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Corner modes of the breathing kagome lattice: Origin and robustness
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We study the non-trivial phase of the two-dimensional breathing kagome lattice, displaying both edge and
corner modes. The corner localized modes of a two-dimensional flake were initially identified as a signature
of a higher-order topological phase but later shown to be trivial for perturbations that were thought to protect
them. Using various theoretical and simulation techniques, we confirm that it does not display higher-order
topology the corner modes are of trivial nature. Nevertheless, they might be protected. First, we show a set of
perturbations within a tight-binding model that can move the corner modes away from zero energy, also repeat
some perturbations that were used to show that the modes are trivial. In addition, we analyze the protection of the
corner modes in more detail and find that only perturbations respecting the sublattice or generalized chiral and
crystalline symmetries, and the lattice connectivity, pin the corner modes to zero energy robustly. A destructive
interference model corroborates the results. Finally, we analyze a muffin-tin model for the bulk breathing kagome
lattice. Using topological and symmetry markers, such as Wilson loops and Topological Quantum Chemistry,
we identify the two breathing phases as adiabatically disconnected different obstructed atomic limits.
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Among the two-dimensional lattice structures, the kagome
lattice has gained increasing interest due to the variety of
phases that it can describe [1]. These phases range from
frustrated antiferromagnets to spin liquids [2–5]. The kagome
lattice has been realized in several experimental setups, such
as optical lattices [6–8], mechanical, electrical, and acoustic
metamaterials [9–11], and even colloidal crystals [12,13]. An-
other interesting platform where the kagome lattice has also
taken an important role is photonic crystals [14–17]. Concepts
like band topology or bulk-boundary correspondence have
allowed light propagation without backscattering even with
disorder in bosonic systems [18,19]. If the system has robust
corner modes, they will behave as stationary cavity modes
in the corners of the photonic crystal. The robustness against
perturbations was claimed be due to higher-order topological
protection [10,20–22].

A recent experimental realization of the kagome lattice
(and the one that inspires this work) is in the framework of
artificially designed electronic lattices [21]. This technique
has its origin in the manipulation of adatoms on metallic sur-
faces [23]. The idea is to confine the surface state of the metal,
which behaves as a two-dimensional electron gas (2DEG), by
means of a user-defined potential that patterns an antilattice.
The theoretical framework used in this work is known as the
muffin-tin technique. In this article, we study the breathing
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kagome model [20], which is a kagome lattice with alternating
intra- and intercell hopping amplitudes. A key feature of this
system is the realization of a phase that exhibits corner local-
ized zero-energy states in finite-size samples. Throughout the
paper, we will call this phase nontrivial since it does not cor-
respond to the same setup as a trivial phase. However, it does
not contain topologically protected features. We perform this
choice to distinguish this special phase from the trivial one,
which is a regular insulator that does not display any corner or
edge modes [24]. This nontriviality will be addressed further
in the text and will be given a proper definition by means of
topological markers.

The protection of such corner modes was addressed in
Ref. [10]. There, it was claimed that a tripartite generaliza-
tion of the chiral symmetry protects the zero-energy corner
modes in the breathing kagome model. Subsequently, this
concept was adopted by Refs. [14,21,25–29]. However, the
authors of Ref. [30] explicitly showed that the corner modes
in the breathing kagome lattice can be moved away from
zero energy by applying a local perturbation respecting the
three-fold rotational symmetry, the mirror symmetries, and the
generalized chiral symmetry. In other words, the generalized
chiral symmetry alone does not protect the corner modes. In
addition, it was shown that the corner modes of the breathing
kagome lattice can be understood by a destructive interference
solution, based on the concept of destructive interference pre-
sented in Refs. [31–33].

Our main result here is that the two breathing phases corre-
spond to different atomic limits, one with trivial polarization,
and the other with nontrivial polarization. In the literature,
we frequently find that the topological characterization using
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FIG. 1. The breathing kagome model. (a) Lattice model with three sublattice sites A, B, and C, and hopping parameters ta and tb. The
black triangles represent the 1a Wyckoff position, the blue triangles represent the 1b Wyckoff position, and the empty triangles represent the
1c Wyckoff position. The lattice sites fall on the 3d Wyckoff positions, represented with green circles. (b) Band structure of the kagome model
for the breathing (solid lines) and nonbreathing (dashed lines) phases. Notice that the nonbreathing phase is gapless at the K and K′ points.
The corresponding values of ta = 0.38tb and tb = 0.075 eV are obtained from Ref. [21] by fitting the bands calculated within the tight-binding
approach with the ones derived using the muffin-tin method. This corresponds to δ ≈ −0.45 and t0 ≈ 52 meV. (c) Spectrum of a finite-size
lattice and (d) zoom-in for low-energy scale. For δ < 0, threefold-degenerated energy eigenvalues can be found pinned at zero. (e), (f), (g)
Exponential decay of the wave function for δ = −0.5 in the bulk, edge, and corner, respectively. In the last three panels, the size of the dots is
set for convenience proportional to |ψ |0.2.

the electric polarization leads to classifying the system as
a higher-order topological insulator (HOTI). However, we
do not find any topological feature in the latter phase af-
ter applying other more specific tools. Hence, the electric
polarization alone cannot be used as a topological marker.
We characterized the two phases using well-established and
complementary tools found in the literature, specifically the
Wilson loop spectrum [34] and topological quantum chem-
istry [24]. The same tools have been used as well in the field
of topological photonic crystals [35], and acoustic metama-
terials [36], confirming the universality of this techniques to
diagnose topological phases.

This article is structured as follows: in Sec. I, we introduce
the simplest tight-binding formalism describing the breathing
kagome lattice. We recall several concepts of group theory
allowing the characterization of the symmetry properties of
the breathing and nonbreathing phase. In Sec. II, we review
the concept of generalized chiral symmetry according to the
literature. We study its properties by introducing perturba-
tion terms to the tight-binding Hamiltonian that respect/break
both generalized chiral symmetry and spatial symmetries in
order to determine whether the modes are (i) corner local-
ized and (ii) pinned to zero energy. We find a set of rules
that ensure the degeneracy and localization of the corner
modes. In Sec. III, we complement the previous section an-
alyzing the corner modes in terms of destructive interference.
Within this approach, we will confirm the results obtained
in Sec. II. Finally, in Sec. IV we investigate the breathing
kagome lattice using a muffin-tin formulation, which accounts

for all the possible hopping terms. The two phases of the
system are characterized by computing the Wilson loop spec-
trum and by applying the topological quantum chemistry
framework.

I. THE BREATHING KAGOME MODEL

The breathing kagome is a two-dimensional lattice with
alternating strong and weak hopping in a kagome pattern [20].
In Fig. 1(a), we show the unit cell and the choice of lattice
vectors that we will consistently use in this work. The unit
cell contains three sites, labeled A, B, and C, respectively.
When considering two-dimensional systems and within the
single-particle description, the physics of both electrons and
photons is identical. In this way, tight-binding methods can be
applied to photons in the same way that they can be applied
to electrons, regardless of the bosonic/fermionic nature of the
particles. In the simplest tight-binding formulation, where we
consider only nearest-neighbor hopping terms, the Hamilto-
nian in reciprocal space reads

Ĥ =
⎛
⎝ 0 ta+ tbeik·a3 ta+ tbeik·a2

ta+ tbe−ik·a3 0 ta+ tbeik·a1

ta+ tbe−ik·a2 ta+ tbe−ik·a1 0

⎞
⎠, (1)

with ta and tb the hopping parameters, k the crystal momen-
tum, and a1,2 = (± 1

2 ,
√

3
2 ) and a3 = a2 − a1 = (−1, 0) the

lattice vectors. The Hamiltonian (1) is expressed in the basis
� = {ψA, ψB, ψC}T, where T represents the transposition. We
show in Fig. 1(b) the band structure for a periodic lattice
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both in the breathing phase (ta �= tb) (solid lines) and in the
canonical phase (ta = tb) (dashed lines). Figure 1(c) presents
the energy bands of a finite-size lattice obtained using the
following parametrization of the hopping amplitudes: ta,b =
(1 ± δ)t0 with t0 < 0. The parameter δ is the breathing factor:
it allows us to study the different phases of the breathing
kagome lattice by changing its sign. Additionally, we consider
a finite-size triangular flake of the breathing kagome lattice
with a size of 630 lattice sites, or 20 unit cells along the
side of the triangle. For δ = −1, the fully dimerized case
is recovered, and the corner modes remain at zero energy.
Upon increasing the dimerization parameter they eventually
hybridize with the bulk modes. Figure 1(d) reveals that the
corner modes are truly pinned to zero energy, with no features
in the spectrum. Figures 1(e)–1(g) show the spatial localiza-
tion of selected states for δ = −0.5, revealing the existence of
bulk, edge, and corner modes, respectively. For the case of the
corner modes—Fig. 1(g)—we notice that the wave function
has nonzero weight in only one sublattice (A, B, or C). The
breathing kagome has two different phases, one featuring
zero-energy corner-localized modes and edge modes (δ < 0)
and one where such modes are absent (δ > 0), separated by a
gapless one (δ = 0).

