
92

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 29. Sweepline maintains pointers pi . Solid dots: pi changes. Hollow dots: pmax swaps.

vertex strictly between r(si) and r(si+1), then there would be a (reach) event between si and si+1, contradicting the fact
that si and si+1 are consecutive. Finally, the third property is that, supposing si is the leftmost point on the subtrajectory
T [si, r(si)], then for any p ∈ T [si, si+1], p is the leftmost point on the subtrajectory T [p, r(p)]. The reason for this is that if
there were p that had a vertex v to the left of p, then there would be a bounding box event strictly between si and si+1.

Next, we extend these properties of S to properties of upper envelope events that are between si and si+1. Let vi and v j
be the first and last vertices of T [p, r(p)] for some point p ∈ T [si, si+1]. As a consequence of the first two properties of set
S , the vertices vi and v j are the same regardless of our choice of point p. Now suppose that p is an upper envelope event.
This means that p is to the left of all vertices on the subtrajectory T [vi, v j]. As a consequence of the third property of set
S , both si and si+1 have x-coordinate less than or equal to the x-coordinate of all vertices of the subtrajectory T [vi, v j].

Now the algorithm is to take each pair of consecutive events (si, si+1) and compute the upper envelope events that
occur between si and si+1. We decide on a subset of these pairs (si, si+1) to skip, since they will have no upper envelope
events. For each pair of consecutive events (si, si+1), compute the vertices vi and v j (which are the first and last vertices of
T [p, r(p)] for any point p ∈ T [si, si+1]). From the definition of an upper envelope event we have that the first requirement
on an upper envelope p implies that p is to the left of the entire subtrajectory T [vi, v j]. This implies that if the segment
si si+1 is not entirely to the left of T [vi, v j], we can skip the pair (si, si+1).

The second requirement is that p is one unit to the right of an inflection point u on the upper envelope of T [vi, v j]. In
particular, if xi and xi+1 are the x-coordinates of si and si+1, then computing the upper envelope events p in the vertical
strip [xi, xi+1] is equivalent to computing the inflection points u in the vertical strip V = [xi + 1, xi+1 + 1].

Our problem is now to compute the upper envelope of T [vi, v j] in the vertical strip V . For each of the O (log n) canonical
subsets of the subtrajectory T [v p, vq], we compute the upper envelope �i for that canonical subset. The upper envelope
of T [vi, v j] is simply the upper envelope of the O (log n) upper envelopes �i . In order to argue amortised complexity for
computing the upper envelope of the �i ’s, we proceed with a sweepline algorithm.

Suppose our vertical sweepline is �. Let its initial state �start be the left boundary of V , and its ending state �end be the
right boundary of V . We maintain three invariants for the sweepline �. First, we maintain pointers pi to mark the positions
and directions of each of the �i . Second, we maintain the current highest of the pointers pi , which we will call pmax .
Finally, we maintain possible intersections where pmax may change, as such we maintain the intersection of pmax with each
other pi . See Fig. 29.

There are two types of sweepline events. The first type of sweepline event occurs when a pointer pi changes. These
sweepline events are marked with solid dots in Fig. 29, and are the inflection points of �i . In our update step, we update
the pointer pi and the intersection(s) between pmax and pi . The second type of sweepline event occurs pmax changes, in
particular when it swaps with some other pointer pi . These intersection points are marked with hollow dots in Fig. 29. In
our update step, we update pmax and all intersections between pmax and pi .

Once the sweepline algorithm terminates, the segments traced by the pointer pmax correspond to the upper envelope
of T [vi, v j]. We compute the inflection points along pmax and our algorithm returns all upper envelope events p on si si+1
which are one unit to the left of an inflection point.

It remains to analyse the amortised running time of this algorithm. By Corollary 1 we can compute a reach event for
each vertex in O (n log2 n) time. By Lemma 21 we can compute all bounding box events in O (n log2 n). We construct the
upper envelope of all canonical subsets of T in O (n log2 n) time [11]. We initialise the sweepline algorithm and compute
all O (log n) pointers in O (log2 n) time. When the direction of a pointer changes, we update the pointer in constant time,
and calculate the new intersections between pmax and pi . Since each new intersection can be computed in constant time,
and there are O (log n) intersections to calculate, this step takes O (log n) time. When the highest pointer pmax changes, we
update pmax in constant time, and calculate new intersections in O (log n) time. Therefore, the amortised running time of
the sweepline algorithm is O (log n) per sweepline event. Hence, it suffices to count the number of sweepline events.

