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ABSTRACT: Halide double perovskites, A2M
IMIIIX6, offer a vast chemical space for

obtaining unexplored materials with exciting properties for a wide range of applications.
The photovoltaic performance of halide double perovskites has been limited due to the
large and/or indirect bandgap of the presently known materials. However, their
applications extend beyond outdoor photovoltaics, as halide double perovskites exhibit
properties suitable for memory devices, indoor photovoltaics, X-ray detectors, light-
emitting diodes, temperature and humidity sensors, photocatalysts, and many more.
This Perspective highlights challenges associated with the synthesis and characterization
of halide double perovskites and offers an outlook on the potential use of some of the
properties exhibited by this so far underexplored class of materials.

Halide double perovskites, officially called elpasolites,
constitute a class of quaternary materials sharing the
general formula A2M

IMIIIX6 and have been known for
more than a century. This class of materials has recently gained
new interest when researchers from the halide perovskite
community proposed the semiconductor Cs2AgBiBr6 as an
alternative material with reduced toxicity compared to widely
investigated lead-based perovskites such as MAPbI3 (MA =
methylammonium) or CsPbBr3.

1−3 Another advantage of halide
double perovskites over common lead halide perovskites is their
higher stability under ambient conditions and high-intensity
illumination.4 The elpasolite crystal structure is similar to the
perovskite lattice (Figure 1a) but contains octahedra with a
monovalent MI (1+) and a trivalent MIII (3+) cation instead of
Pb2+, which are ordered in an alternating fashion. A related
crystal structure is the so-called vacancy-ordered perovskite,
alternating a quadrivalent (4+) cation and a vacancy at the M-
site. Given that the halide double perovskites contain twometals
instead of one, this class of materials offers a huge variety of
compositions,5−7 where in principle any combination should be
possible, provided that the tolerance factor and the octahedral
factor are satisfied.8 However, satisfying the geometrical
constraints of the tolerance and the octahedral factor alone
does not ensure thermodynamic stability against decomposition.
High-throughput first-principles calculations9 of the convex hull
energy (i.e., Gibbs free energy of the compounds at zero
temperature) of halide double perovskites with respect to
decomposition products reveal that the predicted stability of a
composition against its decomposition in byproducts is heavily

affected by the size of A, X, and MI elements, with minor effects
from the size of MIII. Higher stability can be achieved using
larger A+ cations (e.g., Cs+ is preferred over Li+) and smaller
halides (e.g., F− is preferred over I−), as predicted from
calculations on the lead-based counterpart. The stability trend as
a function of the MI size varies with the group of the periodic
table (e.g., Ag+ is preferred over Cu+). These calculations do not
account for geometrical factors and do not include the effects of
entropy and pressure. However, estimating the formation energy
(consisting of the atomization enthalpy, the ionization enthalpy,
and the lattice enthalpy) of the desired composition is a
powerful approach to predict its thermodynamic stability against
phase decomposition into other compounds.10 For the lead-
based perovskites, the stability of a composition increases when
moving from iodide to chloride due to an increase in the
ionization energy of the [PbX6]

− inorganic cage,11 similarly to
the trend of the convex hull energy. However, to assess the
thermodynamic stability against decomposition of such halide
double perovskites, further computational investigations should
be performed to evaluate the three terms of the formation
energy, especially to account for the presence of two types of
metals. The valence band maximum (VBM) of halide double
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perovskites is dominated by bonding orbitals of MIII (ns), MI

(nd), and X (np), whereas the conduction band minimum
(CBM) is formed by antibonding orbitals MIII (np) and X

(np).12 This is similar to most covalent semiconductors, such as
silicon or germanium, and group III−V or II−VI semi-
conductors, like GaAs and CdSe, respectively. Notably, in the
lead halide perovskites, both the VBM and CBM are composed
of antibonding orbitals, so that many crystallographic defects do
not initiate an electronic (trap) state in the bandgap. It is
therefore likely that the halide double perovskites are not as
defect-tolerant as their lead-based analogues, meaning that more
effort is needed to make these materials defect-poor.
Most of the experimentally reported halide double perovskites

contain chloride or bromide at the halide site, which have larger
bandgaps than their iodide analogues. Incorporating iodide is
more challenging because the size mismatch with the relatively
small trivalent cations limits the geometric stability.8 Lantha-
nides (e.g., Ce3+, La3+) could be at the MIII site used to meet the
radius ratio criterion and favor the formation of iodide-based

