
Covering a Set of Line Segments
with a Few Squares

Joachim Gudmundsson1, Mees van de Kerkhof2, André van Renssen1,
Frank Staals2, Lionov Wiratma3, and Sampson Wong1(B)

1 University of Sydney, Sydney, Australia
{joachim.gudmundsson,andre.vanrenssen}@sydney.edu.au,

swon7907@uni.sydney.edu.au
2 Utrecht University, Utrecht, Netherlands

{m.a.vandekerkhof,f.staals}@uu.nl
3 Parahyangan Catholic University, Bandung, Indonesia

lionov@unpar.ac.id

Abstract. We study three covering problems in the plane. Our original
motivation for these problems come from trajectory analysis. The first is
to decide whether a given set of line segments can be covered by up to four
unit-sized, axis-parallel squares. The second is to build a data structure
on a trajectory to efficiently answer whether any query subtrajectory
is coverable by up to three unit-sized axis-parallel squares. The third
problem is to compute a longest subtrajectory of a given trajectory that
can be covered by up to two unit-sized axis-parallel squares.

Keywords: Computational geometry · Geometric coverings ·
Trajectory analysis

1 Introduction

Geometric covering problems are a classic area of research in computational
geometry. The traditional geometric set cover problem is to decide whether one
can place k axis-parallel unit-sized squares (or disks) to cover n given points in
the plane. If k is part of the input, the problem is known to be NP-hard [5,11].
Thus, efficient algorithms are known only for small values of k. For k = 2 or 3,
there are linear time algorithms [4,17], and for k = 4 or 5, there are O(n log n)
time algorithms [12,15]. For general k, the O(n

√
k) time algorithm for unit-sized

disks [10] most likely generalises to unit-sized axis-parallel squares [1].
Motivated by trajectory analysis, we study a line segment variant of the

geometric set cover problem where the input is a set of n line segments. Given
a set of line segments, we say it is k-coverable if there exist k unit-sized axis-
parallel squares in the plane so that every line segment is in the union of the k
squares (we may write coverable to mean k-coverable when k is clear from the
context). The first problem we study in this paper is:

The full version of this paper can be found at [7].

c© Springer Nature Switzerland AG 2021
T. Calamoneri and F. Corò (Eds.): CIAC 2021, LNCS 12701, pp. 286–299, 2021.
https://doi.org/10.1007/978-3-030-75242-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75242-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-75242-2_20


Covering a Set of Line Segments with a Few Squares 287

Problem 1. Decide if a set of line segments is k-coverable, for k ∈ O(1).

Fig. 1. A set of 3-coverable segments. Fig. 2. A 2-coverable subtrajectory.

A key difference in the line segment variant and the point variant is that
each segment need not be covered by a single square, as long as each segment is
covered by the union of the k squares. See Fig. 1.

Hoffmann [9] provides a linear time algorithm for k = 2 and 3, however, a
proof was not included in his extended abstract. Sadhu et al. [14] provide a linear
time algorithm for k = 2 using constant space. In Sect. 2, we provide a proof for
a k = 3 algorithm and a new O(n log n) time algorithm for k = 4.

Next, we study trajectory coverings. A trajectory T is a polygonal curve
in the plane parametrised by time. A subtrajectory T [s, t] is the trajectory T
restricted to a contiguous time interval [s, t] ⊆ [0, 1], see Fig. 2 for an example.
Trajectories are commonly used to model the movement of an object (e.g. a
bird, a vehicle, etc.) through time and space. The analysis of trajectories have
applications in animal ecology [3], meteorology [18], and sports analytics [6].

To the best of our knowledge, this paper is the first to study k-coverable
trajectories for k ≥ 2. A k-coverable trajectory may, for example, model a com-
monly travelled route, and the squares could model a method of displaying the
route (i.e. over multiple pages, or multiple screens), or alternatively, the location
of several facilities. We build a data structure that can efficiently decide whether
a subtrajectory is k-coverable.

Problem 2. Construct a data structure on a trajectory, so that given any query
subtrajectory, it can efficiently answer whether the subtrajectory is k-coverable,
for k ∈ O(1).

For k = 2 and k = 3 we preprocess a trajectory T with n vertices in O(n log n)
time, and store it in a data structure of size O(n log n), so that we can test if
an arbitrary subtrajectory (not necessarily restricted to vertices) T [s, t] can be
k-covered.

