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Studying cancer genomes 
The human genome contains the instructions to build, maintain and reproduce a human organism, and 
is encoded in deoxyribonucleic acid (DNA). DNA is a polymer of nucleotides (adenine (A), cytosine (C), 
thymine (T) and guanine (G)) that coils together to form a double helix. The average human genome 
consists of roughly 6 billion nucleotides that are organized over 23 pairs of chromosomes. About 1-
2% of the genome codes for the ~20,000 genes, most of which are eventually transcribed into mRNA 
and subsequently translated into proteins. The remainder of the genome (at least in part) plays an 
important role in regulating the expression of genes [1].  

In normal cells, growth and division (together called cell proliferation) is tightly controlled by hundreds 
of genes. However, mutations in these genes (or its regulatory elements) can lead to the outgrowth of 
cells that are able to proliferate uncontrollably and avoid cell death; in other words, cancer. Cancerous 
cells may eventually escape their original environment and colonize other tissues (i.e. metastasize), 
which can be driven by mutations but also other factors such as environmental pressures [2]. The 
mutations that contribute to cancer are primarily those acquired over the lifetime of an individual 
(somatic mutations), though inherited germline mutations can also increase cancer risk [3]. 

DNA sequencing is commonly used to study mutations in cancer. The first generation of sequencing 
technology (Sanger sequencing) was used to determine the full sequence of the human genome, but 
was limited to sequencing one DNA fragment of up to 1,000 bases at a time. The next-generation 
sequencing (NGS) technologies that emerged shortly after allowed for massively parallel sequencing 
(thousands to millions) of multiple short DNA fragments (tens to hundreds of bases). These next 
generation ‘short-read’ sequencing techniques typically involve breaking the DNA of a sample into 
random short fragments that are amplified and then sequenced to produce ‘reads’. Mapping assembly 
is then performed, whereby reads are compared (‘mapped’) to a reference genome and pieced 
together to form a continuous genomic sequence of the sample which allows for the detection of 
genetic differences (mutations) [4]. NGS technology enabled fast and cost effective whole genome 
sequencing (WGS), which has recently led to large scale pan-cancer studies involving thousands of 
cancer patients [5,6].  

Typically, to study the full spectrum of mutations in cancer patients, a tumor and normal sample 
(commonly blood or nearby healthy tissue) are both sequenced and mapped to a human reference 
genome. Important to note is that the human reference genome is an aggregate of the full genome 
sequences across multiple donors and thus does not represent the genome of one individual [7]. 
Changes in nucleotide sequences between the sample and reference genome are considered 
‘variants’. Variants found in the normal sample are considered germline mutations, and these are 
subtracted from those found in the tumor to obtain the somatic mutations specific to the tumor. Tumor 
genomes typically have thousands to tens of thousands of somatic mutations. On average only 4-5 of 
these are ‘driver’ mutations, which provide a growth advantage to cells and drive cancer development 
[5]. Driver mutations define the characteristics of a tumor, and are often used to guide treatment 
decisions [8]. The remainder of mutations are considered ‘passenger’ mutations that do not contribute 
to cancer development. Passenger mutations do however reflect the mutations history in tumors, and 
as such can be used to understand cancer development, but also as cancer diagnostic markers [9]. 
The following sections will provide a detailed overview of how mutations have been utilized to study 
cancer as well as to develop tools for cancer diagnostics. 

Functional impact of mutations on cancer driver genes 
Cancer driver genes are genes in which mutations can confer a growth advantage to cancer cells, and 
broadly fall under two categories. Oncogenes normally stimulate cell proliferation, and can be 
activated when a mutation prevents the gene from being ‘turned off’. Tumor suppressors genes (TSG) 
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normally regulate cell proliferation, and are inactivated typically by two mutations that render both 
gene copies (in a diploid genome) defective [10]. A very small number of genes, such as TP53, can act 
both as oncogenes and TSGs [11]. The various mutational mechanisms by which oncogene activation 
and TSG inactivation can occur will be described below. 

Single and multi-base substitutions 
The most common mutations in the cancer genomes are point mutations (also known as single base 
substitutions; SBS), followed by insertions/deletions of multiple nucleotides (indels), and multi-base 
substitutions (MBS) which are defined as clusters of two or more nearby variants on the same 
haplotype [5,12]. These ‘small mutations’ (as opposed to structural variants, which will be discussed 
in a later section) are caused by diverse mechanisms, from environmental causes such as ultraviolet 
light exposure [13], to endogenous causes such as errors during DNA replication [14] or repair [15]. 

 

Figure 1: Examples of the effects of small mutations on protein coding sequences. a) Alterations to the DNA 
sequence with respect to a reference genome are considered mutations. b) Missense mutations result in the 
change of one amino acid to another. c) Nonsense mutations introduce a premature stop codon. d) An out-of-
frame deletion alters the downstream amino acid sequence. e) An in-frame insertion does not alter the triplet 
reading frame, but does introduce additional amino acids. 
 
SBSs and MBSs can lead to ‘non-synonymous’ base substitutions which alter the amino acid 
sequence of a protein, with missense and nonsense mutations being the main types [12,16]. Missense 
mutations lead to a change of a single amino acid into another (Figure 1b), which can lead to gene 
activation (e.g. BRAF V600E [17]) but also inactivation (e.g. KRAS G12D [18]). Nonsense mutations 
introduce a premature stop codon which leads to early termination of transcription and translation 
(Figure 1c), resulting in a truncated protein. Nonsense mutations located earlier in the protein coding 
sequence result in a more truncated protein and are thus more likely to lead to a defective protein [16]. 
Indels can lead to protein loss of function via out-of-frame frameshift mutations. Indels with lengths 
not divisible by 3 alter the triplet reading frame of the protein coding sequence and result in incorrect 
incorporation of amino acids into the eventual protein product after the location of the indel (Figure 
1d). On the other hand, indels with lengths divisible by 3 lead to an in-frame mutation (i.e. reading 
frame not disrupted) generally do not impact protein function unless they affect important amino acids 
of a protein [19] (Figure 1e). 



1010

 

 10 

Non-coding mutations (i.e. those occurring outside of protein coding sequences) can also result in 
altered gene expression or protein function via numerous mechanisms [20]. Mutations in regulatory 
regions, such as promoters and enhancers, can disrupt or create transcription factor (TF) binding sites. 
For example, the C228T and C250T TERT promoter mutations create a binding site for the ETS family 
of proteins, resulting in promoter activation and increased TERT gene transcription [21]. Likewise, 
mutations at the 5′ and 3′ ends of introns can disrupt splice sites or create new sites, resulting in 
altered mRNA splicing (i.e. mRNA post-processing). With the MET oncogene, intronic mutations can 
for instance exon 14 being skipped (in the mature mRNA of the gene) which codes for a binding site 
for the ubiquitin ligase CBL. The oncoprotein escapes ubiquitination and degradation, thus resulting 
in aberrant activation MET [22]. Mutations in the 5’ or 3’ untranslated regions (UTR) can have various 
effects, such as altered translation efficiency or mRNA stability. For example, the RB1 G17C and G18U 
mutations stabilize the 5’-UTR secondary structure, reducing the accessibility of translation machinery 
and hence protein expression [23]. 

Structural variants 
Structural variants (SV) are rearrangements of large genomic segments (typically >50bp in size) and 
are caused by errors during DNA replication, repair, or recombination, but also by insertion of foreign 
(e.g. viral) DNA [24,25]. Simple SVs, which only involve a single genomic rearrangement, can be divided 
into two classes. Balanced SVs do not change the amount of DNA in the genome, and include 
inversions and balanced translocations. Unbalanced SVs lead to gains or losses of DNA, also known 
as copy number alterations (CNA), and include deletions, insertions, duplications, and unbalanced 
translocations [25,26]. Aneuploidy is a special case of unbalanced SVs which affect whole 
chromosomes or chromosome arms, and are caused by chromosome missegregation and unbalanced 
translocations respectively [27]. It should be noted that the distinction between indels (variants <50bp 
in size) and structural insertions, duplications and deletions (essentially indels >50bp in size) is not 
biological, but more the result of the technical limitations of algorithms that detect (‘call’) indels and 
SVs [28]. 

In contrast to simple SVs, complex SVs involve multiple inter-connected rearrangements and can 
occur through various mechanisms. Breakage-fusion-bridge (BFB) results from cycles of telomere 
breakage, sister chromatid telomeric fusion which produces a dicentric chromosome, and breakage 
of this chromosome during anaphase [29]. BFB is characterized by multiple foldback inversions and a 
‘staircase’ amplification CNA profile due to the stepwise accumulation of DNA [30]. Chromothripsis is 
a single catastrophic chromosome shattering and rearrangement event that leads to a pattern of 
oscillating copy-number changes and localized clustering of tens to hundreds of breakpoints [31]. 
Double minutes (DM) are circular fragments of DNA that may form as a result of chromothripsis [32] or 
aberrant DNA repair [29]. 

One way SVs can impact cancer driver genes is by amplifying (i.e. increasing the copy number of) 
oncogenes, such as EGFR, MYC, and MDM2 [33]. This can occur by linear amplification such as via 
structural duplications (Figure 2c), inverted duplications (possibly due to BFB [34]), or whole 
chromosome or chromosome arm gains [35]. Alternatively, circular amplification of oncogenes in DMs 
can result in extremely high copy numbers, possibly due to unequal segregation of DMs due to their 
lack of centromeres coupled with positive selection [33,36]. SVs can also inactivate TSGs if one or 
more of the breakpoints (i.e. the location(s) of the double strand break) occurs within the gene region. 
This may be for example due a full or partial structural deletion of the gene (e.g. of VHL in kidney 
cancer [37] or BRCA2 in prostate cancer [38]), or an inversion that overlaps with the gene (Figure 
2b,d). Gene inactivation can also occur from insertions of mobile elements such as from long 
interspersed nuclear elements (LINE) which are prevalent in gastrointestinal cancers [39], or from viral 
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sequence insertions from viruses that can integrate into host genomes such as human papillomavirus 
(HPV), common in cervical and head and neck cancers [40] (Figure 2f). 

SVs may also result in gene fusions, which can occur via a deletion or inversion between two genes, 
or a translocation (Figure 2b,d,e) [41]. This can lead to oncogene overexpression, such as with the 
prostate cancer specific TMPRSS2-ERG fusion that is caused by an interstitial deletion (i.e. a deletion 
between the gene partners) and leads to overexpression of ERG via the constitutively highly active 
TMPRSS2 promoter [42]. Oncogene overexpression can also result from aberrant interaction of the 
functional domains between two genes, such as with the lung cancer specific EML4-ALK fusion, 
caused by an interstitial inversion [43]. Fusions can also lead to decreased TSG expression (e.g. 
CBFB–MYH11 fusions downregulating CBFB [44]) or TSG inactivation via gene truncations (e.g. TP53 
fusions [45]). 

 
Figure 2: Examples of the effects of structural variants (SV) on genes. a) SVs are large rearrangements of DNA 
with respect to a reference genome. b) Deletions can result in loss of genes, or fusions of two genes. c) 
Duplications can create additional copies of genes. d,e) Inversions and translocations can result in the fusion of 
two genes, or inactivation of genes if the breakpoints occur within genes. f) Insertions of for example foreign DNA 
can also similarly inactivate genes. 

Identifying driver mutations and genes 
The sequencing of whole exomes and genomes has enabled the detection of millions of somatic 
mutations in the genomes of large tumor cohorts [5,6,46,47]. A major challenge is to distinguish the 
small number of driver mutations from the vast abundance of passenger mutations, as well as to 
identify the genes that are affected by driver mutations (i.e. cancer driver genes). 

Numerous computational approaches have been developed to infer which small mutations (SBSs and 
indels) are drivers [48]. These are based on identifying recurrent mutations and/or mutations that likely 
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impact protein function. Mutations that occur significantly more frequently compared to the 
background mutation rate in a tumor cohort are likely to have been positively selected for and are thus 
likely driver mutations. This has been exploited by methods such as dNdScv [49], CBaSE [50], and 
mutSigCV [51]. Driver mutations can also be identified based on whether they cluster more frequently 
at specific (likely functional) regions on the DNA. OncodriveCLUSTL [52] detects linear clustering of 
mutations due to increased mutation recurrence at protein functional domains. Likewise, HotMAPS3D 
[53] detects mutation recurrence at regions important for protein structure leading to 3D clustering of 
mutations. Enrichment of mutations with high functional impact scores (e.g. those computed using 
CADD [54]) at specific regions may also indicate that those enriched mutations are drivers, and is the 
basis for OncodriveFML [55]. The above methods can also be combined into an ensemble approach 
such as was done with Intogen [56]. 

Similar as for small mutations, identifying driver SVs is based on recurrence (i.e. detecting SVs that 
occur more often than the background rate). The main approach has been to identify recurrent CNAs, 
which are gains and losses of DNA due to unbalanced SVs [57,58]. GISTIC has been the most widely 
used algorithm for this purpose [59,60], and addresses two major challenges with identifying recurrent 
CNAs. First, determining which CNAs are considered the same in different samples is not trivial, as a 
chromosome arm gain in one sample and a focal gain in another sample can both have the same 
consequence of amplifying an oncogene. Second, because the aggregate CNA profile across a cohort 
of samples represents overlapping underlying CNA events, it is difficult to determine the background 
CNA rate. Aside from CNAs, recurrent (i.e. clustered) SV breakpoints have also been used to identify 
driver SVs [61], following a similar rationale used by OncodriveCLUSTL [52]. Likewise, recurrent 
juxtapositions of genomic regions (i.e. those brought close together by SVs) were used to identify 
driver SVs leading to gene fusions [61]. 

Patterns of passenger somatic mutations 
Mutational processes leave characteristic patterns of mutations in the genome, such as ultraviolet light 
exposure primarily resulting in C>T mutations at CC and TC nucleotides. Passenger mutations 
constitute the majority of mutations and thus capture such mutational patterns. Genome-wide patterns 
of passenger mutations thus can be used to provide insight into the mutational processes that have 
been active in cancer cells [13]. 

The first mutational patterns that were characterized were based on the 6 possible strand-agnostic 
base substitutions (C>A, C>G, C>T, T>A, T>C, T>G) together with the 16 possible combinations of 5’ 
and 3’ flanking bases, yielding a total of 96 possible ‘trinucleotide contexts’. Using a computational 
framework based on non-negative matrix factorization (NMF), the mutation counts of these 96 
trinucleotide contexts from whole-genome and whole-exome sequenced tumors across numerous 
cancer types were clustered into 30 trinucleotide context profiles, or ‘mutational signatures’ [62,63] 
(Figure 3b). These initial 30 single base substitution (SBS) signatures have been cataloged in the 
COSMIC database [64], with more SBS signatures having been added since. Signatures based on 
mutation contexts of other mutation types have also been added, including double base substitution 
(DBS) signatures based on the 78 possible strand-agnostic DBS mutation types, and indel (ID) 
signatures based on 83 different indels types that considered indel size, which nucleotides were 
affected, and presence of repetitive and/or microhomology regions [13]. 

Some of these signatures have been associated with the activity of specific mutational processes, 
including but not limited to: DNA repair deficiencies, such as homologous recombination deficiency 
(HRD; SBS3, ID6) or mismatch repair deficiency (MMRD; SBS6/14/15/20/21/26/44); environmental 
mutagens, such as ultraviolet radiation (SBS7/38, DBS1, ID13) or smoking (SBS4, DBS2, ID3); 
treatments such as platinum chemotherapy (SBS31/35, DBS5); and DNA editing activity of APOBEC 
proteins (SBS2/13) which normally serve to defend against viruses [13]. However, at the time of writing, 
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about a quarter of signatures in the COSMIC database [64] have yet to be assigned a potential cause 
or origin (‘etiology’). 

Since its conception, mutational signature analysis has been widely adopted to study cancer. Many 
studies sought to discover additional sources of mutagenesis in cancer, such as the Escherichia coli 
metabolite colibactin in a subset of colorectal cancers (SBS88) [65], or the chemotherapeutic drug 5-
fluorouracil (SBS17) [66]. A study by Kucab et al. [67] also linked ~50 environmental carcinogens to 
distinct mutational patterns. Other studies focused on the mechanisms that shape mutational 
signatures, such as DNA replication timing [68], as well as the interplay between DNA damage and 
repair [69]. Mutational signatures have also been frequently used for cancer subtyping, such as for 
esophageal [70], gastric [71], liver [72], and pancreatic [73] cancer. Lastly, mutational signatures have 
been used to develop classifiers of DNA repair deficiencies such as for HRD [74] and MMRD [75], 
which can be used to guide treatment decisions.  

Machine learning applications for cancer diagnostics 
The wealth of available WGS data [46,76] now enables the development of machine learning (ML) 
models for data driven decision making in cancer diagnostics. ML is the application of statistics to 
train computers to identify patterns or make predictions from existing data. In the context of cancer 
genomics, this data would for example consist of a (preferably large) set of whole genome sequenced 
tumor samples, with each sample having a set of measurable features (e.g. genome ploidy, number of 
mutations, presence of a gene mutation, etc). ML can be split into supervised and unsupervised 
learning (Figure 3). 

Unsupervised learning broadly includes clustering and dimension reduction, and aims to find 
underlying patterns in the data without the need for labeled samples [77]. Clustering aims to group 
similar samples based on their features, and can be for example used to define genomic subtypes of 
cancer [78–80] (Figure 3a). Dimension reduction tries to represent a set of features using a smaller set 
of ‘meta-features’ which retain the underlying patterns in the original feature set. This includes methods 
such as principal component analysis (PCA) [81], as well as NMF which was used for signature 
extraction as described in the previous section [13,64] (Figure 3b). Unsupervised learning is mainly 
used for data analysis and is therefore typically not what is meant by ML, though dimension reduction 
can be used with ‘classical’ ML to reduce computational load and/or improve model performance [77]. 

Supervised learning uses labeled samples to train models that can make predictions on future 
unlabeled samples. ‘Classical’ ML usually refers to supervised learning which is divided into 
classification and regression [77]. Classification aims to define a decision boundary between sample 
groups based on their features so that future unseen samples can be categorized (Figure 3c). 
Common classification algorithms often used in genomics include (in increasing complexity): logistic 
regression (a type of regression for classification), support vector machines (SVM), random forest (RF), 
and neural networks (NN), with deep learning referring to multilayered NNs of varying architectures 
[77,82,83]. One application of classification is to determine the pathogenicity of coding [54,84,85] and 
non-coding [86] mutations, and by extension to predict which mutations are cancer drivers [56,87,88]. 
Classification has also been used for patient stratification, such as using somatic mutations to detect 
DNA repair defects such as HRD [74] and MMRD [75], detect Ras pathway activation [89], and to 
determine tumor tissue of origin [90,91]. Regression on the other hand aims to predict a numeric value, 
such as using simple linear regression to estimate mutation load based on age [92] (Figure 3d). Like 
with unsupervised learning, regression is mainly used for data analysis, though regression has been 
used to predict cancer drug response [93–96] based on genomic features from cell lines. Despite the 
numerous clinical applications of machine learning, it has yet to be widely adopted in clinical practice 
[97]. 
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Figure 3: Overview of unsupervised and supervised machine learning. a) Clustering aims to group similar samples 
based on their features (e.g. gene mutations). b) Dimension reduction, using an algorithm such as non-negative 
matrix factorization (NMF; depicted in the graphic), tries to represent a set of features (e.g. the 96 trinucleotide 
contexts) using a smaller set of ‘meta-features’ (e.g. mutational signatures). The graphic depicts NMF 
decomposing a 1000x96 mutation count matrix into two matrices, a 30x96 signature profile matrix and a 1000x30 
signature contribution matrix. The two latter matrices multiplied together produce an approximation of the original 
mutation count matrix. c) Classification aims to determine a decision boundary that can best separate two (or 
more) labeled sample groups (e.g. those with and without homologous recombination deficiency (HRD)) based on 
their features (e.g. the number of microhomology deletions and the number of structural deletions, as depicted in 
the graphic). d) Regression is used to correlate a numerical label (e.g. number of point mutations) with one or 
more features (e.g. age, as depicted in the graphic).  
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Thesis outline 
In this thesis, we focus on using driver and/or passenger mutations detected from WGS to develop 
machine learning classifiers for cancer diagnostics (Chapter 2 and Chapter 3), as well as to study 
cancer development (Chapter 4 and Chapter 5). Chapter 2 describes a Classifier of HOmologous 
Recombination Deficiency (CHORD) that detects HRD using various mutation types including 
microhomology deletions, small structural deletions and large structural duplications. Using CHORD, 
we found that HRD was most common in ovarian, breast, prostate and pancreatic cancer. We also 
found that HRD was often associated with loss-of-heterozygosity in all cancer types, with increased 
contribution of deep deletions in prostate cancer. Chapter 3 describes Cancer of Unknown Primary 
Location Resolver (CUPLR), a machine learning model that predicts tumor tissue of origin using a wide 
range of genomic features, including RMD, mutational signatures, driver gene mutations, aneuploidy, 
viral insertions, and various SV types. We found that SVs were important for and improved the 
performance of tumor tissue of origin classification for cancer types where SV related features were 
important, such as in pilocytic astrocytomas (characterized by KIAA1549-BRAF fusions) or cervical 
cancer (characterized by human papillomavirus DNA insertions). In Chapter 4, we use liver organoids 
to study mutation accumulation and its contribution to cancer development in three liver diseases, 
alcoholic cirrhosis, non-alcoholic steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). We 
find surprisingly that these liver diseases do not contribute to detectable alterations in the mutation 
landscape. In Chapter 5, we perform a pan-cancer comparison of primary versus metastatic cancer 
and find that metastatic tumors differ from primary tumors mainly in their increased burden of small 
mutations and SVs as a result of treatment exposure and cancer type specific endogenous mutational 
processes. Lastly, in Chapter 6 we discuss the limitations and challenges faced in using WGS data to 
understand and diagnose cancer, and provide directions for future research.  
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Abstract 
Homologous recombination deficiency (HRD) results in impaired double strand break repair and is a 
frequent driver of tumorigenesis. Here, we develop a genome-wide mutational scar-based pan-cancer 
Classifier of HOmologous Recombination Deficiency (CHORD) that can discriminate between BRCA1- 
and BRCA2-subtypes. Analysis of a metastatic (n=3,504) and primary (n=1,854) pan-cancer cohort 
reveals that HRD is most frequent in ovarian and breast cancer, followed by pancreatic and prostate 
cancer. We identify biallelic inactivation of BRCA1, BRCA2, RAD51C or PALB2 as the most common 
genetic cause of HRD, with RAD51C and PALB2 inactivation resulting in BRCA2-type HRD. We find 
that while the specific genetic cause of HRD is cancer type specific, biallelic inactivation is 
predominantly associated with loss-of-heterozygosity (LOH), with increased contribution of deep 
deletions in prostate cancer. Our results demonstrate the value of pan-cancer genomics-based HRD 
testing and its potential diagnostic value for patient stratification towards treatment with e.g. poly ADP-
ribose polymerase inhibitors (PARPi). 
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Introduction 
The homologous recombination (HR) pathway is essential for high-fidelity DNA double strand break 
(DSB) repair and involves numerous genes including BRCA1 and BRCA2. HR deficiency (HRD) due to 
inactivation of such genes leads to increased levels of genomic alterations [98]. HRD is a common 
characteristic of many tumors and is frequently observed in breast and ovarian cancer [99]. Accurate 
detection of HR deficiency (HRD) is of clinical relevance as it is indicative of sensitivity to targeted 
therapy with poly ADP-ribose polymerase inhibitors (PARPi) [100,101] as well as to DNA damaging 
reagents [98]. 

In the clinic, germline BRCA1/2 mutation status is currently the main genetic biomarker of HRD [102]. 
However, germline testing has its drawbacks: i) it is dependent on the completeness and accuracy of 
clinical variant annotation databases (e.g. ClinVar); ii) epigenetic silencing is overlooked; iii) 
partial/complete deletions of the BRCA1/2 loci are missed by current clinical genetic testing, resulting 
in BRCA1/2 status reporting based on the wild type allele from contaminating normal tissue; and iv) 
HRD can be driven purely by somatic events. Furthermore, the focus on BRCA1/2 overlooks 
inactivation of other HR pathway genes. Consequently, patients may receive incorrect treatment or 
miss out on treatment opportunities, thus necessitating the development of better biomarkers for HRD. 

It was recently shown that somatic passenger mutations, which are identified efficiently by whole 
genome sequencing (WGS), can provide insights into the mutational processes that occurred before 
and during tumorigenesis, paving the way for novel opportunities for clinical tumor diagnostics [9]. For 
the repair of DSBs, HRD tumors are dependent on alternative more error-prone pathways including 
microhomology mediated end-joining (MMEJ) [15], resulting in a characteristic mutational footprint 
across the genome that can be used to detect HRD regardless of the underlying cause (whether 
genetic or epigenetic). Indeed, some mutational footprints were found to be associated with BRCA1/2 
deficiency, namely deletions with flanking microhomology, as well as several ‘mutational signatures’ 
including two COSMIC single nucleotide variant (SNV) signatures and two structural variant (SV) 
signatures [103]. These features were used to develop a breast cancer-specific predictor of HRD 
known as HRDetect [74]. Application of this tool in primary tumors revealed that the prevalence of HRD 
extends beyond BRCA1/2-deficient breast cancer tumors, and occurs at varying frequencies in 
different cancer types [104]. However, HRD rates in advanced metastatic cancer remain unclear, 
although these are the patients that are increasingly targeted with personalized treatments including 
PARP inhibitors for BRCA-deficiency [9].  

Here, we describe the development of a random forest-based Classifier of HOmologous 
Recombination Deficiency (CHORD) for pan-cancer HRD detection. With this model, we demonstrate 
that accurate prediction of HRD is possible across cancer types using specific SNV, indel and SV 
types. We identify inactivation of BRCA1, BRCA2, RAD51C and PALB2 as the most frequent genetic 
cause of HRD pan-cancer in both primary and metastatic cancer, with the latter two genes resulting 
in the same mutational footprints as BRCA2 (consistent with the findings of recent studies in breast 
cancer [105,106]). In addition, we find that the underlying genetic inactivation of these genes is cancer 
type specific, but independent of tumor progression state.  
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Results 

Random forest classifier training 
For the development of CHORD, we used WGS data of 3,824 solid tumors from 3,584 patients from 
the pan-cancer metastatic cohort of the Hartwig Medical Foundation (HMF) [6]. From these, we 
selected tumor samples with biallelic loss of BRCA1 or BRCA2, and non-mutated BRCA1/2, to obtain 
a high confidence set of samples belonging to 3 classes for classifier training (BRCA1-deficient, 
BRCA2-deficient, and BRCA1/2-proficient). To this end, we screened each sample to identify those 
samples with one of the following events in BRCA1/2: (i) complete copy number loss (i.e. deep 
deletion), (ii) loss-of-heterozygosity (LOH) in combination with a pathogenic germline or somatic 
SNV/indel (as annotated in ClinVar, or a frameshift), or (iii) 2 pathogenic SNV/indels. This unbiased 
approach revealed 35 and 89 samples with BRCA1 or BRCA2 biallelic loss of function, respectively, 
which were labeled as HRD for the training. Conversely, 1,902 samples were labeled as HR proficient 
(HRP) as these samples were observed to carry at least one functional allele of BRCA1/2. In total, 
2,026 out of 3,824 samples (53% of the HMF dataset) were used to train the classifier (Supplementary 
figure 1). 

The occurrence of three main somatic mutation categories were used as features for training (Figure 
1a), which included (i) single nucleotide variants (SNVs) subdivided by base substitution (SBS) type; 
(ii) indels stratified by the presence of sequence homology, tandem repeats, or the absence of either; 
and (iii) structural variants (SV), stratified by type and length. An initial feature analysis revealed that 
small deletions with ≥2bp flanking homology were together more predictive of BRCA1/2 deficiency 
versus deletions with 1bp flanking homology (Supplementary figure 3). Thus, deletions with flanking 
homology were further split into these two homology length bins. The occurrence of the 29 features 
together formed a contribution profile for each sample. From this, relative contributions per mutation 
category were calculated to account for differences in mutational load across samples (Figure 1a). 
These features are henceforth collectively referred to as ‘mutation contexts’. 

A random forest was then trained to predict the probability of BRCA1 or BRCA2 deficiency (Figure 
1b). Briefly, a core training procedure performed feature selection and class resampling (to alleviate 
the imbalance between the 3 classes). This core procedure was subjected to 10-fold cross-validation 
(CV) which was repeated 100 times to filter samples from the training set that were not consistently 
HRD or HRP. A sample was considered HRD if the sum of the BRCA1 and BRCA2 deficiency 
probabilities (henceforth referred to as the HRD probability) was ≥0.5. This core procedure was 
reapplied to the filtered training set to yield the final random forest model which we refer to as ‘CHORD’ 
(Supplementary figure 2a,b; Supplementary figure 4). 

The presence of deletions with ≥2bp flanking homology (del.mh.bimh.2.5) was found to be the most 
important predictor of HRD. Additionally, CHORD uses 1-10kb and to a lesser extent 10-100kb 
duplications (DUP_1e03_1e04_bp and DUP_1e04_1e05_bp, respectively) for distinguishing BRCA1 
from BRCA2 deficiency. Given that deficiencies in other HR genes may lead to similar phenotypes, we 
have coined the terms ‘BRCA1-type HRD’ and ‘BRCA2-type HRD’ to describe these HRD subtypes 
(Figure 1c). Together, the features that are predictive of HRD are in line with those of a previously 
described HRD classifier HRDetect [74]. However, the feature weights differ markedly likely due to 
differences in the background mutational landscape between the pan-cancer cohort used here 
compared to the breast cancer cohort used for training HRDetect. 
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Figure 1: CHORD is a random forest Classifier of HOmologous Recombination Deficiency able to 
distinguish between BRCA1- and BRCA2-type HRD phenotypes in a pan-cancer context. (a) The features 
used for training CHORD are relative counts of different mutation contexts which fall into one of three groups 
based on mutation type. (i) Single nucleotide variants (SNV): 6 possible base substitutions (C>A, C>G, C>T, T>A, 
T>C, T>G). (ii) Indels: indels with flanking microhomology (del.mh, ins.mh), within repeat regions (del.rep, 
del.none), or not falling into either of these 2 categories (del.none, ins.none). (iii) Structural variants (SV): SVs 
stratified by type and length. Relative counts were calculated separately for each of the 3 mutation types. (b) 
Training and application of CHORD. From a total of 3,824 metastatic tumor samples, 2,026 samples were selected 
for training CHORD. The model outputs the probability of BRCA1-type HRD and BRCA2-type HRD, with the 
probability of HRD being the sum of these 2 probabilities. The performance of CHORD was assessed via a 10-
fold nested cross-validation (CV) procedure on the training samples, as well as by applying the model to the 
BRCA-EU dataset (543 primary breast tumors) and PCAWG dataset (1,854 primary tumors). Lastly, CHORD was 
applied to all samples in the HMF and PCAWG dataset in order to gain insights into the pan-cancer landscape of 
HRD. (c) The features used by CHORD to predict HRD as well as BRCA1-type HRD and BRCA2-type HRD, with 
their importance indicated by mean decrease in accuracy. Deletions with 2 to ≥5bp (i.e. ≥2bp) of flanking 
microhomology (del.mh.bimh.2.5) was the most important feature for predicting HRD as a whole, with 1-100kb 
structural duplications (DUP_1e03_1e04_bp, DUP_1e04_1e05_bp) differentiating BRCA1-type HRD from BRCA2-
type HRD. Boxplot and dots (n=10) show the feature importance over 10-folds of nested CV on the training set, 
with the red line showing the feature importance in the final CHORD model. Boxes show the interquartile range 
(IQR) and whiskers show the largest/smallest values within 1.5 times the IQR.  
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Performance of CHORD 
Two approaches were used to assess the performance of CHORD. In the first approach, 10-fold CV 
was performed on the training data which allows every sample to be excluded from the training set 
after which unbiased HRD probabilities can be determined (Supplementary figure 2c). The 
probabilities of all prediction classes (i.e. HRD, BRCA1-type HRD, BRCA2-type HRD) were highly 
concordant with the genetic annotations (Figure 2a). The concordance between predictions and 
annotations was quantified by calculating the area under the curve of receiver operating characteristic 
(AUROC) and precision-recall (AUPRC) curves (Figure 2b,c). CHORD achieved excellent performance 
as shown by the high AUROC and AUPRC for all prediction classes (0.98 and 0.87 respectively). 
Additionally, CHORD achieved a maximum F1-score (~0.88) for predicting HRD at a cutoff of 0.5 which 
was thus set to be the classification threshold (Supplementary figure 6). 

 

Figure 2: Performance of CHORD. Performance was determined by 10-fold cross-validation (CV) on the HMF 
training data or prediction on two independent datasets: BRCA-EU (primary breast cancer dataset) and PCAWG 
(primary pan-cancer dataset). BRCA-EU and PCAWG samples shown here all passed CHORD’s QC criteria (i.e. 
MSI absent, ≥50 indels, ≥30 SVs if a sample was predicted HRD). (a, d, g) The probability of HRD for each sample 
(total bar height) with each bar being divided into segments indicating the probability of BRCA1- (orange) and 
BRCA2-type HRD (purple). Stripes below the bar plot indicate biallelic loss of BRCA1 or BRCA2. In (a), 
probabilities have been aggregated from the 10 CV folds. (b, e, h) Receiver operating characteristic (ROC) and (c, 
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f, i) precision-recall curves (PR) and respective area under the curve (AUC) values showing the performance of 
CHORD when predicting HRD as a whole (grey), BRCA1-type HRD (orange), or BRCA2-type HRD (purple). 

In the second approach, performance was evaluated on two independent datasets: the BRCA-EU 
dataset [103] (543 primary breast tumors) and the PCAWG dataset [5] (1,854 primary tumors, pan-
cancer). For both datasets, samples that (i) passed CHORD’s QC criteria (i.e. MSI absent, ≥50 indels, 
≥30 SVs if a sample was predicted HRD; Supplementary notes; Supplementary figure 26, 
Supplementary figure 27) and (ii) for which the biallelic status of BRCA1/2 could confidently be 
determined were selected for validation of CHORD. For the BRCA-EU dataset, this included the 365 
samples that were used to train and evaluate the performance of HRDetect [74]. For the PCAWG 
dataset, this included 1,172 samples for which the same genetic criteria used for selecting samples 
from the HMF dataset for training CHORD applied. Applying CHORD on these samples revealed that 
the HRD probabilities were concordant to their BRCA1/2 genetic status for both the BRCA-EU and 
PCAWG datasets (Figure 2d,g). The AUROC (>0.98) and AUPRC (>0.93) values were comparable to 
those obtained by CV on the HMF training data for all prediction classes for both datasets (Figure 
2e,f,h,i). In the BRCA-EU dataset, we still observed some BRCA1 deficient samples classified as HRP 
by CHORD (while HRDetect classified these as HRD) and tested whether this was due to differences 
in somatic calling algorithms. Indeed, using the variants obtained from the native pipeline of the HMF 
dataset (HMF pipeline [6]) for HRD prediction resulted in overall higher HRD probabilities compared to 
using the variants downloaded from ICGC, especially for BRCA1-deficient samples. This was apparent 
for sample PD4017 which became HRD using HMF pipeline called mutation profiles, with PD24186, 
PD11750 and PD23578 having greatly increased HRD probabilities (Supplementary figure 7). Our 
results thus demonstrate that CHORD is robust when applied to other datasets. However, differences 
in variant calling pipelines can affect CHORD’s ability to predict HRD (especially considering the still 
existing challenges of indel and SV calling from WGS data, and CHORD’s dependency on these 
features). Additional validation and threshold optimisation is thus recommended when applying 
CHORD on data from other variant calling pipelines. 

We note that CHORD performs similarly to HRDetect based on predictions on the BRCA-EU dataset 
(AUROC=0.98 for both models) [74]. Additionally, the predictions of CHORD and HRDetect on the 
PCAWG dataset [104] were concordant for the vast majority of samples (1506/1526; 99%) 
(Supplementary figure 10). Of the 8 HRD samples only detected by CHORD, 3 showed biallelic loss 
of BRCA1/2, while none of the HRDetect-only samples could be explained by genetic biallelic loss. 
Given that CHORD, unlike HRDetect, does not rely on COSMIC SBS signatures [9] and SV signatures 
[103], the similar performance between the two models suggests that accurate detection of HRD is 
possible without using an intermediate mutational signature analysis step [107]. To further validate 
this, we trained a random forest model (CHORD-signature) that uses the SBS and SV signatures as 
input instead of mutation contexts. CHORD-signature performed similarly to CHORD (Supplementary 
figure 12), which can be explained by the reliance on similar features (Supplementary figure 11), 
namely microhomology deletions and SV signature 3 (analogous to 1-100kb duplications). We thus 
conclude that accurate detection of HRD does not require mutational signatures, thereby simplifying 
HRD calling and avoiding potential complications associated with the fitting step required for 
computing signature contributions in individual samples (for which there is currently no consensus 
approach) [107]. 

Effect of treatment on HRD predictions 
The HMF dataset comprises tumors from patients with metastatic cancer who have been exposed 
(some heavily) to treatment which could potentially affect CHORD’s predictions. Two recent studies 
showed that common cancer treatments in general do not induce mutations that may interfere with 
CHORD predictions [67,108]. However, these two studies (as well as one by Behjati et al. [109]) did 



2424

 

 24 

show that radiotherapy had the potential to induce deletions with flanking microhomology, which could 
potentially lead to false positive HRD classifications. To investigate this, we used random forests to 
identify and compare the mutational features associated with radiotherapy and BRCA1/2 deficiency 
when using clonal variants versus subclonal variants (which are enriched for treatment induced 
mutations [66,108]) as input features. This revealed that small deletions with 1bp of flanking homology 
(del.mh.bimh.1) are highly associated with radiotherapy (Supplementary figure 14) and less with 
BRCA1/2 deficiency. When we retrain CHORD with all microhomology deletions merged into a single 
feature (CHORD-del.mh.merged; Supplementary figure 15), there were only few discrepant 
predictions (9 CHORD-specific and 5 CHORD-del.mh.merged-specific out of 3715; Supplementary 
figure 16). All 5 samples that were CHORD-del.mh.merged-specifc did have radiotherapy as a 
previous treatment, while of the 9 samples predicted HRD only by CHORD, 5 had radiotherapy 
although 2 had evidence of BRCA1/2 biallelic loss. These data suggest that splitting microhomology 
deletions into two microhomology length bins may slightly reduce false positive predictions resulting 
from radiotherapy treatment, although the low number of discrepant samples between CHORD and 
CHORD-del.mh.merged also indicates that the impact of radiotherapy on HRD prediction is minimal, 
at least when using all somatic variants (clonal plus subclonal) as input (which is likely the default 
setting for routine application).   
 
On the other hand, we observed more samples being predicted as HRD based on subclonal variants 
but HRP based on clonal variants for CHORD-del.mh.merged (97 samples) compared to CHORD (64 
samples) (Supplementary figure 17a,b). This indicates that having microhomology deletions split by 
these two homology length bins may mitigate false positive predictions when CHORD is applied to 
subclonal variants, whether due to mutations induced by radiotherapy, other treatments, or noise from 
variant calling algorithms. Alternatively, some samples that are scored HRP based on clonal variants 
but HRD on subclonal variants could truly be HRD, especially since 4 of these samples had evidence 
of BRCA1/2 biallelic loss (deep deletion: n=1; LOH and a pathogenic variant: n=1; 2 pathogenic 
variants: n=2). For these samples, it is likely that BRCA1/2 biallelic loss occurred relatively late in the 
tumor progression stage which results in an insufficient number of HRD-associated mutations for clear 
HRD classification by CHORD. Furthermore, subclonal-only HRD could potentially also be explained 
by transient inactivation of HR e.g. through epigenetic silencing of key components. Thus, CHORD 
predictions on subclonal variants must be interpreted with caution, especially given the extra 
challenges associated with accurately detecting subclonal variants with low variant allele frequency 
(VAF). 