double perovskites.13 However, some of the bromide- and even
chloride-based double perovskites show suitable bandgaps for
photovoltaics (PV) applications,14 such as Cs2AgFeCl6
(experimental bandgap of ∼1.55 eV)15 and predicted
compositions like Cs2AgGaBr6 (expected bandgap of ∼1.37
eV). Precise bandgap tunability can be obtained when making
solid solutions of halide double perovskites, in which mixtures of
trivalent metals result in materials lattice parameters and
bandgaps intermediate between those of the “parent com-
pounds”.16,17 Figure 1b shows an example of a mixed indium−
iron double-metal perovskites, showing a substantial red-shift of
the absorption already at 1% iron.17 Interestingly, in solid
solutions, not only the magnitude but also the nature of the
bandgap can be tuned from direct to indirect and in between
(Figure 1c).18 Therefore, mixing trivalent metals in halide
double perovskites can serve as a strategy to design materials
with direct−indirect bandgaps. Such rationally designed direct−
indirect semiconductors could be useful to combine strong
absorption, driven by direct absorption transitions, with slow
recombination, characteristic for indirect bandgaps.13,18,19

Semiconductors with such extensive tunability are in sharp
contrast with silicon, which always exhibits an indirect bandgap
and does not allow for bandgap tunability, unless it is
nanostructured. On the other hand, III−V semiconductors
such as GaAs do offer tunability of the magnitude and nature of
the bandgap when gallium or arsenic atoms are partially replaced

Figure 1. (a) Crystal structure of halide double perovskites described by the formula A2M
IMIIIX6 , consisting of alternating corner-sharing

[MIX6] and [MIIIX6] octahedra shown in purple and green, respectively. Orange and dark green spheres represent the monovalent cation A+

(often Cs+) and the halide X−, respectively. (b) Photographs and normalized UV−Vis absorption spectra of Cs2AgIn1‑xFexCl6 (x = 0.00, 0.01,
0.04, 0.32, 0.71, and 1.00) crystals. Adapted from ref 17. Copyright 2021 Royal Society of Chemistry. (c) Schematic representation of the halide
double-perovskite band structure, showing changes in the magnitude (energy) and nature (indirect and direct) of the bandgap upon mixing
different trivalent metals, MIII and M′III.

Mixing trivalent metals in halide double
perovskites can serve as a strategy to
design materials with direct−indirect
bandgaps.
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by other elements from the same group. However, the narrow
choice of elements in groups III−V limits the achievable
combinations of magnitude and nature of the bandgap. Besides,
many III−V semiconductors contain scarce elements, while
halide double perovskites could, in principle, be made using
more abundant elements. So far, the PV community has mainly
focused on Cs2AgBiBr6, which, despite efforts, still shows poor
performance in solar cells (i.e., PCE < 3%).20 This is in part due
to the intrinsic limitation of weak sunlight absorption, because of
the large (2.2 eV) and indirect bandgap of Cs2AgBiBr6. On the
other hand, the performance of Cs2AgBiBr6 has been more
encouraging in other applications, such as X-ray detectors,21,22

due to its strong X-ray absorption. Finally, this class of materials
has potential in the field of photocatalysis,23,19 where large
bandgaps may be necessary to drive certain photoredox
reactions, or indoor photovoltaics, where the incident light
matches better with the absorption spectrum.
In comparison with lead halide perovskites, there are several

challenges associated with solution-processed fabrication of
halide double perovskites. In the first place, more precursors are
needed, and most of the halide salts (MIX and MIIIX3) exhibit
poor solubility in solvents commonly used for lead-based
perovskites, such as dimethylsulfoxide (DMSO) and N,N-
dimethylformamide (DMF). In addition, the monovalent A-site
cation (i.e., Cs+) has been found to be difficult to tune while
satisfying the tolerance factor24 and achieving thermodynamic
stability, limiting studies on the impact of the A-site on the
optoelectronic properties in these materials. Similar challenges
are associated with the synthesis of compositions where
mixtures of monovalent metals MI or halides can be used as
an alternative route to achieve bandgap tunability of these
materials. Whereas several compositions have been reported
experimentally in the form of powders and single crystals,13

