
From survival prediction
to treatment decision

in lung cancer

Wouter A.C. van Amsterdam

From
 survival prediction to treatm

ent decision in lung  cancer
W

outer A.C. van Am
sterdam

Uitnodiging
voor het bijwonen van de openbare 

verdediging van het proefschrift

From survival prediction
to treatment decision

in lung cancer

Donderdag 22 september 2022
om 12.15

Academiegebouw
Domplein 29
te Utrecht

Receptie aansluitend

Paranimfen:
Werner de Jong

wudejong@gmail.com
Jonas Bartstra

jwbartstra@hotmail.com

Wouter A.C. van Amsterdam
woutervanamsterdam@gmail.com





From survival prediction to treatment decision 
in lung cancer

Van het voorspellen van overleving naar behandelbeslissingen in longkanker 
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de 
Universiteit Utrecht

op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling,

 ingevolge het besluit van het college voor promoties 
in het openbaar te verdedigen op

donderdag 22 september 2022 des middags te 12.15 uur

door

Wouter Anton Christiaan van Amsterdam

geboren op 16 april 1989
te Doetinchem



Financial support by “National Fonds Tegen Kanker” for the publication of this thesis is gratefully acknowledged.

Lay-out:	 Wouter A.C. van Amsterdam & Dennis Hendriks (ProefschriftMaken.nl)
Printed:	 ProefschriftMaken.nl
Cover design:	 Wouter A.C. van Amsterdam
Cover image:	 Generated using DALL-E 2 and Stable Diffusion, with variations of the prompt:

“the road bifurcates and branches left and right at a crossroads around a tree, view from 
behind of an old person standing the crossroads, a large tree in the shape of lungs stands in 
front of him. Scientific American cover with colours of Zion national park, trending on 
Artstation HQ”

ISBN:	 978 94 642 3888 4

© Wouter van Amsterdam, 2022
All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system, or transmitted 
in any other form or by any other means (e.g. mechanically, by photocopy, by recording, or otherwise), 
without permission from the author.



From survival prediction to treatment decision 
in lung cancer

Wouter Anton Christiaan van Amsterdam



Promotoren:
Prof. dr. P.A. de Jong	
Prof. dr. T. Leiner	

Copromotoren:
Dr. R. Ranganath	
Dr. J.J.C. Verhoeff	

Beoordelingscommissie:
Dr. J.A. De Langen	
Prof. dr. D.L. Oberski	
Prof. dr. R.H.H. Groenwold	
Prof. dr. P.J. van Diest	
Prof. dr. M. Koopman (voorzitter)	



Content list

Chapter 1:	 Introduction

Part I:	 Predicting overall survival for non-small cell lung cancer patients

Chapter 2:	 Prognostic factors for overall survival of stage III non-small cell lung cancer 
patients on computed tomography: A systematic review and meta-analysis

	 Radiotherapy and Oncology, 2020

Chapter 3:	 The association between psoas volume and overall survival depends on psoas 
radiodensity: a cohort study in non-small cell lung cancer

	 Journal of Personalized Medicine, 2022

Part II:	 Improving treatment decisions with individual treatment effect estimates

Chapter 4:	 Eliminating biasing signals in lung cancer images for prognosis predictions with 
deep learning

	 npj Digital Medicine 2019

Chapter 5:	 Individual treatment effect estimation in the presence of unobserved confounding 
using proxies: a cohort study in stage III non-small cell lung cancer

	 Scientific Reports 2022

Chapter 6:	 Conditional average treatment effect estimation with treatment offset models
	 Submitted

Chapter 7:	 Decision making in cancer: causal questions require causal answers
	 Submitted

Chapter 8:	 Discussion

Chapter 9:	 General summary

Chapter 10:	 Nederlandse Samenvatting

	 List of publications
	 Dankwoord
	 Curriculum Vitae

7

13

15

47

65

67

77

117

135

145

159

165

172
173
175





CHAPTER 1
Introduction





Introduction

1

9

Lung cancer is the greatest cause of cancer related death, both worldwide (1) and in the Netherlands (2). This is 
because lung cancer has a high incidence, meaning that it frequently occurs, and has a high mortality, meaning that it 
often leads to death. In half of the lung cancer patients in the Netherlands, the disease has already spread to other organs 
at the time of diagnosis (3). Curative treatment is no longer an option for these patients. Depending on how far the 
disease has spread, lung cancer is divided in four stages using the Tumor Node and Metastasis classification system (4) 
defined by the American Joint Committee on Cancer. Disease stage at the time of diagnosis is important for the available 
treatment options and for overall survival, with 5-year overall survival rates of 53% for stage I, 38% for stage II, 17% 
for stage III and 3% for stage IV (2). However, these are group-level statistics and there are large differences in survival 
between patients, even within a single stage. Once the diagnosis and stage are known for a specific patient two crucial 
questions remain: what is the prognosis? and what treatment options are available that have the best chance of improving 
the prognosis? Ideally, these two questions are answered on the level of the individual patient, not at the group level.

Individual prognosis: no two tumors are the same, no two patients are the same
There is great variability in overall survival between patients even within a single disease stage. For instance, for stage 

II lung cancer, 25% of patients will die within 1 year of diagnosis whereas another 25% of patients will still be alive after 
10 years (5). Part of the difference in survival will be due to pure chance. Indeed, random mutations cause cancer in the 
first place and play an important role cancer progression (6,7). Furthermore, overall survival depends on chance-events 
such as contracting infectious diseases, accidents and other unforeseeable events. Despite this intrinsic randomness, part 
of the variation in overall survival will be explainable based on characteristics of the tumor and the patient that can be 
measured at the time of the diagnosis. There is much research interest in discovering new characteristics of tumors that 
are related to patient prognosis. These tumor characteristics can be based on different types of medical examination, 
including physical examination, histologic examination, radiologic imaging, genetic profiling and molecular profiling. 
In addition to variation in the characteristics of the tumor, there are important differences between patients as well. If 
there are two patients with the exact same lung tumor but one patient is younger and in better overall health than the 
other, the younger patient will survive longer on average. A large field of research is dedicated to predicting patient 
outcomes using tumor and patient characteristics. Prognosis predictions are useful for patient counseling.

Individual treatment: all treatments are not equally effective for all patients 
and tumors

Prognosis predictions are relevant for patient counseling but do not answer what is arguably the most pressing 
question in cancer care: what treatment will have the best positive impact on the health outcome of an individual 
patient. The gold standard for estimating the effects of treatments are randomized controlled trials. In randomized 
controlled trials, patients are randomly assigned to receive one of the possible treatments under study. In a well 
conducted randomized trial, due to the randomization, any differences in health outcomes between the treatment 
groups is attributable to the causal effect of the treatment. A downside of randomized trials is that they generally estimate 
the treatment effect at the group level, whereas it is likely that different treatments are not equally effective for all patient 
subgroups. Whereas randomized trials estimate the average treatment effect, patients and doctors are more interested in 
the individual treatment effect: “what is the effectiveness of this treatment, given that we know the characteristics of this 
patient?”. Randomized controlled trials often do not include sufficient patients to estimate the individual treatment 
effect. Observational studies, where patients are treated according to the standard clinical care, generally include more 
patients than randomized trials and can potentially provide evidence on the effectiveness of treatments in different 
subgroups. As opposed to randomized trials, patients in observational studies who receive different treatments often 
differ with respect to important characteristics that also influence their outcomes, so called ‘confounders’. As a concrete 
example, stage I lung cancer patients are often treated with surgery, unless they are unfit for surgery in which case 
they are treated with radiotherapy. The older and weaker patients who are treated with radiotherapy have much worse 
overall survival than the patients treated surgery, but this difference in survival is not attributable to the causal effect 
of surgery versus radiotherapy, as the patient groups were not comparable to begin with. However, if two patients who 
receive different treatments are similar with respect to all confounders, the difference in outcome between these patients 
is attributable to the causal treatment effect. As a result, estimating treatment effects from observational data has an 
important complicating factor: the presence of confounders. Given the importance of estimating individual treatment 
effects, and given that randomized trials often provide insufficient evidence for this, methods that allow for inferring 
treatment effects from observational studies are of crucial importance.
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Outline of this thesis
This thesis is composed of two parts: in part 1 we present two studies on predicting prognosis for non-small cell 

lung cancer patients. The first is a summary of published literature that studies tumor characteristics that are visible on 
computed tomography scans of lung cancer patients. The second study focusses on patient characteristics and presents 
a new hypothesis on how the amount of muscle tissue and the density of the muscle tissue of a patient may be related 
to overall survival. In part 2 we present three studies that go one step further and estimate what the best treatment 
option is for an individual patient given their characteristics. The first study uses an advanced statistical method called 
‘deep learning’ to estimate the prognosis of a patient and the treatment effect based on medical images in the presence 
of a challenging causal problem called ‘collider bias’. In the second study we address an important issue in observational 
cancer research: the presence of unobserved confounders. This study presents a new method to estimate treatment 
effects when there are unobserved confounders but there are proxy measurements available. The third study investigates 
a method to convert treatment effect estimates on a relative scale to conditional average treatment effect estimates using 
the baseline risk of a patient. We finish with a comment that emphasizes that supporting treatment decisions is a causal 
task and thus requires causal approaches. Whereas much outcome prediction research is motivated by supporting future 
treatment decisions, the causal dimension of this task is often ignored, leading to substantial risk of harm. We elaborate 
on what is needed to conduct prediction research that is useful for supporting future decisions.
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Introduction: Prognosis prediction is central in treatment decision making and quality of life for nonsmall cell 

lung cancer (NSCLC) patients. However, conventional computed tomography (CT) related prognostic factors may 
not apply to the challenging stage III NSCLC group. The aim of this systematic review was therefore to identify and 
evaluate CT-related prognostic factors for overall survival (OS) of stage III NSCLC.

Methods: The Medline, Embase, and Cochrane electronic databases were searched. After study selection, risk of 
bias was estimated for the included studies. Meta-analysis of univariate results was performed when sufficient data 
were available.

Results: 1595 of the 11,996 retrieved records were selected for full text review, leading to inclusion of 65 studies 
that reported data of 144,513 stage III NSCLC patients andcompromising 26 unique CT-related prognostic factors. 
Relevance and validity varied substantially, few studies had low relevance and validity. Only four studies evaluated 
the added value of new prognostic factors compared with recognized clinical factors. Included studies suggested 
gross tumor volume (meta-analysis: HR = 1.22, 95%CI: 1.05–1.42), tumor diameter, nodal volume, and pleural 
effusion, are prognostic in patients treated with chemoradiation. Clinical T-stage and location (right/left) were likely 
not prognostic within stage III NSCLC. Inconclusive are several radiomic features, tumor volume, atelectasis, location 
(pulmonary lobes, central/peripheral), interstitial lung abnormalities, great vessel invasion, pit-fall sign, and cavitation.

Conclusions: Tumor-size and nodal size-related factors are prognostic for OS in stage III NSCLC. Future studies 
should carefully report study characteristics and contrast factors with guideline recognized factors to improve evidence 
evaluation and validation.
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Cancer is a major cause of mortality and a societal burden, which poses a medical challenge to this day 1. Lung 
cancer is one of the most common types of cancer with respect to incidence 2. The relatively low survival of lung cancer 
in conjunction with treatment induced toxicity emphasizes the importance of considering prognosis before making 
treatment decisions 1–7. Stage III non-small cell lung cancer (NSCLC) compromises a particularly difficult subgroup in 
this regard, because it represents a heterogeneous group of patients. Trials conducted in the last decade show improved 
survival outcomes compared to older trials, resulting from introduction of PET-CT and MRI for optimal staging (‘stage 
migration’) and from improvements in surgical treatment, radiotherapy, and introduction of immunotherapy. Still, only 
a proportion of all patients benefit from these intensive multimodality treatment schemes and a significant proportion 
experiences toxicity. This is the challenge presented to multidisciplinary boards: balancing the chance of disease curation 
and quality of life, making treatment decisions while taking into account risk factors as individual prognostic factors. 
Current guidelines acknowledge several prognostic factors including stage at diagnosis, performance status, gender, and 
weight loss 8. Prognostic factors can also be derived by medical imaging modalities. Of all modalities used in diagnosis 
and staging of NSCLC, computed tomography (CT) is most commonly used 9. CT, typically used to obtain information 
on tumor size and location, is integral for determination of clinical T-stage and N-stage 9,10. In recent years an abundance 
of articles considering factors for overall survival (OS) that can be measured by CT has been published 11–21. In order 
for these CT-related prognostic factors to become applicable in clinical practice, a clear overview should be created. 
Other common outcomes are progression-free and disease-free survival. We note these outcomes are mainly of interest 
for comparing treatment efficacy. OS is arguably the most relevant outcome from a patient perspective, therefore this 
review focusses specifically on OS. For these reasons, the aim of this study was to systematically review and appraise the 
evidence on CT-related prognostic factors for OS of stage III NSCLC patients, and to synthesize the evidence with a 
meta-analysis where possible.

Methods
Search strategy

This study was pre-registered in the PROSPERO registration of systematic reviews (registration number/ID 160936). 
The Medline (via PubMed), Embase, and Cochrane electronic databases were searched for literature (last queried on 30-
09-2019). The search terms consisted of terms reflecting domain, determinant, and outcome of the research question. 
The complete queries are available in Appendix B.

Study selection
Studies retrieved by this search term were screened on title and abstract using the online screening tool Abstrackr 22.  

A blinded pilot title/abstract screen of 100 articles was completed by 2 independent reviewers (MvL, WA), conflicts 
were resolved via consensus by the 2 reviewers. During the following full text review selected publications, reviews, and 
editorials were screened for cross-references. Original studies discussing the effect of a prognostic factor for OS that can 
be measured on CT prior to treatment allocation of stage III NSCLC patients were included. Excluded were studies 
not including stage III NSCLC patients, considering no CTrelated prognostic factors for stage III NSCLC patients, 
written in a language other than English, French, German, or Dutch, and studies that explicitly stated consisting of only 
pathological staged patients (n = 17), because initial treatment decisions can only be based on clinical stage 9. The utilized 
TNM-staging system was used as a relevance criterion. Additionally, when multiple studies explicitly stated use of the 
same patient cohort, the publication with the most recent data was included. Finally, results of multivariable analyses 
of studies containing a stage III patient number per variable below 5 or containing variables measured after treatment 
initiation (n = 6), were excluded from analysis.
Data collection

Data was extracted from the inclusions with a data extraction sheet based on the Cochrane Handbook 23, which was 
piloted for 2 randomly selected publications. After some adjustments were made during a consensus meeting (MvL, WA, 
JV), the final version (Appendix D) was used to extract data regarding baseline characteristics, treatment, prognostic 
factors, outcome measures, and general study information, including the utilized TNM-staging system edition. Where 
the utilized edition was not specified, an estimate was made based on both inclusion period and references of the article. 
In cases where outcome measures were reported as model coefficient, the hazard ratio was calculated by exponentiating 
the model coefficient.

Risk of bias assessment
A grading system for critical appraisal was designed, based on the SIGN and TRIPOD 24,25, to separately assess 

relevance and validity of included publications on outcome level. After piloting for 4 random inclusions, some 
adjustments were made during a consensus meeting (MvL, WA, JV), giving rise to the final version (Appendix C), 
which was used to assess both relevance and validity of all inclusions.
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Statistics
A meta-analysis was performed on model coefficients from univariate models of prognostic factors when three or 

more studies reported at least either: the HR and associated standard error, HR and p-value, or a confidence interval. 
When the reported HR was numerically identical to either the upper bound or lower bound of the confidence interval 
(e.g. due to rounding), this study was excluded from the meta-analysis.

As the Cox proportional hazards model models the hazards as log-hazard ratios, we log-transformed all hazard ratios, 
standard errors, and confidence intervals before pooling. When not directly reported, the standard error of the log-HR 
was recalculated using the range of the log-HR confidence interval (upper minus lower) divided by 3.92 (which is the 
number of standard deviations included in the 95% confidence interval). If the absolute difference between the upper 
and the lower was less than 0.05 (leading to numerical inaccuracies due to rounding), or when the CI was not reported 
but the p-value was, we recalculated the standard error using the p-value. For this calculation we assumed that the pvalue 
was calculated based on a Chi-square distribution with one degree of freedom on the Wald-statistic, which is the default 
method for calculating the p-value in most statistical software packages. For continuous prognostic factors, the log-HR 
was standardized to a similar unit of measurement. As the included studies ranged a wide period of inclusion times, 
different TNM staging methods, and different treatment modalities, we used a randomeffects model to pool results, 
utilizing the Paule-Mandel method for estimating between study variance τ 26. In addition, between study heterogeneity 
was estimated using Higgin’s & Tompson’s Ι2 27. We did not perform meta-regression, nor did we perform the Egger’s 
test for publication bias as the number of studies was <10 for each comparison 28. The meta-analysis was performed in 
R, version 3.6.3, using packages ‘meta’ and ‘dmetar’ 29,30.

Results
A total of 11,996 records were retrieved (519 duplicates; Fig. 1), consisting of 10,108 results on Medline, 1863 on 

Embase, and 25 on Cochrane. The 1595 publications selected for full text review yielded 53 original publications, 8 
reviews and 3 editorials. After searching cross-references, a total of 65 original publications were included.

Fig. 1. Flow chart of study selection: Flow chart 
of study selection from the Medline, Embase, and 
Cochrane database. 
Abbreviations: CT: Computed tomography, 
NSCLC: Non-small cell lung cancer.
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The 65 inclusions reported data of 144,513 stage III NSCLC patients (112,082 reported stage IIIA, 31,888 
IIIB, and 53 IIIC; Table 1). These studies yielded a total of 26 unique CT-related prognostic factors. Most studies 
had a retrospective cohort study design; nine studies reported a prospective cohort study design 14,20,31– 37. In studies 
reporting follow-up duration, median follow-up ranged from 10 to 70.8 months. Thirty inclusions explicitly stated 
using a clinical staging method 12,14,16,21,31,33,36,38–60, while a combination of clinical and pathological staging was used 
in 3 studies 61–63. The remaining 32 studies did not specify the staging method 11,13,15,17,18,20,32,34,35,37,64–85. More recent 
staging systems TNM6 (2002, n = 9), TNM7 (2009, n = 23), and TNM8 (2017, n = 3) were used in 35 publications 
11–13,15,16,33,35,36,38,39,42,46,47,49,51,52,54–57,59,61–63,65,66,68,72,73,75,76,78,80,81,85. Use of less recent staging systems, such as TNM4 48,67 and 
TNM5 14,43,74,79, was stated in 6 inclusions. In critical appraisal, studies that made use of the less recent staging systems 
were considered to be less relevant. The remaining 24 publications did not explicitly report the utilized staging system.

The stage III cohort generally consisted of multiple histological types with a majority of squamous cell carcinoma and 
adenocarcinoma patients, except for 2 studies which consisted solely of adenocarcinoma 17 or squamous cell carcinoma51 

patients and 10 studies in which histological type was not reported specifically for stage III patients 14,31,33,35,39,74 or 
at all 20,50,64,70. Stage III patients were treated exclusively with chemotherapy and/or radiotherapy in 39 studies 11–

13,15,18,20,21,31,32,34–36,41,45,47,48,51,53–56,58–60,64,65,67,70–72,74,76,77,80–85, while surgery was an option in 25 publications 14,16,17,33,37–40,42–

44,46,49, 50,52,57,61–63,66,68,73,75,78,79. A single study did not report treatment modalities 69.
Finally, it should be taken into account that 4 studies made use of the Surveillance, Epidemiology, and End Results 

(SEER) database with a similar inclusion period and studied the same prognostic factor, indicating that their data is 
likely to overlap 49,68,69,78. Overlap of recruitment period and measured prognostic factors was also present in 5 cohort 
studies that took place at the MD Anderson Cancer Center 11,35,41,65,76, and 2 at the Stanford University School of 
Medicine 64,70 and National Cancer Center Hospital East 45,52. The results of studies with presumed overlapping data, 
taking the individual relevance and validity of the studies into consideration, were treated as results of a single study in 
data analysis.

The score for relevance ranged from low to high. Five publications were considered to have a high and 8 a low 
relevance, 52 a medium (Appendix Figure C.3, Table C.3). Low relevance was assigned due to a lack of explicit 
description of patient characteristics in the stage III cohort 32,50,69, or pronounced discrepancies with the standard stage 
III population 17,61–63,85. Most studies (n = 62) were estimated to have a medium validity. Two studies were assessed 
to have a high validity 13,71 and 1 study had an estimated low validity, as it did not report confidence interval (CI) or 
p-values 11. In Appendix C results of critical appraisal are described in more detail.

In the 65 inclusions, 26 individual CT-related prognostic factors for OS of stage III NSCLC patients were described. 
These 26 factors were divided in 5 categories: Radiomic features (Homogeneity, Kurtosis, Standard deviation, Entropy, 
Skewness, Mean HU, Largest axial slice average, Average, Largest axial slice uniformity, Busyness, Infomc1, Sosvariance), 
Size-related prognostic factors excluding T-stage (Tumor diameter, Tumor volume, Gross Tumor Volume), T-stage, 
Nodal factors (Lymph node volume, Lymph node diameter), and Other CT-related prognostic factors (Atelectasis, 
Location, Cavitation, Cavitary wall thickness, Interstitial lung abnormalities, Great vessel invasion, Pit-fall sign, Pleural 
effusion).

Two inclusions studied radiomic features, yielding 12 individual prognostic factors (Table 2) 11,12. Both studies 
consisted of stage IIIA and IIIB patients treated with concurrent chemoradiation with a similar distribution of 
histological subtypes to other inclusions. The association between homogeneity, kurtosis, standard deviation, entropy, 
skewness, and mean Hounsfield unit (HU) and OS was studied in a single publication. Entropy and skewness were 
calculated from the HU-histogram. Entropy reflects irregularity in HU-values, while skewness reflects asymmetry 
of the histogram. While homogeneity, kurtosis, and standard deviation were not significant on univariate analysis, 
entropy, skewness, and mean HU were significant in both univariate and multivariable analysis 12. In the second study, 8 
radiomic features were measured on either contrast enhanced or 4D-CT scans giving rise to average intensity projection 
and expiratory phase images. Considering the diverse measurement techniques (LoG, IHIST, GRAD, NGTDM, 
COM), outcomes of 12 unique factors were reported as coefficients in a model for OS. This model was reported to 
be significantly better than the model containing solely conventional prognostic factors. However, metrics regarding 
individual statistical significance were not reported, meaning that while included factors are likely to be significant, their 
individual prognostic value remains uncertain. It should also be noted that the first study did not specify the utilized 
software, meaning that comparability of the 2 studies is decreased 11. In summary, both inclusions indicated radiomic 
features with potential, including entropy, skewness, mean HU, largest axial slice average, largest axial slice uniformity, 
HU kurtosis, HU infomc1, HU standard deviation, and HU sosvariance, which should be validated in larger cohorts.

