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Abstract. We study a problem motivated by digital geometry: given a
set of disjoint geometric regions, assign each region R; a set of grid cells
P;, so that P; is connected, similar to R;, and does not touch any grid
cell assigned to another region. Similarity is measured using the Haus-
dorff distance. We analyze the achievable Hausdorff distance in terms of
the number of input regions, and prove asymptotically tight bounds for
several classes of input regions.
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1 Introduction

Digital geometry is concerned with the proper representation of geometric objects
and their relationships using a grid of pixels. This greatly simplifies both repre-
sentation and many operations, but the downside is that common properties of
geometric objects no longer hold. For example, it may be that two digitized lines
intersect in multiple connected components. One objective of digital geometry is
how to consistently digitize a set of geometric objects. Another objective is the
presentation of vector objects with bounded error, using subsets of pixels.
Early results in digital geometry were mostly concerned with consistency
and arose in computer vision. For a survey, see Klette and Rosenfeld [11,12].
More recently, also error bounds under the Hausdorff distance have been studied.
Chun et al. [5] investigate the problem of digitizing rays originating in the origin
to digital rays such that certain properties are satisfied. They show that rays
can be represented on the n x n grid in a consistent manner with Hausdorff
distance O(logn). This bound is tight in the worst case. By ignoring one of
the consistency conditions, the distance bound improves to O(1). Their research
is extended by Christ et al. [3] to line segments (not necessarily starting in the
origin), who obtain the logarithmic distance bound in this case as well. A possible
extension to curved rays was developed by Chun et al. [4]. Other results with
a digital geometry flavor within the algorithms community are those on snap
rounding [6,7,10], integer hulls [1,9], and discrete schematization [13].
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In a recent paper, Bouts et al. [2] showed that any simple polygon, no matter
how detailed, can be represented by a simply connected set of unit pixels such
that the Hausdorff distance to and from the input is bounded by 3+/2/2.

Contribution. We extend the
result from [2] to multiple regions, see
Fig. 1. We investigate several restric-
tions on the class of regions and
we show that stricter restrictions
allow for pixel representations with
a smaller symmetric Hausdorff dis-
tance. All our bounds are tight. We Fig.1. Three disjoint simply connected
express our bounds in the number of regions and a representation by simply
input regions. Our results are shown connected sets of disjoint pixels.

in Table1; they are fundamental results on the error that may be incurred
when converting vector to grid representations, a common operation in com-
puter graphics and GIS.

We do not make any assumptions on the resolution of the input. If the mini-
mum distance between any pair of polygons is at least some constant (e.g., 4v/2
is enough), then we can realize a constant Hausdorff bound in all cases by apply-
ing the results from Bouts et al. [2] separately on each polygon. We consider the
case where no such assumptions are made.

Table 1. Worst-case bounds on Hausdorff distances for m regions; 3 is constant.

Region class Points | Convex (-fat | Convex | Two regions | Three regions

Hausdorff distance | ©(y/m) | ©(y/m) o(m) | 6(1) unbounded

Notation and Definitions. We denote by I" the (infinite) unit grid, whose unit
squares are referred to as pizels. The (symmetric) Hausdorff distance between
two sets A, B C R? is defined as H(A,B) = max{max,ea(minyep(|ab|)),
maxpep(minge 4(|abl))}, where |ab| is the distance between the points a and b.
Further we denote by H'(A, B) = max{H (A, B), H(0A,0B)} the (symmetric)
Hausdorff distance between the sets themselves and between their boundaries.
See Fig.2 for an example where the distinction between H(:,-) and H'(:,-) is
important.

Let R = {Ry,Ra,... Ry} be a set
of m disjoint simply connected regions = =
in the plane. In this paper, we show [
how to assign a subset of the pixels
Two such grid polygons are disjoint if \_
they do not meet in any edge or ver- N
tex of the grid. A grid polygon is con- Fig. 2. The Hausdorff distance between the
nected P; C I to each region R; € R, green and red regions is large while the
such that the result is a set of m dis- Hausdorff distance between their bound-

joint simply connected regions. if its aries is small. The inverse is true for the red
and purple regions. (Color figure online)
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pixels are connected by edge adjacency, and simply connected if it is con-
nected and its complement is also connected by edge adjacency. We call the
set {Py, P, ..., Py} of such grid polygons a valid assignment for R.

