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Abstract. Diversity is a property of sets that shows how varied or differ-
ent its elements are. We define full diversity in a metric space and study
the maximum size of fully diverse sets. A set is fully diverse if each pair
of elements is as distant as the maximum possible distance between any
pair, up to a constant factor. We study metric spaces based on geom-
etry, embeddings of graphs, and graphs themselves. In the geometric
cases, we study measures like Hausdorff distance, Frechét distance, and
area of symmetric difference between objects in a bounded region. In
the embedding cases, we study planar embeddings of trees and planar
graphs, and use the number of swaps in the rotation system as the met-
ric. In the graph cases, we use the number of insertions and deletions
of leaves or edges as the metric. In most cases, we show (almost) tight
lower and upper bounds on the maximum size of fully diverse sets. Our
results lead to a very simple randomized algorithm to generate large fully
diverse sets in several cases.

Keywords: Diversity · Distance Measures · Diverse Geometric
Objects · Diverse Graphs · Diverse Embeddings

1 Introduction

When generating data, for example for benchmarks, it may be important that
the generated set is sufficiently diverse. The same is true for systems that assist in
choosing a desired layout or configuration by showing various options. For exam-
ple, in graph drawing this observation has led to systems that present several
drawings of a graph. A user can now choose a drawing, or indicate preference,
after which more drawings like the preferred one can be generated [2].

But what does diversity mean in this context? We address this question in
a formal way. We introduce a framework that allows us to study diversity of
“objects”, and analyze the maximum number of objects that are pairwise far
apart. This framework is applicable in many contexts.
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Fig. 1. Fully diverse set of labeled (color+symbol) n-vertex stars. Opposite leaves have
the same color but a different symbol. The second embedding has one opposite-pair
exchange per triple when compared to the first embedding, and the third embedding
has two opposite-pair exchanges per triple. Any two of the three embeddings have
distance Ω(n2) if distance is measured by the number of swaps of adjacent edges.

Diversity as a Counting Problem. Let (S, μ) be a metric space where S is a
base set or class of objects and μ is a distance measure that takes a pair from
S and assigns a distance. We consider the cases where μ(a, b) is bounded for all
a, b ∈ S; let M = supa,b∈S μ(a, b) be the highest value that is attained (possibly
in the limit) by μ on S.

Definition 1. For a given c ≥ 1, a subset Ŝ ⊆ S is called 1
c -diverse if for all

x, y ∈ Ŝ, we have μ(x, y) ≥ 1
c · M . If c can be chosen constant, independent of

|Ŝ|, then Ŝ is called fully diverse.

Intuitively, we relate the distance of all pairs of the subset to the maximum
distance within the base set. We are interested in the question how large fully
diverse subsets can be. As a simple example, consider all points in a unit square
region in the plane and Euclidean distance as the metric. Then the maximum
distance is

√
2, so a 1

c -diverse (sub)set of points must have pairwise distances of
at least

√
2/c. It is easy to see that any 1

c -diverse set has size O(c2) by a packing
argument, and any maximal 1

c -diverse set has size Ω(c2). The maximum size of
a fully diverse set of points is Θ(c2) = Θ(1) if c is a constant.

When considering more complex objects, like polygonal lines, triangulations,
drawings of graphs, and graphs themselves, we need a distance between any
two objects. We consider geometric distance measures for geometric objects and
discrete measures for graphs. In several geometric cases, we need to assume that
the objects reside in a bounded space to make the metric space bounded. Let U
be a unit diameter disk in the plane. Some geometric distance measures are:

– For any two simple polygons inside U , their Hausdorff distance.
– For any two polygonal lines inside U , the Fréchet distance between them.
– For two simple polygons inside U , their symmetric difference.
– For two drawings of a given labeled graph inside U , the total vertex displace-

ment (summed distance between vertices with the same label).
– For any two drawings of a given labeled graph with the same embedding, the

L1-distance of the vector of angles of adjacent edges (sum of differences of
corresponding angles).
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The maximum distance between any two objects in these cases is bounded by 1,
1, π/4, |V |, and 4π|V |, respectively.