Three size-related prognostic factors were found across 38 inclusions (Table 3): Tumor diameter 16,32,34,38,45,48–

52,57,58,60,68,69,78,83, Tumor volume 16,18,66,67,71,73,80,81, and Gross Tumor Volume (GTV) 11,13,15,18,21,35,41,47,54,64,65,70, 73,74,76,77,80. 
Tumor volume and GTV were considered unique prognostic factors, as GTV encompasses both the volume of the 
primary tumor and involved lymph nodes 11,13,15,18,41,64,65, where tumor volume includes only primary tumor volume 
13,16,66,67,71.
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Prognostic factors for overall survival of stage III non-small cell lung cancer patients on computed tomography:
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Tumor diameter (the longest diameter of the primary tumor in the transverse plane) was tested as a prognostic 
factor for OS in 17 inclusions 16,32,34,38,45,48–52,57,58,60,68,69,78,83. These studies had diverse characteristics. Of the 5 studies 
that consisted solely of stage IIIA patients receiving surgery, 3 did not find significance in univariate and multivariable 
analysis 38,49,50,52,57,78. The 2 studies that did find significance were derived from the SEER database with a similar 
inclusion period, meaning they may contain overlapping data. Taking this into account, the majority of included 
analyses indicate tumor diameter is not prognostic for this patient subgroup. Significance was reported in 3 of the 6 
studies consisting of stage IIIA and IIIB patients receiving chemoradiation 34,45,48,51,58,60. However 2 of the studies that 
respectively reported insignificance in univariate and multivariate analysis used an older version of the TNM-staging 
system (TNM2/3 and TNM4) and were therefore less comparable with the other studies. This implies tumor diameter is 
a prognostic factor for stage IIIA/B patients treated with chemoradiation. Three studies consisting of stage IIIA and IIIB 
patients that did not specify treatment 69 or included surgery as treatment modality 16,57, decreasing their comparability 
to the other 6, respectively reported significance in univariate and multivariable analysis, and insignificance in univariate 
and multivariate analyses. The final 3 studies found significance in univariate and multivariable analysis, consisting 
exclusively of stage IIIB/C patients, who received chemoradiation 32, surgery 68, or microwave ablation in their respective 
studies 83. While Morgensztern et al. (2012) 69 also did a subgroup analysis for stage IIIB patients, it should be taken 
into consideration that both William et al. (2009) 68 and Morgensztern et al. (2012) 69 extracted data from the SEER 
database using the same inclusion period, and are therefore likely to have overlapping data. Therefore, included data 
indicates tumor diameter is prognostic for stage IIIB NSCLC patients, as all included analyses indicated significance.

Tumor volume was studied in 8 publications 16,18,66,67,71,73,80,81, which were relatively comparable, with exception of 
3 studies, including Alexander et al. (2011) 66, which consisted of cohorts where surgery was a treatment option 16,66,73. 
In these 3 studies, 2 of which were conducted at the same institution with overlapping inclusion period, tumor volume 
was insignificant in univariate analysis 16,66,73. However, Alexander et al. (2011) 66 did a subgroup analysis for patients 
receiving only chemoradiation, which was comparable in characteristics to the other 5 studies 18,67,71,80,81. In these studies 
significance was reported in 1 out of 5 univariate 18, and 2 out of 4 multivariable analyses 18,66. Nevertheless, it should be 
taken into consideration that one of the studies which reported insignificance made use of version 4 of the TNM staging 
system, and was therefore perceived as less relevant in data analysis. Therefore included data is too heterogeneous to make 
firm conclusions regarding tumor volume as a prognostic factor for stage III NSCLC patients receiving chemoradiation.

The prognostic effect of GTV was studied in 17 inclusions 11,13,15,18,21,35,41,47,54,64,65,70,73,74,76,77,80. GTV was significant in 
8 out of 16 univariate and 7 out of 9 multivariable analyses. It should, however, be taken into consideration that 1 study, 
which reported insignificance in univariate analysis, had surgery as a treatment option 73, complicating its comparison 
with other inclusions. Other than this, the cohorts of included studies seemed to correspond concerning treatment and 
composition of stage. Two publications that reported significance and insignificance in univariate analysis respectively 
were conducted at the same institution with a similar recruitment period 64,70. Chance of overlapping data was also 
present in 5 other studies 11,35,41,65,76, 4 of which reported significance in univariate and multivariable analyses, and 1 
insignificance in univariate analysis.

The univariate results of eligible inclusions for GTV were pooled in a meta-analysis (Fig. 2A). Warner et al. (2016) 77 

was excluded as it reported an Odds Ratio from a logistic regression, as opposed to a HR. Three studies were excluded 
from the meta-analysis as the reported point estimate of the HR coincided numerically with either the upper or lower 
bound on the confidence interval 21,73,76. Lee et al. (2016) 80 was excluded as it did not report the point estimate or 
the confidence interval. The five remaining inclusions had no reason to suspect overlapping patient cohorts 13,15,35,54,64. 
None of these studies included surgery as a treatment option. Three inclusions did not report the unit of measurement 
for GTV 13,15,64. For these studies, the unit of measurement was inferred from the reported median or mean tumor 
volume. The estimated heterogeneity between these studies was substantial (Ι2 = 50.2%, τ = 0.12). The pooled estimate 
for the HR of GTV measured in units of 100 cm3 for overall survival is HR = 1.22 (95% CI 1.05–1.42, p = 0.008). 
Considering this evidence, along with the observation that it was significant in majority of multivariable analyses even 
when comparability of the studies and potential overlapping data was taken into account, it is likely that Gross Tumor 
Volume is a prognostic factor.

In the 29 publications studying clinical T-stage, T-stage was divided in several different discrete groups (Table 4) 
15,18,21,31,36,37,40,43,46,48,50,53,54,56–59,61,62,65,67,71–73,75,76,79,84,85. Fourteen publications evaluated its prognostic influence 
dichotomized in a T3- and T4-stage group and a (T0-) T1- and T2-stage group 15,21,31,48,53,54,56,58,59,61,65,71,72,85. In this 
way, T-stage was found to be significant in univariate analysis of 2 studies 54,58 and multivariable analysis of 1 study 48,  
but insignificant in univariate and multivariable analyses of the other 11 studies 15,21,31,53,56,59,61,65,71,72,85. However, 
characteristics of 1 study, which did not report significance in univariate analysis, were different considering study 
population, consisting of clinically and pathologically staged IIIA patients, and treatment, including surgery. Therefore, 
these studies cannot be directly compared with the other studies, which were comparable regarding study characteristics 
(Table 1) 61. It should also be taken into account that the studies used different versions of the TNM staging system, 
which considering the changes made in T-stage between TNM6/7/8 further complicates the comparison of the studies.
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Fig. 2. Forest plot outcome meta-analysis: Forest plots of the outcome of the meta-analysis of: (A) GTV, (B) T1-2 vs 
T3-4, (C )T1 vs T2, (D) T1 vs T3, and (E) T1 vs T4. In (A) while the results from Gensheimer et al. 64 were included in 
the meta-analysis, the weight of the study was 0.0% due to the high variance. We excluded these results from the forest 
plot because they made visual comparison of the other studies impossible.

In order to pool the reported results, the presence of T0 patients was ignored and T0–2 was assumed to be equivalent to 
T1–2, as the proportion of T0 patients was <2% 54: Eight inclusions reported a HR and confidence interval for the T-stage 
1–2 vs 3–4 comparison with a total of 677 patients (Fig. 2B) 21,31,54,59,61,71,72,85. There was no indication of heterogeneity 
between the studies (Ι2 = 0.00%, τ = 0.00). The pooled HR was 1.22 (95% CI 0.99–1.50, p-value = 0.06). This result is 
close to the nominal statistical significance level. As a sensitivity analysis we performed a meta-analysis excluding studies 
that reported surgery as a treatment option (7 studies, pooled HR 1.21, 95% CI 0.95–1.53, p = 0.12), and restricting to 
TNM 7 studies (6 studies, pooled HR 1.20, 95% CI 0.96–1.50, p = 0.11), leading to similar results. Taking all this into 
account, it is unlikely that the univariate clinical T1– 2 vs 3–4 comparison holds prognostic value within a stage III cohort. 
Also, the majority of comparable multivariable analyses found no significant correlation with OS.

Secondly, 8 studies compared T1-stage with T2-stage, T3-stage, and T4-stage. This comparison did not yield 
significance in any of the reported univariate and multivariable analyses 18,36,48,57,62,67,73,76. The cohorts of 6 of these studies 
consisted of stage IIIA and IIIB patients with a relatively comparable distribution. The other 2 studies consisted mainly 
or only of stage IIIA patients making them less comparable. One of these 2 was estimated to have a low relevance for 
utilization of both clinical and pathological staging 57,62. The patients in the 6 other studies received radiotherapy and/or 
surgery, and had a relatively comparable distribution of histological subtypes to each other and the other inclusions. A 
further complication for the comparison was the aforementioned use of different versions of the TNM-staging system. 
However for this comparison no well-defined subgroup for analysis could be performed, due to the heterogeneity of the 
studies. For the clinical T1 vs T2 comparison (Fig. 2C), four studies were available for meta-analysis 36,62,73,76. There was 
no indication of heterogeneity between the studies (Ι2 = 0.00%, τ = 0.00).

The pooled HR was 1.18 (95% CI 0.98–1.41, p = 0.07). For the comparisons T1 vs T3 and T1 vs T4, three studies 
were available (Fig. 2D, E) 36,62,76. There was moderate heterogeneity in the T1 vs T3 studies (Ι2 = 49.4%, τ = 0.24), the 
pooled HR was 1.30 (95% CI 0.89–1.91, p = 0.18). For the T1 vs T4 comparison there was also moderate heterogeneity 
(Ι2 = 31.8%, τ = 0.22), the pooled HR was 1.02 (95% CI 0.71–1.46, p = 0.93). These results provide additional evidence 
that T-stage is not prognostic for OS of stage III NSCLC patients.

The effect of clinical T3-stage on OS in comparison to T1- and T2-stage was measured in 3 studies 37,40,43. These 
inclusions consisted solely of stage IIIA patients submitted to surgery. While the study populations were comparable 
to each other, this reduced their comparability to the overall stage III NSCLC population. However, as 2 of these did 
not explicitly state the utilized TNM-staging system their comparison was complicated. Significance was reported in 
univariate analysis of 1 publication 43, while the other 2 reported insignificance 40. Consequently, included data indicates 
this comparison is not significant for stage IIIA patients receiving surgery.

Finally, 5 studies with alternative or unspecified comparisons reported T-stage to not be statistically significant for 
OS in univariate and 1 out of 2 multivariable analyses 46,50,75,79,84. Four of these reported surgery as a possible treatment 
modality, and, as 2 consisted only of stage IIIA patients, their relevance was lower.
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Prognostic factors for overall survival of stage III non-small cell lung cancer patients on computed tomography:
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Two prognostic factors specifically concern the involved lymph nodes. Nodal volume was measured in 5 studies 
(Table 4) 18,36,66,80,81. Regardless of the presence of patients receiving surgery, nodal volume was found to be significant 
in univariate and multivariable analysis of 3 studies 36,66,81, but not in univariate and multivariable analysis of the other 
2 18,80. The studies were comparable to the subgroup analysis for patients who received exclusively chemoradiation, in 
distribution of stage IIIA/ IIIB and histological subtypes. Considering all this, total lymph node volume is likely to be a 
prognostic factor for stage III patients.

Dichotomized nodal diameter was not found to be significant in univariate analysis of a single study 37. This study 
consisted of only stage IIIA patients treated with surgery, and was therefore not representative for the standard stage III 
population. As this only concerns a single study, no definite conclusions can be drawn.

Prognostic factors that could not be classified as size, nodal, or texture-related, were classified as other CT-related 
prognostic factors (Table 2). These included 8 unique factors: Atelectasis/ Obstructive pneumonitis 20,67, Location 
18,34,42,48,49,52, 62,63,71,72,75,78, Cavitary wall thickness 17, Cavitation 33,44,51, Interstitial lung abnormalities 55, Great vessel 
invasion 82, Pit fall sign 14, and Pleural effusion 39.

Atelectasis was studied in 2 inclusions, in 1 as a dichotomous factor 20 and in the other as a discrete variable with more 
than 2 levels 67. Atelectasis did not yield significance in univariate analysis as a discrete factor 67, but did as a dichotomous 
factor 20. Both the studies consisted of stage IIIA and IIIB patients receiving chemoradiation. The representativeness of 
the publication that considered atelectasis as a dichotomous factor for the entire stage III NSCLC population cannot be 
fully assessed, as it did not report the distribution of histological subtype 20. Additionally, the relevance of publication 
that considered atelectasis as a discrete factor was decreased, as it made use of an older version of the TNM staging 
system. Due to these issues in the 2 publications, no concrete conclusion can be made.

Twelve studies reported data on the effect of tumor location on OS in several discrete ways 18,34,42,48,49,52,62,63,71,72,75,78.  
Four inclusions compared presence in the right and left lung 18,49,63,72, another 2 between central and peripheral location 
62,71. For both comparisons no significance was reported in univariate analysis. However 1 study for each of the 2 
respective comparisons was estimated to have a low relevance on behalf of consisting of clinically as well as pathologically 
staged III patients 62,63. As a consequence, considering most of the other studies seemed to be representative for the 
overall stage III NSCLC population 18,71,72, the inclusions give little reason for future research of left/right location. The 
final comparison was between pulmonary lobes, for which a significant correlation was found in 2 out of 5 univariate 42,48 
and 2 out of 3 multivariable analyses 34,48. It should be noted, however, that in 3 studies which found no significance and 
1 which found significance, patients were treated with surgery, decreasing their comparability to the other study cohorts 
42,52,78. Concluding, considering the heterogeneity of the inclusions data, regarding both central/peripheral location and 
tumor location by lobes remains inconclusive.

Two prognostic factors concern cavitation: appearance of a region with lower density within the tumor mass. 
Cavitation itself was studied in 3 publications, in which it was reported to be significant in 1 out of 3 univariate 
analyses and in multivariable analysis 33,44,51. It should however be noted that 1 study, in which no significance was 
found, consisted only of IIIA patients treated with surgery. Cavitary wall thickness was reported not to be a significant 
prognostic factor in a subgroup analysis of a single study for stage III patients treated with surgery 17. However, this 
cohort was not representative for the overall stage III population, consisting exclusively of adenocarcinoma patients, and 
because tumor cavitation is present in less than 25% of lung cancer cases 86. However, due to the relatively limited data 
no definite conclusions can be drawn about factors concerning cavitation.

The last four CT-related prognostic factors were measured in single studies. Both interstitial lung abnormalities and 
great vessel invasion were reported to be not significant as prognostic factors in a stage III NSCLC cohort 55,82. Pit fall 
sign, studied in subgroup analyses for stage III NSCLC patients treated with surgery, was not found to be significant. 
However, these results were based on only 16 stage III patients and should be verified in a larger stage III cohort 14. The 
effect of pleural effusion, analyzed in a stage IIIA and IIIB specific manner, was reported to be significant in univariate 
analysis in stage IIIA patients, and in both univariate and multivariable analysis in stage IIIB patients 39.

Discussion and conclusion
In this systematic review and meta-analysis, 26 unique CTrelated prognostic factors were identified for OS in 65 

studies comprising 144,513 stage III NSCLC patients. Inclusions indicated Tstage is unlikely to be prognostic for OS 
of stage III NSCLC patients treated with chemoradiation, as it was found to be insignificant in the majority of analyses 
15,18,21,31,36,37,40,43,46,48,50,53,54,56–59,61,62,65,67,71–73,75,76,79,84,85. Although population characteristics of publications concerning size-
related prognostic factors were heterogeneous, there was an indication that GTV, tumor diameter, and nodal volume are 
prognostic for OS of stage III patients receiving chemoradiation 11,13,15,18,21,32,34–36,41,51,58,64–68,70,71,74,77,80,81,83, but that this may 
not be the case for tumor volume and diameter in cohorts containing NSCLC patients receiving surgery [16,38,66,68]. 
This could potentially be explained by the aim of surgery to remove the tumor and involved lymph nodes, which could 
conceivably undermine size-related prognostic effects 87. While tumor diameter and volume are related, it is notable that 
we could not draw any conclusions regarding tumor volume for stage III patients receiving chemoradiation. This was 
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mainly caused by the heterogeneity of the included data, which also hampered the analysis of other factors including 
atelectasis and location (by pulmonary lobe). The exact extent of heterogeneity in the data is discussed below 16,18,32,34,36–38, 

45,48–52,58,60,66,68,69,78,80,81. Furthermore, T-stage, which is partially determined by tumor size as proposed by the international 
association for the study of lung cancer 88,89, did not seem to hold prognostic value within NSCLC cohorts consisting solely 
of stage III patients, while GTV and tumor diameter did. A potential explanation is that in cohorts restricted to stage 
III patients Nstage is dominant in OS of patients with smaller tumors. Additionally restricting the analysis to stage III 
patients may reduce the variation in T-stage between patients to greater extent than it reduces variation in tumor size, as the 
T-stage directly influences overall stage. Similarly, a decrease in T-stage necessarily entails an increase in N-stage for stage III 
patients, lowering the relevance of univariate prognostic models of these factors.

The 2 included studies concerning radiomic features suggest several features (including entropy, skewness, mean 
HU, largest axial slice average, largest axial slice uniformity, HU kurtosis, HU infomc1, HU standard deviation, and 
HU sosvariance) have potential prognostic value for stage III NSCLC patients receiving chemoradiation. However, 
considering this concerned only 2 studies and the vulnerability of radiomic features to difficulties in validation 90,91, 
we feel this group of prognostic factors warrant separate review. These factors should be validated in a larger cohort 
11,12. Finally, of the other CT-related prognostic factors, location (right/left) is not likely to be a prognostic factor 18,71,72. 
Pleural effusion did, however, seem to be a prognostic factor in a single study 39. No concrete conclusions could be 
drawn concerning atelectasis, cavitation, and location (by pulmonary lobes, central/peripheral), as evidence was too 
heterogeneous 18,20,33,42,44,51,67, or for cavitary wall thickness and pit fall sign, as the stage III subgroup of their studies was 
not representative for the standard stage III NSCLC population 14,17. More research is warranted to validate these results.

This study presents an overview of prognostic factors for OS of stage III NSCLC patients. Several potential 
prognostic factors were identified, which could be used to direct future research. Several factors hamper the strength 
of the conclusions that can be drawn from this systematic review. In 32 studies the utilized staging method (clinical/
pathological) was not specified 11,13,15,17,18,20,32,34,35,37,64–80,85. Three inclusions even compared patients with pathological and 
clinical stage III 61–63.We recommend that future studies into prognostic factors are reported according to the TRIPOD 
reporting guidelines to increase their scientific value and facilitate the use of their results in meta-analysis 24. Additionally 
clinical staging is preferred to pathological staging, because, even though in theory pathological stage correlates better to 
prognosis, ultimately only clinical stage is available for treatment decisions 9,92,93.

Another limitation was that CT-related prognostic factors were not often the primary focus of the included articles. 
This may have led to relevant articles not being retrieved with the utilized search terms.

We were unable to estimate the risk of publication bias from the provided data due to the low number of studies per 
prognostic factor. As virtually all studies reported the results on multiple prognostic factors instead of just one, it is less 
likely that a nonsignificant result for one of the prognostic factors would have reduced the probability of publication. 
However, for continuous prognostic factors or prognostic factors with multiple categories, there are several ways to 
include this variable in the analysis. The way a variable was entered in the analysis (e.g. dichotomized GTV or choosing 
groups of T-stage for comparison) could be driven by the data and reasons behind these choices were hardly ever 
reported. This increases the risk of false positive findings.

Additionally, inclusions were found to be heterogeneous in distribution of histological subtypes, stage IIIA/IIIB, 
and treatment modalities. This limited the analysis of several prognostic factors including atelectasis 20,67, and location 
(by pulmonary lobes) 18,42. It should also be noted that surgery was reported to be a treatment option in 25 of the 
65 inclusions 14,16,17,33,37–40,4 2–44,46,49,50,52,57,61–63,66,68,73,75,78,79. Considering surgery might influence the relevance of size-
related prognostic factors 92,93, these studies may not be comparable to stage III cohorts receiving chemoradiation alone. 
Finally, OS was measured from distinct time points 12–14,18,21,31–33,35,36,38,40–45,47,48,51,52,59,60,64–66,71–74,77,85: where some used OS 
measured from the first day of chemoradiation treatment onwards 12,13,18,32,42–44,55,57,59,60,63–65,71–73,81–85, others measured OS 
from time of diagnosis 16,20,34,37,39,46,49,50,53,56, 61,67–69,78,79. This complicates comparisons between study cohorts.

Notably, only 6 studies included weight loss in multivariable analysis, even though it is a prognostic factor recognized 
by guidelines 39,45,51,53,59,74. Moreover, performance status was included in only 12 of 65 publications 11,18,34,39,45,48,59,61,65

,70,74. The value of new prognostic markers should be evaluated in light of existing ones. It is recommended for future 
research to explicitly include comparisons with the established prognostic markers weight loss and performance status.

Considering these heterogeneities between the included studies, which hampered our ability to come to strong 
conclusions concerning both the significance and clinical relevance of the aforementioned prognostic factors, including 
tumor volume, we suggest future studies report the employed staging system (clinical or pathological, and TNM version), 
received treatments, presence and handling of missing data, effects sizes, and measures of uncertainty such as confidence 
intervals. Additionally we advise studies concerning radiomic features to carefully describe the methods used to obtain 
the results, for reproducibility and future data analysis, specifically in the ways suggested by Zwanenburg et al. (2020) 90 
and Welch et al. (2019) 91. Finally, future studies should compare the measured prognostic factor with those recognized 
by the clinical guidelines (weight loss and performance status) and validated prognostic factors from other studies.

In conclusion, Gross Tumor Volume, tumor diameter, nodal volume, and pleural effusion are likely to be prognostic 
factors for OS of stage III patients treated with chemoradiation. Several radiomic features have potential prognostic 
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value. Additionally, the combined evidence strongly indicates that T-stage and location (right/ left) are not prognostic for 
OS within the group of stage III NSCLC patients. Finally, the included evidence concerning tumor volume, atelectasis, 
location (by pulmonary lobes, central/peripheral), pit fall sign, and cavitation remains inconclusive. Regarding these 
prognostic factors, more research is needed before firm conclusions can be made and clinically relevant prognostic 
factors could be used to improve treatment decisions. To improve the evaluation of evidence, future studies should both 
carefully report the employed staging system, received treatments, effects sizes and measures of uncertainty, and contrast 
the measured prognostic factor with guideline recognized prognostic factors in addition to those from earlier studies, as 
presented in this systematic review.
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The prognostic value of CT-derived muscle quantity for overall survival (OS) in patients with Non-Small Cell Lung 
cancer (NSCLC) is uncertain due to conflicting evidence. We hypothesize that increased muscle quantity is associated 
with better OS in patients with normal muscle radiodensity but not in patients with fatty degeneration of muscle tissue 
and low muscle radiodensity.