The first type of sweepline event is when the direction of the pointer pi changes. The number of times a pointer pi
changes is equal to the number of inflection points of �i in the vertical strip V . Suppose that we charge the sweepline
event to that inflection point on �i . If we show that each inflection point on �i gets charged at most once, not just during
93

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 30. If sb is after sa+1, then sb contradicts the leftmost point property of sa+1.

a single sweepline algorithm but in total across all pairs (si , si+1), then the total number of sweepline events of this type is
bounded by the total complexity of all the �i ’s. The total complexity of all upper envelopes of all canonical subsets of the
trajectory is O (nα(n) log n) [11].

Suppose for a sake of contradiction that two sweepline events charge to the same inflection point u. Since the sweepline
algorithm sweeps from left to right without backtracking, these two sweepline events must have originated from two
different pairs.

Suppose that the inflection point u is charged by sweepline events originating from pairs (sa, sa+1) and (sb, sb+1). With-
out loss of generality let sa ≺ sa+1 ≺ sb along the trajectory T . Refer to Fig. 30. We will show that this contradicts the third
property of the set S , which states that sa+1 is the leftmost point on the subtrajectory T [sa+1, r(sa+1)]. To this end we will
show that sb is between sa+1 and r(sa+1) along the trajectory T , and that sb is to the left of sa+1.

Note that u occurs as a sweepline event for sb so sa+1 ≺ sb ≺ u. Therefore sa+1 ≺ sb ≺ u ≺ r(sa+1). It remains to show
that sb is to the left of sa+1. Let the x-coordinate of u be xu and consider the vertical line at x-coordinate xu − 1, one unit
to the left of u. Since both sweepline algorithms for sa and sb visited the inflection point u, we must have that the vertical
line cuts sasa+1 and sbsb+1 in such a way that sa and sb are to the left of the vertical line, whereas sa+1 and sb+1 are to
the right of the vertical line. Therefore, sb is to the left of sa+1, completing our proof by contradiction. Hence, no inflection
point u can be charged twice for the first type of sweepline event.

The second type of sweepline event is when the highest pointer pmax changes. Every time the second type of sweepline
event occurs, there is a new upper envelope event. Therefore, the number of events of the second type is bounded by the
number of upper envelope events, which by Lemma 24 is at most O (n2α(n)). Therefore, the number of sweepline events is
dominated by the first type.

The total running time of the sweepline algorithm is O (log n) time per sweepline event, which leads to O (nα(n) log2 n)

time in total. Therefore, the overall running time of this algorithm O (nα(n) log2 n). �
5.4.5. Special configuration events

We start by proving useful properties of consecutive vertices of T2.

Lemma 26. Let si and si+1 be a pair of consecutive vertices of T2. For all points p ∈ T [si, si+1], their sets of reaches lie on a single
edge e of T , i.e. {r(p) | p ∈ T [si, si+1]} ⊆ e.

Proof. Suppose there were a vertex v in the set {r(p) | p ∈ T [si, si+1]}. Then the point p such that r(p) = v would be
a reach event, which would contradict that fact that si and si+1 are consecutive vertices of T2, and hence all points in
{r(p) | p ∈ T [si, si+1]} lie on an edge of T . �
Lemma 27. Let si and si+1 be consecutive vertices of T2 , and for any p ∈ T [si, si+1] let u(p) be the point on the upper envelope of
T [p, r(p)] that is one unit to the right of p. The set of points {u(p) | p ∈ T [si, si+1]} lies on a single edge of T .

Proof. Assume for sake of contradiction that there are two points p1, p3 ∈ T [si, si+1] for which u(p1) and u(p3) lie on
different edges of T . See Fig. 31, (right). There must be a vertex v of the upper envelope separating u(p1) and u(p3). As a
result, it follows that there is a point p2 ∈ T [p1, p3] for which u(p2) = v . But now p2 is a vertex of T2. This contradicts the
fact that p1 and p3 are consecutive. Therefore, all u(p) for p ∈ T [s1, s2] lie on a single edge of T . �
Lemma 28. Given a trajectory with n vertices, there are at most O (n2α(n)) special configuration events.

Proof. We show the bound by showing that between any two elements of T2, there is either a unique special configuration
event, or if there are multiple they are equivalent and we need only compute one of them. We show this by using Lem-
mas 26 and 27 of the trajectory T2. We require a rotated version of Lemma 27 to hold for the left cardinal direction as well
94

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 31. (Left) The consecutive vertices si and si+1, and the points u(si) and u(si+1) one unit to their right. (Right) If u(p1) and u(p3) are on different
edges, then p1 and p3 are not consecutive.