Finally, we consider a natural extension of Problem 2, that is, to calculate
the longest k-coverable subtrajectory of any given trajectory. This problem is
similar in spirit to the problem of covering the maximum number of points by k
unit-sized axis-parallel squares [2,13].



288 J. Gudmundsson et al.

Problem 3. Given a trajectory, compute its longest k-coverable subtrajectory,
for k ∈ O(1).

Problem 3 is closely related to computing a trajectory hotspot, which is a
small region where a moving object spends a large amount of time. For k = 1
squares, the existing algorithm by Gudmundsson et al. [8] computes longest
1-coverable subtrajectory of any given trajectory. We notice a missing case in
their algorithm, and show how to resolve this issue in the same running time
of O(n log n). Finally, we show how to compute the longest 2-coverable subtra-
jectory of any given trajectory in O(nβ4(n) log2 n) time. Here, β4(n) = λ4(n)/n,
and λs(n) is the length of a Davenport-Schinzel sequence of order s on n symbols.
Omitted proofs can be found in the full version [7].

2 Problem 1: The Decision Problem

2.1 Is a Set of Line Segments 2-Coverable?

This section restates known results that will be useful for the recursive step
in Sect. 2.2 and for the data structure in Sect. 3.1. The first result relates the
bounding box, which is the smallest axis-aligned rectangle that contains all the
segments, to a covering, which is a set of squares that covers all line segments.

Observation 1. Every covering must touch all four sides of the bounding box.

The reasoning behind Observation 1 is simple: if the covering does not touch
one of the four sides, say the left side, then the covering could not have covered
the leftmost vertex of the set of segments. An intuitive way for two squares
to satisfy Observation 1 is to place the two squares in opposite corners of the
bounding box. This intuition is formalised in Observation 1.

Lemma 1 (Sadhu et al. [14]). A set of segments is 2-coverable if and only
if there is a covering with squares in opposite corners of the bounding box of the
set of segments.

Lemma 1 is useful in that it narrows down our search for a 2-covering. It
suffices to check the two configurations where squares are in opposite corners
of the bounding box. For each of these two configurations, we simply check if
each segment is in the union of the two squares, which takes linear time in total,
leading to the following theorem:

Theorem 1. One can decide if a set of n segments is 2-coverable in O(n) time.

2.2 Is a Set of Line Segments 3-Coverable?

We notice that for a covering consisting of three squares, Lemma 1 and the
pigeon-hole principle imply that there must be one square that touches at least
two sides of the bounding box. An intuitive way to achieve this is if one of the
squares in the 3-covering is in a corner of the bounding box. We formalise this
intuition in Lemma 2.



Covering a Set of Line Segments with a Few Squares 289

Lemma 2. A set of segments is 3-coverable if and only if there is a covering
with a square in a corner of the bounding box of the set of segments.

Again, this lemma allows us to narrow down our search for a 3-covering.
We consider four cases, one for each corner of the bounding box. After placing
the first square in one of the four corners, we would like to check whether two
additional squares can be placed to cover the remaining segments. We start by
computing the remaining segments that are not yet covered. We subdivide each
segment into at most one subsegment that is covered by the corner square, and
up to two subsegments that are not yet covered. Then we can use Theorem 1
to (recursively) check whether two additional squares can be placed to cover all
the uncovered subsegments.

The running time for subdividing each segment takes linear time in total.
There are at most a linear number of remaining segments. Checking if the remain-
ing segments are 2-coverable takes linear time by Theorem 1. Hence, we have
the following theorem:

Theorem 2. One can decide if a set of n segments is 3-coverable in O(n) time.

2.3 Is a Set of Line Segments 4-Coverable?

For a 4-covering, it remains true that any covering must touch all four sides of
the bounding box. Unlike the three squares case, we cannot use the pigeon-hole
principle to deduce that there is a square touching at least two sides of the
bounding box. Fortunately, we have only two cases: either there exists a square
which touches at least two sides of the bounding box, or each square touches
exactly one side of the bounding box. This implies:

Lemma 3. A set of segments is 4-coverable if and only if: (i) there is a covering
with a square in a corner of the bounding box, or (ii) there is a covering with
each square touching exactly one side of the bounding box.