Some discrete measures for two embeddings of a given labeled graph are:

– For two embeddings of a labeled graph, the L1-distance of the vectors on the
edges, where an edge gives 1 if it intersects any other edge and 0 otherwise.

– For two embeddings of a labeled tree, the number of swaps of adjacent edges
at a vertex to convert the embedding of one into the other.

– For two planar embeddings of a labeled graph, the number of swaps around
cut-vertices and split pairs to convert one into the other.

See Fig. 1 for a fully diverse set of embeddings of a labeled star graph.
For general graphs (independent of embedding), we study measures based on

the number of additions and removals of edges or leaves; in other words, the edit
distance for a set of possible edits [10].

Relation to Diversity and Similar Notions in Science. Diversity has been studied
in a variety of scientific contexts. One well-known example is in ecosystems,
specifically, the diversity of species that are represented in a sample of animals
or plants, see for instance [12,21]. The Shannon index is commonly used, also
known as Shannon entropy in information theory.

In computer science, diversity has been studied in a variety of areas. For
example, the diversity of the output in selection tasks in big data [9] or recom-
mender systems [17], the diversity of input data sets for machine learning [16],
or the diversity of colored point sets in computational geometry [15].

Diversity without a priori assigned categories is of interest in the study of
the diversity of a population in genetic algorithms, e.g. [23]. Following similar
ideas, researchers later studied the diversity of sets of solutions in satisfiability
problems [14], multicriteria optimization problems [22], and, recently, parame-
terized algorithms, e.g. [3]. Similar to our work, the diversity measures found
in this line of work are commonly based on the Hamming distance. Hebrard et
al. [11] introduced the maximization problem to find the set of solutions that
maximizes this sum or minimum distance over all sets of solutions.

With respect to drawings of graphs, Biedl et al. [5] studied how to heuris-
tically generate a set of different not necessarily planar straight-line drawings.
Their measure of distance between any two drawings is obtained by greedily
matching vertices using a composite measure of Euclidean distance and position
in the drawing. Bridgeman and Tamassia [7] investigated geometric measures for
the distance between two orthogonal drawings.

Counting the overall number of structures such as planar triangulations or
crossing-free geometric graphs on a point set (without requiring that they pair-
wise be far) has been widely studied, e.g. in [13]. See also the blog entry by
Sheffer with a list of references on this topic.1 Finally, for a given planar graph
the number of embeddings it admits has been studied in the context of algo-
rithms to count them [8,20].
1 https://adamsheffer.wordpress.com/numbers-of-plane-graphs/.

https://adamsheffer.wordpress.com/numbers-of-plane-graphs/
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Table 1. Lower and upper bounds on the maximum size of fully diverse sets in various
metric spaces where the measure is geometric. U denotes a unit diameter disk.

Object Metric Space Diameter Lower bound Upper bound

Polygons Hausdorff distance U Θ(1) Ω(1) O(1)

Polylines Fréchet distance U Θ(1) 2Ω(n) 2O(n)

Polygons Area symm. diff. U Θ(1) 2Ω(n) 2O(n log n)

The Approach and the Results. We initiate the study of the size of fully diverse
sets in bounded metric spaces, as described in this introduction. We believe that
such a study is important in all algorithmic problems where different objects are
generated, for example, in graph drawing and benchmark construction.

We use a unified approach to obtain our results, which we can explain best
on bit strings of length n with the metric the number of bit flips (or Hamming
distance). We choose a sufficiently large constant c. Then we show that for any
bit string, the number of bit strings that can be obtained by at most n/c bit
flips is bounded from above, while the total number of bit strings is 2n. Dividing
the latter quantity (2n) by the former gives a lower bound on the maximum size
of a fully diverse set. When we apply this simple scheme to the various metric
spaces listed before, we encounter different kinds of challenges.