Fig. 32. The square H(t) with top-right corner p(t) on segment ep .

Fig. 33. The square H(t) with top-left corner p(t) on the segment ep .

as the upward cardinal direction to bound the number of occurrences of special configuration 3. Now we consider three
cases.

Special Configuration 1. We use Lemma 26 of T2 to bound the number of special configuration events. We show that
between consecutive events si and si+1, there is either a unique instance of special configuration 1, or there are multiple
instances of special configuration 1 which are all equivalent and we only need to compute one of them.

Let ep be the edge of T containing p and let eq be the edge containing q. The segment si si+1 is a subset of ep , and by
Lemma 26 of T2, the set of reaches {r(p) : p ∈ T [si, si+1]} is a subset of eq . Special configuration 1 states that the top-right
corner of H1 lies on ep and the bottom-left corner of H1 lies on eq .

Let p(t) be a function that slides the starting point p from si to si+1. Formally, let p : [0, 1] → T [si, si+1] be a linear
function so that p(0) = si and p(1) = si+1. Let H(t) be the unit sized square with its top-right corner at p(t) ∈ ep . See
Fig. 32. If p(t) is in special configuration 1, then H(t) would also have its bottom-left corner on eq .

There are two cases. In the first case, ep and eq are not parallel. Then since H(t) moves parallel to p(t) = ep , the bottom-
left corner of H(t) moves parallel to ep with time. Therefore, the bottom-left corner of H(t) can only intersect eq once, and
we have that between si and si+1 there is a unique instance of special configuration 1.

Otherwise, ep and eq are parallel. Therefore, if it is true that H(t) has its bottom-left corner on eq for some value of
t , then it is true for all values of t ∈ [0, 1]. Moreover, p(t) and r(p(t)) move along ep and eq at the same rate since they
are opposite corners of a fixed sized square. We can deduce that T [p(t), r(p(t))] have the same length for all t ∈ [0, 1], in
which case we only need to compute one such p(t).

Special Configuration 2. We use Lemma 27 of T2 to show that it suffices to consider a unique instance of special
configuration 2 between si and si+1. Let ep be the segment of T containing p and passing through the top-left corner of
H1. Let eb be the segment of T that passes through the bottom-right corner of H1. The segment si si+1 is a subset of ep .
By Lemma 27, the set of points {u(p) : p ∈ T [si, si+1]} is a subset of eb . Let p : [0, 1] → T [si, si+1] be a linear function so
that p(0) = si and p(1) = si+1. Let H(t) be the unit sized square with its top-left corner at p(t) ∈ ep . See Fig. 33.

If p(t) were a special configuration event, then the bottom-right corner of H(t) is required to be on eb . By the same
reasoning as in special configuration 1, if ep and eb are not parallel, then there is at most one value of t where this can
95

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
Fig. 34. Sliding H1 and H2 along ep , eb1 and eb2 .

hold. If ep and eb are parallel, then computing any candidate would suffice. Hence it suffices to consider a unique instance
of special configuration 2 between si and si+1.

Special Configuration 3. We use Lemmas 26 and 27 of T2 to show that it suffices to consider a unique instance of special
configuration 3 between si and si+1. We use the Lemma 27 for both the upward and leftward cardinal directions.

Let ep be the segment of T that contains p and passes through the top-left corner of H1. Let eq be the segment of T
that contains q and passes through the bottom-right corner of H2. Of the two distinct intersections of H1 and H2, let eb1

be the segment of T that passes through the intersection of the left edge of H1 with the top edge of H2, and let eb2 be
the segment of T that passes through the intersection of the bottom edge of H1 with the left edge of H2. See Fig. 34.

Note that si si+1 is a subset of ep . By Lemma 26, {r(p) : p ∈ T [si, si+1]} is a subset of eq . By Lemma 27 in the upward
direction, {u(p) : p ∈ T [si, si+1]} is a subset of eb1 . If l(p) is the point one unit below p on the left envelope of T [p, r(p)],
then by Lemma 27 in the left direction, {l(p) : p ∈ T [si, si+1]} is a subset of eb1 .