In the first case we can use the same strategy as in the three squares case
by placing the first square in a corner and then (recursively) checking if three
additional squares can cover the remaining subsegments. This gives a linear time
algorithm for the first case.

For the remainder of this section, we focus on solving the second case.

Definition 1. Define L, B, T and R to be the square that touches the left,
bottom, top and right sides of the bounding box respectively. See Fig. 3.

Without loss of generality, suppose that T is to the left of B. This implies
that the left to right order of the squares is L, T , B, R. Suppose for now there
were a way to compute the initial placement of L. Then we can deduce the
position of T in the following way.

Lemma 4. Given the position of L, if three additional squares can be placed
to cover the remaining subsegments, then it can be done with T in the top-left
corner of the bounding box of the remaining subsegments.



290 J. Gudmundsson et al.

Fig. 3. The squares L, T , B and R. Fig. 4. The variables yL, xT and xB .

The intuition behind this lemma is that after placing the first square, T is
the topmost and leftmost of the remaining squares. A formal proof for Lemma 4
is given in the full version [7]. For an analogous reason, after placing the first
two squares, we can place B in the bottom-left corner of the bounding box of
the remaining segments. Finally, we cover the remaining segments with R, if
possible.

We have therefore shown that the position of L along the left boundary
uniquely determines the positions of the squares T , B and R along their respec-
tive boundaries. Unfortunately, we do not know the position of L in advance,
so instead we consider all possible initial positions of L via parametrisation. Let
yL be the y-coordinate of the top side of L, and similarly let xT , xB be the
x-coordinates of the left side of T and B respectively. See Fig. 4.

Finally, we will try to cover all remaining subsegments with the square R.
Define xR1 and xR2 to be the x-coordinates of the leftmost and rightmost uncov-
ered points after the first three squares have been placed. Similarly, define yR1

and yR2 to be the y-coordinates of the topmost and bottommost uncovered
points. Then it is possible to cover the remaining segments with R if and only
if xR1 − xR2 ≤ 1 and yR1 − yR2 ≤ 1.

Since the position of L uniquely determines T , B and R, we can deduce that
the variables xT , xB, xR1 , xR2 , yR1 and yR2 are all functions of yL. We will
show that each of these functions is piecewise linear and can be computed in
O(n log n) time. We begin by computing xT as a function of variable yL.

Lemma 5. The variable xT as a function of variable yL is a piecewise linear
function and can be computed in O(n log n) time.

Next, we show that xB is a piecewise linear function of yL, with complexity
O(n), and can be computed in O(n log n) time.

Lemma 6. The variable xB as a function of variable yL is a piecewise linear
function and can be computed in O(n log n) time.

Then we compute xR1 , xR2 , yR1 and yR2 in a similar fashion.



Covering a Set of Line Segments with a Few Squares 291

Lemma 7. The variables xR1 , xR2 , yR1 , yR2 as functions of variable yL are
piecewise linear functions and can be computed in O(n log n) time.

Finally, we check if there exists a value of yL so that xR1 − xR2 ≤ 1 and
yR1 − yR2 ≤ 1. If so, there exist positions for L, B, T and R that covers all the
segments, otherwise, there is no such position for L, T , B and R. This yields the
following result:

Theorem 3. One can decide if a set of n segments is 4-coverable in O(n log n)
time.

3 Problem 2: The Subtrajectory Data Structure Problem

In this section, we briefly describe some of the main ideas for building the data
structures that can answer whether a subtrajectory is either 2-coverable or 3-
coverable. Details of the data structures can be found in the full version of this
paper [7].

We begin by building three preliminary data structures. Given a piecewise
linear trajectory of complexity n, our preliminary data structures are:

Tool 1. A bounding box data structure that preprocesses a trajectory in O(n)
time, so that given a query subtrajectory, it returns the subtrajectory’s bounding
box in O(log n) time.

Tool 2. An upper envelope data structure that preprocesses a trajectory in
O(n log n) time, so that given a query subtrajectory and a query vertical line,
it returns the highest intersection between the subtrajectory and the vertical line
(if one exists) in O(log n) time. See Fig. 5.