In the following, we will give a short summary of the sym-
metry properties of the model. The canonical kagome lattice
(δ = 0) belongs to the space group p6mm (No. 183 in the ITA
[37]), characterized by a sixfold symmetry (point group C6v)
that closes the gap at the K and K′ points in the first Brillouin
zone—see dashed lines in Fig. 1(b). After introducing the
breathing distortion, the C6 symmetry is broken, and we arrive
at a different space group for the breathing kagome lattice,
i.e., space group p3m1 (No. 156 in the ITA [37]). This space
group is a subgroup of p6mm and has a threefold rotation
operation (point group C3v), which opens the gap at the K and
K′ points—see solid lines in Fig. 1(b). The group/subgroup
relation between p6mm and p3m1 affects the naming of
the Wyckoff positions [38–40]. For this specific case, the
2b Wyckoff position of p6mm splits into two nonequivalent
Wyckoff positions of p3m1, i.e., 1b and 1c, both with point
group C3v . This distinction will be crucial for studying the
topological character of the bands, which will be discussed in
Sec. IV, along with a better understanding of the closing and
opening of a gap, in terms of group theory. Additionally, the
symmetry of the 3c Wyckoff position, now called 3d , reduces
from C2v to Cm. Figure 1(a) shows these Wyckoff positions
distributed in space. We have used symbols with the same
symmetry as the point group of the Wyckoff position. In the
case of the 3d Wyckoff position, we have used a circle for sim-
plicity due to the reduced symmetry of this Wyckoff position.

II. THE GENERALIZED CHIRAL SYMMETRY
AND ITS BREAKING

The idea of the generalized chiral symmetry for the breath-
ing kagome model follows the same line of reasoning as the
chiral symmetry in the Su-Schrieffer-Heeger (SSH) model
[41–43]. It should be noted that chiral symmetry, also known
as sublattice symmetry, is not a symmetry operation: instead
of commuting with the Hamiltonian, chiral symmetry anti-
commutes with it. Nevertheless, we will continue naming this
operation chiral symmetry throughout the text, so as done in

the literature. To introduce the generalized chiral symmetry
for the case of the kagome lattice, we use the Bloch Hamil-
tonian (1), and define H1 = Ĥ. The kagome lattice is not a
bipartite lattice; it has an odd number of lattice sites in the
unit cell, as opposite to the one- and two-dimensional SSH
models, which show an even number of lattice sites. Here, we
repeat how to generalize the chiral symmetry for a unit cell
containing three sites, in line with Ref. [10]. The generalized
chiral symmetry is defined as some operator �3 that satisfies

�−1
3 H1�3 = H2, (2a)

�−1
3 H2�3 = H3, (2b)

H1 + H2 + H3 = 0. (2c)

When combining the last equation with the previous two, it
follows that �−1

3 H3�3 = H1. Following this reasoning, the
generalized chiral symmetry introduced in Eqs. (2) is com-
pletely analogous to the chiral symmetry of the SSH model
[43]. However, in this case [H1, �

3
3] = 0, which implies �3

3 =
I3 and the eigenvalues are given by 1, exp[±2π i/3]. There-
fore, up to a unitary transformation, we can write

�3 =
⎛
⎝1 0 0

0 e2π i/3 0
0 0 e−2π i/3

⎞
⎠. (3)

Furthermore, we now have three eigenvalues to consider (H1,
H2, and H3 each have the same eigenvalues ε1, ε2, and ε3,
since the Hamiltonians differ by a unitary transformation). By
taking the trace of Eq. (2c), we find

Tr[H1 + H2 + H3] = 3Tr[H1] = 0, (4)

where we used the first two lines of Eqs. (2) and the fact
that the trace is cyclic. This means that the sum of the three
eigenvalues vanishes, ε1 + ε2 + ε3 = 0.

Now, the same reasoning could apply to the eigenstates.
However, there is one crucial difference. If H1|ψ〉 = ε1|ψ〉,
with |ψ〉 an eigenstate, the wave functions �3|ψ〉 and �2

3 |ψ〉
are not necessarily also eigenstates of H1. In the SSH chain,
this relationship is guaranteed by the relation H1 = −H2. This
does not hold for the generalized chiral symmetry, since

H1�3|ψ〉 = �3H2|ψ〉, (5)

and since |ψ〉 is not per se an eigenstate of H2, it is not proven
that �3|ψ〉 is an eigenstate of H1. Therefore, the generalized
chiral symmetry does not work in the same way as the chiral
symmetry, and there is no guarantee that a zero-energy mode
will remain pinned to zero.

In the last part of this section, we will study the influence
of perturbations on the electronic structure of a finite-size
triangular flake, similar to what was done in Ref. [30]. Note
that this shape preserves the C3v symmetry. Figure 2 sums up
all the perturbations that we have studied, showing a close
up of the spectrum around zero energy and the local density
of states of the corner mode in the upper corner of the flake.
To facilitate the visualization of the localization of the wave
function at the corner, the size of the dots is proportional to
|ψ |0.2. We classify all these perturbations into four groups:

(i) global perturbation that breaks all possible
spatial/crystalline symmetries, Fig. 2(a);
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FIG. 2. Set of perturbations that have been studied to detect the protection mechanisms of the corner modes. Each panel display the close-up
of the spectrum plus the localization in real space of the wave function, thus, a visualization of the local density of states. (a) Random disorder
in all lattice sites; (b) perturbation breaking generalized chiral symmetry, thus connecting lattice sites of the same species; (c) perturbation
connecting second-order nearest neighbors; (d) perturbation connecting third-order nearest neighbors; (e) perturbation connecting fourth-order
nearest neighbors; (f) long-range local perturbation with different sign; (g) long-range local perturbation with same sign; (h) and (i) influence of
the size on the average, in absolute value, of the corner modes on each of the perturbations. Panel (h) has a logarithmic scale due to exponential
localization.

(ii) global perturbation that breaks generalized chiral sym-
metry, Fig. 2(b);

(iii) global perturbations that respect generalized chiral
symmetry and the crystalline symmetries, and couple beyond
nearest-neighbor sites, Figs. 2(c) to 2(e);

(iv) local perturbations applied on the corners as in
Ref. [30], Figs. 2(f) and 2(g).

In Fig. 2(a), we add random on-site energies, ranging be-
tween 0 and 0.2t0, in all the lattice sites (bulk, edges, and
corners). We only show a single possible realization of ran-

dom on-site energies, after finding similar results for several
different disorder realizations. This perturbation breaks all
possible spatial symmetries, while preserving the connectivity
of the kagome lattice. This means that the generalized chiral
symmetry is preserved in terms of connectivity, but spatial
symmetries are no longer mapping the lattice to itself. We
observe that the corner modes are neither pinned to zero en-
ergy nor degenerate; each one departs from zero at a different
energy, even in the fully dimerized case. If we look at the
localization of the mode around the corner, we see that the
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wave function has nonzero weight in the three sublattices, and
that each circle has a different diameter as a consequence of
the breaking of the symmetries. This may not be distinguished
easily in the plot, but was confirmed numerically.