We performed an observational cohort study in NSCLC patients treated with radiotherapy. A deep learning algorithm 
was used to measure muscle quantity as psoas muscle index (PMI) and psoas muscle radiodensity (PMD) on computed 
tomography. The potential interaction between PMI and PMD for OS was investigated using Cox proportional-
hazards regression. Baseline adjustment variables were age, sex, histology, performance score and body mass index. We 
investigated non-linear effects of continuous variables and imputed missing values using multiple imputation.

We included 2840 patients and observed 1975 deaths in 5903 patient years. The average age was 68.9 years (standard 
deviation, 10.4, range 32 to 96) and 1692 (59.6%) were male. PMI was more positively associated with OS for higher 
values of PMD (hazard ratio for interaction 0.915; 95% confidence interval 0.861 – 0.972; p-value 0.004).

We found evidence that high muscle quantity is associated with better OS when muscle radiodensity is higher, in a large 
cohort of NSCLC patients treated with radiotherapy. Future studies on the association between muscle status and OS 
should accommodate this interaction in their analysis for more accurate and more generalizable results.
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Introduction
Skeletal muscle quantity is related to patient prognosis in Non-Small Cell Lung Cancer (NSCLC) for several reasons. 

First, muscle loss occurs more frequently in patients with aggressive tumors with high catabolic activity [1]. Second, 
patients who have low muscle mass are less capable of enduring intensive anti-cancer treatments such as surgery [2], 
chemotherapy [3] and radiotherapy [4]. 

Standardized measurements of muscle quantity on computed tomography (CT) scans are the psoas muscle index 
(PMI) and the skeletal muscle index (SMI). PMI is defined as the cross-sectional area of the psoas muscle on the CT 
slice corresponding to lumbar vertebra 3 (L3), divided by the square of the height of a patient [5]. SMI is analogously 
defined by taking the cross-sectional area of all skeletal muscle on the L3 slice instead of only the psoas muscle. Studies 
in NSCLC patients report that higher muscle quantity correlates with improved Overall Survival (OS) [6–8], improved 
progression-free survival [9] and better response to treatment [10]. However, most of these results represent univariable 
associations and several studies did not find that muscle quantity was correlated with these outcomes [1, 11–13]. In 
addition to muscle quantity, the radiodensity of muscle tissue has gained interest as a potential prognostic marker in 
NSCLC as well [11–17]. Pro-inflammatory cytokines are elevated in cancer patients and lead to fatty infiltration of 
muscle tissue. Fatty infiltration can be measured on a CT scan as fat tissue has a lower radiodensity than muscle tissue. 
Standardized measurements of fatty muscle infiltration are the average radiodensity in the psoas muscle area on the L3 
level, known as psoas muscle radiodensity (PMD), and the analogous average radiodensity in all skeletal muscle on L3, 
skeletal muscle radiodensity (SMD).

PMD and SMD provide measurements of the extent of fatty infiltration of muscle tissue. When muscle tissue is 
replaced by intra-muscular adipose tissue, muscle strength decreases. We therefore hypothesize that in patients with 
high muscle radiodensity, muscle quantity is more positively associated with OS than in patients with low muscle 
radiodensity. This would imply that there is a statistical interaction between muscle quantity and muscle radiodensity 
for OS. Whereas there is a large body of research on the prognostic value of muscle quantity and muscle radiodensity 
for OS in lung cancer separately (see for example these systematic reviews: [18, 19]), few studies have investigated the 
associations of both muscle quantity and muscle radiodensity with OS [11–17]. Whether the association between 
muscle quantity and OS depends on muscle radiodensity has not been studied before. If the association between muscle 
quantity and OS indeed depends on muscle radiodensity, the apparent association between muscle quantity and OS will 
differ across studies if their study populations differ in distribution of muscle radiodensity. If our hypothesis is true, OS 
prediction models that include the interaction between muscle quantity and muscle radiodensity will be more accurate 
and more stable across populations. Therefore, we investigated whether there is a statistical interaction between muscle 
quantity and muscle radiodensity for OS prediction in a large cohort of NSCLC patients treated with radiotherapy.

Materials and Methods
Data source

We conducted a retrospective observational cohort study at the department of radiotherapy of the University Medical 
Center Utrecht. Patients were referred to our center from 9 different hospitals in the Utrecht province, the Netherlands. 
This study was conducted in accordance with the applicable privacy guidelines and the declaration of Helsinki and 
its later amendments. As this was a retrospective study and most of the patients had died, we obtained a waiver for 
informed consent from the institutional review board at the University Medical Center Utrecht (reference number 
WAG/mb/19/005583).
Patient inclusion

We identified and included patients if they had visited the radiotherapy department for consideration of treatment 
with radiotherapy for NSCLC between January 2009 and September 2018. Some patients had multiple episodes of 
NSCLC for which they received radiotherapy. For these patients we only included the first episode. Apart from this, 
there were no exclusion criteria, meaning that all patients were included in the final analysis.

Definition of exposures and outcome
Clinical variables were extracted from the electronic health records (EHR). The outcome for this study was OS 

measured on a continuous time scale. The start of follow-up was the date of the first visit to the radiotherapy department. 
This is generally when treatment decisions are made and where prognostic models have the highest potential impact. If a 
date of death was not registered in the health records, the Dutch Personal Records Database was queried to verify survival 
status. The last date of follow-up was April 26th, 2021.
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Patients were staged according to the American Joint Committee on Cancer Tumor-Node-Metastasis (TNM) staging 
protocol. We maintained the TNM version that was clinically used at the time of treatment, spanning versions six [20], 
seven [21] and eight [22]. Positron Emission Tomography – Computed Tomography (PET-CT) scans made within 
the time window of 90 days before follow-up start to 30 days after follow-up start were used for the body composition 
measurements. We used PET-CT scans for our measurements as thoracic CT scans generally do not contain the required 
L3 level. If there were multiple eligible PET-CT scans for a patient, the scan that was closest to the start of follow-up was 
used. The PET-CT scans were made over a 9-year period and in 9 different hospitals, which means there was a natural 
variation in scanner vendor, model, tube current, voxel spacing, slice thickness and radiation dose. We used Quantib 
Body Composition version 0.2.1 (Quantib BV, Rotterdam, the Netherlands) for automated muscle measurements [23]. 
The CT scans were first resampled to a uniform slice thickness of 5mm. The first step for the algorithm was to select 
the CT slice in the middle of the third lumbar vertebra. On this slice, as well as the two slices above and the two slices 
below this center slice, the psoas muscle tissue was automatically segmented bilaterally. The cross-sectional area of the 
segmentation was measured in centimeters squared, and subsequently averaged over the five segmented slices covering 
a range of 2.5 cm. To calculate the psoas muscle area, only voxels with a radiodensity of -30 Hounsfield Units (HU) or 
higher were counted to exclude intra-muscular fatty tissue. The psoas muscle area was divided by the square of the length 
of a patient measured in meters to obtain the PMI. As a second measurement, the PMD was measured as the mean HU 
value in the entire segmented region, including voxels with radiodensity lower than -30 HU [12, 16]. The definitions of 
PMI and PMD are illustrated in Figure 1. PET-CT scans are rarely acquired with intravenous (IV) iodinated contrast, 
but if a scan was obtained after IV contrast injection only the PMI measurement was used, as iodinated contrast 
artificially increases radiodensity of muscle tissue. All automated segmentations were verified for correctness in joint 
reading sessions by three experienced readers (WA, NH, TL) including a board-certified radiologist with over 15 years 
of clinical experience (TL). If the automated segmentation failed, it was corrected manually by one of the authors (NH). 
The process of creation, verification and correction of segmentations was blinded to the outcome of OS and other 
patient information.

Figure 1. Schematic representation of measurements. The entire area of the psoas muscle on the L3 level was delineated 
(dark blue circumference). For psoas muscle index (PMI), only voxels with a radiodensity of -30 hounsfield units HU 
or higher were counted (light green area). For psoas muscle radiodensity (PMD), the average HU of all voxels in the 
delineated area was calculated, including fatty infiltration of the psoas muscle. 

The following baseline clinical characteristics were extracted from the EHR: age, sex, histology group (grouped as 
adenocarcinoma, squamous cell carcinoma, no histology obtained or other), performance score defined by the Eastern 
Cooperative Oncology Group [24] and body mass index (BMI), defined as patient weight in kilograms divided by the 
square of the length in meters. These variables were selected based on their wide availability in clinical practice and their 
frequent inclusion in prognostic models. As patients may lose weight because of their NSCLC, the time window for 
weight measurements was 90 days before to 30 days after the start of follow-up. 

Statistical analysis
Model definition

We used Cox proportional-hazards regression to model OS. As the purpose of this study was to evaluate the potential 
added prognostic value of the interaction between PMI and PMD, the baseline clinical covariates were included in all 
tested models. Continuous variables were centered by subtracting the mean before entering the analysis. Potential non-
linear effects of the continuous predictors (age, BMI, PMI and PMD) were investigated by including restricted cubic 
spline terms using 5 knots which leads to 4 degrees of freedom per variable. The potential multiplicative interaction 
on the hazard ratio scale between PMI and PMD was investigated by including interaction terms. Only interaction 
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terms that were linear in either PMI or PMD were included to reduce the number degrees of freedom needed to model 
the interaction. The average OS between different clinical disease stages is very different and the proportional hazards 
assumption is unlikely to hold for clinical stage. Therefore, the baseline hazard function was stratified per clinical stage 
in four groups (I, II, III and IV). The patient selection mechanism for radiotherapy is different for early-stage (I and 
II) and advanced-stage (III and IV) NSCLC. For early-stage NSCLC, patients without contra-indications for surgery 
are recommended for surgical treatment [25, 26]. For stage III, radiotherapy is a standard part of treatment [25, 26]. 
For stage IV, potential indications for radiotherapy are aggressive local treatment of oligometastastatic disease [25] or 
palliative care on a case-by-case basis [25]. As in early-stage NSCLC the treatment selection is dependent on their fitness 
for surgery, the treatment choice is likely correlated with their muscle quantity and radiodensity. As the patient selection 
mechanism differs between early-stage and advanced-stage, we stratified the hazard ratios per early-stage (stages I and II) 
and advanced-stage (stages III and IV). The full model included 58 parameters in total.

Sample size calculation
We used simulations to calculate the power to detect a hazard ratio of 0.986 for a linear interaction term between 

PMI and PMD for several different sample sizes and correlations between covariates. The assumptions for the sample 
size calculations were based on three published studies [12, 14, 17]. The simulations indicated that 1000 patients were 
sufficient for a power of 0.8 using a two-sided Student’s T-test with alpha = 0.05 for a wide range of correlations between 
variables. The appendix presents a detailed report on the assumptions and results of the sample size calculation.

Missing data
The presence or absence of a PET-CT scan for a patient in our study depends on medical decisions made during the 

diagnostic and treatment planning process. It is likely that these decisions are correlated with the clinical variables under 
study and the outcome OS. This means that excluding all patients with missing data (‘complete-case analysis’) would lead 
to biased parameter estimates [27]. Given the baseline clinical variables included in our study and the outcome OS, the 
assumption of missing at random conditional on these variables may be tenable. In this situation, multiple imputation 
yields unbiased parameter estimates and increases the statistical power as more patients are included in the analysis 
[28]. Therefore, missing data in both the baseline clinical covariates and the scan-derived muscle measurements PMI 
and PMD were imputed using multiple imputation. To accommodate the non-linear dependencies between covariates 
and survival implied by the Cox proportional-hazards model, the non-linear terms of the continuous predictors and the 
interaction terms, we performed imputation using Substantive Model Compatible Fully Conditional Specification [29]. 
This ensures compatibility between the imputation models and the outcome model. Data were imputed under the most 
comprehensive outcome model under study. 

Hypothesis testing
We compared models using the multi-parameter pooled Wald-test that is compatible with multiple imputation [30]. 

We tested two variants of our main hypothesis that there is a statistical interaction between PMI and PMD: 1. including 
non-linear interaction terms between PMI and PMD, and stratification per early-stage versus advanced-stage (14 degrees 
of freedom); 2. only a linear interaction between PMI and PMD without stratification (1 degree of freedom).

Implementation
R version 4.1.0 was used for all statistical analyses. The function ‘smcfcs’ from package smcfcs (version 1.5.0) was 

used for imputation. Data were imputed using 250 iterations per imputation and 160 fully imputed datasets were 
generated. The function D1 from package MICE (version 3.13.0) was used for multi-parameter model comparisons. 
The function rcspline.eval from package Hmisc (version 4.5.0) was used to generate the restricted cubic spline bases 
for continuous variables. To accommodate the mixed stratification of baseline hazards and hazard ratios we updated 
the source code of packages smcfcs and survival. The code that implements the imputation and subsequent analysis is 
publicly available here: https://doi.org/10.5281/zenodo.6107815.

Reporting
For reporting, we adhered to the REMARK statement for biomarker studies [31]. A filled form is available in the 

supplemental material.
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Results
We included 2840 patients and observed 1975 deaths in 5903 patient years. The average age was 68.9 years (standard 

deviation, 10.4, range 32 to 96) and 1692 (59.6%) were male. The median OS since first visit to the radiotherapy 
department ranged from 3.32 years for stage I patients to 0.53 years for stage IV patients. The baseline characteristics 
stratified per clinical stage are presented in Table 1 and per-stage Kaplan-Meier survival curves are presented in the 
appendix (Appendix Figure 1).

Table 1. Baseline characteristics stratified by clinical disease stage.
 Overall stage I stage II stage III stage IV missing

n 2840 714 145 871 343 767

age (mean (SD)) 68.95 (10.44) 72.65 (9.18) 71.63 (10.47) 66.53 (10.24) 66.26 (10.21) 68.97 (10.73)

male sex (%)  1692 (59.6)   422 (59.1)    89 (61.4)   531 (61.0)   211 (61.5)   439 (57.2) 

histology (%)

   adenocarcinoma   595 (21.0)    81 (11.3)    32 (22.1)   272 (31.2)   136 (39.7)    74 ( 9.6) 

   no examination  1402 (49.4)   482 (67.5)    55 (37.9)   190 (21.8)    83 (24.2)   592 (77.2) 

   other   259 ( 9.1)    46 ( 6.4)    13 ( 9.0)   121 (13.9)    56 (16.3)    23 ( 3.0) 

   squamous cell   508 (17.9)    74 (10.4)    43 (29.7)   278 (31.9)    59 (17.2)    54 ( 7.0) 

   missing    76 ( 2.7)    31 ( 4.3)     2 ( 1.4)    10 ( 1.1)     9 ( 2.6)    24 ( 3.1) 

PS (%)

   0   872 (30.7)   177 (24.8)    23 (15.9)   206 (23.7)    64 (18.7)   402 (52.4) 

   1   553 (19.5)   154 (21.6)    29 (20.0)   239 (27.4)    61 (17.8)    70 ( 9.1) 

   >=2   446 (15.7)   102 (14.3)    31 (21.4)   153 (17.6)    80 (23.3)    80 (10.4) 

   missing   969 (34.1)   281 (39.4)    62 (42.8)   273 (31.3)   138 (40.2)   215 (28.0) 

BMI (mean (SD)) 25.66 (6.07) 25.57 (5.96) 25.57 (5.26) 25.73 (5.64) 26.42 (7.75) 25.32 (6.23)

 BMI missing (%)  1500 (52.8)   309 (43.3)    64 (44.1)   417 (47.9)   212 (61.8)   498 (64.9) 

PMI (mean (SD)) 6.28 (1.64) 6.27 (1.74) 6.09 (1.41) 6.41 (1.59) 6.21 (1.74) 43.59 (8.43)

 PMI missing (%)  1851 (65.2)   386 (54.1)    79 (54.5)   525 (60.3)   266 (77.6)   595 (77.6) 

PMD (mean (SD))  27.93 (10.89)  25.81 (12.28) 26.99 (11.32) 30.99 (9.21) 29.33 (10.07)  7.16 (13.88)

 PMD missing (%)  1637 (57.6)   314 (44.0)     68 (46.9)   442 (50.7)   262 (76.4)   551 (71.8) 

RT target (%)

   lung  1520 (53.5)   667 (93.4)    92 (63.4)   179 (20.6)   126 (36.7)   456 (59.5) 

   multi-site  1040 (36.6)    29 ( 4.1)    37 (25.5)   618 (71.0)   146 (42.6)   210 (27.4) 

   other   114 ( 4.0)    12 ( 1.7)     7 ( 4.8)    16 ( 1.8)    31 ( 9.0)    48 ( 6.3) 

   mediastinum    97 ( 3.4)     5 ( 0.7)     0 ( 0.0)    43 ( 4.9)    19 ( 5.5)    30 ( 3.9) 

   hilus    37 ( 1.3)     0 ( 0.0)     7 ( 4.8)    11 ( 1.3)     5 ( 1.5)    14 ( 1.8) 

   thoraxwall    23 ( 0.8)     1 ( 0.1)     2 ( 1.4)     4 ( 0.5)     8 ( 2.3)     8 ( 1.0) 

   brain     8 ( 0.3)     0 ( 0.0)     0 ( 0.0)     0 ( 0.0)     7 ( 2.0)     1 ( 0.1) 

   missing     1 ( 0.0)     0 ( 0.0)     0 ( 0.0)     0 ( 0.0)     1 ( 0.3)     0 ( 0.0) 

SBRT (%)  1096 (38.6)   643 (90.1)    61 (42.1)    29 ( 3.3)    39 (11.4)   324 (42.2) 

deceased (%)  1975 (69.5)   364 (51.0)    96 (66.2)   674 (77.4)   284 (82.8)   557 (72.6) 

survival (median) 1.71 3.32 2.15 1.41 0.53 1.63

The mean and standard deviation are calculated based on the non-missing values. The ‘other’ category for histology 
includes carcinoid tumors, neuro-endocrine tumors and other rare histologic subtypes. Variables age, male sex, SBRT, 
deceased and survival time had no missing values. A comprehensive dedicated table of radiotherapy targets is presented 
in the appendix (Figure 4). Median overall survival was calculated using the Kaplan-Meier method. PS: performance 
score, defined using the Eastern Collaborative Oncology Group standard 24. SD: standard deviation. BMI: body mass 
index, PMI: psoas muscle mass index, PMD: psoas muscle radiodensity, SBRT: stereotactic body radiation therapy, RT: 
radiotherapy. 
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For 1212 of the 2840 patients (42.7%) a PET-CT scan was available within the required time window and muscle 
measurements were performed. Only one of these PET-CT scans was with intravenous contrast. The median number 
of days from the scan to the start of follow-up was 33 (interquartile range 21-49). We used 10 variables per patient 
in the analysis (age, sex, histology group, performance score, BMI, PMI, PMD, clinical stage, survival time, deceased 
indicator) meaning that there were 28,400 potential values to be recorded. Of these 28,400 values, 21,600 were observed 
and 6,800 were missing meaning that 76% of the data were available and 24% were imputed. There were 378 patients 
(13.3%) with no missing values for any of the variables. If a complete-cases analysis were employed, 3,780 out of 21,600 
(17.5%) available data-points would be used, disregarding 82.5% of the available data.

Figure 2. L3-slices of computed tomography scans for three different patients with similar psoas muscle index (PMI) but 
different psoas muscle radiodensity (PMD). BMI: body mass index, PS: performance score, defined using the Eastern 
Collaborative Oncology Group standard [24].

Three patients with similar PMI but different PMD are presented in Figure 2. The dependence of the association 
between PMI and OS on PMD is presented in Figure 3. The shape of the interaction curve confirms the hypothesis that 
PMI is more positively associated with OS when PMD is higher. In other words, increased psoas muscle area (PMI) is 
associated with increased OS only when psoas muscle radiodensity (PMD) is sufficiently high. Accordingly, there was 
clear statistical evidence for a linear interaction (hazard ratio 0.915; 95% confidence interval 0.861 – 0.972; p-value 
0.004). There was no statistical evidence for non-linear components and stratification of the interaction (p-value 0.667). 
A table with the parameter estimates for all parameters is presented in the appendix (Table 5).
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Figure 3. Hazard ratio for a 1 standard deviation increase in PMI for different values of PMD. The average estimate 
is depicted with a solid black line. The 95% confidence interval is depicted with the gray shaded area. The dashed line 
indicates the null effect of hazard ratio 1. At the bottom a histogram for the observed values of PMD is presented. Two 
vertical lines indicate the region excluding the 1% lowest and 1% highest values of PMD. For this figure, the model was 
fitted by omitting non-linear terms of PMI and stratification of hazard ratios per early-stage versus advanced-stage. The 
full model also includes non-linear interaction terms of PMI which means that the shape of this interaction function 
also depends on the value of PMI. To estimate the confidence interval, the model was fitted on 100 bootstrap samples 
of each of the 160 imputed datasets, following the ‘MI-boot’ procedure 32. PMI: skeletal muscle index, PMD: skeletal 
muscle radiodensity.

Discussion
We conducted a large cohort study in non-small cell lung cancer patients treated with radiotherapy and investigated 

whether the relationship between muscle quantity and overall survival (OS) depends on muscle radiodensity. Our 
experiments confirmed the hypothesis that the higher the muscle radiodensity measured in PMD, the more positive the 
association between muscle quantity measured in PMI and OS. These findings provide a potential explanation for the 
varying results in previous research on muscle mass and OS and have important implications for future research. Future 
studies on muscle mass and OS should accommodate this statistical interaction between muscle quantity and muscle 
radiodensity.
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The study cohort consisted of a heterogeneous group of NSCLC cancer patients treated with radiotherapy over a span 
of 9 years. Stage I and II NSCLC patients treated with radiotherapy are known to have worse overall survival than stage 
I and II patients treated with surgery because most patients treated with radiotherapy were deemed unfit for surgery. 
Indeed, the overall survival of stage I and II patients in our population is lower than the general population [33] but 
similar to other radiotherapy-only populations [34, 35]. Given the biological rationale for the hypothesis that muscle 
quantity of sufficient radiodensity is more protective for OS than muscle quantity that is infiltrated with fatty tissue, we 
suspect that this hypothesis is true across all cancer types, stages and treatment regimes. The clear statistical evidence in a 
heterogeneous population of NSCLC cancer patients supports this suspicion, but it will have to be confirmed in future 
studies in multiple cancer types.