Tool 3. A highest vertex data structure that preprocesses a trajectory in
O(n log n) time, so that given a query subtrajectory and a query axis-parallel
rectangle, it returns the highest vertex of the subtrajectory inside the rectangle
(if one exists) in O(log2 n) time. See Fig. 6.

3.1 Query If a Subtrajectory Is 2-Coverable

Our construction procedure is to build Tool 1 and Tool 2. Our query procedure
consists of two steps. The first step is to narrow down the covering to one of two
configurations using Lemma 1 and Tool 1. The second step is to check whether
one of these configurations indeed covers the subtrajectory. The key idea in the
second step is to use Tool 2 along the boundary of the configuration to see if the
subtrajectory passes through the boundary. Putting this together yields:

Theorem 4. Let T be a trajectory with n vertices. After O(n log n) preprocess-
ing time, T can be stored using O(n log n) space, so that deciding if a query
subtrajectory T [a, b] is 2-coverable takes O(log n) time.



292 J. Gudmundsson et al.

Fig. 5. Tool 2 returns the highest inter-
section of a subtraj. and a vertical line.

Fig. 6. Tool 3 returns the highest sub-
trajectory vertex in a query rectangle.

3.2 Query If a Subtrajectory Is 3-Coverable

Our construction procedure is to build Tools 1, 2, and 3. Our query procedure
consists of three steps. The first step is to place the first square in a constant
number of configurations using Lemma 2 and Tool 1. For each placement of the
first square, the second step generates two configurations by placing the remain-
ing two squares. The key idea in the second step is to compute the bounding
box of the uncovered subsegments by using a combination of Tools 2 and 3. The
third step is to check if a configuration indeed covers the subtrajectory. The key
idea in the third step is to use Tool 2 along the boundary of the configuration to
see if the subtrajectory passes through the boundary. We require an additional
check using Tool 3 in one of the configurations. Putting this together yields:

Theorem 5. Let T be a trajectory with n vertices. After O(n log n) preprocess-
ing time, T can be stored using O(n log n) space, so that deciding if a query
subtrajectory T [a, b] is 3-coverable takes O(log2 n) time.

4 Problem 3: The Longest Coverable Subtrajectory

In this section we compute a longest k-coverable subtrajectory T [p∗, q∗] of a
given trajectory T . Note that the start and end points p∗ and q∗ of such a
subtrajectory need not be vertices of the original trajectory. Gudmundsson, van
Kreveld, and Staals [8] presented an O(n log n) time algorithm for the case k = 1.
However, we note that there is a mistake in one of their proofs, and hence their
algorithm misses one of the possible scenarios. We correct this mistake, and using
the insight gained, also solve the problem for k = 2.



Covering a Set of Line Segments with a Few Squares 293

4.1 A Longest 1-Coverable Subtrajectory

Fig. 7. An optimal place-
ment that has no vertex on
the boundary of the square.

Gudmundsson, van Kreveld, and Staals state that
there exists an optimal placement of a unit square,
i.e. one such that the square covers a longest 1-
coverable subtrajectory of T , and has a vertex of
T on its boundary [8, Lemma 7]. However, that
is incorrect, as illustrated in Fig. 7. Let p(t) be a
parametrisation of the trajectory. Fix a corner c of
the square and shift the square so that c follows
p(t). Let q(t) be the point so that T [p(t), q(t)] is
the maximal subtrajectory contained in the square,
and let φ(t) be the length of this subtrajectory. This
function φ is piecewise linear, with inflection points
not only when a vertex of T lies on the boundary of the square, but also when
p(t) or q(t) hits a corner of the square. The argument in [8] misses this last case.
Instead, the correct characterization is:

Lemma 8. Given a trajectory T with vertices v1, .., vn, there exists a square H
covering a longest 1-coverable subtrajectory so that either:

– there is a vertex vi of T on the boundary of H, or
– there are two trajectory edges passing through opposite corners of H.

We give the full proof of this lemma in the full version of this paper [7].
To compute a longest 1-coverable subtrajectory we also have to consider this
scenario. We use the existing algorithm to test all placements of the first type
from Lemma 8 in O(n log n) time. Next, we briefly describe how we can also test
all placements of the second type in O(n log n) time.

Lemma 9. Given a pair of non-parallel edges ei and ej of T , there is at most
one unit square H such that the top left corner of H lies on ei, and the bottom
right corner of H lies on ej.