Figures 2(b) to 2(g) show other types of perturbations: we
introduce new hopping terms that change the connectivity
of the lattice, while preserving both C3v and/or generalized
chiral symmetry. The intensity of those hopping term has been
set to the same value of the maximum random on-site energy
(0.2t0) used in Fig. 2(a). In Fig. 2(b), we show a perturba-
tion that couples sites of the same sublattices, thus breaking
generalized chiral symmetry. As soon as we depart from the
fully dimerized case, the corner modes are no longer pinned at
zero energy, but they are still degenerate, since the flake is C3v

symmetric. Again, the wave function has nonzero weight in all
three sublattices, but this time the size of the circles is related
by the mirror symmetry that maps the corner to itself (vertical
mirror). Figures 2(c) to 2(e) show different choices of long-
range hopping terms in increasing order of neighbor coupling
(2nd, 3rd, and 4th, respectively), which preserve both gener-
alized chiral symmetry and C3v symmetries. In Fig. 2(c), the
lattice site placed in the corner is unperturbed by this choice
of hopping, and thus the spectrum is very similar to Fig. 1(d).
However, the wave function shows nonzero weight in the three
sublattices due to the different connectivity. Only the case in
Fig. 2(e) respects the connectivity of the lattice sites with the
same strength of hopping (closed triangle connecting A, B,
and C) [44]. This connectivity is the same as in the unper-
turbed kagome lattice, but in a longer range. Indeed, the wave
function shows nonzero weight in just one sublattice (to which
the corner site belongs). The corner modes are tightly pinned
to zero and are threefold degenerate. Including longer-range
perturbations of this type gives rise to the same behavior. This
is the same rule of localization that we described in Sec. I
for the unperturbed lattice. This perturbation leaves the corner
modes untouched (for a sufficiently large sample).

In the case of Fig. 2(d), the perturbation also preserves the
spatial symmetries, but couples the corner to the bulk and does
not respect the connectivity of the kagome lattice. Hence, the
wave function shows nonzero weight in different sublattices
and the corner modes move away from zero energy (although
not as quickly as for some of the other perturbations). The
cases in Figs. 2(f) and 2(g) correspond to the perturbations
introduced in Ref. [30], which are used as immunity checks
for the robustness of the corner modes. These are long-range
hopping amplitudes s1 and s2 applied locally at the corners.
We have studied two different configurations: in Fig. 2(f)
the spectrum is generated using s1 = −s2, with |s1| = |s2| =
0.2t0, while the spectrum in Fig. 2(g) is generated using the
same sign for the perturbations. The perturbation shown in
Fig. 2(f) leads to degenerate modes, which are however no
longer pinned to zero energy (not even in the fully dimer-
ized case). When using the same sign for the perturbation
[Fig. 2(g)], the modes are degenerate and located at zero en-
ergy in the fully dimerized case, but move away as δ increases.
In both cases, the wave function is delocalized over all three
sublattices. These perturbations respect the generalized chiral

symmetry and the C3v symmetry of the flake, but are applied
only locally to the corners.

Finally, we present in Figs. 2(h) and 2(i) the evolution of
the energy of the corner modes of the different perturbations
with increasing size of the flake—the absolute value in the
case of panel (i). We plot the average of the three closest-
to-zero eigenvalues versus the number of unit cells along
the edge of the flake. In certain cases, some of those values
were negative or positive, sometimes some were degenerate,
but in any case very close to zero. In Fig. 2(h), we show
the influence of size on the unperturbed breathing kagome
lattice and perturbation shown Fig. 2(e). These two systems
are the only two with corner modes that fulfill the localization
rule; hence, they exhibit a similar behavior. The differences
between those two lines can be ascribed to different overlaps
of the corner modes. This change of the overlap is associated
with longer-range perturbations included in the model.

Figure 2(i) represents the remaining perturbations (the rest
of the hopping terms and random on-site energies). Some of
the perturbations pin the corner modes to values different
from zero: perturbations (b) and (f) clearly pin the modes
away from zero; perturbation (c) pins the modes very close
to zero, while (d) and (g) are a bit away from zero. Finally, the
light blue curve—perturbation (a)—shows the evolution of the
energies of the flake with random on-site energies. In order to
perform this calculation, we generated 20 configurations for
each size, and then, we took the average of the energies of
the corner modes. We see a 1/N evolution of the eigenvalues,
where N is the total number of unit cells. This precise evo-
lution suggests that for small sizes, the corner modes are not
pinned to zero due to poor localization. In the thermodynamic
limit, where N → ∞, the long tails of the modes will eventu-
ally remain isolated, even if the intercell hopping is not zero,
and thus the corner modes reach the on-site energies of the
corner.

In addition to these results, we refer to the supplementary
material of Ref. [21] for a similar study of the perturbation
of the corner modes. In the field of photonic crystals, we
refer to Ref. [22] for a similar analysis of the robustness of
corner modes in a photonic breathing honeycomb lattice. In
addition, in the field of plasmonics, we refer to Ref. [29] for a
realization of the breathing kagome lattice in such framework,
as well as for a study of robustness of corner modes. We
refer to Ref. [45] and the supplementary material of Ref. [46]
for a complementary study of the robustness of the corner
modes in waveguide arrays. Finally, other geometries may
also host robust corner modes, as is the case of Refs. [47–50].
In these geometries, chiral symmetry, in addition to spatial
symmetries, yields to a further protection of the corner modes.

III. DESTRUCTIVE INTERFERENCE INTERPRETATION
OF THE CORNER MODES

A different way to interpret the zero modes in the breathing
kagome lattice is by considering them as due to destruc-
tive interference [31–33]. To illustrate this approach, we
will follow Ref. [31]: we start by considering the case of a
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one-dimensional (1D) bipartite lattice with two sites in the
unit cell, A and B, such as the SSH chain. When considering
a Hamiltonian in which the A sites only couple to one B site,
it is possible to find a wave function that completely localizes
on the A sublattice due to destructive interference.

In this perspective, the nontrivial phase of the SSH model
can be understood in terms of destructive interference. To de-
scribe the zero-energy modes of the breathing kagome lattice
within this approach, we will start by analyzing destructive
interference in a SSH-like model. In fact, the model of de-
structive interference admits an analytical solution if the chain
starts and ends with the same type of lattice site, e.g., A
[33,51]. In order to find the zero-energy wave function that
interferes destructively on the B sublattice, we use the ansatz

|ψ〉 = Ni

M∑
m

rm
i c†

Ai,m
|0〉, (6)

where r is a complex number describing the wave function
decay, Ni a normalization constant, M the total number of unit
cells, and c†

Ai,m
creates an electron on an A site of cell i.

If the A sites only couple to the B sites and vice versa, the
Hamiltonian for this 1D lattice with open boundaries reads

H1D =

⎛
⎜⎜⎜⎜⎜⎝

eA tA,B 0 0 0
t†
A,B eB tB,A 0 0
0 t†

B,A eA · · · 0

0 0
...

. . . tB,A

0 0 0 t†
B,A eA

⎞
⎟⎟⎟⎟⎟⎠

, (7)

where eA(B) is the on-site energy for the A (B) lattice site, and
tA,B and tB,A are the intra- and interhopping terms between the
lattice sites. We can rewrite Eq. (6) as

|ψ〉 = (1, 0, r, 0, r2, 0, r3, . . .)T
, (8)

localized only on the A sites, where we have omitted the
normalization factor. The action of Hamiltonian (7) on this
wave function is

H1D|ψ〉
= (eA, t†

A,B + rtB,A, reA, r(t†
A,B + rtB,A), . . . , eArM )T.