Our study has several limitations. Although our cohort is relatively large, we do not have extensive details on the 
included patients, specifically with respect to other potential treatments they received. If our aim were to present a new 
prediction model for use in clinical practice, this lack of detail would be an important limitation. Instead, our goal was 
to evaluate a hypothesis that has implications for future prediction research. As it is unlikely that the interaction between 
muscle quantity and muscle radiodensity depends on the given treatment, our findings are meaningful despite the lack 
of detail on other treatments. Finally, there were relatively few patients with complete data. In accordance with statistical 
guidelines [36, 37] we used state-of-the art imputation methods to optimally use the information that was available 
without excluding any of the patients. In total 24% of the data points were imputed. Multiple imputation remains 
valid even when there are many missing values as long as a sufficient number of imputed datasets is used [38]. Still, 
future studies should preferable be based on prospective cohorts where important variables are collected in a protocolled 
manner. Another way to investigate our hypothesis further is by conducting a systematic review of studies on the 
association between muscle area and muscle radiodensity with OS in cancer patients and performing a meta-regression 
of the association between muscle area and OS on muscle radiodensity.

In conclusion, we found that PMI is more positively associated with overall survival when PMD is higher in a 
large cohort of NSCLC patients treated with radiotherapy. For accurate and generalizable results, future studies on 
the relationship between muscle quantity and overall survival in cancer patients should accommodate this statistical 
interaction in the analysis.
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Appendix
Sample size simulations

We used simulations to calculate the required sample size. Performing these simulations requires assumptions on 
three things: the outcome model (i.e. hazard ratios and baseline hazard function), the correlation between predictor 
variables and the censoring distribution.

As Sjøblom et al. (1) present the most complete multivariable analysis, we use their results (presented in their Table 
3) as the basis for assumed parameter values. The assumed parameter values are presented in Table 1. The assumed 
parameter value for our target parameter SMISMD (the linear interaction between skeletal muscle index, SMI, and 
skeletal muscle radiodensity, SMD) was taken to be halfway between the hazard ratio for SMI and the hazard ratio for 
SMD on the log-hazard ratio scale. As the interpretation of the absolute value of a hazard ratio relies on the scale of the 
variable, the hazard ratio for the interaction term was rescaled by multiplying with the standard deviation of SMD and 
dividing by the standard deviation of SMISMD in each simulated dataset. The hazard ratios for histology subtypes were 
not given so we assumed values for these. 

Table 1. Hazard ratios for sample size calculations.
Term hazard_ratio log_hazard_ratio

Age 0.99 -0.010
Male sex 0.77 -0.261
Histology: other 1.22 0.2
Histology: squamous 1.35 0.3
BMI 0.99 -0.01
PS 1 1.24 0.215
PS >=2 1.89 0.636
SMD 0.98 -0.017
SMI 0.99 -0.010
SMISMD 0.99 -0.014

Adenocarcinoma is the reference category for histology group. BMI: body mass index, PS: ECOG performance score (0 
is the reference category), SMD: skeletal muscle radiodensity, SMI: skeletal muscle index, SMISMD: interaction term 
between SMI and SMD.

For all variables, marginal statistics (mean and standard deviations for continuous variables, frequency tables for 
discrete variables) were extracted from (1). As a frequency table for the four NSCLC stages was not available from 
(1), we used two additional publications to reconstruct the frequency table for clinical stage. Dolan et al. provided the 
relative frequencies of stages I, II and III (2). Abbass et al. provided relative frequencies for stages III and IV (3). These 
relative frequencies were used to reconstruct a single full frequency table for all four stages. In addition to the hazard 
ratios for the individual parameters, the power also depends on the correlation between the predictor variables. As a 
complete covariance matrix for all variables was not available, we simulated covariate data using covariance structures 
induced by different Clayton copulas (4). Copulas are multivariate cumulative distribution functions whose marginal 
distributions are uniform on the unit interval. A Clayton copula can be defined using the known marginal statistics 
of the observed variables and a single unknown correlation parameter. This can be done by translating the marginal 
distributions (assumed to be Gaussian for continuous variables, binomial for binary variables and discretized Gaussian 
for discrete variables) of the variables to cumulative distribution functions. The inverse of these cumulative distribution 
functions are also uniform on the unit interval by definition and can then be identified with the marginal distributions 
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from the copula. The relationship between the Clayton copula parameter and the average Pearson correlation coefficient 
of variables generated from such a copula is presented in Table 2.

Table 2. Clayton copula parameter versus average Pearson correlation coefficient of two variables simulated by a Clayton 
copula with that parameter value.

Copula parameter Pearson correlation

0.1 0.043
0.2 0.115
0.3 0.231
0.4 0.258
0.5 0.326
0.6 0.398
0.7 0.386
0.8 0.408
0.9 0.486
1 0.510

Finally, the power also depends on the marginal survival distributions and the censoring distributions. We estimated 
the marginal survival distributions per stage, and the censoring distribution for all stages from our data. We used the 
parametric power generalized Weibull model (5) to estimate these survival distributions and to simulate survival times. 
To prevent extreme outliers with high leverage, simulated survival times over 15 years were censored. Kaplan-Meier 
estimates and power generalized Weibull estimates of the marginal survival distributions per stage are presented in 
Figure 1.
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Figure 1. Marginal survival distributions per stage. The Kaplan-Meier estimate is presented with the solid black line, 
accompanied by a 95% confidence interval indicated with the dotted black line. The parametric power generalized 
Weibull estimate that was used in the simulations is indicated with the red line.

We calculated the power to detect the pre-specified interaction hazard ratio at a 0.05 significance level using a two-
sided Student’s T-test. We calculated the power over the following grid of values: Copula parameter 0.1, 0.25, 1.0; 
sample size 500, 1000, 2000. For each of the 9 combinations we simulated 1000 datasets. The power was defined as the 
number of times a significant result was detected divided by the total number of simulations for that setting. The results 
of the power analysis are presented in Table 3.

Table 3. Results of power analysis for the interaction term between skeletal muscle index (SMI) and skeletal 
muscle radiodensity (SMD).

Power Sample size Copula parameter

0.576 500 0.1
0.551 500 0.25
0.517 500 1
0.887 1000 0.1
0.865 1000 0.25
0.791 1000 1
0.99 2000 0.1

0.992 2000 0.25
0.968 2000 1
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Supplemental tables

Table 4. Overview of different target regions for radiotherapy per stage.
target missing stage I stage II stage III stage IV

missing 0 0 0 0 1
brain 1 0 0 0 7
hilus 14 0 7 11 5
hilus, supraclavicular 1 0 0 0 1
lung 456 667 92 179 126
lung, hilus 19 3 7 9 3
lung, mediastinum 158 26 28 571 121
lung, mediastinum, hilus 3 0 0 16 1
lung, mediastinum, supraclavicular 5 0 0 8 2
lung, supraclavicular 3 0 0 3 2
lung, thoraxwall 4 0 2 2 7
lung, thoraxwall, vertebra 1 0 0 0 0
lung, vertebra 2 0 0 1 0
mediastinum 30 5 0 43 19
mediastinum, hilus 13 0 0 5 4
mediastinum, hilus, thoraxwall 0 0 0 1 0
mediastinum, hilus, vertebra 0 0 0 0 1
mediastinum, supraclavicular 0 0 0 1 2
mediastinum, vertebra 0 0 0 0 1
other 43 12 7 15 28
plexus 0 0 0 0 1
supraclavicular 2 0 0 0 1
thoraxwall 8 1 2 4 8
thoraxwall, vertebra 1 0 0 1 1
vertebra 3 0 0 1 1
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Table of parameter estimates

Table 5. Estimates of all parameters in the full model with linear interaction term and without stratification of the 
interaction.
term estimate std.error statistic df p.value

age -0.018 0.122 -0.144 1329.330 0.886
sex_maleTRUE 0.188 0.097 1.929 713.392 0.054
histono_pa 0.002 0.127 0.015 316.727 0.988
histoother 0.194 0.106 1.831 1525.555 0.067
histosquamous 0.208 0.089 2.336 1524.444 0.020
ecog_bin1 0.099 0.115 0.857 338.536 0.392
ecog_bin2 0.511 0.113 4.515 381.416 0.000
bmi 0.043 0.216 0.198 325.775 0.843
smi -0.243 0.184 -1.315 345.824 0.189
smd 0.053 0.197 0.268 501.070 0.789
age1 0.183 0.535 0.342 1339.720 0.733
age2 0.828 3.376 0.245 1349.396 0.806
bmi1 -1.802 1.685 -1.069 439.175 0.286
bmi2 12.337 8.705 1.417 485.333 0.157
smi1 1.127 1.323 0.852 405.681 0.395
smi2 -2.792 6.181 -0.452 413.667 0.652
smd1 -0.712 0.713 -0.998 509.379 0.319
smd2 5.390 5.772 0.934 537.145 0.351
age3 -3.845 7.203 -0.534 1345.819 0.594
bmi3 -18.958 11.953 -1.586 514.767 0.113
smi3 0.486 8.643 0.056 409.716 0.955
smd3 -7.733 11.220 -0.689 554.587 0.491
smismd -0.089 0.031 -2.868 391.247 0.004
age:c_stage_earlyTRUE -0.160 0.288 -0.556 463.172 0.579
sex_maleTRUE:c_stage_earlyTRUE 0.031 0.142 0.218 709.628 0.828
histono_pa:c_stage_earlyTRUE 0.006 0.200 0.033 538.576 0.974
histoother:c_stage_earlyTRUE -0.008 0.242 -0.032 1228.706 0.974
histosquamous:c_stage_earlyTRUE 0.184 0.196 0.939 1240.738 0.348
ecog_bin1:c_stage_earlyTRUE -0.506 0.190 -2.659 281.168 0.008
ecog_bin2:c_stage_earlyTRUE -0.417 0.185 -2.257 326.862 0.025
bmi:c_stage_earlyTRUE -0.089 0.337 -0.264 244.152 0.792
smi:c_stage_earlyTRUE -0.017 0.292 -0.059 267.759 0.953
smd:c_stage_earlyTRUE -0.171 0.222 -0.770 611.886 0.441
age1:c_stage_earlyTRUE 0.498 1.004 0.496 762.491 0.620
age2:c_stage_earlyTRUE -3.642 5.699 -0.639 902.736 0.523
bmi1:c_stage_earlyTRUE -0.798 2.690 -0.297 335.899 0.767
bmi2:c_stage_earlyTRUE 3.673 14.236 0.258 361.337 0.797
smi1:c_stage_earlyTRUE 1.101 2.166 0.508 299.204 0.612
smi2:c_stage_earlyTRUE -6.375 10.000 -0.638 320.489 0.524
smd1:c_stage_earlyTRUE 0.162 0.949 0.171 480.186 0.865
smd2:c_stage_earlyTRUE 2.547 8.788 0.290 422.612 0.772
age3:c_stage_earlyTRUE 7.489 11.143 0.672 1000.686 0.502
bmi3:c_stage_earlyTRUE -3.758 19.964 -0.188 372.093 0.851
smi3:c_stage_earlyTRUE 9.752 13.834 0.705 333.289 0.481
smd3:c_stage_earlyTRUE -9.027 18.269 -0.494 406.953 0.621

The estimates are provided on the log-hazard ratio scale. All continuous variables are scaled to unit variance. Higher 
order cubic spline terms of continuous variables are not scaled to unit variance which explains the otherwise extremely 
high parameter estimates. ECOG performance score 0 is the reference category for ecog_bin1 and ecog_bin2. Histology 
type adenocarcinoma is the reference category for the other histology types.
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Deep learning has shown remarkable results for image analysis and is expected to aid individual treatment decisions 

in health care. Treatment recommendations are predictions with an inherently causal interpretation. To use deep 
learning for these applications in the setting of observational data, deep learning methods must be made compatible 
with the required causal assumptions. We present a scenario with real-world medical images (CT-scans of lung cancer) 
and simulated outcome data. Through the data simulation scheme, the images contain two distinct factors of variation 
that are associated with survival, but represent a collider (tumor size) and a prognostic factor (tumor heterogeneity), 
respectively. When a deep network would use all the information available in the image to predict survival, it would 
condition on the collider and thereby introduce bias in the estimation of the treatment effect. We show that when this 
collider can be quantified, unbiased individual prognosis predictions are attainable with deep learning. This is achieved 
by (1) setting a dual task for the network to predict both the outcome and the collider and (2) enforcing a form of 
linear independence of the activation distributions of the last layer. Our method provides an example of combining 
deep learning and structural causal models to achieve unbiased individual prognosis predictions. Extensions of machine 
learning methods for applications to causal questions are required to attain the long-standing goal of personalized 
medicine supported by artificial intelligence.
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Introduction
Deep learning has many possible applications in health care, especially for tasks including unstructured data such as 

medical images. Convolutional neural networks (CNN) are deep learning models that have demonstrated remarkable 
performance on many tasks including images. These models are attractive for prediction tasks on medical images, 
as CNNs can be optimized end-to-end from image to outcome. This way the network can detect patterns in the 
images that are relevant to the prediction task, but may be unknown to medical professionals. A downside is that the 
induced representations of the network are ‘hidden’ and not readily interpretable. A much sought after holy grail of 
artificial intelligence is to attain personalized treatment decisions through individual prognosis prediction and individual 
treatment effect estimation. Treatment effect estimation is a causal question, so answering it requires techniques from 
causal inference.1 A pivotal result from causal inference is that when the direction of causal relationships between 
variables in a given situation is known, identifiability and estimands of causal queries can be deduced automatically 
using do-calculus. In the case of treatment effect estimation of lung cancer measured with overall survival, this means 
that we must know (a) which variables affect both treatment allocation and overall survival, (b) the causal direction of 
relationships between the variables. For instance, we know that the level of pre-treatment overall fitness is related to the 
likelihood of getting intensive treatment. In this case the direction of causation is clear due to the time ordering: pre-
treatment fitness influences the treatment decision, and not vice versa. Whether this is a strong or weak relationship, or 
the specific functional form of the relationship (e.g., whether the relationship is monotonic) is not important for the 
consideration of general non-parametric causal effect identification. These causal relationships can be encoded succinctly 
in a Directed Acyclic Graph (DAG) with an arrow pointing from the cause to the effect, e.g., fitness → treatment. When 
the DAG that encodes the relationship between all the relevant variables is known, do-calculus provides an answer to 
whether a specific causal question can be answered from the observed data.

The connection between images and a DAG is not always straightforward to see. Fundamentally, patient outcomes 
are driven by biological processes, and images may contain (more or less noisy) views of these processes. For example, a 
particularly aggressive lung tumor may grow very large, as can be seen on CTscans, and this biological behavior leads to 
worse overall survival. These biological processes can be seen as underlying causes of factors of variation or patterns in the 
image in the language of structural causal models. Conversely, information derived from medical images is often used to 
make treatment decisions. Here, the image is a causal factor for treatment selection. When a deep neural network is used 
to predict a certain clinical outcome, it will make use of all factors of variation in an image that are statistically associated 
with that outcome. Thus, predicting an outcome with deep learning based on an image can be seen as conditioning on 
(noisy views of ) the underlying causal factors of the patterns in these images. Medical images, especially images from 
large body parts such as a chest CT-scan in the case of lung cancer, may contain many different factors of variation that 
can have different ‘roles’ in the DAG. Notably when a specific factor of variation represents a collider in the DAG, 
conditioning on the image by using a deep learning model may introduce bias in the estimation of treatment effects

A collider is a variable that is the effect of two or more variables. To explain collider bias, consider the following 
clinical scenario. The pulmonary oncology department in a general hospital serves the population of a small geographic 
region for all cases of lung cancer, and 90% of their patients come from this region. However, one of the oncologist has 
a special interest in the treatment of a rare form of lung cancer: carcinoid tumors, accounting for roughly 1% of lung 
cancer cases. Everyone in the country with this rare form of lung cancer visits this single specialist for their treatment. 
Being treated in this hospital for lung cancer is a collider, as it has two causes: living in the surrounding region, or having 
the rare carcinoid form. In reality, these two causes are independent: the risk of getting carcinoid lung cancer is the 
same for everyone, regardless of the region of residence. However, within the population of the patients treated in this 
hospital there appears to be a strong inverse relationship between living in this specific region and having carcinoid lung 
cancer. Patients who are treated in the hospital but are not from the surrounding region are very likely to have the rare 
form, whereas patients who live close to the hospital are very unlikely to have carcinoid lung cancer (namely 1%). This 
observed ‘spurious’ correlation is the result of conditioning on a collider through restricting the patient sample to only 
those treated in this single hospital. Including an indicator for being treated in this hospital as a regression variable in a 
multiinstitutional study into lung cancer is another form of conditioning that will lead to similar collider bias.

We describe a fictional but realistic clinical scenario where the following conditions hold: (1) There exists a clinical 
need for outcome prediction. (2) This outcome partly depends on treatment, and an unbiased estimate of the treatment 
effect is required. (3) The DAG describing the data-generating process is assumed to be known. (4) An image is 
hypothesized to contain important information for the task in (1), however, one of the factors of variation in the image 
represents a collider in the DAG. Conditioning on this collider will lead to a biased estimate of (2). (5) The collider can 
be measured from the image. (6) Deep learning is used to optimally predict (1). We stress that this poses a conflicting 
problem: ‘simply’ using deep learning to predict the outcome based on the image may lead to a low prediction error 
of the outcome in the observed data, but it will lead to bias in the estimated effect of treatment, as it conditions on 
a collider. No matter how accurate the resulting predictions are on the observed data, such models cannot accurately 
predict in the setting where we intervene on treatment. This effectively nullifies the clinical usefulness of the model 
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for selecting the best treatment for new patients. The model only ‘works’ when treatments are allocated as was always 
done without the model. On the other hand, ignoring the image all together will lead to worse prediction error as the 
image contains important prognostic information. Our contribution is that we show that by utilizing a multi-task 
prediction scheme for both the outcome and the collider, accompanied by an additional loss term to induce a form 
of linear independence between final layer activations, we can satisfy both (1) the supervised prediction task and (2) 
attain an unbiased estimate of the treatment effect. For clarity in notation, we will reserve the term prediction error 
for performance on the supervised prediction task (e.g., accuracy of predicted survival time). With bias we will refer to 
difference between the expectation of the estimated treatment effect and the data-generating mechanism.

Results
Clinical case

The proposed clinical case concerns the treatment of lung cancer. Optimal treatment selection for lung cancer patients 
is a challenging problem: depending on the clinical disease stage, patients receive (combinations of ) chemotherapy, 
radiotherapy, surgery, or more recently, immunotherapy or targeted therapy.2 Some patients will be cured, while others 
only endure invalidating side-effects. In addition to using disease stage, personalized treatment decisions may be aided 
by estimating the individual prognosis of a patient for the different modes of treatment that are available. Medical 
scans provide important information for diagnosing and staging lung cancer, but may also provide this prognostic 
information. Deep learning is particularly attractive to analyze these scans, as these models may discover new prognostic 
factors or treatment effect modifiers.

Data-generating mechanism
In our experiments we use a public data set of chest CT-scans from the Lung Image Database Consortium image 

collection (LIDC3) These 1018 scans from 1010 unique patients each contain lung nodules (N = 2609) suspected of 
lung cancer. Up to four radiologists segmented the nodules on each consecutive image slice. As described in the original 
publication of the data, the data where gathered from seven participating hospitals and the study was approved by the 
appropriate local institutional review boards (IRB). Informed consent procedures were followed according to local 
IRB guidelines, and the data collection and anonymization were conducted in compliance with the Health Insurance 
Portability and Accountability Act (HIPAA) guidelines with the intent of providing a publicly available data set. Our 
study is conducted in accordance with the usage guidelines from the data provider.4 We do not add new patient data, so 
IRB approval for this specific study was not needed. A CT-scan measures radiodensity, and tissues may exhibit different 
density-patterns. Heterogeneity in radiodensity is known to be associated with higher biologic aggressiveness and worse 
survival.5 We used nodule size and the variance of radiodensity in a simulation study involving a binary treatment and a 
real-valued outcome reflecting overall survival. Note that our simulation does not accurately reflect the real world. Real 
world applications would require more complex models. The aim of our contribution is to address a current limitation 
in methodological tools. Therefore we chose the simplest graphical model that induces the problem we try to solve, but 
is still clinically conceivable. A DAG used for a real-world clinical application will be much more complex, but may still 
include the basic collider structure we present in this simulation and will thus require similar methods. Figure 1 and 
Table 1 illustrate the following hypothetical narrative.

Figure 1. Directed Acyclic Graph describing the data-generating mechanism for the simulations. Signs indicate positive 
or negative associations. Rectangle shaped variables are image variables, dashed variables are unobserved. Tumor 
aggressiveness and patient fitness cannot be directly measured. x, z represent biological processes, causing the outcome 
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and image patterns. We cannot directly observe these biological processes, but x’ , z’ are noisy views of these variables 
that are measurable from the image. x is a collider since it is the child of u1 and u2. Conditioning on x will induce an 
artificial association between u1 and u2, thereby inducing a confounding path between treatment and survival, that only 
exists when conditioning on the collider.

There exist two possible treatments for lung cancer: t � {0,1}, where t = 1 is deemed more aggressive and also more 
effective. An unobserved variable u2 influences treatment allocation: people who appear to be in better overall health, 
as per subjective judgment of the physician, will have a higher probability of being treated with t = 1. At the same time 
these fitter patients generally have a better functioning immune system. The immune system combats the lung cancer, 
leading to a lower tumor size (x). Another unobserved variable u1 represents the tumor biologic aggressiveness. High 
aggressiveness leads to a bigger tumor and negatively impacts the overall survival. We emphasize that the tumor size 
(x) is a pre-treatment collider according to this causal graph. A third noise variable, heterogeneity of radiodensity (z), 
is a prognostic factor unrelated to the treatment, but related to the outcome. Tumors with high heterogeneity lead to 
reduced survival.

Table 1. Parameters for sampling images and modeling outcome data.
Variable Variable model

u1 Aggressiveness N (0, 0.7071)

u2 Fitness N (0, 0.7071)

z Heterogeneity N (0, 1)

x Size N (u1 − u2; 0.05)

t Treatment Bern (invlogit (N(u2 − 0.5, 0.05)))

y Survival N (t − z − 2u1 − 0.5; 0.05)

For each observation i, an image is drawn from the total pool of images with the closest xi and zi. This ensures the required 
association between factors of variation in the image and the simulated outcome data. The parametric equations follow the 
DAG presented in Fig. 1: u1 , u2 , z are continuous independent noise variables. The collider x is the difference between u1 
and u2, with a small amount of Gaussian noise (standard deviation of noise = 0:05). u1 and u2 have a standard deviation of  
0.7071 ≈ √2/2 to ensure that x has a standard deviation of ≈ 1. Treatment t is modeled as a Bernoulli variable with a 
logistic link function, where increased u2 increases the probability of being treated. 0.5 is subtracted to assure that ~50% 
of patients are treated. Gaussian noise of standard deviation 0.25 is added to the inverse log-odds of being treated to 
assure that every patient has some probability of being treated with the more intense treatment. This reflects the clinical 
world better as some patients may have strong preferences regarding their treatment, regardless of their underlying health 
status. Overall survival (y) increases with treatment (the true treatment effect is 1) and decreases with heterogeneity in 
radiodensity and tumor aggressiveness. Again, Gaussian noise of standard deviation 0.05 is added to introduce some 
uncertainty in the data.