Overview. We are interested in finding for any set of regions R a valid assign-
ment such that for all ¢ the (symmetric) Hausdorff distance between R; and P;
is at most h, and the (symmetric) Hausdorff distance between their boundaries
is also at most h. In general, a worst-case bound on h will be a function of m.
We study this problem under several restrictions on R; refer to Table 1. For each
class of restrictions, first we show that there is a set of regions in that class for
which any valid assignment contains at least one region R; with a grid polygon
P; where H'(R;, P;) = £2(h). Second we show that for any set of regions in that
class, we can find a valid assignment such that for all regions R; € R with cor-
responding grid polygon P;, we have H'(R;, P;) = O(h). Hence, our bounds are
asymptotically tight.

We may interpret a solution to our problem as a coloring of I': each pixel
q € T is assigned one color in C' = {cy,...cp} U{b}, where ¢; is the color of the
input region R; and b is the background color.

Our upper bound constructions all follow a similar scheme. Let Iy be a coars-
ening of the grid I" whose cells have k x k pixels. We call these cells superpizels.
We will determine for each region from R which superpixels it contains and
which ones it properly intersects. If a region R; contains a superpixel, then all
pixels of I" in that superpixel will be part of P;. If R; properly intersects a super-
pixel, we ensure that at least one, but not all pixels in that superpixel will be
part of P;. A superpixel not intersecting R; will have no pixels in P;. The main
challenge is then finding a scheme by which each grid polygon becomes simply
connected yet all remain disjoint. It is then relatively straightforward to see that
H'(R;, P) < kv/2.

2 Input Regions are Points

In this section we first consider the simplest possible case, namely, R is a set
of points. We will construct a map that assigns points to pixels such that the
symmetric Hausdorff distance between each point and its corresponding pixel is
bounded. For a lower bound, consider a set of m points R that all lie within a
single pixel. If we want to assign each point to a unique pixel, we clearly need
to use m different pixels. Any set of m pixels has diameter 2(y/m), so at least
one of the point regions will be mapped to a pixel at distance 2(y/m).

We now present a scheme that maps any set of m points R to a set of pixels,
such that the symmetric Hausdorff distance between any point and its pixel is
at most O(y/m). Let I}, be a coarsening of I' with k = 2[/m|. Associate each
region in R with the superpixel that contains it. Each superpixel has the space to
accommodate m disjoint pixels without using the bottom row and right column
by using exactly the odd numbered rows and columns. Any assignment of the
points to these pixels is easily seen to have Hausdorff distance O(y/m).
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Theorem 1. If R is a set of m points, a valid assignment exists such that
for each region R; € R with a corresponding region P;, we have H'(R;, P;) =
O(y/m). Furthermore, there exists a set R of m points such that for every valid
assignment we have H(R;, P;) = 2(y/m).

3 Input Regions are Convex (3-fat Regions

A connected region R is §-fat if for some point ¢ in R, the ratio of the radius of
the smallest ¢t-centered circle containing R and the radius of the largest t-centered
circle contained in R, is § (or larger) [14]. Observe that the only regions that
are 1-fat are points and disks, as points are (-fat regions for any 8 > 1 by
convention. In this section we consider the class R of convex g-fat regions for
a constant (. From Sect.2 it follows that for any m, there exists a set of m
regions for which the (symmetric) Hausdorff distance between R and any valid
assignment is £2(y/m).

Let R be a set of convex f-fat regions and let I';, be a coarsening of I" with
k=2 [\/ﬁ] + 3. We present an algorithm that maps R to a set of grid polygons
P, such that the symmetric Hausdorff distance between any region R; and its
assigned region P; is at most O(8y/m).

Lemma 1. Let R be a convex 3-fat region, and let p be a point in R. Fither R
has diameter less than 160k, or R contains a superpizel within distance 160k

from p.

This leads to the following algorithm with two cases for each region R;,
depending on the set of superpixels S; contained in R;.

Case 1: §; is empty. We select any superpixel S intersected by R; and we
assign R; to a unique pixel in S while using neither the topmost, bottommost,
leftmost, or rightmost rows and columns, similar to the procedure in Sect. 2.
This pixel has a distance of at most 165k + v/2k to any point on R; since R; has
diameter smaller than 168k by Lemma 1. This also means that for each such
region R;, we have H'(R;, P;) < 3203k.