It follows that any pair of edges ei, ej of T generates at most a constant
number of additional candidate placements that we have to consider. Let Hij

denote this set. Next, we argue that there are only O(n) relevant pairs of edges
that we have to consider.

We define the reach of a vertex vi, denoted r(vi), as the vertex vj such that
T [vi, vj ] can be 1-covered, but T [vi, vj+1] cannot. Let Hi = H(i−1)j denote the
set of candidate placements corresponding to vi and vj = r(vi). Analogously,
we define the reverse reach rr(vj) of vj as the vertex vi such that T [vi, vj ] can
be 1-covered, but T [vi−1, vj ] cannot, and the set H′

j = H(i−1)j . Finally, let
H =

⋃n
i=1 Hi ∪ H′

i be the set of placements contributed by all reach and reverse
reach pairs. Observe that this set consists of O(n) placements, as all individual
sets Hi and H′

i have at most one element.

Lemma 10. Let p∗ ∈ ei and q∗ ∈ ej lie on edges of T , and let H be a unit square
with p∗ in one corner, and q∗ in the opposite corner. We have that H ∈ H.



294 J. Gudmundsson et al.

Once we have the reach r(vi) and the reverse reach rr(vi) for every vertex
vi we can easily construct H in linear time (given a pair of edges ei, ej we can
construct the unit squares for which one corner lies on ei and the opposite corner
lies on ej in constant time). We can use Tool 1 to test each candidate in O(log n)
time. So all that remains is to compute the reach of every vertex of T ; computing
the reverse reach is analogous.

Lemma 11. We can compute r(vi), for each vertex vi ∈ T , in O(n log n) time
in total.

Theorem 6. Given a trajectory T with n vertices, there is an O(n log n) time
algorithm to compute a longest 1-coverable subtrajectory of T .

4.2 A Longest 2-Coverable Subtrajectory

In this section we reuse some of the observations from Sect. 4.1 to develop an
O(nβ4(n) log2 n) time algorithm for the k = 2 case. Here, β4(n) = λ4(n)/n, and
λs(n) is the length of a Davenport-Schinzel sequence of order s on n symbols.

Our algorithm to compute a longest 2-coverable subtrajectory T [p∗, q∗] of T
consists of two steps. In the first step we compute a set S of candidate starting
points on T , so that p∗ ∈ S. In the second step, we compute the longest 2-
coverable subtrajectory T [p, q] for each starting point p ∈ S, and report a longest
such subtrajectory. With slight abuse/reuse of notation, for any point p ∈ S, we
denote the endpoint q of this longest 2-coverable subtrajectory T [p, q] by r(p).
This generalizes our notion of reach from Sect. 4.1 to arbitrary points on T .

Computing the Reach of a Point. We modify the data structure in
Theorem 4, i.e. the data structure for answering whether a given subtrajectory
is 2-coverable, to answer the reach queries. We do so by applying parametric
search to the query procedure. Note that applying a simple binary search will
give us only the edge containing r(p). Furthermore, even given this edge it is
unclear how to find r(p) itself, as the squares may still shift, depending on the
exact position of r(p).

Lemma 12. Let T be a trajectory with n vertices. After O(n log n) preprocessing
time, T can be stored using O(n log n) space, so that given a query point p on T
it can compute the reach r(p) of p in O(log2 n) time.

Corollary 1. Given a trajectory T , and a set of m candidate starting points
on T , we can compute the longest 2-coverable subtrajectory that starts at one of
those points in O(n log n + m log2 n) time.

Computing the Set of Starting Points. It remains only to construct a set S
of candidate starting points with the property that the starting point of a longest
2-coverable subtrajectory is guaranteed to be in the set. Our construction con-
sists of six types of starting points, which when grouped up into their respective



Covering a Set of Line Segments with a Few Squares 295

types, we will call events. The six types of events are vertex events, reach events,
bounding box events, bridge events, upper envelope events, and special configu-
ration events. Figures 8, 9, and 10 illustrate these events, and show how a longest
2-coverable subtrajectory may start at such an event. We then prove that it suf-
fices to consider only these six types of candidate starting points. Finally, we
bound the number of events, and thus candidate starting points, and describe
how to compute them. Combining this with our result from Corollary 1 gives
us an efficient algorithm to compute a longest 2-coverable subtrajectory. Note
that in Definitions 2–7, for simplicity we define the events only in one of the four
cardinal directions. However, in our construction in Definition 8 we require all
six events for all four cardinal directions.