This situation leads to a conundrum. As can be seen from the DAG, the marginal average treatment effect 
is identified by ATE = E [p(y|t = 1) −  p(y|t = 0)]. The conditional treatment effect is not identified when 
conditioning the entire image, which is a descendant of both x and z. Conditioning on x’ (the tumor size as 
measured in the image), corresponds to partly conditioning the collider x. This will induce an artificial association 
between u1 and u2, thereby opening a confounding path from t to y and violating of the backdoor criterion.1  
A backdoor path is a path from treatment to outcome that starts in the non-causal direction (an arrow pointing to the 
treatment instead of away from). This is indicative of confounding. When all confounding variables can be measured 
and conditioned on, all backdoor paths can be ‘closed’ during analysis, and the treatment effect can still be identified 
from observational data. In this case, a new backdoor path is introduced by conditioning on x’, a proxy of x. This new 
path runs through the unobserved variables t ← u1 – u2 → y. Therefore it cannot be closed by conditioning on these 
variables in the estimation, and the treatment effect is no longer identified. Using a convolutional neural network 
to predict y without regard for the biasing effect of conditioning on the collider will lead to a biased estimate of the 
treatment effect. Disentangling the factors of variation in the image to only utilize image information that is not related 
to the collider would enable an unbiased estimate of the conditional treatment effect, which is the goal of this study. The 
simulated data are visualized in Supplementary Figs 1 and 2.

Modeling
Our method, as summarized in Fig. 2, revolves around two central notions: (1) Utilizing the resemblance of the 

final layer of a CNN with linear regression and (2) Separating the contributions of different factors of variation during 
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training to enable exclusion of factors of variation after model convergence. For each patient we have two observed 
quantities: yi � R and ti � {0,1}, along with an image which contains noisy views (x’i , z’i � R) of the tumor size xi and 
heterogeneity zi . The tumor size xi is known to be a collider and can be measured from the image, tumor heterogeneity 
zi is an unknown prognostic factor that we expect a CNN can ‘discover’ by training it to predict survival. Following 
standard practice for predicting a continuous real outcome with deep learning, the last layer of the CNN resembles 
linear regression where  , with  the  activations of the final layer of a k-layer CNN, t the binary 
treatment indicator and β0 an overall intercept. Indices for patients are omitted for clarity. Note that βt is the estimated 
average treatment effect (ATE). The standard minibatch mean squared error is used for y:

                                                                            (1)

where m the minibatch size. To attain separation of the collider from other factors of variation in the last layer, 
we modify the loss function such that a single activation of the last layer will approximate the collider: ak . 
At the same time we optimize the other last layer activations  to be linearly independent of x’. Note that this 
is a light constraint based on the prior knowledge represented in the DAG, namely that x is a scalar and x and z are 
independent. We argue that after model convergence, we can fix all CNN parameters and do a single ordinary least 
squares on  to get a valid estimate of the treatment effect with βt . These activations are constrained to be 
linearly independent of the collider, so performing linear regression on these activations and the treatment indicator 
should mimic omitting the collider as a variable in the regression. To attain this, we add a loss term for the collider x’:

                                                                           (2)

This encourages the model to have a single activation in the last layer that approximates the collider x. This loss 
is synergistic with Ly as predicting x’ from the image will improve Ly since x and y are statistically associated. At each 
training step, a prediction  is made by regressing x’ on the remaining last layer activations  with ordinary 
least squares. The MSE of this regression measures how well x’ can be predicted from a linear combination of the other 
last layer activations . This is compared with the MSE of predicting x’i with x, the mean of x’ of that minibatch 
of patients. When predicting x’i from  is no better than using the mean of x’, these activations are sufficiently 
independent from x. When the converse is true, the difference in mean squared errors is added to the total loss.

                                                          (3)

The total loss is the direct sum of these losses.

                                                                           (4)

Training was continued until convergence or overfitting, as assessed by an increase in total loss on the independently 
simulated validation set with different images than in the training set. After convergence, all CNN parameters were fixed 
and the final layer activations were calculated for each image. A linear regression of y was fitted on  using 
the training set, resulting in a final model dubbed ‘CausalNet’.
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Figure 2. Schematic overview of the proposed convolutional neural network architecture. The network receives 
two inputs: an image and the treatment indicator (t). Loss functions are depicted in double octagons. The last layer 
activations are used to separate factors of variation in the image. a1 is trained to approximate the measurement of the 
collider x’. The rest of the last layer activations are constrained to be linearly independent from x’ through Lreg. The total 
loss is L = Ly + Lx + Lreg. CNN convolutional neural network.

Experiments
We calculated three baseline models for comparison: (1) ignoring all image information and using only the treatment 

indicator, (2) linear regression on the ground truth data {t, x, z, y} with (2) and without (3) conditioning on the collider 
x. Through the sampling scheme, along with ambiguity in manual nodule segmentations and limitations of statistical 
learning from finite data, there is inherent prediction error for y and x. We estimated the MSE of this inherent error by 
predicting the ground truth labels x and z with a separate run of the same CNN architecture by replacing y with z. For 
fair comparison of the methods, in the regression baseline models we replaced x, z  by x’ , z’  by adding gaussian noise to 
the simulated x, z based on the MSE of the ground truth run for both variables. We compare the ‘curve fitting’ approach 
of conditioning on the entire image for predicting y (BiasNet) with the proposed method (CausalNet). As presented 
in Table 2, the proposed method separates the biasing effect of the collider x from the estimated treatment effect, and 
attains a prediction error close to the ideal expected loss for predicting y.

Table 2. Main results.
Model Variable MSEy ATE

Regression t 2.74 1.02

Regression t, x’, z’ 1.39 0.65

Regression* t, z’ 1.99 1.00

BiasedNet t, image 1.83 0.66

CausalNet t, 2.23 1.02

Mean squared error for survival (MSEy) along with estimated average treatment effect (ATE). The linear regression 
metrics are the expected outcomes according to whether or not the model conditions on the collider x. Regression* is the 
optimal value for our setup: (1) predicting the outcome based on relevant prognostic information from the image while 
(2) retaining a valid estimate of the treatment effect. All metrics were calculated on the validation set.

Measurement error
To test the sensitivity of our method to measurement error in the measured collider x, we simulated two additional 

scenarios where the collider was measured on the wrong scale. In one scenario, the actual relationship between the 
collider and the outcome was linear in the diameter of the nodule, while it was measured in units of volume. This 
represents a power 3 mismatch between the measurement and the actual relationship. The inverse scenario was studied 
as well. See Supplementary Fig. 3 for a visualization of relationship the measured x’ and the true x. As shown in Table 3, 
the method seems robust to these kinds of measurement errors.
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Table 3. Sensitivity analysis to measuring the collider on the wrong scale.
Model Actual x Measured x’ MSEy ATE

Regression* Area Area 1.99 1.00

CausalNet Area Area 2.23 1.02

CausalNet Diameter Volume 2.24 0.99

CausalNet Volume Diameter 2.21 1.02

Mean squared error for survival (MSEy) along with estimated average treatment effect (ATE). The regression* results 
indicate the optimal results attainable for this simulated scenario.

Discussion
We provide a realistic medical example where plain curve fitting with deep learning will lead to biased predictions that 

do not generalize to the setting where we intervene on treatment. By utilizing prior knowledge about the world in the 
design of the CNN architecture and optimization scheme, accurate survival predictions were feasible with an unbiased 
estimate of the treatment effect. Our experiments demonstrate that deep learning can in principle be combined with 
insights from causal inference. Possible directions for extension of our experiments are introducing more elaborate data-
generating mechanisms, for example with a treatment effect modifier or with statistical dependence between factors of 
variation within the image. In addition, similar approaches can be explored for medical images from different sources (e.g., 
pathology slides), or different data domains such as audio or natural language. We leave these extensions for further work.

Real world clinical applications of causal inference will necessarily involve more complicated DAGs. These DAGs 
could include one or more colliders. Our method can be adapted to multiple colliders in a straightforward manner 
by reserving a last layer activation for each collider, and requiring the other last layer activations to be independent of 
each of these colliders. Each realworld clinical scenario will require its own DAG for identifying treatment effects from 
observational data. Our contribution is that the proposed method can be used to attain deep representations of images 
that are independent of certain factors of variation. 

Aside from the mitigation of collider bias, the proposed method can possibly be useful for other applications. For 
example, it may be used to produce deep representations of CT-scans that are independent of the scanner vendor. The 
scanner vendor would then take the place of the collider x in our simulation example.

To attain the goal of personalized treatment recommendations with artificial intelligence, methods combining 
machine learning with causal inference need to be further developed. Our experiments provide an example of how deep 
learning and structural causal models can be combined and are a small step forward towards personalized health care.

Methods
Data preparation and simulation

The LIDC-IDRI data set provides 1018 scans from 1010 patients with a total of 2609 nodules. The nodules were 
split in a training (70%) and validation (30%) set. Individual slices of the nodules were extracted and size (pixel count 
within segmentation) and heterogeneity (variance of pixel intensities within the segmented nodule) were calculated 
for each of the slices. Slices with a nodule size of <20 mm2 were removed, as well as slices for which not all annotators 
agreed on the presence of a nodule. This yielded a training pool of 5015 slices and a validation pool of 1528 slices. 
Observations were simulated by sampling noise variables from the appropriate distributions and dependent variables 
according to the structural causal model in Table 1. For each patient i with simulated xi , zi , ti , yi , an image was drawn 
with replacement from the corresponding pool of images with the closest measured x’ (size) and z’ (heterogeneity). 
This sampling procedure induces a controllable statistical association between patterns in the image and the simulated 
treatment and outcome data. We simulated 3000 training observations and 1000 validation observations. Square slices 
of 7 × 7 cm surrounding the nodules were extracted from the CT-slices and resampled to isotropic 0.7 mm spacing. 
Pixel intensities were normalized to unit scale using a global mean and variance. The images were cropped randomly to 
51 × 51 pixels during training, center crops of the same size were used for validation. In addition, random vertical and 
horizontal mirroring was used as data augmentation during training.

Neural network
We employed a VGG-like6 CNN architecture. As our aim is to contrast methods of optimization for attaining 

unbiased predictions, we chose a simple CNN architecture with only basic layer types that was small enough for fast 
training but expressive enough to be able to model the nodule size and heterogeneity. The final network consisted 5 
layers of 3 × 3 convolutions with 16 feature channels, each followed by a ReLU nonlinearity and 2 × 2 max-pooling. 
These basic image features were flattened into a 1 dimensional vector of size 144. Three fully connected layers of output 
sizes 144, 144, 12 were used, each followed by ReLU and dropout with p = 0.25, after which a final fully connected layer 
with output size Nk = 6 was used. The treatment indicator was concatenated to these activations for the final prediction 
during training. We used a batch size of 40 and the Adam optimizer7 with a learning rate of 0.001 and no weightdecay.
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Supplementary Figure 1: Visualization of the artificial correlation induced by
conditioning on the collider x. Through the data generating mechanism, u1

and u2 are independently generated Gaussian variables. Facet a shows that
the variables are marginally independent. The collider x is simulated as the
difference between u1 and u2 with some Gaussian noise (x ∼ N(u1 − u2, 0.05)).
This means that for any given value of x, u1 and u2 are positively correlated.
Facet b visualizes this artificial correlation by binning the values of x for the
simulated data in quartiles.

2

Supplemental Data:
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Supplementary Figure 2: Visualization of the biasing effect of conditioning on
the collider x (tumor size). The true treatment effect is 1. The solid black
line visualizes the true (causal) difference in y (survival) between treated an
untreated patients when not conditioning on the collider x. When observa-
tions are conditioned on the collider x, visualized here by binning patients in
quartiles of x, the observed difference in survival between treated and untreated
patients diminishes, as indicated by the colored lines. This diminished differ-
ence in survival between patients occurs when conditioning on the collider x.
Conditioning on x induces a positive correlation between its parents u1 and u2.
u1 increases the probability of intensive treatment, while u2 decreases the prob-
ability of survival. Due to this artificial association between u1 and u2, induced
by conditioning on the collider x, the difference in survival between treated and
untreated patients appears diminished. In reality, assigning a patient to in-
tensive treatment will always increase their survival with 1, as reflected in the
black line.

3

Supplementary Figure 3: Visualization of collider measurement and actual
value. Facet a: x is measured as diameter, while y is linear in volume of the
tumor Facet b: x is measured by volume, while y is linear in the diameter of
the tumor.
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Randomized Controlled Trials (RCT) are the gold standard for estimating treatment effects but some important 

situations in cancer care require treatment effect estimates from observational data. We developed “Proxy based individual 
treatment effect modeling in cancer” (PROTECT) to estimate treatment effects from observational data when there are 
unobserved confounders, but proxy measurements of these confounders exist. We identified an unobserved confounder 
in observational cancer research: overall fitness. Proxy measurements of overall fitness exist like performance score, but 
the fitness as observed by the treating physician is unavailable for research. PROTECT reconstructs the distribution 
of the unobserved confounder based on these proxy measurements to estimate the treatment effect. PROTECT 
was applied to an observational cohort of 504 stage III non-small cell lung cancer (NSCLC) patients, treated with 
concurrent chemoradiation or sequential chemoradiation. Whereas conventional confounding adjustment methods 
seemed to overestimate the treatment effect, PROTECT provided credible treatment effect estimates.

RCT: randomized controlled trial; PROTECT: Proxy based individual treatment effect modeling in cancer; 
NSCLC: non-small cell lung cancer
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Introduction
Randomized controlled trials (RCT) are the gold standard for estimating treatment effects but there are important 

situations in cancer care where treatment effect estimates from observational data are needed. First, study participants 
of cancer RCTs are generally younger and in better overall health when compared to the real-world population (1–3). 
Therefore, RCTs provide no direct evidence for applying the treatments in older and weaker patients, as these parts of 
the population are not covered by the trials. The effect of a treatment in these subpopulations could be estimated in 
observational data to investigate whether a RCT with extended inclusion criteria is indicated. Second, there is a constant 
research effort to discover new predictive biomarkers. Predictive biomarkers reveal parts of the biological behavior of the 
tumor that are related to the treatment effect and can be used to select the optimal treatment for a patient (4). Before 
RCTs with new predictive biomarkers can be conducted, preliminary evidence on their association with the treatment 
effect is needed based on observational data.

Estimating treatment effects in observational data requires knowing what the confounders are of the treatment 
– outcome relationship. In cancer care, the most effective treatment is often also the most intensive treatment. The 
overall fitness of a patient determines what treatment intensity they can endure. Therefore, overall fitness is the central 
confounder. The treating physician will form an implicit assessment of overall fitness that is partly based on the subjective 
impression of a patient. As there is no record of this implicit assessment, traditional confounding adjustment methods 
cannot be used. However, proxy measurements of fitness are available, such as performance score. We developed a 
method named ‘Proxy based individual treatment effect modeling in cancer’ (PROTECT). PROTECT uses proxy 
measurements of fitness to reconstruct the distribution of the unobserved confounder and to adjust the treatment effect 
with this reconstructed confounder. In addition to modeling the confounder, PROTECT allows for incorporation of 
biomarkers of the biological behavior of the tumor. These biomarkers together with the patient overall fitness are used 
to predict the individual treatment effect.

We apply PROTECT to stage III Non-Small Cell Lung Cancer (NSCLC). Newly diagnosed patients with stage 
III NSCLC have two curative treatment options: concurrent chemotherapy and radiotherapy, or sequential treatment 
with chemotherapy followed by radiotherapy (5). According to the meta-analysis of RCTs by Aupèrin et al., concurrent 
treatment leads to better overall survival (hazard ratio, 0.84; 95% confidence interval, 0.74 to 0.95) (6). Concurrent 
treatment is more intensive and has a higher risk of severe toxicity (6). Treatment guidelines recommend to give 
sequential treatment to patients with lower overall fitness (5, 7). These patients are more likely to experience treatment 
toxicity under concurrent chemoradiation that would require adjustment or cessation of the treatment. This suggests 
that the survival benefit of concurrent treatment is absent or reversed in patients who are in lower overall fitness. As the 
real-world population contains older and weaker patients than the RCTs, an important question is whether the average 
treatment effect estimate from the RCTs is valid in the real-world population, and whether this average treatment effect 
applies to all patient subgroups.

In this study we present PROTECT as a method for estimating both the average treatment effect and individual 
treatment effects in real-world cancer populations from observational data. The method is applied to a multi-
center observational cohort of stage III NSCLC patients, comparing concurrent chemoradiation with sequential 
chemoradiation.

Results
PROTECT

The objective of PROTECT is to estimate treatment effects from observational data. This requires knowing what 
the confounders are of the treatment – outcome relationship. In multiple discussion rounds with experts in oncology, 
thoracic oncology, radiotherapy, radiology, causal inference, statistics and epidemiology, we identified the confounders 
of the treatment – outcome relationship in cancer.

Patients who are in good overall health will more often be prescribed the most intensive and effective treatments as 
they can tolerate these treatments better than patients with lower overall fitness. Patients with better overall fitness also 
have better outcomes regardless of their treatment. This means that the overall fitness of a patient is a confounder of the 
treatment – outcome relationship. A treating physician will form an implicit assessment of the overall fitness of a patient 
that is partly based on a subjective impression of the patient. As there is no record of this implicit assessment of fitness, 
for the purpose of research this confounder is unobserved. Only the patient characteristics like performance score and 
age are available.

In addition to the overall fitness of a patient and the treatment they receive, an important factor for the variation 
in patient outcomes is the biological behavior of the tumor. There are different biomarkers of tumor behavior that are 
known in the clinical process, like histologic subtype or intra-tumor genetic heterogeneity (8). These biomarkers are 
related to prognosis and / or the treatment effect. Tumor behavior is fundamentally unobservable in the sense that 
neither the physician nor the researcher observe this behavior fully. Only the biomarkers are available.
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Patient fitness and tumor behavior are thus two unobserved variables that induce relationships between the observed 
patient characteristics, the biomarkers, the treatment decision and the outcome. The causal relationships between these 
variables are represented in a causal directed acyclic graph (DAG), shown in Figure 1. For different cancer settings, 
different markers of patient fitness and tumor behavior may be relevant. Filling in application specific variables in the 
DAG is the first step of the PROTECT method. It could be that multiple choices for sets of variables are possible for a 
specific application. As explained in the appendix (section methods, estimation in a marginalized DAG), the PROTECT 
average treatment effect estimate is insensitive to the specific choice of variables.

treatment outcome

Patient Fitness Performance score

Age

Tumor Behavior

Histology

stage (additional proxies of patient fitness)

(additional causes of patient fitness)

(additional causes of tumor behavior)

(additional proxies of tumor behavior)

Figure 1. The behavior-fitness causal Directed Acyclic Graph (DAG) scaffold for cancer treatment decisions. Circles 
indicate variables, grey-shaded variables are unobserved. Arrows point from a cause variable to an effect variable. Tumor 
behavior and patient fitness are unobserved variables that induce correlations between the observed variables. The 
definition of the treatment variable and potentially the outcome variable vary per cancer setting. Depending on the 
specific situation, relevant additional cause variables and effect variables for tumor behavior and patient fitness should 
be selected. Estimating the effect of the treatment on the outcome (potentially conditional on the other variables in 
the DAG) is the target application of PROTECT. The presence of the unobserved confounder fitness implies that 
conventional confounding adjustment methods cannot be used to estimate treatment effects from observational data, 
whereas the proposed method PROTECT can. Filling in additional proxies and causes of tumor behavior and patient 
fitness in this DAG is the first step of PROTECT. PROTECT: proxy based individual treatment effect modeling in 
cancer.

 

From the DAG to treatment effect estimation
Having established a DAG for observational cancer research, the question is if and how the treatment effect can be 

estimated from observational data. To answer this, we use Pearl’s Structural Causal Models framework (9). The presence 
of the unobserved confounder overall fitness implies estimates of the treatment effect by direct conditioning on the 
observed variables (e.g. through multivariable regression or propensity score-based reweighting) would be incorrect as 
the back-door criterion is not fulfilled (9–13). This does not rule out the possibility to estimate the treatment effect. 
Several methods exist for estimating treatment effects when there are proxy variables of unobserved confounders. Proxy 
variables are variables that are caused by the confounder, but do not causally influence the treatment decision and the 
outcome. Performance score is an example of a proxy variable for the confounder overall fitness, as performance score 
depends on fitness but does not cause overall survival or the treatment decision directly. One class of proxy methods 
relies on bridge functions  (12, 14–17). These methods leverage information from proxy measurements to reconstruct a 
bridge function that is sufficient for treatment effect estimation. To know if such a function can be estimated from the 
observed variables, these methods require additional assumptions. A frequently required assumption is that all variables 
are discrete (12, 14, 17), which is an unnatural assumption for the confounder overall fitness, or that all variables are 
continuous (12, 14), which is rarely the case in medical research. More flexible bridge function methods exist but 
these methods require complicated estimation procedures that require large sample sizes, which makes these methods 
unsuitable for many medical applications (15).

An alternative approach is by estimating the joint distribution of the observed variables and the unobserved variables, 
using only the observed variables (18). When sufficient information on the data generating process is available, this joint 
distribution can be estimated by modeling the data generative process directly. With this approach, each variable in the 
DAG is associated with an explicit structural equation that depends on the direct cause variables of this variable and 
random noise. If the joint distribution can be estimated, the treatment effect can still be calculated because the back-
door adjustment formula can be applied using the estimated distributions of the outcome given treatment and fitness, 
and fitness given the cause variables and proxy variables of fitness (9, 18).

Both proxy-based approaches require assumptions in addition to the DAG. These assumptions should be based on 
background knowledge. Background knowledge naturally comes in the form of parts of the data generating process. 
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Modeling the data generating process directly thus makes formulating the right assumptions easier for clinicians and 
researchers. Moreover, it makes it more accessible for readers to assess the validity of the made assumptions. One 
example of such an assumption is the statement that performance score should be better for patients with higher overall 
fitness. This assumption can be expressed as a monotonicity restriction in the structural equation for performance 
score and helps estimating the joint distribution of observed and unobserved variables and thus the treatment effect. 
In PROTECT, the joint distribution is estimated by specifying parametric forms for all the structural equations. If the 
parameters for the structural equations can be uniquely estimated from the observed data, the treatment effect can 
be estimated despite the unobserved confounder (see also appendix, section methods, treatment effect estimation). 
Translating background knowledge into specified parametric distributions for the observed and unobserved variables in 
the DAG thus forms the second step of PROTECT.