Case 2: §; is not empty. We need two steps. First we assign all pixels in each
superpixel of S; to R;. Note that S; is not necessarily connected, as can be seen
in Fig.3 (left). Nonetheless we can connect the superpixels in the second step
using Lemma 2 below.

Lemma 2. Let S7 and S be two superpizels in different connected components
of §;. Let v1 be the center of S1 and ve the center of Sa. The path consisting
of pizels that either intersect or border the line segment U103 must be entirely
contained in R;, and at least at twice the unit distance from the border of R;.

Proof. The line segment between v; and v is contained within R; by convexity.
Similarly, the line segment from any vertex of S; to a vertex of Ss is contained
in R; and necessarily also in the bounded slab that bounds these sixteen edges.
Such a slab is at least as wide as S7 and Sy (hence it is at least 168k pixels wide).
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The line segment between v; and vy forms the spine of this slab, any pixel that
intersects or borders this spine has at most two unit distance to this spine and
hence is contained within the slab and via transitivity in R;. Moreover, since the
slab is at least 168k wide, and since each pixel has distance at most two from
the spine, each pixel in the path is at much more than distance two from the

border of the slab and via transitivity the border of R;. O
Let S; and S5 be two superpixels in dif-

ferent connected components of the superpix- _j i i i —
els contained in R;. We connect S; and S5 R; So /
with a path of pixels according to Lemma 2. -
Since this path is entirely contained in R; and ) *ﬁﬁ@ﬁf
since there are at least two pixels between a ( s i
pixel in this path and the border of R;, no . !
other region will attempt to color the pixels - NS
in this path. We repeat this process until for
each region the assigned pixels form a con- F¥Fig-3. A convex f-fat region R;
nected grid polygon and whenever we enclose (purpl'e), and the region formed by
an area between superpixels with these paths, S5V ocPe @ superp ixel fr.om 51 to
. . . .” Sy (green). P; (red) consists of S,
we make sure to assign all the pixels in this S d all pixel th ¢
. 2, and all pixels on € segmen
area to R;; by the convexity of R; all these | ;o o "o oo or Sy and Ss.
pixels are contained in R;. This provides our (Color figure online)
pixel assignment P;.

What remains to be proven, is that for each region R; with non-empty S;,
H'(R;, P;) < 320k holds. First, we prove that for each (boundary) point p of P;,
there is a (boundary) point ¢ of R; within distance 323k. By construction, we
know P; C R;, so the claim holds for interior points. Now, let p € 9P;. We assume
for the sake of contradiction that there is no point of dR; within distance V2k.
As p is contained within R;, we have that R; contains the superpixels containing
p, a contradiction. Second, we prove the inverse. For a point ¢ of R;, Lemma 1
guarantees that R; contains a superpixel S within distance 163k of q. Then
S C P; holds, proving the claim. As P; C R;, this also proves that for each
boundary point q of R;, there is a boundary point p of P; within distance 168k.

|

Theorem 2. If R is a set of m (-fat convex regions for a constant 3, a valid
assignment exists such that for each region R; € R with a corresponding region
P;, we have H'(R;, P;) = O(y/m). Furthermore, for any 8 > 1, there exists a set
R of m B-fat regions such that for every valid assignment H(R;, P;) = 2(y/m).

4 Input Regions are Convex Regions

When R is a set of convex regions, we can easily show that the coloring has a
lower-bound Hausdorff' distance of £2(m): we can place m horizontal line seg-
ments of length (2(m) that all pass through the same pixels. Then P must have
its elements on disjoint lines of pixels, giving Hausdorff distance at least £2(m)
for the outer regions. Each P; must extend sufficiently far left and right. Since
all P; are connected, they will intersect a common vertical line. The topmost or
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bottommost intersection with this line belongs to a grid polygon with Hausdorff
distance £2(m). (Note that if the P; need not be connected, O(y/m) Hausdor{f
distance can always be realized.)

We will describe an algorithm that, given a set of convex regions R, gives a set
of disjoint orthoconvex grid polygons P such that, for all i, H'(R;, P;) = O(m).