In Sect. 2 we investigate the maximum size of a fully diverse set of fair bit
strings (fair = equally many 0s as 1s). We show that for fair bit strings of length
n, the maximal size of a fully diverse set is exponential. The same is true for fair
cyclic bit strings. These results are used as a core ingredient in later proofs.

In Sect. 3 we present results for three metric spaces where distance is geo-
metric. Bounds on the maximum size of fully diverse sets are given in Table 1,
where diameter specifies the maximum distance in the metric space. The main
challenge is the suitable discretization of the space of all possible polylines or
polygons, so that the desired distance between pairs can be analyzed.

Next we consider embeddings of trees and planar graphs, that is, the cyclic
order of neighboring nodes, in Sect. 4. The metric is the minimum number of
swaps of adjacent neighbors to get from the one embedding to the other. Our
results are given in Table 2.

In Sect. 5 we consider graphs as combinatorial objects and base the metric on
edit distance. We distinguish labeled and unlabeled graphs, and consider trees,
planar graphs, and general graphs. Table 3 gives the results.

There exists a very simple randomized algorithm to generate fully diverse
sets of size k (provided k is small enough). It works as follows, starting with an
empty set S and a constant c ≥ 1, and a known maximum diameter M of the
base set: (i) Generate a random element e from the base set. (ii) Test if e has
distance at least M/c to all elements in S. If so, add e to S, and if not, discard it
and continue at (i). Stop when set S contains k elements. This algorithm leads
to fully diverse sets of large size with high probability for several examples in
this paper, if distances can be computed easily.



332 F. Klute and M. van Kreveld

Table 2. Lower and upper bounds on the maximum size of fully diverse sets in various
metric spaces concerning embedded labeled graphs with n nodes. The lower bound for
trees holds for any tree, whereas the upper bound holds for some trees (Theorem 4).

Object Metric Diameter Lower bound Upper bound

Ternary trees # adjacent swap Θ(n) 2Ω(n) 2O(n)

Star graphs # adjacent swap Θ(n2) 2Ω(n) 2O(n log n)

Trees # adjacent swap Θ(
∑

v∈V deg2(v)) 2Ω(
√

n) [ 2O∗(
√

n) ]

Star graphs # any swap Θ(n) 2Ω(n log n) 2O(n log n)

Planar graphs # adjacent swap Theorem 5 Theorem 5 Theorem 5

Table 3. Lower and upper bounds on the maximum size of fully diverse sets in various
metric spaces where the measure is edit distance and the objects are graphs with n
nodes. Intermediate graphs must be in the same class.

Object Metric Diameter Lower bound Upper bound

Trees # reattach leaf Θ(n) 2Ω(n log n) 2O(n log n)

Planar graphs # insert/delete edge Θ(n) 2Ω(n log n) 2O(n log n)

Graphs # insert/delete edge Θ(n2) 2Ω(n2) 2O(n2)

Trees (unlabeled) # reattach leaf Θ(n) 2Ω(n) 2O(n)

Planar graphs (unlab.) # insert/delete edge Θ(n) nΩ(1) 2O(n)

Graphs (unlabeled) # insert/delete edge Θ(n2) 2Ω(n2) 2O(n2)

2 Fair Bit Strings

Let B be a bit string of length n ≥ 8. We say that B is a fair bit string if it
contains at least �n

2 � ones and at least �n
2 � zeros. Moreover, we say two fair bit

strings B1 and B2 of length n are far if they differ in at least �n
8 � positions.

Conversely, if B1 and B2 are not far we say they are close. Since rounding does
not influence our results, we omit rounding to integers from now on. We obtain
the following lemma using a bound by Robbins [19] and Stirling’s approximation.

Lemma 1 (�). Let B be a fair bit string with n bits, the number of fair bit
strings close to B is at most

2
3π

·
(

256
27

)n/4

= O(1.754...n).

Lemma 1 allows us to show (in Lemma 2) that there are exponentially many
fair bit strings of length n that are all pairwise far from each other when we
consider the number of bit flips as the distance measure. Since we need at most
n bit flips to transform any bit string of length n into any other, upper-bounding
M in Definition 1, a set of pairwise far fair bit strings is fully diverse.

