
 
 

1 

The interplay between metabolic stochasticity and regulation in single E. coli 
cells 
Martijn Wehrens*1, Laurens H.J. Krah*2, Benjamin D. Towbin3, Rutger Hermsen2, Sander J. Tans‡4 

 
 
1Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands 
2Utrecht University, Theoretical Biology, Utrecht, The Netherlands 
3Institute of cell biology, University of Bern, Bern, Switzerland 
4AMOLF, Biophysics, Amsterdam, The Netherlands  
*These authors contributed equally. 
‡Corresponding author; s.tans@amolf.nl 

 
Abstract 
Metabolism is inherently stochastic at the cellular level. Whether cells actively regulate processes in response to these 
random internal variations is a fundamental problem that remains unaddressed, yet critical to understanding biological 
homeostasis. Here, we show that in E. coli cells, expression of the main catabolic enzymes is continuously adjusted in 
response to metabolic fluctuations under constant external conditions. This noise feedback is performed by the cAMP-
CRP system, which controls transcription of the catabolic enzymes by modulating concentrations of the second 
messenger cAMP upon changes in metabolite abundance. Using time-lapse microscopy, genetic constructs that 
selectively disable cAMP-CRP noise feedback, and mathematical modelling, we show how fluctuations circulate 
through this hybrid metabolic-genetic network at sub cell-cycle timescales. This circulation of stochastic fluctuations is 
explained by four distinct noise propagation modes, one of which describes the continuous cAMP-CRP regulation. The 
model successfully predicts how noise circulation is impacted by C-sector under and over-expression. The results raise 
the question whether the cAMP-CRP system, as well as other metabolic regulation mechanisms, have evolved to 
manage internal metabolic fluctuations in addition to external growth conditions. We conjecture that second 
messengers may broadly function to control metabolic stochasticity and achieve cellular homeostasis.   
 
Introduction 
Bacteria display a striking ability to adapt to diverse environments. When exposed to different carbon sources, 
bacterial cells make vast changes to their proteome composition, allowing them to optimize their allocation of 
metabolic resources1–4. Many regulation mechanisms have been identified that adjust enzyme expression to the 
growth medium5–8. In addition to these external changes, however, bacteria are also confronted with major internal 
variations9,10. Gene expression has long been known to be stochastic9–12. The metabolic activity of cells was more 
recently found to fluctuate randomly in time under constant external conditions, thus severely limiting growth13–17. 
These observations raise the question whether cells also adjust their proteome to internal metabolic fluctuations, 
which differ fundamentally from external changes in growth media. Addressing this issue is key to understanding the 
elementary principles of cellular homeostasis and the functional relevance of known regulatory interactions. 

Here, we address these issues using cAMP-CRP signaling in Escherichia coli as a model system. cAMP-CRP 
signaling is a major regulation mechanism of metabolic activity (Fig. 1A). Regulating over 180 genes, CRP is a general 
expression activator of a group of catabolic enzymes that together are referred to as the C-sector4,18–20. CRP is activated 
by the second messenger cyclic AMP (cAMP), whose synthesis is inhibited by metabolites that are produced by the C-
sector enzymes. This negative cAMP-CRP feedback loop has been shown to produce a near-linear relation between 
the C-sector proteome mass fraction (𝜑!) and the growth rate (𝜆) under variation of the carbon source available in 
the medium3,18, and to optimally balance the costs and benefits of C-sector expression such that the overall growth 
rate is maximized in a range of nutrient conditions5. However, the interplay between internal stochastic variations in 
metabolic activity and the cAMP-CRP system or any other metabolic regulatory feed-back mechanism has not been 
addressed experimentally. Indeed, while the stochasticity of metabolic activity has been evidenced by correlations 
between cellular growth and enzyme expression noise13, the nature of these metabolic fluctuations is unclear, and 
different from the metabolic changes induced by external conditions. For instance, it is unknown which pathways are 
affected, which metabolites fluctuate in abundance, whether more global changes in proteome expression are 
involved, and indeed how the resulting combination of internal variations impact the cAMP-CRP system. This issue 
remains unresolved for any metabolic regulation mechanism, and hence addressing it for cAMP-CRP is a key first step 
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in understanding the regulatory basis of metabolic homeostasis in the context of intrinsic molecular stochasticity.
  