there are only a few examples of halide double perovskites in the
form of thin films.4,25,26 Considering that thin films are most
suitable for spectroscopic measurements such as transient
absorption, photoluminescence, and time-resolved photo-
conductivity, it is not surprising that the most studied
composition, Cs2AgBiBr6, coincides with the most soluble
double-perovskite composition in DMSO. The solubility of the
precursors is one of the main bottlenecks for rapidly obtaining a
comprehensive understanding of this class of materials. Solid-
state synthesis techniques (such as ball-milling or oven-based
powder synthesis) may provide a route to circumvent this issue.
Ball-milling involves vigorously shaking a vessel containing
stainless steel balls that continuously bump with each other and
the walls of the vessel, crushing and mixing the material within.
During these collisions, depending on the type of mill and the
operation frequency, a large amount of energy is transferred to
the raw materials, intensifying the diffusion processes in solids
and accelerating the chemical reactions. This allows these
chemical reactions to be performed at low temperatures.27 The
resulting double-perovskite powders can be dissolved and spin-
coated or deposited on substrates using dry techniques such as
physical vapor deposition (PVD)28 and pulsed laser deposition
(PLD).29 These dry deposition techniques are useful to obtain
near-stoichiometric transfer of multi-compound materials with
any desired film thickness. Drawbacks of using solid-state
synthesis techniques like ball-milling are the incomplete reaction
of precursors and the poor control of the crystallite size, which is
an important parameter for manipulating the optoelectronic
properties of such materials. Thus, investigations on the
synthesis products as a function of the milling conditions (i.e.,

frequency and time) and the effects of introducing chemical
additives to control the kinetics of the crystallization should be
conducted to make full use of this synthetic strategy. Another
challenge in the solution-based fabrication of such halide double
perovskites is that the low-dimensional, non-conductive, 3:2:9
phase (e.g., Cs3Bi2Br9) is thermodynamically favored,30 thus
competing with the elpasolite phase (i.e., Cs2AgBiBr6). The
3:2:9 phase consists of face-sharing double-layered [Bi2Br9]

3−

octahedra. A fingerprint for identifying the 3:2:9 phase is the
presence in the X-ray diffraction pattern of the reflection31 at
∼8.7° (2θ), corresponding to the (001) plane. High-temper-
ature synthesis of Cs2AgBiBr6 has been shown to lead to the
formation of the 3:2:9 phase and elemental silver.32 This
formation of Cs3Bi2Br9 is favored under bromide-poor
conditions and during synthesis at high temperature (e.g.,
bottom-up synthesis). The presence of a reducing environment
in combination with the low standard reduction potential of
silver may facilitate the formation of elemental silver. In
solution-based synthesis routes, effective strategies to control
the formation of the desired composition rely on the control of
the precursor stoichiometry; e.g., using an excess of bromine
may suppress the formation of the 3:2:9 phase. Alternatively,
performing the synthesis in an oxidative environment and/or
carefully controlling the pH could also be used to hinder the
formation of undesired phases. Despite the high-energy bandgap
and low carrier mobility exhibited by 3:2:9 phases, such
materials have been demonstrated to be promising candidates
as photocatalysts for several reactions, such as ring-opening of
epoxides,33 photodegradation of dyes,34 and photoreduction of
carbon dioxide to carbon monoxide and methane at the gas−
solid interface.35 Nevertheless, very few compositional varia-
tions of this 3:2:9 phase have been reported, most of them
showing different metals at the bismuth position.36

To exploit a successful technological deployment of halide
double perovskites, a comprehensive assessment of the
fundamental properties as functions of the synthesis route and
composition is vital. Of particular interest are understanding and
controlling the role of defects, which have been shown to
underpin the limitations in device operations as in any other
semiconductor.37,38 Most of the reported halide double
perovskites show weak and very broad photoluminescence
spectra that are substantially red-shifted (up to 1 eV) with
respect to the absorption onset. This is in sharp contrast with the
lead-based perovskites that show strong, narrow photo-
luminescence at the band edge. Temperature-dependent
photoluminescence and absorption have been used to get
insight into the origin of the absorption features and broad
photoluminescence spectra in halide double perovskites. Due to
the bonding VBM and anti-bonding CBM of halide double
perovskites, the absorption bandgap blue-shifts on lowering the
temperature. In contrast, no change or minor red-shifts in
photoluminescence have been observed for Cs2AgBiBr6,
accompanied by a slight narrowing of the emission line width
(∼20 meV).39 For some of the halide double perovskites (e.g.,

Performing the synthesis in an oxida-
tive environment and/or carefully con-
trolling the pH could also be used to
hinder the formation of undesired
phases.
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Cu2AgBiI6,
40 Rb4Ag2BiBr9