Lemma 2. For fair bit strings of length n, any maximal fully diverse set of fair
bit strings, using Hamming distance, has size at least

Ω

(
n−1 ·

(
27
16

)n/4
)

= Ω (1.139...n) .



On Fully Diverse Sets of Geometric Objects and Graphs 333

Proof. Since
∑n

i=0

(
n
i

)
= 2n and

(
n

n/2

)
is the largest term of n + 1 terms, it is at

least 2n/n (taking the first and last term as one term), which is a lower bound
on the number of fair bit strings of length n.

A maximal set of fully diverse fair bit strings can be obtained by starting
with the set of all fair bit strings, selecting any member, removing all that are
close, and repeating. By Lemma 1, we know how many we maximally delete in
one step, so the number of iterations (and size of a maximal set of fair fully
diverse bit strings) is at least

2n/n

2
3π · (

256
27

)n/4
=

3π · 2n · 27n/4

2n · 256n/4
≥ Ω

(
n−1 ·

(
27
16

)n/4
)

= Ω(1.139...n). �	

When considering cyclic bit strings (a bit string is equivalent to any of its
n − 1 cyclically shifted versions), the above analysis does not apply directly. For
two fair cyclic bit strings B1 and B2 of length n, we say that B1 and B2 are
far if they differ in at least n

8 positions for all of their cyclically shifted versions.
Conversely, if B1 and B2 are not far we say they are close.

Lemma 3 (�). For fair cyclic bit strings of length n, any maximal fully diverse
set of fair cyclic bit strings, using Hamming distance, has size

Ω

(
n−2 ·

(
27
16

)n/4
)

= Ω (1.139...n) .

3 Geometric Diversity

Given two closed subsets A and B of a metric space, the Hausdorff distance
between A and B is defined as the maximum distance of any point in A to its
closest point in B or vice versa. For the Fréchet distance let A and B be two
curves in the plane. Informally, the Fréchet distance between A and B is the
minimum length of a leash that allows a person to walk along A and a dog along
B with neither of them ever walking backwards. See Alt and Godau [1] for the
formal definitions. The area of symmetric difference between two polygons is the
total area inside exactly one of the polygons.

Let S be any set of simple polygons inside a unit diameter disk U . Any two
polygons inside U have Hausdorff distance ≤ 1. Assume S is fully diverse, so a
constant c ≥ 1 exists such that for any two Pi, Pj ∈ S (i �= j), their Hausdorff
distance is at least 1/c. We partition U by horizontal and vertical lines spaced
1/(2c), resulting in O(c2) cells. If Pi and Pj occupy exactly the same cells of this
grid, then their Hausdorff distance is at most 1/(

√
2c) < 1/c, a contradiction, so

there must be a cell occupied by exactly one of Pi and Pj . This property holds
for every pair of polygons in S, so S cannot contain more than 2O(c2) = O(1)
polygons and be fully diverse. The size of S does not depend on the descriptive
complexity of the polygons. The upper bound also applies to polygons with holes
or that are disconnected, and to drawings of graphs.
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0
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0.8

π

π/4 3π/4

Fig. 2. Left, lower bound construction for Fréchet distance. Right, lower bound con-
struction for sum of angle differences by encoding the bit string 01011.

Theorem 1. A fully diverse set of polygons inside a bounded region has size
O(1) when we measure the distance by the Hausdorff distance.

Next we show by construction that a fully diverse set of polygonal lines with
n vertices inside a unit diameter disk U can have exponential size when using the
Fréchet distance. We choose points on three horizontal lines y = 0, y = 0.4, and
y = 0.8; on the first line we take points with x-coordinates i/n for 1 ≤ i ≤ n/2,
and on the second and third line we take points with x-coordinates i/n+1/(2n)
for 1 ≤ i ≤ n/2. We make x-monotone polygonal lines by using all points on the
line y = 0, and between two such points, we choose either the point on y = 0.4
or on y = 0.8. See Fig. 2(left). Any two of the 2n/2 different options has Fréchet
distance at least 0.4, hence these options together give a set of size 2Ω(n) that is
fully diverse. The construction is easily adapted to simple polygon boundaries.