To study stochasticity in the cAMP-CRP system we quantified the correlations between C-sector expression 
and growth rate in individual cells over time using time lapse microscopy, which allows identification of time delays in 
the propagation of fluctuating signals. To dissect the role of the cAMP-CRP feedback, we aimed to specifically disrupt 
its transmission of noise. The challenge here was to maintain the C-sector stimulation by cAMP, which is essential to 
growth, while inhibiting the feed-back of cAMP noise. To achieve this, we used an E. coli cyaA cpdA null mutant that is 
unable to synthesize or hydrolyze cAMP5. The noise feedback was thus broken while externally supplied cAMP allowed 
one to maintain C-sector expression at appropriate levels (Fig. 1A). In WT cells, C-sector expression showed 
fluctuations that were negatively correlated and time-delayed with respect to growth fluctuations, in line with cAMP-
CRP regulating the C-sector in response to metabolic stochasticity. Consistently, disrupting the cAMP-CRP feedback 
abolished these negative correlations. A mathematical model we developed could explain all the observed correlations 
in a single fitting procedure, reproducing the observed effect of the disrupted feedback by merely changing the 
feedback coupling parameter to zero. This mechanistic understanding of the system was further evidenced by the 
ability of the model to predict the changes in stochastic dynamics for cAMP levels below and above wild type levels. 
Together, the findings show that C-sector expression in E. coli is continuously regulated in response to internal 
stochastic metabolic fluctuations in fixed environments. They also suggest that feed-backs in metabolic networks, 
which are ubiquitous in cells, act more generally to control and exploit internal metabolic noise. 
 
 
Results  
Interrupting the feedback of noise in the cAMP-CRP system.  
Elucidating noise propagation in the cAMP-CRP system requires insight into the stochasticity of the C-sector expression 
that is regulated by CRP. The mean C-sector population expression was previously studied by quantifying the 
expression of a representative enzyme, LacZ 18. Here we follow this general approach and measure the expression of 
mVenus driven by the lac promotor (Fig. 1B). As we aim to study fluctuations propagated by CRP rather than by the 
lac repressor LacI, the LacI binding site in the lac promotor is scrambled such that LacI no longer binds, while the 
promotor remains sensitive to cAMP-CRP5,21. This genome-inserted construct is called the CRP-regulated reporter, or 
CRPr. To study noise unrelated to CRP or LacI, a second reporter was created by further modifying the CRPr promoter. 
Specifically, the region where CRP and 𝜎70 bind was replaced with a 𝜎70 consensus site, such that transcriptional 
initiation occurs constitutively without requiring CRP to recruit 𝜎70. This reporter construct, which was fused to 
mCerulean, is referred to as the non-CRP regulated reporter, or nCRPr (Fig. 1B, S11). Both the CRPr and nCRPr reporters 
were chromosomally inserted into E. coli, a construct we refer to as WT, and in a cyaA cpdA null mutant, which we 
refer to as cAMP-fixed.  

Bulk measurements in lactose minimal media showed that the growth rate of cAMP-fixed peaked at about 800 
µM externally supplied cAMP, while decreasing to almost negligible growth at lower and higher cAMP 
concentrations5,22 (Fig. S3). This strong dependence on cAMP is consistent with the many genes controlled by CRP and 
their essential nature. At low cAMP, under-stimulation of C-sector expression leads to decreased metabolic flux and 
concomitant growth. Conversely, at high cAMP, over-stimulation of C-sector expression leads to excess expression of 
many genes, which is metabolically costly and in turn also reduces the growth rate. We find that the growth rate of 
WT cells in the same lactose minimal medium (without externally supplied cAMP) is similar as the optimal growth rate 
of cAMP-fixed cells obtained at 800 µM cAMP (Figs. S3, S5B).  We therefore refer to cAMP-fixed cells growing at 800 
µM cAMP as  cAMP-fixed* cells. Both WT and cAMP-fixed* cells were also observed as growing micro-colonies with 
phase-contrast and fluorescence time-lapse microscopy. The mean growth rates for different WT colonies showed an 
upper range that was similar to the cAMP-fixed* colonies (Fig. S5B). The mean fluorescence intensity per unit area for 
the CRPr and nCRPr reporters was similar for WT and cAMP-fixed* cells, on average (Fig. S5C). Overall, these 
experiments show that WT and cAMP-fixed* cells display comparable population-mean C-sector stimulation and 
growth rate, allowing us to study whether the propagation of noise in single cells differs between the WT and cAMP-
fixed* cells. 
 