Observation 3. Let Ri, Ro € R be two disjoint conver regions, and let £ be a
horizontal line that intersects Ry left of Ro. Then any horizontal line intersecting
both Ry and Rs intersects Ry left of Re. Similarly, all vertical lines that intersect
both Ry and Ry do so in the same order.

Observation 3 allows us to define two partial orders <, and <, on R: R; =<,
R; if and only if there is a horizontal line intersecting both regions and R;
intersects the line left of R;; since the regions are convex we get a partial order [8].
We extend this partial order as follows: first we add transitive arrows, where we
recursively add the inequality R; <, R; if there exists a region Ry, with R; <, Ry
and Ry <; R; and we denote this partial order by I, (R). We then transform
II,(R) into a linear order Xg : R — [l,m] in any manner. A linear order
Yr : R — [1,m] is defined symmetrically.

Given Xz and Yx, we assign a
coloring. Let I, be a coarsening of

I' with k = 2m. For any superpixel A A ’:I_T
S € I}, we denote by S[z,y] the T 0
pixel that is the (2z)* from the left — 1T

and (2y)'" from the bottom within S.

Additionally the horizontal and ver- "1 _I

tical lines induced by I} are called (a) (b) ()

major lines. Each region R; that inter-
sects at most one major horizontal
line and at most one major vertical

Fig.4. The coloring algorithm for con-
vex regions. (a) The input of four convex

line i 7 ) b . regions, overlaid onto a superpixel grid with
ine is a small region. Each region R; k = 10. (b) The pixels colored in Step 1 and

that intersects at least two major hor- o f the algorithm. (¢) The final coloring
izontal lines or at least two major ver-  ghtained after Steps 3 and 4.

tical major lines is a large region. Our

assignment of regions to pixels, illustrated in Fig.4, is:

1. For each small region R; we choose one superpixel S containing a point of R;
and color the pixel p(S, R;) = S[Xr(R;:), Yr(R;)] with ¢; (this single pixel
will be F;).

2. For each superpixel S and each large region R; intersecting S that also inter-
sects the two major horizontal lines incident to S, or the two major vertical
lines incident to S, we color p(S, R;) = S[Xr(R;), Yr(R;)] with ¢;. Note that
region R; need not intersect two opposite edges of S.

3. For any two pixels that are colored with ¢; in edge-adjacent superpixels (R;
must be large), we color all pixels in the row or column between them with c;.

4. For any four superpixels that share a common vertex, if they each contain a
pixel colored with ¢; in Step 1, we color all pixels in the square between these
pixels with ¢;.
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Let P be the set of polygons induced by this grid coloring.
Lemma 3. Each polygon P; € P is simply connected.

Proof. If R; is small, P; is a single pixel and thus simply connected. If R; is
large, it intersects a connected set of superpixels, and our algorithm connects
all of these together, so P; is connected. The resulting grid polygon P; cannot
contain holes: the presence of a hole would imply that the set of superpixels
intersected by R; contains a hole, which is not possible due to R; being simply
connected and convex.

Se gp(S, R)
S
v || P(S,B)
b

H 7Y _P( 7R27‘

b/

Sa S, B

g (S, B)

Fig. 5. The cases for the proof of Lemma 4.

Our algorithm actually produces orthoconvex polygons (refer to the full ver-
sion for details).

Lemma 4. The polygons in P are pairwise disjoint.

Proof. Assume by contradiction that the colorings of two regions R and B inter-
sect. Then the intersection was created during one of the four coloring steps. In
steps 1 and 2, we assign each color to single pixels per superpixel in unique rows
and columns, hence they cannot create two colorings that intersect.

Let the colorings of R and B intersect after step 3. This implies that R
and B are both large regions. The intersection occurs between a vertical and
horizontal pixel sequence in a super pixel S. Assume without loss of generality
that the vertical sequence belongs to R and the horizontal sequence belongs to
B. Consider the case that the pixel p(S, R) assigned to R in S in step 2 is to the
top-left of p(S, B) (See Fig.5); the other three cases are symmetric. Then the
intersection occurs between the column sequence connecting p(S, R) to p(Sq, R)
and the row sequence connecting p(S, B) to p(Sy, B), where Sy is the superpixel
directly below S and Sy is the superpixel directly to the left of S.