Model selection
It is possible that multiple choices for distributions are compatible with the available background knowledge for a 

specific research question. To reduce dependence of the treatment effect estimate on the specific choices for distributions, 
we introduce a data-driven model selection procedure. The model selection procedure is motivated by the fact that in the 
DAG, the unobserved variable overall fitness induces correlations between the proxy variables, treatment and outcome. 
The procedure uses cross-validation to verify whether these correlations are present in an estimated model by comparing 
the model predictions for one of the effect variables of fitness (proxies, treatment and outcome) with regression models 
based on only the direct causes of this variable, excluding fitness. If multiple models are selected in this step, they can be 
combined using a Bayesian model average. The appendix (section methods, model selection) contains a detailed report 
of this model selection procedure. After selection and estimation of the final model, the individual treatment effect is 
calculated as the difference in the expected outcome under the different treatments for each patient, conditional on their 
observed pre-treatment characteristics.

Computation
Once the parametric distributions are fully specified, the posterior distribution over the parameters for the structural 

equations can be estimated using Markov chain Monte Carlo (MCMC) sampling. We implemented PROTECT 
using state-of-the art inference techniques. Specifically we employ the No-U-Turn Hamiltonian Monte Carlo (19) 
implementation from the NumPyro package (20), as NumPyro has JAX (21) as a back-end, enabling parallelized GPU-
accelerated MCMC sampling. The code that implements PROTECT will be made freely available at a public online 
repository.

Application to stage III NSCLC
We now apply PROTECT to stage III NSCLC patients to estimate the relative effect of concurrent chemoradiation 

versus sequential chemoradiation on overall survival measured from the day of the treatment decision.

PROTECT step 1: definition of proxy variables and cause variables
In multiple discussion rounds with experts in pulmonary oncology, radiation oncology and radiology, the relevant 

proxy variables and cause variables for stage III NSCLC were selected. The additional variables included in the stage 
III NSCLC DAG are weight loss and estimated glomerular filtration rate (eGFR). Weight loss is an important proxy 
of tumor behavior, as patients with aggressive tumors tend to lose more weight due to the high disease burden. Renal 
function is an additional proxy variable for overall fitness in stage III NSCLC. The DAG is presented in Figure 2.

Concurrent vs Sequential Survival

Patient Fitness

Performance scoreAge

Tumor Behavior

Weight loss

Histology

eGFRstage IIIA vs IIIB vs IIIC

Figure 2. Causal Directed Acyclic Graph (DAG) with the variables involved in the treatment selection process and overall 
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survival for stage III non-small cell lung cancer patients. Circles indicate variables, shaded variables are unobserved. 
Arrows point from a cause variable to an effect variable. This DAG is a direct extension of the behavior-fitness DAG 
scaffold from the PROTECT method in Figure 1. PROTECT: proxy based individual treatment effect modeling in 
cancer; eGFR: estimated glomerular filtration rate.

PROTECT step 2 and 3: specification of distributions and model selection
We parameterized the joint distribution of observed variables and unobserved variables by specifying linear models 

for all structural equations indicated by the DAG, with link functions and error distributions as appropriate (i.e. linear 
regression for continuous variables, logistic regression for binary variables, a linear proportional hazards model for 
survival (22)). To estimate individual treatment effects, the model for survival was augmented with treatment – covariate 
interaction terms. Details on the exact formulation of the model variants entered in the model selection procedure are 
presented in the appendix (section methods, pre-processing, parametric models and priors).

Study Population
We identified 844 patients with 864 episodes of stage III NSCLC in 9 hospitals in the Utrecht region, the Netherlands, 

treated between 2009 and 2018. A total of 360 episodes were excluded based on the following exclusion criteria (more 
than one criterion can apply to an episode): the primary treatment plan had palliative intent (N=140), the primary 
treatment plan included surgery (N=49), the presence of a concurrent other tumor, including a second NSCLC (N=35), 
local re-irradiation for the recurrence of an earlier episode (N=9), Pancoast tumor (N=9), having a second episode of 
stage III NSCLC (N=8, only the second episode was excluded from the analysis), receiving radiotherapy in a different 
hospital (N=3), chemotherapy and radiotherapy in reversed order to prevent spinal canal invasion (N=3), emigration 
(N=1). Finally, 123 patients were excluded due to a missing value for weight loss.

The mean age of the 504 included patients was 64.9 (range 37 - 86), of which 300 (59.5%) were male. Substage IIIA 
accounted for 268 of the cases (53%). We observed 141 deaths in 224 patients who underwent concurrent chemoradiation 
(632 patient years) and 214 deaths in 280 patients who underwent sequential chemoradiation (603 patient years). 
Compared with the study population from the meta-analysis of RCTs (6), our patients were older (median, 61.7 vs 66) 
and had worse performance scores (ECOG of 2 or greater: 1% vs 10%). In the appendix (section results, supplemental 
tables) a table with an extensive comparison is presented. The start of follow-up was imputed for 12.3% of the patients. 
The median survival time was 1.87 years, the median follow-up time for patients who were censored was 3.80 years. The 
last date of follow-up was February 6th, 2020. Patient characteristics are summarized in Table 1.

Table 1. Baseline characteristics stratified by chemoradiation type: concurrent chemoradiation or sequential 
chemoradiation.

concurrent sequential
n 224 280
age (mean (SD)) 61.21 (9.25) 67.83 (8.95)
substage (%)
   IIIA 141 (62.9) 127 (45.4)
   IIIB 81 (36.2) 151 (53.9)
   IIIC 0 (0.0) 2 (0.7)
   missing 2 (0.9) 0 (0.0)
weight loss > 3% (%) 99 (44.2) 127 (45.4)
ECOG PS (%)
   0 139 (62.1) 119 (42.5)
   1 67 (29.9) 107 (38.2)
   2 6 (2.7) 43 (15.4)
   3 1 (0.4) 1 (0.4)
   missing 11 (4.9) 10 (3.6)
eGFR (%)
   <60 ml / min / 1.73m2 11 (4.9) 26 (9.3)
   >=60 ml / min / 1.73m2 175 (78.1) 163 (58.2)
   missing 38 (17.0) 91 (32.5)
histology (%)
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   adeno carcinoma 107 (47.8) 93 (33.2)
   squamous cell carcinoma 61 (27.2) 133 (47.5)
   other 47 (21.0) 42 (15.0)
   missing 9 (4.0) 12 (4.3)
deceased during follow-up (%) 141 (62.9) 214 (76.4)
male sex (%) 130 (58.0) 170 (60.7)

Weight loss is defined as weight loss over 3% of the original weight over the six months preceding the start of follow-
up. ECOG PS: Eastern Cooperative Oncology Group performance score; SD: standard deviation; eGFR: estimated 
glomerular filtration rate.

Treatment Effect Estimation
Overall survival was significantly better for patients with concurrent chemoradiation compared to sequential 

chemoradiation (hazard ratio, 0.66; 95% confidence interval, 0.53 to 0.82). When estimating the treatment effect with 
multivariable Cox-regression, adjusting for age, histology, weight loss, clinical substage, performance score and eGFR, 
concurrent treatment had a favorable survival (hazard ratio, 0.81; 95% confidence interval, 0.60 to 1.09). This treatment 
effect estimate is more extreme than the effect reported in the meta-analysis of RCTs (6) and possibly affected by residual 
confounding bias. In contrast, the average treatment effect estimated using PROTECT showed no benefit of concurrent 
over sequential treatment on average in our population (hazard ratio, 1.01; 95% credible interval, 0.68 to 1.53). An 
overview of the treatment effects is presented in Figure 3.

 

Figure 3. Overview of treatment effects estimated with different methods. The dashed vertical reference line indicates 
the null effect (hazard ratio of 1), the dotted reference line indicates the point estimate of the meta-analysis of RCTs by 
Aupérin et al. (6). IPW: inverse-probability of treatment weighted Cox-proportional hazards model. PROTECT: proxy 
based individual treatment effect modeling in cancer; CI: confidence interval, for PROTECT: credible interval; RCT: 
randomized controlled trial.

Treatment Effect Modification and Individual Treatment Recommendations
According to the PROTECT individual treatment effect model estimate, the following variables were associated 

with a reduced effectiveness of concurrent treatment: clinical substage IIIB and IIIC, the presence of weight loss and 
adenocarcinoma histologic subtype. Age, ECOG performance score and eGFR were not related to treatment efficacy. 
Treatment effect modifications per variable are presented in Figure 4.

Table 1. Continued.
concurrent sequential
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Figure 4. Differences in estimated treatment effect compared to the average treatment effect for a one unit increase 
per variable. A unit increase means switching from ‘no’ to ‘yes’ for binary variables, and a 1 standard deviation increase 
from the mean for continuous variables (age). These are step-function versions of the partial dependence functions 
as described by  Friedman (23). ‘other vs adeno’ indicates the effect modification of other histology type compared 
to adenocarcinoma. ‘squamous vs adeno’ indicates the effect modification of squamous cell carcinoma compared 
to adenocarcinoma. CI: credible interval, eGFR: estimated glomerular filtration rate, ECOG: Eastern Cooperative 
Oncology Group performance score, IIIB: clinical stage IIIB or IIIC, IIIA: clinical stage IIIA, Weight loss is defined as 
weight loss over 3% of the original weight over the six months preceding the start of follow-up. 

For each patient PROTECT predicted the probability that concurrent treatment would lead to improved expected 
survival compared with sequential treatment, based on the pre-treatment variables. For 274 out of 504 patients (54.4%) 
this probability was greater than 50%. See Figure 5 for an overview of the predicted treatment benefit expressed as a 
hazard ratio per patient.
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Figure 5. Predicted individual treatment effects for all 504 included patients. Each patient is represented by a horizontal 
line indicating the 95% credible interval of the predicted hazard ratio for overall survival of concurrent chemoradiation 
versus sequential chemoradiation, and the point estimate. Colors are added to indicate the actually received treatment. 
The reference line indicates the null effect: both treatments are equally effective.

As an additional model check, we investigated whether patients with lower estimated overall fitness were more 
likely to discontinue treatment due to side-effects or disease progression. After estimating patient fitness based on pre-
treatment variables, we observed that in patients who underwent concurrent chemoradiation, a lower estimated fitness 
was associated with a higher probability of discontinuing the original treatment plan after the initiation of treatment 
(Area Under the Curve of the Receiver Operating Characteristic (AUC), 0.61; 95% confidence interval, 0.55 to 0.68). 

Sampling diagnostics and model fit
We assessed the convergence of the MCMC chains and inspected the possible existence of multiple posterior modes 

that would prohibit the identification of the joint distribution and thus the treatment effect. The maximum Gelman-
Rubin r-hat statistic across all parameters was 1.002 and the posterior density plots were unimodal. Given the large 
number of independent chains (16) and the number of samples per chain (7500 samples following 2500 warm-up 
samples) it is unlikely that other posterior modes exist. As outlined earlier, a unimodal posterior distribution implies 
identification of the treatment effect given the observed data and the modeling assumptions, despite the unobserved 
confounder. There were 231 divergent transitions in 120,000 samples (0.2%), after inspection of parameter trace plots 
these were deemed false positives.

The concordance index for overall survival predictions based on pre-treatment variables and the given treatment was 
0.59 (95% confidence interval, 0.56 to 0.62). The AUC for predicting the treatment decision based on pre-treatment 
variables was 0.76 (95% confidence interval, 0.72-0.80).

Sensitivity analyses
We performed three sensitivity analyses of the average treatment effect estimate. The appendix (section sensitivity 

analyses) contains additional details on the justification, methods and results of these analyses.
First, we assessed the sensitivity of the average treatment effect estimate to an unmodeled confounder by re-estimating 

the model with an additional unobserved confounder with a known relationship with treatment and survival. We used 
several combinations of values for the association between this extra unobserved confounder and treatment and survival. 
We found that this confounder had to have a confounding strength that was more than half as strong as the modeled 
unobserved fitness, but opposite in sign with respect to survival, to drive the point estimate of the average treatment 
effect to a value more extreme than the treatment effect estimate from the RCTs. 

Secondly, we assessed the potential bias induced by non-random missing values in weight loss. It is possible that 
weight loss is more often recorded in the EHR when pronounced weight loss is present. For this specific missingness 
pattern, treatment effect estimation using the complete cases is unbiased, while imputation may lead to bias (24). This is 
why we excluded patients with a missing value of weight loss. As weight loss may be related to treatment efficacy and the 
true prevalence of weight loss is unknown due to the missing data, we recalculated the average treatment effect for several 
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hypothetical values of the prevalence of weight loss by reweighting patients according to their weight loss. In the most 
extreme hypothetical case where weight loss was always observed if it was present, the average treatment effect estimate 
(hazard ratio, 1.01; 95% credible interval, 0.65 to 1.53) was very close to the other extreme case where weight loss was 
missing completely at random (hazard ratio, 1.03; 95% credible interval, 0.71 to 1.68). 

Finally, we calculated what the estimated average treatment effect would be when restricting the analysis to a 
subsample of the cohort that is more like the population of the RCTs (6). Under the assumption that the mechanism for 
selection for concurrent treatment and the mechanism for selection for inclusion in the RCT are similar, the population 
was restricted to those with a predicted probability of concurrent treatment higher than several different cut-offs (0%, 
25%, 50%, 75%). When restricting the analysis to patients with a higher predicted probability of concurrent treatment 
to approximate the RCT population, the estimated treatment effect shifted towards concurrent chemoradiation being 
more effective (hazard ratio 1.01 for predicted probability >0%, N=504; hazard ratio, 1.00 for >25%, N=359; hazard 
ratio 0.98 for >50%, N=193; hazard ratio 0.95 for >75%, N=55). The treatment effect moves in the direction of the 
RCT estimate but the estimated survival benefit of concurrent treatment is still smaller. It may be that the method used 
to match our population with the RCT population was too crude. 

Discussion
We present PROTECT, a method that uses proxy measurements of unobserved confounders to estimate treatment 

effects from observational data. PROTECT addresses a pervasive problem in observational cancer research: the lack of 
a direct measurement of the confounder overall fitness. When applied to stage III NSCLC, the results indicate that on 
average the reported benefit of concurrent over sequential chemoradiation for overall survival may be absent in a real-
world population with more patients in lower overall fitness. In our cohort just over half of the patients were treated 
with sequential chemoradiation, which would imply that in approximately half of the patients the treating physician was 
confident that concurrent treatment would be beneficial. This statistic fits in with the absence of an average treatment 
effect. Whereas conventional confounding adjustment methods find a more extreme treatment effect than reported in 
RCTs, the results from PROTECT are in line with the recommendations from guidelines that patients with lower overall 
fitness are less likely to benefit from concurrent treatment. This positive association between overall fitness and treatment 
effect could be due to a higher risk of treatment discontinuation among patients with lower overall fitness when they 
are assigned the concurrent chemoradiation treatment regimen. Even though the model was not directly optimized to 
predict discontinuation of treatment, patients for whom the model estimated lower fitness where indeed more likely to 
discontinue treatment if they were assigned to concurrent treatment. In contrast, the meta-analysis by Aupérin et al. did 
not find a statistically significant treatment effect modification by age or ECOG performance score (6). This could be 
due to the patient inclusion mechanism. All included patients were deemed fit enough for concurrent treatment. This 
means that older patients included in the RCTs are likely to have been relatively fit for their age. The same principle 
holds for performance score. If the treatment effect is indeed modified by overall fitness as our results and treatment 
guidelines suggest, it could be that the variation in fitness is too low in the RCT population to detect the treatment 
effect modification.

As this is a non-randomized study it is impossible to rule out confounding bias. Several steps were taken to mitigate 
potential confounding bias. First, we identified potential confounders from literature and domain expertise. We then 
applied a data-driven model selection procedure that rejects models that do not conform with the confounding structure 
implicated by the DAG. Lastly, a sensitivity analysis with an independent omitted confounder showed that the results 
are robust to unobserved confounders of reasonable strength.

Due to the moderate study sample size, our study does not attain high precision in treatment effect estimation. To 
address this, future studies should be based on data from larger consortia. Furthermore, the discriminatory power of 
our model for overall survival was low. This could be due to the omission of other important prognostic biomarkers in 
the analysis, or due to the intrinsic randomness in overall survival time for cancer patients. Our concordance index is 
in line with a recent meta-analysis of prognostic models for NSCLC patients treated with curative radiotherapy (25).

Most of our patients were treated before approval of durvalumab for stage III NSCLC in the Netherlands. As 
treatment with durvalumab is contingent on successfully completing the chemotherapy and radiotherapy, the 
presented model is still of use as the predictions are correlated with successful completion of the treatment regimen. 
Since durvalumab improves overall survival (26), successfully completing the treatment may become relatively more 
important than whether the initial treatment was concurrent or sequential chemoradiation.

RCTs remain crucial for treatment effect estimation for cancer patients as they do not suffer from confounding bias. 
Still there are several situations where treatment effect estimates from observational data are desirable. When parts of the 
real-world population are not covered by the RCTs for a certain treatment but observational data is available, PROTECT 
can be used to estimate the treatment effect in these subpopulations. Furthermore, as the method can estimate both 
average treatment effects and individual treatment effects, PROTECT can be used for studies on biomarkers of treatment 
efficacy. When new biomarkers become available that were not measured in RCTs, the treatment effect modification of 
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this biomarker can be studied in an observational cohort using PROTECT. In both applications, the resulting estimates 
may indicate that a new RCT is warranted in specific subpopulations. In this way, observational studies may supplement 
evidence from RCTs. Conversely, RCTs provide a point of reference for observational studies.

To facilitate future applications of PROTECT, a three-step overview of PROTECT is presented in Table 2. In 
the appendix (section discussion) we present two examples where PROTECT could be applied, one in unresectable 
laryngeal carcinoma and one in stage III squamous cell esophageal cancer. In each application there may be additional 
confounders to consider. However, the core of the PROTECT DAG will be applicable to many different cancer types. 

Table 2. Overview of the PROTECT method for developing individual treatment effect models from 
observational cancer cohorts.
Step 1 Specify proxies and causes in the behavior-fitness DAG scaffold
Step 2 Specify parametric distributions for observed and unobserved variables
Step 3 Apply PROTECT model selection criteria

Notes per step: 1. The causal Directed Acyclic Graph (DAG) describes the causal relationships between variables involved in the treatment 
decisions and outcomes. See Figure 1 for the behavior-fitness DAG scaffold for observational cancer research. To apply PROTECT, researchers 
need to specify the definitions of treatment, potential additional proxies and causes of tumor behavior and patient fitness, and possibly the 
outcome. Potential additional application-specific sources of confounding or selection bias must be added as well. 2. These choices should be 
based on background knowledge. Specific care should be taken to check whether these distributions are uniquely identified. This depends on both 
the number of proxies of fitness (more is better) and the flexibility of the statistical models. 3. As multiple choices can be made in step 2, applying 
the PROTECT model selection criteria will reduce the dependence of treatment effect estimates on parameterization choices. Models that do not 
conform to the confounding structure in the DAG will be rejected. DAG: causal Directed Acyclic Graph; PROTECT: Proxy based individual 
treatment effect modeling in cancer

In conclusion we present PROTECT, a method for individual treatment effect estimation for cancer patients in the 
presence of unobserved confounders using proxy measurements. When applied to a real-world stage III NSCLC cohort, 
PROTECT provided credible treatment effect estimates whereas conventional confounding adjustment methods did 
not.

Materials and Methods
Study design
Data Source

We conducted a retrospective observational cohort study at the Department of Radiotherapy of the University 
Medical Center Utrecht, the Netherlands. Patients were referred to the Utrecht center for radiotherapy from the thoracic 
oncology departments of 9 different hospitals in the Utrecht region in the Netherlands. This study was conducted in 
accordance with the applicable privacy regulations. As this was a non-experimental retrospective study and most of the 
patients had died, a waiver for informed consent was obtained from the institutional review board at the University 
Medical Center Utrecht, along with approval of the study protocol (protocol number WAG/dgv/18/005984). All the 
methods were performed in accordance with the Declaration of Helsinki.

Cohort Selection
Patients referred to our center for the consideration of curative (chemo) radiotherapy as a primary therapy for a 

first episode of clinical stage III NSCLC between November 2009 and December 2018 were retrospectively identified. 
Patients had been staged according to the American Joint Committee on Cancer Tumor-Node-Metastasis (TNM) 
staging protocol. We maintained the TNM version that was clinically used at the time of treatment, spanning versions 
six (27), seven (28) and eight (29). We excluded patients who were eligible for primary surgery or who were treated with 
palliative intent. Other exclusion criteria were a concurrent other tumor (including a second NSCLC), a prior diagnosis 
of stage III NSCLC, receiving radiotherapy before chemotherapy to prevent spinal canal invasion, having a Pancoast 
tumor, receiving radiotherapy at another institution or emigration during follow-up. Patients who were seen at the 
radiotherapy outpatient clinic but for some reason did not receive radiotherapy were not excluded from the analysis as 
they are part of the target population for the individual treatment effect model. 

Definition of intervention and outcome
Clinical variables were extracted from the electronic health records (EHR) which includes referral letters for patients 

from other hospitals that were referred to our hospital for radiotherapy. Concurrent chemoradiation was defined as 
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a combination of chemotherapy and radiotherapy with time overlap between the treatments, whereas for sequential 
chemoradiation the start of radiotherapy was subsequent to administration of the last chemotherapy cycle. For both 
treatments, the planned radiotherapy had to consist of a definitive physical dose of 54 Gray or higher (30). Chemotherapy 
consisted of two to four cycles of platinum-based chemotherapy (cisplatin or carboplatin, with etoposide, gemcitabine 
or pemetrexed). As this is a multi-institutional non-experimental study, chemotherapy regimens varied. The goal of an 
individual treatment effect model is to influence future treatment decisions. Therefore, the intervention under study was 
concurrent versus sequential chemoradiation according to the initial treatment decision. This choice is in line with the 
general preference for intention-to-treat analyses in RCTs (31).

The start of follow-up was defined as the date of the last multi-disciplinary tumor board meeting preceding the start 
of treatment, as this is generally the moment the treatment decision is made. Specific care was taken to record the values 
of variables as they were known at this time point. The outcome was overall survival measured on a continuous time 
scale. If no date of death was noted in the EHR, data for overall survival was supplemented by querying the Dutch 
Personal Records Database. 

Statistical Analysis
Covariates

The set of variables for the analysis consisted of age, histology (grouped as adenocarcinoma, squamous cell carcinoma, 
or other), the presence of any weight loss (defined as > 3% of original weight in the 6 months leading up to the treatment 
decision), performance status 0 versus 1 or higher, defined by the ECOG standard (32), eGFR higher or lower than 60 
ml / minute / 1.73 m2 and TNM stage IIIA vs IIIB or IIIC.