Now let p : [0, 1] → T [si, si+1] be a linear function so that p(0) = si and p(1) = si+1. Let H1(t) be the unit sized square
with its top-left corner at p(t) ∈ ep . By the definition of an upper envelope event, u(p(t)) is one unit to the right of p(t),
and therefore u(p(t)) is the intersection of the right edge of H1(t) and eb1 . Similarly, l(p(t)) is the intersection of the
bottom edge of H1(t) and eb2 .

If p(t) were a special configuration event, then there would exist a square H2 so that u(p(t)) is on the top edge of H2,
l(p(t)) is on the left edge of H2, and r(p(t)) is in the bottom right corner of H2. Define H2(t) to be the square with u(p(t))
on its top edge and l(p(t)) on its left edge. Then as t varies linearly, H1(t) moves linearly in the plane and therefore u(p(t))
and l(p(t)) move linearly along the segments eb1 and eb2 . See Fig. 34. Therefore, H2(t) moves linearly in the plane. For the
same reason as in special configuration 1 and 2, it suffices to consider a unique position where the bottom-right corner of
H2(t) is on the segment eq .

Summary. In all special configurations there is a constant number of events between any two vertices of T2. Therefore,
the number of vertices of T2 is an upper bound on the number of special configuration events up to a constant factor. By
Lemma 24, the number of vertices of T2 is at most O (n2α(n)), so there are at most O (n2α(n)) special configuration events
in total. �
Lemma 29. Given a trajectory with n vertices, one can compute all special configuration events in O (n2α(n) log2 n) time.

Proof. We use the same notation as in the proof of Lemma 28. We compute the set T2. We take a pair of consecutive
elements si and si+1. We compute the segment ep that contains T [si, si+1]. We use the reach data structure from Lemma 18
to compute the reach of p and therefore compute the segment eq . We use the upper envelope data structure in Tool 2 to
query eb (or both eb1 and eb2). We let p : [0, 1] → ep be the linear function defined in the proof of Lemma 28.

If we are in special configuration 1 or 2, we check if the translation is parallel to eq or eb respectively, in which case
we return the first point of T [si, si+1]. Otherwise, we compute the function H(t) of squares parametrised by t . The square
H(t) has its top-right, or top-left corner at p(t) for special configurations 1 and 2 respectively. Then we track the segment
formed by the bottom-right corner of H(t) as we vary t . We return the value of t where the bottom-right corner of H(t)
lies on eq .

If we are in special configuration 3, we compute the function H1(t) of a square with its top-right corner on p(t). Then
we compute the intersections u(p(t)) and l(p(t)) of H1(t) with eb1 and eb2 respectively. We let H2(t) be the square with
its top edge of u(p(t)) and its left edge of l(p(t)). We track the segment formed by the bottom-right corner of H2(t) as we
vary t . We return the value of t where the bottom-right corner of H2(t) lies on eq .

Now we analyse the running time of this algorithm. Building Tool 2 takes O (nα(n) log n) time. This is dominated by the
O (nα(n) log2 n) time it takes to compute T2 (Corollary 1 and Lemma 24). Between each pair (si, si+1), we query the reach
data structure and the upper envelope data structure, which takes O (log2 n) and O (log n) time respectively. Constructing
the functions p(t), H1(t), u(p(t)), l(p(t)) and H2(t) are constant sized problems and only takes constant time. Therefore,
the time to compute T2 is O (nα(n) log2 n) we spend O (log2 n) query time for each element of T2. Since the size of T2 is
O (n2α(n)) by Lemma 28, the total running time of this algorithm is O (n2α(n) log2 n). �
96

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
5.5. Summary

We summarise the results of Sections 5.4.1-5.4.5 in the table below. Putting it all together, we obtain Theorem 8.

#events computation time

Vertex events O (n) O (n)

Reach events O (n) O (n log2 n)

Bounding box events O (n) O (n log2 n)

Bridge events O (n) O (n log2 n)

Upper envelope events O (n2α(n)) O (nα(n) log2 n)

Special configuration events O (n2α(n)) O (n2α(n) log2 n).

Theorem 8. The trajectory T3 has O (n2α(n)) vertices, and can be constructed in time O (n2α(n) log2 n).

5.6. Computing the optimal subtrajectory

By Theorem 7 there is a longest 2-coverable trajectory that starts at a point p ∈ S . By Theorem 8 this set S has size
m = O (n2α(n)) and we can compute it in O (n2α(n) log2 n) time. Using Corollary 1 we can compute a longest 2-coverable
subtrajectory starting at each point in S in O (n log n + m log2 n) = O (n2α(n) log2 n) time. We therefore obtain the following
result:

Theorem 9. Given a trajectory T with n vertices, there is an O (n2α(n) log2 n) time algorithm to compute a longest 2-coverable sub-
trajectory of T .