41), even more complex low-temper-
ature spectra have been observed, showingmultiple peaks also in
the near-infrared region of the spectrum. The origin of the
emission feature is still heavily under debate. The blue-shift of
the absorption onset observed upon lowering the temperature,
combined with the minor red-shift of the emission, suggests that
likely these emission features do not share a common origin, and
therefore, photoluminescence is not associated with band-to-
band recombination of free charge carriers. Several mechanisms
have been proposed, and the most common ones are
schematically represented in Figure 2. One of the mechanisms
proposes the dynamic formation of self-trapped charges or
excitons (i.e., small polaron), promoted by the strong electron−
phonon coupling, that subsequently diffuse to color centers42

(i.e., a vacancy occupied by an electron that gives rise to
transitions that absorb and emit light in the visible spectrum),
causing broad emission (Figure 2a). Related to defects,
intervalley scattering has also been suggested as the origin of
low-energy emission, where a rapid transition (∼10 ps) from an
indirectly to a directly bound exciton leads to the recombination
of indirectly bound excitons and electrons with trapped holes.43

The formation of such strongly bound excitons is promoted by
the formation of stable shallow defects such as Ag+ vacancies
(intrinsic defects) that leads to localization of holes in the
valence band.44 Another origin of the emission in these materials
could be the presence of stationary color centers (Figure 2b).
Local inhomogeneities in the distribution of the MI or MIII can
also be responsible for the formation of local emissive states45

with sub-bandgap energies (Figure 2c). In fact, defect bands can

be engineered by manipulating the distribution of the metals to
produce local domains with different MI/MIII ratios.46 For
example, whereas intermediate bandgaps are obtained on

mixing, e.g., Bi3+ and In3+, the significant red-shift observed for
the incorporation of only 1% iron (Figure 1b) would suggest the
presence of a defect band or local domains with high
concentrations of Fe3+/In3+ ratio rather than an intermediate
bandgap. Such inhomogeneities could be interrogated at the
nanoscale by optical, structural, and analytical techniques which
include spatially resolved photoluminescence, time-of-flight
secondary-ion mass spectrometry (TOF-SIMS),47 nano X-ray
diffraction (nano-XRD), and electron back-scattering diffraction
(EBSD).48 Spatially resolved photoluminescence could poten-
tially probe local emissive domains within the perovskite film,
but only if these are micrometer-sized. Another limitation of
such photoluminescence-based techniques is related to the
accumulation and recombination of charges in the low-energy
emissive states, providing only a limited picture in the case of an
inhomogeneous electronic landscape. TOF-SIMS can provide
information about the uniformity of the elemental distributions
through the depth of the film. However, one significant
limitation is the complex relationship between the intensity of
the signal and the concentration of the probed elements, which
makes absolute quantification difficult. Nano-XRD can
efficiently probe the existence of separated phases consisting
of metal-enriched domains, provided that the resolution is
sufficient to distinguish the diffraction signal of different metal-
enriched domains. The local distribution of those inhomogene-
ities could be measured by high-resolution EBSD that allows for
the identification of different crystal phases with high spatial
resolution (∼10 nm at low current doses) and characterizations
of the grains, their size, and their shape. EBSD could even
discriminate between compounds with the same crystal
structure but different elemental composition if combined
with an energy-dispersive X-ray (EDX) detector. Interestingly,
the spatially resolved approach of EBSD can be complementary
to other local techniques to correlate the nanoscale structural
and optical or electrical properties. In semiconductors, the
presence of structural inhomogeneities and defects also has huge
implications on the charge carrier mobility. In Cs2AgBiBr6 and
similar materials, initially after photoexcitation, charges with
decent mobilities (∼12 cm2/(V·s)) can be generated,42 but

Figure 2. Schematic representation of the proposed mechanisms behind the origin of the photoluminescence in Cs2AgBiBr6 and similar
materials. (a) Due to the high electron−phonon coupling, the photogenerated exciton could be trapped by the lattice in small polarons. These
self-trapped excitons could then diffuse to a color center and emit. (b) The presence of a vacancy occupied by an electron could result in a
transition that absorbs the light used for excitation and emits in the visible region of the spectrum. (c) Inhomogeneities in the metals
distribution could result in the formation of local domains with different MI/MIII ratios (circled), and thus multiple emissive domains.

The vast chemical space offered by
halide double perovskites exhibits
potential for a plethora of applications
beyond photovoltaics.
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these lose mobility within tens of nanoseconds, leading to poor
electron and hole transport.25,49 Defect engineering would make
it possible to improve the majority carrier mobility of such
materials, as already shown in vacancy-ordered perovskites50

such as Cs2SnI6. Here, it is hypothesized that n-type conductivity
originates from iodine vacancies that serve as electron donors,
leading to dark conductivities comparable to those in CsSnI3.