BRCA2, RAD51C and PALB2 are associated with BRCA2-type HRD while only 
BRCA1 is associated with BRCA1-type HRD 
To gain insights into the genetic causes of HRD, we applied CHORD to both the HMF and PCAWG 
datasets and selected the samples that passed CHORD’s QC criteria (i.e. MSI absent, ≥50 indels, ≥30 
SVs if a sample was predicted HRD; Supplementary notes). For the HMF dataset, we also selected 
a single tumor per patient (based on highest tumor purity) for those with multiple biopsies, though all 
patients had consistent HRD probabilities across all biopsies (Supplementary data 1). This yielded a 
total of 5,122 patients (3,504 from HMF and 1,618 from PCAWG), with 310 (6%) being classified as 
being homologous recombination deficient (CHORD-HRD). Of these, 118 were classified as having 
BRCA1-type HRD and 192 as having BRCA2-type HRD. The remaining 4,812 patients were classified 
as homologous recombination proficient (CHORD-HRP) (Figure 3a, Supplementary data 1). 
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Figure 3: The genetic causes of HRD in patients from the HMF and PCAWG datasets. (a) The bar plot shows 
the probability of HRD for each patient (total bar height) with each bar being divided into segments indicating the 
probability of BRCA1-type HRD (orange) and BRCA2-type HRD (purple). 310 patients were predicted HRD while 
4,812 were predicted HRP by CHORD. (b) A one-tailed Fisher’s exact test identified enrichment of BRCA1 
(q=9.4e-51), BRCA2 (q=4.8e-101), RAD51C (q=5.6e-5) and PALB2 (q=0.02) biallelic inactivation in CHORD-HRD 
vs. CHORD-HRP patients (from a list of 781 cancer and HR related genes). Each point represents a gene with its 
size/color corresponding to the statistical significance as determined by the Fisher’s exact test, with axes 
indicating the percentage of patients (within either the CHORD-HRD or CHORD-HRP group) in which biallelic 
inactivation was detected. Multiple testing correction was performed using the Hochberg procedure. (c) Biallelic 
inactivation of BRCA2, RAD51C and PALB2 was associated with BRCA2-type HRD, whereas only BRCA1 
inactivation was associated with BRCA1-type HRD. Top: BRCA1- and BRCA2-type HRD probabilities from 
CHORD. Middle: SV contexts (duplications 1-10kb and 10-100kb) used by CHORD to distinguish BRCA1- from 
BRCA2-type HRD. Bottom: The biallelic status of each gene. Samples were clustered according to HRD subtype, 
and by the impact of a biallelic/monoallelic event (based on ‘P-scores’ as detailed in the methods). Clusters 1, 2, 
3, and 5 correspond to patients with identified inactivation of BRCA2, RAD51C, PALB2 and BRCA1, while clusters 
4 and 6 correspond to patients without clear biallelic inactivation of these 4 genes. Tiles marked as ‘Known 
pathogenic’ refer to variants having a ‘pathogenic’ or ‘likely pathogenic’ annotation in ClinVar. ‘Other’ variants 
include various low impact variants such as splice region variants or intron variants (these are fully specified in 
Supplementary data 4). LOH: loss-of-heterozygosity. Only data from samples that passed CHORD’s QC criteria 
are shown in this figure (MSI absent, ≥50 indels, and ≥30 SVs if a sample was predicted HRD).  
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We then sought to identify the key mutated genes underlying the HRD phenotype by performing an 
enrichment analysis of biallelically inactivated genes in CHORD-HRD vs. CHORD-HRP patients. For 
this analysis, we started from a list of 781 genes that are cancer related (based on the catalog of genes 
from Cancer Genome Interpreter) and/or HR related (manually curated based on the KEGG HR 
pathway, as well as via literature search) (Supplementary data 3). For these genes, we considered 
likely pathogenic variants (according to ClinVar) as well as predicted impactful variants such as 
nonsense mutations to contribute to gene inactivation (see Methods). This revealed that, in addition to 
BRCA1 and BRCA2 (q<10-5 for both genes, one sided Fisher’s exact test), RAD51C and PALB2 
(q<0.001 and q<0.05 respectively) were also significantly enriched amongst HRD patients using a q-
value threshold of 0.05 (Figure 3b). 

Of all CHORD-HRD HMF patients, ~60% (184/310) could be explained by biallelic inactivation of either 
BRCA2 (cluster 1; n=117), BRCA1 (cluster 5; n=54), RAD51C (cluster 2; n=6), or PALB2 (cluster 3; 
n=7), which was most often caused by LOH in combination with a pathogenic variant or frameshift, or 
a deep deletion (Figure 3c, Supplementary data 4). RAD51C and PALB2 were recently linked to HRD 
as incidental cases using mutational signature based approaches [105,110] and our results now 
confirm that biallelic inactivation of these two genes results in HRD and is actually a common cause 
of HRD (albeit to a lesser extent than for BRCA1/2). RAD51C and PALB2 deficient patients shared the 
BRCA2-type HRD phenotype (absence of duplications) with BRCA2 deficient patients (clusters 1-3; 
Figure 3c), consistent with previous studies [105,106]. On the other hand, only BRCA1 deficient 
patients (cluster 5) harbored the BRCA1-type HRD phenotype (1-100kb duplications). 

Of note, we observed one patient (Figure 3c; patient #6) bearing a known pathogenic frameshift 
mutation in BRCA1 (Supplementary data 4; patient HMF001925, c.1961dupA), which based on 
current practices for detecting HRD in the clinic (testing for pathogenic SNVs/indels) [102] would be 
considered the driver mutation. However, our genetic analysis indicates that the deep deletion in 
BRCA2 (which would be missed by testing for SNVs/indels) was the cause of HRD, which is supported 
by the lack of LOH in BRCA1, as well as the BRCA2-type HRD phenotype of this patient. 
 
In ~40% of CHORD-HRD patients (126/310; clusters 4 and 6, Figure 3c), there was no clear indication 
of biallelic loss of BRCA1/2, RAD51C or PALB2 (henceforth referred to as the ‘HRD associated genes’). 
However, 109 of these patients had a deleterious event in a single allele of one of the HRD associated 
genes (the majority due to LOH (including copy number neutral LOH)), with a similar cancer type 
distribution in these patients as in the biallelically affected patients (Supplementary figure 21). Some 
samples had, as a second hit, variants not known to be pathogenic, but could potentially be novel 
pathogenic variants (Supplementary Notes, Supplementary figure 28, Supplementary data 7). We 
also found enrichment of LOH in BRCA1, BRCA2, as well as RAD51C in HRD samples 
(Supplementary figure 22), which implies the involvement of LOH in the inactivation of these genes 
for the patients in clusters 4 and 6. This is consistent with the finding by Jonsson et al. [111] that LOH 
is enriched in tumors with BRCA1/2 germline pathogenic variants or somatic loss-of-function variants. 
Davies et al. [74] showed that promoter methylation of BRCA1 was present in 22% of ovarian and 16% 
of breast primary cancers with HRD (Table 1). BRCA1 and RAD51C promoter methylation with loss of 
the other allele was also reported in HRD tumors in other studies [105,106,110]. Thus, BRCA1 and 
RAD51C promoter methylation, likely in combination with LOH, may have led to the HRD phenotype 
for a sizable portion of the ovarian and of breast cancer patients with no clear biallelic loss of the HRD 
associated genes, and potentially for patients with other cancer types as well (Supplementary figure 
23). Unfortunately, we could not directly assess this as methylation data was not available for the HMF 
nor the PCAWG dataset.  
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Cancer type 

HRD patients with BRCA1 
promoter methylation (data from 

Davies et al. 2017) 

CHORD-HRD patients without 
biallelic loss of HRD associated 

genes 

Ovarian 22% (10/46) 47% (36/76) 

Breast 16% (14/86) 49% (50/103) 

 
Table 1: Comparing prevalence of BRCA1 promoter methylation in HRDetect-HRD patients with CHORD-HRD 
patients without biallelic loss of BRCA1/2, RAD51C or PALB2. 

We also cannot rule out the possibility that deficiencies in other HR genes that did not reach 
significance in our enrichment analysis, underlie the HRD phenotype for a small number of patients in 
clusters 4 and 6. We indeed identified 17 patients with biallelic inactivation of a HR gene other than 
BRCA1/2, RAD51C or PALB2, and 1 patient with a likely inactivating biallelic event (LOH in 
combination with a nonsense variant in CHEK1) (Supplementary figure 24). Notably, the 4 patients 
with RAD51B (n=2) and XRCC2 (n=2) deficiency were all predicted to have BRCA2-type HRD, a 
phenotype shared with RAD51C deficient patients [112]. Given that these 3 genes all belong to the 
RAD51 paralog complex BCDX2 [113], the BRCA2-type HRD suggests that RAD51B and XRCC2 
deficiency could have led to HRD in these patients. Likewise, the 4 patients with deficiencies in the 
BRCA1-binding proteins, BARD1 [114] (n=1), BRIP1 [115] (n=1), FAM175A [116] (n=1) and FANCA 
[117] (n=1), were all predicted as having BRCA1-type HRD. Thus, while we could not conclusively 
determine the cause of HRD for patients in clusters 4 and 6, we postulate that HRD in these patients 
may have been a result of epigenetic silencing of BRCA1/2 or RAD51C, deficiencies in other HR genes 
(not associated to HRD in our analysis), or possibly a result of other unknown regulatory mechanisms.  

The incidence and genetic cause of HRD varies in different tissue types and 
cancer stage 
We next investigated the differences in the incidence and genetic causes of HRD based on primary 
tumor location in both primary (PCAWG) and metastatic (HMF) cancer datasets (Figure 4). HRD was 
most prevalent in ovarian, breast, prostate and pancreatic cancer (85% combined), and only occurred 
sporadically in other cancer types (15%) (Supplementary data 5). Compared to metastatic cancer, 
HRD is found much more often in primary ovarian (52% vs 30%) and breast (24% vs 12%) cancers, 
and less often in primary prostate (5.6% vs 13%) and pancreatic (7.3% vs 13%) cancer (Figure 4a). 
Notably, in metastatic cancer, prostate and pancreatic cancer has a similar incidence of HRD to breast 
cancer (all ~13%). However, the observed differences in HRD rates between the primary and 
metastatic cohorts may not necessarily be conclusive as we cannot rule out confounding factors such 
as patient inclusion criteria. 

Across different cancer types, we observed pronounced diversity in HR function loss (Figure 4b). 
BRCA2-type HRD deficiencies (including BRCA2, RAD51C, PALB2 deficiencies) were more frequent 
in pancreatic and prostate cancer. On the other hand, BRCA1-type HRD deficiencies were found more 
often in ovarian and breast cancer. Interestingly, for ovarian and prostate cancer, BRCA1-type HRD 
deficiencies were more prominent in primary cancer compared to metastatic cancer. Whether these 
differences in gene deficiencies in different cancer types can be linked to a biological cause or have 
prognostic value remains to be determined.  
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Figure 4: Percentage breakdown of the incidence and genetic causes of HRD in CHORD-HRD patients 
pan-cancer and by cancer type. Left and right bars represent the HMF and PCAWG datasets respectively. The 
vertical split in the figure separates cancer types with (left side) and without (right side) ≥10 CHORD-HRD patients 
in at least one of the datasets. (a) Frequency of HRD. Cancer types where no frequency of HRD is displayed 
contain no data in either the HMF or PCAWG datasets (b) The gene deficiency associated with HRD. Bar segments 
are grouped into BRCA2-type HRD genes (BRCA2, RAD51C, PALB2) and BRCA1-type HRD genes (BRCA1 only). 
(c) The likely combination of biallelic events in BRCA1/2, RAD51C or PALB2 causing HRD. (d) Whether the genetic 
cause of HRD was purely due to somatic events, due to germline predisposition, or unknown. In (c and d), 
‘Unknown’ and/or ‘LOH + unknown’ bar segments refer to patients where no clear biallelic loss of the 
aforementioned BRCA1/2, RAD51C, or PALB2 was identified (i.e. clusters 4 and 6 of Figure 3c). LOH: loss-of-
heterozygosity. Only data from samples that passed CHORD’s QC criteria are shown in this figure (MSI absent, 
≥50 indels, and ≥30 SVs if a sample was predicted HRD). 

In 94% (292/310) of all CHORD-HRD patients, we found mono- or biallelic inactivation of at least one 
of the four HRD associated genes (BRCA1, BRCA2, PALB2, RAD51C; Figure 4c). In the case of 
biallelic inactivation, we observed LOH to be the dominant secondary event, occurring in combination 
with a germline SNV/indel (33%) or with a somatic SNV/indel (14%) of CHORD-HRD patients. LOH of 
BRCA1/2, RAD51C or PALB2 was also found as a monoallelic event, mainly in ovarian (47%) and 
breast (49%) cancer patients (Supplementary data 5). As indicated earlier, the other allele may be 
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inactivated by epigenetic mechanisms in these patients (or alternatively HRD was caused by 
inactivation of another HR gene). Interestingly, we find that deep somatic deletions do frequently 
contribute to biallelic loss of BRCA2 or RAD51C, occurring in 10% of CHORD-HRD patients pan-
cancer (Supplementary data 5). However, deep deletions (primarily of BRCA2; Supplementary figure 
23) occurred much more frequently in prostate cancer (33%) compared to other cancer types, 
consistent with previous observations [118]. Nevertheless, deep deletions of HRD genes did occur in 
every cancer type with a high frequency of CHORD-HRD patients indicating that complete somatic 
gene loss is a common and underestimated cause of HRD in both primary and metastatic cancer. 

We find that biallelic gene loss is often associated with germline predisposition (Figure 4d) in ovarian 
(32%), breast (36%), and pancreatic (56%) cancer patients, but to a lesser extent in prostate cancer 
patients (24%) (Supplementary data 5). On the other hand, biallelic gene loss exclusively by somatic 
events occurs in sizable proportion of CHORD-HRD patients (35% pan-cancer), being most frequent 
in prostate cancer (54%) (Supplementary data 5) mainly due to the deep deletions (Supplementary 
figure 23). Although these frequencies may not be fully representative for each cancer type due to the 
proportion of patients with unknown mutation status in at least one allele (indicated as ‘Unknown’ in 
Figure 4d), these observations do emphasize that somatic-only events should not be overlooked as a 
mechanism of HR gene inactivation. 

Discussion 
Here we describe a classifier (CHORD) that can detect HRD (as well as HRD sub-phenotypes) across 
cancer types based on mutation profiles. By using this tool in a systematic pan-cancer analysis, we 
reveal novel insights into the mechanisms and incidence of HRD across cancer types with potentially 
important clinical relevance. 

HRD targeted therapy with PARPi is mostly restricted to breast and ovarian cancer [102], though its 
use for treating pancreatic cancer was recently approved by the FDA (US Food and Drug 
Administration) [119]. However, we show that HRD is common not only in ovarian and breast cancer, 
but also in prostate, pancreatic cancer. The incidence of HRD was relatively higher in metastatic 
prostate and pancreatic cancer, and lower for ovarian and breast cancer as compared with primary 
tumors. This may reflect more intensive familial (germline) testing for BRCA1/2 mutations in ovarian 
and breast cancer [120] and consequently earlier diagnosis and treatment with fewer cases of 
progression to metastatic cancer as a result. However, we cannot formally exclude that these 
observations originate from differences in cohort inclusion criteria that could skew numbers (e.g. due 
to more recruitment of patients with triple negative breast cancer which has higher HRD rates [106]).  

We show that HRD is also found sporadically in cancer types other than breast, ovarian, prostate or 
pancreatic, but collectively this constitutes a sizable group of patients (15% of all patients). We do 
acknowledge that there may be underestimation of HRD frequency in these other cancer types due to 
the low prevalence of BRCA1/2 deficient samples, which served as examples of HRD samples for 
training CHORD (Supplementary figure 23). On the other hand, we have shown that the HRD 
mutational footprint is not tissue type specific (Supplementary figure 8) suggesting that cancer type 
biases in the training set should not impact CHORD predictions. Our results thus indicate that a large 
number of patients who would potentially benefit from PARPi therapy still remain unnoticed. Since the 
mutational phenotype of HRD is independent of cancer type, mutational scar based HRD detection 
such as with CHORD would be valuable for cancer type agnostic patient stratification for future PARPi 
trials [121]. This is particularly important for metastatic patients (who depend on systemic treatments 
and benefit most from targeted treatments like PARPi), as well as for cancer types currently lacking 
good markers for patient stratification for such treatment (such as prostate [122] and biliary [123] 
cancer). 
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Genetic based detection of HRD in the clinic is commonly done by testing for pathogenic BRCA1/2 
germline mutations [102]. However, such hereditary mutations are only present in 30% of CHORD-
HRD patients (Supplementary notes; Supplementary figure 29) indicating that germline testing likely 
misses a substantial number of HRD patients. Germline variant testing is particularly unsuitable for 
prostate cancer where gene inactivation is frequently caused by somatic deep deletions, which prevent 
the identification of any SNVs/indels at the affected locus when using panel- or PCR-based 
sequencing methods (exon scanning). This problem also exists for other cancer types where deep 
deletions also make up a non-negligible fraction of HR gene inactivation cases. While somatic mutation 
testing improves diagnostic yield and is indeed increasingly performed in the clinic [102], WGS based 
genetic testing is ultimately necessary to capture the full spectrum of genetic alterations and to 
accurately determine the mutational status of HR genes. However, even such broad genetic testing 
with focus on biallelic gene inactivation still potentially misses roughly 50% of all HRD patients 
(Supplementary notes; Supplementary figure 29). 

We do acknowledge that mutational scars represent genomic history and not current on-going 
mutational processes that can result in false positive CHORD predictions, which could be for example 
due to reversion of HRD by secondary frameshifts [124,125], or recent acquisition of the HRD 
phenotype. False positive predictions could also arise from treatments producing similar mutational 
scars (in particular, microhomology deletions) to HRD. The most common cancer treatments have 
been shown to have little or no contribution to microhomology deletions, with the exception of 
radiotherapy [67,108,109].  However, we showed that radiotherapy itself likely does not lead to false 
positive predictions. We cannot exclude the possibility however that clonal expansion of a 
radiotherapy resistant tumor cell leads to sufficient enrichment of radiotherapy associated 
microhomology deletions in the tumor, resulting in a false positive prediction. Ultimately, the ability for 
CHORD to improve patient stratification and treatment outcome will need to be evaluated in direct 
comparisons and prospective clinical trials. 

Thus, while CHORD can detect HRD independent of the underlying cause, genetic testing of HRD 
genes is complementary and can provide supporting information for making a final verdict on a 
patient’s HR status. The unique advantage of using WGS, although not routine in clinical diagnostics 
yet, but likely in the near future [126], is that both genetic testing and mutational scar based HRD 
detection with CHORD can be performed simultaneously with the same assay. We envision that the 
findings from our analyses incentivizes improvements to current clinical practices for detecting HRD, 
and that the application of genomics-based approaches, like CHORD, in the clinic will support these 
endeavors and provide additional treatment options for patients. CHORD is freely available as an R 
package at https://github.com/UMCUGenetics/CHORD. 
 

Methods 

Datasets 
We have used patient data for which re-use for cancer research was consented by the patients as part 
of two clinical studies (NCT01855477, NCT02925234) unrelated to the current work. Matched 
tumor/blood samples from these patients were sequenced and uniformly analyzed by the Hartwig 
Medical Foundation (HMF; https://www.hartwigmedicalfoundation.nl/en/appyling-for-data/). The data 
transfer agreement (Data Request 10 and 47) were approved by the medical ethical committees 
(METC) of the University Medical Center Utrecht. We received germline and somatic VCF files of the 
3,824 metastatic tumor samples from 3,584 patients in May 2019. For patients with multiple biopsies 
that were taken at different timepoints, patient IDs were suffixed by ‘A’ for the first biopsy, ‘B’ for the 
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second biopsy, etc (e.g. HMF001423A, HMF001423B). A detailed description of the whole patient 
cohort has been described in detail in Priestley et al. 2019 [6]. 

Somatic variant TSV files of the 560 breast cancer (BRCA-EU) dataset were downloaded from the 
International Cancer Genome Consortium (ICGC; https://dcc.icgc.org/repositories) in August 2017. 
BAM files for the 44 BRCA-EU samples are available from EGA (datasets: EGAD00001000063 
[https://www.ebi.ac.uk/ega/datasets/EGAD00001000063], EGAD00001001322 
[https://www.ebi.ac.uk/ega/datasets/EGAD00001001322], EGAD00001001337 
[https://www.ebi.ac.uk/ega/datasets/EGAD00001001337]). BRCA1/2 status annotations for this 
dataset being obtained from the supplementary data in Davies et al. [74]. 

Somatic variant VCF files and somatic copy-number TSV files for the ICGC portion of the Pan-Cancer 
Analysis of Whole Genomes (PCAWG) dataset (consisting of 1,854 patient tumors) were downloaded 
from https://dcc.icgc.org/releases/PCAWG on March 3, 2020. PCAWG access for germline data has 
been granted via the Data Access Compliance Office (DACO) Application Number DACO-1050905 on 
October 6, 2017 and via https://console.cancercollaboratory.org download portal on December 4, 
2017. Germline VCF files were downloaded from the cancer collaboratory download portal on March 
21, 2018. 

Variant calling 
Variant calling in the HMF dataset was performed previously by HMF 
(https://github.com/hartwigmedical/pipeline) [6]. Briefly, reads were mapped to GRCh37 using BWA-
MEM v0.7.5a with duplicates being marked for filtering. Indels were realigned using GATK v3.4.46 
IndelRealigner. GATK Haplotype Caller v3.4.46 was used for calling germline variants in the reference 
sample. For somatic SNV and indel variant calling, GATK BQSR3 was first used to recalibrate base 
qualities, followed by Strelka v1.0.14 for the variant calling itself. Somatic SV calling was performed 
using GRIDSS v1.8.0. Copy-number calling was performed using PURity & PLoidy Estimator 
(PURPLE), that combines B-allele frequency (BAF), read depth and structural variants to estimate the 
purity and copy number profile of a tumor sample [127] as well as VAF and clonality (either clonal, 
subclonal or inaccurate) estimates of each variant.  

Determining gene biallelic status 
For samples in the HMF and PCAWG cohorts, biallelic status was determined for 781 genes 
(Supplementary data 3) which included genes associated with cancer, according to Cancer Genome 
Interpreter (https://www.cancergenomeinterpreter.org/genes), as well as a manually curated set of 
genes involved in HR (based on the KEGG HR pathway (https://www.genome.jp/), as well as via a 
literature search). This was performed using an in-house pipeline that interprets copy-number, and 
germline and somatic SNV/indel data from the HMF variant calling pipeline to determine biallelic gene 
status (https://github.com/UMCUGenetics/hmfGeneAnnotation). 

First, the copy number status in the gene region was determined. If the minimum copy number was 
<0.3, the gene was considered to have a deep deletion (and by default biallelically inactivated). Else, 
the gene was screened for 2 mutation events, which included following combinations: (i) loss-of-
heterozygosity (LOH) with a germline or somatic SNV/indel; (ii) a germline and somatic SNV/indel; or 
(iii) 2 somatic SNV/indels. 

LOH was considered pathogenic and was automatically given a P-score of 5. LOH occurred if the 
minimum minor allele copy number within a gene region was <0.2. 

Pathogenicity of SNVs/indels was assessed based on pathogenicity annotations from ClinVar 
(https://www.ncbi.nlm.nih.gov/clinvar/; GRCh37, database date 2020-02-24). For variants without an 
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entry in ClinVar, pathogenicity was assessed based on variant type as determined by SnpEff 
(http://snpeff.sourceforge.net/; v4.1h). Briefly, variants can be given one of the following annotations 
from ClinVar: pathogenic, likely pathogenic, variant of unknown significance (VUS), likely benign, and 
benign. A pathogenicity score (P-score) of 1-5 was also assigned to each annotation, with 1=benign 
and 5=pathogenic. Additionally, variant types as determined by SnpEff were assigned similar 
annotations and scores: out-of-frame frameshifts were considered pathogenic (P-score=5); nonsense 
and splice variants were considered likely pathogenic (P-score=4); missense variants, essential splice 
variants, and inframe frameshifts were considered VUS’s (P-score=3); the remaining variant types were 
considered likely benign or benign (P-score ≤2). The final P-score of a variant was the ClinVar P-score 
if a ClinVar annotation exists for that variant, and if not, the SnpEff P-score was used. See 
Supplementary data 6 for details on pathogenicity scoring. 

P-scores from pairs of mutation events (i.e. SNV, indel, or LOH) were summed to yield a biallelic 
pathogenicity score (BP-score), giving a maximum possible score of 10. Deep deletions were 
automatically given a score of 10. Per gene, the biallelic event with the highest score was taken the 
biallelic status of the gene. If multiple events had the same score, a biallelic event was greedily 
selected. 

Extracting mutation contexts 
The counts of 3 types of mutation contexts (SNV, indel, and structural variant (SV) contexts) were 
determined from the somatic variant data from the HMF, PCAWG and BRCA-EU cohorts 
(Supplementary data 2). This was performed using the R package mutSigExtractor 
(https://github.com/UMCUGenetics/mutSigExtractor). 

The SNV contexts comprised of 96 trinucleotide contexts, which are composed of one of six classes 
of base substitutions (C>A, C>G, C>T, T>A, T>C, T>G) in combination with the immediate 5’ and 3’ 
flanking nucleotides. 

The indel contexts comprised of 6 types based on the presence of: short tandem repeats (ins.rep, 
del.rep); short stretches of identical sequence at the breakpoints, also known as microhomology 
(ins.mh, del.mh); or the presence of neither (ins.none, del.none). Indels in repeat regions were defined 
as the presence of ≥1 copy of the indel sequence downstream (i.e. in the 3’ direction) from the 
breakpoint, where sequence length must be <50bp. Indels with flanking microhomology were defined 
as the presence of the following sequence features up or downstream from the breakpoint: (i) ≥1 copy 
of the indel sequence if the indel sequence length is ≥50bp; (ii) ≥2bp sequence identity to the indel 
sequence; or (iii) ≥1bp sequence identity if the indel sequence length is ≥3bp. For (ii) and (iii) the number 
of up or downstream bases searched was equal to the length of the indel. The 6 indel contexts types 
were further expanded into 30 indel contexts by stratifying ins.rep, del.rep, ins.none, and del.none by 
indel sequence length (1-4bp and ≥5bp); and ins.mh and del.mh by the number of bases in 
microhomology (‘bimh’; 1-4bp and ≥5). 

The 16 SV contexts were composed of the SV type (deletion, duplication, inversion, translocation) and 
the SV length (1-10kb, 10-100kb, 100kb-1Mb, 1Mb-10Mb, >10Mb). Note that SV length is not 
applicable for translocations. 

Random forest training 
Features 
To construct the features for training the Classifier of HOmologous Recombination Deficiency 
(CHORD), the 96 trinucleotide contexts were simplified to 6 base substitution contexts by discarding 
the 5’ and 3’ flanking nucleotide information. For CHORD-del.mh.merged, the 30 indel contexts were 
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simplified to the 6 indel types. For CHORD and CHORD-signature, the del.mh indel type was split into 
2 bins: del.mh with 1bp homology and 2 to ≥5 (i.e. equivalent to ≥5bp) homology (del.mh.bimh.1 and 
del.mh.bimh.2.5 respectively). Then, relative contribution was calculated for each feature per mutation 
context type (i.e. SNV, indel and SV contexts separately). For CHORD-signature, the 96 trinucleotide 
contexts were fitted to the 30 COSMIC SBS signatures [74] using the non-negative least squares 
algorithm (incorporated in mutSigExtractor). The SV contexts were fitted in the same manner to the 6 
SV signatures [74]. The relative contribution of the SBS signatures, SV signatures, and indel contexts 
was then calculated per mutation type. 

Training set 
The training set consisted of samples which we could confidently consider BRCA1/2 deficient or 
proficient based on the P-scores/BP-scores as described in Determining gene biallelic status and 
Supplementary data 6. BRCA1/2 deficiency was defined as having a BP-score = 10. This includes 
samples with: (i) a deep deletion, (ii) LOH in combination with a pathogenic SNV/indel or an out-of-
frame frameshift, or (iii) two pathogenic SNV/indels and/or or out-of-frame frameshifts. Within the 
BRCA1/2 deficient group, samples where the absolute frequency of indels within repeat regions was 
>14000 were considered to have microsatellite instability (MSI) and were removed. This filtering step 
was done as the relative contribution of indels in repeat regions are grossly overrepresented in samples 
with MSI, thereby masking the contribution of microhomology deletions. This sample group ultimately 
consisted of 35 BRCA1 (‘BRCA1’ class) and 89 BRCA2 (‘BRCA2’ class) deficient samples which were 
both considered HRD during the training. Conversely, BRCA1/2 proficiency required the following 
criteria: (i) Absence of deep deletions or LOH; (ii) all SNV/indels had a P-score ≤ 3 (VUS or lower in 
impact); (iii) for the highest impact pair of SNV/indels (i.e. highest BP-score), both variants had a P-
score ≤ 3 (VUS or lower in impact). This BRCA proficient group (‘none’ class) consisted of 1,902 
samples which were considered HRP during the training (Supplementary figure 1). 

Training procedure 
The training procedure for CHORD (as well as other models described in this study) is illustrated in 
Supplementary figure 2. A core training procedure, which performs feature selection and class 
resampling, forms the basis for the full training procedure (Supplementary figure 2a). Feature 
selection was done to retain mutation contexts which were significantly higher (p < 0.01, determined 
by one-tailed Wilcoxon tests) in BRCA1/2 deficient versus proficient samples. Class resampling serves 
to reduce the difference in the number of samples between each class (i.e. class imbalances). Here, a 
grid search was performed to determine the optimal pair of the following parameters: (i) down-
sampling of the ‘none’ class: 1x (i.e. no down-sampling), 2x or 4x; (ii) up-sampling of the ‘BRCA1’ 
class: 1x (i.e. no up-sampling), 1.5x or 2x. For each iteration of the grid search, 10-fold cross-validation 
(CV) was performed, after which the area under the precision-recall curve (AUPRC) was calculated. 
The parameter pair with the highest AUPRC was chosen. With the selected features and resampling 
parameters, a random forest was then trained that predicts the probability of a new sample being in 
one of the aforementioned 3 classes (i.e. ‘BRCA1’, ‘BRCA2’ or ‘none’). We defined the HRD probability 
as the sum of the probability of belonging to the ‘BRCA1’ and ‘BRCA2’ classes, where a sample was 
considered HRD if the HRD probability was ≥0.5. Random forests were trained using the randomForest 
R package. 

The full training procedure was split into 2 stages (Supplementary figure 2b). The first stage serves 
to filter ‘BRCA1’ or ‘BRCA2’ samples from the which are likely not HRD (e.g. due to reversal of biallelic 
inactivation via a second frameshift bringing the gene in frame), or ‘none’ samples which are likely not 
HRP (e.g. due to deficiencies in other HR genes). Here, the core training procedure is encapsulated by 
a 10-fold CV loop to allow every sample to be excluded from the training set to subsequently calculate 
an unbiased HRD probability. This was repeated 100 times and the number of times each sample was 
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HRD or HRP was calculated. ‘BRCA1’ or ‘BRCA2’ samples that were predicted HRD < 60 times were 
blacklisted while ‘none’ samples that were predicted HRD > 40 times were blacklisted. In the second 
training stage, the core training procedure was performed on a training set without the blacklisted 
samples. This yielded the final random forest model. 

The performance of the final random forest model was assessed using 2 approaches: (i) 10-fold CV of 
the training set by further encapsulating the full training procedure in a 10-fold CV loop; (ii) applying 
the final random forest model to an external dataset (BRCA-EU dataset). An AUPRC was then 
calculated for both approaches. In the case of the BRCA-EU dataset, BRCA1/2 deficiency annotations 
were obtained from Davies et al. 2017 [74]. All performance metrics were calculated using the mltoolkit 
R package (https://github.com/UMCUGenetics/mltoolkit). 

Determining the genetic cause of HRD 
To determine the genetic cause of HRD, tumors were first selected from the HMF cohort based on the 
absence of MSI, having ≥50 indels, and ≥30 SVs for HRD predicted samples (Supplementary data 1). 
Furthermore, for patients with multiple biopsies, a single tumor per patient was selected (based on the 
one with highest tumor purity). In total, 3504 tumors were selected (from the 3824 in total) to represent 
each patient. The following procedure was then employed for identifying biallelic loss in each of the 
781 cancer/HR associated genes. First, high frequency germline SNV/indels (Supplementary figure 
18) were marked as benign (P-score = 0). Then, each gene was screened for the following events: (i) a 
deep deletion; (ii) LOH in combination with a germline SNV/indel with a P-score ≥ 4 (likely pathogenic 
or higher in impact); (iii) LOH in combination with a somatic SNV/indel with a P-score ≥ 3 (VUS or 
higher in impact); or (iv) two SNVs/indels (germline + somatic, or 2x somatic) both with a P-score = 5 
(pathogenic). See Supplementary data 6 for details of the P-score thresholds used. 

After applying CHORD to the HMF cohort, we then determined whether each of the 781 genes was 
significantly more frequently deficient in CHORD-HRD vs. CHORD-HRP patients using a one-tailed 
Fisher’s exact test, with multiple testing correction performed with the Hochberg procedure using the 
p.adjust() function in R. This was done to determine the genes most likely to cause HRD when 
inactivated. Six genes were found with a q-value < 0.1 and had at least 5 patients with deficiency in 
the corresponding gene: BRCA1, BRCA2, RAD51C, PALB2, NF1, and STARD13 (Supplementary 
figure 19). NF1 and STARD13 have not been reported to be involved in HR, and thus further analyses 
were performed to validate the enrichment for these 2 genes. 

Since BRCA1 and NF1 are both located on Chr17, we reasoned that copy number alterations (CNA; 
in this case referring to deep deletions or LOH) that affect BRCA1 also affect NF1. This leads to 
frequent biallelic loss of NF1 even though the gene is likely not associated with HRD. A similar situation 
was suspected for BRCA2 and STARD13 which are both located on Chr13. Thus, one-tailed Fisher’s 
exact tests were performed to determine whether CNAs in each of the 781 genes significantly co-
occurred more often with a CNA in BRCA1 or BRCA2. Multiple testing correction was performed using 
the Hochberg procedure. Indeed, enrichment in the co-occurrence of BRCA1 and NF1 CNAs was 
found, and was similarly the case for BRCA2 and STARD13 (Supplementary figure 20). We thus 
concluded that biallelic loss of NF1 and STARD13 are likely not associated with HRD and were 
therefore excluded from Figure 3a. 

Clustering of CHORD-HRD samples 
Clustering of CHORD-HRD samples based on biallelic inactivating events (as in Figure 3c) is illustrated 
in Supplementary figure 25. First, samples were split into 4 groups according to their HRD subtype 
and whether a sample had an impactful biallelic event (P-score pair of 5 and ≥3).  
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For each of these groups, the HRD associated gene with the max BP-score was greedily determined 
per sample and assigned a score of 1, with the remaining genes being assigned a score of  0. Genes 
were prioritized as follows BRCA2, BRCA1, RAD51C, PALB2. This was based on highest to lowest 
enrichment of gene deficiency in CHORD-HRD vs. CHORD-HRP as described above. With the 
resultant (1,0) matrix, a sorting operation was performed. A post-processing step (done purely for 
cosmetic purposes) ensured that samples with deep deletions, LOH + frameshift, and LOH + other 
SNV/indels in the corresponding gene were ranked first. The sorted (1,0) matrices from the 4 sample 
groups were combined, and consecutive rows of 1’s were considered a cluster. For the 2 groups 
representing samples with no impactful biallelic event, all samples were considered to be in one 
cluster.  These 2 groups corresponded to clusters 4 and 6 in Figure 3c, and samples in these clusters 
were considered to have an unknown cause of HRD. 

For Supplementary figure 23, samples were first split by cancer type before performing the above 
procedure. 

Code availability 
CHORD is available as an R package at https://github.com/UMCUGenetics/CHORD (DOI: 
10.5281/zenodo.4020925). The code used for data processing and generating the figures is also 
available in this repository. 

Data availability 
Metastatic WGS data and corresponding metadata have been obtained from the Hartwig Medical 
Foundation and provided under data request numbers DR-010 and DR-047. Both WGS data and 
metadata is freely available for academic use from the Hartwig Medical Foundation through 
standardized procedures and request forms can be found at 
https://www.hartwigmedicalfoundation.nl. WGS data for the 560 primary breast cancer (BRCA-EU) 
dataset and Pan-Cancer Analysis of Whole Genomes (PCAWG) primary cancer dataset are publically 
available from the International Cancer Genome Consortium (ICGC) (https://dcc.icgc.org/repositories; 
https://dcc.icgc.org/releases/PCAWG). For access to identifying data (e.g. germline or raw read data) 
for the PCAWG or BRCA-EU datasets, researchers will need to request access via the ICGC Data 
Access Compliance Office (DACO). All other data are available within the article, Supplementary 
Information or available from the authors upon request. 
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Supplementary figures 

 
 
Supplementary figure 1: Sample selection for training CHORD. Only samples where biallelic 
inactivation of BRCA1/2 could confidently be identified (and did not have MSI), or where no disruption 
of BRCA1/2 was apparent were recruited into the training set. A total of 2,026 samples were eventually 
selected, consisting of 35 BRCA1 and 89 BRCA2 deficient which were both considered HRD during 
training, and 1,902 BRCA1/2 proficient (‘none’) which were considered HRP. LOH: loss-of-
heterozygosity; VUS: variant of unknown significance. 
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Supplementary figure 2: Workflow for training CHORD. ‘BRCA1’, ‘BRCA2’ and ‘none’ classes refer 
to BRCA1 deficient, BRCA2 deficient and BRCA1/2 proficient sample groups, respectively. (a) The 
core training procedure on which the full training procedure is based on feature selection and class 
resampling. This returns a random forest that outputs the probability of a new sample being in one of 
the aforementioned 3 classes. The probability of HRD (PHRD) is the sum of the probability of belonging 
to the ‘BRCA1’ and ‘BRCA2’ classes, where a sample is considered HRD if PHRD is ≥ 0.5. (b) The full 
training procedure is split into 2 stages. The first stage serves to blacklist ‘BRCA1’ or ‘BRCA2’ class 
samples which are likely not HRD (e.g. due to reversal of biallelic inactivation via a secondary 
frameshift), or ‘none’ samples which are likely not HRP (e.g. due to deficiencies in other HR genes). 
Here, the core training procedure is encapsulated by a 10-fold cross-validation (CV) loop to allow every 
sample to be excluded from the training set to subsequently calculate an unbiased PHRD. This was 
repeated 100 times and the number of times each sample was HRD or HRP was calculated. ‘BRCA1’ 
or ‘BRCA2’ samples that were predicted HRD < 60 times were blacklisted. ‘none’ samples that were 
predicted HRD > 40 times were blacklisted. In the second training stage, the core training procedure 
was performed on a training set without the blacklisted samples. This produced the final random forest 
model, CHORD. (c) The full training procedure was further encapsulated by a 10-fold CV to assess the 
performance of CHORD. (d) Performance was also assessed by applying CHORD on two independent 
datasets: BRCA-EU (371 primary breast tumors) and PCAWG (1176 primary tumors, pan-cancer). 
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Supplementary figure 3: Deletions with ≥2bp flanking homology were most predictive of 
BRCA1/2 deficiency. A random forest was applied to the training set and the importance of each 
feature was quantified using the mean decrease in Gini. The features used for training are relative 
counts of different mutation contexts which fall into one of three groups based on mutation type. (i) 
Single nucleotide variants (SNV): 6 possible base substitutions (C>A, C>G, C>T, T>A, T>C, T>G). (ii) 
Indels: indels with flanking microhomology stratified by homology length (del.mh, ins.mh), within repeat 
regions (del.rep, del.none), or not falling into either of these 2 categories (del.none, ins.none). (iii) 
Structural variants (SV): SVs stratified by type and length.  

 

 
Supplementary figure 4: Results of the 100x repeated 10-fold CV procedure for filtering CHORD 
training samples. This was performed to blacklist ‘BRCA1’ or ‘BRCA2’ class samples that were 
consistently predicted HRP (no. times HRD < 60), or ‘none’ class samples that were consistently 
predicted HRD (no. times HRD > 40). Samples with a probability of HRD ≥ 0.5 were considered HRD. 
The overlaid table summarizes the number of samples per class before and after removing the 
blacklisted samples from the training set. Note that only the top 200 samples are shown here as the 
remaining samples belonged to the ‘none’ class and were always predicted HRP. 
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Supplementary figure 5: CHORD predictions on all HMF, BRCA-EU and PCAWG patients. 
Predictions on the HMF, BRCA-EU and PCAWG datasets are shown in a, b and c, respectively. The 
probability of HRD for each sample (total bar height) with each bar being divided into segments 
indicating the probability of BRCA1- (orange) and BRCA2-type HRD (purple). Stripes below the bar 
plot indicate biallelic loss of BRCA1 or BRCA2. Only samples that passed CHORD’s QC criteria are 
shown (MSI negative, ≥50 indels, and ≥30 SVs if a sample was predicted HRD).  
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Supplementary figure 6: Additional performance metrics for CHORD. Performance was 
determined by 10-fold cross-validation (CV) on the HMF training data (a-c) or prediction on two 
independent datasets, BRCA-EU (primary breast cancer dataset; d-f) and PCAWG (primary pan-
cancer dataset; g-i). Data from the BRCA-EU and PCAWG datasets are from samples that passed 
CHORD’s QC criteria (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample was predicted HRD). 
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Supplementary figure 7: Variant calling pipeline differences affects CHORD performance. (a) 
Using variants called with the native pipeline of the HMF dataset (HMF pipeline) for HRD prediction 
with CHORD resulted in overall higher HRD probabilities in BRCA1/2 deficient tumors when compared 
to (c) using variants downloaded from ICGC. The differences in HRD probabilities are quantified in (b). 
All samples shown here passed CHORD’s QC criteria (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample 
was predicted HRD).  
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Supplementary figure 8: Clustering of samples (HMF, n=2026; PCAWG, n=1854) by t-distributed 
stochastic neighbor embedding (t-SNE) on the features used as input for CHORD. The dashed 
red lines are a manual annotation of the HRD cluster. All samples shown here passed CHORD’s QC 
criteria (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample was predicted HRD). 
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Supplementary figure 9: Performance of random forests trained when HMF samples belonging 
to each cancer type were held out. Training was performed in the same manner as for CHORD. 
These models were then applied to the held out HMF samples as well as the PCAWG samples to 
calculate performance metrics (at a classification threshold of 0.5). Only samples where BRCA1/2 
deficiency status could be confidently determined were included in this analysis (HMF, n=2026; 
PCAWG, n=1854). False positive rate (FPR) = number of BRCA1 or BRCA2 proficient samples 
misclassified as HR proficient /  total number of BRCA1 or BRCA2 proficient samples. False negative 
rate (FNR) = number of BRCA1 or BRCA2 deficient samples misclassified as HR deficient / total 
number of BRCA1 or BRCA2 deficient samples. ‘Aggregate’ refers to the aggregated FPR and FNR 
across all cancer types. ‘Other’ refers to cancer types with <2 BRCA1/2 deficient samples. 
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Supplementary figure 10: CHORD vs HRDetect predictions on the PCAWG dataset. The 1526 
samples shown here had predictions from HRDetect and passed CHORD’s QC criteria for predicting 
HRD (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample was predicted HRD). The dotted lines indicate 
the classification thresholds for the two models (CHORD: 0.5, HRDetect: 0.7). P(HRD): probability of 
HRD. 
 