The cAMP-CRP system responds to internal stochastic fluctuations.  
The propagation of and response to cellular noise can be studied by quantifying correlations between fluctuating 
phenotypic parameters13,23. Here we quantify fluctuations in the instantaneous cellular growth rate, λ, by performing 
phase contrast microscopy at a time resolution of 1 to 1.5 minutes. Fluctuations in CRPr expression levels, 𝜑!"#$, are 
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quantified by the mVenus fluorescence intensity, using concurrent fluorescence microscopy at intervals ranging from 
13.5 to 26 minutes. In WT cells, 𝜑!"#$ fluctuations were negatively correlated with λ fluctuations, as apparent from 
the negative regression slope in Fig. 1C. In cAMP-fixed* cells, a positive correlation was found instead (Figs. 1D). The 
difference is statistically significant (p = 0.0031, two sample 𝑡-test, Fig. S5A). The negative 𝜑!"#$-λ correlation observed 
in WT cells could reflect the known negative relation between C-sector expression and growth rate under variation of 
the available carbon sources, also referred to as the C-line2,4,24. In line with this hypothesis,  this negative correlation is 
lost in the cAMP-fixed* cells, where the cAMP-CRP feedback is disrupted (Fig. 1D).  

To assess whether the 𝜑!"#$-λ correlation changes were due to disruption of CRP regulation, we studied the 
relationship between λ and the expression levels of the reporter not regulated by CRP, 𝜑%!"#$, as quantified by 

Figure 1. Removing cAMP feedback alters dynamics of a regulated reporter only. (A) Cartoon of a bacterial cell and the difference between 
wild type and mutant. Shown are the processes of metabolism, protein expression, cAMP-CRP regulation, and growth (λ). Here φC represents the 
expression level of the C-sector; the total concentration of all catabolic proteins that are regulated by cAMP-CRP and that import nutrients and 
convert them into internal metabolites (including cAMP itself). In the cAMP-fixed strain, cAMP is neither synthesized nor degraded, and instead 
supplied externally to experimentally tune φC. (B) The two reporters and their promoters that were used in this study: a C-sector reporter whose 
transcription was regulated by cAMP-CRP (CRPr), and a constitutive reporter, nCRPr. Crossed red block is the scrambled lacI site. (C-F) Scatter 
plot of instantaneous growth rate (λ) against single-cell relative expression of the reporters (φCRPr or φnCRPr). Dashed lines are linear regressions, 
black dots indicate binned averages. Plots are from single, representative micro-colonies (n = 1671 cells for WT, n= 1580 cells for cAMP-fixed*), 
other colonies showed the same trends, Fig S5). 
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mCerulean fluorescence intensity. The correlation between 𝜑%!"#$ and λ was negative for both the WT and the cAMP-
fixed* cells, and indeed were indistinguishable (Fig. 1E-F, S5A, p = 0.93, Welch’s 𝑡-test). This similarity is consistent with 
the above hypothesis, as nCRPr is not regulated by cAMP-CRP in either strain. Thus, the growth correlations of the 
nCRPr reporter were similar with or without the cAMP-CRP feedback. Conversely, the growth correlations of the CRPr 
reporter showed a notable shift when this feedback was disrupted, suggesting that the cAMP-CRP system actively 
responds to internal fluctuations.  
 
The time-dependent cross-correlations are captured by a mathematical model.  
To obtain a mechanistic understanding of the observed correlations, we extended the model presented by Kiviet et al 
13. Our aim is not to capture the many known molecular mechanisms of the CRP system, but rather to assess whether 
the phenomenological relations between variables are sufficient to describe our data. The model is based on linear 
stochastic differential equations (SDEs) that describe the temporal dynamics of protein production rates (𝜋) and 
concentrations (𝜑), the growth rate (𝜆), and a parameter that reflects the metabolic activity to which the CRP system 
responds (𝑀)  (Fig. 2A).  
We explicitly modeled the expression of the C-sector (𝜋! and 𝜑!), the C-sector reporter (𝜋!"#$ and 𝜑!"#$), and the 
constitutive reporter (𝜋%!"#$ and 𝜑%!"#$). Note that the concentrations 𝜑 depend on the growth rate λ, as volume 
growth dilutes cellular components, while the production rates π do not. With this model, we hypothesize that intrinsic 
stochasticity in λ, π, and 𝑀, as modeled by independent Ornstein-Uhlenbeck noise sources, propagate through the 
network as defined by the interactions drawn in Fig. 2A, and quantified by coupling coefficients 𝑇. In particular, it 
surmises that the cAMP-CRP system propagates internal stochastic fluctuations in constant external conditions, as 
reflected in the parameter 𝑇&, which directs noise in 𝑀 backwards, to expression of the C-sector genes (Fig. 2A, purple 
interaction and purple box). This transmission involves fluctuations in metabolite abundance, cAMP synthesis and 
degradation, and CRP-mediated expression stimulation (Fig. 2A and SI).  