51

The suitable bandgap of Cs2AgBiBr6 for indoor PV,
52 together

with its improved stability and reduced toxicity compared to
lead-based halide perovskites, makes it worth investigating
whether trap densities in this material could be reduced to an
acceptable value (i.e., less than 1015 cm−3). It would therefore be
of interest to study this class of materials with ultrafast X-ray
absorption spectroscopy to reveal the dominant defect state53 or
to use highly sensitive X-ray techniques to probe local
heterogeneities for different compositions and synthesis routes
through extended X-ray absorption fine structure (EXAFS).54

Optimizing synthesis routes through varying the type of
precursor, the solvent, the temperature, or the pressure, or by
adding passivating molecules, could then ideally make it possible
to prepare halide double perovskites with enhanced perform-
ance. However, it will be trickier for this class of materials than
for lead-based halide perovskites, where most intrinsic defects
do not result in intra-bandgap states. On the other hand, the
presence of trap states may turn out to be beneficial for some of
the envisioned applications of halide double perovskites. As an
example, the non-mobile charges in Cs2AgBiBr6 have a
spectacularly long lifetime, exceeding tens of microseconds.55

If these long-lived charges reside at the surface of the crystallites,
these may, depending on their absolute energy, be used for
photoredox chemistry. Although some promising first results
have been obtained in this research area,23 the use of halide
double perovskites for photoredox catalysis has been largely
underexplored. The vast chemical space offered by halide double
perovskites exhibits potential for a plethora of applications
beyond photovoltaics, including lasers, photocatalysts, humidity
and temperature sensors, memory devices, and X-ray detectors
(Figure 3). The exciton binding energy on the order of a few
hundred meV56 reported for Cs2AgBiBr6 and similar materials
discourages applications where long-range transport is required,

but local exciton separation can serve as a strategy to facilitate
their use in photovoltaics and photocatalysis. Such local exciton
separation could be achieved by using halide double perovskite
nanocrystals decorated with metals or connected to metal−
organic frameworks, or by making more complex structures or
blends of donors/acceptors. In addition, further investigations
are needed to assess the binding energy of compositions suitable
for photovoltaics (e.g., Cs2AgFeCl6). On the other hand, high
binding energies are promising for display and lighting
applications (e.g., LEDs) where they, along with direct
bandgaps, promote efficient radiative recombination. Another
route toward highly emissive materials involves the introduction
of a continuous bandgap gradient by local tuning of the
composition, e.g., low-band-gap inclusions. This smart light
management approach could enhance the photoluminescence
quantum yield (PLQY), as already demonstrated for lead-based
layered two-dimensional (2D) perovskites and segregated
mixed-halide perovskites.57

In general, the compositional variation of A2M
IMIIIX6

reported so far is only the tip of the iceberg, and this class of
materials offers enormous potential to design materials for
targeted applications. One example is the design of (ferro)-
magnetic perovskites by incorporating metals such as iron,58

neodymium,59 nickel, or cobalt.60 Such materials could be
relevant for next-generation high-speed and low-power-
consumption information technology (i.e., spintronics) or for
optomagnetic and magnetoelectric applications (e.g., sensors
and memory devices), where the magnetization (or polar-
ization) can be controlled by an external field.
Thermochromic applications could benefit from the strong

electron−phonon coupling and spin−orbit coupling effects in
halide double perovskites, paving the way toward the design of
smart windows, temperature sensors, and visual thermome-
ters.61 Yet, the heat transport properties of these materials are
barely reported.62 Another exciting future route includes the
incorporation of lanthanides in double halide perovskites.63,64

Lanthanides (Ln) have been well-known for their applications as
highly sensitive temperature sensors, in lasing, and in non-linear
optics such as up-conversion. Several examples of the
incorporation of Ln3+ ions, such as Yb3+,65 Ho3+,66 and Eu3+,67

have already been reported. Colloidal quantum dots and
nanostructures of the most promising halide double perovskites
could be used to further tune the optoelectronic properties and
the stability of such materials.68 Finally, although some 2D
compositions have been recently reported,69 systematic and
representative explorations on this class of materials are still
largely underrepresented. We suspect that the incorporation of
large organic moieties to induce the formation of two-
dimensional (2D) halide double perovskites has huge potential,
since specific functionalized spacers70 (e.g., photoactive,
electroactive, chiral) that are responsive to various stimuli can
serve as platforms for advanced functions in future smart
nanotechnologies.69

Figure 3. Schematic summary of the potential applications of halide
double perovskites.

Another route toward highly emissive
materials involves the introduction of a
continuous bandgap gradient by local
tuning of the composition.
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