Missing Data Handling
Variables with less than 5% missing values were imputed using mean imputation for continuous variables or a fixed 

value of 0.5 for binary variables. When the date of the tumor board was unknown this date was imputed based on the 
date of treatment start with mean imputation per treatment category. Missing values in proxy variables of fitness are 
assumed to be missing at random conditionally on the observed variables. Further, we assumed that the missingness of 
weight loss was dependent on the presence of weight loss. For this specific missingness pattern, complete case analysis is 
unbiased, while imputation may lead to bias (24). Therefore, we excluded patients with a missing value of weight loss. In 
the appendix (section methods, missing data) we elaborate on this assumption further and present a sensitivity analysis 
regarding the missingness in weight loss (section sensitivity analyses).

Model Evaluation
The treatment effect estimates from PROTECT were contrasted with the baseline approach of including the observed 

variables in a multivariable Cox-proportional hazards model and an inverse propensity score weighted Cox-proportional 
hazards model. Estimated treatment effects were compared with the reference value from the meta-analysis by Aupérin 
(6). As described in the appendix (section methods, pre-processing, parametric models and priors) the model includes 
a non-linear component. Therefore, potential treatment effect modification for a variable was inspected using partial 
dependence functions (23).

Model fit for overall survival was assessed using Harrell’s concordance index (33). Model fit for the treatment choice 
was assessed with the AUC.

Posterior samples were simulated using 16 independently initialized MCMC chains with 7500 samples each, 
following 2500 warm-up samples. The mixing of chains was inspected with the Gelman-Rubin r-hat statistic (34) and 
the presence of multiple posterior modes was checked visually from posterior density plots.

As an additional model evaluation, we estimated the association between the estimated fitness based on pre-treatment 
variables and the occurrence of a negative treatment switch anywhere during the treatment. A negative treatment switch 
was defined as any reduction in treatment intensity compared to the original treatment intention, occurring after the 
first day of treatment. This included a reduction in chemotherapy dose, fewer chemotherapy cycles, a switch from 
concurrent to sequential chemoradiation, a lower radiotherapy dose or complete cessation of treatment.

Sensitivity analyses
We tested the robustness of the average treatment effect estimate to a hypothetical omitted confounder. This was 

done by re-estimating the model with an additional unobserved variable with several hypothetical relationships with the 
treatment and the outcome. Finally, we calculated what the estimated average treatment effect would be when restricting 
the analysis to a subsample of the cohort that is more like the population of the RCTs (6). Under the assumption that 
the mechanism for selection for concurrent treatment and the mechanism for selection for inclusion in the RCT are 
similar, the population was restricted to those with a predicted probability of concurrent treatment higher than several 
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different cut-offs (0%, 25%, 50%, 75%). Details on the justification and implementation of these sensitivity analyses 
are presented in the appendix (section sensitivity analyses).

Implementation
NumPyro version 0.4.1 and JAX version 0.2.7 were used for model estimation. R version 4.0.3 was used for model 

evaluations.

Reporting
For reporting, we adhered to the STROBE reporting guidelines for observational research (35). A completed form is 

available in the supplemental material.

Data availability
Due to local privacy regulations, the original patient data cannot be shared. The code that implements the statistical 

models and model selection procedure will be made publicly available at an online repository.
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Figure 1: Acyclic Directed Mixed Graph, resulting from marginalizing out TumorBehavior in the original
DAG. A dashed bi-directed arrow indicates the presence of an unobserved common cause (TumorBehavior).
eGFR: estimated Glomerular Filtration Rate
A.1 Treatment Effect Estimation with PROTECT
In this section we introduce additional implementation details of the PROTECT method.

A.1.1 Additional assumptions

In addition to the DAG, the PROTECT method relies on two other assumptions that are very common
in treatment estimation from observational data. The first assumption is that of overlap. For the X-
conditional average treatment effect to exist, when there are confounders L, the joint distributions of X,L
of patients with different treatments should fully overlap [10]. The second assumption is the Stable-Unit
Treatment Value Assumption [10]. This assumption has two components: consistency meaning that the
observed factual outcome under a certain treatment is equal to the outcome that would be observed when
intervening to make the same treatment decision; and no interference, meaning that assigning a treatment
to a certain patient does not influence the interventional distribution of other patients.

A.1.2 Marginalizing out Tumor Behavior for Estimation

The PROTECT DAG has two latent factors: tumor behavior and patient fitness. Since the latent factors
are not observed they need to be marginalized out, both during the model estimation phase and for
posterior predictions on new data. As conditioning on the latent factor for tumor behavior is not needed to
satisfy the backdoor rule, we can also do inference over the acyclic directed mixed graph (ADMG) [19] that
results from marginalizing out tumor behavior, without harming the ability to estimate the conditional
treatment effect. ADMGs are a generalization of DAGs that allow for bi-directed arrows, indicating the
presence of an unobserved confounder [19]. The AMDG that results from marginalizing out tumor behavior
has fewer parameters to estimate and was therefore used for model estimation. See Figure A.1.2 for the
resulting ADMG. There are multiple bi-directed arrows in the ADMG as a result of marginalizing out
tumor behavior. To model these dependencies, the original ancestral order is used. This means for instance
that the outcome will be modeled conditional on stage and not vice-versa, as stage is an ancestor of the
outcome in both the original DAG and the ADMG with tumor behavior marginalized out.

A.1.3 Target Estimand

Here we derive a non-parametric expression for estimating the model from the observed data. Let tx ∈ {0, 1}
be the treatment indicator where. Let y denote the outcome. Let X and W be vectors of covariates
(causes and proxies of fitness respectively, in line with the AMDG in Figure A.1.2). Let XB denote the
proxies and causes of tumor behavior from the original ADMG (histology, weight loss and stage IIIA vs
IIIB vs IIIC in the case of stage III Non-Small Cell Lung Cancer). We use Pearl’s do-operator to indicate
intervening on a variable [17]. We are interested in the conditional average treatment effect (CATE) as the
difference in expected survival under the different treatments:
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has fewer parameters to estimate and was therefore used for model estimation. See Figure A.1.2 for the
resulting ADMG. There are multiple bi-directed arrows in the ADMG as a result of marginalizing out
tumor behavior. To model these dependencies, the original ancestral order is used. This means for instance
that the outcome will be modeled conditional on stage and not vice-versa, as stage is an ancestor of the
outcome in both the original DAG and the ADMG with tumor behavior marginalized out.

A.1.3 Target Estimand

Here we derive a non-parametric expression for estimating the model from the observed data. Let tx ∈ {0, 1}
be the treatment indicator where. Let y denote the outcome. Let X and W be vectors of covariates
(causes and proxies of fitness respectively, in line with the AMDG in Figure A.1.2). Let XB denote the
proxies and causes of tumor behavior from the original ADMG (histology, weight loss and stage IIIA vs
IIIB vs IIIC in the case of stage III Non-Small Cell Lung Cancer). We use Pearl’s do-operator to indicate
intervening on a variable [17]. We are interested in the conditional average treatment effect (CATE) as the
difference in expected survival under the different treatments:
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CATE(X,W,XB) = E
[
y|do(tx = 1), X,W,XB

]
−E

[
y|do(tx = 0), X,W,XB

]
(1)

The presented AMDG suggests a causal factorization of the conditional distribution in equation (1). We
will now derive our target estimand of the joint distribution of the observable variables (y, tx,W ) given
the control variables (X,XB).

Proof. Let y be the outcome, tx the treatment variable, F ∈ R a latent factor, W possibly multidimensional
proxy variables for F , and X possibly multidimensional causes for F , XB possibly multidimensional causes
and proxies for tumor behavior, then

p(y, tx,W |X,XB)

=a

∫

F

p(y, tx,W |X,XB , F )p(F |X,XB)dF (2)

=b

∫

F

p(y|tx,W,X,XB , F )p(tx|W,X,XB , F )p(W |X,XB , F )p(F |X,XB)dF (3)

=c

∫

F

p(y|tx, XB , F )p(tx|XB , F )p(W |F )p(F |X,XB)dF (4)

a) by the law of total probability

b) by the chain rule of of probability

c) by conditional independencies implied by the ADMG

In 4 the outcome distribution conditions on all confounders, thereby satisfying the backdoor rule. This
implies we can use Rule 2 of the rules of do-calculus and exchange observing tx (as we do in the observational
distribution from which our samples are drawn), with intervening on tx (the interventional distribution
that is the target of our research) [16].

After estimating the joint distribution, we can calculate the CATE for a patient by conditioning 4 on the
observed proxy variables W for both tx = 0 and tx = 1 and marginalizing over F , and then calculating the
difference in the expected value of y for tx = 1 and tx = 0. The average treatment effect can be estimated
by calculating the mean CATE over all observed patients.

A.1.4 Estimation in a Marginalized DAG

For any application of PROTECT, the number of possible cause and proxy variables of patient fitness
may be large. Moreover, different research groups investigating the same application may come up with
different sets of cause and proxy variables of fitness. A natural question is whether the estimated treatment
effect depends on the chosen set of proxies. Under the assumption that there is a finite number of potential
cause and proxy variables of fitness, we will show that omitting some these variables will not necessarily
bias the treatment effect estimate. For this we need two things to hold:

1. The DAG with fewer variables is indeed the DAG that is obtained after marginalizing out the unused
variables from the full DAG

2. Given the DAG with fewer variables, the conditional average treatment effect is identified from the
observed data

We defer the discussion of the second requirement to subsection A.1.4. To demonstrate the first
requirement we will consider a hypothetical application of PROTECT to a case where there exist three
binary proxies of fitness (w1, w2, w3) and no cause variables for fitness. A research groups tries to estimate
the treatment effect but only has measurements of two of the three proxy variables. See Figure A.1.4 for
the DAG for this situation.

As the researchers only have samples from

p(y, tx, w1, w2) =
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w=0

p(y, tx, w1, w2, w3 = w)
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Figure 2: Example DAG where one of the three proxies is not observed.

the target estimand for this study is CATE(w1, w2) instead of CATE(w1, w2, w3). If the group had access
to the joint distribution p(y, tx, w1, w2, w3), they could calculate CATE(w1, w2) by first summing out w3

from the joint distribution and then calculating the CATE. The question is whether this will lead to the
same estimand as when estimating CATE(w1, w2) from samples from p(y, tx, w1, w2) directly. We now
show that this is indeed the case.

1∑
w=0

p(y, tx, w1, w2, w3 = w)

=

1∑
w=0

∫

F

p(y|tx, F )p(tx|F )p(w1|F )p(w2|F )p(w3 = w|F )p(F )dF

=

∫

F

p(y|tx, F )p(tx|F )p(w1|F )p(w2|F )
1∑

w=0

[p(w3 = w|F )] p(F )dF

=1

∫

F

p(y|tx, F )p(tx|F )p(w1|F )p(w2|F )p(F )dF

= p(y, tx, w1, w2)

In 1 the back-door requirement is still fulfilled so the treatment effect can be estimated. The average
treatment effect is calculated by calculating the expectation of the CATE over the proxy variables. As the
CATE(w1, w2) can be estimated from samples of p(y, tx, w1, w2) and the order of taking the expectation
over proxy variables does not matter, the inferred average treatment effect would be the same as first
estimating CATE(w1, w2, w3) and then taking the expectation over all three proxy variables. A similar
argument can be made for cause variables of F .

A.1.5 Treatment Effect Estimation

As mentioned in the main text, if the joint distribution of observed variables and the latent confounder
can be estimated from the observed data, the treatment effect can be estimated. This is because the

F

w1

w2

w3

tx y

Figure 2: Example DAG where one of the three proxies is not observed.
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treatment effect is calculated by calculating the expectation of the CATE over the proxy variables. As the
CATE(w1, w2) can be estimated from samples of p(y, tx, w1, w2) and the order of taking the expectation
over proxy variables does not matter, the inferred average treatment effect would be the same as first
estimating CATE(w1, w2, w3) and then taking the expectation over all three proxy variables. A similar
argument can be made for cause variables of F .

A.1.5 Treatment Effect Estimation

As mentioned in the main text, if the joint distribution of observed variables and the latent confounder
can be estimated from the observed data, the treatment effect can be estimated. This is because the
back-door adjustment formula can be applied using the estimated distributions of survival given treatment
and fitness, and fitness given the proxy variables and cause variables of fitness [16, 12], see also equation 4.
The crucial question is whether the joint distribution of observed variables and the latent confounder can
be correctly estimated from the observed data. Without constraints on the joint distribution, this is not
possible. Fortunately, the DAG provides conditional independency constraints on the joint distribution.
For instance, the treatment choice is independent of performance score, once the value of fitness is known.
However, this is not enough to identify the joint distribution in general and additional assumptions are
needed. These assumptions can be provided by the form of error distributions of the observed variables
and latent confounder or by functional forms of relationships between these variables.

In PROTECT, parametric forms for the structural equations in the DAG are specified. By assuming
parametric models and thus reducing the family of structural causal models under consideration, the
question of identification of the treatment effect reduces to whether the parameters for the structural
equations can be uniquely estimated from observed data. This is not an easy question to answer in general.
If all observed variables and the latent factor followed linear models with Gaussian error distributions, a
well-known sufficient condition for uniqueness of the parameters is when there are at least three independent
proxies per latent factor [2]. This textbook result of parameter identification is based on comparing the
number of unknown parameters in the statistical model with the number of unique entries in the covariance
matrix of the observed variables. The latent factor fitness in our DAG has four dependent variables
(two proxies, the treatment and overall survival). Treatment and survival also have a direct dependency
relationship that would require one additional parameter to be estimated in a linear Gaussian setting. The
requirement of estimating this single extra parameter is offset by having one more observed variable, so
this model would still be identified. However, many settings will be more complex than standard linear
structural equation models, and analytical identification proofs are often intractable to obtain [20]. Instead,
empirical checks can be performed to see if there is any evidence of non-uniqueness of the treatment effect
estimate given the observed data and modeling assumptions. In a Bayesian parameter estimation setting,
this amounts to checking the posterior distribution over parameters for multi-modality.

t y

w1 w2

xt

xw1 xw2

xy

F

Figure 3: Exeample of a DAG where PROTECT could be applied

A.1.6 Model Selection

In PROTECT, the joint distribution of observed variables and unobserved variables is estimated by speci-
fying parametric distributions for all structural equations implied by the DAG. Different parameterizations
may lead to different inferences regarding the treatment effect. To reduce the dependence of the treatment
effect estimate on these choices, we now introduce a data-driven model selection procedure. We describe it
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Figure 3: Exeample of a DAG where PROTECT could be applied

A.1.6 Model Selection

In PROTECT, the joint distribution of observed variables and unobserved variables is estimated by speci-
fying parametric distributions for all structural equations implied by the DAG. Different parameterizations
may lead to different inferences regarding the treatment effect. To reduce the dependence of the treatment
effect estimate on these choices, we now introduce a data-driven model selection procedure. We describe it
for a general DAG with a latent confounder with proxy variables and causes.

In figure 3 we present a general latent confounder model with two proxies w1, w2, a treatment variable t
and outcome y. Each observed variable has a possibly empty set of control variables x(.) and the sets of
control variables are allowed to overlap. Causes of the latent factor F are permitted but are irrelevant
to the model selection procedure so they are omitted here. The latent factor F is a cause of the proxies,
treatment and outcome, and is the only confounder of t and y. The proxies, treatment and outcome are
assumed to be random variables conditional on their parents in the graph. This graph is necessarily an
abstraction of complicated clinical and biological processes. In reality, the process that is responsible
for treatment decisions and outcomes may be better described with a multi-dimensional latent factor
F . Considering this multi-dimensional F , it is likely that there are dimensions of F that are related to
treatment but not to the outcome (Ft) and vice-versa (Fy). The dimensions of F that are related to both
treatment and outcome are denoted Ft,y and constitute the true confounder. See Figure 4. Possible clinical
interpretations of these dimensions are:

• Ft: information that the pre-treatment variables provide that is thought to be relevant to efficacy of
treatment (and is used as such to select patients for treatment), but in reality holds no information
on treatment efficacy or outcome

t y

w1

Ft Ft,y Fy

w2

xt

xw1 xw2

xy

Figure 4: A more complex true data generating process may underlie the observed data which is modeled
as in Figure 3 Ft is a latent factor that only influences the proxy variables and the treatment assignment.
Fy is a latent factor that only influences the proxy variables and the outcome. Ft,y is a latent factor that
influences the proxy variables and both the treatment and the outcome. Ft,y is the only confounder.

• Fy: information that the pre-treatment variables have on the outcome that is not known to the
physician (this could be treatment effect modification that is not known to the physician), or otherwise
is not used to make treatment decisions.

• Ft,y: information that the pre-treatment variables have on the outcome or treatment efficacy and
that is utilized in the treatment decision process

To estimate the treatment effect, the modeled latent factor F̂ should contain as much information on

t y

w1

Ft Ft,y Fy

w2

xt

xw1 xw2

xy

Figure 4: A more complex true data generating process may underlie the observed data which is modeled
as in Figure 3 Ft is a latent factor that only influences the proxy variables and the treatment assignment.
Fy is a latent factor that only influences the proxy variables and the outcome. Ft,y is a latent factor that
influences the proxy variables and both the treatment and the outcome. Ft,y is the only confounder.

• Fy: information that the pre-treatment variables have on the outcome that is not known to the
physician (this could be treatment effect modification that is not known to the physician), or otherwise
is not used to make treatment decisions.

• Ft,y: information that the pre-treatment variables have on the outcome or treatment efficacy and
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Figure 4: A more complex true data generating process may underlie the observed data which is modeled
as in Figure 3 Ft is a latent factor that only influences the proxy variables and the treatment assignment.
Fy is a latent factor that only influences the proxy variables and the outcome. Ft,y is a latent factor that
influences the proxy variables and both the treatment and the outcome. Ft,y is the only confounder.

• Fy: information that the pre-treatment variables have on the outcome that is not known to the
physician (this could be treatment effect modification that is not known to the physician), or otherwise
is not used to make treatment decisions.

• Ft,y: information that the pre-treatment variables have on the outcome or treatment efficacy and
that is utilized in the treatment decision process

To estimate the treatment effect, the modeled latent factor F̂ should contain as much information on
Ft,y as possible. Both Ft and Fy are irrelevant for the estimation of the treatment effect in terms of bias.

When the parameterization of the model has limited expressiveness (e.g. F̂ is a one-dimensional latent
variable), it is not guaranteed that the model parameters that maximize the joint likelihood of the
observed data will learn an F̂ that has information about Ft,y. For example, when the mutual information
between the pre-treatment variables and treatment is much higher than the mutual information between
pre-treatment variables and outcome, it could be that a model with a single dimensional F̂ will learn
F̂ = Ft. Indeed, this is not an unrealistic scenario. The treatment selection process is mostly determined
by the pre-treatment variables. Outcomes like overall survival have much higher intrinsic randomness given
these pre-treatment variables as they depend on 1. the true biological state of the patient and the tumor
that may never be fully known and 2. random events in the future that have not occurred at the time of
the treatment choice. In the following paragraph we introduce a set of model checks based on observed
data to evaluate whether a given parameterization of the graphical model in the DAG is compatible withthe assumptions laid out in the DAG and the requirement of modeling F̂ = Ft,y

Hyperparameter Selection When there are multiple choices for parameterizing the joint model
summarized in hyperparameter ψ (e.g. number of dimensions for F̂ , parameterization choices for any of the
conditional distributions, including priors for parameters), each value of ψ will imply a posterior distribution
ppost,ψ(θ) = pψ(θ|Dtrain) over global parameters θ after conditioning on training data Dtrain. To infer if a
chosen hyperparameter ψ is compatible with the assumptions on the data generating mechanism in the
DAG, a number necessary constraints implied by the DAG can be checked on held-out data Dtest. Let
pψ(y

(i)|t(i),w(i),x(i), θ) be the predictive density for the outcome of observation i, conditional on treatment,
proxies and control variables for the outcome, of the model with hyperparameter ψ and global parameter
value θ. Let lψ(y

(i)|t(i),w(i),x(i)) be the log point-wise predictive density for observation i from the test
data, given hyperparameter value ψ: lψ(y(i)|t(i),w(i),x(i)) = logEθ∼ppost,ψ(θ)pψ(y

(i)|t(i),w(i),x(i), θ). Here
the expectation over θ can be approximated e.g. by using monte-carlo samples of θ from the posterior
distribution. Let Lψ(y

(i)|t(i),w(i),x(i)) be the expectation of the log point-wise predictive likelihood (elpd)
[22] over the held-out data, and let the elpd for different conditional distributions be similarly defined,
then for t, y and proxies wj the following minimal criteria should hold:

Lψ(wj |y, t,w−j ,xwj
) = EF∼pψ(F |y,t,w−j ,xwj

)pψ(wj |xwj
, F ) > L(wj |xwj

) (5)

Lψ(t|y,w,xt) = EF∼pψ(F |y,w,xt)pψ(t|xt, F ) > L(t|xt) (6)

Lψ(y|t,w,xy) = EF∼pψ(F |t,w,xy)pψ(y|t,xy, F ) > L(y|t,xy) (7)

In words this means that for each observed variable, the predictive likelihood of the model with the latent
variable that conditions on the other observed variables should be greater than a corresponding baseline
model that conditions only on the direct parents in the DAG, excluding the latent factor. To calculate the
elpd for the baseline models, a separate regression model was formulated for each target using the same
linear formula, outcome distribution and priors as in the DAG model, but without the latent factor. If the
predictive likelihood of the model with latent factor is higher than the baseline regression model without
the latent factor, then the latent factor effectively transmits information between observed variables in the
model indexed by ψ. However, this still does not guarantee that the inferred F̂ is the actual confounder
Ft,y. If we select a hyperparameter ψ = ψt that leads to F̂ = Ft then equations 5 may still be satisfied.
We can formulate more strict requirements. If we mutilate the DAG in Figure 4 by removing Ft,y and Fy

and their outgoing arrows, the following equality can be shown by applying the conditional independence
of Ft|t of y|t implied by the mutilated DAG:

pψt(wj |y, t,w−j ,xwj ) = EFt∼pψ(Ft|y,t,w−j ,xwj
)pψ(wj |xwj , Ft)

= EFt∼pψ(Ft|t,w−j ,xwj
)pψ(wj |xwj

, Ft)

= pψt(wj |t,w−j ,xwj )

Equivalently, if we select a hyperparameter ψ = ψy that leads to F̂ = Fy then Lψy
(wj |y, t,w−j ,xwj

) =
Lψy

(wj |y,w−j ,xwj
). Note that this equality does not hold if either Ft,y, or the combination of Ft and Fy

are in the DAG. We can now define a necessary condition for the F̂ , estimated from the observed data,
not to be independent of Ft,y. For all wj :

the assumptions laid out in the DAG and the requirement of modeling F̂ = Ft,y
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are in the DAG. We can now define a necessary condition for the F̂ , estimated from the observed data,
not to be independent of Ft,y. For all wj :



Chapter 5

100

pψt(wj |y, t,w−j ,xwj ) = EFt∼pψ(Ft|y,t,w−j ,xwj
)pψ(wj |xwj , Ft)

= EFt∼pψ(Ft|t,w−j ,xwj
)pψ(wj |xwj

, Ft)

= pψt(wj |t,w−j ,xwj )

Equivalently, if we select a hyperparameter ψ = ψy that leads to F̂ = Fy then Lψy
(wj |y, t,w−j ,xwj

) =
Lψy

(wj |y,w−j ,xwj
). Note that this equality does not hold if either Ft,y, or the combination of Ft and Fy

are in the DAG. We can now define a necessary condition for the F̂ , estimated from the observed data,
not to be independent of Ft,y. For all wj :

Lψt,y (wj |y, t,w−j ,xwj ) > Lψt,y (wj |t,w−j ,xwj ) (8)
Lψt,y (wj |y, t,w−j ,xwj ) > Lψt,y (wj |y,w−j ,xwj ) (9)

Hyperparameter settings for which one of these conditions does not hold for one of the proxies should be
rejected. Note that this does not rule out the possibility that F̂ is some function of Ft and Fy and is still
not related to Ft,y.