 

 
Supplementary figure 11: The features used by CHORD-signature to predict HRD as well as 
BRCA1-type HRD and BRCA2-type HRD. Importance is indicated by mean decrease in accuracy. 
SV# refers to the 6 SV mutational signatures and SBS# refers to the 30 single base substitution 
signatures as used by HRDetect. Indels are stratified into those with flanking microhomology further 
stratified by homology length (del.mh, ins.mh), within repeat regions (del.rep, del.none), or not falling 
into either of these 2 categories (del.none, ins.none). Boxplot and dots (n=10) show the feature 
importance over 10-folds of nested CV on the training set, with the red line showing the feature 
importance in the final CHORD model. Boxes show the interquartile range (IQR) and whiskers show 
the largest/smallest values within 1.5 times the IQR.  
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Supplementary figure 12: Performance of CHORD-signature. Performance was determined by 10-
fold cross-validation (CV) on the HMF training data or prediction on two independent datasets: BRCA-
EU (primary breast cancer dataset) and PCAWG (primary pan-cancer dataset). BRCA-EU and PCAWG 
samples shown here all passed CHORD’s QC criteria (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample 
was predicted HRD) (a, d, g) The probability of HRD for each sample (total bar height) with each bar 
being divided into segments indicating the probability of BRCA1- (orange) and BRCA2-type HRD 
(purple). Stripes below the bar plot indicate biallelic loss of BRCA1 or BRCA2. In (a), probabilities have 
been aggregated from the 10 CV folds. (b, e, h) Receiver operating characteristic (ROC) and (c, f, i) 
precision-recall curves (PR) and respective area under the curve (AUC) values showing the 
performance of CHORD when predicting HRD as a whole (grey), BRCA1-type HRD (orange), or 
BRCA2-type HRD (purple).  
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Supplementary figure 13: Additional performance metrics for CHORD-signature. Performance 
was determined by 10-fold cross-validation (CV) on the HMF training data (a-c) or prediction on two 
independent datasets, BRCA-EU (primary breast cancer dataset; d-f) and PCAWG (primary pan-
cancer dataset; g-i). Data from the BRCA-EU and PCAWG datasets are from samples that passed 
CHORD’s QC criteria (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample was predicted HRD). 
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Supplementary figure 14: Random forests were used to identify the features predictive of 
BRCA1/2 deficiency (a,b) compared to those predictive of radiotherapy (c,d) when using clonal 
versus subclonal variants as input. Feature importance is indicated by mean decrease in Gini, with 
only the top 15 important features being shown. The features used for training are relative counts of 
different mutation contexts which fall into one of three groups based on mutation type. (i) Single 
nucleotide variants (SNV): 6 possible base substitutions (C>A, C>G, C>T, T>A, T>C, T>G). (ii) Indels: 
indels with flanking microhomology stratified by homology length (del.mh, ins.mh), within repeat 
regions (del.rep, del.none), or not falling into either of these 2 categories (del.none, ins.none). (iii) 
Structural variants (SV): SVs stratified by type and length. Deletions with 1bp of flanking homology 
(del.mh.bimh.1) was more associated with radiotherapy especially in the subclonal fraction, while 
deletions with ≥2bp flanking homology (del.mh.bimh.2.5) was more associated with BRCA1/2 
deficiency.  

 

 

Supplementary figure 15: The features used by CHORD-del.mh.merged to predict HRD as well 
as BRCA1-type HRD and BRCA2-type HRD. Importance is indicated by mean decrease in accuracy. 
The features used for training are relative counts of different mutation contexts which fall into one of 
three groups based on mutation type. (i) Single nucleotide variants (SNV): 6 possible base substitutions 
(C>A, C>G, C>T, T>A, T>C, T>G). (ii) Indels: indels with flanking microhomology stratified by homology 
length (del.mh, ins.mh), within repeat regions (del.rep, del.none), or not falling into either of these 2 
categories (del.none, ins.none). (iii) Structural variants (SV): SVs stratified by type and length. Deletions 
with flanking microhomology (del.mh) was the most important feature for predicting HRD as a whole, 
with 1-100kb structural duplications (DUP_1e03_1e04_bp, DUP_1e04_1e05_bp) differentiating 
BRCA1-type HRD from BRCA2-type HRD. Boxplot and dots (n=10) show the feature importance over 
10-folds of nested CV on the training set, with the red line showing the feature importance in the final 
CHORD model. Boxes show the interquartile range (IQR) and whiskers show the largest/smallest 
values within 1.5 times the IQR. 
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Supplementary figure 16: HRD predictions (on HMF samples) from CHORD and CHORD-
del.mh.merged on all variants. Only samples passing CHORD’s QC criteria were shown (MSI 
negative, ≥50 indels, and ≥30 SVs if a sample was predicted HRD). Dots with a red outline indicate 
samples which had radiotherapy prior to the tumor biopsy. Dot fill color indicates the biallelic status of 
BRCA1 or BRCA2. LOH: loss-of-heterozygosity; VUS: variant of unknown significance; PHRD: 
probability of HRD.  
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Supplementary figure 17: HRD predictions (on HMF samples) on subclonal versus clonal variants 
and from (a) CHORD and (b) CHORD-del.mh.merged. Only samples passing CHORD’s QC criteria 
were shown (MSI negative, ≥50 indels in both clonal and subclonal fractions, and ≥30 SVs if a sample 
was predicted HRD). Dots with a red outline indicate samples which had radiotherapy prior to the 
tumor biopsy. Dot fill color indicates the biallelic status of BRCA1 or BRCA2. LOH: loss-of-
heterozygosity; VUS: variant of unknown significance; PHRD: probability of HRD. 

 

 
Supplementary figure 18: Frequency of unique germline SNVs/indels of 781 cancer related genes 
in patients of the HMF cohort. Germline variants with a frequency >1.09% were marked as benign 
prior to performing the pan-cancer analysis of HRD. Two known pathogenic variants above this 
frequency were also considered benign. 
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Supplementary figure 19: A one-tailed Fisher’s exact test identified enrichment of BRCA1, 
BRCA2, RAD51C and PALB2 biallelic inactivation in CHORD-HRD vs. CHORD-HRP patients. 
Each point represents a gene (from a list of 781 cancer and HR related genes) with its size/color 
corresponding to the statistical significance as determined by the Fisher’s exact test, with axes 
indicating the percentage of patients (within either the CHORD-HRD or CHORD-HRP group) in which 
biallelic inactivation was detected. Multiple testing correction was performed using the Hochberg 
procedure. This figure is the same as Figure 3b except with NF1 and STARD13 included. A one-tailed 
Fisher’s exact test determined BRCA1 (q=9.4e-51), BRCA2 (q=4.8e-101), RAD51C (q=5.6e-5), PALB2 
(q=0.02), NF1 (q=3.5e-7) and STARD13 (q=3.0e-8) to be significantly enriched (from a list of 781 cancer 
related genes) in CHORD-HRD vs. CHORD-HRP patient groups. Each point represents a gene with its 
size/color corresponding to the statistical significance as determined by the Fisher’s exact test, with 
axes indicating the percentage of patients (within either the CHORD-HRD or CHORD-HRP group) in 
which biallelic inactivation was detected. Multiple testing correction was performed using the 
Hochberg procedure.  
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Supplementary figure 20: Chromosomal alterations (deep deletions or loss of heterozygosity 
(LOH)) affecting BRCA1 and BRCA2 also affects nearby genes including NF1 and STARD13 
respectively. (a) Enrichment of NF1 (q<1e-300) biallelic loss as shown in Supplementary figure 19 is 
likely due to the gene being within proximity of BRCA1 and not because the gene is associated with 
HRD, since NF1 is not considered to be involved in HR in literature. The size/color of each point on the 
plot represents the significance of enrichment of CNAs occurring both in BRCA1 and in each of the 
781 genes (one vs. all comparison). This was determined by a one-tailed Fisher’s exact test, where 
multiple testing correction was performed using the Hochberg procedure. Genes residing on the same 
chromosome as BRCA1 were marked with a red outline and text. (a) Similarly, as with (b), a 
chromosomal alteration affecting BRCA2 also affects the nearby gene STARD13 (q<1e-300). 
Enrichment of STARD13 biallelic loss as shown in Supplementary figure 19 is likely due to the gene 
being within proximity of BRCA2 and not because the gene is associated with HRD. 
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Supplementary figure 21: The number of CHORD-HRD patients of each cancer type which did 
(top) and did not (bottom) have biallelic loss of BRCA1, BRCA2, RAD51C, or PALB2. The top panel 
corresponds to patients in cluster 1,2,3 and 5 of Figure 3c while the bottom panel corresponds to 
patients in cluster 4 and 6. The percentages shown are within-group proportions.  
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Supplementary figure 22: Enrichment of LOH in the 781 HR/cancer related genes. Enrichment for 
each gene was determined between CHORD-HRD samples (excluding those with deep deletions in 
BRCA1/2, RAD51C or PALB2) and CHORD-HRP samples using one-sided Fisher’s exact tests. 

 

 
Supplementary figure 23: Biallelic status of BRCA2, BRCA1, RAD51C and PALB2 in CHORD-
HRD patients from both the HMF and PCAWG datasets. Patients were clustered both by cancer 
type and by HRD type. Top: BRCA1- and BRCA2-type HRD probabilities from CHORD. Middle: SV 
contexts used by CHORD to distinguish BRCA1- from BRCA2-type HRD. Bottom: The biallelic status 
of each gene. Tiles marked as ‘Known pathogenic’ refer to variants having a ‘pathogenic’ or ‘likely 
pathogenic’ annotation in ClinVar. Only data from samples that passed CHORD’s QC criteria are 
shown in this figure (MSI absent, ≥50 indels, and ≥30 SVs if a sample was predicted HRD). LOH: loss-
of-heterozygosity.  
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Supplementary figure 24: Biallelic status of BRCA2, BRCA1, RAD51C, PALB2, as well as other 
HR genes in CHORD-HRD patients from both the HMF and PCAWG datasets. Top: BRCA1- and 
BRCA2-type HRD probabilities from CHORD. Middle: SV contexts used by CHORD to distinguish 
BRCA1- from BRCA2-type HRD. Bottom: The biallelic status of each gene. Tiles marked as ‘Known 
pathogenic’ refer to variants having a ‘pathogenic’ or ‘likely pathogenic’ annotation in ClinVar. Only 
HR genes with one of the following events in at least one patient from cluster 4 or 6 was shown here: 
deep deletion; or LOH in combination with a pathogenic/likely pathogenic variant or a 
frameshift/nonsense variant. Only data from samples that passed CHORD’s QC criteria are shown in 
this figure (MSI absent, ≥50 indels, and ≥30 SVs if a sample was predicted HRD). Furthermore, only 
genes where at least one patient had an impactful biallelic event are shown. LOH: loss-of-
heterozygosity. 
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Supplementary figure 25: Overview of the procedure to sort and cluster CHORD-HRD samples. 
CHORD-HRD samples were first split by HRD subtype (BRCA1- or BRCA2-type HRD), and further split 
by whether a sample had an impactful biallelic event (defined as having a P-score pair of 5 and >=3). 
This produced 4 distinct groups of samples, which were sorted such that samples were ordered by 
deficiency of BRCA2, BRCA1, RAD51C and PALB2 (in that order). This gene order corresponds to the 
enrichment significance of these genes as shown in Figure 3b. For each gene, samples were sorted 
such that samples with the HRD causing gene deficiency due to deep deletions were ordered first, 
followed by those with LOH (loss-of-heterozygosity) + frameshift and LOH + SNV/indel.  
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Supplementary notes 

Supplementary Note 1: Prerequisites for accurate HRD prediction 
It is important to note that microsatellite instability (MSI) negatively affects CHORD’s ability to 
accurately predict HRD. MSI is a hypermutator phenotype characterized by an exceptional number of 
indels in regions with (tandem) repeats. As CHORD uses relative values of mutation contexts as input, 
MSI (defined as having more than 14,000 indels within repeat regions) results in a reduction of the 
relative contribution of microhomology deletions and thus an underestimated HRD probability (‘false 
negatives’). Supplementary figure 26 shows the CHORD being applied to all 3,824 HMF samples. All 
MSI samples were predicted HRP by CHORD even though 4 of these samples had biallelic loss of 
BRCA2. This could be circumvented by incorporating a MSI trained HRD classifier within CHORD. 
However, the number of HRD predicted samples with MSI is currently too small for training such a 
classifier and therefore we have built in MSI status checking as a quality control (QC) step within 
CHORD. 

 

Supplementary figure 26: Microsatellite instability (MSI) impacts HRD prediction by CHORD. After applying 
CHORD to all 3824 tumors of the HMF dataset, all MSI positive tumors (those with more than 14,000 indels 
within repeat regions) had a low HRD probability, including 4 with BRCA2 biallelic loss.  
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A minimum number of mutations is also required for accurate HRD prediction. To determine this, we 
progressively down-sampled all mutations for each sample in the training set and measured the 
reduction in performance (Supplementary figure 27). We found that at least 50 indels were required 
for accurately predicting HRD, and if a sample was predicted HRD, at least 30 SVs were required for 
distinguishing BRCA1-type from BRCA2-type HRD. These threshold levels may be particularly relevant 
for samples with low tumor purity and/or read coverage, and are as such also included as a QC step 
within CHORD. 

 

Supplementary figure 27: Performance of predicting HRD declines below ~50 indels. Similarly, performance for 
distinguishing BRCA1-type from BRCA2-type HRD declines below ~30 SVs. The set of mutations in each 
sample in the training set (used for training CHORD) were progressively downsampled. At each stage, CHORD 
was applied to the downsampled set of mutations, and thereafter, the area under the precision-recall curve was 
calculated.  
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Supplementary Note 2: CHORD as a tool to uncover novel pathogenic variants  
The HRD predictions from CHORD can provide supportive evidence for interpreting variants of 
unknown significance (VUS), either germline or somatic, which can in turn be used for prioritizing rare 
VUS’s for experimental validation as shown in Supplementary figure 28.  

From 13 CHORD-HRD patients, we identified 14 variants not previously described to be pathogenic 
but which in combination with LOH could explain biallelic loss of a HR gene (Supplementary data 7). 
Moreover, biallelic loss of the respective gene corresponded to the associated HRD subtype, and all 
of these variants were not present in HRP samples, providing additional support that these variants 
are potentially pathogenic. From these variants, 2 BRCA2 missense variants (c.9230T>C, c.9254C>T) 
were both found in patient HMF000429. Here, further validation is required to determine which was 
the driver mutation (or possibly the combination). The remaining 12 variants were the sole variant found 
in the respective gene and respective patient, and are thus more likely to be pathogenic driver variants. 
Of these, one BRCA2 missense variant (c.8045C>T) had a ‘Uncertain_significance’ annotation in 
ClinVar but a low population frequency according to gnomAD as well as being predicted as 
‘deleterious’ by SIFT and ‘probably damaging’ by PolyPhen, supporting its potential pathogenicity. 
 

 

Supplementary figure 28: Scheme for prioritizing variants of unknown significance (VUS) for experimental 
validation starting from the HRD predictions from CHORD.  
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Supplementary Note 3: CHORD can detect HRD in a substantial number of 
cases that would be missed by genetic testing 
To assess the potential value of CHORD in a clinical setting, we compared CHORD’s predictions for 
HMF patients to the hypothetical outcomes of common genetic testing approaches. In the clinic, HRD 
detection is currently often done by screening for pathogenic BRCA1/2 SNVs/indels based on 
annotations from curated databases (e.g. ClinVar). This is performed either on blood biopsies (blood 
genetic testing), analogous to screening for germline SNVs/indels in sequencing data of the HMF 
cohort (which was analysed by tumor-normal pair whole genome sequencing); or on tumor biopsies 
(tumor genetic testing), analogous to screening both germline and somatic SNVs/indels. Our genetic 
analyses (below figure) indicate that blood genetic testing would identify a pathogenic BRCA1/2 
SNV/indel (according to ClinVar; or an out-of-frame frameshift) in 18% of CHORD-HRD breast/ovarian 
cancer patients (which genetic testing is often restricted to), while tumor genetic testing would increase 
this proportion to 25%. If patients with other cancer types would be included, blood and tumor genetic 
testing would identify 31% and 42% of CHORD-HRD tumors (respectively) with a pathogenic BRCA1/2 
SNV/indel (Supplementary figure 29a, columns 1 and 2). 

While not currently routinely performed in the clinic, WGS based genetic testing with matched 
blood/tumor biopsies (WGS genetic testing) would allow the detection of any event (including 
structural events such as LOH or deep deletions) that contributes to HR gene inactivation, and enables 
the determination of biallelic gene status. Our analyses show that WGS genetic testing would increase 
the number of patients that are considered HRD compared to SNV/indel-based blood/tumor genetic 
testing, with biallelic loss of BRCA1/2 being identified in 27% of CHORD-HRD breast/ovarian cancer 
patients and in 50% of patients pan-cancer (Supplementary figure 29a, column 3). Additionally, WGS 
genetic testing would consider 9 CHORD-HRP patients as HRD (Supplementary figure 29b, column 
3; ‘genetic testing false positives’; these could also be CHORD false negatives), a marked decrease 
compared to tumor genetic testing which would identify 28 false positives (Supplementary figure 
29b, column 2). By including the two other main HRD associated genes (RAD51C and PALB2) in WGS 
genetic testing, biallelic gene loss would be identified in 53% of patients (Supplementary figure 29a, 
column 4), while only increasing the number of genetic testing false positives from 9 to 10 patients 
(Supplementary figure 29b, column 5). Our findings show that while WGS genetic testing (for biallelic 
loss) offers improved detection of HRD patients compared to testing for pathogenic SNVs/indels, it 
still misses around half of HRD patients as classified by CHORD.  
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Supplementary figure 29: CHORD identifies a large proportion of HRD patients that would be missed by genetic 
testing. (a) and (b) show the percentage of CHORD-HRD or CHORD-HRP patients (respectively) from the HMF 
dataset in which a pathogenic event was found based on four genetic testing setups. In the first two setups (‘On 
blood’, ‘On tumor’), a pathogenic event was identified if a pathogenic SNV/indel was found on one allele, which 
was defined as a frameshift, or a likely pathogenic or pathogenic variant according to ClinVar. In the ‘WGS based 
testing’ setups, the pathogenic SNV/indel must also have occurred in combination with loss of heterozygosity 
(LOH); or, a deep deletion was identified. Only data from samples that passed CHORD’s QC criteria are shown in 
this figure (MSI absent, ≥50 indels, and ≥30 SVs if a sample was predicted HRD). 
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Abstract 
Cancers of unknown primary (CUP) origin account for ~3% of all cancer diagnoses, whereby the tumor 
tissue of origin (TOO) cannot be determined. Using a uniformly processed dataset encompassing 6756 
whole-genome sequenced primary and metastatic tumors, we develop Cancer of Unknown Primary 
Location Resolver (CUPLR), a random forest TOO classifier that employs 511 features based on simple 
and complex somatic driver and passenger mutations. CUPLR distinguishes 35 cancer (sub)types with 
~90% recall and ~90% precision based on cross-validation and test set predictions. We find that 
structural variant derived features increase the performance and utility for classifying specific cancer 
types. With CUPLR, we could determine the TOO for 82/141 (58%) of CUP patients. Although CUPLR 
is based on machine learning, it provides a human interpretable graphical report with detailed feature 
explanations. The comprehensive output of CUPLR complements existing histopathological 
procedures and can enable improved diagnostics for CUP patients. 
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Introduction 
Cancers of unknown primary (CUPs) is an umbrella term for advanced stage metastatic tumors for 
which the tumor tissue of origin (TOO) cannot be conclusively determined based on routine diagnostics 
(typically via histopathology [128]), and there is also a significant fraction of patients with indeterminate 
or differential diagnoses, especially with poorly differentiated tumors [129]. Patients with uncertain 
TOO diagnosis suffer from a lack of therapeutic options as primary cancer type classification is a 
dominant factor in guiding treatment decisions [130]. 

Thus far, TOO classifiers have been developed on data from a wide range of molecular methods 
including DNA sequencing (targeted [131], whole exome [132], and whole genome [90,91]), RNA 
profiling (from coding RNA [133], microRNA [134–136], as well as whole transcriptome profiling 
[137,138]), and methylation profiling [139]. Driven by its ability to comprehensively capture actionable 
biomarkers that enable precision medicine [126], whole genome sequencing (WGS) is maturing rapidly 
as a diagnostic tool [140] and increasingly adopted in clinical systems in various countries [141–143], 
and could thus be an interesting basis for a diagnostic TOO classifiers. Recently developed WGS-
based classifiers [90,91] were shown to outperform targeted or whole exome sequencing based 
approaches [131,132] due to being able to utilize mutations from all genomic regions. The main 
features employed by these classifiers included mutational signatures which are patterns of somatic 
mutations resulting from exogenous or endogenous mutational processes (e.g. C>T mutations due to 
ultraviolet radiation exposure in melanoma) [13], as well as regional mutational density (RMD) which 
represents the genomic distribution of somatic mutations that are associated with tissue type specific 
chromatin states, whereby late-replicating closed chromatin regions show increased mutation rates 
[144]. However, not all WGS based features are yet fully explored for TOO classification including 
complex mutagenic features such as viral DNA integrations, driver gene fusions, and other complex 
structural events (e.g. chromothripsis), as well as non-mutagenic features such as gender, all of which 
have been shown to be correlated with specific tumor type(s). Indeed, human papillomavirus (HPV) 
sequence insertions are specifically and frequently found in cervical and head and neck cancer [14], 
KIAA1549-BRAF fusions in pilocytic astrocytomas [13], and liposarcomas frequently harbor FUS-
DDIT3 fusions [15] as well as chromothripsis events [145]. 

Here we describe the development of CUPLR (Cancer of Unknown Primary Location Resolver), a TOO 
classifier that integrates current state-of-the-art WGS based mutation features, including complex 
structural variant (SV) features. CUPLR comprises an ensemble of binary random forest classifiers that 
each discriminate one of 35 cancer types with an overall recall of 90%. We find that while RMD and 
mutational signatures were highly predictive of cancer type (in line with existing classifiers [90,91]), the 
incorporation of SV features improves prediction performance for cancer types that currently lack 
highly informative features. Furthermore, we have ensured that the output of CUPLR, namely the 
prediction probabilities and the features supporting each prediction, are human interpretable to 
facilitate diagnostic use and clinical decision making with CUPLR. 
 
 
 
 
  



6666

 

 66 

Results 

Extraction of genomic features 
To develop CUPLR, we constructed a harmonized dataset from two large pan-cancer WGS datasets 
from the Hartwig Medical Foundation (Hartwig) and Pan-Cancer Analysis of Whole Genomes 
consortium (PCAWG) [146]. The raw sequencing reads were analyzed with the same mutation calling 
pipeline to construct a catalog of uniformly called simple and complex mutations. The harmonized 
dataset consisted of tumors from 6756 patients across 35 different cancer types (Figure 1a, 
Supplementary data 1). In contrast to many previously published papers [90,91,131,132], this dataset 
includes a large proportion of samples taken from metastatic lesions, which is relevant for TOO 
classification as CUP samples are by definition from patients with metastatic cancer. 

A wide range of features (n=4131) were extracted for classifying cancer type based on 
driver/passenger and simple/complex mutations (Figure 1c). First, we determined the presence of 
gain of function (amplifications and activating mutations) and loss of function (deep deletions and 
biallelic loss) events in 203 cancer associated genes. These genes were selected based on having 
enrichment of gain and/or loss of function events in at least one cancer type (see methods). Second, 
we calculated the mutational load of single base substitutions (SBS), double base substitutions (DBS), 
and indels for each sample. Third, we determined the number of contributing mutations to the SBS, 
DBS and indel signatures from the COSMIC catalog [13]. Fourth, the number of SBSs in each 1Mb bin 
across the genome (n=3071) was calculated to determine the RMD [147]. Mutational signatures and 
RMD were normalized by the mutational load of the respective mutation type to account for differences 
in mutational load across samples. Fifth, copy number data was used to infer the genome ploidy, 
diploid proportion, whole genome duplication status, and gender for each sample [127]. Sixth, for each 
sample we determined the copy number change of each chromosome arm relative to the genome 
ploidy [35]. Lastly, we parsed the called simple and complex SVs to determine: (i) the total SV load per 
sample; (ii) the number of deletions, duplications stratified by length; (iii) the number of complex events 
stratified by size; (iv) the size of the largest complex event, (v) the number of long interspersed nuclear 
element (LINE) insertions and double minutes; and (vi) the presence of gene fusions and viral sequence 
insertions [28,127]. 

Classifier training 
The extracted genomic features were then used to develop CUPLR, a classifier consisting of two 
components (Figure 1d). The first component is an ensemble of binary random forest classifiers that 
each discriminates one cancer type versus other cancer types (i.e. one-vs-rest). We chose to use an 
ensemble of binary classifiers as opposed to one multiclass classifier so that feature selection could 
be performed per cancer type, since different features are important for each cancer type. Additionally, 
we chose to use random forests over other algorithms (e.g. neural networks) as they can natively 
handle different feature types (continuous, boolean, categorical, etc) without requiring feature values 
to be scaled, which also improves model interpretability. The second component of CUPLR is an 
ensemble of isotonic regressions to calibrate the probabilities produced by each random forest. 
Random forests tend to be overconfident at probabilities towards 0 and underconfident at probabilities 
towards 1, and this bias varies between random forests [148]. The calibration we have performed here 
ensures that probabilities are comparable between random forests. Furthermore, calibration allows for 
the probabilities to have the following intuitive interpretation: a probability of e.g. 0.8 means that there 
is an 80% chance of a prediction being correct (this relationship does not hold for the raw 
‘probabilities’ from random forests). 
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Figure 1: Cancer of Unknown Primary Location Resolver (CUPLR) classifies 35 different cancer types using 
features derived from all mutation types. (a) CUPLR was developed using whole-genome sequencing data 
4391 metastatic tumors from the Hartwig Medical Foundation (Hartwig) and 2365 primary tumors from the Pan-
Cancer Analysis of Whole Genomes (PCAWG) consortium, totalling 6756 samples across 35 different cancer 
types. (b) 6082 samples were used to train CUPLR and 674 were held out as an independent test set. The whole 
training set was used to train the final random forest ensemble. 15-fold cross-validation was performed to obtain 
the random forest cancer type probabilities on the training set, which were then used to train the ensemble of 
isotonic regressions (for probability calibration). CUPLR is composed of the random forest and isotonic regression 
ensembles as shown in (d). The performance of CUPLR was assessed using the calibrated cross-validation 
probabilities as well as probabilities obtained by applying CUPLR to the test set. (c) A summary of the genomic 
features extracted from the whole-genome sequencing data and used by CUPLR. Detailed descriptions of each 
feature can be found in Supplementary data 3. The names of the published classifiers refer to the following 
studies; ICOMS: Inferring Cancer Origins from Mutation Spectra, Dietlen et al. 2014 [131]; TumorTracer: Marquard 
et al. 2015 [132]; Salvadores-SVM: support vector machine by Salvadores et al. 2019 [91]; PCAWG-NN: PCAWG 
neural network by Jiao et al. 2020 [90]. Cancer type abbreviations; CNS: central nervous system; CNS_Medullo: 
medulloblastoma; CNS_PiloAstro: pilocytic astrocytoma; NET: neuroendocrine tumor; Sarcoma_GIST: 
gastrointestinal stromal tumor; Sarcoma_Leiomyo: leiomyosarcoma; Sarcoma_Lipo: liposarcoma; 
Sarcoma_Osteo: osteosarcoma; Sarcoma_Other: sarcomas other than leiomyosarcoma, liposarcoma or 
gastrointestinal stromal tumors. Other abbreviations; RF: random forest, IsoReg: isotonic regression, CV: cross-
validation, SBS: single base substitutions, DBS: double base substitutions, SV: structural variants, DEL: structural 
deletions, DUP: structural duplications, LINE: long interspersed nuclear element. 
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Performance of CUPLR 
To assess the performance of CUPLR, we used the cancer type predictions based on the isotonic 
regression calibrated cross-validation (CV) probabilities, as well as the predictions upon applying 
CUPLR to the held out test set (Figure 1b). Both the training set (n=6082) and the held out test set 
(n=674) had the same cancer type and cohort distribution (Supplementary data 2). CUPLR could 
predict TOO with  90% (CV) and 89% (test set) overall recall, and 90% (CV) and 89% (test set) overall 
precision (Figure 2b,c). Differences between CV and test set recall and precision in certain cancer 
types were due to low sample sizes in the test set (Figure 2a,b, Supplementary figure 6).  

High misclassification rates for certain cancer types could likely be explained by shared cancer type 
characteristics (Figure 2c). This could be due to a common developmental origin, such as with Uterus 
being misclassified as Ovarian (CV: 7%, test: 29%) due to both being gynecological cancers [149], 
and Biliary being misclassified as Pancreas (CV: 24%, test: 42%) and Liver (CV: 9%) due to being 
cancers of the foregut [150,151]. Cancer subtypes were also often misclassified as other subtypes, 
which was the case for Lung_SmallCell towards Lung_NonSmallCell (CV: 40%, test: 60%); 
Kidney_Papillary towards Kidney_ClearCell (CV: 38%, test: 67%); and Sarcoma_Leiomyo (CV: 35%, 
test: 43%) and Sarcoma_Osteo (CV: 17%) towards Sarcoma_Other (sarcomas other than leiomyo-
/lipo-/osteosarcomas or gastrointestinal stromal tumors). Neuroendocrine tumor (NET) subtypes were 
occasionally misclassified as each other, such as NET_Lung towards NET_Gastrointestinal (CV: 9%) 
and NET_Pancreas (CV: 9%, test: 33%), and NET_Gastrointestinal towards Pancreas (CV: 6%) which 
may (at least partially) reflect cancer type misannotation amongst these samples due to 
neuroendocrine tumors having similar morphological features [152]. Likewise, 
HeadAndNeck_SalivaryGland samples that were misclassified as breast (CV: 23%, test: 33%) were 
potentially misannotated due to being adenoid cystic carcinomas (i.e. salivary gland-like cancers) of 
the breast [153]. 

Thus far, we have mainly assessed performance based on whether the highest probability cancer type 
is the correct cancer type (i.e. recall; Figure 2b,c). However, if we consider whether the correct cancer 
type is amongst the top-2 highest probabilities (top-2 recall; Figure 2b), overall recall increases from 
90% to 95% (CV) and 89% to 94% (test set), with the greatest increases being for the cancer subtypes 
including Lung_SmallCell (CV: 50% to 83%, test: 40% to 100%), Kidney_Papillary (CV: 62% to 79%, 
test: 33% to 100%), Sarcoma_Leiomyo (CV: 56% to 89%, test: 57% to 86%) and Sarcoma_Other (CV: 
63% to 89%, test: 54% to 77%). A large gain in recall was also observed for Biliary (CV: 52% to 73%, 
test: 42% to 83%) which was often misclassified as Pancreas. Similar increases in recall were seen 
based on predictions on the test set. The top-2 (and even top-3) probabilities of CUPLR can be 
particularly useful for differential diagnosis purposes to narrow down potential TOOs when routine 
diagnostics are not fully conclusive. 
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Figure 2: Performance of CUPLR. (a) The total number of samples for each cancer type for the training set (left 
columns) and held out test set (right columns). Note that the y-axis of (a) is truncated to better visualize cancer 
types with small sample sizes. Panels b-c also have the same left/right column layout corresponding to the training 
set cross-validation and test set performance. (b) Summary of performance metrics. Recall: % of correctly 
classified samples per cancer type, and is equivalent to the diagonal values in panel c. Top-2 recall: % of correctly 
classified samples when considering the 2 highest probability cancer types as correct. Precision: % of correctly 
classified samples amongst samples predicted as a particular cancer type. Overall performance metrics (i.e. under 
the ‘All’ column) are micro-averages. (c) Confusion matrix showing the performance of CUPLR where columns 
represent the % of samples in a cancer type cohort predicted as a particular cancer type. The diagonal represents 
the % of samples correctly predicted as a particular cancer type (equivalent to recall). Raw data for performance 
metrics and confusion matrix in panels b and c can be found in Supplementary data 4. Cancer type 
abbreviations; CNS: central nervous system; CNS_Medullo: medulloblastoma; CNS_PiloAstro: pilocytic 
astrocytoma; NET: neuroendocrine tumor; Sarcoma_GIST: gastrointestinal stromal tumor; Sarcoma_Leiomyo: 
leiomyosarcoma; Sarcoma_Lipo: liposarcoma; Sarcoma_Osteo: osteosarcoma; Sarcoma_Other: sarcomas other 
than leiomyosarcoma, liposarcoma or gastrointestinal stromal tumors. 
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Added predictive value of SV related features 
When examining the most important feature types from each random forest within CUPLR (Figure 3a), 
RMD profiles (‘rmd’) were consistently the most predictive of cancer type (in line with the findings from 
Jiao et al. 2020 [90]), as well mutational signatures (‘sigs’) including those with known cancer type 
associations such as SBS4 (associated with smoking [13]) in lung cancer (Figure 3b). As these 
mutation features are derived from genome-wide SBSs and indels, we assessed whether the presence 
of certain confounding factors that affect the SBS and indel genomic landscape (including DNA repair 
deficiencies [38,154], chemotherapy treatment [66,108], smoking history [155]) may lead to more 
incorrect predictions. However, these confounding factors showed minimal impact on classification 
performance (Supplementary Note 1, Supplementary table 1, Supplementary figure 13). 

In addition to RMD profiles and mutational signatures, gender (as expected) was highly important for 
predicting cancers of the reproductive organs including breast, cervical, ovarian, prostate, and uterine 
cancer (Figure 3b, Supplementary figure 7). Notably, SV related features were important for 
classifying certain cancer types (Figure 3b). This included known cancer type specific gene fusions 
such as TMPRSS2-ERG for Prostate [42], EML4-ALK for Lung_NonSmallCell [156], KIAA1549-BRAF 
for CNS_PiloAstro (pilocytic astrocytomas) [157], and FUS-DDIT3 for Sarcoma_Lipo [158]. We also 
find known viral DNA integrations as important features, including from human papillomavirus 
(viral_ins.HPV) in Cervix and HeadAndNeck_Other (non-salivary gland head and neck cancers) [159], 
Epstein-Barr virus in HeadAndNeck_Other [160], hepatitis B virus (viral_ins.HBV) in Liver [161], and 
Merkel cell polyomavirus (viral_ins.MCPyV) in Skin_Carcinoma [162]. Lastly, the largest complex SV 
cluster (i.e. by number of breakpoints) (sv.COMPLEX.largest_cluster) which we use as a proxy for the 
presence of chromothripsis was also predictive for liposarcomas, which are known to frequently harbor 
chromothripsis events. However, in contrast to the features mentioned above, the presence of 
chromothripsis alone is not sufficient for classifying a tumor as liposarcoma as chromothripsis is also 
highly prevalent in other tumor types [145].  

To further assess the added value of SV related features, we excluded entire feature types from the 
training and examined the decrease in classifier performance (Supplementary figure 8). Indeed, 
removal of the viral integration features (‘viral_ins’) led to decreased recall for Skin_Carcinoma (70% 
to 61%) and Cervix (89% to 83%), likely due to loss of the viral_ins.MCPyV and viral_ins.HPV features 
respectively. Removal of the simple and complex SV features (‘sv’) resulted in a drop in recall for 
Sarcoma_Leiomyo (56% to 49%), likely as the size of the largest complex SV cluster 
(sv.COMPLEX.largest_cluster) can discriminate Sarcoma_Lipo and Sarcoma_Osteo from 
Sarcoma_Leiomyo (Supplementary figure 7). Lastly, removal of the gene fusion features (‘fusion’) 
resulted in a large decrease in recall for Lung_SmallCell (50% to 38%) likely as EML4-ALK fusions are 
characteristic of non-small cell (but not small cell) lung cancer. 
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Figure 3: Features most predictive of cancer type. (a) Maximum feature importance per feature type for each 
cancer type random forest from CUPLR. See Supplementary data 3 for the descriptions as well as feature 
importance values for each feature. (b) Feature importances from the top 15 features for selected cancer type 
random forests. Feature names are in the form {feature type}.{feature name}. Feature type abbreviations; rmd: 
regional mutation density profiles; sigs: mutational signatures; mut_load: total number of single base substitutions, 
double base substitutions or indels; gene: presence of gene gain or loss of function events; chrom_arm: 
chromosome arm copy number fold change versus overall genome ploidy; genome: genome properties including 
genome ploidy, diploid proportion, whole genome duplication status; gender: sample gender as determined by 
copy number data; sv: structural variants; fusion: presence of gene fusions; viral_ins: presence of viral sequence 
insertions. Cancer type abbreviations; CNS: central nervous system; CNS_Medullo: medulloblastoma; 
CNS_PiloAstro: pilocytic astrocytoma; NET: neuroendocrine tumor; Sarcoma_GIST: gastrointestinal stromal 
tumor; Sarcoma_Leiomyo: leiomyosarcoma; Sarcoma_Lipo: liposarcoma; Sarcoma_Osteo: osteosarcoma; 
Sarcoma_Other: sarcomas other than leiomyosarcoma, liposarcoma or gastrointestinal stromal tumors. 

When compared to existing WGS-based CUP classifiers [90,91,132], CUPLR is able to classify more 
cancer (sub)types and showed improved recall and precision  (Supplementary figure 9, 
Supplementary figure 10) for cancer types where SV related features were important, including for 
CNS_PiloAstro, Lung_NonSmallCell, and Prostate. Overall, CUPLR achieved similar recall to existing 
classifiers for the remaining cancer types (except for head and neck, myeloid, pancreatic 
neuroendocrine and thyroid cancers). Likewise, precision was also similar to other classifiers for the 
remaining cancer types (except for head and neck, myeloid, thyroid, and uterine cancers)  

In summary, the incorporation of all feature types resulted in the best performance, with SV related 
features being important for specific cancer types.  
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Graphical prediction report 

Aside from cancer type probabilities, CUPLR also outputs explanations as to which features support 
these probabilities. These allow one to verify the predictions based on existing knowledge, and could 
be included in diagnostic reports to support decision making, e.g. in molecular tumor boards. The 
feature explanations are based on feature contribution calculations which enable feature importance 
determination at the sample level (rather than at the cohort level as in Figure 3). Specifically, feature 
contributions represent the total gain (or loss) in probability upon passing a feature through a random 
forest [163]. To ease the interpretation of CUPLR’s output, we have implemented a graphical report 
(Figure 4) which can be generated per patient that shows the cancer type probabilities (left panel), 
feature contributions for the top features for the top cancer types (middle panel). Also shown are the 
corresponding feature values in the patient in relation to the average feature value amongst patients 
in the training set (right panel). 

We will use patient HMF004048A as an example demonstration of the graphical report (Figure 4a). 
Since the Lung_NonSmallCell probability (0.96) was much higher than the probability of other cancer 
types, only one cancer type (i.e. panel row) is shown. Up to 3 panel rows can be shown when more 
than one cancer type probability is high (such as for patient DO7304; Figure 4b). One of the top 
features for HMF004048A was the presence of an EML4-ALK fusion (middle panel) which is on average 
found in ~4% of Lung_NonSmallCell patients (pink label), but only ~0.1% in all other patients (blue 
label). Since this feature is of boolean type, a feature value of 1 (red label) indicates the presence of 
the EML4-ALK fusion in HMF004048A (whereas a feature value of 0 would indicate absence). 
Additionally, the contribution of the non-small cell lung cancer RMD profiles 
(rmd.Lung_NonSmallCell.2) as well as the contribution of the APOBEC associated signatures SBS2 
and SBS13 [13] in HMF004048A (red labels) is higher than in Lung_NonSmallCell patients (pink labels), 
but also compared to all other patients (blue label). Whether a feature value in the patient of interest is 
higher or lower than that in all other patients is also indicated in text in the feature contribution panel 
(middle panel) for non-boolean features. 