Since B is large and assigned a pixel in S it intersects both horizontal major
lines incident to S or both vertical major lines incident to S. The same applies
for R. We first consider the case where B does not intersect the major line
through the bottom edge of S, and hence it must intersect both vertical lines.
That is, B spans the vertical slab defined by S and does so in or above S. Since
R intersects the cell Sy below S it then follows that R <, B. However, since
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p(S, R) lies above p(S, R) we also have B <, R. Since B # R we thus obtain a
contradiction.

Thus, B intersects the horizontal major line ¢ through the bottom edge of S.
Since R is convex, and intersects both S and Sy it intersects the bottom edge
of S (and thus ¢) in a point r. Symmetrically, B intersects the left edge of S in
a point b. If B also intersects the horizontal line ¢ in some point b’ this point
cannot be left of r, as this would immediately imply that B <, R, contradicting
the assignment of p(S, R) and p(S, B). So V' lies right of r. However, then the
vertical ray starting at r pointing upwards intersects the segment connecting b
and b'. Since B is convex, this segment is contained in B. This implies R <, B,
which again contradicts the assignment of p(S, R) and p(S, B). It follows that
step 3 does not create intersecting colorings.

Finally, let (the colorings of) R and B intersect only after step 4. Without
loss of generality, the coloring of a region R is entirely contained in the coloring
of a large region B. Let S be the superpixel containing the lone pixel of R.
Without loss of generality we assume that the pixel p(S, R) assigned to R in S
is to the top-left of p(S, B). Thus, B intersects S, the superpixel above S, the
superpixel left of S, and the superpixel left and above S. The point b where these
four superpixels meet lies inside B by convexity. Let r be any point in RN S.

As B is a large region it needs to intersect two opposite major lines incident
to S. Assume that B intersects the vertical major lines, in particular the one
incident to the right edge of S in a point ’. The vertical line through r intersects
the segment between b and o’. The point r is above that segment, because the
opposite would imply R =, B. As a consequence r is also right of the segment
between b and b, which implies that the horizontal line through r intersects
this segment left of R, a contradiction. The case where B intersects the major
horizontal line through the bottom edge of S is symmetric. O

If a region R; intersects a superpixel S, then P; has a pixel in S or in at least
one of the eight adjacent superpixels. Conversely, if P; contains a pixel in S, we
know that R; intersects S. This gives a bound on the Hausdorff distance between
the regions and the grid polygons. For the boundaries, note that if R; contains a
superpixel S and all four edge-adjacent superpixels, then P; contains S. Further-
more, if P; contains a superpixel S, then R; also contains S. Together this gives
a bound on the Hausdorff distance between the boundaries. Since superpixels
have size ©(m), the Hausdorfl distance between R; and P; and between their
boundaries is at most O(m). We thus obtain the following result.

Theorem 4. If R is a set of m convex regions, a valid assignment exists such
that for each region R; € R with a corresponding region P;, we have H'(R;, P;) =
O(m). Furthermore, there exists a set R of m convex regions such that for every
valid assignment, there exists some 1 <14 <m with H(R;, P;) = 2(m).

5 Input Regions are General Regions

When the input regions are arbitrary, we see a sharp contrast between the case
m < 2, where constant Hausdorff distance can be realized, and the case m > 3,
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where the Hausdorff distance may be unbounded. The fact that a single region
can be represented as a grid polygon with constant Hausdorff distance was shown
before by Bouts et al. [2]. In Sect.5.1 we show that the same result holds for
two regions. In Sect. 5.2 we show that for three regions, no bounded Hausdorff
distance bound exists that applies to all inputs.

5.1 Two Regions

Our result for two arbitrary regions is based on a combination of two previous
results: mapping a polygon to the grid with constant Hausdorff distance by
Bouts et al. [2], and a result on the Painter’s Problem in [15]. We briefly explain
the former result in our framework using superpixels first (see Fig.6), and then
extend it to our case with two regions using the latter result.

Fig. 6. Left, a region with I" and I'3. Middle, the set P’ of pixels chosen in the first
selection. Right, the set P of pixels chosen after the spanning tree pixels are added.

Assume we have a region R that we want to represent by a grid polygon
P. Consider the grid coarsening I3, which has superpixels of 3 x 3 pixels. For
every superpixel fully covered by R, choose all nine pixels in P. For every super-
pixel visited but not covered by R, take the middle pixel. Take nothing from
superpixels not visited by R. Let the chosen pixels be P’.