6. Concluding remarks

We presented algorithms to decide if a set of segments is k-coverable for k = 3, 4, data structures for answering if
subtrajectories are k-coverable for k = 2, 3, and algorithms to compute the longest k-coverable subtrajectory for k = 1, 2.
One open problem is whether we can extend our algorithms to larger values of k. Another open problem is whether we
can improve the bounds on the number of starting points of the longest 2-coverable subtrajectory, and whether we can
compute them more efficiently.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] Pankaj K. Agarwal, Cecilia Magdalena Procopiuc, Exact and approximation algorithms for clustering, Algorithmica 33 (2) (2002) 201–226.
[2] Michael A. Bender, Martin Farach-Colton, The LCA problem revisited, in: Gaston H. Gonnet, Daniel Panario, Alfredo Viola (Eds.), LATIN 2000: Theoretical

Informatics, 4th Latin American Symposium, Punta del Este, Uruguay, April 10–14, 2000, Proceedings, in: Lecture Notes in Computer Science, vol. 1776,
Springer, 2000, pp. 88–94.

[3] Sergey Bereg, Binay Bhattacharya, Sandip Das, Tsunehiko Kameda, Priya Ranjan Sinha Mahapatra, Zhao Song, Optimizing squares covering a set of
points, Theor. Comput. Sci. 729 (2018) 68–83.

[4] Bernard Chazelle, Leonidas J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (2) (1986) 133–162.
[5] Maria Luisa Damiani, Hamza Issa, Francesca Cagnacci, Extracting stay regions with uncertain boundaries from GPS trajectories: a case study in animal

ecology, in: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2014, pp. 253–262.
[6] Zvi Drezner, On the rectangular p-center problem, Nav. Res. Logist. 34 (2) (1987) 229–234.
[7] Robert J. Fowler, Mike Paterson, Steven L. Tanimoto, Optimal packing and covering in the plane are NP-complete, Inf. Process. Lett. 12 (3) (1981)

133–137.
[8] Joachim Gudmundsson, Michael Horton, Spatio-temporal analysis of team sports, ACM Comput. Surv. 50 (2) (2017) 22.
[9] Joachim Gudmundsson, Mees van de Kerkhof, André van Renssen, Frank Staals, Lionov Wiratma, Sampson Wong, Covering a set of line segments with

a few squares, in: Tiziana Calamoneri, Federico Corò (Eds.), Proc. 12th International Conference on Algorithms and Complexity CIAC, in: Lecture Notes
in Computer Science, vol. 12701, Springer, 2021, pp. 286–299.

[10] Joachim Gudmundsson, Marc van Kreveld, Frank Staals, Algorithms for hotspot computation on trajectory data, in: Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2013, pp. 134–143.

[11] John Hershberger, Finding the upper envelope of n line segments in O (n logn) time, Inf. Process. Lett. 33 (4) (1989) 169–174.
[12] Michael Hoffmann, Covering polygons with few rectangles, in: Abstracts 17th European Workshop Computational Geometry, 2001, pp. 39–42.
[13] Ruei-Zong Hwang, Richard C.T. Lee, Ruei-Chuan Chang, The slab dividing approach to solve the Euclidean p-center problem, Algorithmica 9 (1) (1993)

1–22.
[14] Priya Ranjan Sinha Mahapatra, Partha P. Goswami, Sandip Das, Maximal covering by two isothetic unit squares, in: Canadian Conference on Computa-