(9)

From this equation, it is clear that if t†
A,B + rtB,A = 0, the wave

function (8) is an eigenstate of H1D with eigenvalues eA. It has
the property that the weight on the B sites is 0 and there is a
decaying wave function with energy eA only on the A sites.
We find r = | − t†

A,B/tB,A|, and this mode is localized on the
left of the chain if r < 1, and on the right if r > 1. In the case
of the SSH model, eA = eB = 0, tA,B = ta, and tB,A = tb. We
find r = | − ta/tb|, leading to the well-known localization of
the zero mode on one side of the lattice [33]. This is true if the
unbroken cell is on the right edge; the condition is reversed if
the unbroken cell is on the opposite edge. A sketch of this
wave function is given in Fig. 3(a). This feature seems to
indicate that once the lattice with open boundaries is “long
enough,” these exact solutions of the wave function can be
used to describe the zero modes of the SSH (even though
in the SSH model the sites at the beginning and end of the
chain are different). Note that these zero modes are now only

FIG. 3. Destructive interference models. (a) In the case of the
1D chain, the probability is finite only in the A sublattice site and
decays as (−ta/tb)2n, where n is the unit-cell index. (b) The breath-
ing kagome rhombus. Due to destructive interference, there is a
wave function that has zero amplitude on the B and C sublattices
and a finite amplitude on the A, where the probability decays as
(−ta/tb)(2m′ ) along m (and analogously along m′), whereas it de-
cays as (−ta/tb)2(m+m′ ) along m + m′. In all the panels, we have set
t2 = 2t1.

present when ta < tb (the nontrivial phase) because we can
then map the zero mode of the SSH model to the one at the
end of the chain discussed above. This cannot be done in the
trivial phase, where the eigenstate is not starting at the end of
the chain [33]. In this perspective, one does not need to invoke
chiral symmetry and also when the on-site energy of a site is
increased to E = ε [43], there will still be these exponentially
decaying modes at energy ε.

We now follow the analysis in terms of destructive
interference to the breathing kagome model [32]; the two-
dimensional nature of the wave function leads to two indices
m and m′ in Eq. (6). The wave function is therefore

|ψ〉 = Ni

M∑
m

M ′∑
m′

rm
i r′m′

i c†
Ai,m,m′ |0〉. (10)
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The Hamiltonian for the breathing kagome lattice can be
expressed as parallel 1D chains coupled to each other via
the intermediate site C, Fig. 3(b). The Hamiltonian for this
breathing kagome rhombus reads

HM,M ′ =

⎛
⎜⎜⎜⎜⎜⎝

H1D tAB,C 0 0 0
t†

AB,C eC tC,AB 0 0
0 t†

C,AB H1D · · · 0

0 0
...

. . . tC,AB

0 0 0 t†
C,AB H1D

⎞
⎟⎟⎟⎟⎟⎠

, (11)

where H1D is the same as for Eq. (7) with tA,B = ta and tB,A =
tb, eC is the matrix of the on-site energy of the site C, and tAB,C

and tC,AB are the rectangular matrices containing the hopping
elements connecting the 1D chains to the C sites. These are
given by

tAB,C =

⎛
⎜⎜⎜⎜⎜⎜⎝

ta 0 0 0
ta 0 0 0
0 ta 0 0
0 ta · · · 0

0
...

. . . 0
0 0 0 ta

⎞
⎟⎟⎟⎟⎟⎟⎠

(12a)

and

t†
C,AB =

⎛
⎜⎜⎜⎜⎜⎜⎝

tb 0 0 0
0 tb 0
0 tb 0 0

0
...

. . . 0
0 0 0 tb
0 0 0 tb

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12b)

In this way, the coupling between A and B or C is alternating
ta and tb. Using the same analysis as before, we observe that
ta + rtb = 0 and ta + r′tb = 0 for these exact wave functions,
leading to

|ψ〉 = Ni

M∑
m

M ′∑
m′

(−ta
tb

)m(−ta
tb

)m′

c†
Ai,m,m′ |0〉. (13)

The real amplitude of such a wave function is shown in
Fig. 3(b). The rhombus-shaped flake, adopted from Ref. [11],
allows having the same sublattice in each corner, in order
to follow the same approach as in the SSH model explained
previously. The three lower panels of Fig. 3(b) show the am-
plitude of the wave function along three different directions
inside the flake. Along m and m′ the weight of the wave
function in the sublattice different from the one in the corner
is always zero. The case of m = m′ is a consequence of the
geometry, since we only find sublattice sites of the same
kind as in the corner. Within this setup, we can generalize
the hopping parameters connecting the sites by making them
different. However, this will only add to the complexity of
the model without changing the physics. The key point is that
we can always find a solution for a decaying wave function
with coefficients determined analytically. A more interesting
approach is to determine which additional hopping terms
preserve the corner mode at zero energy. We consider all
the hopping parameters indicated in Fig. 4 (see Appendix A
for the explicit expression of the Hamiltonian for a lattice

(a) (b)

FIG. 4. Set of hopping terms that lift (a) or preserve (b) the
corner modes pinned to zero energy. Although they are only shown
on the lower-left corner of the flake, these hopping terms can be
established between any m and m′ layers.

containing 21 sites). For simplicity, we show in Fig. 4 only the
hopping terms between the first three unit cells in the bottom
left corner of the flake, but they extend to all the lattice. It turns
out from the analysis on this lattice (in which we placed an A
site in each of the corners of this breathing kagome rhombus
[32]) that only the hopping terms indicated in green preserve
the energy of the corner modes, whereas the hopping terms in
red change the energy of the corner modes (i.e., there is no
consistent solution when we include the red hopping terms).
To summarize, all hopping terms between the sites B and C
preserve the corner mode energy and additionally one can
connect A and B and A and C in the direction m and m′,
respectively (in the same way as in the SSH chain). However,
one cannot connect an A site with another site (A, B, or C)
when these sites are in different chains: m and m′ are both
different. This analysis is fully consistent with the numerical
analysis for a lattice containing 630 sites presented in Fig. 2.
Note that in order to have zero modes in the triangle (with a
different sublattice in each corner), we can only have the NNN
hopping terms along m (connecting A to B) or m′ (connecting
A to C); all other perturbations will remove the zero mode
since they connect the sublattice of the corner mode with a
different site and hence the destructive interference is gone.
We note in passing that the destructive interference method
has been recently extended to the case of lattice systems
characterized by a non-Hermitian Hamiltonian [52].

IV. THE MUFFIN-TIN METHOD

In this final section, we will analyze the experimentally
realized breathing kagome lattice (Ref. [21]) in more detail.
The experiment has been theoretically analyzed with two
complementary theoretical approaches: the muffin-tin method
and an extended tight-binding approach. The former method
describes a specific class of experiments, where a 2DEG on
a surface of noble metals is patterned by molecules or atoms
arranged in a precise and periodic fashion [21,53–55]. Specif-
ically, in the experimental setup of Ref. [21], the 2DEG is
the surface state hosted by the (111) surface of Cu, and it
was decorated with a set of CO molecules adsorbed at certain
positions, with the help of the tip of a scanning tunneling mi-
croscope [54]. The muffin-tin method does not involve atomic
orbitals or species, nor chemical bonds between them. The
lattice sites are built with artificial interacting quantum dots
(also known as artificial atoms [56]) connected by hopping
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(f)

FIG. 5. Summary of the results obtained for the muffin-tin calculation of the canonical/breathing kagome lattice. The overall legend affects
the three cases, while each column has its own legend for the Wyckoff positions, which are called differently due to the group/subgroup relation.
Potential wells defining the unit cells for the nonbreathing (a) and breathing phases (c), (e). The Wyckoff positions have been represented with
an element with the same symmetries as in the point group associated with each Wyckoff position: hexagon, C6v , triangle, C3v , and ellipse,
C2v . In the case of the 3d Wyckoff position, we have used a circle for simplicity due to the reduced symmetry of this Wyckoff position (the
point group associated is Cm, which includes just mirror and identity). Upper corner of a finite-size sample of kagome lattice; nonbreathing
(b) and breathing phases (d), (f). Panels (g) to (i) show the corresponding band structures plus the irrep assignment at each high-symmetry
point. Finally, panels (j) to (n) show the Wilson spectra obtained for the first three bands of each configuration.

amplitudes which are always long range and modeled by po-
tential wells or barriers. This long-range hopping amplitudes
can be fitted to nearest, next-nearest, etc., hopping terms in a
tight-binding model. This property suggests that the muffin-
tin method always takes into account all the possible hopping
terms between all the lattice sites, namely those respecting
generalized chiral symmetry and those which do not. Only the
spatial symmetry of the potential will affect the properties of
the 2DEG.

A. Muffin-tin potentials for canonical/breathing kagome lattices

To study the breathing kagome lattice, we have considered
three different configurations of CO molecules, accounting for
the canonical gapless phase and the two breathing ones. Each
molecule is modeled by a cylinder of radius a and height V0

placed at position rn:

Vn(r) =
{

V0 > 0, if |r − rn| < a,

0, otherwise.