For area of symmetric difference, we can use the construction in Fig. 2(left) if
we add one vertex at the bottom right to close the polyline with one straight-line
segment to a polygon. Having Ω(n) spikes different implies an area of symmetric
difference of Ω(1). Hence, the spikes encode the bits of a bit string, and Lemma 2
gives the lower bound.

We obtained 2Ω(n) lower bounds on the size of fully diverse sets in two cases.
Is it the right lower bound, or can we also achieve a bound like 2Ω(n log n)?

Concerning the Fréchet distance, assume a unit diameter disk U and let a
constant c ≥ 1 be given. We partition U by a square grid of line spacing 1/(2c),
so that any two points in the same grid cell have distance < 1/c. There are
O(c2) cells, which is constant. We can encode any polyline of n vertices by the
sequence of cells in which the vertices lie. It is straightforward to see that two
polylines that have the same sequence of cells, have Fréchet distance < 1/c, so
they cannot be in the same fully diverse set. Consequently, the size of a fully
diverse set is bounded by the number of sequences of cells: (O(c2))n = 2O(n).

Theorem 2. A fully diverse set of polygonal lines or simple polygon boundaries
with n vertices in a bounded region, may have size 2Ω(n) and has size at most
2O(n), if distance is measured by the Fréchet distance.

For area of symmetric difference we need a much finer grid in order to ensure
that visiting the same cells implies a distance of at most π/(4c). Consider a grid
with cells of diameter < 1/(2cn). Then two simple polygons that have the same
vertices in the same cells in the same order have an area of symmetric difference
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of at most 1/(
√

2c) < π/(4c) because each pair of corresponding edges causes
a symmetric difference of at most

√
2/(2cn). This leads to an upper bound of

((2cn)2)n = 2O(n log n).

Theorem 3. A fully diverse set of simple polygons with n vertices, may have
size 2Ω(n) and has size at most 2O(n log n), if distance is measured by the area of
symmetric difference.

Remark 1. The techniques presented in Sects. 2 and 3 are quite versatile. With-
out any new ideas, we can also show that for drawings of labeled star graphs in
a bounded region, the maximum size of a fully diverse set is 2Θ(n) when distance
is measured as sum of vertex displacements. The lower bound uses an encoding
of a fair bit string to generate drawings that are far apart. The construction is in
fact the one shown in Fig. 1, used for a different metric space. The upper bound
uses the partition of the bounded region into a grid of size O(c2). Similarly, we
can show that for drawings of ternary trees with the same embedding whose dis-
tance is measured by the sum of absolute differences of corresponding angles, we
also get 2Θ(n) as the maximum size of a fully diverse set. Figure 2(right) shows
how a bit string can be converted to a drawing so that far bit strings give far
drawings.

4 Embedding Diversity

In this section we investigate the existence of large sets of embedded graphs
that are diverse according to a topological measure. We show that there are
superpolynomially many fully diverse sets of embedded trees and planar graphs
when we use the number of changes in the rotation system as the distance
measure. An adjacent-edge swap exchanges the position of two edges that are
incident to the same vertex and adjacent in its rotation. Notice that degree-2
vertices can be omitted or ignored, since their rotation system is not changed by
a swap. In this section, all graphs are assumed to be labeled.

Trees. To start, we consider ternary trees, i.e., trees that contain only degree
3 vertices as non-leaf vertices. Let T = (V,E) be such a ternary tree with n
leaves and n − 2 non-leaf vertices. Observe that at every non-leaf vertex there
are exactly two possible cyclic orders of the incident edges. We derive a bit
encoding of the possible embeddings of T as a bit string B that contains a bit
for every non-leaf vertex of T . For each such vertex we associate its bit set to 0
with one of the cyclic orders, and its bit set to 1 with the other cyclic order.