Observe that P’ forms a set of grid polygons that has no interior boundary
cycles. Also observe that all superpixels for which at least one pixel is in P’ is a
connected (but not necessarily simply connected) part of 3.

We make P’ into one simply connected grid polygon P by using a (mini-
mum) spanning tree on the components of P’. We will add pixels from visited
superpixels only, and only ones adjacent to the already chosen center pixel. Two
separate components will always be connected using one or two pixels.

Since the boundary of P does not intersect the interior of fully covered super-
pixels and visited superpixels always have a piece of boundary of P, it is easy to
see that H(R;, P;) = ©(1) and H(OR;,0P;) = ©(1). This result is an alternative
to the one by Bouts et al., albeit with worse constants.

A Painter’s Problem instance takes a grid, and for each cell, the color white,
blue, red, or purple. White indicates the absence of red and blue while purple
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indicates the presence of both red and blue. The question is whether two disjoint
simply connected regions for red and blue exist that are consistent with all
specifications of the cells, or, in the terminology of [15], “admits a painting”.
Since red cells can simply be colored red and blue cells blue, the problem boils
down to recoloring the purple cells with red and blue pieces. The red and blue
pieces in a cell provide a panel, and all panels together make up a painting. They
prove:

Lemma 5 (Theorem 2 in [15]). If a partially 2-colored grid admits a painting,
then it admits a 5-painting.

In a 5-painting each cell contains at most 5 components. The components
make sure that the overall red and blue parts are connected across the whole
painting. Additionally [15] show that each cell has at most 3 intervals of alter-
nating red and blue along each side. This implies that there are only a constant
number of configurations within a cell, so all configurations can be represented
using a grid of constant size ¢ for each cell.

In our problem, we have two regions R; and Ry that we call red and blue, for
consistency. We create a grid coarsening .. We record for every superpixel
whether it is fully covered by red or blue, or visited by red and/or blue. If one
color covers a superpixel completely, we assign all of its pixels to that color. If
a color, say, red, visits a superpixel but blue does not, we start by making the
middle ¢ x ¢ pixels of that superpixel red. Finally, for all superpixels visited by
both red and blue, we apply the results from [15]. Since the recording of colors
with panels comes from disjoint simply connected regions, namely, our input, we
know that the 2-colored grid of superpixels admits a painting with connected
regions/colors, so it admits one as specified in Lemma 5.

Once we choose a coloring of pixels in each 2-colored superpixel according to
the panels, it remains to make the red set and blue set of pixels simply connected.
The method from [15] did not produce any cycles in the 2-colored superpixels,
the visited 1-colored superpixels are separate connected components of ¢ X ¢
pixels in the middle, and the covered 1-colored superpixels cannot create cycles
either. We create a single red component by making a spanning tree of the red
components. To achieve this, we only need to use pixels in the outer ring of
the visited 1-colored superpixels. Then we do the same with blue. Since we add
pixels of the same color to 1-colored superpixels, we will never try to color a
pixel in both colors or create crossings. We then obtain the following result:

Theorem 5. If R consists of two disjoint, simply connected regions, a valid
assignment exists such that for each region R; € R with corresponding P;, we
have H'(R;, P;) = O(1).

5.2 Three or More Regions

In the following we argue that the Hausdorff distance between an input of at
least three general regions and any corresponding grid polygons is unbounded.
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Fig. 7. The regions for h = 3; 7 is highlighted. The dashed line subdivides the boundary
of 7 into its left and right part.

Formally, for a given integer h > 0, we show a construction of regions R =
{R, B,G} for which there are no corresponding grid polygons with Hausdorff
distance smaller than h. We only sketch the main idea here, see the full version
for details.

We construct regions R = {R, B, G} that form nested spirals with a long
bottleneck of height 1. The bottleneck is traversed from left to right h times by
each of R, B, and G. If we remove the parts of R, B, and G inside the bottleneck,
we get 3h 4+ 3 connected components in total. This is illustrated in Fig.7 for
h = 3. Outside the horizontal strip of height 1 containing the bottleneck, the
three regions are more than 2h apart. We define the part of the plane within
distance h of at least one of the bottom horizontal segments of the regions R
as Z. All region components must be connected inside Z. Inside Z, it is possible
that the grid polygons make different connections than those in R. However, we
argue that no matter how these connections are made, the grid polygons Pg, Pp,
and Pg, together have to pass through 7 from left to right at least h + 2 times,
thus requiring 7 to have height at least 2h 4 3. However, the available vertical
space is only 2h + 1 if the Hausdorff distance must stay below h, allowing h + 1
connections of pixel polygons. Hence, we obtain a contradiction.