The full landscape is the superposition of the potential
of each molecule. The design of the potential well is done
by placing CO molecules forming the negative image of the
lattice (a muffin tin). Once the potential well defining the unit
cell is built, the full lattice is constructed by translating it along
the direct lattice vectors a1 and a2. We will be able to work
with s-like or p-like orbitals, which allow us to study more
complex interactions [54,57]. Practically, this is achieved by
changing the size of the potential wells, which brings the
energy levels up or down. In Figs. 5(a), 5(c), and 5(e), we
show the choice of unit cells that have been used to build the
corresponding potential that reproduces the canonical kagome
lattice, and the two breathing phases, respectively. We refer
the reader to Appendix B for a step-by-step tutorial on how
to reproduce the canonical and breathing phases using CO
molecules on top of a Cu(111) surface. Many other choices
can be realized, either by changing the molecule setup, or
choosing different lattice vectors or different origins. We use
configurations symmetric with respect to the mirror plane m1̄1
centered either at the 1b or at the lower 2b Wyckoff posi-
tions, depending on whether we work with p3m1 or p6mm,
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respectively. Such geometric locus represents the center of
mass of the three lattice sites inside the choice of unit cell,
as well as the center of “positive” charge [58]. Once the
potentials are built up, we solve the Schrödinger equation by
expanding the potential in Fourier components in reciprocal
space [59]. By obtaining the coefficients of such expansion,
we can reconstruct the band structure and the Bloch wave
functions for the three different configurations. In Figs. 5(g),
5(h), and 5(i), we show the band structures along the high-
symmetry path. In the bulk, the two setups of molecules are
related by a m11 mirror passing through the upper lattice site
(geometric transformation). This explains why the eigenval-
ues of the two phases are the same. We nevertheless expect
the eigenstates to behave differently, so we will distinguish
these two phases via topological and symmetry markers, such
as Wilson loops, bulk polarization, and topological quantum
chemistry.

Within the single-particle picture, we may find a straight-
forward analogy with photonic crystals, since the mathemat-
ical description of a muffin-tin experiment and the setup of
a two-dimensional photonic crystal has many things in com-
mon. On the one hand, with periodic boundary conditions,
both muffin-tin potentials and photonic crystals are solved
by means of a plane-wave expansion of a differential secu-
lar equation: the Schrödinger equation in the former, with a
periodic potential, and Maxwell’s equation in the latter, with
a periodic dielectric function [35,60]. In both cases, we end
up with an eigenvalue problem for the coefficients of such
expansion. On the other hand, with open boundary condi-
tions, such differential equations are solved inside a finite-size
domain.

B. Wilson spectrum analysis of the phases: Wannier center and
bulk polarization

We study the topological properties of the breathing
kagome lattice using the Wilson loop operator. This method is
widely used in the literature to distinguish topological phases
[34,35,61]. The spectrum of the Wilson operator allows to
determine the topological character of a band structure, de-
pending on its behavior. If the Wilson spectrum shows a
winding as a function of momentum k, the system is topolog-
ical, and the Wilson spectrum is connected to the value and
sign of the corresponding Chern number characterizing the
band structure. Conversely, if the Wilson spectrum is mapped
to a constant value then the band structure shows trivial topol-
ogy and the system is in an atomic limit. We will use these
definitions later in the text (see Sec. IV C).

In order to introduce the Wilson spectrum, we first define
the Wilson loop operator as the path ordered integral of the
Berry connection along a certain path �. For an isolated band,
the Wilson loop operator between k points (k1, k2) and (k1 +
2π, k2) is expressed as

W n
(k1+2π,k2 )←(k1,k2 ) = P exp

{
−i

∫
�

d� · An

}
, (14)

where n is the band index, the symbol P represents path
ordering operation, and � is the path between points (k1, k2)

and (k1 + 2π, k2). The Berry connection is defined as

An(k1, k2) = −i〈un(k1, k2)|∇k|un(k1, k2)〉,
where |un(k1, k2)〉 is the periodic part of the Bloch eigenfunc-
tion.

We work with the discrete version of Eq. (14) by dis-
cretizing the reciprocal space along the two reciprocal space
directions [35], with Nk reciprocal lattice points along each
direction. The Wilson line connecting two momenta along
the reciprocal space vector b1 is W n

(k1+δk,k2 )←(k1,k2 ) = 〈un(k1 +
δk, k2)|un(k1, k2)〉, so the total Wilson loop from � to � + b1

is just the product of all these contributions,

W n
(k1+2π,k2 )←(k1,k2 ) = W n

b1
(k2)

= 〈un(k1 + 2π, k2)|
Nk−1∏
j=1

P
(
k j

1, k2
)|un(k1, k2)〉, (15)

where k j
1 = j|b1|/Nk for j = 1, . . . , Nk − 1 and P (k1, k2) is

the projection operator P (k1, k2) = |u(k1, k2)〉〈u(k1, k2)|. If
we are dealing with a composite group of Nocc occupied bands,
Eq. (15) still applies, but the Wilson lines have band indices,
so the Wilson line/loop becomes non-Abelian: W mn

k+δk←k =
〈um

k+δk|un
k〉, where m and n range in all the occupied bands. At

this point, the path ordering operation is crucial, since we are
dealing with non-Abelian Wilson lines. Once the non-Abelian
Wilson loop operator is built, we take the phases of the spec-
trum of this matrix to arrive at an equivalent result as given by
Eq. (15).

Since the Wilson loop along b1 is a function of k2, we can
evaluate the Wilson loop for all the steps in the discretization
along k2. This is called the Wilson spectrum, and it is related
to the shifting of the Wannier center along the a2 direction.
Due to m1̄1 symmetry, the Wilson spectrum along b1 is the
same as along b2, and so will be the Wannier center [61]. The
position of the Wannier center is totally equivalent to the value
of the bulk polarization, since the Wannier center represents
the center of the negative electronic cloud. For Cn-symmetric
insulators, the bulk polarization is a Zn-quantized topological
invariant [62–65], where n is the order of the rotation that
characterizes the space group. In our case, we expect to find
a Z3 index for the breathing phases due to the C3v symmetry
of the lattice. In the case of the canonical kagome lattice, the
bulk polarization is always zero.

In order to compute the position of the Wannier center
or, equivalently, the bulk polarization, we write the eigen-
value equation of the Wilson loop as Wb1 (k2)|ν j

1 (k1, k2)〉 =
eiν j

1 (k2 )|ν j
1 (k1, k2)〉, where ν

j
1 (k2) is the component of the Wan-

nier center of the jth Wannier function along the a1 direction.
Taking e = 1, and using the fact that the lattice vectors are
related by the mirror b1, the polarization can be expressed as
P = p(a1 + a2), where

p = 1

2πNk

Nk∑
j=1

Nocc∑
m=1

νm
1,2

(
k j

2,1

)
, mod 1, (16)

that is, the average of the (non-Abelian) Wilson spectrum
along the reciprocal lattice vectors [66]. We have charac-
terized the first three bands of the canonical and breathing
kagome lattice by means of the Abelian/non-Abelian Wilson
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loop, respectively, since the rest of the bands are very high
in energy. We obtained different values for p for the three
different phases. Figures 5(j) to 5(n) show the Wilson spectra
obtained for the three different phases. In the case of the
canonical kagome lattice, we obtain a value of p = 1/6, which
places the Wannier center at position r = (a1 + a2)/6. Given
the basis of lattice vectors, we can state that the Wannier
center is located at the 3c Wyckoff position, precisely where
the lattice sites are placed. Since inside the unit cell there are
three equivalent 3c Wyckoff positions, there are three Wannier
centers located at the orbit [67] of the 3c Wyckoff position.
Since the average position of the Wannier center lies at the
origin of the unit cell, there is no displacement in the charge,
and the polarization is thus zero (even if the computed value
is above zero).