Patient DO7304 (Figure 4b) is an example of a situation where more than one cancer type probability 
is high, with the probability of Lymphoid being 0.78 and CNS_PiloAstro being 0.75 (Figure 4b). Here, 
two feature panels are shown for both of these cancer types to aid with resolving this uncertainty. 
Since IGLL5 loss is specific to lymphomas [164], we can confirm that the likely correct prediction is 
indeed Lymphoid. 

This graphical report presents the detailed machine learning-based classification output of CUPLR in 
a human readable format. We acknowledge that the output is highly detailed, which is inevitable due 
to the large amounts of data used by the algorithm. However, as these details may not be necessary 
in all circumstances, we have implemented the option in the software to hide the feature contribution 
and/or feature value panels in the final graphical output. 
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Figure 4: Graphical report for CUPLR predictions. Example reports are shown for two patients from the holdout 
set: (a) HMF004048A, annotated as having non-small cell lung cancer (Lung_NonSmallCell), and (b) DO7304, 
annotated as having lymphoma (Lymphoid). The leftmost panels show the predicted cancer type probabilities. In 
the middle panels, contributions of the top features are shown for the top predicted cancer types. When there is 
uncertainty in the cancer type probabilities such as in (b), more feature contribution panel rows are shown. In the 
rightmost panel, the feature values in the patient (red label) are plotted in relation to the average feature value 
amongst patients in the training set with the target cancer type (pink label) as well as all other samples not 
belonging to the target cancer type (blue label). For a full description of each feature, see Supplementary data 
3. Feature type abbreviations; rmd: regional mutation density profiles; sigs: mutational signatures; mut_load: 
total number of single base substitutions, double base substitutions or indels; gene: presence of gene gain or loss 
of function events; genome: genome properties including genome ploidy, diploid proportion, whole genome 
duplication status; fusion: presence of gene fusions.  
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Feature contributions aid in clarifying the primary tumor location of CUPs 
To showcase how CUPLR could be used in a real life clinical setting, we applied CUPLR to 141 tumors 
with a CUP diagnosis from the Hartwig dataset. From these, we could confidently (n=68) or partially 
(n=14) resolve the cancer type for 82 (58%) patients by examining the top predicted cancer types and 
corresponding top contributing features for each patient (Supplementary data 5). 

Of the 68 patients with fully resolved cancer types, 44 exhibited features with well known cancer type 
associations in combination with high contribution of respective cancer type RMD profile. This 
included: 4 patients predicted as Breast with breast cancer specific driver mutations (in CHD1, GATA3, 
PIK3CA, and/or ZNF703) [165]; 7 patients predicted as Colorectal with APC mutations [5] and/or the 
presence of the colibactin signature (SBS88) [65]; 5 patients predicted as Gastroesophageal with the 
ROS damage signature SBS17 [13], LINE insertions [39], and/or FHIT deletions [70]; 21 patients 
predicted as Lung_NonSmallCell with signatures of smoking (SBS4, DBS2 and/or ID3 [13]); 3 patients 
predicted as Pancreas with KRAS mutations [5]; 1 patient predicted as Prostate with a TMPRSS2-
ERG fusion [42]; 2 patients predicted as Urothelial with TERT mutations [166]; and 1 patient predicted 
as Uterus with a PIK3R1 mutation [167]. The remaining 24 patients with a top cancer type probability 
≥0.8 were likely correctly classified as most of these patients were predicted as high recall cancer 
types (>0.9, Figure 2) with highly specific RMD profiles respective to each cancer type, including 
Breast Colorectum, Gastroesophageal, Kidney_ClearCell, Liver, Kidney_ClearCell, and Ovarian 
(Supplementary data 5, Supplementary figure 11). 

For the 14 patients with partially resolved cancer types, we could only determine the cancer supertype. 
For example, 4 patients had >0.6 probability of both Lung_NonSmallCell and Lung_SmallCell and 
exhibited smoking signatures SBS4, DBS2, and/or ID3 [13], indicating that these patients most likely 
had lung cancer, though the subtype remains uncertain. Likewise, we could narrow down the TOO to 
2 probable cancer types for 3 patients. For example, patient HMF002806A had >0.5 probability of 
Uterus and Breast, and had mutations in PIK3CA and PTEN which are common in both these cancer 
types [5]. This is indicative of gynecological cancer which often are treated in a similar manner 
[168,169]. 

We thus demonstrate that CUPLR can potentially clarify the TOO for over half of patients with CUP. It 
is important to note that even if the TOO is only partially resolved for a patient, such a patient could 
now potentially have more treatment options. However, for the CUP patients discussed above, 
additional evidence would be required for validation and final diagnosis, which could for example be 
based on histopathological examinations. These were unfortunately not available for the 
retrospectively analyzed samples included here, but such information would be readily available in 
routine diagnostics. 
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Discussion 

Here, we have developed a tissue of origin classifier (CUPLR) for the analysis and diagnostics of CUPs 
using a large uniformly processed WGS dataset of both primary and metastatic tumors. Our classifier 
is to our knowledge the first to incorporate genomic features derived from SVs, as well as provide 
human interpretable explanations alongside each prediction which allows for manual resolving of 
CUPs, especially in cases of lower scoring samples or for samples for which multiple tumor types are 
suggested by CUPLR. 

Current state-of-the-art WGS-based classifiers, including those by Jiao et al. [90] and Salvadores et 
al. [91], achieve high recall (≥80%) for over three quarters of the cancer types they predict by primarily 
employing RMD and mutational signatures as features, which are derived from simple mutations. 
CUPLR builds upon these classifiers, with the inclusion of SV and driver gene related features 
improving performance for certain cancer types, such as for pilocytic astrocytoma and prostate 
cancer. Of note, genomic-based TOO classifiers published thus far have only used data from primary 
tumors [90,91,131,132]. However, since CUPs are by definition metastatic tumors, the inclusion of 
4391 metastatic tumors with known tissue of origin for training CUPLR may make it a more suitable 
tool for the purpose of clarifying CUPs. We do acknowledge however that the metastatic tumor data 
used here may harbor treatment effects which are absent in treatment-naive CUPs, such as driver 
mutations in AR [170] or ESR1 [171] conferring resistance to therapy or presence of characteristic 
mutations induced by for example 5-fluorouracil [66] or radiotherapy [108,172]. Identification and 
removal of such treatment associated features could potentially improve TOO classification. 
Additionally, CUPLR is able to distinguish the largest number of cancer (sub)types (35 cancer types) 
compared to existing WGS-based classifiers, with the Jiao [4] and Salvadores [5] classifiers 
discriminating 24 and 18 cancer types respectively, and also more than a recently published whole 
histology slide image based classifier which discriminates 18 cancer types [173]. We do acknowledge 
that discriminating even more cancer types is warranted, but this is currently limited by the amount of 
available training samples that were sequenced and uniformly bioinformatically analyzed. For example, 
thymic cancer had too few (<15) samples to be included as a separate class for training 
(Supplementary data 1). Furthermore, certain cancer types could be divided into their subtypes, such 
as Myeloid (currently only with 34 samples in total; Figure 2a) into acute myeloid leukemia and multiple 
myeloma [174], and sarcomas in a broader range of subtypes [175]. The availability of more WGS data 
for less frequent, but also (ultra-)rare cancers would allow for training of an updated CUPLR model 
that classifies additional cancer types and subtypes. 

While CUPLR achieved overall excellent recall (90%) which is similar to or better than other WGS-
based classifiers (Supplementary figure 9), it should be noted that this is driven by several large sub-
cohorts of common cancer types (e.g. breast and colorectal cancer) and that performance for certain 
cancer types is still suboptimal. For cancer subtypes that CUPLR has difficulty discriminating, such as 
small cell versus non-small cell lung cancer and papillary versus clear cell renal carcinoma, additional 
information from histopathological stainings could be used to clarify these cases. Here, the application 
of artificial intelligence-based histology image analysis [173] could further improve the prediction 
performance and reliability of resolving CUPs. Clinical metadata, such as biopsy location and 
metastasis grade [176], when used together with CUPLR can also aid with clarifying primary tumor 
location. For instance, there may be uncertainty as to whether a tumor with human papillomavirus DNA 
integration was a head and neck cancer or cervical cancer based on CUPLR predictions (e.g. DO51592 
with probability of Cervix=0.754 and HeadAndNeck_Other=0.310; Supplementary data 5), since 
human papillomavirus DNA integration is characteristic of these two cancer types [159]. However, in 
clinical practice, it will always be known if the tumor biopsy was taken from the upper body and if the 
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lesions were local, and with this information one can conclude that this tumor can only be of head and 
neck origin.  

Given that RMD [90,91], mutational signatures [177], and SVs [28,178] are still active areas of research, 
we expect improvements to these features could also lead to better TOO classification. Here, we have 
demonstrated that extraction of cancer type specific RMD profiles is possible from raw mutation 
counts, similarly as was done for mutational signatures [13]. However, CUPLR does not heavily rely 
on RMD profiles for classification of certain cancer types such as liposarcoma and non-melanoma skin 
cancer (Figure 3b), potentially because more training samples are required to extract more stable and 
informative RMD profiles which could improve classification for these cancer types. Improvements to 
TOO classification may also come from extraction of more comprehensive mutational signatures, for 
example by incorporating information of mutation timing or genome localization [179,180]. 
Development of more sophisticated signature extraction methods may also allow for quantification of 
low signal tissue type specific signatures, such as SBS88 (associated with colibactin induced DNA 
damage in the colon) which has only been extracted from colon healthy tissue [65,181] but not cancer 
tissue likely because other mutational processes in cancer tissue mask the presence of this signature 
(Supplementary figure 7, Supplementary figure 11). Lastly, while CUPLR uses a wide range of 
features derived from SVs (including gene fusions, viral DNA integrations, LINE insertions, structural 
deletion and duplication size, and chromothripsis), there is still an opportunity to explore other SV 
related features to improve TOO classification, such as SV signatures [178]. 

Given that WGS is rapidly maturing and is now slowly being adopted in routine diagnostics for 
comprehensive molecular diagnostics [126,140], CUPLR serves as a viable complementary tool to 
standard procedures for determining TOO (e.g. histopathological stainings). CUPLR can be run from 
the output of open source tools and is freely available as an R package 
[https://github.com/UMCUGenetics/CUPLR]. The trained model as well as the code for generating the 
input features is provided to enable prediction on new samples and for facilitating diagnostic use. 
 

Methods 

Datasets 
We have matched tumor/normal whole genome sequencing data from cancer patients from two 
cohorts: the Hartwig Medical Foundation (Hartwig) cohort and the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) cohort.  
 
The Hartwig cohort included 4902 metastatic tumor samples from 4572 patients. The data was 
provided under data request DR-104 from the Hartwig Medical Foundation. All patients in this resource 
have given consent for reuse of their genomic and clinical data for research purposes. For patients 
with multiple biopsies that were taken at different timepoints, patient IDs were suffixed by ‘A’ for the 
first biopsy, ‘B’ for the second biopsy, etc (e.g. HMF001423A, HMF001423B). Normal samples (blood) 
had a mean read coverage of ~30x while tumor samples had a coverage of ~90x [6]. Only a single 
sample of each patient was used for this study. To do this, we selected the tumor sample with the 
earliest biopsy date, and if this information did not exist we selected the sample with the highest tumor 
purity. However, some Hartwig patients had biopsies from different primary tumor locations. In these 
cases, we kept at least one sample from each primary tumor location, and when there were multiple 
samples from the same primary tumor location, we applied the aforementioned biopsy date and tumor 
purity filtering criteria.  
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The PCAWG cohort consisted of 2835 patient tumors. Access for raw sequencing data for these 
tumors was granted via the Data Access Compliance Office (DACO) Application Number DACO-
1050905 on 6 October 2017 and via the Cancer Genome Collaboratory download portal 
[https://console.cancercollaboratory.org] on 4 December 2017. Normal samples (blood, adjacent 
tumors or distant tumors) had a mean read coverage of 39x, while tumor samples had a bimodal 
coverage distribution with modes at 38x and 60x [5]. Samples with <0.2 tumor purity were excluded 
from this study as somatic variant calling was not reliable for these samples. PCAWG samples that 
were gray- or blacklisted by the PCAWG consortium were also excluded 
[https://dcc.icgc.org/releases/PCAWG/donors_and_biospecimens].  
 
For both cohorts, we only kept samples with >=50 SNVs/indels, and removed an additional set of 
samples for several reasons including due to failed variant calling, insufficient informed consent for 
use of the WGS data, and one duplicate PCAWG sample (DO217844) that was already included in the 
Hartwig cohort. Lastly, we only selected samples from cancer types with at least 15 samples. 
Ultimately, we selected 4391 Hartwig samples and 2365 PCAWG samples for training, as well as 141 
Hartwig CUP samples for the CUP analysis (Supplementary data 1). 

Variant calling 
Somatic mutation data of the CPCT, DRUP and WIDE projects were kindly shared by Hartwig on 6 
February 2020 with an update received on 20 October 2021. To exclude technical noise from PCAWG 
and Hartwig somatic variant calling workflows, we have reanalyzed the PCAWG samples with the 
Hartwig pipeline for somatic variant calling [https://github.com/hartwigmedical/pipeline5] which was 
hosted on the Google Cloud Platform using Platinum [https://github.com/hartwigmedical/platinum] 
[146]. Details of the full pipeline are described by Priestley et al. [6] as well as in the Hartwig pipeline 
GitHub page. Briefly, reads were mapped to GRCh37 using BWA (v0.7.17). GATK (v3.8.0) Haplotype 
Caller was used for calling germline variants in the reference sample. SAGE (v2.2) was used to call 
somatic single and multi-nucleotide variants as well as indels. GRIDSS (v2.9.3) was used to call SVs. 
PURPLE combines B-allele frequency (BAF) from AMBER (v3.3), read depth ratios from COBALT 
(v1.7), and structural variants from GRIDSS to estimate copy number profiles, variant allele frequency 
(VAF) and variant clonality. Additionally, PURPLE also determines the gender (based on sex 
chromosome ploidy), the proportion of the genome that is diploid, as well as the presence of whole 
genome duplication in a sample. LINX interprets SVs (to identify simple and complex structural events) 
from PURPLE, and also detects gene fusions, viral DNA integrations, and homozygously disrupted 
genes. Importantly, we ensured that mutation (simple and complex) filtering and annotation tools were 
run with the same versioning for PCAWG and HMF cohort. For PURPLE we relied on v2.53 whereas 
for LINX we used v1.17. 

Extraction of features 
Regional mutational density 
RMD was defined as the number of somatic SBSs in each 1Mb bin across the genome (n=3071), 
normalized by the total number of SBSs in the sample. Extraction of RMD profiles from these RMD 
bins was performed within the CUPLR training procedure (Supplementary figure 1a) using non-
negative matrix factorization (NMF). This is described in detail in the “CUPLR training procedure” 
methods section. See Supplementary data 6 for a visualization of each RMD profile. 
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Mutational signatures 
The number of somatic mutations falling into the 96 SBS, 78 DBS and, 83 indel contexts (as described 
in COSMIC: [https://cancer.sanger.ac.uk/signatures/]) was determined using the R package 
mutSigExtractor [https://github.com/UMCUGenetics/mutSigExtractor], v1.23). To obtain the 
mutational signature contributions for each sample, the mutation context counts were fitted to the 
COSMIC catalog of mutational signatures using the nnlm() function from the NNLM R package.  

The contributions of the child signatures SBS7a, SBS7b, SBS7c and SBS7d were summed to yield 
the parent signature SBS7. Similarly SBS10a-d and SBS17a-b were merged to yield SBS10 and 
SBS17. Lastly, the SBS, DBS and indel signature contributions were normalized by the total number 
of SBSs, DBSs and indels respectively. 

Chromosome arm ploidy 
Chromosome arm ploidies were determined in a similar method as described by Taylor et al. 2018 
[35].  

Somatic copy number (CN) segments (called by PURPLE) were split by their respective chromosome 
arms. Only chr1-22 and chrX were included. All chromosomes have p and q arms, except for chr13, 
chr14, chr15, chr21, and chr22 which are considered to only have the q arm. For each chromosome 
arm, the CN values of each segment were converted to integer values. The arm coverage of each CN 
integer value was then determined (e.g. 70% of the arm has a CN of 2, 20% a CN of 1 and 10% a CN 
of 3). The CN with the highest coverage was assigned as the preliminary arm CN. The most common 
CN across all arms was assigned as the genome CN. 

Two filtering steps were then performed to obtain the final arm CN values. For each arm, if the CN with 
the highest coverage has <50% coverage, and if any of the CN values equal the genome CN, then 
assign that CN as the final CN of the arm. Else, assign the genome CN as the final CN of the arm. 

To determine the CN gains and losses of each arm, the fold change between the arm CN and genome 
CN was calculated. 

Features extracted from LINX output 
LINX combines simple mutations (point mutations and indels), structural variants, and copy number 
variants to resolve simple and complex structural rearrangements, and subsequently identify gene 
driver events, gene fusions and detect viral DNA integrations. 

The presence of 4 types of gene driver events were determined from the output of LINX: (i) 
amplifications, (ii) deep deletions, (ii) biallelic loss, and (iv) monoallelic hits (pathogenic mutation in one 
allele). Amplified genes were marked as likelihoodMethod==’AMP’ by LINX. Genes with deep deletions 
were marked as likelihoodMethod==’DEL’. Genes with biallelic loss were marked as biallelic==TRUE. 
Genes with a monoallelic pathogenic mutation were marked as biallelic==FALSE and 
driver==”MUTATION”, and we selected only those with driverLikelihood>=0.9 (referring to the 
likelihood of the mutation being impactful as determined by the dndscv R package [49]). LINX 
determines the presence of driver events for 462 genes. Thus, there are 462 genes x 4 driver types = 
1848 gene driver features in total. We then performed preliminary feature selection to reduce the 
computational resources required for training CUPLR. Here, one-sided Fisher’s exact tests were 
performed and Cramer’s V values were calculated. Only genes where at least one driver type had a p-
value <0.01 and Cramer’s V ≥0.1 were kept (203 genes x 4 driver type = 812 gene driver features). 

Gene fusions belonged to 3 categories: (i) well known fusion pairs (e.g. TMPRSS2-ERG), (ii) 
immunoglobulin heavy chain (IGH) locus fusions, and (iii) fusions with promiscuous gene partners (e.g. 
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BCR). IGH fusions were grouped into a single feature as these are characteristic events in lymphoid 
cancers [182]. Fusions with one promiscuous gene partner were grouped by gene (e.g. RUNX1_ETS2 
and RUNX1_RCAN1 would both fall under the RUNX1_* feature). Fusions with two promiscuous gene 
partners were split into two separate features (e.g. SLC45A3_MYC would become the features 
SLC45A3_* and *_MYC). Only fusions that were marked as reported==TRUE by LINX (i.e. reported in 
literature) were selected. We then performed preliminary feature selection due to the large number of 
possible fusions present in our dataset (n=512). Here, one-sided Fisher’s exact tests were performed 
and Cramer’s V values were calculated. Only fusions with p-value <0.01 and Cramer’s V >=0.1 were 
kept (46 fusions). 

For the viral DNA integrations present in our dataset, we merged virus strains into 9 virus categories: 
adeno-associated virus (AAV), Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), 
human immunodeficiency virus (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), human 
T-lymphotropic virus (HTLV), and Merkel cell polyomavirus (MCPyV). For example, human 
papillomavirus type 16 and human papillomavirus type 18 would be both grouped as human 
papillomavirus. 

LINX chains individual SVs into SV clusters and classifies these clusters into various event types. 
Clusters can have one SV (for simple events such as deletions and duplications), or multiple SVs. We 
defined SV load as the total number of SV clusters. We quantified the presence of several SV types 
including: i) deletions and duplications (ResolvedType is 'DEL’ or ‘DUP’) stratified by length (1–10 kb, 
10–100 kb, 100kb–1Mb, 1–10Mb, >10 Mb), ii) complex SV clusters (ResolvedType==’COMPLEX’) 
stratified by the number of clusters (0-25, 25-50, 50-100, 100-200, 200-400, 400-800, >800), iii) long 
interspersed nuclear element (LINE) insertions (ResolvedType=='LINE'), and double minutes 
(ResolvedType==’DOUBLE_MINUTE’). Lastly, we also determined the number of breakends for the 
complex cluster with the most breakends.  

CUPLR training procedure 
Extraction of regional mutational density profiles 
To extract the cancer specific RMD profiles from the 3071 RMD bins, a multistep procedure involving 
non-negative matrix factorization (NMF) (Supplementary figure 2) was performed prior to classifier 
training (Supplementary figure 1ai). 

All NMF runs described below are performed with the nnmf() function from the NNLM R package 
(v0.4.4) with the parameters loss=’mkl’ and max.iter=2000. 

For each cancer type cohort, an NMF rank search was done to determine the optimum rank (i.e. 
number of RMD profiles) (Supplementary figure 2a). For ranks 1 to 10, NMF was performed 50 times 
on a random subset of 100 samples from the cohort (or if the cohort contained less than 100 samples, 
all samples from that cohort were used) with 10% of the values randomly removed. The missing values 
were then imputed and the mean squared error (MSE) of these imputed values was calculated. This 
method of calculating MSE is described by the authors of the NNLM R package [183]. The median of 
the MSE across the 50 NMF iterations was then calculated. The rank search thus results in 10 MSE 
values across the 10 ranks searched. The optimum rank was the rank before the increase in 
log10(MSE) was >0.2%, and NMF was then performed using the optimum rank and without removing 
random values to produce the RMD profiles for the cancer type cohort (Supplementary figure 2b). 

The above procedure thus yields a different set of RMD profiles for each cancer type cohort. However, 
some RMD profiles across related cancer types (e.g. pancreas and biliary cancer) may actually be 
equivalent RMD profiles. Hierarchical clustering (using Pearson correlation as a distance measure) was 
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thus performed to group similar RMD profiles across all cancer type cohorts. The resulting dendrogram 
was cut at a height of 0.1 (using the R function cutree()), whereby RMD profiles under this height were 
grouped and considered the same profile. From each of the groups, one profile was greedily selected 
to yield the final set of RMD profiles (Supplementary figure 2c). 

To obtain the RMD profile contributions for each sample, the RMD bins were fitted to the RMD profiles 
using the nnlm() function from the NNLM R package.  

Random forest ensemble training 
The main component of CUPLR comprises an ensemble of binary random forests that each 
discriminates one cancer type (Supplementary figure 1aii). The below text describes the training 
procedure for each cancer type random forest. 

First, univariate feature selection was performed to remove irrelevant features (Supplementary figure 
1aiii). Pairwise testing was done to compare feature values from samples of the target cancer type 
(case group) versus the remaining samples (control group). For numeric features, p-values were 
determined using Wilcoxon rank sum tests, and effect sizes were calculated using Cliff’s delta. For 
boolean features, p-values were determined using Fisher’s exact tests, and effect sizes were 
calculated using Cramer’s V. Depending on the feature, alternative hypotheses for the Wilcoxon rank 
sum tests and Fisher’s exact tests were one or two sided. See Supplementary data 3 for details on 
which features are numeric or boolean, as well as which alternative hypothesis was used. Features 
were kept which had p<0.01 and effect size ≥0.1. The number of features kept was capped to 100 
features. 

Second, random oversampling was performed for the case group which always contained fewer 
samples than the control group, which was randomly undersampled (Supplementary figure 1aiv). A 
grid search was performed to determine the optimal pair of 5 oversampling and 5 undersampling 
ratios. These ratios were automatically determined as follows: i) calculate the geometric mean between 
the case and control group sample sizes; ii) the resampling ratios are logarithmically spaced between 
the geometric mean and the case group sample size or the control group sample size. For each over-
/undersampling ratio pair, stratified 10-fold cross-validation (CV) was performed, after which the area 
under the precision recall curve (AUPRC) was calculated. The pair with the highest AUPRC was chosen 
and the resampling was applied. CV and AUPRC calculations were performed using the mltoolkit R 
package [https://github.com/UMCUGenetics/mltoolkit]. 

Lastly, a random forest was trained (Supplementary figure 1av) using the randomForest R package 
(v4.6-14) with default settings. A filter is applied to the probabilities produced by the random forest 
based on sample gender, where breast, ovary and cervix probabilities are set to 0 for male samples, 
and prostate probabilities are set to 0 for female samples. Local increments were calculated for the 
random forest using the rfFC R package (v1.0) to enable downstream calculation of feature 
contributions [163]. 

Isotonic regression training 
The entire random forest ensemble training procedure was then subjected to stratified 15-fold cross-
validation which allows every sample to be excluded from the training set in order to obtain cancer 
type probabilities for the training samples (Supplementary figure 1b). These cross-validation 
probabilities were then used to train an ensemble of isotonic regressions using the isoreg() R function 
(one per cancer type random forest) to calibrate the probabilities produced by the random forest 
ensemble (Supplementary figure 1c, Supplementary figure 3).  
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Random forests tend to be overconfident at probabilities towards 0 and underconfident at probabilities 
towards 1 [148], and this bias varies between random forests (Supplementary figure 4). In other 
words, a probability of e.g. 0.8 from one random forest does not correspond to a probability of 0.8 
from another random forest. Probability calibration greatly reduced this bias ensuring that predictions 
across the random forests are comparable (Supplementary figure 4). 

Performance evaluation 
To assess the performance of CUPLR, we used the cancer type predictions based on the isotonic 
regression calibrated cross-validation probabilities, as well as by applying the final model to a 
validation set whereby 10% of samples were held out from the full training set (Supplementary figure 
1). Performance metrics per cancer type were defined as follows (using ‘Breast’ as an example): 

● Recall = Fraction of Breast samples predicted as Breast 
● Top-2 recall = Fraction of Breast samples where the 1st or 2nd top prediction was Breast 
● Precision = Amongst samples predicted as Breast, the fraction of samples labeled as Breast 

Overall performance metrics were micro-averages of the per-cancer-type metrics and defined as 
follows: 

● Micro-averaged recall = Accuracy = Fraction of all samples correctly predicted 
● Micro-averaged top-2 recall = Top-2 accuracy = Fraction of all samples where the 1st or 2nd 

highest probability prediction was correct 
● Micro-averaged precision = Micro-average of per-cancer-type precision 

Precision and recall curves for each binary random forest classifier within CUPLR are shown in 
Supplementary figure 12. 

We used predictions based on calibrated cross-validation probabilities to assess the effect of 
excluding feature types on recall (Supplementary figure 8); compare the recall of CUPLR to other 
classifiers (Supplementary figure 9); assess the effect of confounding factors on recall 
(Supplementary table 1, Supplementary figure 13, Supplementary Notes); as well as to show that 
30x coverage is sufficient for reliable CUPLR predictions for most cancer types, with >=60x coverage 
giving the most reliable predictions (Supplementary figure 14, Supplementary Note 2).  

Lastly, we showed that there was likely minimal overfitting on the Hartwig and/or PCAWG datasets 
(i.e. batch effects) by training a CUPLR-like a model solely on Hartwig samples and another model 
solely on PCAWG samples, and thereafter determining performance by testing on the opposite dataset 
(Supplementary figure 15, Supplementary Note 3). 

Data availability 
For the Hartwig cohort, WGS data and corresponding metadata have been obtained from the Hartwig 
Medical Foundation and provided under data request number DR-104. Both WGS data and metadata 
is freely available for academic use from the Hartwig Medical Foundation through standardized 
procedures and request forms which can be found at [https://www.hartwigmedicalfoundation.nl]. 

Somatic variant calls, gene driver lists, copy number profiles and other core data of the PCAWG cohort 
generated by the Hartwig analytical pipeline are available for download at 
[https://dcc.icgc.org/releases/PCAWG/Hartwig]. Researchers will need to apply to the ICGC data 
access compliance office (https://daco.icgc-argo.org) for the ICGC portion of the dataset. 
Authentication of NIH eRA commons is required to access the TCGA portion of the dataset via 
[https://icgc.bionimbus.org]. Additional information on accessing the data, including raw read files, 
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can be found at [https://docs.icgc.org/pcawg/data/]. Metadata for PCAWG samples (e.g. sample 
whitelisting) can be found at https://dcc.icgc.org/releases/PCAWG. The extracted features for each 
sample and used to develop CUPLR is available at [https://doi.org/10.5281/zenodo.5939805] [184]. 
All other processed and raw data can be found in the Supplementary Data files. 

Code availability 
The Hartwig Medical Foundation pipeline [https://github.com/hartwigmedical/pipeline5], hosted on the 
Google Cloud Platform using Platinum [https://github.com/hartwigmedical/platinum], was used for 
germline and somatic variant calling, as well as post-processing procedures such as identification of 
simple and complex structural rearrangements, annotation of driver gene mutation events, and 
detection of gene fusions and viral DNA integrations. CUPLR can be run from the output of this 
pipeline, and is available as an R package on GitHub ([https://github.com/UMCUGenetics/CUPLR]; 
[https://doi.org/10.5281/zenodo.6637693] [185]). This repository also contains the code for data 
processing and generating the figures in this paper. CUPLR depends on some custom code, including 
mutSigExtractor for extraction of mutational signatures 
[https://github.com/UMCUGenetics/mutSigExtractor] and mltoolkit (only required for classifier training 
and not for running CUPLR; [https://github.com/UMCUGenetics/mltoolkit]). 
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Supplementary data 
Supplementary data 1: Metadata for tumors in the Hartwig and PCAWG datasets, including cancer 
type label, HRD and MSI status, and inclusion/exclusion in the training and holdout sets. 

Supplementary data 2: The number of training and held out test samples per cancer type per 
cohort. 

Supplementary data 3: Descriptions and importance of each feature used by CUPLR. 

Supplementary data 4: Confusion matrices and performance metrics. 

Supplementary data 5: CUPLR predictions on the training set (based on cross-validation), held out 
test set, and on cancer of unknown primary (CUP) samples. 

Supplementary data 6: Visualization of the regional mutational density (RMD) profiles. 

Supplementary data are available online at https://www.nature.com/articles/s41467-022-31666-
w#Sec24, or by scanning the QR code below: 
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Supplementary information 

Supplementary figures 

 

Supplementary figure 1: CUPLR training procedure. (a) An ensemble of binary random forest classifiers was 
trained each to discriminate one cancer type versus other cancer types. (i) Dimension reduction via non-negative 
matrix factorization (NMF) was performed on the 3071 RMD bins independently for each cancer type to ultimately 
produce 48 cancer type specific RMD profiles (see Supplementary figure 2 for a detailed schematic; see 
Supplementary data 6 for a visualization of each RMD profile), prior to random forest training as shown in (ii). 
(iii) Univariate feature selection was performed to remove irrelevant features. (iv) Class resampling was performed 
to alleviate imbalances in the number of samples for each cancer type. (v) The random forests are trained. Breast, 
ovary and cervix probabilities from the random forest are set to 0 for male samples, and prostate probabilities are 
set to 0 for female samples. (b) The whole training procedure in (a) was subjected to 15-fold cross-validation to 
obtain cancer type probabilities for the training samples. (c) These probabilities were then used to train the isotonic 
regressions for probability calibration. The calibrated probabilities were also used to calculate cross-validation 
performance. (d) Performance was also determined by applying CUPLR to a held out test set.  
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Supplementary figure 2: Extraction of regional mutational density (RMD) profiles. (a) Non-negative matrix 
factorization (NMF) was performed for several ranks to determine the optimum rank. For each rank, 10% of values 
were removed from the input matrix, NMF was performed, the original matrix was reconstructed, the missing 
values were imputed, and mean squared error between the original missing values and the imputed values. This 
was repeated 50 times and median MSE was calculated. (b) The optimum rank was the one at which the 
log10(MSE) value began to increase rapidly. NMF was performed on the entire input matrix (i.e. without removing 
values) to yield the RMD profiles for one cancer type cohort. (c) The procedures in (a) and (b) were performed for 
all cancer types to yield RMD profiles for all cancer types. Hierarchical clustering was performed to group profiles 
that were similar. One profile was selected per cluster to yield the final set of RMD profiles.  
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Supplementary figure 3: Isotonic regression calibration curves for each random forest in CUPLR. Red dots 
at y=1 are samples that were predicted by the respective cancer type random forest as that cancer type, whereas 
dots at y=0 are samples that were predicted as not being that cancer type. Cancer type predictions were obtained 
by cross-validation.  



3

87

3

87

 

 87 

 

Supplementary figure 4: Reliability curves showing the probability biases before and after calibration. Grey 
panels show the curves before calibration and the blue panels show the curves after calibration. Each dot 
represents the fraction of samples of the target cancer type in a particular probability bin (a bin at e.g. 0.05 would 
represent probabilities between 0 and 0.1). Dots above the diagonal are probabilities where the random forest is 
overconfident whereas dots below the diagonal are probabilities where it is underconfident. A properly calibrated 
classifier has a reliability curve close to the diagonal. Two curves are shown in each panel, one filtered such that 
each bin has sufficient (≥5) samples for plotting a stable curve, and one where each bin has ≥0 samples 
representing the raw reliability curve.  
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Supplementary figure 5: Performance of CUPLR before and after calibration of raw random forest 
probabilities. Recall (i.e. fraction of samples correctly predicted) was determined using cross validation on the 
training set (light blue bars) as well as by predicting on the held out test set (dark blue).  
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Supplementary figure 6: Relative difference in recall of CUPLR between the cross-validation (CV) predictions 
and predictions on the holdout test set. The relative difference ranges between 0 and 1 and was calculated using 
the formula: |a - b| / max(a, b); where a = CV performance and b = holdout performance. Small cancer type cohorts 
show higher variation between CV and holdout recall and precision.  



9090

 

 90 

 

Supplementary figure 7: Feature importances from the top 15 features for each random forest within 
CUPLR. Feature importance is measured by mean decrease in accuracy across all trees in a random forest upon 
removing a particular feature. Feature names are in the form {feature type}.{feature name}. Feature type 
definitions; rmd: regional mutation density profiles; sigs: mutational signatures; mut_load: total number of single 
base substitutions, double base substitutions or indels; gene: presence of gene gain or loss of function events; 
chrom_arm: chromosome arm copy number fold change versus overall genome ploidy; genome: genome 
properties including genome ploidy, diploid proportion, whole genome duplication status; gender: sample gender 
as determined by copy number data; sv: structural variants; fusion: presence of gene fusions; viral_ins: presence 
of viral sequence insertions. See Supplementary data 3 for the descriptions as well as feature importance values 
for each feature.  



3

91

3

91

 

 91 

 

Supplementary figure 8: Cancer type prediction recall when excluding feature types from the training data. 
Recall (i.e. fraction of samples correctly predicted) was determined using cross validation. Panel titles indicate the 
cancer type and the total number of samples for that cancer type. Bars are labelled with the recall as well as the 
number of correctly predicted samples. The red line shows the recall when no feature types are excluded. Feature 
type definitions; rmd: regional mutation density profiles; sigs: mutational signatures; mut_load: total number of 
single base substitutions, double base substitutions or indels; gene: presence of gene gain or loss of function 
events; chrom_arm: chromosome arm copy number fold change versus overall genome ploidy; genome: genome 
properties including genome ploidy, diploid proportion, whole genome duplication status; gender: sample gender 
as determined by copy number data; sv: structural variants; fusion: presence of gene fusions; viral_ins: presence 
of viral sequence insertions. For a full description of each feature, see Supplementary data 3.  
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Supplementary figure 9: Recall of CUPLR compared to other published classifiers. Recall (i.e. fraction of 
samples correctly predicted) for CUPLR was determined using cross validation. Bars are labeled with the cancer 
type class names from the respective classifiers as well as the recall value. Cancer type class names representing 
the same cancer type across different classifiers are represented by the same bar colors. The names of the 
published classifiers refer to the following studies; PCAWG-NN: PCAWG neural network by Jiao et al. 2020, 
Salvadores-SVM: support vector machine by Salvadores et al. 2019, TumorTracer: Marquard et al. 2015. 
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Supplementary figure 10: Precision of CUPLR compared to other published classifiers. Precision for CUPLR 
was determined using cross validation. Bars are labeled with the cancer type class names from the respective 
classifiers as well as the precision value. Cancer type class names representing the same cancer type across 
different classifiers are represented by the same bar colors. The names of the published classifiers refer to the 
following studies; PCAWG-NN: PCAWG neural network by Jiao et al. 2020, Salvadores-SVM: support vector 
machine by Salvadores et al. 2019. No precision values were provided by Marquard et al. 2015 for TumorTracer. 
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Supplementary figure 11: Average scaled feature value per cancer type for the top 200 features. Feature 
values are scaled from 0 to 1 based on the minimum and maximum value for each feature across all samples. For 
gender, feature values towards 1 represent more female samples and values towards 0 more male samples. 
Feature type definitions; rmd: regional mutation density profiles; sigs: mutational signatures; mut_load: total 
number of single base substitutions, double base substitutions or indels; gene: presence of gene gain or loss of 
function events; chrom_arm: chromosome arm copy number fold change versus overall genome ploidy; genome: 
genome properties including genome ploidy, diploid proportion, whole genome duplication status; gender: sample 
gender as determined by copy number data; sv: structural variants; fusion: presence of gene fusions; viral_ins: 
presence of viral sequence insertions. For a full description of each feature, see Supplementary data 3. 
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Supplementary figure 12: Positive predictive value (PPV; also known as precision) and true positive rate (TPR; 
also known as sensitivity or recall) curves for each binary random forest classifier within CUPLR for the based on 
cross-validation (CV) and holdout set predictions.  
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Supplementary notes 
Supplementary note 1: Impact of confounding factors on performance 

Since the RMD profiles and mutational signatures were the most important feature types for CUPLR, 
we assessed whether the presence of certain confounding factors to these feature types would lead 
to more incorrect predictions. Firstly, this included DNA repair deficiencies including microsatellite 
instability (MSI) and homologous recombination deficiency (HRD) which lead to SBS/indel 
accumulation across the genome and could lead to different RMD profiles than would be expected for 
a particular cancer type. Secondly, the impact of common chemotherapies including platinum and 5-
fluorouracil (5FU) was assessed as treatment induced mutations could also lead to altered RMD 
profiles. Furthermore, treatment associated mutational signatures could be erroneously predictive of 
certain cancer types (e.g. platinum signature SBS35 for ovarian cancer) despite them not being 
intrinsic properties of those cancer types. Lastly, smoking history was assessed for lung cancer 
patients to determine whether lack of smoking, and by extension the absence of SBS4 (smoking 
mutational signature), would reduce performance for lung cancer. We found that MSI in 
Gastroesophageal, Breast, and CNS_Glioma as well as HRD in Pancreas did lead to significantly more 
incorrect predictions (p<0.01, one-sided Fisher’s exact test), though the number of incorrectly 
predicted samples was low (6, 3, 3, and 10 respectively). Overall, the presence of the majority of 
confounding factors did not lead to more incorrect predictions (p≥0.01, one-sided Fisher’s exact test; 
Supplementary table 1). 
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Supplementary table 1: Comparison of the number of correctly and incorrectly predicted samples between 
patients with and without: microsatellite instability (MSI), homologous recombination deficiency (HRD), smoking 
history, treatment with platinum, and treatment with 5-fluorouracil (5FU). One-sided Fisher’s exact tests were 
performed to determine if there were more incorrectly predicted patients with versus without the respective 
variable. Only cancer types with at least 5 patients in total being positive for the respective variable (i.e. Variable 
TRUE: Total >= 5) are shown. 
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As subclonal variants are enriched for treatment induced mutations, we also compared the 
performance of CUPLR when the model was trained on RMD and mutational signatures that were 
extracted from all mutations versus only clonal mutations (i.e. treatment induced mutations excluded) 
(Supplementary figure 13). No differences in overall recall were found (all mutations: 90% vs. clonal 
mutations 89%), with the exception of decreased recall when only clonal mutations were used in 5 
cancer types: CNS_PiloAstro (90% vs 77%), Kidney_Chromophobe (90% vs. 72%), Myeloid (77% vs. 
63%), NET_Gastrointestinal (80% vs. 47%) and Sarcoma_GIST (95% vs 82%). Given the similar 
performance between training on all mutations versus only clonal mutations, treatment induced 
mutations likely have minimal impact on the performance of CUPLR for the majority of cancer types. 

 

Supplementary figure 13: Comparison of cancer type prediction recall when using all mutations versus 
only clonal mutations to generate the regional mutational density and mutational signature features. Recall 
(i.e. fraction of samples correctly predicted) was determined using cross validation. Bars are labeled with the recall 
value, as well as in brackets the number of correctly predicted samples and the total number of samples. 
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Supplementary note 2: Impact of sequencing coverage on performance 
Our dataset consisted of patients with tumor samples sequenced at roughly 30x, 60x and 90x 
coverage (with normal samples all sequenced at ~30x coverage). Thus, to assess the impact of 
sequencing depth, we compared the performance (based on cross-validation predictions) between 
these coverages for all samples, as well as for cancer types with at least 3 samples at each coverage 
(20 cancer types; Supplementary figure 14). 