Lemma 4 (�). Let T be a labeled ternary tree with n leaves and B1 and B2

two bit encodings of embeddings of T , such that B1 and B2 are fair bit strings
and far from each other, then they correspond to embeddings of T that are Ω(n)
adjacent-edge swaps apart.

Applying the analysis from Sect. 2 we obtain the following.
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Lemma 5 (�). For a labeled ternary tree with n leaves, a fully diverse set of
embeddings may have size 2Ω(n) if distance is the number of adjacent-edge swaps.

Next, we consider labeled star graphs. Let S = (V,E) be a labeled star with
central vertex u ∈ V and leaves v1, . . . , vn ∈ V incident to edges e1, . . . , en ∈ E
for some even n ∈ N. We define a cyclic bit string B describing orders of the
edges incident to u as follows. Consider the edges e1, . . . , en around u, ordered
by their indices. For each antipodal pair of edges ei, ej in S (where j = i + n

2 ),
we add one bit bi to B and let it be 1 if ei, ej have exchanged their positions in
the cyclic order and 0 if not; see Fig. 1. Clearly, B has length n

2 ; recall that two
cyclic bit strings of length n

2 are fair if they contain at least n
4 zeros and at least

n
4 ones, and they are far if they differ in at least n

16 positions.

Lemma 6 (�). Let S be a labeled star graph with n leaves and B1 and B2 two
bit encodings of embeddings of S, such that B1 and B2 are fair cyclic bit strings
and far from each other, then they correspond to embeddings of S that are Ω(n2)
adjacent-edge swaps apart.

Lemma 7 (�). For a labeled star graph with n leaves, a fully diverse set of
embeddings may have size 2Ω(n) if distance is the number of adjacent-edge swaps.

It remains to combine the two previous cases to handle any tree T = (V,E)
that does not contain degree 2 vertices. This is non-trivial, and in fact, for some
trees, we no longer have a fully diverse set of embeddings of exponential size.
First, observe that the maximum distance between two embeddings of a tree
whose internal nodes that have degrees d1, . . . , dk is proportional to

∑k
i=1 d2i .

Lemma 8 (�). For any labeled tree with n leaves, there exists a fully diverse set
of embeddings of size 2Ω(

√
n).

Proof Sketch. Assume that a labeled tree T is given whose internal vertices
v1, . . . , vk are sorted by degrees d1 ≥ d2 ≥ · · · ≥ dk. Let j be the smallest
value such that

∑j
i=1 d2i ≥ 1

2

∑k
i=1 d2i . We distinguish two cases, dj ≥ √

n and
dj <

√
n. In the former case, we only use the vertices v1, . . . , vj to make fully

diverse sets. Each such vertex already admits a fully diverse set of size 2Ω(di) by
Lemma 7. This allows us to just combine the embeddings and choose embeddings
for the remaining vertices at random.

If dj <
√

n we use the vertices vj , . . . , vk. We group them into sets V1, . . . , Vz

with z = Θ(
√

n) such that for each Vh, h = 1, . . . z, the sum of its squared degrees
is in Θ

(∑k
i=1 d2i /

√
n
)
. We then fix two far embeddings for each group Vh. Using

these two embeddings to encode a bit string we then get a fully diverse set of
sufficient size using Lemma 3 essentially in the same manner as for Lemma 5. �	

To prove that no better bound exists that applies to all trees, consider a tree
with n leaves, one vertex v with degree

√
n log n, and all other internal vertices

with degree 3. The maximum distance between two embeddings is determined by
vertex v only: it is Θ(n log2 n). The linearly many vertices of degree 3 require only
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O(n) adjacent-edge swaps, so they play no role in obtaining a fully diverse set.
Considering v and its neighbors as a star graph then implies that the maximum
size of a fully diverse set is 2O(

√
n log n). Intuitively, we have just O(

√
n log n)

bits in an encoding that are effective to realize a fully diverse set. We can give
v degree

√
n log log n or even smaller for a slightly better bound.