The resulting theoretical expressions can be fitted to the experimental data, which also allows one to estimate 
the transfer coefficients, time scales, and noise amplitudes. Here we focus on fitting the cross-correlation functions 𝑅, 
which quantify the correlation between two time series after one is shifted by a delay 𝜏 and give insights into how 
noise is transmitted within cellular networks13,23,25,26. For example, if noise in signal A affects a downstream signal B 
with a fixed time delay, the A-B cross-correlation peaks at a positive 𝜏.  

For WT cells, we found that the 𝜑!"#$ − 𝜆 correlation function (𝑅'!"#$()) is negative at 𝜏 = 0 (Fig. 2B), 
consistent with the negative slope between 𝜑!"#$ and 𝜆 (Fig. 1C). For cAMP-fixed* cells, 𝑅'!"#$() was positive at 𝜏 =
0 (Fig. 2B), consistent with the positive slope observed in Fig. 1D. A number of other features also became clear. For 
example, 𝑅'!"#$() and 𝑅'%!"#$() were not only negative in magnitude in WT cells, but also peaked at negative delays 
(𝜏 < 0) (Fig. 2B, right). In addition, both 𝑅'!"#$() and 𝑅*!"#$() were higher in cAMP-fixed* than in WT cells (Fig. 2B, 
top-right). The cross-correlation functions of the constitutive reporter nCRPr  for WT and cAMP-fixed* cells were overall 
very similar (Fig. 2B, bottom). 
 We simultaneously fitted 8 cross-correlation functions, covering WT and cAMP-fixed* cells, the two reporters 
CRPr and nCRPr, and the production rates 𝜋 and concentrations 𝜑 (Fig. 2B). To account for the cAMP-CRP feedback 
disruption, the corresponding transfer parameter 𝑇&  was constrained to negative values in WT cells but set to zero in 
cAMP-fixed* cells (Fig. 2A, red cross). All other parameters, including noise transfer parameters, noise amplitudes and 
timescales were constrained to having the same value for each of the 8 cross-correlation curves (see SI). Despite these 
strict fitting constraints, the model described the data quantitatively. In particular, it reproduced the shift for the CRPr 
reporter: from a negative 𝜑-λ correlation with a negative time delay for WT cells, to a nearly flat but slightly positive 
𝜑-λ correlation for cAMP-fixed* cells, and the lack of such a change for the nCRPr reporter (Fig. 2B). Hence, these 
findings indicate that the cAMP-CRP system actively modulates C-sector expression in response to internal metabolic 
fluctuations.   
 
cAMP-CRP noise circulation can be decomposed into distinct noise propagation modes.  
Next, we further analyzed the model to understand the underlying noise propagation mechanisms. As described above, 
we postulated coupled (stochastic) differential equations that reflect the stochastic and regulatory dynamics of the 
CRP-system, and mathematically derived expressions for the cross-correlation functions from this model. Further 
inspection of these expressions reveal that they are a sum of four noise modes, which we termed the catabolism, 
dilution, common, and regulation mode (Fig. 2C and SI). Each mode yields cross-correlation functions of a particular 
shape and exhibits an amplitude that depends on the amplitudes of the noise sources and transmission parameters; 
together the modes determine the overall cross-correlation function. The modes describe how emitted noise 
propagates along particular pathways to two quantities, and hence correlates them (Fig. S2). For instance, in the 
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catabolism mode, a stochastic increase in the production rate of a metabolic enzyme leads to higher enzyme 
concentrations sometime later, and subsequently to a higher growth rate. This mode thus contributes a positive peak 
at a positive delay time to the 𝜋-λ cross-correlation. In the dilution mode, stochastic increases in growth rate leads to 
increased dilution of all proteins, contributing to the 𝜑-λ correlation a negative contribution with a negative delay. The 
common mode is the result of fluctuations in general components that directly affect the protein production rate as 
well as the growth rate. Hence, this mode yields a symmetric 𝜋-λ cross-correlation, while having a negative delay for 