Overall, we found similar performance across difference sequencing depths (30x: 92%, 60x: 91%, 90x: 
90%). Per cancer type, 12 cancer types had comparable recall across the 3 coverages, including 
Breast, CNS_Glioma, Colorectal, Kidney_ClearCell, Liver, Lung_NonSmallCell, Lymphoid, Ovarian, 
Pancreas, Prostate, Skin_Melanoma, Urothelial. For 4 cancer types (HeadAndNeck_Other, 
Sarcoma_Osteo, Thyroid and Uterus) there was no apparent correlation between coverage and recall. 
Lastly, recall was lower at 30x coverage for Biliary, Gastroesophageal, NET_Pancreas, with 
Sarcoma_Other also having lower recall at 30x and 60x. 

In summary, 30x coverage should be sufficient for reliable CUPLR predictions for most cancer types, 
but >=60x coverage would lead to the most reliable predictions. 

 

Supplementary figure 14: Comparison of performance between samples sequenced at different coverages. 
Recall (i.e. fraction of samples correctly predicted) was determined by testing on the opposite dataset. Bars are 
labeled with the recall value, as well as in brackets the number of correctly predicted samples and the total number 
of samples. 
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Supplementary note 3: Impact of batch effects 
To assess the potential for CUPLR to be overfit on the Hartwig and/or PCAWG datasets (i.e. the 
potential presence of batch effects), we trained a model solely on Hartwig samples (Hartwig-only) and 
another model solely on PCAWG samples (PCAWG-only), and determined performance by testing on 
the opposite dataset (Supplementary figure 15). Hartwig-only and PCAWG-only models were trained 
with equal numbers of samples to avoid better performance solely due to higher sample size. 

 

Supplementary figure 15: Comparison of performance between a CUP classifier model trained solely on 
Hartwig samples (Hartwig-only) and another model solely on PCAWG samples (PCAWG-only). Only cancer 
types with at least 15 samples in both Hartwig and PCAWG cohorts were included for training. Recall (i.e. fraction 
of samples correctly predicted) was determined by testing on the opposite dataset. Bars are labeled with the 
recall value, as well as in brackets the number of correctly predicted samples and the total number of samples. 

Overall, we found that both models achieved similar recall (Hartwig-only: 90%, PCAWG-only: 86%). 
For the 21 cancer types with sufficient sample sizes for training (>=15 samples in both Hartwig and 
PCAWG cohorts), 13 of these also had comparable recall between the two models (+/-10%). These 
data indicate that batch effects for most cancer types are minimal. 

However, for 6 cancer types (Cervix, Colorectal, HeadAndNeck_Other, Ovarian, Sarcoma_Lipo, 
Thyroid), recall of the Hartwig-only model was much higher than of the PCAWG-only model. 
Conversely, the PCAWG-only model had higher recall than the Hartwig-only model for 2 cancer types 
(Biliary, Sarcoma_Leiomyo). These results indeed indicate potential technical and/or biological 
differences between the Hartwig and PCAWG cohorts for these cancer types. These results 
nevertheless highlight the importance of incorporating both Hartwig and PCAWG samples for training 
(e.g. to mitigate the impact from treatment associated mutations which may be more abundant in 
Hartwig samples).  
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Abstract 
Inflammatory liver disease increases the risk of developing primary liver cancer. The mechanism 
through which liver disease induces tumorigenesis remains unclear, but is thought to occur via 
increased mutagenesis. Here, we performed whole-genome sequencing on clonally expanded single 
liver stem cells cultured as intrahepatic cholangiocyte organoids (ICOs) from patients with alcoholic 
cirrhosis, non-alcoholic steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). Surprisingly, 
we find that these precancerous liver disease conditions do not result in a detectable increased 
accumulation of mutations, nor altered mutation types in individual liver stem cells. This finding 
contrasts with the mutational load and typical mutational signatures reported for liver tumors, and 
argues against the hypothesis that liver disease drives tumorigenesis via a direct mechanism of 
induced mutagenesis. Disease conditions in the liver may thus act through indirect mechanisms to 
drive the transition from healthy to cancerous cells, such as changes to the microenvironment that 
favor the outgrowth of precancerous cells. 

  



4

103

4

103

 

 103 

Introduction 
Liver cancer is the fifth most common cancer worldwide, causing around 720,000 deaths each year 
[186]. Different subtypes of primary liver cancer can be recognized, of which hepatocellular carcinoma 
(HCC; originating from hepatocytes; originating from hepatocytes) and intrahepatic 
cholangiocarcinoma (CCA; originating from cholangiocytes; originating from cholangiocytes) form the 
largest groups, together constituting over 85% of all primary liver cancers [187]. Several factors have 
been linked to increased HCC risk, including chronic alcohol consumption [188], as well as metabolic 
associated fatty liver disease (MAFLD), and its more progressive form nonalcoholic steatohepatitis 
(NASH), which can be caused by obesity, diabetes, drugs/medication and metabolic conditions [189]. 
These factors have also been linked to risk for intrahepatic CCA [190]. Though less common, chronic 
inflammation and fibrosis of the biliary tracts, known as primary sclerosing cholangitis (PSC), also 
confers increased risk of developing both HCC and CCA [191]. Our knowledge on how these 
environmental conditions drive liver cancer is still incomplete [192]. 

Chronic alcohol consumption is thought to enhance the mutational load through the metabolite 
acetaldehyde, which has been reported to be directly mutagenic [193] and indirectly through the 
formation of reactive oxygen species [194–199]. Increased burden of somatic mutations has also been 
observed in non-alcoholic liver disease [200]. NASH and PSC are both characterized by chronic 
inflammation [201,202], which may cause the production of reactive oxygen and nitrogen species that 
subsequently induce DNA damage [203]. 

However, accurate measurements of in vivo induced mutations are required to confirm that 
accelerated mutagenesis underlies liver tumorigenesis. We previously established a sensitive method 
to accurately determine all somatic mutations that have been acquired throughout life in individual 
human adult stem cells of the liver and gastrointestinal tract [92]. We used these catalogs of 
somatically acquired mutations to perform mutational signature analysis, a powerful computational 
method for  identifying mutational processes that have been active in the life history of cells [13]. 
Currently, 60 single base substitution (SBS) signatures, 11 double base substitution (DBS) signatures, 
18 indel signatures, and 16 structural variation (SV) signatures have been identified [178,204]. These 
signatures are a result of endogenous mutational sources (such as apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide-like (APOBEC) activity [205] or homologous recombination deficiency 
[38,103]), but also microbial impact [65], oxidative stress [206], or anti-cancer therapies [66,67]. 
Mutational signature analyses on healthy human stem cells revealed that mutational processes are 
tissue-specific and continuously active throughout life resulting in a linear accumulation of mutations 
with age [92], at least under ‘normal’ conditions. Because of the link between liver disease and liver 
cancer, we hypothesized that the precancerous state of liver diseases would be reflected by increased 
mutation rates and accumulation of mutational patterns that are characteristic to the type of DNA 
damage inflicted during liver tumorigenesis. 

In this study, we aim to identify the mutational processes that contribute to the precancerous state in 
common human liver diseases. To achieve this goal, we have studied the accumulation of mutations 
in individual stem cells derived from livers of patients with alcoholic cirrhosis, NASH and PSC who 
received a liver transplantation. Surprisingly, we find that individual stem cells from liver patients did 
not show increased mutational burden overall, within liver cancer associated genes, nor to specific 
mutational signatures when compared to liver stem cells from healthy donors. Our findings suggest 
that environmental conditions drive liver tumorigenesis through means other than by increasing 
mutagenesis. 
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Results 

Mutation rates do not increase in diseased livers 
Both main liver cell types, hepatocytes and cholangiocytes, can act as liver stem cells depending on 
the type of tissue damage that was inflicted [207]. Cholangiocytes show a high degree of cellular 
plasticity during regeneration and disease and act as facultative liver stem cells during impaired 
hepatocyte regeneration [207,208]. Cholangiocytes can be grown as intrahepatic cholangiocyte 
organoids (ICO) [209] that show long-term self-renewal, differentiation and engraftment in mouse and 
rat models of liver failure [210,211]. In contrast, there are no suitable protocols for the long-term culture 
of human hepatocytes. In contrast, there are no suitable protocols for the long-term culture of human 
hepatocytes. We have previously exploited the proliferative capacity of individual cholangiocytes to 
determine mutation rates in individual liver stem cells of the healthy liver [92]. We reasoned that 
cholangiocytes are also suitable for the study of somatic mutation accumulation as a result of the 
diseased liver environment, because cholangiocytes are exposed to the same environmental 
conditions as the other liver cell types [212]. 

 

Figure 1: Samples and experimental setup. (A) Summary of the samples used in this study. (B) Liver biopsies 
were taken from patients with diseased livers from which clonal intrahepatic cholangiocyte stem cell-based 
organoid (ICO) cultures were generated. Organoid clones were subjected to whole-genome sequencing (WGS) 
together with a matched tissue reference sample per patient for subtraction of germline mutations and thus 
detection of somatic mutations. (C) To compare the mutation profiles in liver disease versus HCC and CCA, WGS 
data from primary tumor samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium were 
also included. (D) Somatic variant calling of diseased and cancerous livers was performed with the same pipeline. 

To determine whether a diseased liver environment leads to increased somatic mutation accumulation, 
we performed whole-genome sequencing (WGS) on clonal ICOs derived from liver stem cells from 
patients with diseased livers (Figure 1A, B; Supplementary data 1). Our study included: (i) 14 clones 
from 5 patients with cirrhosis as a result of chronic alcohol consumption; (ii) 13 clones from 5 NASH 
patients; and (iii) 8 clones from 3 PSC patients. Organoid establishment success rates were lower for 
diseased liver as compared to healthy livers and was most challenging for material obtained from PSC 
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patients. For each patient, a reference blood or multilineage bulk tissue sample was also sequenced 
to distinguish germline variants from somatic variants. The somatic mutation catalogs in diseased 
livers were compared to the mutation catalogs from 14 clones from liver adult stem cells derived from 
7 healthy donors. 

 

Figure 2: Accumulation of somatic single base substitutions (SBS) and small insertions/deletions (indel) in 
organoids derived from biopsies of healthy livers compared to those from patients with diseased livers. ALC: 
alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary sclerosing cholangitis. Each point is 
labelled by patient number and clone letter. Two-sided Z-tests were performed to determine whether there was 
a significant difference between the linear mixed effects regressions (i.e. the rate of mutation accumulation) of the 
disease versus healthy ICOs. One-sided F-tests were performed to determine whether there was a significant 
increase in variance in rate of mutation accumulation in disease samples versus healthy samples. ± values indicate 
the 95% confidence interval range of each regression and ‘p’ indicates the p-values of the Z-tests and F-tests. 

In total, we identified 172,650 small mutations (single/double base substitutions or indels) in healthy 
(35,006), post-alcoholic (49,681), NASH (43,997), and PSC (19,521) livers (as well as 24,445 from a 
patient with HCC). Consistent with previous observations [92], somatic mutations accumulated linearly 
with age in healthy liver cells, at a rate of approximately 46 SBSs and 9 indels per year (Figure 2). The 
rate of SBS accumulation in alcoholic, NASH and PSC ICOs showed no significant differences to that 
of healthy ICOs (Z-test, p≥0.41), and similarly, the rate of indel accumulation in disease ICOs was also 
comparable to that of healthy ICOs (Z-test, p≥0.62). We observed a slight increase in variance in SBS 
accumulation in alcoholic cirrhosis versus healthy ICOs which may suggest that alcohol consumption 
leads to mutagenesis in some but not all patients, though the increase in variance was weak (F-test, 
p=0.032). Likewise, we found increased variance in SBS accumulation in PSC ICOs (F-test, p=0.001), 
though this variance is likely due to having many more ICOs originating from one patient PSC2. We 
also compared the accumulation of DBSs and SVs. While the number of DBSs and SVs was too low 
to be conclusive (≤50 DBSs and ≤25 SVs; Supplementary figure 2), the rate of mutation accumulation 
overall did not increase in diseased versus healthy ICOs. Taken together, these results suggest that 
chronic alcohol consumption or an inflamed liver environment does not lead to increased SBS, indel, 
DBS or SV accumulation in liver cells. 
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The mutation profile of diseased livers is similar to that of healthy livers 
The presence of genome-wide patterns of mutations (also known as mutational signatures) reflects 
past activity of mutational processes in cells. Previously, the mutational signatures SBS12 and SBS16 
have been associated with HCC [13,63], with SBS16 also being associated with alcohol consumption 
[213]. Additionally, SBS2 and SBS13 (APOBEC activity) were found to be active in numerous cancer 
types including CCA [13]. We expected that the mutational processes in diseased liver would be similar 
to those in cancerous liver. We thus examined whether liver disease results in increased presence of 
one of the above signatures or in other signatures related to liver cancer. Since the main liver cancer 
types are HCC and intrahepatic CCA, we selected the signatures that could be present in liver and 
biliary cancer based on the signature catalog from the PCAWG (Pan-Cancer Analysis of Whole 
Genomes) consortium [13] (see Methods for further details). We ultimately quantified the presence of 
10 SBS and 7 indel signatures in our ICOs as well as in the PCAWG HCC and CCA samples (Figure 3). 
Too few DBSs and SVs were present in the diseased liver samples to perform signature analysis for 
these variant types (Supplementary figure 2). 

We observed similar signature profiles in diseased and healthy ICOs, with the most predominant 
signatures being age-related (Figure 3; SBS1, SBS5, SBS40, ID1, ID5, ID8), which are present in 
normal cells [13]. We also found minor contributions of signatures SBS4 and ID3. These signatures are 
also present at a baseline level in HCC and CCA [13]. In the HCC and CCA samples from PCAWG, 
age-related signatures were predominant, with HCC samples also showing increased contribution of 
the known HCC associated signatures SBS12 and SBS16 compared to the healthy and diseased ICOs, 
while CCA samples showed increased contribution of APOBEC activity (SBS2, SBS13). Because these 
signatures were not observed in the disease ICOs, these findings argue against environmentally 
induced mutational processes as a force driving the transition of healthy to precancerous liver cells. It 
is likely that other events are required to initiate the HCC/CCA related mutational processes.  

Given that certain recurrent chromosome arm gains and losses have been reported in HCC [214,215], 
we also examined whether liver disease leads to similar copy number alterations (CNA). We find that 
aside from 2 samples with polyploidization (a known phenomenon in normal liver cells [216]), the 
genomes of the disease ICOs were relatively stable, while the genomes of HCC and CCA were clearly 
more unstable with known recurrent arm gains (e.g. 1q, 8q, 17q) and losses (e.g. 8p and 17p) being 
observed [214,215] (Supplementary figure 3). These data could suggest that CNA accumulation due 
to liver disease does not contribute to the healthy to precancerous liver transition. However, as CNAs 
are rare in non-cancerous cells [58], more data would be required to validate this hypothesis. 
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Figure 3: Relative contributions of mutational signatures in organoids derived from biopsies of healthy, diseased 
and cancerous livers. (A) single base substitution (SBS) signatures. (B) Indel (ID) signatures. ALC: alcoholic 
cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary sclerosing cholangitis, HCC: hepatocellular 
carcinoma, CCA: cholangiocarcinoma. Profiles for HCC (PCAWG_HCC; n=248) and CCA (PCAWG_CCA; n=12) 
samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium are also shown. Hierarchical 
clustering of samples was performed separately for SBS and ID signatures. Sample names for PCAWG_HCC 
samples are hidden due to the large number of samples. 

Absence of driver gene mutations in ICOs 
Certain mutations may confer liver stem cells a growth advantage, and in diseased livers, these cells 
may be able to proliferate more to regenerate lost tissue. We thus examined whether the liver disease 
conditions resulted in positive selection of cells with non-synonymous mutations in specific genes 
using the dndscv algorithm (details in Methods). However, amongst all of the liver disease groups, no 
genes were found to be enriched in non-synonymous mutations (q<0.01, Supplementary data 2). In 
line with this result, we did not observe any coding, promoter or 5’/3’ untranslated region (UTR) 
mutations in driver genes of HCC and CCA (obtained from Intogen; see Methods), except for one 
missense variant in an alcoholic cirrhosis ICO sample (TERT c.1588C>G in sample ALC3_CLONE32) 
(Figure 4). This could potentially be explained by the cells from which our disease ICOs were derived 
not being actual cancer precursors but only harboring passenger mutations. We acknowledge that 
mutations could occur in other non-coding elements but have not examined these as their impact is 
currently difficult to assess [217,218]. Furthermore, we also acknowledge that our small sample sizes 
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limit our ability to find enriched driver gene mutations in the diseased liver ICOs. In contrast, we found 
enrichment of non-synonymous mutations in TP53 in the PCAWG CCA samples, and in TP53 and 
CTNNB1 as together with 13 other genes in the PCAWG HCC samples (q<0.01, Supplementary data 
2). While dndscv does not consider non-coding variants, we also observed TERT promoter mutations 
in the PCAWG HCC samples (‘upstream_gene_variant’, Figure 4). These genes have been reported 
as known cancer driver genes in the respective cancer types [5]. No mutations in these driver genes 
were found in 34% (84/284) of PCAWG HCC samples indicating that mutations in these genes are not 
necessarily a requirement for HCC development. 

 

Figure 4: Non-synonymous mutations in organoids derived from biopsies of healthy, diseased and cancerous 
livers. ALC: alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary sclerosing cholangitis, HCC: 
hepatocellular carcinoma, CCA: cholangiocarcinoma. Profiles for HCC (PCAWG_HCC; n=248) and CCA 
(PCAWG_CCA; n=12) samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium are also 
shown. 
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Discussion 
Despite the association between liver disease and primary liver cancer (which includes HCC and CCA), 
the underlying mechanisms of tumorigenesis remain debated. The prevalent view is that tumorigenesis 
results from an increased mutational burden [193–203]. In line with this view, Brunner et al. [200] 
showed that cirrhotic liver cells from NASH patients exhibited an increase in mutational load, even 
though this increase was small and variance between patients was high. In contrast with these 
observations, we did not observe an increase in mutation rate in individual stem cells of precancerous 
livers. Additionally, while previous studies have associated specific mutational signatures and gene 
mutations in HCC to alcohol consumption [219,220], we did not observe an altered mutational 
landscape in our alcoholic cirrhosis ICOs. 

There are several possible explanations for the unchanged mutational landscape in our liver disease 
stem cells. Firstly, it could be that the cholangiocytes that give rise to the ICO cultures are not the 
precursors to (pre-)cancerous liver cells. Hepatocellular carcinoma is derived from hepatocytes and 
not from cholangiocytes and the cholangiocytes that give rise to ICOs may not be representative for 
the cholangiocytes that have the potential to develop into cholangiocarcinoma. Secondly, there could 
be selection for the most stable ASCs in culture, which may not necessarily be the precancerous cells. 
Thirdly, it may be possible that increased mutagenesis affected only a small proportion of the liver 
cells and that we have sequenced too few cells to identify the hypermutated cells. Lastly, it may be 
that our patient cohorts were too small to detect changes in the mutational landscape, which may 
indeed be the case for detecting enrichment of driver gene mutations. However, we could determine 
via a power analysis (Supplementary note 1) that the sample sizes in our study were sufficient to 
detect changes in mutational load and mutational signature contribution similar to other studies which 
also used tissue derived organoids to investigate mutation accumulation [206,221,222]. It may be 
however possible to pick up more subtle mutational impacts by increasing sample sizes. 

On the other hand, the stem cells that we studied have been exposed to the same environmental 
stressors as the cells that grew out as tumors (since both have been in contact with the blood stream), 
so when there would have been a direct mutational impact, we would expect this to be detectable in 
the cells that we studied. In line with our findings, Brunner et al. [200] also found that alcoholic cirrhosis 
and NASH livers did not exhibit different mutational signatures in comparison to healthy livers. While 
the mutational impact of NASH and PSC have not been investigated besides in the Brunner et al. [200] 
study, alcohol exposure has been shown to lead to DNA damage in vitro [195,198,223] and in blood 
cells in mice [224], but these studies do not accurately reflect the in vivo liver environmental conditions. 
It is possible that the rate of cellular endocytosis and/or diffusion is slower in the liver, resulting in less 
exposure to alcohol than would occur in vitro. Additionally, the aforementioned studies were performed 
on non-quiescent cells which may rely more on replicative repair, whereas liver cells are generally 
quiescent and likely rely on non-replicative repair which is faster at repairing alcohol induced DNA 
damage than replicative repair [193]. Alternatively, liver cells that acquire alcohol induced DNA damage 
may undergo apoptosis and be replaced by new cells as a result of liver regeneration [225], and these 
cells in turn lack the mutation footprint caused by the alcohol. Nevertheless, the absence of increased 
mutational burden in our disease ICOs may suggest that increased mutagenesis is not the primary 
contributing factor towards tumorigenesis. 

Opposed to the view that tumorigenesis arises from mutagenesis, an alternative hypothesis proposes 
that chronic liver inflammation and cirrhosis (which commonly precedes primary liver cancer [226]) 
leads to cell death in the liver, requiring normally quiescent liver adult stem cells to proliferate at a 
much higher rate to regenerate the damaged liver. As a consequence, cells would accumulate more 
mutations, especially those caused by background mutational mechanisms related to cell proliferation 
(e.g. aging-associated mutational signatures). Inflammatory disease conditions would thus provide a 
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‘fertile ground’ for cells with random and potentially pre-existing (oncogenic) mutations that confer a 
selective growth advantage to clonally expand [49,227,228]. Such a phenomenon has been described 
in mouse models, whereby pancreatic cells within mice with both a pathogenic Kras mutation and 
pancreatitis transitioned into an epigenetic state similar to pancreatic ductal adenocarcinoma, while 
pancreatic cells in mice with only one or the other retained their original epigenetic state [229]. 
Additionally, Hepatitis C Virus (HCV)-induced cirrhotic livers showed an increase in the number and 
size of clonal patches with mutations in genes that are frequently mutated in HCC [225]. 

Taken together, our findings suggest that mechanisms other than direct mutagenesis drive the 
transition from healthy to precancerous liver, and highlights the need to explore other potential 
hypotheses of liver tumorigenesis, including but not limited to the ‘fertile ground’ hypothesis. 
 

Methods 

Human tissue material 
All human tissue biopsies were obtained in the Erasmus MC - University Medical Center Rotterdam. 
Liver biopsies from healthy liver donors and patients with alcoholic cirrhosis, nonalcoholic 
steatohepatitis (NASH) or primary sclerosing cholangitis (PSC) were obtained during liver 
transplantation procedures. All patients were negative for viral infection and metabolic diseases. The 
biopsies were collected in cold organ preservation fluid (Belzer UW Cold Storage Solution, Bridge to 
Life, London, UK) and transported and stored at 4°C until use. The liver and tumor biopsies from the 
hepatocellular carcinoma patient were collected from a resected specimen and stored at -80°C until 
use. The acquisition of these liver and tumor biopsies for research purposes was approved by the 
Medical Ethical Committee of the Erasmus Medical Center (MEC-2014-060 and MEC-2013-143). 
Informed consent was provided by all patients involved. 

Generating clonal intrahepatic cholangiocyte organoid cultures from human 
liver biopsies 
Healthy and diseased liver tissue biopsies were washed in cold DMEM (ThermoFisher) supplemented 
with 1% fetal calf serum (FCS) and 1% penicillin-streptomycin (wash solution). Subsequently, the 
tissue was transferred to a petri dish and thoroughly minced with scalpel blades. The minced tissue 
was transferred to 4 ml digestion solution consisting of EBSS with Ca2+ / Mg2+ (ThermoFisher) with 1 
mg/ml Collagenase type IA (Sigma, C9891) and 0.1 mg/ml DNAse I (Sigma DN25). The tissue was 
incubated for 30 minutes at 37°C with regular shaking. Next, the suspension was passed through a 
pipet to further break up the tissue and passed through a 70 µm Nylon cell strainer. The cells were 
washed once with wash solution, followed by two washes in Advanced DMEM F12 supplemented with 
1% penicillin-streptomycin, 10mM HEPES, and 1X Glutamax (all from ThermoFisher). After the final 
wash, the cell pellet was resuspended in Matrigel (Corning) and plated in 40µl droplets per well in 
prewarmed non-adhesive 24-well plates. The plates were placed at 37 °C in a humidified atmosphere 
and 5% CO2. After Matrigel had solidified, 500µl liver organoid establishment medium was added to 
the wells. Establishment medium consisted of Advanced DMEM F12 supplemented with 1% penicillin-
streptomycin, 10mM HEPES, 1X Glutamax, 10% R-Spondin conditioned medium (produced in house), 
B27 supplement without Vitamin A (ThermoFisher), N2 supplement (ThermoFisher), 10mM 
Nicotinamide (Sigma Aldrich), 1.25mM N-acetylcysteine (Sigma Aldrich), Primocin, 5µM A83-01 (Tocris 
Bioscience), 10µM Forskolin (Tocris Bioscience), 100ng/ml FGF-10 (Peprotech), recombinant human 
Noggin (Peprotech), 10 μM Rho kinase inhibitor (Abmole), hES cell cloning & recovery supplement 
(Stemgent),  25ng/ml HGF (Peprotech), 10nM Gastrin (Tocris), 50ng/ml human EGF (Peprotech), and 
0.3nM Wnt-surrogate Fc protein (U-protein Express BV). After 2-3 days after isolation, the first 
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intrahepatic cholangiocyte organoid started to appear and establishment medium was switched to 
maintenance medium consisting of Advanced DMEM F12 supplemented with 1% penicillin-
streptomycin, 10mM HEPES, 1X Glutamax, 10% R-Spondin conditioned medium, B27 supplement 
without Vitamin A, N2 supplement 10mM Nicotinamide, 1.25mM N-acetylcysteine, Primocin, 5µM 
A83-01, 10µM Forskolin, 100ng/ml FGF-10, 25ng/ml HGF (Peprotech), 10nM Gastrin (Tocris), and 
50ng/ml human EGF (Peprotech). The cultures were maintained for 10-14 days after isolation, to enrich 
for adult stem cells. Subsequently, clonal organoid cultures were generated from these organoid 
cultures by FACS or by manual selection and expansion of individual organoids [230]. The organoid 
cultures were further expanded until there was enough material for DNA isolation. DNA was isolated 
from all organoid cultures, blood samples, and tissue biopsies using the Qiasymphony (Qiagen). 
Whole-genome sequencing libraries were generated from 200 ng of genomic DNA according to 
standard protocols (Illumina). The organoid cultures and control samples were sequenced paired-end 
(2 x 100 bp) to a depth of at least 30X coverage on the Illumina HiSeq Xten. The hepatocellular 
carcinoma biopsies were sequenced paired-end (2 x 100 bp) to a depth of at least 60X coverage on 
the Illumina HiSeq Xten. Whole-genome sequencing was performed at the Hartwig Medical Foundation 
in Amsterdam, the Netherlands. 

Variant calling 
Germline and somatic variant calling for all samples was performed using the HMF pipeline 
(https://github.com/hartwigmedical/pipeline; v4.8) [6]. Briefly, reads were mapped to GRCh37 using 
BWA-MEM v0.7.5a with duplicates being marked for filtering. Indels were realigned using GATK 
v3.4.46 IndelRealigner. GATK Haplotype Caller v3.4.46 was used for calling germline variants in the 
reference sample. For somatic SNV and indel variant calling, GATK BQSR3 was first used to recalibrate 
base qualities, followed by Strelka v1.0.14 for the variant calling itself. Somatic structural variant calling 
was performed using GRIDSS v1.8.0. Copy-number calling was performed using PURity & PLoidy 
Estimator (PURPLE), that combines B-allele frequency (BAF), read depth, and structural variants to 
estimate the purity and copy number profile of a tumor sample. For SNVs and indels, downstream 
analyses were performed only on variants marked as ‘PASS’. 

Mutation context analysis 
The counts of single base substitution (SBS), double base substitution (DBS), indel and structural (SV) 
variant contexts were determined from somatic VCF files using the R package mutSigExtractor 
(https://github.com/UMCUGenetics/mutSigExtractor; v1.23). The mutation contexts of all mutation 
types are described in COSMIC (https://cancer.sanger.ac.uk/cosmic/signatures), except for the SV 
contexts. The 16 SV contexts were composed of the SV type (deletion, duplication, inversion, 
translocation) and the SV length (1–10 kb, 10–100 kb, 100kb–1Mb, 1–10Mb, >10 Mb). Note that SV 
length is not applicable for translocations. The mutation context spectra for each sample group are 
shown in Supplementary figure 4, Supplementary figure 5, Supplementary figure 6, and 
Supplementary figure 7. 

To perform mutational signature analysis, we selected the SBS and DBS signatures that were present 
in at least 10% of liver cancer (Liver-HCC) or biliary cancer (Biliary-AdenoCA) PCAWG samples 
(https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures_in_Samples/SP_Signatures
_in_Samples) [13]. We then fitted the SBS and DBS mutation contexts to these selected signatures 
using the fitToSignatures() function from mutSigExtractor (which employs the non-negative least-
squares method) to obtain absolute signature contributions. Relative signature contribution per sample 
was calculated by dividing the absolute contributions by the total signature contribution. 

Mutation context and signature absolute contributions per sample can be found in 
Supplementary data 3. 
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Selection of liver and biliary cancer driver genes 
A catalog of driver genes by cancer type was downloaded from Intogen 
(https://www.intogen.org/download; release 2020.02.01). From the Compendium_Cancer_Genes.tsv 
file, we selected genes where CANCER_TYPE was ‘HC’ or ‘CH’ (hepatocellular carcinoma and 
cholangiocarcinoma, respectively), and CGC_CANCER_GENE was ‘TRUE’. Additionally, TERT has 
been reported by the PCAWG consortium [5] as a known HCC driver gene and was thus also included. 

Identifying non-synonymous mutations 
The mutation type of each somatic SNV/indel was determined by SnpEff 
(http://snpeff.sourceforge.net/; v4.3t). The following variant types were considered non-synonymous 
mutations: out-of-frame frameshifts, disruptive inframe frameshifts, nonsense, missense, splice 
variants. We also considered a mutation as non-synonymous if it was annotated as VUS, likely 
pathogenic, or pathogenic by ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/; GRCh37, database date 
2020-02-24), or if it was a hotspot mutation. The underlying code for annotating non-synonymous 
mutations can be found at https://github.com/UMCUGenetics/geneDriverAnnotator (v1.0). 

The dndscv R package [49] was used to identify genes that were enriched for non-synonymous 
mutations. Briefly, this package computes the (local) background mutation rates and sequence 
composition of genes to calculate the background mutation rate for each gene. A likelihood ratio test 
is subsequently performed to identify genes that are significantly hit by nonsynonymous mutations. 
dndscv was run separately for each disease status group (i.e. separately for healthy ICOs, separately 
for NASH ICOs, etc) using all the somatic mutations from the respective group. 

Statistics and reproducibility 
All statistical analyses were performed in R (v4.0.3). To correlate the number of mutations with the age 
of each patient from which each biopsy was derived (as shown in Figure 2 and Supplementary figure 
1), we first assessed normality of the mutational load per mutation type per disease status group was 
using the Shapiro test (shapiro.test() function) (Supplementary table 1). This confirmed that the 
mutational load was normally distributed (p>0.05), with near normality for SBS load in PSC samples 
(p=0.03) and indel load in NASH samples (p=0.05). Then, the lme() function from the nlme (v3.1) 
package was used to fit a linear mixed effects regression, with 95% confidence intervals being 
calculated using the intervals() function from the nlme package. Here, ‘patient’ was modelled as a 
random effect to account for having different numbers of organoids per patient. Additionally, the 
intercept was fixed to zero as it was assumed that a patient has no somatic mutations at birth. A two-
sided Z-test was used to calculate the difference between two regressions. The Z-statistic was first 
calculated using the slope (m) and standard errors (SE) of the two regressions (equation 1), which was 
then used to calculate a p-value using the pnorm() function (equation 2). A one-sided F-test was 
performed to calculate whether the variance of the regression of diseased ICOs was greater than that 
of the healthy ICOs. The F-statistic was first calculated by dividing the variance of the two regressions 
(extracted from the output of the lme() function) (equation 3), which was then used to calculate a p-
value using the pf() function (equation 4). 

� =
�! −�"

%��!	" − ��"	"
								(1) 

� = 2 × �����(−|�|)								(2) 

� = ���$%&'(&'/���)'(*+),								(3) 

�	 = 	1 − ��(�)								(4) 
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To determine whether there was a significant increase in mutation context load in disease versus 
healthy ICOs (as shown in Supplementary figure 4, Supplementary figure 5, Supplementary figure 
6, and Supplementary figure 7), Wilcoxon rank sum tests (using the wilcox.test() function) were 
performed per mutation context. Bonferroni multiple testing correction was then applied to the 
resulting p-values (using the p.adjust() function). 

Data availability 
The BAM files from the whole-genome sequencing data generated in the current study are available 
at EGA (https://www.ebi.ac.uk/ega/home) under accession numbers EGAS00001002983 and 
EGAS00001005384. BAM files from hepatocellular carcinoma and cholangiocarcinoma patients from 
the Pan-Cancer Analysis Whole Genomes (PCAWG) consortium were obtained under request number 
DACO-5333. For access to the PCAWG BAM files, researchers will need to request access via the 
ICGC Data Access Compliance Office (DACO; https://daco.icgc.org/). The VCF and tabular files 
produced from somatic variant calling are available at https://zenodo.org/record/5562381 [231]. 

Code availability 
The code for the Hartwig Medical Foundation (HMF) germline and somatic variant calling pipeline is 
available at https://github.com/hartwigmedical/pipeline. The code used for data processing and 
generating the figures is available at https://github.com/UMCUGenetics/Diseased_livers [232]. 
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Supplementary data 
Supplementary data 1: Sample metadata 

Supplementary data 2: Genes enriched in non-synonymous mutations as determined by dndscv 

Supplementary data 3: Mutation context and absolute mutational signature contributions per sample 

Supplementary data are available online at: https://www.nature.com/articles/s42003-021-02839-
y#Sec16, or by scanning the QR code below: 
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Supplementary information 

Supplementary note 1: Power analysis 
We performed a power analysis to assess the minimum detectable changes to mutation accumulation 
and mutational signature contributions given our number of samples. We used the pwr R package to 
calculate hypothetical detectable effect sizes using a significance level of 0.05 and a power of 0.8. We 
used the pwr.t2n.test() and pwr.chisq.test() functions to calculate Cohen’s D and Cohen’s W 
respectively.  

Given that we have 8 healthy patients, 5 with alcoholic cirrhosis, 5 with NASH and 3 with PSC, we 
expect to be able to detect an effect size (Cohen’s D) from 1.51 to 1.83 for mutation accumulation (i.e. 
as shown in Figure 2). For changes in SBS contributions (i.e. as shown in Figure 3), the degrees of 
freedom (DF) is 9 (10−1 signatures x 2−1 conditions), and thus we expect to detect an effect size 
(Cohen’s W) of 1.10 to 1.19 when the total number of samples is 13 or 11 respectively. For changes in 
indel contributions, the degrees of freedom (DF) is 6 (7−1 signatures x 2−1 conditions), and thus we 
expect to detect an effect size (Cohen’s W) of 1.02 to 1.11 when the total number of samples is 13 or 
11 respectively. 

When then compared this with similar experimental setups in published studies to determine what 
these hypothetical effect sizes signify. Kuijk et al. [206] found that organoids cultured in 20% oxygen 
(n=5) accumulated ~1.5 times more SBSs than those cultured in 3% oxygen (n=3) (p=0.003, two-sided 
t-test). Here, the detectable effect size (Cohen’s D) would be 2.06. Organoids cultured in 20% oxygen 
also showed higher relative contribution of SBS5 (~30%) than those cultured in 3% oxygen (~10%). In 
this comparison, the DF) was 6 = 7−1 signatures x 2−1 conditions) and the total number of samples 
was 8, thus yielding a detectable effect size (Cohen’s W) of 1.31. Drost et al. [221] found that MLH1 
knockout organoids (n=3) accumulated more SBSs (~25) and indels (~100) compared to wild type 
organoids (n=4) (~5 for both SBSs and indels). Here, the detectable effect size (Cohen’s D) would be 
2.22. Jager et al. [222] found that organoids derived from ERCC1 knockout mouse livers (n=3) showed 
increased relative contribution of SBS8 (~60%) compared to those derived from wild type mice (n=3) 
(~25%). In this comparison, the DF was 9 (= 10−1 signatures x 2−1 conditions) and the total number 
of samples was 3, thus yielding a detectable effect size (Cohen’s W) of 1.91. 

Thus, the sample sizes in our study would allow us to detect effect sizes similar to those found in the 
aforementioned published studies. 
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Group Mut. type p-value 

Healthy SBS 0.23213544 

Alcohol SBS 0.54995109 

NASH SBS 0.92665512 

PSC SBS 0.02814479 

Healthy DBS 0.09704532 

Alcohol DBS 0.92785727 

NASH DBS 0.17651379 

PSC DBS 0.38836339 

Healthy indel 0.70099886 

Alcohol indel 0.50867339 

NASH indel 0.04655043 

PSC indel 0.83045748 

Healthy SV 0.28064156 

Alcohol SV 0.10257364 

NASH SV 0.37047706 

PSC SV 1 

 

Supplementary table 1: Shapiro test on the mutational load per mutation type per disease status group. Since 
for some patients multiple intrahepatic cholangiocyte organoid (ICO) clones were derived, the mean mutational 
load over the ICO clones for each patient was first calculated before performing the Shapiro test. 
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Supplementary figures 

 

Supplementary figure 1: Accumulation of double base substitutions (DBS) and structural variants (SV) in 
organoids derived from biopsies of healthy livers compared to those from patients with diseased livers. ALC: 
alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary sclerosing cholangitis. Each point is 
labelled by patient number and clone letter. Two-sided Z-tests were performed to determine whether there was 
a significant difference between the linear mixed effects regressions (i.e. the rate of mutation accumulation) of the 
disease versus healthy ICOs. One-sided F-tests were performed to determine whether there was a significant 
increase in variance in rate of mutation accumulation in disease samples versus healthy samples. ± values indicate 
the 95% confidence interval range of each regression and ‘p’ indicates the p-values of the Z-tests and F-tests. 
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Supplementary figure 2: Mutational load per mutation type in organoids derived from biopsies of healthy livers, 
and livers from patients with alcoholic cirrhosis (ALC), non-alcoholic steatohepatitis (NASH), or primary sclerosing 
cholangitis (PSC). Each dot represents one organoid line. Boxplot boxes show the interquartile range (IQR) and 
whiskers show the largest/smallest values within 1.5 times the IQR. Each dot is one organoid clone. 
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Supplementary figure 3: Chromosome arm copy number profiles in organoids derived from biopsies of healthy, 
diseased and cancerous livers. ALC: alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary 
sclerosing cholangitis, HCC: hepatocellular carcinoma, CCA: cholangiocarcinoma. For one 60-year-old patient 
with hepatocellular carcinoma biopsies from 5 locations were taken from the liver (HCC_multibiopsy). Profiles for 
HCC (PCAWG_HCC; n=248) and CCA (PCAWG_CCA; n=12) samples from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) consortium are also shown. 
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Supplementary figure 4: Trinucleotide substitution profiles in organoids derived from biopsies of healthy, 
diseased and cancerous livers. ALC: alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary 
sclerosing cholangitis, HCC: hepatocellular carcinoma, CCA: cholangiocarcinoma. Profiles for HCC 
(PCAWG_HCC; n=248) and CCA (PCAWG_CCA; n=12) samples from the Pan-Cancer Analysis of Whole Genomes 
(PCAWG) consortium are also shown. x-axis labels show the base substitution within the square brackets and the 
5’ and 3’ flanking bases. Bars show the median relative mutation counts (i.e. normalized by total no. of mutations 
per sample), with error bars showing the 1st and 3rd quartiles. Asterisks indicate a significant increase in mutation 
context load in a disease/cancer sample versus healthy liver organoids (Wilcoxon rank sum test, Bonferroni 
adjusted p-value<0.01). Right of the bar plots, cosine similarities of the median profiles of the disease/cancer 
samples compared to that of the healthy liver organoids.  
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Supplementary figure 5: Indel profiles in organoids derived from biopsies of healthy, diseased and cancerous 
livers. ALC: alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary sclerosing cholangitis, HCC: 
hepatocellular carcinoma, CCA: cholangiocarcinoma. Profiles for HCC (PCAWG_HCC; n=248) and CCA 
(PCAWG_CCA; n=12) samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium are also 
shown. x-axis labels are in the format (each separated by a dot): (i) deletion or insertion; (ii) no. of deleted/inserted 
bases; (iii) indel belongs in homopolymer repeats of C/T (C/T), multibase repeat region (rep), or has flanking 
microhomology (mh); (iv) no. of repeats of C/T, no. of repeat units, or number of homologous bases. Bars show 
the median relative mutation counts (i.e. normalized by total no. of mutations per sample), with error bars showing 
the 1st and 3rd quartiles. Asterisks indicate a significant increase in mutation context load in a disease/cancer 
sample versus healthy liver organoids (Wilcoxon rank sum test, Bonferroni adjusted p-value<0.01). Right of the 
bar plots, cosine similarities of the median profiles of the disease/cancer samples compared to that of the healthy 
liver organoids.  
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Supplementary figure 6: Double base substitution (DBS) profiles in organoids derived from biopsies of healthy, 
diseased and cancerous livers. ALC: alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary 
sclerosing cholangitis, HCC: hepatocellular carcinoma, CCA: cholangiocarcinoma. Profiles for HCC 
(PCAWG_HCC; n=248) and CCA (PCAWG_CCA; n=12) samples from the Pan-Cancer Analysis of Whole Genomes 
(PCAWG) consortium are also shown. x-axis labels indicate the dinucleotide change. Bars show the median 
relative mutation counts (i.e. normalized by total no. of mutations per sample), with error bars showing the 1st and 
3rd quartiles. Asterisks indicate a significant increase in mutation context load in a disease/cancer sample versus 
healthy liver organoids (Wilcoxon rank sum test, Bonferroni adjusted p-value<0.01). Right of the bar plots, cosine 
similarities of the median profiles of the disease/cancer samples compared to that of the healthy liver organoids.  
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Supplementary figure 7: Structural variant (SV) profiles in organoids derived from biopsies of healthy, diseased 
and cancerous livers. ALC: alcoholic cirrhosis, NASH: non-alcoholic steatohepatitis, PSC: primary sclerosing 
cholangitis, HCC: hepatocellular carcinoma, CCA: cholangiocarcinoma. Profiles for HCC (PCAWG_HCC; n=248) 
and CCA (PCAWG_CCA; n=12) samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium 
are also shown. x-axis labels indicate the SV stratified by mutation type and length interval. Bars show the median 
relative mutation counts (i.e. normalized by total no. of mutations per sample), with error bars showing the 1st and 
3rd quartiles. Asterisks indicate a significant increase in mutation context load in a disease/cancer sample versus 
healthy liver organoids (Wilcoxon rank sum test, Bonferroni adjusted p-value<0.01). Right of the bar plots, cosine 
similarities of the median profiles of the disease/cancer samples compared to that of the healthy liver organoids. 
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Abstract 
Metastatic cancer remains almost inevitably a lethal disease. A better understanding of disease 
progression and response to therapies therefore remains of utmost importance. Here, we characterize 
the genomic differences between early-stage untreated primary tumors and late-stage treated 
metastatic tumors using a harmonized pan-cancer (re-)analysis of 7,152 whole-genome-sequenced 
tumors. In general, our analysis shows that metastatic tumors have a low intra-tumor heterogeneity, 
high genomic instability and increased frequency of structural variants with comparatively a modest 
increase in the number of small genetic variants. However, these differences are cancer type specific 
and are heavily impacted by the exposure to cancer therapies. Five cancer types, namely breast, 
prostate, thyroid, kidney clear carcinoma and pancreatic neuroendocrine, are a clear exception to the 
rule, displaying an extensive transformation of their genomic landscape in advanced stages. These 
changes were supported by increased genomic instability and involved substantial differences in 
tumor mutation burden, clock-based molecular signatures and the landscape of driver alterations as 
well as a pervasive increase in structural variant burden. The majority of cancer types had either 
moderate genomic differences (e.g., cervical and colorectal cancers) or highly consistent genomic 
portraits (e.g., ovarian cancer and skin melanoma) when comparing early- and late-stage disease. 
Exposure to treatment further scars the tumor genome and introduces an evolutionary bottleneck that 
selects for known therapy-resistant drivers in approximately half of treated patients. Our data 
showcases the potential of whole-genome analysis to understand tumor evolution and provides a 
valuable resource to further investigate the biological basis of cancer and resistance to cancer 
therapies. 
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Introduction 

Metastatic spread involves tumor cells detachment from a primary tumor, colonization of a secondary 
tissue, and growth in a hostile environment [233,234]. Advanced metastatic tumors are frequently able 
to resist aggressive treatment regimes [235]. Despite the many efforts to understand these phenomena 
[236–240], we still have limited knowledge of the contribution of genomic changes that equip tumors 
with these extraordinary capacities. Thus, it is essential to characterize genomic differences between 
primary and metastatic cancers and quantify their impact on therapy resistance to be able to 
understand and harness therapeutic interventions that establish more effective and more personalized 
therapies [241]. 