Theorem 4. For any labeled tree with n leaves, there is a fully diverse set of
embeddings of size 2Ω(

√
n), and there exists a tree whose size of a fully diverse

set of embeddings is 2O∗(
√

n), where O∗(
√

n) denotes O(f(n)) for any function
f(n) that is asymptotically larger than

√
n.

Suppose we consider a different metric, namely the number of edge relocations
for embedded trees. A relocation on the cyclic order around a vertex places one
of its edges anywhere else in the order in a single step. For ternary trees this is
equivalent to an adjacent-edge swap, but for a star graph, the maximum distance
between any two embeddings of stars is Θ(n) instead of Θ(n2).

Lemma 9 (�). For a labeled star graph with n leaves, a fully diverse set of
embeddings may have size 2Ω(n log n) if distance is measured by edge relocations.

Planar Graphs. Here we give a sketch of how the results just given can be
extended to planar embeddings of planar graphs. Let G = (V,E) be an embedded
labeled planar connected simple graph. Since swapping two adjacent edges in G
does not necessarily preserve planarity we instead consider swaps of components
separated by cut-vertices and split pairs [4]. A cut-vertex u ∈ V is a vertex such
that G is not connected after u is removed. Similarly, a split pair {u, v} ⊂ V
of G is a pair of vertices such that G is not connected after u and v are both
removed from G. The incident components of a cut-vertex or a split pair are the
connected components obtained after removing this cut-vertex or split pair.

We consider the rotation of the incident components around a cut-vertex or
split pair, and so-called adjacent-component swaps between them. To ensure that
every possible embedding can be reached, we allow the operation of mirroring a
triconnected component at no cost. Each cut-vertex or split pair can be treated as
the central vertex of a star and its incident components as the leaves. Swapping
the order of two leaves corresponds one-to-one to swapping the order of two of its
incident components. To ensure this we first resolve nesting components around
cut-vertices. Then, it suffices to only consider rotations around cut-vertices and
split pairs in which the respective incident components appear one after another.
This allows us to derive analogous versions of Lemmas 4 and 6 which in turn
enables us to argue in the same fashion as for Theorem 4 to obtain the lower
bound in the following theorem.

Moreover, the upper bound of Theorem 4 translates immediately since trees
are planar graphs and adjacent-edge swaps in trees are equivalent to swapping
the incident components around a cut-vertex.

Theorem 5. For any labeled planar graph G = (V,E) with nc cut-vertices and
np split pairs each with at least 3 incident connected components, a fully diverse
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set of planar embeddings may have size 2Ω(
√

nc+np) and there exists a planar
graph whose size of a fully diverse set of embeddings is 2O∗(

√
nc+np) if distance

is measured by adjacent-component swaps.

5 Abstract Graphs

In this section we consider the diversity of abstract graphs of some given graph
class and a distance based on edits. Throughout, we require that if a graph is in
graph class G, then after applying an operation to it the resulting graph is still
in G. We consider trees, planar graphs, and general graphs, and discuss diversity
for the labeled and unlabeled cases. As most of the ideas are the same as the
ones used earlier, we keep the description short. The results are given in Table 3.

Trees. For trees, we use the following edit operation: Take a leaf, unattach
it from its neighbor, and attach it to a different vertex. We consider the edit
distance measure: the distance between two trees of n vertices is the number of
leaf reattachments needed to convert one tree into the other. Note that any two
trees with n vertices have a finite distance, since every tree can easily be turned
into the star graph (in the labeled case, a specific node must become the central
vertex to use a star as a canonical tree). The maximum distance is Θ(n), since
we need at most n − 2 edits to convert any tree into a star.

We start with the labeled case. To construct a large size fully diverse set of
labeled trees, we can restrict ourselves to paths. A path essentially encodes a
permutation of its labels and reverse permutations are identified. We can use
essentially the same proof ideas as for the case of labeled stars and their embed-
ding under swaps (where cyclic shifts were identified). The upper bound is trivial,
and we obtain 2Θ(n log n) for the maximum size of a fully diverse set.