Definition 2. Given a trajectory T , p is a vertex event if p is a vertex of T .

Definition 3. Given a trajectory T , p is a reach event if r(p) is a vertex of T ,
and no point q < p satisfies r(q) = r(p).

Definition 4. Given a trajectory T , p is a bounding box event if the topmost
vertex of T within the subtrajectory T [p, r(p)] has the same y-coordinate as p.

Fig. 8. A vertex event (left), a reach event (middle), and a bounding box event (right).

Definition 5. Given a trajectory T , p is a bridge event if:

– the point p is the leftmost point on T [p, r(p)], and
– the point p is one unit to the left of a point u ∈ T [p, r(p)], and
– the point u is one unit above the lowest vertex of T [p, r(p)].

Definition 6. Given a trajectory T , p is an upper envelope event if:

– the point p is the leftmost point on T [p, r(p)], and
– the point p is one unit to the left of a point u ∈ T [p, r(p)], and
– the point u is an intersection or vertex on the upper envelope of T [p, r(p)].

Definition 7. Given a trajectory T , p is a special configuration event if there
is a covering of squares H1 and H2 so that H1 contains the top-left corner of
H2, and either:



296 J. Gudmundsson et al.

Fig. 9. Examples of a bridge event (left), and an upper envelope event box (right).

1. point p is in the top-right corner of H1 and r(p) is in the bottom-left corner
of H1, or

2. point p is in the top-left corner of H1 and the trajectory T passes through the
bottom-right corner of H1, or

3. point p is in the top-left corner of H1, r(p) is in the bottom-right corner of
H2, and the trajectory T passes through the two intersections of H1 and H2.

Fig. 10. Examples of the three types of special configuration events.

Using these definitions and their analogous versions in all four cardinal direc-
tions, we subdivide the trajectory T to obtain a trajectory T3 that forms our set
of candidate starting points.

Definition 8. Given a trajectory T , let T1 be a copy of T with these additional
points added to the set of vertices of T1:

– all the vertex, reach, bounding box, and bridge events of T for all four cardinal
directions.

Next, let T2 be a copy of T1 with these additional points added to the set of
vertices of T2:



Covering a Set of Line Segments with a Few Squares 297

– all the upper envelope events of T1 for all four cardinal directions.

Finally, let T3 be a copy of T2 with these additional points added to the set of
vertices of T3:

– all the special configuration events of T2 for all configurations of H1 and H2.

Next, we argue that the set of vertices of this trajectory T3 is a suitable set
of candidate starting points.

Lemma 13. The set T3 is guaranteed to contain the starting point of a longest
coverable subtrajectory of T .

We now bound the number of candidate starting points.

Lemma 14. Trajectory T3 has O(nβ4(n)) vertices, and can be constructed in
time O(nβ4(n) log2 n). More specifically, for each type of event, the number of
such events and the time in which we can compute them is

#events computation time

Vertex events O(n) O(n)

Reach events O(n) O(n log2 n)

Bounding box events O(n) O(n log2 n)

Bridge events O(n) O(n log2 n)

Upper envelope events O(nβ4(n)) O(nβ3(n) log2 n)

Special configuration events O(nβ4(n)) O(nβ4(n) log2 n)

Proof. We briefly sketch the idea for only the upper envelope events. Refer to
full version for the details, the proofs for the other events, and the description
of the algorithms that compute these events [7].

Consider the set V of vertices of T and intersections of T with itself, and
observe that every point u ∈ V generates at most O(1) candidate starting points
p that are upper-envelope events. However, there may be Θ(n2) such intersection
points. We argue that not all of these intersection points generate valid starting
points.

Let p1, .., pk be the upper envelope events of the trajectory, and let U =
u1, .., uk be the edge of T that contains the point u on T [p, r(p)] one unit to the
right of p. We argue that U is a Davenport-Schinzel sequence of order 4 on n−1
symbols [16], and thus has complexity k = O(nβ4(n)). It follows that there are
O(nβ4(n)) upper envelope events.