Multiple large-scale genome-sequencing efforts have been devoted to profiling the genomic 
landscape of primary tumorigenesis by relying on clinical panels [242] or on whole-exome sequencing 
[243] or whole-genome sequencing [5,103] strategies. Similarly, recent efforts have characterized large 
cohorts of patients with metastatic tumors [6,244]. Several cancer type specific projects have also 
reported analysis of primary and metastatic matched biopsies in urothelial carcinomas [245], breast 
cancer [246], kidney clear cell carcinoma [247] and prostate carcinoma [248,249], among others [250]. 
However, the ethical and logistical challenges associated with the collection of paired biopsy data 
hampers the extrapolation to thousands of patients with multiple cancer types.  

To circumvent this issue, most large-scale comparisons between primary and metastatic tumors have 
relied on unmatched whole-exome data or have adopted more targeted approaches with a specific 
focus on driver gene landscapes [251–253]. These efforts have frequently involved separated 
processing pipelines for primary and metastatic cohorts, complicating the analysis of genomic features 
that are highly sensitive to the selected data-processing strategy [28,254]. An impressive recent study 
that uniformly analyzed more than 25,000 tumors [255] has provided a comprehensive overview of the 
genomic differences, driver alteration patterns and organotropism using clinical gene-panel 
sequencing as a base. However, this genomic analysis approach, which is limited to several hundreds 
of genes, prevented the exploration of the full spectrum of genomic alterations that play a role in 
tumorigenesis, such as structural variation and mutational scarring caused by intrinsic and extrinsic 
forces. 

Here, we present a large-scale unified analysis of more than 7,000 whole-genome sequenced (WGS) 
paired tumor-normal samples (re-)analyzed by the same data-processing pipeline. This dataset 
enabled cancer type specific comparisons of whole-genome features in 22 cancer types with high 
representation in both primary and metastatic patients. We investigated differences in tumor clonality, 
genomic instability markers, whole-genome-duplication (WGD) rates, tumor mutation and structural 
variant (SV) burden and clock-based molecular signatures and assessed the contribution of cancer 
treatments to the observed differences. We also explored disparities in the driver gene landscape and 
their implications for therapeutic actionability. Finally, we identified known and new associations 
between certain driver alterations and exposure to various treatments. The harmonized genomic 
dataset used in our study constitutes the largest repository of uniformly analyzed cancer WGS data 
and is publicly available to the scientific community to better understand the full spectrum of DNA 
alterations as well as to study their role in tumor evolution and response to therapy. 
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Results 

7,152 uniformly processed whole-genome-sequenced paired tumor-normal 
samples from patients with primary and metastatic tumors 
To characterize the genomic differences between primary and metastatic tumors, we created a 
uniformly analyzed dataset of matched tumor and normal genomes from patients with primary and 
metastatic cancer. We first collated the Hartwig Medical Foundation (Hartwig) dataset, which includes 
4,784 samples from 4,375 metastatic patients (from which 2,520 samples were previously described 
[6]). Then, we re-processed 2,835 primary tumor samples from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) consortium using the open-source Hartwig analytical pipeline [6,140] to harmonize 
somatic calling, standardize broad functional annotations of events and eliminate biases caused by 
processing pipelines and filter conditions (Supp. Fig. 1, Supp. Table 1). Reassuringly, per-sample 
comparison of the number of single base substitutions (SBSs), double base substitutions (DBSs), 
indels (IDs), and SVs revealed a strong agreement between our results and the consensus calls 
originally generated by the PCAWG consortium (see Supp. Note 1). Additionally, our processing 
pipeline strategy was minimally affected by differences in sequencing coverage, enabling a reasonable 
comparison of WGS samples from heterogeneous sources (decreased sensitivity at 60× and 38× 
coverage, typical for PCAWG samples, compared with 109× coverage, typical for Hartwig samples 
between 0% and 5% for simple mutations and between 8% and 14% for SVs respectively) (Supp. 
Note 1). A total of 7,152 tumor samples from 58 cancer types met the processing pipeline quality 
standards (see methods and Supp. Fig. 1a) and constitutes one of the largest publicly available 
datasets of WGS primary and metastatic tumors. The flexible nature of the processing pipeline, which 
does not require extensive parameter fine-tuning, enables its application to other whole-genome-
sequencing projects, thereby providing an excellent opportunity for future integrative analyses that 
incorporate this dataset.  

To explore genomic differences between primary and metastatic tumors, we focused on 22 cancer 
types from 14 tissues with sufficient sample representation (i.e., at least 15 unique patients in both the 
primary and metastatic cohorts), which totaled 5,751 tumor samples (1,916 primary and 3,835 
metastatic) (Fig. 1a, Supp Fig 1a). Within this dataset, patients with metastatic tumors were slightly 
older at biopsy than patients with primary tumors (mean of 2.09 years older across all cancer types). 
In particular, the mean age at biopsy in primary and metastatic cohorts, respectively, was 59.9 and 
67.9 years in patients with prostate carcinoma, 52.8 and 63.6 years in patients with thyroid carcinoma, 
and 49.6 and 70.3 years in patients with diffuse B cell lymphoma. Consistent gender proportions were 
observed across all cancer types except for thyroid adenocarcinomas, which had higher male 
representation in the metastatic cohort (metastatic: 72% male, 28% female; primary: 25% male, 75% 
female). Treatment information was available for 53% metastatic patients. This information is essential 
to gauge the contribution of this evolutionary bottleneck to the genomic differences between primary 
and metastatic tumors (Fig. 1a). Finally, biopsy location was explicitly annotated in 82.4% of metastatic 
patients, including 12.6% biopsies from metastatic lesions in the primary tissue (local), 16% in lymph 
nodes and 53.8% in distant locations. Biopsy locations were highly tumor type specific and likely 
reflected both the dissemination patterns of the tumors and the challenges associated with collection 
of clinical samples. In summary, we generated a harmonized dataset of 7,152 primary and metastatic 
WGS tumor samples from 58 cancer types including 22 cancer types with sufficient representation in 
both early and late clinical stages to allow for a systematic comparison (Supp. Table 1).  
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Figure 1. Overview and global genomic features of primary and metastatic tumors. a) Anatomic location of 
the 22 cancer types included in this study. Cancer types are ordered according to their tissue of origin. For each 
cancer type the following information is represented, from left to right: cancer type acronym, number of samples 
in primary and metastatic dataset (top and bottom, respectively), age at biopsy (in years), gender, type of 
treatment of metastatic patients and biopsy site from metastatic tumors. Partially created with BioRender.com. 
b) Mean percentage of clonal mutation in primary (x-axis) and metastatic (y-axis) tumors. Dots are coloured 
according to Log2 of the clonality ratio (metastatic divided by primary). Size of dots are proportional to the total 
number of samples (primary and metastatic). Red edge lines represent a Mann-Whitney p-value < 0.05. c) Tumor 
clonality according to the metastatic biopsy location in breast, colorectal and esophagus cancer (from left to right). 
N, number of samples in the group. p, Mann-Whitney p-value if p-value < 0.05. ns, not significant. Box-plots: 
center line, median; box limits, first and third quartiles; whiskers, lowest/highest data points at first quartile 
minus/plus 1.5× IQR. d) Tumor karyotype. Heatmap representing the mean chromosome arm ploidy gain and 
losses relative to the mean genome ploidy in primary (top) and metastatic (bottom) tumors. Asterisks represent 
significantly different mean distributions between primary and metastatic tumors (Mann-Whitney adjusted p-value 
<0.05). Top bars represent the cumulative number of significant gain/losses in the metastatic cohort compared to 
the primary. e) Comparison of four genomic features between primary (top) and metastatic tumors (bottom). From 
left to right, aneuploidy score from ref [35], proportion of genome undergoing LOH in diploid samples, fraction of 
samples bearing whole genome duplication (WGD) and TP53 alterations. Black dots represent the median values. 
Asterisks represent Fisher’s exact test p-value < 0.01 for discrete features (WGD and TP53) and Mann-Whitney 
p-value < 0.01 for the continuous features.  
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Global genomic characteristics of primary and metastatic tumors  
We first explored global genomic differences between primary and metastatic tumors across the 
aforementioned 22 cancer types. Metastatic tumors showed an overall increase in clonality compared 
with their primary tumor counterparts (Fig. 1b). Particularly, 12 cancer types had a significantly higher 
metastatic average clonality ratio, ranging from 3.2% increased mean clonality in skin melanoma to 
37% increased mean clonality in thyroid carcinoma. Interestingly, within the group of patients with 
metastatic breast cancer, distant and lymph node tumor biopsies showed significantly higher clonality 
ratios compared with local metastatic lesions (Fig. 1c). This increase in clonality was also observed in 
distant tumor biopsies of esophagus cancer and colorectal carcinomas (Fig. 1c). Nevertheless, the 
biopsy location did not influence tumor clonality in other cancer types such as non-small cell cancer 
and skin melanoma (Supp. Fig 1b), suggesting that patterns of tumor dissemination are highly tumor 
type specific[240]. Thus, our results thus support the notion that metastatic lesions generally have 
lower intra-tumor heterogeneity[255], which may be explained by a single major subclone seeding 
event from the primary cancer and/or by severe evolutionary constraints imposed by anti-cancer 
therapies. 

Karyotype comparison revealed a generally conserved portrait, which was strongly shaped by the 
tissue of origin [27], and where only two cancer types showed substantial karyotypic changes (kidney 
clear cell and prostate carcinomas, >10 chromosome arm gains/losses) and three additional cancer 
types displayed moderate changes (breast, uterus, and thyroid carcinomas, >5 chromosome arm 
gain/losses) in the metastatic cohort compared with the primary cohort (Fig. 1d, Supp. Table 2). The 
majority (63 of 84) of significant discrepancies were associated with an increased frequency of 
chromosomal arm gains in the metastatic dataset, while only 21 discrepancies were caused by an 
increased frequency of chromosome arm losses. Chromosome arms 7p, 12p, 5p and 17q, which are 
relatively enriched in oncogenes [256], were the most recurrent chromosome arm gains. Conversely, 
chromosome arms 1p and 18q, highly enriched in tumor suppressor genes[256], were the most 
recurrent losses in the metastatic cohort (Fig. 1d). 

We next investigated differences in four well-studied genomic instability markers: chromosomal 
aneuploidy score [35], loss of heterozygosity (LOH) genome fraction in diploid tumors, WGD [257], and 
TP53 alterations [257,258] (Fig. 1e, Supp. Table 2). Four cancer types (i.e., colorectal, kidney clear cell, 
prostate, and thyroid) showed persistent increases in the four genomic instability markers in the 
metastatic cohort, whereas four additional cancer types (i.e., breast, stomach, pancreas 
neuroendocrine and diffuse B cell lymphoma) had some form of increased genomic instability in the 
metastatic cohort. Our results thus confirmed that genomic instability is a hallmark of advanced tumors 
[27,236,241,255,259,260] and revealed that the majority of cancer types have already acquired 
variable degrees of this genomic feature early in tumor evolution. However, certain cancer types, such 
as prostate, kidney, and thyroid, significantly increased the level of genomic instability in later 
evolutionary stages, which were, in turn, associated with substantial karyotypic changes. 

Tumor mutation burden 
The unified processing of both primary and metastatic tumor samples enables quantitative and 
qualitative comparison of SBSs, DBSs and ID burden, which we refer to collectively as tumor mutation 
burden (TMB). We found that the TMB in metastatic tumors was only moderately increased compared 
with primary tumors across the 22 cancer types tested (fold-change increases of 1.22 ± 0.48 for SBS, 
1.52 ± 0.85 for DBS and 1.43 ± 0.55 for IDs; mean ± standard deviation [SD]). In fact, more than 60% 
of the cancer types (13 of 22) had no significant increase in mutation burden for any mutation type. 
Only five cancer types (breast, cervical, thyroid, prostate carcinoma, and pancreas neuroendocrine) 
had a consistent increase for the three mutation types at the metastatic stage, although the mutation 
profiles lacked systematic differences between primary and metastatic tumors (Fig. 2b, Supp Fig. 2a). 
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These results show that TMB is not necessarily indicative of tumor progression status and that the 
mutational spectra are tightly shaped by the mutational processes that were already active before and 
during primary tumor development. 

Mutational processes in primary and metastatic tumors 
To assess whether the TMB differences may be attributed to differential activity of environmental or 
endogenous mutational processes, we conducted a tissue type specific mutational signature de novo 
extraction that resulted in representative mutational signatures of 69 SBSs, 12 DBSs, and 19 IDs 
(Supp. Table 3). Most of these (50 of 69 SBSs, 8 of 12 DBSs, and 12 of 19 IDs) mapped onto the well-
described mutational signatures in human cancer [261]. Moreover, we inferred the suspected etiology 
for two novel DBS mutational signatures associated with mismatch repair deficiency (MMRd) 
(DBS_denovo_2) and MMRd/POLE hypermutation (DBS_denovo_1) (Supp. Table 3).  

By comparing the activities of all mutational processes, we found that mutations caused by cytotoxic 
treatments were enriched in 11 cancer types (Fig. 2c-e). Platinum-based chemotherapies 
(SBS31/SBS35 and DBS5) showed the strongest mutagenic effect with 429 ± 266 (mean ± SD) SBS 
mutations and 23 ± 15 (mean ±SD) DBS mutations on average per sample. In fact, the excess in DBS 
mutation burden observed in six cancer types (stomach, esophagus, cervix, upper respiratory tract, 
non-small cell lung, and urothelial cancer) could be fully attributed to platinum treatment (Fig. 2d top 
bars). Likewise, the radiotherapy ID signature [172] (ID8) was systematically enriched in multiple cancer 
types as a response to widespread exposure to radiation-based treatment, whereas the 5-fluorouracil 
[66,108] (SBS17a/b), duocarmycin [262] (SBS90) and polycyclic aromatic hydrocarbon (PAH) 
metabolites from chemotherapy [67] (DBS2) occasionally led to a greater mutation burden in 
metastatic tumors in a tumor type specific manner (Fig. 2c-e).  

The systematic enrichment of SBS2/13 mutations in metastatic cancers suggests enhanced activity 
of APOBEC mutagenesis during the progression of advanced tumors. Specifically, our results revealed 
an increase in APOBEC mutation burden of 316 ± 173 (mean ± SD) mutations per sample in six 
metastatic tumors (breast, colorectal, stomach, kidney, prostate, and pancreas neuroendocrine) that 
reached statistical significance, being breast and stomach cancers the ones with the strongest 
increase (>500 APOBEC mutations per sample in both cancer types). Other cancer types, such as 
cervical and urothelial cancers, also showed enhanced APOBEC activity (>1800 mutations per 
sample), but they did not reach significance owing to high intrinsic APOBEC activity in the primary 
tumors. The metastatic breast cancer samples also had a higher percentage of APOBEC 
hypermutation than primary tumors (14% vs 5%, Supp. Fig. 2c, Supp. Table 3). 
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Figure 2. Tumor mutation burden and mutational processes. a) Cumulative distribution function plot (samples 
were ranked independently for each variant type) of tumor mutation burden for each cancer type for SBS (blue), 
IDs (green) and DBS (red). Horizontal lines represent median values. Fold change labels are included only when 
Mann-Whitney comparison rendered a significant p-value < 0.01. b) SBS Mutational spectra of metastatic (top) 
and primary (bottom) patients. Patients are ordered according to their TMB burden. c) Main panel, moon plot 
representing the mutational burden differences attributed to each mutational signature in metastatic (left) and 
primary (right). Edge thickness and colors represent significant differences (q<0.05, ±1.4x fold change) and the 
direction of the enrichment, respectively. The size of circles are proportionate to the mutation burden difference. 
Right bars, number of metastatic cancer types with a mutational signature significant enrichment. Top stacked 
bars represent the cumulative signature exposure difference. Thicker bar edge lines represent significance. Bars 
are coloured according to the annotated etiology. Only mutational signatures with known etiology or with at least 
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one cancer type with significant metastatic enrichment are included. d) and e) equivalent for DBS and IDs, 
respectively. Diff., difference. Muts. mutations. Sig., mutational signature. Mut. mutational. Susp., suspected.  

Five metastatic cancer types also displayed more mutations from the clock-like mutational processes, 
including four cancer types (breast, prostate, diffuse B-cell lymphoma and kidney clear cell carcinoma) 
that exhibited an increased SBS1 contribution and two cancer types (prostate and thyroid) that had 
an increased SBS5/SBS40 mutation burden. The increase in clock-like mutations in thyroid and 
prostate cancers, as well as diffuse B-cell lymphomas to a lesser extent, may be explained by the 
greater proportion of older patients with metastatic disease compared with primary disease. However, 
the SBS1 enrichment was also present in cancer types in the primary and metastatic cohorts with 
highly similar age population distributions (see Fig. 1a). Thus, our results revealed an increase in SBS1 
mutations in advanced tumor stages that cannot be explained by older patients’ ages at the time of 
biopsy. 

Additional more-focused analyses may achieve a better understanding of the observed mutational 
signatures with differing activity in a small subset of cancer types (such as oxidative stress-induced 
and DNA repair related mutations) and those lacking mechanistic etiology warrants additional more 
focused analyses. All contributions can be found in Supp. Table 3. 

Differential SBS1 mutation rates in primary and metastatic cancers 
To investigate the apparent contradiction of increased SBS1 mutation burden in the metastatic cohort, 
despite primary and metastatic cohorts having a similar age at biopsy, we assessed their SBS1 
mutation burden by the age of biopsy separately for both cohorts (see methods). As expected, rates 
of SBS1 mutation acquisition were highly tissue specific[92,263], and SBS1 mutation burden increased 
linearly with age in the majority of cancer types in both primary and metastatic cohorts (Pearson’s R > 
0.1, 17 of 22 tumor types, Supp. Fig. 3a, Supp. Table 4). However, four cancer types (i.e., breast, 
prostate, kidney clear cell, and thyroid) showed an age-independent and significant enrichment of 
SBS1 mutations at the metastatic stage (Fig. 3a, Supp. Fig. 3a). For instance, metastatic breast cancer 
had a nearly uniform fold increase of 1.46 (189 ± 17 SBS1 mutations, mean ± SD) across the ages of 
biopsies that was independent of tumor genome ploidy and HER2 status (Supp. Fig. 3b-c). Importantly, 
this pattern was highly cancer type specific and was not observed for most cancer types, including 
those with similar intra-tumor heterogeneity in the primary cohort (e.g., colorectal, ovarian cancer, 
pancreas, and stomach cancers) (Fig. 3b, Supp. Fig. 3a). Moreover, other mutational processes that 
operate over the evolution of the somatic tissues (e.g., clock-like mutations attributed to SBS5/SBS40 
that accumulate with age in a cell-cycle independent manner [92,264]) were not enriched (Supp. Fig. 
3d).  

SBS1 mutation burden has been extensively correlated with estimated stem cell division rates [265]. 
Therefore, an increase in age and tumor type specific SBS1 mutation burden in treated metastatic 
tumors may indicate that these tumors have undergone a higher number of cell divisions. However, 
the estimated number of years to explain the SBS1 mutation burden shift (23 and 67 years for breast 
and prostate cancer respectively, see Supp. Table 4) shows that this cannot be the main cause. Hence, 
a more plausible explanation, which also supports previous observations [266–268], is that these 
metastatic tumors display accelerated cell division rates compared with their primary tumor 
counterparts (Fig. 3c). Supporting this hypothesis, metastatic tumors also had a lower normalized 
fraction of clonal SBS1 mutations as well as a greater fraction of SBS1 clonal late mutations (Fig. 3d, 
Supp. Fig. 3e). Of note, this pattern was not observed in cancer types with consistently high SBS1 
mutagenic dynamics (Fig. 3e) and was indistinguishable for SBS5/SBS40 mutations (Supp. Fig. 3f).  
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Figure 3. Cell cycle division rates in primary and metastatic tumors. a) Linear regression of the SBS1 mutation 
burden (y-axis) and patient’s age at biopsy (x-axis) in primary and metastatic breast (left) and prostate cancers 
(right) and b) colorectal and ovarian cancer. The mean fold change, mean SBS1 increase per year and p-value 
are included in cancer types with an age-independent significantly different primary and metastatic distribution. 
The median trendline and 99% confidence intervals of the linear regression are represented as a solid line and 
the adjacent shaded area, respectively. c) Depiction illustrating increased cell division rate in metastatic breast 
cancer compared to primary and its expected impact on the SBS1 variant allele frequency (VAF) distribution. 
Partially created BioRender.com. d) Comparison of global SBS1 clonality ratio and clonal late ratio between 
primary and metastatic in breast (left) and prostate cancers (right). e) Similar for colorectal and ovarian cancers. 
Boxplots are defined as in Fig. 1. f) Spearman correlation analysis of the mean SBS1 year burden of primary 
tumors (y-axis) and the mean metastatic SBS1 fold change (x-axis) across the 17 cancer types with linear 
association between age and SBS1 accumulation. Vertical error bars represent the 25th and 75th percentile, 
respectively. Horizontal error bars the fold change standard deviation. Cancer types with a significantly different 
SBS1 mutation rate are marked by thicker marker borders. Muts, mutations.  

To understand the underlying factors that lead to the increased proliferation rates in some cancer types 
and not in others, we explored the relationship between the yearly rate of SBS1 mutation accumulation 
in primary tumors (a proxy of stem cell division rates [265]) and the estimated fold change of the SBS1 
mutation rate in the metastatic cohort. Remarkably, we observed a strong negative association 
between these two factors (Spearman Rs= -0.64, p-value = 0.01, Fig. 3f), which was consistent when 
relying on independent measurements of primary tumor turnover rates (Supp. Fig. 3h, Supp. Table 4). 
This indicates that tumors with an intrinsically active turnover rate (e.g., colorectal and ovarian cancers) 
preserve their high proliferation rates, while others with low cell division rates (e.g., breast, prostate, 
kidney, and thyroid cancers), may acquire higher proliferation rates during the course of cancer 
progression and treatment exposure.  
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Structural variant burden  
The total number of SVs per tumor revealed an extensive increase in SV burden in the metastatic 
tumors (fold change 1.9 ± 1.2, mean ± SD). In fact, 14 of 22 (64%) cancer types showed a significant 
median increase in total SV burden in the metastatic tumors (Fig. 4a, Supp. Table 5), which cannot be 
explained by differences in sequencing coverage or tumor clonality (Supp. Note 1). Importantly, these 
cancer types not only included the eight cancer types with increased genomic instability markers, but 
also six additional cancer types (i.e., esophagus, hepatocellular, pancreas carcinoma, cervix, non-
small cell lung cancer, and urothelial cancer) (Fig. 4a).  

Breaking down the comparison into specific SV types revealed that small (<10kb) deletions, which also 
contributed most to the global SV burden, showed a strong metastatic enrichment (2.15 ± 1.3 fold 
change in 16 of 22 cancer types with significant enrichment, mean ± SD, Fig. 4a, Supp. Fig. 4a). 
Moreover, larger (≥10kb) deletions and duplications had a similar pan-cancer enrichment, although 
with slightly lower fold changes that varied from 1.5 up to 1.9. Moreover, complex SVs with ≥20 
breakpoints, encompassing events such as chromothripsis and chromoplexy, were particularly 
enriched in esophagus cancer (1.5-fold) and prostate cancer (3-fold). Finally, a strong cancer type 
specific metastatic enrichment was also noted for the long interspersed nuclear element (LINE) 
insertions, with an increased fold change of 12.2 and 8.5 in stomach and urothelial cancer, 
respectively. 

Compared with TMB, the SV analyses revealed a much more widespread effect, with larger increases 
per metastatic cancer type that affected almost every cancer type studied, indicating that metastatic 
tumors appear to evolve primarily by genomic changes at the structural level. 

Genomic and clinical features associated with structural variant burden  
We next sought to unravel the underlying features associated with the observed increase in SV burden 
in metastatic tumors using linear regression models (Fig. 4b-f, Supp. Fig. 4b-f, Supp. Table 5). Our 
approach confirmed previously described cancer type specific driver-induced SV phenotypes, 
including HRd (BRCA1/2) [38,74], CDK12 [269], and MDM2 [104], which are more frequently mutated 
in metastatic pancreatic, prostate, and breast carcinomas, respectively. Reciprocal duplications 
induced by CDK12 and CCNE1 alterations[270] likely explain the enrichment of complex 
rearrangements in prostate and esophagus cancer, respectively. We also found potential novel 
associations, such as large deletions linked to the chromatin regulators SETD2 and CHD1. Finally, the 
cell cycle checkpoint CDKN2A showed a pervasive association with deletions in breast and kidney 
clear cell carcinomas (Fig. 4b-d, Supp. Fig. 4b). However, this may not necessarily imply causation, 
because the tumor suppressor CDKN2A is frequently inactivated in tumors in which deletion 
signatures are common [178]. 

We also found that genomic instability features (i.e., genome ploidy and TP53 alterations) showed a 
strong pan-cancer association with deletions and, to a lesser extent, with duplications (Fig. 4b-f, Supp. 
Fig. 4b-f), supporting the established role of WGD [257] and TP53 [35] loss in the ubiquitous generation 
of large genomic alterations. As mentioned earlier (see Fig. 1e), these features were generally more 
prevalent in patients with metastatic tumors and thus very likely contributed to the observed SV 
increase in metastatic tumors. 

Finally, prior exposure to radiotherapy treatment was strongly associated with small deletions in breast 
and prostate cancers (in agreement with radiotherapy-treated secondary malignancies [109], gliomas 
[172], and healthy tissue [271]). This suggests that, among common anti-cancer therapies, 
radiotherapy in particular significantly contributes to the SV landscape in treatment-surviving cancer 
cells. 
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Figure 4. Structural variant burden and associated genomic features. a) Top rectangles represent the four 
genomic instability features defined in Fig. 1e. A red background represents significant enrichment in the 
metastatic cohort. S-plots, cumulative distribution function plot (samples ranked independently for each SV type) 
of tumor mutation burden for each cancer type for (from top to the bottom) the aggregated structural variant (SV) 
burden, small deletions (<10kb), large deletions (>=10kb), small duplications (<10kb), large duplications (>=10kb), 
complex events (<20 breakpoints), complex events (>=20 breakpoints) and LINEs insertions. Horizontal lines 
represent median values. Backgrounds are coloured according to the relative enrichment, defined as: 
log10(median SV type burden in metastatic tumors + 1) − log10(median SV type burden in primary tumors + 1). Fold 
change labels and coloured backgrounds are displayed when Mann-Whitney comparison renders a significant p-
value < 0.01. Fold change labels are displayed with ‘>’ when the SV burden for primary tumors is 0 (see methods 
for more details). For each cancer type, bottom bar plots represent the relative fraction of each SV type in the 
metastatic (left) and primary (right) datasets. b) Volcano plot representing the cancer type specific regression 
coefficients (x-axis) and significance (y-axis) of clinical and genomic features against the number of small 
deletions. Each dot represents one feature in one cancer type. Labels are coloured according to the feature 
category. Dots are coloured by the frequency enrichment in metastatic (purple) or primary (orange) patients. LM, 
linear model. Coef, coefficient. c) Lollipop plots representing the regression coefficients (left, relative to panel b. 
x-axis) and metastatic enrichment (right, relative to dots color from panel b.) of features associated with small 
deletions. Only significant features (LM>0.0, p-value < 0.01 and with independent significance in primary or 
metastatic tumors) enriched in metastatic patients (enrichment > 0.0) are displayed. d), e) and f) are identical but 
referring to large deletions, small duplications and large duplications, respectively.  
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Cancer driver gene alterations in primary and metastatic tumors 
Comparison of the total number of driver gene alterations per tumor sample revealed a moderate 
increase in the metastatic cohort (a mean of 4.5 and 5.2 driver alterations per sample in primary and 
metastatic tumors, respectively), including 11 (50%) tumor types with a significant increase (Fig. 5a). 
Prostate adenocarcinoma (3.02 driver alterations per sample), pancreas neuroendocrine (2.16), thyroid 
carcinoma (1.7), and kidney clear cell carcinoma (1.63) showed the strongest increases (>1.5 driver 
alterations per patient), whereas the majority of cancer types showed a mean increase below 1.5 driver 
alterations per sample. All mutation types (amplifications, deletions, and mutations) tended to show 
consistent biases toward increases in metastatic tumors (Fig. 5a), with small variant mutations 
contributing the most (2.3 and 2.6 driver mutations per sample in primary and metastatic tumors, 
respectively). 

 

Figure 5. Driver alterations in primary and metastatic tumors. a) Cancer type specific distribution of number 
of driver alterations, amplifications, deletions and mutations per patient in primary (top) and metastatic (bottom). 
Black dots represent the mean values. Labels display mean differences (metastatic - primary) in cancer types with 
a significant difference. b) Heatmap representing the cancer genes displaying significant mutation frequency 
differences between primary and metastatic tumors. Circles denote mutation frequency enrichment in both 
cohorts while triangles facing upwards and downwards represent drivers that are exclusively enriched in 
metastatic and primary cohorts, respectively. Marker size is relative to the total number of mutated samples. 
Colors represent the direction of the enrichment. 

Comparison of gene- and cancer-type frequencies revealed that only 18 genes had a significant 
frequency bias in at least one cancer type (29 gene and cancer-type pairs in total, Fig. 5b, Supp. Fig. 
5a-b, Supp. Table 6). The majority (21 of 29, 72%) of the significant pairs had enrichment toward higher 
metastatic frequency, including four driver genes that were exclusively mutated in metastatic tumors 
(PTPRD in kidney clear cell carcinoma, CREBBP in pancreas neuroendocrine, and RET and TP53 
alterations in thyroid carcinoma). Moreover, most metastatic-enriched cancer drivers had a cancer 
type specific enrichment that included well-established resistance gene drivers associated with anti-
cancer therapies, such as AR and ESR1 alterations in patients with prostate and breast cancer treated 
with hormone deprivation therapies [170,272], and EGFR mutations in patients with metastatic non-
small cell lung cancer often treated with anti-EGFR inhibitors. Nevertheless, three driver genes (i.e., 
TP53, CDKN2A, and TERT) showed a metastatic enrichment across multiple cancer types (Fig. 5b), 
indicating that alterations of these genes may enhance aggressiveness by disturbing pan-cancer 
hallmarks of tumorigenesis. In fact, TP53 alterations have been extensively linked to genomic 
instability[257,258], while CDK2NA and TERT are key regulators of cell proliferation, two pathways that 
are often perturbed in metastatic tumors [273] (see earlier). Finally, some driver genes were strongly 
enriched in primary tumors, such as KMT2D mutations in non-small cell lung cancer (primary 13.7%, 
and metastatic 2.1%) and POLE mutations in primary colorectal carcinomas (primary 13%, metastatic 
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0.5%). Of note, the higher prevalence of POLE mutations in primary tumors supports the increased 
SBS10a/b exposure (i.e., POLE hypermutation) in primary colorectal cancer (see Fig. 2d). Whether 
these alterations are indicators of better prognosis or drivers of subclonal expansion warrants further 
investigation.  

We next investigated whether the reported driver differences may impact on potential clinical 
actionability. Cancer type specific comparison of therapeutically actionable variants revealed an 
overall greater fraction of patients with therapeutically actionable variants in the metastatic cohort, 
with high variability across cancer types (Supp. Fig. 6a, Supp. Table 7). Subsetting by A-on label 
variants (i.e., approved biomarkers in the specific cancer type) revealed a consistent pattern in which 
only breast cancer (driven by higher PIK3CA mutation frequency) and non-small cell lung cancer (EGFR 
and KRASG12C alterations) showed a significant proportional increase in the metastatic cohort (Supp. 
Fig. 6a-b). Evidence levels representing biomarkers in experimental clinical stages (A-off label, B-on 
label, and B-off label) showed a modest and tumor type dependent metastatic increase, which was 
mainly linked to the increased alteration frequency of KRASG12X, EGFR secondary mutations, and 
CDKN2A loss in advanced tumor stages (Supp. Fig. 6b).  

In conclusion, the cancer driver gene landscape is generally conserved and the observed differences 
are associated with hallmarks of tumor aggressiveness and resistance to anti-cancer therapies. 
Consequently, therapeutic options are mainly dictated by the primary tumor [274], although advanced 
experimental drugs may provide relevant therapeutic opportunities for metastatic tumors in the near 
future.  

Treatment associated driver gene alterations 
The high prevalence of resistance driver genes in late-stage tumors prompted us to devise a test that 
aimed to identify treatment enriched drivers (TEDs) that were either significantly enriched (i.e., 
treatment enriched) or exclusively found (i.e., treatment exclusive) in a cancer type and treatment 
specific manner (Fig. 6a and methods). Our analytical framework provided 56 TEDs associated with 
24 treatment groups from eight cancer types (Fig. 6b bottom pie chart, Fig. 6c, Supp. Table 8). Of the 
identified TEDs, 28 of 56 (50%) were coding mutation drivers, 18 (30%) copy number amplifications, 
8 (15%) non-coding drivers and 3 (5%) recurrent homozygous deletions (Fig. 6c, Supp. Fig. 7a-b). 
Reassuringly, the majority of the top hits were widely known treatment-resistance drivers, including 
EGFRT790M mutations (Fig. 6d) and EGFR copy number gains in patients with non-small cell lung cancer 
treated with EGFR inhibitors[275,276] (Supp. Fig. 7c), AR-activating mutations and gene amplifications 
in prostate cancer patients treated with androgen-deprivation therapy [170] (Supp. Fig. 7d-e), and 
ESR1 mutations in breast cancer patients treated with aromatase inhibitors [272] (Supp. Fig. 7f), among 
others. Moreover, we also found that TP53, KRAS and PIK3CA alterations were recurrently associated 
with resistance to multiple treatments, which may indicate that these alterations are prognostic 
markers for enhanced tumor aggressiveness and plasticity rather than being a cancer type specific 
mechanism of drug resistance. 

Our results also provided a long tail of candidate drivers of resistance, some of them with orthogonal 
evidence by independent reports (Fig. 6c, Supp. Fig. 7a-b). Examples of the latter group include TYMS 
amplification in breast cancer patients treated with pyrimidine antagonists [277] (Fig. 6e), PRNC1 and 
MYC co-amplifications in prostate cancer patients treated with androgen-deprivation [278] (Supp. Fig. 
7g), SMAD4 mutations in non-small cell lung cancer treated with immunotherapy [279], and FGFR2 
promoter mutations in breast cancer patients treated with CDK4/6 inhibitors [280]. The full TEDs 
catalog is provided in Supp. Table 8 and constitutes a valuable resource for investigating resistance 
mechanisms to common cancer therapies. 
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Figure 6. Treatment enriched drivers. a) Visual depiction of the analytical framework to identify treatment 
enriched drivers (TEDs). The example illustrates the identification of TEDs in the 355 breast cancer patients treated 
with aromatase inhibitors. First step, identification of cancer driver genes from coding mutations (green), non-
coding mutations (soft green), copy number amplifications (red) and biallelic deletions (blue). Second, for each 
identified cancer driver, comparison of the mutation/copy number alteration frequency in treated and untreated 
patients. Third, annotation of TEDs with orthogonal evidence and type of enrichment. b) Left, workflow 
representing the number of treatment groups in each step of the analysis. Pie charts, the external layers represent 
the number of treatment groups analyzed (top) or with identified TEDs (bottom) coloured by cancer type. The 
internal layers represent the category of the corresponding treatment. The group of breast cancer patients treated 
with aromatase inhibitors highlighted in both charts. N, number of patients in each treatment group. c) Volcano 
plots displaying the identified TEDs. Each dot represents one cancer gene alteration type in one treatment group. 
X-axis displays the effect size (as log2[odds ratio]) and the y-axis the significance (-log10[q-value])). Circle markers 
represent TEDs exclusively mutated in the treatment group (squared makers otherwise). Markers are coloured 
according to the type of alteration. Known resistance drivers are denoted by thicker edgelines. d) Distribution of 
mutations along the EGFR protein sequence in non-small cell lung cancer patients treated with EGFR inhibitors 
(top) and untreated (bottom). Pfam domains are represented as rectangles. Mutations are coloured according to 
the consequence type. e) Distribution of highly-focal copy number gains in chromosome chr18p:1Mb-8Mb in 
breast cancer untreated patients (bottom) and treated with pyrimidine antagonists (top). TYMS genomic location 
is highlighted. f) Global proportion of metastatic treated patients with known and candidate TEDs. g) Mean 
number of driver alterations per metastatic patient before (purple circle) and after excluding TEDs (purple square) 
compared to primary patients (orange square). Vertical lines, standard deviation range and labels the mean 
number of driver alterations. BRCA, Breast cancer. CESC, Cervix carcinoma. CHOL, Cholangiocarcinoma. 
COREAD, Colorectal carcinoma. ESCA, Esophagus cancer. GBM, Glioblastoma multiforme. KIRC, Kidney clear 
cell carcinoma. LMS, Leiomyosarcoma. NSCLC, Non small cell lung cancer. OV, Ovarian cancer. PAAD, Pancreas 
carcinoma. PRAD, Prostate carcinoma. SKCM, Skin melanoma. STAD, Stomach cancer. THCA, Thyroid cancer. 
HNSC, Upper respiratory tract cancer. BLCA, Urothelial cancer. UCEC, Uterus carcinoma. MB, Megabase.  
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Overall, almost 50% of patients with metastatic disease with annotated treatment information 
harbored TEDs, including 30% with annotations of known resistance drivers and an additional 20% of 
patients with candidate resistance drivers derived from our analysis (Fig. 6f). We identified 0.70 ± 0.53 
(mean ± SD) TEDs per metastatic sample across the eight cancer types that had reported TEDs (Fig. 
6g), with prostate and breast cancers displaying the greatest prevalence of TEDs (i.e., 1.74 and 1.12 
drivers per patient with prostate and breast cancer, respectively). Therefore, after excluding TEDs, 
primary and metastatic tumors had an approximately 40% reduction of their original differences in 
number of drivers per sample (from 5.2 to 4.9 mean drivers per sample in the metastatic cohort after 
excluding TEDs, compared with 4.5 mean drivers per sample in the primary cohort) (Fig. 6g, Supp. 
Table 8), indicating that an important proportion of the metastatic-enriched drivers are likely associated 
with resistance to anti-cancer therapies. 