The most involved part is to argue that Pr, P, and Pg, together have to
pass through 7 at least h + 2 times. This argument critically depends on the
following Lemma (see Fig. 8 for an illustration).

Lemma 6. Given an alternating sequence V.= r1,b1,91,...,7k, bg, gx of 3k 3-
colored points on a line, any planar drawing below the line connecting points of
the same color induces a partition of the points into at least 2k + 1 components.

The idea is that Z splits the regions in R (and thus their corresponding grid
polygons) into 3h + 3 connected components. However, the regions intersect the
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Fig. 8. A set @ that includes two red points r; and r;4, splits V into two disjoint
subsequences Vi and Va, that have at most one set, namely @, in common. If there was
a second such a set Q’, the grid polygons corresponding to @ and Q' would intersect.
(Color figure online)

right half of the boundary of Z only 3h times, and in an order in which the
colors alternate, we can use Lemma 6 to show that we can decrease the number
of connected components by at most i — 1 by connecting the regions incident to
“the right side” of Z to other regions on the right side of Z. The same holds for the
regions on the left side of Z. It thus follows that the remaining 3h—2(h—1) = h+2
of the reduction in the number of connected components (after all, in the end
there are only three regions left) must be achieved by connecting regions incident
to “the left side of” Z to “the right side” of Z. Therefore, Pgr, Pg, and Pg pass
through 7 at least h+ 2 times as claimed. Therefore, this allows us to obtain the
following result:

Theorem 6. For all integer h > 0 there exist three regions R = {Ry, Ra, R3},
for which there is mo wvalid assignment to grid polygons Py, P, P3 so that all
regions R; € R have H(R;, P;) < h.

6 Conclusion

In this paper we have shown what Hausdorff distance bounds can be attained
when mapping disjoint simply connected regions to the unit grid. We expressed
our bounds in terms of the number of regions and obtained different results
depending on the shape and size characteristics of the regions, and showed that
they are worst-case optimal. The result in Sect. 5.1 generalizes a result of Bouts
et al. [2] and the result in Sect.5.2 shows that a result by Van Goethem et
al. [15] cannot be generalized from two to three colors. Our results are slightly
more general than we expressed them: for example, the bound for point regions
in fact holds for any set of regions that each have constant diameter.

We assumed that our regions all had the same shape and size characteristics.
In some cases it is interesting to see what happens in combinations. In particular,
suppose we have one general region Ry and m point regions Ry,..., R,;,; what
Hausdorff bounds can be attained? It turns out that we get a trade-off: we can
realize a Hausdorfl distance of O(y/m) for the point regions and for Ry, but we
can also realize a Hausdorff distance of O(1) for Ry but then some point region
will have a Hausdorff distance of ©(m). Figure9 illustrates this. We may map
the points to the grid first using the O(y/m) bound, and then map Ry, or we
can map the points to the grid in a constant width strip close to the boundary
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Fig. 9. Left, an instance with one general region (purple) and m point regions. Middle
and right, two possible realizations for different Hausdorff bounds.

of Ry. Note that in the former case, we could have left a spacing of three pixels
between the mappings of the point regions. Then the point regions still attain
the O(y/m) bound, while H (R, Py) = O(1) by using the extra space to allow
Py to reach every necessary place. However, H(ORg, 0Py) will still be ©(y/m),
so we do not improve H'(Ry, Fp).

While we concentrated on worst-case optimal bounds, our constructive proofs
of the upper bounds will often give visually unfortunate output. Also, for a
given instance we may not achieve O(1) Hausdorff distance for m point, (-fat
convex, or convex regions even when constant would be possible for that instance.
This leads to the following two open problems. Firstly, can we realize visually
reasonable output when this is possible for an instance (and how do we define
this)? Secondly, can we realize a Hausdorff distance that is at most a constant
factor worse than the best possible for each instance, in polynomial time?
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