Figure 2. Mathematical model pinpoints dynamical role of regulation. (A) Cartoon of the mathematical model, which considers fluctuations in 
the growth rate (λ) and the production rates (π) and concentrations (φ) of the C-sector (πC and φC), the C-sector reporter CRPr, and the constitutive 
reporter nCRPr. Black arrows indicate noise transfer; only fluctuations in φC affect metabolism. Metabolism affects growth and protein 
productions rates. Regulation reacts to metabolic fluctuations and transfers to πC and πCRPr. In the mutant, regulation is removed (red cross). (B) 
Cross-correlation functions between the protein production rate π(t) and λ(t) (dashed lines) and between concentrations φ(t) and λ(t), in the wild 
type and the mutant. Colored lines are model fits, black lines are cross-correlations calculated from data (6 colonies for WT, with n = 3635 cells 
in total , and 4 colonies for cAMP-fixed*, with n = 6770 cells in total, see Table S2, and Figs. S5 and S7) and error bars indicate standard error 
(see SI sec 5.2), shown for only some data points. (C) Interpretation and shape of the underlying noise modes that are present in the model. The 
checks and crosses indicate whether a mode was included in the model’s fit for each experimental condition. The effect of keeping cAMP fixed is 
reflected by the removal of the regulation mode. Cartoons indicate the direction and route of noise transfer for each specific mode. 
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𝜑-λ because of the time needed to change concentrations. Lastly, the regulation mode represents noise transferred 
via the cAMP-CRP system. It shows how stochastic increases in metabolism and growth can transiently limit cAMP-CRP 
mediated activation of C-sector expression, yielding a symmetric but negative 𝜋-λ cross-correlation, as well as a delayed 
negative 𝜑-λ cross-correlation.  

The mathematical analysis moreover revealed that not all modes are present in each of the derived cross-
correlation functions (Fig 2C, lower table). Interestingly, just the absence and presence of noise modes can already 
help to qualitatively understand the shape of the experimentally measured cross-correlations for a specific reporter 
and strain (Fig. 2B-C). First, the analysis of our model suggests that the CRPr reporter cross-correlation contains a 
catabolism mode, whereas the nCRPr reporter does not. Note that, although neither reporter directly influences the 
growth rate, the C-sector reporter CRPr can be seen as a proxy for expression of the C-sector, which does influence the 
growth rate. Therefore, a part of the catabolism mode of the C-sector can be observed in the CRPr cross-correlations, 
but not in the cross-correlations for the constitutive reporter. Second, the regulation mode is only present in the cross-
correlations for the C-sector reporter CRPr in the wild type, because only this reporter is regulated via the cAMP-CRP 
regulatory network.  

We noted that the (cross-)correlations between 𝜑!"#$ and λ (Fig. 1C and Fig. 2B) and between 𝜑%!"#$ and λ 
(Fig. 1E, 2B) looked similar in WT cells. The mathematical analysis of the noise propagation model, however, indicates 
that they are composed of different modes (Fig. 2C).For the constitutive reporter nCRPr, in both WT and cAMP-fixed* 
cells, catabolism and regulation modes are absent and the main contribution comes from the dilution mode. Cross-
correlations of the C-sector reporter CRPr, on the other hand, additionally contain the catabolism and regulation 
modes, which largely cancel out, resulting in WT correlations with a shape similar to those of the nCRPr reporter. In 
the cAMP-fixed* cells, the negative regulation mode is absent in CRPr correlations, and the catabolism mode becomes 
visible, resulting in a positive (cross-)correlation.  

Taken together, these observations show that temporal dynamics can be modelled as a linear combination of 
modes, consistent with the idea that multiple cellular processes, including metabolism and regulation, shape cellular 
heterogeneity.  

 
Mechanistic model predicts noise propagation for  non-optimal C-sector expression.  
To further test the model, we sought to describe the effects of changes in the population-mean expression of the C-
sector. Hence, we examined cAMP-fixed cells with cAMP concentrations below and above the optimal value, here 
referred to as cAMP-fixedlow and cAMP-fixedhigh cells. Consistently, the measured population-mean expression of the C-
sector reporter CRPr was below or above that of cAMP-fixed* cells, respectively (Fig. 3A, black dots). Notably, the 
constitutive nCRPr reporter showed the opposite: the mean expression was higher in cAMP-fixedlow, and lower in 
cAMP-fixedhigh cells (Fig 3B, red and orange clouds). These observations are consistent with limitations to the size of 
the overall  
 
proteome within cells: when the C-sector becomes larger, the other proteins must decrease in abundance if the total 
is constrained2 (Figs. S10 and 3C). The slow growth of cAMP-fixedlow cells is consistent with the C-sector becoming 
growth-limiting when under-expressed, while the slow growth of cAMP-fixedhigh cells is in line with the metabolic costs 
of superfluously over-expressing the C-sector5,13,27. 
 Given these population-mean changes, the model (Fig. 2A) yielded several predictions for the stochastic 
dynamics. In the cAMP-fixedlow cells, the growth-limitation of the under-expressed C-sector should increase noise 
transfer from the C-sector enzyme concentration 𝜑+  to metabolism 𝑀, and on to the growth rate λ and protein 
production rates 𝜋 (Fig 3D, bottom-left). The associated increases in the transfer coefficients predict overall increases 
in the 𝜑-λ and 𝜋-λ correlation functions, owing to increased amplitude of the catabolism mode, while the dilution and 
common modes remain largely unchanged (Fig. 2C, S6A). We indeed observed that the CRPr correlations, which were 
positive for cAMP-fixed* cells, had further increased in magnitude, while the nCRPr correlations became less negative 
(Fig. 3D, S6A). These findings indicate that transient upward fluctuations in C-sector expression can alleviate metabolic 
bottlenecks caused by mis-regulated C-sector expression, which is on average below the optimum, and hence produce 
larger increases in growth rate than at optimal C-sector expression.  