Discussion 
In this study we describe a cohort of >7,000 uniformly (re-)processed WGS samples from patients with 
primary untreated and metastatic treated tumors. Our robust analytical pipeline enabled the 
processing of large sets of paired tumor-normal WGS samples from diverse sequencing platforms with 
high efficiency and minimal human intervention. We leveraged this dataset to perform an in-depth 
comparison of genomic features across 22 cancer types with high representation from patients with 
primary and metastatic tumors. 

Our analyses revealed that metastatic tumors share common genomic traits, such as high genomic 
instability, low intra-tumor heterogeneity, and stronger enrichment of SVs, but fewer short mutations 
than primary tumors. However, the magnitude of genomic differences between primary and metastatic 
tumors is highly cancer type specific and is strongly influenced by exposure to cancer treatments. 
Overall, five cancer types (prostate, thyroid, kidney clear cell, breast, and pancreas neuroendocrine 
cancers) showed an intense transformation of the genomic landscape in advanced tumorigenic stages. 
Fueled by increased genomic instability, these cancer types displayed substantial differences in TMB, 
clock-based molecular signatures and driver gene landscape as well as the pervasive increase in SV 
burden (Fig. 7, labeled as Strong). Importantly, metastatic prostate and breast cancers regularly 
harbored metastatic-exclusive therapy-resistant driver gene mutations, suggesting that an important 
proportion of the genomic differences in metastatic tumors compared with primary tumors may be 
associated with clonal (re-)expansion following therapy exposure (see ref[250] supporting this notion). 
However, the genomic differences in kidney, thyroid, and pancreas neuroendocrine carcinomas could 
not be linked to genomic markers of therapy resistance, which may indicate alternative evolutionary 
dynamics independent of cancer treatment. Another nine cancer types (e.g., cervix and colorectal, 
among others) displayed moderate genomic differences, although the global genomic portrait was 
conserved. Finally, the genomic landscape of the eight remaining cancer types (e.g., glioblastoma, 
sarcoma, and ovarian cancer, among others) was highly consistent between primary and metastatic 
stages, and the minimal differences were mainly attributed to exposure to cancer therapies.  

This study has several limitations. First, it was performed using unpaired primary and metastatic tumor 
biopsies. Ideally, matched biopsies from the same patient, as already implemented in cancer type 
specific studies [247,281,282], would be needed to more specifically address the evolutionary 
dynamics of treated metastatic tumors. Moreover, the sequencing depths and tumor purity ranges 
used in this study are suboptimal to comprehensively profile the heterogeneous landscape of 
subclonal alterations, which may lead to underestimation of the extent of late-active mutational 
processes (e.g., treatment-induced processes). Single cell-based sequencing approaches will be 
instrumental to further dissect mutational landscapes independent of their clonality. In addition, the 
sequencing depth of the primary tumor cohort was lower and more variable than that of the metastatic 
tumor cohort. Although we demonstrated that this does not severely impact on the overall detectability 
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of clonal somatic variants, individual drivers may have been occasionally missed, which may negatively 
impact statistical accuracy. Finally, genomic changes cannot entirely explain how tumor cells are able 
to colonize other organs while avoiding the strong bottlenecks imposed by the immune system [283] 
or by aggressive treatment regimes. Therefore, additional information from complementary tumor 
omics studies [284,285] and from the tumor microenvironment [286,287] will be needed to further 
dissect and better understand tumor evolution and resistance to cancer therapy and eventually 
contribute to improved management of this deadly disease. 

To conclude, our dataset constitutes a valuable resource that can be leveraged to further study other 
aspects of tumor evolution (as illustrated by the accompanying publication [283] focusing on genetic 
immune escape alterations) as well for the development of machine learning tools to foster cancer 
diagnostics [288]. 
 

 

Figure 7. Pan-cancer differences between primary and metastatic tumors. Stacked plot representing the 
qualitative differences of the eight studied genomic features across the 22 cancer types included in this study. 
Cancer types are sorted in ascending order according to the cumulative number of diverging genomic features 
between primary and metastatic tumors. Each horizontal track represents a genomic feature. The presence (and 
height) of each feature for a specific cancer type correlates with the magnitude of the observed differences. 
 

Methods 

Cohort gathering and processing  
We have matched tumor-normal whole genome sequencing data from cancer patients from two 
cohorts: the Hartwig Medical Foundation (Hartwig) and the Pan-Cancer Analysis of Whole Genomes 
(PCAWG) cohort. A detailed description of the Hartwig and PCAWG cohort gathering and processing 
as well as comprehensive documentation of the PCAWG sample reanalysis with the Hartwig somatic 
pipeline is described in the Supp. Note 1. 

Tumor clonality analysis 
Each mutation in the .vcf files is given a subclonal likelihood by PURPLE. Following PURPLE 
guidelines, we considered mutations with subclonal scores of 0.8 or higher to be subclonal and 
mutations below the 0.8 threshold to be clonal. For each sample we then computed the average 



142142

 

 142 

proportion of clonal mutations by dividing the number of clonal mutations by the total mutation burden 
(including SBS, MNVs and indels). Finally, for each cancer type we used Mann-Whitney test to assess 
the significance of the clonality difference between the primary and metastatic tumors. A p-value lower 
than 0.05 was deemed as significant. 

In addition, we leveraged biopsy site data in patient reports to further investigate differences in 
metastatic tumor clonality according to the metastatic biopsy site. If the metastatic biopsy site was in 
the same organ/tissue as the primary tumor, we considered them as “Local”, while if the metastatic 
biopsy site was reported in the lymphoid system or other organs/tissues they were dubbed as “Lymph” 
and “Distant”, respectively. Cancer types for which there was a minimum of 5 samples available for 
each of the biopsy groups were selected and Mann-Whitney test was used to compare the clonality 
between the biopsy groups. 

Karyotype  
Arm-level and genome copy number (CN) was estimated as described in Taylor et al. 2018 [35]. Briefly, 
CN of segments determined by PURPLE were rounded to the nearest integer, then the arm coverage 
per CN was calculated. Arm-level CN was determined to be either the CN with coverage >50%, the 
most common arm CN if coverage <50%, or the genome CN if coverage <50% and the most common 
arm CN does match the genome CN. The most common arm CN across all arms was deemed to be 
the genome ploidy.  

Estimated genome ploidy per sample was subtracted from the estimated chromosome arm ploidy to 
create a matrix of chromosome arm gains and losses relative to the estimated genome ploidy. This 
matrix was stratified by cohort (metastatic/primary) and a Mann-Whitney test was performed to assess 
the difference of the distributions for each arm in each cancer type. The resulting p-value was FDR 
adjusted across all arms per cancer type. A q-value < 0.05 was deemed to be significant. Mean arm 
gains and losses relative to genome ploidy were calculated and represented.  

Genomic instability markers  
To compare the differences in aneuploidy scores and the LOH proportions in each group, a Mann-
Whitney test was performed per cancer type. The aneuploidy score represents the number of arms 
per tumor sample that deviate from the estimated genome ploidy as described in Taylor et al. 2018[35]. 
To compare the LOH proportions, only diploid samples were included when calculating the p-value. 
The LOH proportion was defined as 1 - (diploid proportion estimated by PURPLE) of the genome. 

To compare the fraction of samples with a driver mutation in TP53 as well as the fraction of whole 
genome duplicated samples per cohort, a Fisher’s exact test was performed per cancer type. Any 
TP53 driver alteration (non-synonymous mutation, biallelic deletion and homozygous disruption) was 
considered in the analysis. Whole genome duplication was defined as present if the sample had more 
than 10 autosomes with an estimated chromosome copy number >1.5. A p-value < 0.01 was deemed 
to be significant for all statistical tests. 

Mutational signature analysis 
Signature extraction 
The number of somatic mutations falling into the 96 single nucleotide substitution (SBS), 78 double 
base substitutions (DBS) and 83 indel (ID) contexts (as described in the COSMIC catalog[13] 
https://cancer.sanger.ac.uk/signatures/) was determined using the R package mutSigExtractor 
(https://github.com/UMCUGenetics/mutSigExtractor, v1.23). 
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SigProfilerExtractor (v1.1.1) was then used (with default settings) to extract a maximum of 21 SBS, 8 
DBS and 10 ID de-novo mutational signatures. This was performed separately for each of the 22 tissue 
types which had at least 30 patients in the entire dataset (aggregating primary and metastatic samples, 
see Supp. Table 3). Tissue types with less than 30 patients as well as metastatic patients with unknown 
primary location type were combined into an additional ‘Other’ group, resulting in a total of 23 tissue 
type groups for signature extraction. In order to select the optimum rank (i.e. the eventual number of 
signatures) for each tissue type and mutation type, we manually inspected the average stability and 
mean sample cosine similarity plots output by SigProfilerExtractor. This resulted in 440 de-novo 
signature profiles extracted across the 23 tissue type groups (Supp. Table 3). Least squares fitting was 
then performed (using the fitToSignatures() function from mutSigExtractor) to determine the per-
sample contributions to each tissue type specific de-novo signature. 

Etiology assignment 
The extracted de-novo mutational signatures with high cosine similarity (≥0.85) to any reference 
COSMIC mutational signatures with known cancer type associations [13] were labeled accordingly 
(256 de-novo signatures matched to 56 COSMIC reference signatures).  

For the remaining 184 unlabeled de novo signatures, we reasoned that there could be one or more 
signatures from one cancer type that are highly similar to those found in other tissue types, and that 
these likely represent the same underlying mutational process. We therefore performed clustering to 
group likely equivalent signatures. Specifically, the following steps were performed:  

1. We calculated the pairwise cosine distance between each of the de-novo signature profiles. 
2. We performed hierarchical clustering and used the base R function cutree() to group signature 

profiles over the range of all possible cluster sizes (min no. clusters = 2; max no. of clusters = 
number of signature profiles for the respective mutation type).  

3. We calculated the silhouette score at each cluster size to determine the optimum number of 
clusters.  

4. Finally, we grouped the signature profiles according to the optimum number of clusters. This 
yielded 27 SBS, 7 DBS, and 8 ID de-novo signature clusters (see Supp. Table 3).  

For certain de novo signature clusters, we could manually assign the potential etiology based on their 
resemblance to signatures with known etiology described in COSMIC [13], Kucab et al. 2019 [67] and 
Signal [289]. Some clusters were an aggregate of 2 known signatures, such as SBS_denovo_clust_2 
which was a combination of SBS2 and SBS13, both linked to APOBEC mutagenesis. Other clusters 
had characteristic peaks of known signatures, such as DBS_denovo_clust_4 which resembled DBS5 
based having distinct CT>AA and CT>AC peaks. Lastly, DBS_denovo_clust_1 was annotated as POLE 
mutation and MMR deficiency as samples with high contribution (>150 mutations) of this cluster are frequently 
MSI or have POLE mutations. Likewise, DBS_denovo_clust_2 was annotated with MMR deficiency as the 
etiology as samples with high contribution (>250 mutations) of this cluster were all MSI. See Supp. 
Table 3 for a list of all the manually assigned etiologies. 

Comparing the prevalence of mutational processes between primary and metastatic 
cancer 
We then compared the activity (i.e. number of mutations contributing to) of each mutational process 
between primary and metastatic tumors. For each sample, we first summed the contributions of 
signatures of the same mutation type (i.e. SBS, DBS or ID) with the same etiology, henceforth referred 
to as ‘etiology contribution’. Per cancer type and per etiology, we performed two-sided Mann-Whitney 
tests to determine whether there was a significant difference in etiology contribution of primary and 
metastatic tumors. Per cancer type and per mutation type, we used the p.adjust() base R function to 
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perform multiple testing correction using Holm’s method. Next, we added a pseudocount of 1 to the 
contributions (to avoid dividing by zero) and calculated the median contribution log2 fold change, i.e. 
log2[ (median contribution in metastatic tumors + 1) / (median contribution in primary tumors + 1) ]. 
We considered the etiology contribution between primary and metastatic tumors to be significantly 
different when the q-value was <0.05, and log2 fold change was ≥0.4 or ≤ -0.4 (= ±x1.4).  

We also determined whether there was an increase in the number of samples with high etiology 
contribution (i.e., hypermutators) in metastatic versus primary cohorts. For each signature, a sample 
was considered a hypermutator if the etiology contribution was ≥10,000 for SBS signatures, ≥500 for 
DBS signatures, or ≥1,000 for ID signatures. For each cancer type, for each etiology, we performed 
pairwise testing only for cases where there were ≥5 hypermutator samples for either metastatic or 
primary tumors. Each pairwise test involved calculating p-values using two-sided Fisher’s exact tests, 
and effect sizes by multiplying Cramer’s V by the sign of the log2(odds ratio) to calculate a signed 
Cramer’s V value that ranges from -1 to +1 (indicating enrichment in primary or metastatic 
respectively). We then used the p.adjust() base R function to perform multiple testing correction using 
Bonferroni’s method. 

SBS1-age correlations in primary and metastatic tumors 
To count the SBS1 mutations we relied on the definition from ref[180] that is based on the 
characteristic peaks of COSMIC SBS1 signature profile: single base CpG > TpG mutations in NpCpG 
context. To ensure that these counts and the downstream analyses are not affected by differential 
APOBEC exposure in primary and metastatic cohorts, we excluded CpG > TpG in TpCpG which is 
also a characteristic peak in COSMIC SBS2 signature profile. Also, for skin melanoma CpG > TpG in 
[C/T]pCpG which overlaps with SBS7a was excluded. To obtain the SBS5 and SBS40 counts we relied 
on their exposures derived from the mutational signature analyses performed in this study (explained 
above). 

To assess the correlation between SBS1 burden and patient’s age at biopsy we performed a cancer 
type and cohort specific linear regression (i.e., separate regression for primary and metastatic tumor 
samples). To avoid spurious effects caused by hypermutated tumors, samples with TMB greater than 
30,000 as well as those with SBS1 burden greater than 5,000 were excluded.  

For each cancer type and cohort we then computed 100 independent linear regressions by randomly 
selecting 75% of the available samples. We selected the median linear regression (based on the 
regression slope) as representative regression for further analyses. Similarly, confidence intervals were 
derived from the 1st and 99th percentile of the computed regressions.  

To evaluate the significance of the differences between primary and metastatic representative linear 
regressions (hereafter referred to as linear regression for simplicity) we first filtered out cancer types 
that failed to show a positive correlation trend between SBS1 burden and age at biopsy in both primary 
and metastatic tumors (i.e., Pearson’s correlation coefficient of primary and metastatic regression 
>0.1). Next, for each selected cancer type, we computed the regression residuals of primary and 
metastatic SBS1 mutation counts using, in both cases, the primary linear regression as baseline. The 
primary and metastatic residual distributions were then compared using a Mann-Whitney test to 
evaluate significance. Cancer types with a Mann-Whitney p-value < 0.01 were deemed as significant. 
Finally, to ensure that the differences were uniform across different age ranges (i.e., not driven by a 
small subset of patients) we only considered significant cancer types where the metastatic linear 
regression intercept is higher than the primary intercept. 

SBS5/SBS40 correlations were computed following the same procedure and using the sum of SBS5 
and SBS40 exposures for each tumor sample. If none of the mutations were attributed to SBS5/SBS40 
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mutational signatures, the aggregated value was set to zero. In the ploidy corrected analyses we 
divided the SBS1 mutation counts (and SBS5/SBS40 mutation counts for the SBS5/40 ploidy 
corrected regression, respectively) by the PURPLE estimated tumor genome ploidy.  

For each cancer type the mean fold-change (fc) was defined as �� = !
"#
∑$#%&"#

'()*+%
(()*+%

 where MPredi 
and PPredi are the estimated number of SBS1 mutations for a given age i-th according to the 
metastatic and primary linear regressions, respectively. Similarly, the mean estimated SBS1 burden 
difference (SBS1diff) was defined as: ���1���� = !

"#
∑$#%&"# ������	 − 	������ .  

Clonality and timing of clock-like mutations  
SBS1 individual mutations were identified as described in the previous section. For SBS5 and SBS40 
mutations, we used a maximum likelihood approach to assign individual mutations to the SBS5 and 
SBS40 mutational signatures in a cancer type specific manner.  

For every SBS1 (and SBS5/SBS40 mutation) we then assign the clonality according to the PURPLE 
subclonal likelihood estimation, where only mutations with SUBCL likelihood >= 0.8 were considered 
as such (see above). Likewise, the molecular timing of individual mutations (i.e., clonal early and clonal 
late) was computed using the MutationTimeR [180] package. 

For each tumor sample the SBS1 clonality ratio (or respectively SBS5/SBS40 clonality ratio) was 
defined as the ratio between the proportion of clonal SBS1 mutations (,-,!	/01230		45636%127

,-,!	45636%127
) divided by 

the total proportion of clonal alterations in the sample (81630	/01230	45636%127
81630	45636%127

). Similarly, the SBS1 clonal 
late ratio was defined as the ratio between the proportion of clonal late SBS1 mutations 
(,-,!	/01230		036*	45636%127

,-,!	/01230	45636%127
) divided by the total proportion of clonal late alterations in the sample 

(81630	/01230	036*	45636%127
81630	/01230	45636%127

), where the total of clonal SBS1/total mutations was computed as the sum of 
clonal late, clonal early and unassigned clonal from MutationTimerR.  

Primary cell division rate and accelerated SBS1 mutagenesis in metastasis 
To assess the relationship of cell division rate of primary tumors with the accelerated SBS1 
mutagenesis in the metastatic setting we relied on the SBS1 burden per year as a proxy of stem-cell 
division rates as was previously described in ref[265]. We thus computed for each primary cancer type 
the average number of SBS1 per year as the number of SBS1 mutations divided by the patient’s age 
at biopsy (only considering primary samples and excluding hypermutated samples as described 
above). We then used a Spearman’s correlation to assess its association with the estimated mean 
SBS1 mutation rate fold change in metastatic tumors (see above). Additionally, to exclude potential 
biases in our primary cohort, we repeated the same analysis relying on an independent measurement 
of primary cancer SBS1 yearly accumulation. Specifically, we used the best estimated accumulation 
of SBS1 per year from ref[265] Supplementary Data Set 6 and regressed it to the fold change estimates 
for the matching cancer types present in both datasets.  

Structural variant (SV) analysis 
SV type definitions 
LINX [270] chains one or more SVs and classifies these SV clusters into various event types 
(‘ResolvedType’). We defined deletions and duplications as clusters with a ResolvedType of ‘DEL’ or 
‘DUP’ whose start and end breakpoints are on the same chromosome (i.e. intrachromosomal). 
Deletions and duplications were split into those <10kb and ≥10kb in length (small and large, 
respectively), based on observing bimodal distributions in these lengths across cancer types (Supp. 
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Fig. 4a). We defined complex SVs as clusters with a ‘COMPLEX’ ResolvedType, an inversion 
ResolvedType (including: INV, FB_INV_PAIR, RECIP_INV, RECIP_INV_DEL_DUP, RECIP_INV_DUPS), 
or a translocation ResolvedType (including: RECIP_TRANS, RECIP_TRANS_DEL_DUP, 
RECIP_TRANS_DUPS, UNBAL_TRANS, UNBAL_TRANS_TI). Complex SVs were split into those with 
<20 and ≥20 SVs (small and large, respectively), based on observing similar unimodal distributions in 
the number SVs across cancer types whose tail begins at ~20 breakpoints (Supp. Fig. 4a). Lastly, we 
defined LINEs (long interspersed nuclear element insertions) as clusters with a ResolvedType of ‘LINE’. 
For each sample, we counted the occurrence (i.e. SV burden) of each of the 7 SV types described 
above. Additionally, we determined the total SV burden by summing counts of the SV types. 

Comparing SV burden between primary vs. metastatic cancer 
We then compared the SV type burden between primary versus metastatic tumors as shown in Fig. 
4a. Firstly, we performed Mann-Whitney tests per SV type and per cancer type to determine whether 
there was a significant difference in SV type burden between primary versus metastatic, and used 
p<0.01 as the significance threshold. Next, we calculated relative enrichment as follows: log10(median 
SV type burden in metastatic tumors + 1) − log10(median SV type burden in primary tumors + 1); and 
calculated fold change as follows: (median SV type burden in metastatic tumors + 1) / (median SV type 
burden in primary tumors + 1). When calculating relative enrichment and fold change, the pseudocount 
of 1 was added to avoid the log(0) and divide by zero errors, respectively. Fold changes are displayed 
with a ‘>’ in Fig. 4a when the SV burden for primary tumors is 0 (i.e. when a divide by zero would occur 
without the pseudocount). 

Identifying features associated with SV burden increase in metastatic cancer 
To identify the features that could explain increased SV burden, we correlated SV burden with various 
tumor genomic features. This included: i) genome ploidy (determined by PURPLE); ii) HRd status 
(determined by CHORD [38]) and MSI status (determined by PURPLE); iii) the presence of mutations 
in 345 cancer associated genes (excluding fragile site genes that are often affected by CNVs [6]), 
henceforth referred to as ‘gene status’; and iv) treatment history, including the presence of 
radiotherapy, the presence of one of the 79 different cancer therapies as well as the total number of 
treatments received. All primary samples as well as all metastatic samples without treatment 
information were considered to have no treatment. Genome ploidy and total number of treatments 
received were numeric features, whereas all of the remaining were boolean (i.e. true/false) features. In 
total there were 429 features. 

SV type burden was transformed to log10(SV type burden + 1) and was correlated with the 429 features 
using multivariate linear regression models (LM). This was performed separately for each of the 22 
cancer types, and for each of the 7 SV types, resulting in a total of 154 (=22 cancer types x 7 SV types) 
LM models.  

Each LM model (i.e. per SV type and cancer type) involved training of three independent LMs with i) 
both metastatic and primary samples (primary+metastatic), ii) only Hartwig samples (metastatic-only), 
and iii) only primary samples (primary-only). This was done to filter out correlations between features 
and increased SV type burden solely due to differences in feature values between primary and 
metastatic tumors. We then required features that positively correlated with SV type burden in the 
primary+metastatic LM to independently show the same association in the metastatic-only or primary-
only LMs. Only genomic features that independently showed positive correlation with the SV burden 
were further considered as significant (i.e., represented in the lollipots). 

 Each of the 3 LMs was trained as follows: 

1. Remove boolean features with too few ‘true’ samples: 
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a. For the primary+metastatic LM, remove gene status features with <15 ‘true’ samples. 
b. For the metastatic-only and primary-only LMs, remove gene status features with <10 

‘true’ samples. 
c. For the remaining boolean features, remove features with <5% ‘true’ samples. 

2. Fit a LM using the lm() base R function to correlate log10(SV type burden + 1) versus all features. 

For each LM analysis, we used the following filtering criteria to identify the features that were correlated 
with increased SV type burden: 

1. Only keep LM analyses where there was significant increase in SV type burden for the 
respective cancer type (p<0.01 as described in the previous section “Comparing SV burden 
between primary vs. metastatic cancer”) 

2. For primary+metastatic LM 
a. Regression p-value <0.01 
b. Coefficient p-value <0.01 
c. Coefficient >0 

3. For metastatic-only LM or primary-only LM: 
a. Coefficient p-value <0.01 
b. Coefficient >0 

Finally, to determine which features (of those correlated with increased SV type burden) were enriched 
in metastatic tumors compared to primary tumors (and vice versa), we calculated Cliff’s delta for 
numeric features and Cramer’s V for boolean features. Cliff’s delta ranges from -1 to +1, with -1 
representing complete enrichment in primary tumors, whereas +1 represents complete enrichment in 
metastatic tumors. Cramer’s V only ranges from 0 to 1 (with 1 representing enrichment in either primary 
or metastatic tumors), the sign of the log(odds ratio) was assigned as the sign of the Cramer’s V value 
so that it ranges from -1 to +1. Features with an effect size >0 were considered as those that could 
explain the SV burden increase in metastatic cancer when compared to primary cancer. 

Driver alterations  
We relied on patient specific cancer driver catalogs constructed by PURPLE [6] and LINX [270]. Only 
drivers with a driver likelihood > 0.5 were retained. Fusion drivers were filtered for those that were 
previously reported in the literature. Similarly, we manually curated the list of drivers and removed 
SMAD3 HOTSPOT mutations because of the high burden mutations in low mappability regions. The 
final driver catalog contained a total of 443 driver genes.  

We then combined fusions with the LINX driver variants to calculate a patient specific number of driver 
events. Drivers that concern the same driver gene but a different driver type were deemed to be 
individual drivers (e.g. TP53 mutation and TP53 deletion in the same sample were considered as one 
driver event). Cancer type specific Mann-Whitney test was performed to assess differences between 
primary and metastatic tumors. A p-value < 0.01 was deemed to be significant.  

A contingency matrix was constructed from the driver catalog, containing the frequency of driver 
mutations per driver type (i.e., deletion, amplification or mutations) and cancer type in each cohort 
(metastatic and primary). A second contingency matrix was constructed for the fusions. Partial 
amplifications were considered as amplifications while homologous disruptions were considered as 
deletions. These contingency matrices were filtered for genes which show a minimum frequency of 4 
mutated samples in either the primary or the metastatic cohorts. Then a Fisher’s exact test for each 
gene, cancer type and mutation type was performed and the p-value was adjusted for FDR per cancer 
type. Cramer’s V and the odds ratio were used as effect size measures. An adjusted p-value < 0.01 
was deemed to be significant. 
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Therapeutic actionability of variants  
To determine the amount of actionable variants observed in each sample, we compared our variants 
annotated by SnpEff [290] to those derived from three different databases (OncoKB [291], CIViC [292] 
and CGI [293]) that were classified based on a common clinical evidence level 
(https://civic.readthedocs.io/en/latest/model/evidence/level.html) as described in Priestley et al. 2019 
[6]. In our study we only considered A and B levels of evidence which represent variants that have 
been FDA approved for treatment and are currently being evaluated in a late stage clinical trial, 
respectively. A variant was determined to be “On-label” when the cancer type it was found in matches 
the cancer type the treatment was approved for or is being investigated for, and “Off-label” otherwise. 
Only actionable variants of the sensitive category were considered (i.e. tumors containing the variant 
are sensitive to a certain treatment). Sample-level actionable variants such as TMB high/low or MSI 
status were not evaluated, because of their tendency to overshadow the other variants, especially in 
the Off-label category. Further, wild-type actionable variants were not considered in this analysis for 
the same reason. Variants related to gene expression or methylation were not considered due to lack 
of available data. Additionally, we found actionable variants derived from leukemias to be very different 
from the solid tumors in our data set which is why we excluded them for this analysis. For the analysis 
of proportion of samples bearing therapeutically actionable variants we considered the highest 
evidence level was retained for each sample following the order A On/Off-label to B On/Off-label. To 
assess enrichment of actionable variants globally and on A On-label level in metastatic tumors, a 
Fisher’s exact test was performed pancancer-wide and per cancer type. A p-value < 0.01 was deemed 
to be significant. Percentage changes in frequency are only shown for significant cases. 

To determine which variants contribute the most to the observed significant frequency differences, 
individual actionable variants were tested for enrichment in metastatic tumors using a Fisher’s exact 
test per cancer type and tier level. P-values were FDR adjusted per cancer type and a q-value < 0.05 
was deemed to be significant. In Supp. Fig. 6 only actionable variants that were found at a minimum 
frequency of 5% in either primary or metastatic cohort and a minimum frequency difference of 5% 
between them were shown. However, the differences across all screened variants is available as part 
of Supp. Table 7.  

Treatment enriched drivers  
We aimed to pinpoint drivers that are potentially responsible for lack of response to certain cancer 
treatments in the metastatic cohort. Hence, we devised a test that identifies driver alterations that are 
enriched in groups of patients treated with a particular treatment type compared to the untreated group 
of patients from the same cancer type (see Fig. 6a for illustration of the workflow).  
 
Treatments were grouped according to their mechanism of action so that multiple drugs with a shared 
mechanism of action were grouped into the mechanistic treatment category (e.g. Cisplatin, Oxaliplatin, 
Carboplatin as Platinum). We created 332 treatment and cancer type groups by grouping patients with 
treatment annotation according to their treatment record before the biopsy. One patient might be 
involved in multiple groups if they have received multiple lines of therapy or a simultaneous 
combination of multiple drugs. Only 62 treatment and cancer type groups with at least 10 patients 
were further considered in the analysis.  

Hence, for each cancer and treatment group we performed the following steps:  

1. We first performed a driver discovery analysis in treatment and cancer type specific manner. 
We explored three types of somatic alterations: coding mutations, non-coding mutations and 
copy number variants (see below for detailed description of each driver category). Driver 
elements from each alteration category were selected for further analysis. 
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2. For each driver alteration from 1) we compared the alteration frequency in the treated group 
to the untreated group of the same cancer type. Each driver category (coding and non coding 
mutations and copy number variants) were evaluated independently. We performed a Fisher’s 
exact test to assess the significance of the frequency differences. Similarly, we computed the 
odds ratio of the mutation frequencies for each driver alteration. The p-values were adjusted 
with a multiple-testing correction using the Benjamini–Hochberg procedure (alpha=0.05). An 
adjusted p-value of 0.05 was used for coding mutations and copy number variants. Adjusted 
p-value of 0.1 was used for non-coding variants due to the overall low mutation frequency of 
the elements included in this category, which hampered the identification of significant 
differences.  

3. We then annotated each driver element with information about the exclusivity in the treatment 
group. We labeled drivers as treatment exclusive if the mutation frequency in the untreated 
group was lower than 5%, we annotated as treatment enriched otherwise. Additionally, we 
manually curated the identified drivers with literature references of their association with each 
treatment category.  

4. Finally, the overlap of patients in multiple treatment groups (see above) in the same cancer 
type prompted us to prioritize the most significant treatment association for each driver gene 
in a particular cancer type. In other words, for each driver gene that was deemed as 
significantly associated with multiple treatment groups in the same cancer type, we selected 
the most significant treatment association, unless a driver-treatment annotation was clearly 
reported in the literature.  

The full catalog of TEDs and their mutation frequencies can be found in Supp. Table 8.  
 
Coding mutations drivers 
We used dNdScv[49] with default parameters to identify cancer driver genes from coding mutations. 
A global q-value <0.1 was used as a threshold for significance. Mutation frequencies for each driver 
gene were extracted from the dndscv output. We defined the mutation frequency as the number of 
samples bearing non-synonymous mutations.  

Non-coding mutations drivers  
We used ActiveDriverWGS[294] (v1.1.2, default parameters) to identify non-coding driver elements in 
five regulatory regions of the genome including 3’UTRs, 5’UTRs, lncRNAs, proximal promoters and 
splice sites. For each element category we extracted the genomic coordinates from Ensembl v101. 
Each regulatory region was independently tested. To select for significant hits, we filtered on adjusted 
p.values (FDR<0.1) and minimum of three mutated samples. We defined the mutation frequency as 
the number of mutated samples for each significantly mutated element in the treatment group.  

Copy number variant drivers 
We ran GISTIC2 [60] (v2.0.23) on each of the 62 treatment and cancer type groups using the following 
settings:  
gistic2 -b <inputPath> -seg <inputSegmentation> -refgene hg19.UCSC.add_miR.140312.refgene.mat 
-genegistic 1 -gcm extreme -maxseg 4000 -broad 1 -brlen 0.98 -conf 0.95 -rx 0 -cap 3 -saveseg 0 -
armpeel 1 -smallmem 0 -res 0.01 -ta 0.1 -td 0.1 -savedata 0 -savegene 1 -qvt 0.1. 

The focal GISTIC peaks (q ≤ 0.1 and < 1Mbp) were then annotated with functional elements using the 
coordinates from Ensembl v101. The frequency differences between treated and untreated cohorts on 
every gene was assessed with Fisher exact test as described above. For this, we first calculated the 
focal amplification and deep depletion status of every gene within each sample. A gene was amplified 
when the ploidy level of the gene was 2.5 ploidy levels higher than its genome-wide mean ploidy level 
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(as measured by PURPLE), and deleted when the gene ploidy level was lower than 0.3 (i.e. deep 
deletion). We observed that the majority of the peaks contained multiple significant gene candidates 
(after multiple correction q < 0.05) and therefore we retained the gene most closely positioned to the 
peak summit, which is the most significantly enriched region across the treated samples. Next, we 
also found recurrent peaks across multiple treatment groups per cancer type that are not, or less, 
present in the untreated control group because most of the Hartwig samples have received multiple 
treatment types. We therefore merged peaks with overlapping ranges to produce a single peak per 
genomic region per cancer type. For each collapsed peak we selected the treatment type showing the 
lowest q-value for the gene near the peak summit. Deletion and amplification peaks were processed 
separately. 

Group level aggregation of treatment resistance associated variants  
To estimate the contribution of TEDs to the total number of drivers per sample in the metastatic cohort, 
we excluded any TED from the catalog of driver mutations (see above Driver alterations section) in a 
cancer type, gene and driver type specific manner. 

Data availability 
Metastatic WGS data and metadata from the Hartwig Medical Foundation are freely available for 
academic use through standardized procedures. Request forms can be found at 
https://www.hartwigmedicalfoundation.nl. 

Somatic variant calls, gene driver lists, copy number profiles and other core data of the PCAWG cohort 
generated by the Hartwig analytical pipeline are available for download at 
https://dcc.icgc.org/releases/PCAWG/Hartwig. Researchers will need to apply to the ICGC data 
access compliance office (https://daco.icgc-argo.org) for the ICGC portion of the dataset. 
Authentication of NIH eRA commons is required to access the TCGA portion of the dataset via 
https://icgc.bionimbus.org. Additional information on accessing the data, including raw read files, can 
be found at https://docs.icgc.org/pcawg/data/. 

Code availability 
The Hartwig analytical processing pipeline is available at 
(https://github.com/hartwigmedical/pipeline5) and implemented in Platinum 
(https://github.com/hartwigmedical/platinum). 

The source code to reproduce the analysis of the manuscript will be made public in this repository 
https://github.com/UMCUGenetics/PCAWG_Hartwig_comparison upon manuscript acceptance in a 
peer-review journal. 
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Supplementary figures 

 

Supplementary Figure 1. Cohort overview and global genomic features. a) Workflow of the unified processing 
pipeline used in this study for Hartwig (left) and PCAWG (right) WGS samples. First, PCAWG tumor and matched 
normal raw sequencing files were gathered and re-processed using the Hartwig tumor analytical pipeline. Next, 
the output of tumor samples that were correctly processed by the pipeline were further subjected to a strict quality 
control filtering. As a result, a total of 7,152 samples from 58 cancer types compose the harmonized dataset. 
5,751 patient tumor samples from 22 cancer types with sufficient representation in both primary and metastatic 
datasets were selected for this study. b) Tumor clonality according to the metastatic biopsy location in kidney 
clear cell carcinoma, non-small cell lung cancer, prostate carcinomas and skin melanoma. N, number of samples 
in the group. p, Mann-Whitney p-value if p-value < 0.05. ns, not significant. Box-plots: center line, median; box 
limits, first and third quartiles; whiskers, lowest/highest data points at first quartile minus/plus 1.5× IQR.  
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Supplementary Figure 2. Mutation burden and mutational signatures. a) DBS (top) and ID (bottom) mutational 
spectra of metastatic and primary tumors. Patients are ordered according to their TMB burden. b) From top to 
bottom, moon plot representing the SBS, DBS and ID burden differences attributed to each mutational signature. 
Top stacked bars represent the cumulative signature exposure difference, including mutational signatures 
enriched in primary tumors (negative values). Thicker bar edge lines represent significance. Bars are coloured 
according to the annotated etiology. All mutational signatures, independent of their annotated etiology, are 
included. Diff., difference. Muts. mutations. Sig., mutational signature. Mut. mutational. Susp., suspected. c) 
Volcano plot representing the mutational signature hypermutation (>10,000 mutations for SBS, >500 for DBS, and 
>1000 for ID) prevalence comparison between primary and metastatic patients. Y-axis, log10(adjusted p-value). X-
axis, effect size as Cramer’s V. Each dot represents a mutational signature in a cancer type. Dots are coloured 
according to the mutation type.   
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Supplementary Figure 3. SBS1 mutation rates in primary and metastatic tumors. a) Linear regression of the 
SBS1 mutation burden (y-axis) and patient’s age at biopsy (x-axis) in primary and metastatic cancer across the 
22 cancer types. The mean fold change, mean SBS1 increase per year and p-value are only represented in cancer 
types with an age-independent significantly different primary and metastatic distribution. b) Relative to a) for 
ploidy corrected SBS1 in the tumor types of interest. c) Independent linear regressions for HER2+ (left) and HER2 
(right) breast cancer samples. ERBB2 amplification status was used to annotate cancer subtypes. d) Relative to 
a) for ploidy corrected SBS5/40 counts in the tumor types of interest. e) Equivalent to Fig. 3d for primary and 
metastatic in kidney clear carcinoma (left) and thyroid cancers (right). f) Relative to Fig. 3d, but using ploidy 
corrected SBS5/40 clonality ratio and clonal late ratio in the cancer types of interest. Boxplots are defined as in 
Fig. 1. h) Relative to Fig. 3f but using SBS1 year mutation rate from ref [265]. Muts, mutations.  
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Supplementary Figure 4. Structural variant burden. a) SV length frequency distribution of deletions (left panel) 
and duplications (middle panel). Right panel shows the frequency distribution of the number of linked breakpoints 
for complex SVs. Dashed vertical lines represent the chosen threshold to separate between short and large 
deletions, duplications and complex SVs, respectively. b) Volcano plot representing the cancer type specific 
regression coefficients (x-axis) and significance (y-axis) of clinical and genomic features against the number of 
large deletions. Each dot represents one feature in one cancer type. Labels are coloured according to the feature 
category. Dots are coloured by the frequency enrichment in metastatic (purple) or primary (orange) patients. LM, 
linear model. Coef, coefficient. Similar panels are displayed for c) short duplications, d) large duplications, e) short 
complex SVs, large complex SVs and f) LINEs.   
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Supplementary Figure 5. Driver landscape and drivers per patient. a) Volcano plots representing the cancer 
type specific enrichment (x-axis) and significance (y-axis) of driver genes between primary and metastatic cohorts. 
From left to right, amplification drivers, biallelically deleted drivers and mutated driver genes. BRCA, Breast 
cancer. CESC, Cervix carcinoma. CHOL, Cholangiocarcinoma. COREAD, Colorectal carcinoma. ESCA, 
Esophagus cancer. GBM, Glioblastoma multiforme. KIRC, Kidney clear cell carcinoma. LMS, Leiomyosarcoma. 
NSCLC, Non small cell lung cancer. OV, Ovarian cancer. PAAD, Pancreas carcinoma. PRAD, Prostate carcinoma. 
SKCM, Skin melanoma. STAD, Stomach cancer. THCA, Thyroid cancer. HNSC, Upper respiratory tract cancer. 
BLCA, Urothelial cancer. UCEC, Uterus carcinoma. b) Comparison fraction of mutated patients for the top 20 
most frequently mutated (including all types of alterations) oncogenes (left) and tumor suppressor genes (right) in 
the metastatic cohort. Top numbers represent primary frequency, bottom metastatic.  
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Supplementary Figure 6. Therapeutic actionability of variants. a) Cancer type specific fraction of primary (top) 
and metastatic (bottom) patients with reported therapeutically actionable variants. For each patient the variant 
with the greatest level of evidence was considered. Bars are coloured according to the variant actionability tiers. 
Fold change labels are displayed in cancer types with a significant proportional increase (Fisher’s exact test p-
value <0.01). Purple edgelines highlight significant increase in metastatic A-on label fraction patients. b) Primary 
(left) and metastatic (right) alteration frequency of actionable variants with a high discrepancy (>5% frequency 
difference) from cancer types with a global significant increase of actionable variants in metastatic patients from 
panel a). Asterisk, Fisher’s exact test p-value <0.01. Text boxes include the associated treatments for alterations 
with a significant mutation frequency increase in metastatic patients.  
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Supplementary Figure 7. Treatment enriched drivers. a) Side by side alteration frequency comparison between 
treated (right bar) and untreated (left bar) patients for all treatment-exclusive and b) treatment enriched TEDs. c) 
Distribution of highly-focal copy number gains in chromosome 7 in non-small cell lung cancer untreated patients 
(bottom) and treated with anti-EGFR (top). EGFR, MET and CDK6 genomic locations are highlighted. Each bin 
represents 100Kbs. d) Distribution of mutations along the AR protein sequence in prostate cancer patients treated 
with androgen deprivation (top) and untreated (bottom). Pfam domains are represented as rectangles. Mutations 
are coloured according to the consequence type. e) Distribution of highly-focal copy number gains in 
chromosome X in prostate untreated patients (bottom) and treated with androgen deprivation(top). AR coding 
region and the promoter region are highlighted. Each bin represents 100Kbs. f) Distribution of mutations along 
the ESR1 protein sequence in breast cancer patients treated with aromatase inhibitors (top) and untreated 
(bottom). g) Similar to e) but representing MYC and PRNCR1 co-amplifications in chromosome 8q. 
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Introduction 
Cancer is a result of the sequential accumulation of mutations. Some of these are driver mutations 
which provide the tumor cell a growth advantage over cells that surround it, while the remainder are 
passenger mutations and have no impact on tumor cell fitness. The pool of mutations that these cells 
carry is highly dependent on the cancer type and subtype. In this thesis, we have leveraged large 
whole-genome sequencing (WGS) datasets to characterize these mutational differences, allowing us 
to build classifiers for patient stratification and guide treatment decisions (Chapter 2 and Chapter 3), 
and study how different cancers develop (Chapter 4 and Chapter 5). Here, we will discuss the work 
in this thesis in a broader context, address its potential limitations, and provide future directions. 