Next we switch to unlabeled trees. The situation is quite different, because
there is only one path now, and in fact, it is known that there are only 2O(n)

different unlabeled trees [18]. To show an exponential lower bound for unlabeled
trees, we start out with a path of 2 + n/4 vertices. We attach either one or two
leaves to the middle n/4 vertices, encoding a 0 or 1 in a bit string. We attach
all remaining vertices equally as paths to the ends of the initial path. These two
tails have length at least n/16, ensuring that we need n/16 operations to operate
on the bit string in unwanted ways. Using our knowledge on the full diversity of
bit strings, we obtain 2Θ(n) as the bound.

General Graphs. We consider general graphs of n vertices with edge insertion or
deletion as the elementary operation. The edit distance is the distance between
two graphs. We again distinguish in the labeled and unlabeled cases. The two
graphs furthest apart are the empty graph and the complete graph in both cases.

We start with the labeled case. Every labeled edge can be seen as a bit in a
bit string, where absence encodes 0 and presence 1. We immediately get a bound
of 2Θ(n2) by Sect. 2. For the unlabeled case, we observe that there are at least
2n(n−1)/2/n! graphs, since we can assign labels in at most n! ways. This is still
2Ω(n2). The upper bound follows from the labeled case.
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Planar Graphs. For planar graphs we use the same edit operation as for general
graphs. Since we can always first remove edges and then insert them, any edit
sequence can be turned into an edit sequence that stays within the class of planar
graphs. An upper bound on the number of operations needed is clearly 6n − 12.

For labeled planar graphs, we obtain a lower bound by analyzing how many
labeled planar graphs are within (6n − 12)/c edits from a given graph. This
number is certainly bounded by (n2)(6n−12)/c = nO(n/c). At the same time, the
number of labeled paths is already n!/2. By choosing c sufficiently large, we
obtain 2Θ(n log n) as the maximum size of a fully diverse set.

The most intriguing case turns out to be unlabeled planar graphs. It is known
that the number of unlabeled planar graphs is bounded by 2O(n) [6], which is
obviously also an upper bound on the size of a fully diverse set.

For a lower bound, the idea is to consider graphs that are unions of stars.
We can connect them into one connected graph if needed, but the argument is
cleanest for these unconnected graphs. We consider only stars with 2i vertices,
0 ≤ i ≤ log n − log log n. Suppose we have n/(2i log n) stars of size 2i, then it
takes n/(2 log n) edge insertions (and a number of edge deletions) to convert this
into n/(2i+1 log n) stars of size 2i+1. Converting in the other direction also takes
at least n/(2 log n) operations.

In the fully diverse set we construct, we choose stars with either 2i or 2i+1

vertices, for i = 0, 2, 4, . . . , (log n)−(log log n)−1, the latter value rounded down
to the nearest even number, henceforth denoted by m. We then have roughly
m/2 different sizes in any single set, out of the twice as many sizes used in the
whole construction. Notice that a set indeed has size n. We can see the choice
between stars of size 2i and 2i+1 as an encoding of a bit, and hence we have a bit
string of length roughly m/2. We choose a fully diverse set of bit strings, which
implies the choice of stars in a graph in the set. By Lemma 2, a fully diverse set
of fair bit strings of this length has maximum size 2Ω(m/2), which is nΩ(1).

6 Conclusions and Open Problems

We introduced the concept of a fully diverse set of objects, like polygons and
graphs, in a metric space, by relating the inter-distance between any two objects
in that set to the maximum distance possible. We then studied a number of
distance measures, both geometric and combinatorial, and proved bounds on
the maximum size of fully diverse sets. There are two cases where the lower and
upper bounds do not match, giving rise to the two main open problems of this
paper. We also sketched a simple randomized algorithm to generate fully diverse
sets of a certain type of objects.

As our full diversity definition can be applied to any class of objects in
a metric space provided the maximum distance is bounded, there are many
other cases to be explored. For example, 2-dimensional distributions with the
Wasserstein distance, or graphs with different edit distances than the ones used
in this paper. Furthermore, a definition of full diversity that does not require
the metric space to be bounded is worth examination.
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