tional Geometry, 2008, pp. 103–106.
97

http://refhub.elsevier.com/S0304-3975(22)00281-X/bib69C507418F0523F8186D3E2F42024A6As1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib6D797E7E074624A64B22A044CB2DFE76s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib6D797E7E074624A64B22A044CB2DFE76s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib6D797E7E074624A64B22A044CB2DFE76s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib7996E6ACD31E151569D0C8BFB6673E09s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib7996E6ACD31E151569D0C8BFB6673E09s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib38B8E17E08F94E031DA3E0FC73174586s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib398FC492D899BE1E2DB2A1ECD32E1CC4s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib398FC492D899BE1E2DB2A1ECD32E1CC4s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bibE006E1251A72C6ACC69D34B6A9D26BA6s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib30CF819D6EDE133B1F1F928069292B3As1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib30CF819D6EDE133B1F1F928069292B3As1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bibC340E5E115D75F7EE374337640926654s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib8038C64B3B104D5FC820BCCCACACD017s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib8038C64B3B104D5FC820BCCCACACD017s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib8038C64B3B104D5FC820BCCCACACD017s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib114B500D2101ED34C09284DBAFA04643s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib114B500D2101ED34C09284DBAFA04643s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bibB8911734F433B781BFB1A8B74429E436s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bibFDF06EFEBFFB07A833AFAD7E256CE12Cs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib0B1F5D467C596ECC83AB5AB0BD993E8Cs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib0B1F5D467C596ECC83AB5AB0BD993E8Cs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib155E4026BBD4B6ACC736E28CF0FB8508s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib155E4026BBD4B6ACC736E28CF0FB8508s1

J. Gudmundsson, M. van de Kerkhof, A. van Renssen et al. Theoretical Computer Science 923 (2022) 74–98
[15] Nimrod Megiddo, Applying parallel computation algorithms in the design of serial algorithms, in: 22nd Annual Symposium on Foundations of Computer
Science (FOCS 1981), IEEE, 1981, pp. 399–408.

[16] Nimrod Megiddo, Kenneth J. Supowit, On the complexity of some common geometric location problems, SIAM J. Comput. 13 (1) (1984) 182–196.
[17] Doron Nussbaum, Rectilinear p-piercing problems, in: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation,

ISSAC, 1997, pp. 316–323.
[18] Sanjib Sadhu, Sasanka Roy, Subhas C. Nandy, Suchismita Roy, Linear time algorithm to cover and hit a set of line segments optimally by two axis-

parallel squares, Theor. Comput. Sci. 769 (2019) 63–74.
[19] Michael Segal, On piercing sets of axis-parallel rectangles and rings, Int. J. Comput. Geom. Appl. 9 (3) (1999) 219–234.
[20] Micha Sharir, Pankaj K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, 1995.
[21] Micha Sharir, Emo Welzl, Rectilinear and polygonal p-piercing and p-center problems, in: Proceedings of the 12th Annual Symposium on Computational

Geometry, 1996, pp. 122–132.
[22] Andreas Stohl, Computation, accuracy and applications of trajectories—A review and bibliography, Developments in Environmental Science 1 (2002)

615–654.
98

http://refhub.elsevier.com/S0304-3975(22)00281-X/bib3310862563FF5CD1308BB22457F15C7As1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib3310862563FF5CD1308BB22457F15C7As1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib4F268137964B6A9E3DDC65A9C16A721Ds1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib6F816B14C77C2916B339A7FF9DD6CEFEs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib6F816B14C77C2916B339A7FF9DD6CEFEs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bibCC9A6BAB3077C905D33733DF99305631s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bibCC9A6BAB3077C905D33733DF99305631s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib0B4FD26B8864DF5B8A9ED3149B499459s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bibE576C5A91FD33CDDDB62B77DAE0DD167s1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib5051E1DC4675223C765B907AE7AB51DAs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib5051E1DC4675223C765B907AE7AB51DAs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib937EB33594F2BC78013B33834D3F637Fs1
http://refhub.elsevier.com/S0304-3975(22)00281-X/bib937EB33594F2BC78013B33834D3F637Fs1

	Covering a set of line segments with a few squares
	1 Introduction
	2 Problem 1: the decision problem
	2.1 Is a set of line segments 2-coverable?
	2.2 Is a set of line segments 3-coverable?
	2.3 Is a set of line segments 4-coverable?

	3 Problem 2: the subtrajectory data structure problem
	3.1 Query if a subtrajectory is 2-coverable
	3.2 Query if a subtrajectory is 3-coverable

	4 Problem 3 for k=1: a longest 1-coverable subtrajectory
	5 Problem 3 for k=2: a longest 2-coverable subtrajectory
	5.1 Identifying the set of starting points
	5.2 Proof that p∗∈S
	5.3 Computing the reach of a point
	5.4 Computing the set of starting points
	5.4.1 Reach events
	5.4.2 Bounding box events
	5.4.3 Bridge events
	5.4.4 Upper envelope events
	5.4.5 Special configuration events

	5.5 Summary
	5.6 Computing the optimal subtrajectory

	6 Concluding remarks
	Declaration of competing interest
	References