In the cAMP-fixedhigh cells, the burden of superfluous C-sector expression implies that it now negatively affects 
metabolism and growth. The corresponding change from positive to negative values for the transfer parameter from 
𝜑C  to M (Fig. 2A) predicts 𝜑-λ correlations that are strongly negative (Fig. S6B, SI sec 5.2), as now only the weaker 
common mode yields positive correlations, while both the catabolism and dilution modes are negative (Fig. 2C). The 
𝜋-λ correlations are predicted to remain positive however, as 𝑀 couples to λ and 𝜋, which positively correlates them 
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(Fig. 2A). The experiments indeed showed strongly negative 𝜑-λ correlation (Fig. 3E, solid lines), while 𝜋-λ are positive 
or negligible (Fig. 3E, dashed lines), in line with these predictions (Fig. S6B). More quantitative fits (Fig. 3D, E) were 
obtained by increasing the noise amplitudes of the reporters, which decorrelates the signals (Fig. 3D, E, SI sec 5.2).  
Possibly, such changes in noise amplitudes are caused by changes in average expression levels and mean growth rate, 
as noise amplitudes tend to increase with the mean10,28,29. These experiments indicate that stochastic variations in 
superfluous expression can cause growth penalties, and that our model captures key aspects of the stochastic 
dynamics. 

The data also showed notable distinctions between population-mean and single-cell behaviors. For instance, 
regression lines through single-cells clouds (Fig. 3A and B, dashed lines) were typically not tangent to the curves 
through the population mean values (Fig. 3A and B, solid lines, Fig. S10). Moreover, they were even observed to differ 
in sign (Fig. 3B, orange cloud). It is also of interest to note that the trade-off between C-sector and other proteins, 
which we here also observe for the population mean (Fig. 3C), is not obeyed at the single cell level at high cAMP, as 
cells show stochastic expression increases in the reporters for both the C-sector and the other proteins (Fig. 3A and B, 
orange clouds). 
 

Figure 3. Excessive or insufficient cAMP dampens growth and changes noise-mode amplitudes. (A) Scatter plot of the C-sector reporter against 
the growth rate, under three conditions: low external cAMP (red cloud), optimal cAMP (green cloud, same condition as in Fig 1D, 2B), high 
external cAMP (orange cloud). Black dots indicate averages, dashed lines are linear regressions (extending 2 std to each side), black curve is a 
2nd order polynomial fit to the means. (B) Same as in B, but then for the constitutive reporter. Grey parabola is calculated from a sum constraint 
of both reporters (SI sec 7). (C) Cartoon showing how increasing the external cAMP concentration increases the size of the C-sector in the mutant 
strain, but represses other proteins. (D-E) Measured cross-correlations (grey lines with error bars indicate se) for both reporters for low cAMP (80 
µM) and high cAMP (2000 µM), together with model predictions (colored lines) resulting from minimal parametric changes compared to the wild 
type fit. Model cartoons (bottom panels) indicate changes in transfer parameters (green: increase, red: decrease) with respect to cAMP-fixed* 
cells (see SI sec 6.2). Data from two microcolonies is shown for low and high cAMP, with respectively n=1788, and n=2274 cells in total, Table S2. 
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Discussion 
It has become increasingly clear over the past decade that metabolic networks exhibit stochastic fluctuations13,15,17,30. 
Metabolic networks are also well known to contain numerous regulatory mechanisms that allow cells to react to 
external changes, which raise the question whether they also act in response to internal noise. Addressing it is critical 
to understanding whether metabolic homeostasis requires continuous regulatory adjustments, and to elucidating the 
functional relevance of known regulatory mechanisms. Here, we studied this issue for the cAMP-CRP metabolic 
regulation system, by experimentally disrupting noise transmission while maintaining the proper population mean 
activity. Using single cell measurements and mathematical modeling, we found that the cAMP-CRP system modulates 
the expression of the large group of metabolic enzymes called the C-sector in response to stochastic variations within 
the metabolic network. Our quantitative approach allowed us to reveal the complex noise circulation pathways within 
the cAMP-CRP system, which can nonetheless be dissected into distinct and additive noise propagation modes. The 
latter describe how cAMP-CRP noise regulation relates to catabolic activity, dilution by volume growth, and generic 
metabolic activity that couples expression and growth in dynamic terms.   