For the breathing sets of molecules, we obtained p = 0 for
the trivial phase and p = 1/3 for the nontrivial phase. These
two values allow us to locate the Wannier center at the 1b
Wyckoff position for the trivial phase and at the 1c Wyck-
off position for the nontrivial phase. This result is expected
because in the trivial phase the intracell hopping is stronger
than the intercell, and thus the surface state concentrates more
around the 1b Wyckoff position. This results in a Wannier
center placed at the origin, thus coinciding with the center of
positive charge (at the 1b Wyckoff position). Similarly, in the
nontrivial phase, the surface state concentrates more around
the 1c Wyckoff position, yielding a negative charge center out
of the center of positive charge at 1b Wyckoff position. In
the case of the composite group, we obtain exactly the same
Wannier center as the isolated band, for each of the breathing
phases. The filled star in Figs. 5(a), 5(c), and 5(e) represents
the Wannier centers of the first three bands obtained via the
Wilson spectrum. In Fig. 5(a), the empty stars are the Wannier
centers generated by the orbit of the 3c Wyckoff position.

The results that we have obtained are general, since we
have performed the Wilson spectrum calculation using wave
functions coming from the plane wave expansion of a poten-
tial, not from a tight-binding Hamiltonian. In this way, our
Wilson spectra account for all possible hopping terms between
lattice sites, and their behavior depends only on the symmetry
properties of the lattice.

C. Topological quantum chemistry interpretation

To conclude, we will use a different approach to study
the topological features of a system, which is based on the
symmetry eigenvalues of the Bloch wave functions at high-
symmetry points in the reciprocal space. Topological quantum
chemistry [24] is a powerful theory, which allows us to clas-
sify and diagnose topological phases of matter based solely on
group theory arguments. Each high-symmetry point in the first
Brillouin zone has a set of operations that leaves this k point
invariant, called little group Gk. All little groups are subgroups
of the full space group. For a given band structure, at each
k point and band index n, we can associate an irreducible
representation (irrep) of the corresponding little group, which
represents the symmetry properties of the nth wave function
at such k point. If a set of N degenerated bands touch at a
certain high-symmetry point, the dimension of the associated
irrep must be N .

The set of irreps at each k point is induced by an object
called band representation. A band representation is a repre-
sentation of the space group that is induced (↑) by an irrep
of the point groups Gq of the so-called maximal Wyckoff
positions. These are the Wyckoff positions, the point group
of which is a maximal subgroup of the space group. In this
way, the topology of a system is fully determined by the irreps
of the maximal Wyckoff positions of the space group alone.
The symmetry properties are then translated from real space,
by inducing (↑) a certain band representation in real space,
to reciprocal space, by particularizing the band representation
at each k point, a process called subduction (↓). Elementary
band representations also have dimension, and it is related as
well to the number of bands conforming the whole composite
group.

Once we have obtained the band representation, we may
look at the position of the Wannier center from where the
band representation is induced. If the Wannier center lies
on an occupied maximal Wyckoff position, then the system
corresponds to a trivial atomic limit, where all the hopping
terms are switched off and the orbitals are unperturbed by
their neighbors. On the other hand, if the Wannier center
lies on an unoccupied maximal Wyckoff position, the system
corresponds to an obstructed atomic limit phase.

We have characterized the canonical kagome lattice and the
two breathing phases according to the symmetry eigenvalues
and the Wannier centers that we obtained through the Wilson
spectrum calculation. Starting from the canonical kagome lat-
tice, the irrep assignment shown in Fig. 5(g) is compatible
with the three-dimensional band representation (A1 ↑ G)3c,
induced from the 3c Wyckoff position. This band representa-
tion is three-dimensional because there are 3 bands touching
in total. The canonical kagome lattice corresponds to a trivial
atomic limit because the Wannier center lies at an occupied
maximal Wyckoff positions (lattice sites). The band structure
shows features that correspond to a C6v-symmetric lattice; i.e.,
the gap closes at K and K′ points. This can be understood
from symmetry arguments: the little group of the K, K′ points
in p6mm is C3v , which shows two one-dimensional irreps
(A1, A2) and a single two-dimensional irrep (E ) (see Table I).
For a set of three bands belonging to the p6mm space group,
two of them will always be degenerate due to the fact that they
must transform under such two-dimensional irrep (E ).

After breaking the C6 symmetry by introducing the breath-
ing distortion, the symmetry of the space group is reduced
to p3m1. In reciprocal space, the little group of the K,
K′ points reduces from C3v to C3. Since C3 does not have
two-dimensional irreps, the two-dimensional irrep from C3v

decomposes into irreps of the new little group, which trans-
lates into a gap opening of the Dirac cones at the K and
K′ points. This decomposition can be studied from compat-
ibility relations in the respective k points after a symmetry
reduction, revealing the pure symmetry origin of this split-
ting. Figure 5(h) corresponds to the band structure of the
trivial breathing phase with zero bulk polarization. The lowest
band assignment is compatible with the band representation
(A1 ↑ G)1b, which is one-dimensional, and the upper two are
compatible with the band representation (E ↑ G)1b, which
is two-dimensional. Both representations come from the 1b
Wyckoff position, which is maximal, and coincides with the
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TABLE I. Symmetry properties of the maximal Wyckoff po-
sitions (MWP) and k points involved in the quantum simulator
approach of the canonical/breathing kagome lattice. Symbols Gq and
Gk correspond to the point groups of the Wyckoff positions and k
vectors, respectively.

Real space

p6mm (#183) p3m1 (#156)
MWP (q) Gq Irreps MWP (q) Gq Irreps

3c C2v A1, A2, 1b, 1c C3v A1, A2, E
B1, B2

Reciprocal space
p6mm (#183) p3m1 (#156)

k point Gk Irreps k point Gk Irreps
� C6v A1, A2, � C3v A1, A2, E

B1, B2

E1, E2

K, K ′ C3v A1, A2, E K, K ′ C3 A,1E ,2E
M C2v A1, A2, M Cs A′, A′′

B1, B2

result obtained via the Wilson spectrum approach. Due to
the fact that at this maximal Wyckoff position there is a CO
molecule, this is an unoccupied maximal Wyckoff position
[68] and thus the phase is in an obstructed atomic limit [24].
Finally, Fig. 5(i) shows the band structure and irrep assign-
ment for the nontrivial phase with nonzero bulk polarization
and corner states. The band representations in this case are
(A1 ↑ G)1c for the lowest band and (E ↑ G)1c for the upper
group of bands. As in the previous case, the Wannier cen-
ter lies in an unoccupied maximal Wyckoff position, so the
nontrivial phase corresponds to a different obstructed atomic
limit.

We find a similar setup in the SSH model: the trivial phase
shows a Wannier center in the middle of the intracell link (the
origin), which would correspond to a Wilson loop eigenvalue
equal to zero (in 1D there is no concept of Wilson spectrum).
In contrast, the nontrivial phase shows a Wannier center on
the edge of the unit cell, which corresponds to a Wilson loop
eigenvalue of 1/2 [61]. In terms of atomic limits, the two
phases are obstructed atomic limits separated by a band inver-
sion, and thus cannot be connected adiabatically. One of them
is trivial, in the sense that it displays zero bulk polarization and
no corner modes, whereas the other phase is nontrivial in the
sense that it displays a nonzero bulk polarization and corner
modes. The following diagram shows their connection:

Breathing phase with Wannier center in 1b

(obstructed atomic limit, trivial bulk polarization)


Canonical phase with Wannier centers in 3c

(trivial atomic limit, trivial bulk polarization)


Breathing phase with Wannier center in 1c

(obstructed atomic limit, nontrivial bulk polarization)

V. DISCUSSION AND CONCLUSION

We have studied the different phases of the breathing
kagome lattice from four complementary perspectives. We
start by tuning a dimerization parameter that we have intro-
duced between the intra- and intercell hopping terms in a
tight-binding Hamiltonian. When this parameter is set to zero,
we recover the traditional kagome lattice, which has a gapless
spectrum. When the dimerization parameter changes sign, a
band inversion occurs at the K and K′ points and the two
breathing phases are distinct, while showing the same spectral
properties.