Gaps and biases in pan-cancer WGS datasets 
In this thesis we have made extensive use of the Hartwig Medical Foundation (Hartwig) [6] and Pan-
cancer Analysis of Whole Genomes (PCAWG) [5] pan-cancer datasets. It is important to be aware 
however that these datasets originate from developed countries where patients are typically of 
European descent, with the Hartwig cohort containing patient data from the Netherlands [6], and the 
PCAWG cohort containing patient data from the Global North countries such as the US, UK, Australia, 
Japan, Germany and France [5]. This is a prevailing bias with sequencing data in general and not 
unique to the Hartwig/PCAWG datasets [295,296]. Findings based on these two datasets thus may 
not necessarily apply to patients from underrepresented ethnicities. However, this is an issue that will 
only be resolved with time as WGS becomes cheaper and more common in less developed countries.  

While the Hartwig/PCAWG datasets are among the largest publicly available pan-cancer WGS 
datasets (with >4700 metastatic and >2800 primary tumor samples respectively), not all cancer types 
were represented equally. Cancer types highly common in the general population such as breast, 
prostate, and skin cancer naturally had hundreds of samples in both Hartwig/PCAWG cohorts, 
whereas rare cancer types such as gallbladder, thymic, and testicular cancer had <10 samples 
[5,6,297,298]. The low sample sizes of rare cancer types prevented tumor tissue of origin classification 
by Cancer of Unknown Primary Location Resolver (CUPLR) in Chapter 3. Insufficient sample sizes 
meant that population statistics, such as the frequency homologous recombination deficiency (HRD) 
in Chapter 2, were less reliable or unavailable for certain cancer types. Many cancer types were also 
present in one dataset but not the other, preventing comparisons in HRD frequency between primary 
versus metastatic cancer. This issue also prevented certain cancer types from being included in our 
broader comparison of primary versus metastatic cancer in Chapter 5. This was especially unfortunate 
for subtypes of more common cancer types that had sufficient sample size (≥15 samples) in one 
dataset but not the other, such as small cell lung cancer, kidney chromophobe and papillary 
carcinomas, and acute myeloid and chronic lymphocytic leukemias [5,6,297,298]. 

A solution to increasing sample sizes for rarer cancer types would be to include existing tumor WGS 
cohorts, such as the Genomics England (GEL) cohort consisting of >12000 tumors from 19 cancer 
types [299,300]. Notably, the GEL cohort contains >1400 bone/soft-tissue tumors which are in general 
underrepresented in the Hartwig/PCAWG cohorts (~350 tumors combined). The GEL cohort also 
contains >1000 lung and >1300 kidney tumors, which could greatly increase the sample size for lung 
and kidney cancer subtypes underrepresented in the Hartwig/PCAWG cohorts, including small cell 
lung cancer, and kidney papillary and chromophobe carcinomas (each subtype with around 50 tumors 
or less in Hartwig/PCAWG). Other datasets focused on specific cancer types could also be used to 
increase sample sizes for the rarer cancer types in Hartwig/PCAWG cohorts, such as the Children’s 
Oncology Group (COG) cohort with 1699 pediatric leukaemias and solid tumors [301], and the 
CoMMpass cohort with 765 multiple myeloma samples [302]. Ideally, the WGS data from these cohorts 
will be processed with the same pipeline for variant calling and functional annotation of events (i.e. the 
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Hartwig pipeline) to eliminate pipeline biases, as was done to harmonize the PCAWG dataset with the 
Hartwig dataset in Chapter 5. This however does come with bureaucratic and technical hurdles. 
Firstly, access to the (privacy sensitive) raw sequencing data will be required, which usually involves a 
lengthy data request (as with the COG [303] and CoMMpass [304] cohorts), though access to the GEL 
cohort is even more complex, requiring membership to the Genomics England Clinical Interpretation 
Partnership (GECIP) and data analysis within a restricted environment [305]. Then, the pipeline will 
need to be optimized and validated to account for differences in sequence approaches (e.g. read 
depths or platform) before being applied to all samples in each cohort. Despite the time and money 
investment required, the inclusion of other tumor WGS cohorts is a feasible short term solution to 
generate a more comprehensive pan-cancer dataset. 

Challenges in structural variant detection 
Paired end short read sequencing (typically Illumina sequencing) is currently the standard technique 
for WGS of tumors, and were used for generating the Hartwig and PCAWG dataset. With short read 
sequencing, reads are eventually mapped to a reference genome and pieced together to form the 
continuous genomic sequence of the sample [4]. However, the <300bp long reads typically produced 
by Illumina sequencing are too short to span long repetitive regions of the genome (e.g. telomeres, 
centromeres, and stretches of segmental duplications), resulting in ambiguities during mapping, and 
complicating the detection of structural variants (SV) (but also small variants) in these regions [306]. 
Short reads also cannot span the majority of SVs [307], meaning the presence of SVs must be solely 
inferred using for example read depth, paired end read discordance, and split read information [308]. 
While this information can be used to detect simple SVs (i.e. deletions, duplications, inversions, 
insertions and translocations), the presence of complex SVs must be further inferred by clustering 
simple SV breakpoints which are statistically unlikely to have occurred independently as a single event 
[127,178]. 

Further complications arise when trying to identify large complex SV events such as chromothripsis, 
as definitions for such events require assumptions and arbitrary thresholds to be made. PCAWG 
defined chromothripsis as an interleaved SV cluster with ≥7 segments oscillating between 2 copy 
number (CN) states [145]. Other studies only required 10 segmental CN oscillations within 50 Mb 
[309,310] or within a single chromosome [311,312]. However, since short reads cannot span the 
derivative chromosome resulting from chromothripsis, we cannot be certain whether segmental CN 
oscillations originate from: i) a single event (i.e. truly chromothripsis), ii) template-switching DNA-
replication errors which can generate a similar pattern [313], iii) multiple distinct events, or iv) a 
combination of the above. For similar reasons, detection of breakage-fusion-bridge (BFB) is 
problematic, which is characterized by multiple inverted duplications (also known as foldback 
inversions) and a ‘staircase’ amplification CN profile [30]. In the primary versus metastatic cancer 
comparison in Chapter 5, we therefore opted to quantify complex SVs stratified by number of 
segments rather than directly quantify chromothripsis or BFB given the difficulty in accurately 
identifying these events. 
 
Long read sequencing technologies, such as those from Oxford Nanopore Technologies and Pacific 
Biosciences (PacBio), could potentially allow for better detection of SVs [306]. However, because long 
read sequencing has still lower nucleotide level accuracy compared to short read sequencing [314], 
the combination of short and long read sequencing would currently be required to properly identify 
large SVs while retaining the ability to call small mutations and SV breakpoints at nucleotide resolution. 
In general, Nanopore sequencing offers longer reads compared to PacBio sequencing [306], with 
mean read lengths of ~10kb using a MinION sequencer [315–317]. While Nanopore read lengths still 
cannot span all SVs nor all repetitive regions of the genome, the longer read length reduces ambiguity 
during SV calling, especially for smaller complex SVs, such as extrachromosomal circular DNA 
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(ecDNA) which are usually <1Mb in size [318], or inverted duplications where the duplication and 
inversion segments are usually <1Mb and <10Mb respectively [178]. However, to be able to reap the 
benefits of improved SV detection from long reads, tools for calling SVs from long reads will still need 
to mature [319]. Nevertheless, the identification of large complex SV events will remain a challenge 
unless it is eventually possible to sequence a chromosome using only a few ultra-long reads (or even 
a single read). 

Limitations of mutational signature analysis 
Mutational signatures describe the combinations of mutation types that result from specific mutational 
processes. They have been widely used in recent years for studying cancer [6,13,67,74,75,244,320], 
and have also been crucial to our analyses in Chapter 3, Chapter 4 and Chapter 5. De novo signature 
extraction and signature fitting are the basis of mutational signature analysis. De novo signature 
extraction aims to identify the underlying patterns of somatic mutations in a cohort of samples, and 
was used to build the COSMIC catalog of reference signatures [64]. It is typically based around non-
negative matrix factorization (NMF), using frameworks such as SigProfilerExtractor [321]. Signature 
fitting (typically using the least-squares method) can be used to quantify the presence of signatures 
from an existing set of signatures (e.g. from the COSMIC catalog), and can be used when a sample 
cohort has too few samples for a robust de novo signature extraction [107,321]. 

De novo signature extraction for a pan-cancer cohort is best performed separately per tissue type. 
This is because performing NMF on a full pan-cancer cohort (with tissue type sample size imbalances) 
would predominantly yield signatures present in tissue types with the most samples. Nevertheless, 
performing NMF on tissue types with more samples still results in more sensitive signature extraction, 
and enables the detection of less prevalent signatures. For these reasons, mutational signature 
landscapes described by the PCAWG consortium [13] as well as in Chapter 5 are more accurate and 
complete for larger tissue type cohorts, and less so for smaller ones. By extension, the COSMIC 
catalog is thus also biased towards signatures from larger tissue type cohorts that are more easily 
extracted. This bias should thus be taken into consideration for analyses based on signature fitting on 
the COSMIC catalog (or other existing catalogs). 

It is also important to be aware that NMF is ultimately a dimension reduction algorithm [322]. For 
instance, NMF could be used to reduce the 96 trinucleotide context mutation counts from a sample 
cohort into 5 underlying patterns of these contexts (i.e. mutational signatures) that are present in these 
samples. A major challenge with NMF is to choose the number of signatures to extract (also known as 
NMF rank), as this parameter is not known upfront. Typically, NMF is performed on a range of ranks, 
and a rank is chosen based on the optimum of one or more performance metrics (e.g. signature 
stability) [321]. In practice manual assessment is also required for rank selection. In Chapter 5, we 
used SigProfilerExtractor which automatically suggests an optimum rank, but we often had to choose 
either, i) a higher rank so that we would extract expected de novo signatures matching to known 
COSMIC signatures (e.g. SBS1, an age associated signature expected in all samples), or ii) lower ranks 
to prevent extraction of multiple similar signatures that should be in fact one signature.  

The issue of extracting multiple similar signatures due to choosing too high of a rank (‘over-extraction’) 
may have led to the split of several of the original 30 COSMIC signatures into ‘new’ signatures despite 
these not being confirmed to represent distinct mutational processes [13], such as with SBS5 into 
SBS5 and SBS40 (associated with age), and SBS7 into SBS7a and SBS7b (UV light exposure). The 
ongoing search for more novel SBS signatures also increases the risk of over-extraction. This becomes 
more problematic as the number of SBS signatures approaches 96, the point at which these signatures 
are no longer a dimension reduction of the 96 trinucleotide contexts. Recently, Degasperi et al. [299] 
used >12000 tumors from the GEL pan-cancer cohort to extract 82 SBS signatures, which have been 
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reported in the SIGNAL catalog [323]. However, when examining the 40 signatures that were novel, 
some were identical to existing COSMIC signatures, such as SBS95/SBS96 to SBS1 (linked to 5-
methylcytosine deamination), and SBS98 to SBS15 (mismatch repair deficiency). Furthermore, 9 novel 
signatures were only present in 1 sample in the entire cohort, and had no associated etiology. This 
suggests that some of these signatures may have no biological significance and are a technical artifact 
due to over-extraction. 

We may thus be reaching the limit of new SBS signatures that can be extracted from the 96 
trinucleotide contexts. Future signature discovery efforts should therefore focus on double base 
substitution (DBS) and indel (ID) signatures, as these have been less extensively researched. The 
Degasperi et al. study [299] has already reported a set of novel DBS signatures but these still require 
further investigation to determine their etiologies. Nevertheless, the 1536 possible pentanucleotide 
contexts (base substitution with 2 flanking 5’ and 3’ bases) could be used instead of the 96 
trinucleotides as a basis for extraction of extended SBS signatures [324,325]. Aside from the flanking 
bases, somatic point mutations could be stratified by at the mutation locus, such as replication timing 
[179] or position on the DNA groove [326]. However, having too many mutation contexts leads to too 
few mutations being attributed to each context (which is especially problematic for the pentanucleotide 
contexts), potentially preventing robust extraction of de novo signatures. It is therefore important to 
use features that can meaningfully stratify mutations, such as replication timing, chromatin 
accessibility, or degree of mutation clustering [179]. 

Lastly, regional mutational density (RMD; the mutation frequency per 1Mb bin across the genome) has 
only thus far been directly used for tumor tissue of origin classification [90,91], but the potential for 
RMD signatures remains largely unexplored. In Chapter 3, we have used NMF reduce >3000 RMD 
bins to <50 rudimentary RMD signatures. A more robust extraction and analysis of RMD signatures 
could yield novel biological insights. RMD could be for example used to study the activity of different 
DNA repair pathways across the genome, as increased mutation frequency in certain parts of the 
genome is (partially) thought to be due to reduced accessibility to DNA repair complexes [144]. RMD 
may also have the potential for machine learning based classification of DNA repair deficiencies other 
than HRD and MMRD (for these, models already exist [38,74,75]), such as for base excision repair 
(BER) or nucleotide excision repair (NER) deficiency. 

Contributing factors to cancer development beyond driver 
mutations 
The relationship between increased driver mutation burden and increased cancer risk is well 
established [327–329]. However, the presence of driver mutations is likely not enough to initiate cancer, 
as these mutations are also found in normal cells [330]. A study by Martincorena et al. [331] showed 
that cells in normal skin carried more mutations in NOTCH1 than in skin cancers, and these normal 
cells also carried mutations in other driver genes such as TP53 and FAT1. The presence of driver 
mutations in normal cells has also been shown in numerous other tissues [332–335]. As with cancer 
initiation, the presence of driver mutations alone may also not be sufficient for the progression from 
primary to metastatic cancer. In Chapter 5, we find that metastatic tumors showed increased burden 
of passenger small mutations and SVs, mainly as a result of treatment exposure and cancer type 
specific endogenous mutational processes. However the driver mutation landscape of metastatic 
tumors remained relatively unchanged when compared to primary tumors, suggesting that factors 
other than driver mutations contribute to metastatic progression. An explanation is that the distinction 
between driver and passenger mutations is merely a matter of definition. Whether a mutation is a driver 
can depend on the computational method used for driver detection. Methods based on identifying 
mutations occurring more significantly than expected by chance (e.g. dNdScv [49], used in Chapter 5) 
may yield different driver mutations than a method based on detecting linear clustering of mutations 
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(e.g. OncodriveCLUSTL [52]). Additionally, a computational study [336] showed that passenger 
mutations can have weak driver potential, with another study [337] showing that a mutation can be a 
driver or passenger depending on the context, such as initial cell properties or current selection 
pressures. Mutations thus likely exist on a spectrum of deleteriousness rather than the dichotomy of 
driver and passenger mutations. 

Aside from mutations, altered epigenetic regulation of gene expression likely also drives cancer 
development, with several studies on breast [338], bladder [339], and gastric [340] cancer patients 
showing that cancer tissue and the adjacent normal tissue share similar patterns of methylation. 
Altered methylation can be a result of environmental pressures such as exposure to carcinogens [341]. 
For example, aberrant methylation of lung cancer associated genes was found in the upper respiratory 
tract of smokers [342,343], while high alcohol intake (together with low dietary folate intake) was linked 
with methylation of colorectal cancer associated genes [344]. Besides carcinogen exposure, 
inflammation has also been shown to lead to altered methylation. Chronic inflammation was shown in 
a mouse colon cancer model to lead to hypermethylation of several genes important in gastrointestinal 
homeostasis and repair, some of which are also hypermethylated in human colorectal cancer and 
mouse intestinal adenomas [345]. Likewise, Ammerpohl et al. showed that liver cirrhosis (which 
commonly precedes liver cancer [226]) shared a similar methylation pattern with liver cancers but not 
with normal liver tissue [346]. 

We hypothesized in Chapter 4 that chronic liver inflammation triggers quiescent cells to proliferate to 
repair the damaged liver, providing the opportunity for cells with new or pre-existing mutations that 
confer a selective growth advantage to clonally expand [49,227,228]. By extension, clonal expansion 
of cells with advantageous epigenetic alterations may also occur as a result of damaging 
environmental pressures that trigger cell proliferation for tissue repair. Besides inflammation, this could 
also include carcinogen exposure, or immune destruction of cancer cells (that eventually results in 
metastasis capable cancer cells). Thus, despite not finding increased mutation accumulation in 
cirrhotic livers in Chapter 4, additional transcriptomic and methylation analyses could show an altered 
epigenetic landscape tending towards liver cancer, as was reported by Ammerpohl et al. [346]. 
However, such analyses would require many more samples (ideally from unique patients) than we have 
included, due to the technical variability of quantifying RNA expression and methylation (but also due 
to biological variation) [347,348]. Additionally, while we identify driver mutations linked to treatment 
resistance but not those directly involved in metastasis in Chapter 5, a pan-cancer comparison of the 
transcriptomes and methylomes of primary versus metastatic tumors may provide more insight into 
the mechanisms of metastasis (as well as treatment resistance), and in particular, the possible of driver 
impact of the additional SVs we find in metastatic cancer. Ideally, longitudinal samples would be 
compared to minimize inter-sample and inter-cohort variability, though this would be logistically 
challenging especially because decades may pass between appearance of the primary tumor and 
eventual metastasis. All procedures, such as storage of (preferably frozen) patient material, data 
generation (e.g. DNA sequencing), and data analyses, would need to be scaled up as well as 
standardized to avoid technical variation. Such a long term, large scale study would likely need to 
happen in the context of routine clinical practice, with the standardization of procedures not only 
streamlining diagnostics, but also future research by eliminating the need for dataset harmonization 
efforts (as was done by the PCAWG consortium themselves, but also by us in Chapter 5).   

Interpretable machine learning models are required for cancer 
diagnostics 
Despite the widespread application of machine learning (ML) in cancer genomics [349], it has yet to 
be widely used in clinical practice [97]. A potential reason is that most ML models are built with 
performance in mind, but not interpretability [54,74,75,84–88,90,91,93–96]. Interpretable models aim 



6

165

6

165

 

 165 

to justify how they come to a particular prediction, which is essential if ML is to be adopted into clinical 
practice. For some models [74,90], feature importances are reported which do somewhat reveal the 
inner workings of the models, but not for individual predictions. Truly interpretable models provide an 
explanation as to which features contributed to each individual prediction. BoostDM (a driver mutation 
predictor) achieves this using shapley additive explanations (SHAP values) [56], whereas CUPLR uses 
random forest feature contributions (Chapter 3) [350]. In the context of clinical diagnostics, feature 
explanations can be used to reject a bad ML prediction (based on existing knowledge) that otherwise 
would have led to a patient being given the wrong treatment. For this reason, future clinically oriented 
ML models should be built with methods that provide interpretable predictions. 

Simpler classification algorithms also tend to be inherently interpretable compared to more complex 
ones [77]. For example, logistic regression coefficients directly indicate how much the odds of the 
outcome (e.g. HRD) change for a unit of change in the feature (e.g. number of microhomology 
deletions). Complex algorithms, such as neural networks (NNs) and by extension deep learning, 
sacrifice interpretability but can model more complex relationships between labels and features. NNs 
particularly excel when specific architectures are used for specialized tasks. For example, 
convolutional neural networks (CNN) identify and combine simple patterns for classification (think of 
the individual strokes used to write the letter ‘A’), and have been used to predict the effects of 
noncoding variants [86]. On the other hand, recurrent neural networks (RNN) have ‘memory’ and are 
useful for sequential data, such as for base calling from Nanopore sequencing data [351]. However, 
NNs are sometimes seemingly used only to ride on the popularity of deep learning [90,93,352]. These 
studies only used basic feed forward NNs, and did not require nor take advantage of specialized NN 
architectures. When possible, the use of simpler interpretable ML algorithms is preferable over deep 
learning. Depending on the application, simple algorithms such as logistic regression or support vector 
machines may not be sufficiently performant as they can only capture linear (or pseudolinear) feature-
label relationships. Tree based algorithms (e.g. random forest or gradient boosting machine) provide 
a good middle ground in terms of interpretability and capturing complex feature-label relationships in 
genomic data. Besides choice of algorithm, careful feature engineering can also facilitate model 
interpretability. With CUPLR (Chapter 3) for example, dimension reduction of the RMD features 
produced RMD meta-features that could be annotated by their direct cancer type associations.  

Lastly, ML model performance evaluation using cross-validation (CV) and/or using independent test 
sets are confounded by the biases of the datasets used, such as sequencing procedure or cohort 
inclusion criteria. As such, CV and independent testing likely provides an optimistic estimate of real 
world performance (i.e. on external data). Ultimately, for ML models to be adopted in clinical practice, 
their performance (ideally based on patient treatment response) must also be validated in practice 
within prospective clinical trials or programs.  

Concluding remarks 
WGS has enabled the detection of the full spectrum of mutations found in tumor genomes, from point 
mutations to SVs. We have exploited these mutations to develop two diagnostic classifiers CHORD 
and CUPLR which have the potential to improve future treatment decisions. PARP inhibitor therapy 
for HRD patients is currently limited to specific cancer types (e.g. breast, ovarian, and pancreatic 
cancer [102,119]). With CHORD, we found that HRD the occurrence and mutational footprint of HRD 
is not tissue type specific, meaning that many additional patients could still benefit from PARP inhibitor 
therapy. Likewise, with CUPLR we could identify the tumor tissue of origin for over half of patients 
diagnosed as having a cancer of unknown primary, indicating that many of such patients could then 
be eligible for standard of care treatments for specific cancer types. In studying the genomes of 
numerous tumors and tissues, we however still do not fully understand how cancer develops from the 
perspective of mutations, possibly because we cannot yet fully assess the impact of passenger 



166166

 

 166 

mutations or SVs (particularly large SVs), or because we need to look beyond mutations towards 
epigenetic or environmental mechanisms of tumorigenesis. We do however find that advanced 
metastatic cancers more frequently harbor treatment resistance driver mutations compared to primary 
cancers. To treat metastatic cancer, biomarkers for predicting treatment resistance will need to be 
identified, which would inform when a change of course of therapy is required. Nevertheless, treatment 
resistance may be a consequence of broadly applied standard of care treatments. A more effective 
strategy may be to apply personalized treatment regimens early on (upon diagnosis), with the routine 
use of WGS enabling early detection of actionable biomarkers (e.g. HRD).  
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Summary 
Somatic mutations are those that accumulate in the genome of an individual over their lifetime, and 
have been proposed to contribute to aging and cancer development. There are several types of 
mutations, ranging from those that result in a single or a double base substitution (SBS and DBS 
respectively), several bases being inserted or deleted (indel), or those that alter large segments of DNA 
which are referred to as structural variants (SV). Some mutations enable cells to grow and divide 
uncontrollably, leading to cancer. These mutations (typically 4-5 per cancer genome) are called ‘driver’ 
mutations and occur in a set of ‘cancer driver genes’. The remaining mutations are called ‘passenger’ 
mutations, having no contribution to cancer development. Nevertheless, genome-wide patterns of 
these passenger mutations (also known as ‘mutational signatures’) can be used to infer the presence 
of mutational processes that have been active in cancer cells, including environmental processes such 
as ultraviolet radiation exposure, or endogenous processes such as errors during DNA repair. 

Whole-genome sequencing (WGS) is a technique that can be used to determine the DNA sequence of 
the entire genome of a tumor sample, which can then be used to identify the driver and passenger 
mutations in that sample. In recent years, organizations such as the Hartwig Medical Foundation 
(Hartwig) and the Pan-cancer Analysis of Whole Genomes consortium (PCAWG) have performed WGS 
on the tumors from thousands of cancer patients across numerous cancer types to improve our 
insights on cancer. In this thesis, we have extensively used the Hartwig and PCAWG datasets to 
develop machine learning tools for cancer diagnostics (Chapter 2 and Chapter 3), as well as to study 
metastatic cancer progression (Chapter 5). In Chapter 4, we performed WGS on samples from 
diseased liver patients to study their relationship with liver tumorigenesis. 

One application of machine learning for WGS-based cancer diagnostics is to detect homologous 
recombination deficiency (HRD). HRD is common in cancer cells, and refers to an impaired 
homologous recombination (HR) pathway that is required for accurate repair of double stranded DNA 
breaks. In clinical practice, HRD is often detected by identifying mutations that inactivate HR pathway 
genes (typically BRCA1 and BRCA2), and cancer patients in which HRD is detected can be treated 
with PARP inhibitors. An alternative method to detect HRD is to identify the characteristic types of 
passenger mutations across the whole genome that are a consequence of HRD cells resorting to other 
less accurate DNA double strand break repair pathways. In Chapter 2, we have used the Hartwig and 
PCAWG datasets to develop CHORD (Classifier of HOmologous Recombination Deficiency), a 
machine learning classifier that uses the genome-wide presence of microhomology deletions and 
structural duplications to detect HRD. We then used CHORD to identify and analyze the HRD patients 
within the Hartwig and PCAWG cohorts, and found that besides BRCA1 and BRCA2, mutations in two 
other HR genes (RAD51C and PALB2) were also a frequent genetic cause of HRD. However, we found 
that gene mutation based testing for HRD (as is done in the clinic) would miss ~40% of HRD patients 
which show no clear genetic inactivation of the HR genes. CHORD has been integrated into the patient 
diagnostic report at the Hartwig Medical Foundation to guide treatment decisions. Nevertheless, follow 
up studies will be required to assess whether HRD patients (especially those without an HR gene 
mutation) benefit from PARP inhibitors (or other HRD-specific cancer treatments). 

Machine learning can also aid with determining the tumor tissue of origin. A tumor that develops for 
example in the breast (i.e. the tissue of origin) may eventually metastasize and spread elsewhere in the 
body (e.g. to the lungs). The tissue of origin of a metastatic tumor is typically determined via histological 
staining in the clinic, and greatly determines the standard of care treatment options available to a 
patient. However, for ~3% of diagnosed cancer patients, the primary tumor site remains undetermined, 
which are considered cancers of unknown primary (CUP). To aid with resolving these cases, in 
Chapter 3 we have used the Hartwig and PCAWG datasets to develop CUPLR (Cancer of Unknown 
Primary Location Resolver), a machine learning classifier that uses features based on both driver and 
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passenger mutations to be able to distinguish 35 cancer types with ~90% precision. For each tumor 
sample prediction, the classifier produces a graphical output that not only shows the probability of 
each cancer type, but also an explanation as to which mutation features most contributed to the 
prediction. The feature explanations can be used to confirm a prediction based on existing knowledge. 
For example, if CUPLR predicts a sample to be a prostate cancer, where androgen receptor (AR) 
mutation (characteristic of prostate cancers) was a highly contributing feature, we can be confident 
that the prediction is indeed correct. Using this logic, we could resolve the tumor tissue of origin for 
82/141 (58%) of CUP patients in the Hartwig cohort, who then would benefit from therapies approved 
for the respective cancer types. 

Besides developing tools for cancer diagnostics, we have also studied how cancer develops. 
Inflammatory liver disease has been thought to result in the accumulation of mutations which could in 
turn lead to liver cancer. To investigate this (Chapter 4), we isolated stem cells taken from biopsies 
taken from the livers of healthy patients, as well as from patients with alcoholic cirrhosis, non-alcoholic 
steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). WGS was then performed on these 
stem cells which allowed us to estimate the number of mutations in these stem cells, and by proxy the 
number of mutations in the patients’ livers. Surprisingly, we found that the diseased livers did not show 
more mutation accumulation than healthy livers, suggesting that mutations do not directly drive the 
development of liver cancer. It is likely that other mechanisms, such as the tumor microenvironment, 
contribute to the transition of healthy cells into cancerous cells in the context of liver disease. 

We also sought to understand the mutational factors that lead to the progression of primary tumors 
(early stage cancer) to metastatic tumors (late stage cancer). In Chapter 5, we therefore compared of 
the mutation landscape of primary tumors (PCAWG cohort) versus metastatic tumors (Hartwig cohort) 
in 22 cancer types. Metastatic tumors generally showed higher genomic instability, with minor 
increases in the number of small mutations (SBSs, DBSs, and indels), but notable increases in the 
number of SVs, particularly of structural deletions and duplications. In this study we also showed that 
cancer therapy exposure contributed to the mutation landscape but also influenced the selection of 
tumor cells since cancer therapy resistance mutations were found in approximately half of the treated 
cancer genomes. Nevertheless, most of the observations were cancer type dependent, with 5 cancer 
types (breast, prostate, thyroid, kidney clear carcinoma, and pancreatic neuroendocrine) showing a 
substantial transformation in the metastatic cancer genome, mainly driven by higher genomic 
instability. These 5 cancer types also showed mutational signatures indicative of higher rates of cell 
division in metastatic tumors, suggesting that these tumors acquired the ability to proliferate faster 
during the course of cancer progression. 

Lastly, Chapter 6 reflects on the findings and advances presented in this thesis. We discuss the 
limitations of using WGS data, including biases in WGS datasets, the challenges in detecting SVs, and 
the complexity of determining the contribution of each mutation towards cancer. Nevertheless, the 
strength of WGS is its ability to characterize the full spectrum of mutations which we have used to 
develop two tools (CHORD and CUPLR) for improving cancer diagnostics, which could ultimately 
provide patients with additional (and importantly, personalized) treatment options. 
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Samenvatting 
Somatische mutaties zijn mutaties die zich gedurende hun leven ophopen in het genoom van een 
individu en waarvan is voorgesteld dat ze bijdragen aan veroudering en de ontwikkeling van kanker. 
Er zijn verschillende soorten mutaties, variërend van mutaties die resulteren in een enkele of dubbele 
basensubstitutie (respectievelijk SBS en DBS), meerdere basen die worden ingevoegd of verwijderd 
(indel), of mutaties die grote DNA-segmenten veranderen die worden aangeduid als structurele 
varianten (SV). Sommige mutaties zorgen ervoor dat cellen ongecontroleerd kunnen groeien en delen, 
wat leidt tot kanker. Deze mutaties (meestal 4-5 per kankergenoom) worden 'driver'-mutaties genoemd 
en komen voor in een reeks 'cancer driver-genen'. De overige mutaties worden ‘passagiersmutaties’ 
genoemd en leveren geen bijdrage aan de ontwikkeling van kanker. Niettemin kunnen genoombrede 
patronen van deze passagiersmutaties (ook bekend als 'mutatiesignaturen') worden gebruikt om 
mutatieprocessen die actief zijn geweest in kankercellen vast te stellen, waaronder 
omgevingsprocessen zoals blootstelling aan ultraviolette straling, of endogene processen zoals fouten 
tijdens DNA-reparatie. 

Whole-genome sequencing (WGS) is een techniek die kan worden gebruikt om de DNA-sequentie van 
het gehele genoom van een tumormonster te bepalen, die vervolgens kan worden gebruikt om de 
driver- en passagiersmutaties in dat monster te identificeren. In de afgelopen jaren hebben 
organisaties zoals de Hartwig Medical Foundation (Hartwig) en het consortium Pan-cancer Analysis of 
Whole Genomes (PCAWG) WGS uitgevoerd op de tumoren van duizenden kankerpatiënten van 
verschillende soorten kanker om onze inzichten over kanker te verbeteren. In dit proefschrift hebben 
we de Hartwig en PCAWG datasets uitgebreid gebruikt om machine learning tools te ontwikkelen voor 
kankerdiagnostiek (Hoofdstuk 2 en Hoofdstuk 3), en om de progressie van uitgezaaide kanker te 
bestuderen (Hoofdstuk 5). In Hoofdstuk 4 hebben we WGS uitgevoerd op monsters van zieke 
leverpatiënten om hun relatie met kankerontwikkeling te bestuderen. 

Een toepassing van machine learning voor op WGS gebaseerde kankerdiagnostiek is het detecteren 
van homologe recombinatie deficiëntie (HRD). HRD komt veel voor in kankercellen en verwijst naar 
een verstoorde homologe recombinatie (HR) route die nodig is voor nauwkeurig herstel van 
dubbelstrengs DNA-breuken. In de klinische praktijk wordt HRD vaak gedetecteerd door mutaties te 
identificeren die HR-pathway-genen inactiveren (meestal BRCA1 en BRCA2), en kankerpatiënten 
waarbij HRD wordt gedetecteerd kunnen worden behandeld met PARP-remmers. Een alternatieve 
methode om HRD te detecteren, is het identificeren van de karakteristieke typen passagiersmutaties 
in het hele genoom die een gevolg zijn van HRD-cellen die hun toevlucht nemen tot andere, minder 
nauwkeurige DNA-herstelpaden voor dubbelstrengsbreuken. In Hoofdstuk 2 hebben we de Hartwig 
en PCAWG datasets gebruikt om CHORD (Classifier of HOmologous Recombination Deficiency) te 
ontwikkelen, een machine learning classifier die gebruik maakt van de genoombrede aanwezigheid 
van microhomologiedeleties en structurele duplicaties om HRD te detecteren. Vervolgens hebben we 
CHORD gebruikt om de HRD-patiënten binnen de Hartwig- en PCAWG-cohorten te identificeren en te 
analyseren, en ontdekten we dat, naast BRCA1 en BRCA2, mutaties in twee andere HR-genen 
(RAD51C en PALB2) ook een veelvoorkomende genetische oorzaak van HRD waren. We ontdekten 
echter dat op genmutatie gebaseerde testen voor HRD (zoals gedaan in de kliniek) ~40% van de HRD-
patiënten zouden missen die geen duidelijke genetische inactivatie van de HR-genen vertonen. 
CHORD is geïntegreerd in het diagnostisch rapport van de patiënt bij de Hartwig Medical Foundation 
om behandelbeslissingen te begeleiden. Niettemin zullen vervolgonderzoeken nodig zijn om te 
beoordelen of HRD-patiënten (vooral die zonder een HR-genmutatie) baat hebben bij PARP-remmers 
(of andere HRD-specifieke kankerbehandelingen). 

Machine learning kan ook helpen bij het bepalen van het weefsel waar de tumor van oorsprong 
vandaan komt. Een tumor die zich bijvoorbeeld in de borst ontwikkelt (d.w.z. het weefsel van 
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oorsprong) kan uiteindelijk uitzaaien en zich elders in het lichaam verspreiden (bijvoorbeeld naar de 
longen). Het weefsel van oorsprong van een gemetastaseerde tumor wordt gewoonlijk bepaald via 
histologische kleuring in de kliniek en bepaalt in hoge mate de standaardbehandelingsopties die 
beschikbaar zijn voor een patiënt. Voor ~3% van de gediagnosticeerde kankerpatiënten blijft de 
primaire tumorplaats echter onbepaald, wat wordt beschouwd als primaire tumor onbekend (cancer 
of unknown primary in het Engels; CUP). Om te helpen bij het oplossen van deze gevallen, hebben we 
in hoofdstuk 3 de Hartwig- en PCAWG-datasets gebruikt om CUPLR (Cancer of Unknown Primary 
Location Resolver) te ontwikkelen, een machine learning classifier die eigenschappen gebruikt die zijn 
gebaseerd op zowel driver- als passagiersmutaties om onderscheid te kunnen maken tussen 35 
verschillende kankertypes met ~90% precisie. Voor elke voorspelling van tumormonsters produceert 
de classifier een grafische uitvoer die niet alleen de waarschijnlijkheid van elk kankertype laat zien, 
maar ook een verklaring welke mutatiekenmerken het meest hebben bijgedragen aan de voorspelling. 
De functieverklaringen kunnen worden gebruikt om een voorspelling op basis van bestaande kennis 
te bevestigen. Als CUPLR bijvoorbeeld voorspelt dat een monster een prostaatkanker is, waarbij de 
androgeenreceptor (AR)-mutatie (kenmerk van prostaatkanker) een sterk bijdragende eigenschap was, 
kunnen we erop vertrouwen dat de voorspelling inderdaad correct is. Met behulp van deze logica 
konden we het tumorweefsel van oorsprong bepalen voor 82/141 (58%) van de CUP-patiënten in het 
Hartwig-cohort, die dan baat zouden hebben bij therapieën die zijn goedgekeurd voor de respectieve 
kankertypes. 

Naast het ontwikkelen van instrumenten voor kankerdiagnostiek, hebben we ook onderzocht hoe 
kanker zich ontwikkelt. Men denkt dat een inflammatoire leverziekte resulteert in de accumulatie van 
mutaties die op hun beurt kunnen leiden tot leverkanker. Om dit te onderzoeken (Hoofdstuk 4), hebben 
we stamcellen geïsoleerd uit biopsies van de lever van gezonde patiënten, evenals van patiënten met 
alcoholische cirrose, niet-alcoholische steatohepatitis (NASH) en primaire scleroserende cholangitis 
(PSC). WGS werd vervolgens uitgevoerd op deze stamcellen, waardoor we het aantal mutaties in deze 
stamcellen konden schatten, en bij benadering het aantal mutaties in de levers van de patiënten. 
Verrassend genoeg ontdekten we dat de zieke levers niet meer mutatie-accumulatie vertoonden dan 
gezonde levers, wat suggereert dat mutaties niet direct de ontwikkeling van leverkanker stimuleren. 
Het is waarschijnlijk dat andere mechanismen, zoals de micro-omgeving van de tumor, bijdragen aan 
de overgang van gezonde cellen naar kankercellen in de context van leverziekte. 

We probeerden ook de mutatiefactoren te begrijpen die leiden tot de progressie van primaire tumoren 
(kanker in een vroeg stadium) tot uitgezaaide tumoren (kanker in een laat stadium). In Hoofdstuk 5 
hebben we daarom het mutatielandschap van primaire tumoren (PCAWG cohort) vergeleken met 
gemetastaseerde tumoren (Hartwig cohort) in 22 kankertypes. Gemetastaseerde tumoren vertoonden 
over het algemeen een hogere genomische instabiliteit, met een kleine toename van het aantal kleine 
mutaties (SBS's, DBS'en en indels), maar een opmerkelijke toename van het aantal SV's, met name 
van structurele deleties en duplicaties. In deze studie toonden we ook aan dat blootstelling aan 
kankertherapie het mutatielandschap beïnvloedde. Ook de selectie van tumorcellen werd beïnvloed, 
aangezien mutaties in resistentie tegen kankertherapie werden gevonden in ongeveer de helft van de 
behandelde kankergenomen. Desalniettemin waren de meeste waarnemingen afhankelijk van het 
kankertype, waarbij 5 kankertypes (borstkanker, prostaatkanker, schildklierkanker, niervrij carcinoom 
en neuro-endocriene kanker van de pancreas) een substantiële transformatie vertoonden in het 
gemetastaseerde kankergenoom, voornamelijk gedreven door hogere genomische instabiliteit. Deze 
5 kankertypes vertoonden ook mutatiesignaturen die wijzen op hogere celdelingssnelheden bij 
uitgezaaide tumoren, wat suggereert dat deze tumoren het vermogen kregen om sneller te prolifereren 
in de loop van kankerprogressie. 

Ten slotte reflecteert Hoofdstuk 6 op de bevindingen en vorderingen die in dit proefschrift worden 
gepresenteerd. We bespreken de beperkingen van het gebruik van WGS-gegevens, inclusief 
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systematische fouten in WGS-datasets, de uitdagingen bij het detecteren van SVs en de complexiteit 
van het bepalen van de bijdrage van elke mutatie aan kanker. Desalniettemin is de kracht van WGS 
het vermogen om het volledige spectrum van mutaties te karakteriseren, een kracht die wij hebben 
gebruikt om twee instrumenten (CHORD en CUPLR) te ontwikkelen voor het verbeteren van de 
kankerdiagnostiek, die patiënten uiteindelijk aanvullende (en belangrijker nog, gepersonaliseerde) 
behandelingsopties zouden kunnen bieden.  
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