Since U is a Davenport-Schinzel sequence of order s = 4, it has no alternating
(not necessarily contiguous) subsequences of length s+2 = 6. Our first step is to
show that if the sequence of edges a, b, a occurs (not necessarily consecutively)
then the starting points corresponding to the first two segments of the sequence
must be x-monotone. Hence, an alternating sequence of edges of length six yields
alternating, x-monotone sequence of starting points of length five. We then argue
that this leads to a contradiction. ��



298 J. Gudmundsson et al.

By Lemma 14 we can compute m = O(nβ4(n)) candidate starting times
for a longest 2-coverable subtrajectory of T in O(nβ4(n) log2 n) time. Using
Corollary 1 we can thus compute this subtrajectory in O(n log n + m log2 n) =
O(nβ4(n) log2 n) time.

Theorem 7. Given a trajectory T with n vertices, there is an O(nβ4(n) log2 n)
time algorithm to compute a longest 2-coverable subtrajectory of T .

References

1. Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for cluster-
ing. Algorithmica 33(2), 201–226 (2002)

2. Bereg, S., et al.: Optimizing squares covering a set of points. Theor. Comput. Sci.
729, 68–83 (2018)

3. Damiani, M.L., Issa, H., Cagnacci, F.: Extracting stay regions with uncertain
boundaries from GPS trajectories: a case study in animal ecology. In: Proceed-
ings of the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 253–262 (2014)

4. Drezner, Z.: On the rectangular p-center problem. Naval Res. Logistics (NRL)
34(2), 229–234 (1987)

5. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

6. Gudmundsson, J., Horton, M.: Spatio-temporal analysis of team sports. ACM
Comput. Surv. (CSUR) 50(2), 22 (2017)

7. Gudmundsson, J., van de Kerkhof, M., Renssen, A., Staals, F., Wiratma, L., Wong,
S.: Covering a set of line segments with a few squares. CoRR, abs/2101.09913
(2021)

8. Gudmundsson, J., van Kreveld, M., Staals, F.: Algorithms for hotspot computation
on trajectory data. In: Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 134–143 (2013)

9. Hoffmann, M.: Covering polygons with few rectangles. In: Abstracts 17th European
Workshop Computational Geometry, pp. 39–42 (2001)

10. Hwang, R.Z., Lee, R.C.T., Chang, R.C.: The slab dividing approach to solve the
Euclidean p-center problem. Algorithmica 9(1), 1–22 (1993)

11. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13(1), 182–196 (1984)

12. Nussbaum, D.: Rectilinear p-piercing problems. In: Proceedings of the 1997 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC, pp. 316–323
(1997)

13. Mahapatra, P.R.S., Goswami, P.P., Das, S.: Maximal covering by two isothetic
unit squares. In: Canadian Conference on Computational Geometry, pp. 103–106
(2008)

14. Sadhu, S., Roy, S., Nandy, S.C., Roy, S.: Linear time algorithm to cover and hit
a set of line segments optimally by two axis-parallel squares. Theor. Comput. Sci.
769, 63–74 (2019)

15. Segal, M.: On piercing sets of axis-parallel rectangles and rings. Int. J. Comput.
Geometry Appl. 9(3), 219–234 (1999)

16. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric
Applications. Cambridge University Press, Cambridge (1995)



Covering a Set of Line Segments with a Few Squares 299

17. Sharir, M., Welzl, E.: Rectilinear and polygonal p-piercing and p-center problems.
In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp.
122–132 (1996)

18. Stohl, A.: Computation, accuracy and applications of trajectories–a review and
bibliography. Dev. Environ. Sci. 1, 615–654 (2002)


	Covering a Set of Line Segments with a Few Squares
	1 Introduction
	2 Problem 1: The Decision Problem
	2.1 Is a Set of Line Segments 2-Coverable?
	2.2 Is a Set of Line Segments 3-Coverable?
	2.3 Is a Set of Line Segments 4-Coverable?

	3 Problem 2: The Subtrajectory Data Structure Problem
	3.1 Query If a Subtrajectory Is 2-Coverable
	3.2 Query If a Subtrajectory Is 3-Coverable

	4 Problem 3: The Longest Coverable Subtrajectory
	4.1 A Longest 1-Coverable Subtrajectory
	4.2 A Longest 2-Coverable Subtrajectory

	References