A finite-size flake of the nontrivial phase has bulk, edge,
and corner localized modes. These edge modes appear in
the bulk gap. However, for realizing a true higher-order
topological insulator, the bulk gap should host only corner
modes. Hence, the breathing kagome lattice does not encode
higher-order topology. To study the origin, symmetries, and
properties protecting such corner modes, we have introduced
several perturbations to the nontrivial phase of a finite-size
triangular-shaped flake using a tight-binding formalism. We
have chosen this geometry to ensure that the sample respects
the C3v symmetry group of the lattice. We have shown that the
corner modes are trivial, and that three ingredients are needed
to pin the modes to zero energy, and to localize a corner state
at one sublattice. First of all, the symmetries imposed by the
space group should be respected. Breaking spatial symmetries
would lead to, for example, nondegenerate corner modes, as
we saw by introducing random on-site energies in the flake,
while respecting the kagome pattern [see Fig. 2(a)]. Second,
we cannot connect sites belonging to the same sublattice; i.e.,
this is the same as preserving generalized chiral symmetry,
which strongly affects the way in which the modes move away
from zero, as we saw in Fig. 2(b). Finally, the connectivity
between lattice sites of different species must be done in a
consecutive way, constructing a closed triangle of vertices
ABC [see Fig. 2(e)]. Importantly, if and only if these con-
ditions are fulfilled, the corner modes are truly localized in
the corner sublattice, tightly pinned to zero. We have also
confirmed that these rules can be extended up to second, third,
etc., nearest neighbors while increasing accordingly the size
of the flakes. Otherwise, the corner modes would move away
from zero due to overlap.

We have found similar rules of localization of corner
modes after studying a system which resembles the breathing
kagome lattice: a kagome rhombus that displays the same sub-
lattice in each corner. A destructive interference solution can
be found if the corner sublattice is connected to the rest of the
system according to certain rules, which are equivalent to the
rules stated in the previous paragraph; i.e., both approaches
give the same result.

Finally, we have performed a study of the kagome lat-
tice based on a muffin-tin calculation. In this picture, with
no concept of individual hopping terms, all possible overlap
between all the lattice sites are included in the calculation.
By solving the Schrödinger equation, we obtained the Bloch
wave functions, which inherit all the symmetry properties
from the periodic potential. After applying a Wilson spec-
trum characterization and symmetry markers, we have been
able to identify the band representation to which each phase
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corresponds (canonical, trivial, and nontrivial). We found
that the two breathing phases correspond to two different
obstructed atomic limits, connected through a gap closing.
Hence, these two phases are not adiabatically connected. This
gap closing reveals a band inversion between the two phases.
It also accounts for the recovery of a sixfold rotation, char-
acteristic of the canonical kagome lattice. This setup actually
corresponds to a trivial atomic limit in which, up to a point
group operation, the Wannier centers lie exactly at the lattice
sites.

These results may shed light on the protection of the corner
modes of two-dimensional lattices, as well as on understand-
ing of what is and what it is not a HOTI. Within a more
general framework than a tight-binding Hamiltonian, we have
demonstrated the trivial/nontrivial distinction between the
two phases of the breathing kagome lattice, as well as the
source of the existence and protection of the corner modes.
Since the muffin-tin technique accounts for all the possible
hopping terms between all lattice sites, we believe that both
the existence and protection of corner modes are a conse-
quence of the symmetry properties of the nontrivial phase
hosting the corner modes. In addition, the Wilson spectrum
characterization of all the phases of the kagome lattice is
determined exclusively by the symmetries of the lattice. How-
ever, the appearance of edge modes in the bulk gap of the
finite-size system suggests that this protection does not have
any topological character, while being robust to some extent.
We conclude that the corner modes of the breathing kagome
lattice have some robustness but are not topological.

Robust protection of corner modes may have potential ap-
plications for lasing techniques [45,46,69]. These references
are based on a kagome pattern, so we believe that the corner
modes that they propose do not possess any topological pro-
tection, while being robust by the symmetry of the lattice.
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APPENDIX A: TIGHT-BINDING MODEL OF THE
BREATHING KAGOME LATTICE

Here, we show an explicit calculation for a similar kagome
lattice as shown in Fig. 4 in the main text, consisting of 21
sites to keep the equation concise.

A solution for the equation Hψ = eAψ is found if
tm′
BA = tmm′

BA = tmm′′
BA = tm′

AB = tm
CA = tm

AC = tm
AA = tm′

AA = tmm′
AA =

tmm′
AB = tmm′′

AB = tmm′
AC = tmm′′

AC = tmm′
CA = tmm′′

CA = 0. These hop-
ping values are indicated by in green in Fig. 4 of the main text.
In the following, we decompose the 21 × 21 Hamiltonian
matrix H into a set of 9 M matrices of dimension 7 × 7:

⎛
⎝M11 M12 M13

M21 M22 M32

M13 M32 M33

⎞
⎠ψ = χ, (A1)

where each matrix is defined as

M11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eA −tAB −tm
AA −tm

AB 0 −tAC −tm
AC

−tAB eB −tBA −tm
BB −tm

BA −tBC −tm
BC

−tm
AA −tBA eA −tAB −tm

AA −tm
CA −tAC

−tm
AB −tm

BB −tAB eB −tBA −tm
CB −tBC

0 −tm
BA −tm

AA −tBA eA 0 −tm
CA

−tAC −tBC −tm
CA −tm

CB 0 eC −tCC

−tm
AC −tm

BC −tAC −tBC −tm
CA −tCC eC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2a)

M12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −tm′
AA −tm′

AB 0 0 0 −tm′
AC

0 −tm′
BA −tm′

BB −tmm′′
BA 0 0 −tm′

BC

−tm
AC −tmm′

AA −tmm′
AB −tm′

AA −tm′
AB 0 −tmm′

AC

−tm
BC −tmm′

BA −tmm′
BB −tm′

BA −tm′
BB −tmm′′

BA −tmm′
BC

−tAC 0 −tmm′′
AB −tmm′

AA −tmm′
AB −tm′

AA 0

0 −tCA −tm′
CB −tmm′′

CA 0 0 −tm′
CC

−tCC −tmm′
CA −tCB −tCA −tmm′

CB −tmm′′
CA −tmm′

CC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2b)
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M13 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−tm′
AC 0 0 0 0 0 0

−tm′
BC 0 0 0 0 0 0

−tmm′
AC −tm′

AC 0 0 0 0 0

0 0 −tm′
CA 0 0 0 0

−tm′
CC 0 −tmm′′

AC −tmm(3)

CB −tm′
CA 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2c)

M21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −tm
AC −tm

BC −tAC 0 −tCC

−tm′
AA −tm′

BA −tmm′
AA −tmm′

BA 0 −tCA −tmm′
CA

−tm′
AB −tm′

BB −tmm′
AB −tmm′

BB −tmm′′
AB −tm′

CB −tCB

0 −tmm′′
BA −tm′

AA −tm′
BA −tmm′

AA −tmm′′
CA −tCA

0 0 −tm′
AB −tm′

BB −tmm′
AB 0 −tmm′

CB

0 0 0 −tmm′′
BA −tm′

AA 0 −tmm′′
CA

−tm′
AC −tm′

BC −tmm′
AC −tmm′

BC 0 −tm′
CC −tmm′

CC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2d)

M22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eC 0 −tmm′′
CB −tmm′

CA −tCB −tCA 0

0 eA −tAB −tm
AA −tm

AB 0 −tAC

−tmm′′
CB −tAB eB −tBA −tm

BB −tm
BA −tBC

−tmm′
CA −tm

AA −tBA eA −tAB −tm
AA −tm

CA

−tCB −tm
AB −tm

BB −tAB eB −tBA −tm
CB

−tCA 0 −tm
BA −tm

AA −tBA eA 0

0 −tAC −tBC −tm
CA −tm

CB 0 eC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2e)

M23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−tmm′
CC −tm′

CC 0 −tmm′′
BC −tmm′′

AC −tmm(3)

CB −tm′
CA

−tm
AC 0 −tm′

AA −tm′
AB 0 0 0

−tm
BC 0 −tm′

BA −tm′
BB −tmm′′

BA 0 0
−tAC −tm

AC −tmm′
AA −tmm′

AB −tm′
AA −tm′

AB 0
−tm

BC −tmm′
BA −tmm′

BB −tm′
BA −tm′

BB −tmm′′
BA 0

−tm
CA −tAC 0 −tmm′′

AB −tmm′
AA −tmm′

AB −tm′
AA

−tCC 0 −tCA −tm′
CB −tmm′′

CA 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2f)

and

M31 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −tm′
AC −tm′

BC −tmm′
AC 0 −tm′

CC
0 0 0 0 −tm′

AC 0 0
0 0 0 0 0 −tm′

CA −tmm′′
AC

0 0 0 0 0 0 −tmm(3)