This work builds on a growing literature that studies noise in gene expression in the context of metabolism 
and growth13,26,31–36, as well as earlier, theoretical work that mainly focused on metabolic noise propagation within 
particular regulatory networks37–39 and their influence on expression noise. Our modelling framework was chosen to 
address noise propagation and feedback but is not well-suited to incorporate environmental changes. Modelling 
approaches that integrate both would help to further understand the differences between responses to external and 
internal variations. One may first establish the non-linear functions that describe the population-mean responses of a 
regulatory network to external variations, supported by bulk experiments that dynamically probe expression 
responses to environmental changes in growth media, antibiotics, or C-sector expression40,41. Whether the 
linearization of such functions properly predict the noise coupling under fixed environmental conditions is unclear. 
Deviations between the two could originate from differences in the timescales of the variations, how they relate to 
other fluctuations occurring simultaneously, or the different way in which they tax the overall proteome production 
capacity of the cell. More generally, there are still many important open questions about the extent to which cells 
continuously re-adjust their proteome and ribosome abundance in response to stochastic variations in cellular 
metabolism. 

While our phenomenological model reproduced the key experimental findings, it is interesting to speculate 
about relations to additional mechanisms. The C-sector is subject to global regulation, but each gene within it can be 
affected by intrinsic noise and other gene-specific variations, which contribute to heterogeneity in metabolite 
concentrations and metabolic fluxes17,42,43. Metabolic noise within our model therefore may be viewed as the 
compound result of the expression and resulting metabolic noise of many enzymes. Metabolic noise is detected by 
the cAMP-CRP feedback and transmitted backwards to the entire C-sector that drives metabolism. Hence, noise 
originating in many pathways can reverberate globally through the cell:   multiple cellular processes can transmit, 
modify and amplify metabolic noise, whatever its provenance, such that it becomes difficult to disentangle source 
from intermediary.  

While CRP is an important master regulator, many other secondary messengers and regulatory mechanisms 
in metabolic networks are known to respond to external growth conditions. For instance, (p)ppGpp is a crucial global 
modulator of protein expression, cellular growth, ribosome biogenesis, and cell size upon changes in growth media44–

46. The notion that metabolic regulation mechanisms can also serve to detect and transmit stochastic fluctuations of 
metabolites, as we show here, may well apply to these and other regulators. Since stochastic fluctuations could occur 
in any metabolite, including those that exert allosteric control, our findings suggest that noise may propagate through 
the cellular networks via diverse and complex feedback mechanisms. We surmise that an understanding of the 
elementary underlying mechanisms is critical to understanding how cells achieve metabolic homeostasis, as well as 
how they diversify into heterogenous populations. 
 
Methods 
Strains. All strains used were based on wild type strain MG1655 (CGSC 8003, bBT12). The CRPr and nCRPr promoters were based on the lac 
operon promoter, with respectively the lacI binding site or both lacI and CRP binding site scrambled5. To obtain the C-sector reporter (CRPr) and 
constitutive reporter (nCRPr), we fused these promoters to mCerulean and mVenus sequences respectively. The reporters where then inserted 
into the chromosomes of the bBT12 strain and a cyaA cpda null mutant strain constructed earlier (bBT80), using a lambda red protocol5. See 
Table S3 for strain details and Fig. S11 for promoter sequences. 
 
Bulk measurements. To determine growth rates of the cyaA cpdA null mutant strain (strain ASC1004, also referred to as cAMP-fixed) at different 
cAMP concentrations, this strain was inoculated from a freeze mix stock (kept at -80 C) into TY medium, and grown for several hours until 
exponential growth was achieved. The culture was then diluted (>1000x) into M9 minimal medium supplemented with 0.2 mM uracil, 0.1% 
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lactose, 800 μM cAMP and grown O/N to allow cells to adjust to the lactose medium. Subsequently, the culture was inoculated into separate 
wells each containing M9 medium with a different final concentration of cAMP (3.1 μM, 8.7 μM, 25.8 μM, 82.7 μM, 272.1 μM, 903.1 μM, 3004.3 
μM and 10001.3 μM cAMP, with identical supplements, on a 96 well plate). The samples were then grown for several hours in a Wallac 1420 
VICTOR3 Multilabel Counter (Perkin Elmer) to record OD values over time in triplicate. Everything was conducted at 37 C. 

Single cell experiments. Micro-colonies of cells were grown on gel pads, imaged under a microscope, and analyzed by computer as described 
earlier13,43. Briefly, polyacrylamide gel pads (approx. 5 mm x 5 mm x 1 mm in size) were pre-soaked in M9 minimal medium supplemented with 
lactose (0.01% g/mL), uracil (0.2 mM), Tween20 (0.001%) and the desired concentration of cAMP (Sigma Aldrich) if applicable. Pads were placed 
in a sealed glass chamber created by a microscope slide and a 2nd glass cavity slide, covered by a glass cover slip. Cells were pre-grown overnight 
in the same medium, and 1 µl of exponentially growing culture (OD 0.005) was then inoculated on the gel pad at the start of the experiment. 
Everything was done at 37 °C, and the glass chamber with pad and cells was then placed in a customized scaffold, and imaged under a microscope 
with a customized incubation chamber at 37 °C. For the WT, cAMP-fixedlow, cAMP-fixed* and cAMP-fixedhigh conditions, we respectively 
processed time series data from 6, 2, 4 and 2 micro-colonies. 
 
Microscopy. We used a Nikon, TE2000 microscope, equipped with 100X oil immersion objective (Nikon, Plan Fluor NA 1.3), cooled CMOS camera 
(Hamamatsu, Orca Flash4.0), xenon lamp with liquid light guide (Sutter, Lambda LS), GFP, mCherry, CFP and YFP filter set (Chroma, 41017, 49008, 
49001 and 49003), computer controlled shutters (Sutter, Lambda 10-3 with SmartShutter), automated stage (Märzhäuser, SCAN IM 120 x 100) 
and an incubation chamber (Solent) allowing precise 37 °C temperature control. An additional 1.5X lens was used, resulting in images with pixel 
size of 0.0438 µm. The microscope was controlled by MetaMorph software, which allowed us to automatically take pictures at set intervals. 
Image acquisition intervals were adjusted to doubling times to obtain multiple fluorescent images per cell cycle; phase contrast images were 
taken every 60-90 seconds, CFP and YFP fluorescent images (150-200 ms exposure time) were taken at intervals ranging from 13.5-26 minutes. 
 
Image analysis. Series of phase contrast images were analyzed with a custom Matlab (Mathworks) program originally derived from Schnitzcells 
software 47. Cells were segmented and tracked to follow cells and lineages through time. For each frame, cell lengths were determined by fitting 
a 3rd order polynomial to the curved segmentation regions. Cells were assumed to have a constant width. Growth rates (dbl/hr) were determined 
by fitting an exponential function to the cell lengths over multiple frames (5 to 9). To determine the production rate per volume, first the sum 
of the fluorescence signal (a.u.) over all pixels that make up a cell was calculated. If on frame n also a fluorescence image was taken, we then 
calculated the slope of a linear fit through three points n-l, n, and n+l (where l is the frame interval at which fluorescence pictures are taken), 
the resulting number is divided by the total number of pixels of the cell in frame n to obtain the production rate. Concentrations were determined 
by dividing the sum of the fluorescence signal by the total number of pixels in a cell. To determine scatter plots and correlations, only frames 
where fluorescence images were taken are considered.  
 

Cross-correlation analysis. We define the cross-correlation between signals f and g as 𝑅&,((𝜏) = 	𝑆&,((𝜏)/)	𝜎&)𝜎(), with  𝑆&,((𝜏) = 1/(𝑁 −

|𝜏|) ∑ 𝑓(𝑛)𝑔(𝑛 + 𝜏)*+|-|+.
/01 , where n equals discrete units of time as frame numbers, 𝜏 is a delay in number of frames, N the total number of 

time points in the data series and 𝜎&) the variance of f (equal to 𝑆&,&(0)). See the supplement for more details about data weights and statistics. 
  
Mathematical model. As mentioned, our model consists of stochastic differential equations, and includes parameters for the protein production 
rates (π), protein concentrations (ϕ), metabolism (M), and growth rate (λ), Ornstein-Uhlenbeck noise sources N and noise transfer coefficients 
T that couple equations for 𝑑𝜋/𝑑𝑡, d𝑀/𝑑𝑡,  and d𝜆/𝑑𝑡; concentrations are determined by 𝑑𝜑/𝑑𝑡 = 𝜋 − 𝜑𝜆. This model is solved analytically to 
predict cross-correlations between the quantities. See the supplement for an extensive description of the model, procedures to fit the model to 
experimental data, a statistical null model for the cross-correlations, and a toy model that describes the mean behavior of π, ϕ, and λ for CRPr 
and nCRPr in different conditions as observed in Fig. 3. 
 
Script and data availability. Single-cell data, Matlab scripts and Mathematica notebooks used to create all the figures can be request by the 
authors, and can be found at: 
https://github.com/Jintram/DynamicalRegulationBacterialCells. 
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