CB
0 0 0 0 0 0 −tm′

CA
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2g)

M32 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−tmm′
CC −tm

AC −tm
BC −tAC −tBC −tm

CA −tCC

−tm′
CC 0 0 −tm

AC −tm
BC −tAC 0

0 −tm′
AA −tm′

BA −tmm′
AA −tmm′

BA 0 −tCA

−tmm′′
BC −tm′

AB −tm′
BB −tmm′

AB −tmm′
BB −tmm′′

AB −tm′
CB

0 −tmm′′
BA −tm′

AA −tm′
BA −tmm′

AA −tmm′′
CA 0

−tmm(3)

CB 0 0 −tm′
AB −tm′

BB −tmm′
AB 0

−tm′
CA 0 0 0 −tmm′′

BA −tm′
AA 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2h)
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M33 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eC −tCC −tmm′
CA −tCB −tCA −tmm′

CB −tmm′′
CA

−tCC eC 0 −tmm′′
CB −tmm′

CA −tCB −tCA

−tmm′
CA 0 eA −tAB −tm

AA −tm
AB 0

−tCB −tmm′′
CB −tAB eB −tBA −tm

BB −tm
BA

−tCA −tmm′
CA −tm

AA −tBA eA −tAB −tm
AA

−tmm′
CB −tCB −tm

AB −tm
BB −tAB eB −tBA

−tmm′′
CA −tCA 0 −tm

BA −tm
AA −tBA eA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2i)

The vector ansatz for the localized state ψ reads

ψ = (1 0 r1 0 r2 0 0 0 r3 0 r4 0 r5 0 0 0 r6 0 r7 0 r8)T, (A3)

and finally, the action of the system Hamiltonian of the ansatz vector is given by χ = (χ1 χ2 χ3)T:

χ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eA − r3tm′
AA − r1tm

AA
−tAB − r3tm′

BA − r2tm
BA − r4tmm′′

BA − r1tBA

r1eA − r4tm′
AA − r2tm

AA − tm
AA − r3tmm′

AA
−tm

AB − r1tAB − r4tm′
BA − r5tmm′′

BA − r3tmm′
BA − r2tBA

r2eA − r5tm′
AA − r1tm

AA − r4tmm′
AA

−tAC − r6tm′
CA − r1tm

CA − r4tmm′′
CA − r3tCA

−tm
AC − r6tmm′′

AC − r1tAC − r7tm′
CA − r3tmm′

CA − r2tm
CA − r5tmm′′

CA − r4tCA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4a)

χ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r1tm
AC − r7tmm′′

AC − r2tAC − r8tm′
CA − r4tmm′

CA − r5tCA

r3eA − r6tm′
AA − tm′

AA − r4tm
AA − r1tmm′

AA
−tm′

AB − r2tmm′′
AB − r1tmm′

AB − r3tAB − r6tm′
BA − r5tm

BA − r7tmm′′
BA − r4tBA

r4eA − r1tm′
AA − r7tm′

AA − r3tm
AA − r5tm

AA − r2tmm′
AA − r6tmm′

AA
−r1tm′

AB − r3tm
AB − r2tmm′

AB − r4tAB − r7tm′
BA − r8tmm′′

BA − r6tmm′
BA − r5tBA

r5eA − r2tm′
AA − r8tm′

AA − r4tm
AA − r7tmm′

AA
−tm′

AC − r1tmm′
AC − r3tAC − r4tm

CA − r7tmm′′
CA − r6tCA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4b)

χ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r1tm′
AC − r3tm

AC − r2tmm′
AC − r4tAC − r6tmm′

CA − r5tm
CA − r8tmm′′

CA − r7tCA

−r2tm′
AC − r4tm

AC − r5tAC − r7tmm′
CA − r8tCA

r6eA − r3tm′
AA − r7tm

AA − r4tmm′
AA

−r3tm′
AB − r5tmm′′

AB − r4tmm′
AB − r6tAB − r8tm

BA − r7tBA

r7eA − r4tm′
AA − r6tm

AA − r8tm
AA − r5tmm′

AA
−r4tm′

AB − r6tm
AB − r5tmm′

AB − r7tAB − r8tBA

r8eA − r5tm′
AA − r7tm

AA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4c)

APPENDIX B: STEPS FOR BUILDING MUFFIN-TIN
POTENTIALS FOR THE CANONICAL/BREATHING

KAGOME LATTICE

In this Appendix we present a step-by-step procedure for
realizing the kagome lattice within the muffin-tin technique,
both for the canonical and the breathing phases, using CO
molecules on top of the Cu(111) surface.

1. Canonical case

We begin by studying the geometry of the kagome lattice in
terms of Wyckoff positions. In the canonical form, the kagome
lattice is a triangular lattice belonging to the p6mm plane
space group. Such space group has the following maximal
Wyckoff positions: 1a, 2b, 3c. In the case of the kagome
lattice, the lattice sites are the 3c Wyckoff position, and the
remaining one are unoccupied. To realize the muffin-tin po-
tential, we place CO molecules to block the wave function
from localizing in the unoccupied Wyckoff positions. Thus,
we have placed six CO molecules forming an hexagon around
the 1a Wyckoff position and a single molecule on the 2b

Wyckoff position, thus leaving free the 3c Wyckoff position.
In this way, the 2DEG will be confined just on the lattice
formed by the 3c Wyckoff positions, thus reproducing the
canonical kagome lattice. The left panel of Fig. 6 represents
this process step by step. To be consistent with the text, we
have represented Wyckoff positions with elements with the
same point group symmetry as the Wyckoff position.

2. Breathing distortion

When we introduce the breathing distortion in the kagome
lattice, we break the C6 symmetry, so the space group is
reduced from p6mm to p3m1, one of its subgroups. This
group/subgroup relation splits the 2b Wyckoff position into
1b and 1c, which are nonequivalent. Additionally, the sym-
metry of the 3c Wyckoff position, now called 3d , reduces
from C2v to Cm. The feature showing in each of them is what
defines the trivial/nontrivial phase. The 3d Wyckoff positions
enclose the 1b Wyckoff position, so if we place a single
molecule in the 1b, and three molecules in the 1c, we make the
effective intercell hopping amplitude smaller than the intracell
one. This situation corresponds to the trivial case, which does
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FIG. 6. Steps for realizing the muffin-tin potential for the kagome lattice in the canonical phase (left panel) and the two breathing phases
(right panel) using CO molecules.

not show corner modes. The nontrivial case can be achieved
by inverting the 1b and 1c Wyckoff positions. Now the 3d
Wyckoff positions have a smaller effective intracell hopping

amplitude compared to the intercell one, so the corners would
host zero-energy modes since they are weakly connected to
the rest of the lattice. Again, we have confined the 2DEG to a

FIG. 7. Wave functions for the first and second bands of the trivial (left) and nontrivial (right) configurations of the muffin-tin setup.
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lattice formed by the 3d Wyckoff positions, thus reproducing
the breathing kagome lattice. The right panel of Fig. 6 repre-
sents this process step by step. To be consistent with the text,
we have represented Wyckoff positions with elements with the
same point group symmetry as the Wyckoff position.

APPENDIX C: WAVE FUNCTIONS FOR
TRIVIAL/NONTRIVIAL SETUPS

Once we have solved the Schrödinger equation, we can re-
construct the Bloch wave function and plot it in real space. We

show in Fig. 7 the modulo squared of the wave functions for
the first two bands at K, K′ points, where the band inversion
occurs. The left and right panels show the band structures and
irrep assignments of the trivial and nontrivial phases of the
breathing kagome lattice in the muffin-tin setup. The middle
panel show the plot of the wave function inside the unit cell for
the first two bands right at the point where the band inversion
occurs. We can see that the wave functions transforming as
the 2E irrep look like a triangle pointing up, while the wave
functions transforming as the 1E irrep resemble a triangle
pointing down plus a translation of (a1 + a2)/3.
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