A.2 Methods for stage III NSCLC application
In this subsection more implementation details for the application of PROTECT to stage III Non-Small
Cell Lung cancer (NSCLC) are provided.

A.2.1 Missing Data

Proxies of fitness Values of proxies of fitness are assumed to be missing at random conditional on the
observed variables. We further assumed independent priors for the proxy missingness mechanism. Together
with the missing at random assumption, this makes the missingness model ignorable, meaning that it
does not contribute to the estimation of the other parameters. We therefore did not model missingness in
proxies. Since we model the joint distribution of proxies, treatment and survival, marginalization of the
missing values of proxy variables is trivial by not adding terms to the likelihood for values that are not
observed.

Weight loss Roughly 15% of the values for weight loss were missing. Though weight loss is a known
prognostic factor and is a standard part of the pre-treatment history taking, the physician may sometimes
forget to ask about it, or forget to note it down in the electronic health record. It is likely that high values
of weight loss have a higher probability of being registered. A patient with high weight loss may self
report it and the physician is more likely to report it, as it is more notable. This renders the missingness
mechanism for weight loss "Missing Not at Random". When the missingness in a covariate is dependent
on the value of the covariate (but not on the outcome), estimating parameters of a regression model for
the outcome using the complete cases is not biased by the missingness, while imputation may lead to bias
in the estimation of the treatment effect [23]. A problem with the complete case method here is that
allthough the conditional treatment effect may be validly estimated, the average treatment effect may be
different in the population of interest than in the complete case population, as the populations may differ
with respect to the distribution of weight loss. If the effect of treatment depends on weight loss (according
to our ADMG, either through the effect of tumor behavior on survival, or through the effect of tumor
behavior on fitness), the average treatment effect estimated from the complete cases with respect to weight
loss is a biased estimator for the average treatment effect in the target population. Through a sensitivity
analysis presented in section B.2.2 we assess what the effect of this missingness on the estimated average
treatment effect may be.

A.2.2 Pre-processing, Parametric Models and Priors

In this subsection we describe details on the data pre-processing, the parametric forms of each conditional
distribution and the priors for all parameters. The Gaussian distribution parameterized with mean µ and
standard deviation σ is denoted N (µ, σ), the Half-Normal distribution with standard deviation σ is denoted
HN(σ), the Bernoulli distribution with probability p is denoted as Bern(p), the Uniform distribution over
values between a and b is denoted U(a, b)

Covariate pre-processing In order to be able to use the same distribution to model each of the proxies,
proxy variables were binarized. Dichotomization of variables is not generally recommended due to the
loss of information. However, as our primary goal is to identify the conditional average treatment effect,
we expect the potential loss of information from the dichotomization to be small compared to the extra
modeling challenges when dealing with proxies with different outcome distributions. Our exact variable
definitions were:

• ECOG performance score: 1 or higher vs 0 (higher means worse overall health according to the
ECOG standard [15])
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values between a and b is denoted U(a, b)

Covariate pre-processing In order to be able to use the same distribution to model each of the proxies,
proxy variables were binarized. Dichotomization of variables is not generally recommended due to the
loss of information. However, as our primary goal is to identify the conditional average treatment effect,
we expect the potential loss of information from the dichotomization to be small compared to the extra
modeling challenges when dealing with proxies with different outcome distributions. Our exact variable
definitions were:

• ECOG performance score: 1 or higher vs 0 (higher means worse overall health according to the
ECOG standard [15])

• eGFR: less (or greater) than 60 milliliter / minute / 1.73m2

The first value (1 for ECOG, and less than 60 for eGFR) was dummy coded as 0, and the second value
was dummy coded as 1. There were only two patients with stage IIIC, therefore they were grouped with
IIIB patients. Histology types were grouped as Adenocarcinoma, Squamous Cell Carcinoma or other,
missing values were classified as other. Weight loss was defined as any weight loss of ≥ 3% of the original
weight in the 6 months preceding the start of follow-up. Age was scaled to zero mean and standard
deviation 1. Details on the definition of the treatment variable and outcome are given in the main text.

Survival The Cox-proportional hazards model is characterized by a partial likelihood that leaves the
baseline hazard unspecified. Performing Bayesian inference with a proportional hazards model will require
specifying a likelihood for the baseline hazard. We chose a parametric survival model, using the Adaptive
Power Generalized Weibull (APGW) distribution as described in [4]. The APGW has two parameters
that control the shape of the baseline hazard function. With these two parameters, the APGW can model
a wide range of baseline hazard function shapes. The APGW accommodates non-proportional hazards
effects by letting one or more of the shape parameters depend on covariates. It can be parameterized as
an accelerated failure-time model or as a (proportional) hazards model. Using the proportional hazards
formulation of the APGW makes it very similar to Cox-proportional hazards regression, but with a
parametric baseline hazard function. The β coefficients in this version have the same interpretation as the
parameters in the familiar Cox-proportional hazards regression, namely log hazard ratios. The reference
value for the treatment effect is presented as a hazard ratio [1]. This value assumes a proportional hazard
model for overall survival. Therefore, we chose to parameterize the outcome model similarly using a linear
model for the log-hazard ratio in the proportional hazards formulation of the APGW. Potential treatment
effect modification for variables was accommodated by adding parameters for product terms of the variable
and the treatment. The APGW was parameterized as follows:

β(tx, F,Xy) = β0 + FβF→y +XyβXy→y+ (10)
tx(βtx→y + FβF∗tx→y +XyβXy∗tx→y) (11)

{time, deceased} ∼ APGW(0, β(tx, F,Xy), α0, ν0) (12)
βXy→y, βtx→y ∼ N (0, 2.5) (13)

β0, α0 ∼ N (0, 5) (14)
ν0 ∼ U(−5, 5) (15)

βF→y ∼ N (0, σF→y) (16)
βXy∗tx→y, βF∗tx→y ∼ N (0, 0.1) (17)

Here, tx = 1 is concurrent chemoradiation, F is the inferred latent fitness, Xy are the other direct parents
of survival in the ADMG, σF→y is a hyperparameter that was determined per the model selection method
in subsection A.1.6. Using this parameterization, we can now express the CATE (equation 1) for patient i
in terms of a log hazard ratio β:

CATE(i) = β(tx = 1, F (i), X(i)
y )− β(tx = 0, F (i), X(i)

y ) (18)

= βtx→y + F (i)βF∗tx→y +X(i)
y βXy∗tx→y (19)

The average treatment effect (ATE) is estimated with the mean CATE over the observed population.

Latent Factor The latent factor F is modeled using a conditional Gaussian distribution with fixed
standard deviation 1, followed by the logistic function (also known as the sigmoid function, denoted σ).
The logistic function was used to fix the overall scale of the latent factor to prevent compensatory scaling
of F when adjusting hyperparameters that control the magnitude of the effect of F on tx or y.

µF = XFβXF→F

F ∼ σ(N (µF , 1))

βXF→F ∼ N (0, 2.5)

In the conditional mean function for F , the control variables XF were pre-centered to have zero mean.
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Latent Factor The latent factor F is modeled using a conditional Gaussian distribution with fixed
standard deviation 1, followed by the logistic function (also known as the sigmoid function, denoted σ).
The logistic function was used to fix the overall scale of the latent factor to prevent compensatory scaling
of F when adjusting hyperparameters that control the magnitude of the effect of F on tx or y.

µF = XFβXF→F

F ∼ σ(N (µF , 1))

βXF→F ∼ N (0, 2.5)

In the conditional mean function for F , the control variables XF were pre-centered to have zero mean.

Proxies We parameterize the proxies as conditionally independent Bernoulli distributed random variables.
The conditional probability was implemented using the logistic link function. For each proxy wj :

ηwj
= FβF→wj

− µwj

wj ∼ Bern(σ(ηwj))

βF→wj ∼ HN(2.5)

µwj ∼ N (0, 2.5)

The prior HN(2.5) implements the assumption that a higher value of latent fitness leads on average to
better values for the proxy variables of fitness.

Treatment The treatment indicator was modeled as a Bernoulli distributed random variable, with a
linear model and the logistic link function, similar to the proxy variables.

ηtx = FβF→tx +XtxβXtx→tx − µtx

tx ∼ Bern(σ(ηtx))
βF→tx ∼ HN(σF→tx)

µtx ∼ N (0, 2.5)

Xtx are all observed variables that are direct parents of treatment in the ADMG, except for F . σF→tx is
a hyperparameter that was determined per the model selection method in subsection A.1.6.

Structural Causal Model The entire generative model can now be formalized in a single structural
causal model. Let X(.) denote a Nd(.) design matrix for N patients with d(.) control variables for different
control variable sets, β(.) global parameters, APGW(.) the 4-parameter Adapted Power Generalized Weibull
distribution [4], wj binary proxies, tx treatment variable, y the survival outcome consisting of positive real
number indicating time, and a binary indicator for deceased or censored.

µF = XFβXF→F

F ∼ σ(N(µF , 1))

ηwj = FβF→wj − µwj

wj ∼ Bern(σ(ηwj ))

ηtx = FβF→tx +XtxβXtx→tx − µtx

tx ∼ Bern(σ(ηtx))
βy = FβF→y +XyβXy→y + tx(βtx→y + FβF∗tx→y +XβX∗tx→y) + β0

y ∼ APGW(0, βy, α0, ν0)



Individual treatment effect estimation in the presence of unobserved confounding using proxies

103

5

Effect Modifiers Predicting treatment effects for new patients requires the estimation of the conditional
average treatment effect (CATE). In the case of a binary treatment variable tx and covariates x,w, the
CATE is defined as:

CATE(x,w) = E [y|do(tx = 1), x = x,w = w)]− E [y|do(tx = 0), x = x,w = w] (20)

To evaluate whether some variables are effect modifiers (i.e. the treatment effect differs between different
values of this variable), we employ the definition of a conditional effect modifier by VanderWeele [21]. For
covariates x,w and treatment tx, w is said to be an effect modifier of tx conditional on x if for some value
of x there exist two values w1 ̸= w2 of w for which CATE(x,w1) ̸= CATE(x,w2). Note that the estimation
of a treatment effect modifier is dependent on the scale on which the CATE is measured. For a linear
log-hazard ratio model (e.g. the Cox proportional hazards model or the proportional hazards APGW),
this reduces to the familiar statistical interaction term βw∗tx :

β(tx, x, w) = βtxtx + βxx+ βww + βw∗txwtx (21)

Filling in equation 21 in 20 will lead to the familiar result that the conditional average treatment effect
is the average treatment effect plus wβw∗tx . This treatment interaction term quantifies the difference in
treatment effects between w = 0 and w = 1. Due to the linearity of this model in 21, the effect modification
of w is the same for all values of x. In our log-hazard model formulation, effect modification is similarly
modeled by adding product terms between treatment and control variables, but also between treatment
and the latent factor F . Since the conditional distribution of p(F |X,W ) is non-linear in X and W , effect
modification by proxies W and control variables X can no longer be equated to the interaction terms in
the linear log-hazard model, and the effect modification of some variable xi may depend on the value of
other control variables and proxy variables.

We can estimate potential effect modification by plugging our log-hazard model β(tx, F,Xy) defined in
18 in equation 20:

CATE(X,W ) = E
F∼p(F |X,W )

[β(tx = 1, X, F )]− E
F∼p(F |X,W )

[β(tx = 0, X, F )] (22)

= E
F∼p(F |X,W )

[β(tx = 1, X, F )− β(tx = 0, X, F )] (23)

This will estimate the log-hazard ratio between concurrent and sequential treatment as a function of
X and W . We have omitted the decency of these quantities on the global parameters θ here. As said
before, the effect modification of a variable can depend on the value of the other variables due to the
non-linearities in our model. To summarize the average effect modification for a unit change in a variable
we use partial dependence functions [8]. Specifically we look at the average change in CATE for a unit
difference in a variable xj , averaged over the marginal distribution of other variables x−j .

EM(xj) := Ex−j∼p(x−j) [CATE(xj = 1,x−j)− CATE(xj = 0,x−j)] (24)

Where the expectation is taken over the observed data.

A.2.3 Model selection

As the treatment variable and the outcome variable follow different distributions there is no way to express
the parameters of these models on a single scale. Specifically, the log odds ratio of fitness to treatment
(βF→tx) is incommensurable with the log hazard ratio of fitness to survival (βF→y). This creates a problem
with specifying the right scale for the prior distributions of these two parameters. If the scale of the priors
for one of the parameters is greater than the other, parameters that maximize the joint likelihoood can be
biased towards modeling the variable with the prior with the greater scale. Therefore, the prior standard
deviations on the parameters from F to y and from F to tx were treated as hyperparameters. Values for
the prior standard deviations were {0.1, 1.0, 2.5, 10.0, 100.0}, resulting in a grid of 125 hyperparameter
combinations. We used 5-fold cross validation to select hyperparameters that were not refuted by the
assumptions in the DAG as outlined in A.1.6. In a final inference step we follow a Bayesian Model
Averaging approach by formulating a mixture model over all acceptable hyperparameter settings ψj .

pBMA(θ) =
∑
j

pψj (θ|Dfull)p(ψj |Dfull) (25)

Where each ψj corresponds to an acceptable setting of the hyperparameters. This mixture model
was evaluated once on the full dataset where global parameters and model weights were inferred jointly,
resulting in our final model estimate.

A.2.4 Implementation
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combinations. We used 5-fold cross validation to select hyperparameters that were not refuted by the
assumptions in the DAG as outlined in A.1.6. In a final inference step we follow a Bayesian Model
Averaging approach by formulating a mixture model over all acceptable hyperparameter settings ψj .

pBMA(θ) =
∑
j

pψj (θ|Dfull)p(ψj |Dfull) (25)

Where each ψj corresponds to an acceptable setting of the hyperparameters. This mixture model
was evaluated once on the full dataset where global parameters and model weights were inferred jointly,
resulting in our final model estimate.

A.2.4 Implementation

All probabilistic models were implemented using the open source probabilistic programming language
NumPyro [18], version 0.4.1 with JAX [3] version 0.2.7 as a back-end. We used the No-U-Turn Hamiltonian
Monte Carlo sampling algorithm to simulate 7500 samples per chain (following 2500 warm-up samples)
in 4 independent chains from the posterior distribution for each hyperparameter setting. For posterior
predictive densities on held-out data we numerically integrated the densities with respect to F by using
a fixed grid of points for F̂ϵ, the noise term of F̂ . Between −5.0 and 5.0, 250 equally spaced values for
F̂ϵ were used. From the original samples over global parameters, 1500 samples equally divided over the
chains were used. The samples of global parameters were selected by slicing the original chain to reduce
auto-correlation between the samples. After applying the model selection procedure we estimated the final
model using 12 independent chains with 7500 samples per chain (following 2500 warm-up samples). Model
evaluation was performed in R, version 4.0.3. The code that implements the statistical models will be
made freely accessible online. Due to privacy regulations the clinical data cannot be made available.

Figure 5: Causal Directed Acyclic Graph for sensitivity analysis of omitted confounder. A simplified DAG
is used to present the sensitivity analysis.

Tx Y

WFU

B Sensitivity Analyses

B.1 Omitted Confounder
B.1.1 Methods

We performed a sensitivity analysis to asses the robustness of our inferences with respect to a potential
unobserved confounder. Specifically, we test the effect of an unobserved confounder U on the point estimate
of the average treatment effect (ATE). The latent factor U is assumed to be a direct cause of both
treatment and survival, independent of the latent factor fitness, see Figure B.1.1.

Assuming a true data generating mechanism (under the sensitivity parameters γU→y, γU→tx):

βy = β0 + FβF→y +XyβXy→y

+ tx(βtx→y + FβF∗tx→y +XyβX∗tx→y)

+ γU→yU

Where βy is the log-hazard ratio. Whereas we estimated the treatment effect using the equivalent model
for survival but omitting the term from U to y.

As in this hypothetical setting of the sensitivity analysis we did not condition on all confounders when
|γU→tx | > 0 and |γU→y| > 0, the estimated treatment effect is a biased estimate of the true treatment
effect. For different settings of sensitivity parameters γ = {γU→tx, γU→y} we re-estimated the posterior
distribution over global parameters, this time including U as an additional latent factor with fixed
coefficients to treatment and survival, as specified by γ. In order to be able to clinically reason about
the likelihood of the existence of an omitted confounder U that would be strong enough to alter the
conclusions of our modeling, we need to be able to compare the effects of this hypothetical unobserved
confounder on treatment ( γU→tx ) and survival ( γU→y ), relative to the effects of the modeled confounder
for fitness F ( βF→tx , βF→y ). To make sure that the comparison of parameters was valid we fixed the
standard deviation of U to 1, and we re-scaled the parameters βF→tx , βF→y to the values they would have
if F were also scaled to have a standard deviation of 1. We investigate the effect of potential unobserved
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Figure 6: Results of sensitivity analysis. For different combinations of sensitivity parameters γU→y (y-axis)
and γU→tx (x-axis) we re-estimated the model, with the additional latent variable U . Results for the
estimated average treatment effect are indicated by the level lines, marked by the point estimate of the
hazard ratio for overall survival of concurrent versus sequential chemoradiation. The black line indicates
the null-effect (hazard ratio = 1). The red dotted line indicates the treatment effect reported in the
meta-analysis of randomized controlled trials (hazard ratio = 0.84) [1]. Four reference points are added to
gauge how the sensitivity parameters relate to the parameters of the estimated latent confounder F to
treatment and survival. The reference point 1 ∗ F corresponds to the value of β̂F→y and β̂F→tx in the
original model. 0.5 ∗ F is the point where these coefficients are both divided by two. −1 ∗ F is the point
where the sign of β̂F→y is changed, and −0.5 ∗ F is defined analogous to 0.5 ∗ F

y

for survival but omitting the term from U to y.
As in this hypothetical setting of the sensitivity analysis we did not condition on all confounders when

|γU→tx | > 0 and |γU→y| > 0, the estimated treatment effect is a biased estimate of the true treatment
effect. For different settings of sensitivity parameters γ = {γU→tx, γU→y} we re-estimated the posterior
distribution over global parameters, this time including U as an additional latent factor with fixed
coefficients to treatment and survival, as specified by γ. In order to be able to clinically reason about
the likelihood of the existence of an omitted confounder U that would be strong enough to alter the
conclusions of our modeling, we need to be able to compare the effects of this hypothetical unobserved
confounder on treatment ( γU→tx ) and survival ( γU→y ), relative to the effects of the modeled confounder
for fitness F ( βF→tx , βF→y ). To make sure that the comparison of parameters was valid we fixed the
standard deviation of U to 1, and we re-scaled the parameters βF→tx , βF→y to the values they would have
if F were also scaled to have a standard deviation of 1. We investigate the effect of potential unobserved
confounding on the treatment effect estimate for all combinations of γU→y ∈ {−1,−0.5, 0, 0.5, 1}βF→y and
γU→tx ∈ {0, 0.5, 1}βF→tx .

B.1.2 Results

The results of the sensitivity analysis are presented in Figure 6. If there were a confounder that was
more than half as strong as the modeled latent confounder F̂ but opposite in sign of survival, the point
estimate of the ATE would be greater than the estimate from the RCTs [1]. The interpretation of this
latent confounder is that it increases the likelihood of being treated, but reduces the likelihood of survival.
A clinical example may be that patients who have more aggressive tumors are treated more aggressively in
order to improve survival outcomes.

Figure 6: Results of sensitivity analysis. For different combinations of sensitivity parameters γU→y (y-axis)
and γU→tx (x-axis) we re-estimated the model, with the additional latent variable U . Results for the
estimated average treatment effect are indicated by the level lines, marked by the point estimate of the
hazard ratio for overall survival of concurrent versus sequential chemoradiation. The black line indicates
the null-effect (hazard ratio = 1). The red dotted line indicates the treatment effect reported in the
meta-analysis of randomized controlled trials (hazard ratio = 0.84) [1]. Four reference points are added to
gauge how the sensitivity parameters relate to the parameters of the estimated latent confounder F to
treatment and survival. The reference point 1 ∗ F corresponds to the value of β̂F→y and β̂F→tx in the
original model. 0.5 ∗ F is the point where these coefficients are both divided by two. −1 ∗ F is the point
where the sign of β̂F→y is changed, and −0.5 ∗ F is defined analogous to 0.5 ∗ F
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B.2 Missing Weight Loss
We now describe the sensitivity analysis for the effect of different missingness mechansisms for weight loss
on the estimate of the average treatment effect.

B.2.1 Methods

Let M denote the missingness indicator for weight loss X, then p(M = 1|X = x) denotes the probability
of missingness, conditional on the value of X. The central assumption of this sensitivity analysis is that
the missingness in weight loss is random conditional on the value of weight loss itself. Specifically, that the
probability of missingness is lower when weight loss is present.

p(M = 1|X = 1) ≤ p(M = 1|X = 0) (26)

Applying this inequality to the marginal probability of missingness p(M = 1) we get:

p(M = 1) = p(M = 1|X = 1)p(X = 1) + p(M = 1|X = 0)(1− p(X = 1))

≥ p(M = 1|X = 1)p(X = 1) + p(M = 1|X = 1)(1− p(X = 1))

= p(M = 1|X = 1)

It follows that p(M = 1|X = 1) ∈ [0, p(M = 1)]. From the observed data we know p(M = 1), the
marginal probability of missingness. We introduce sensitivity parameter α to parameterize the range of
possible values for p(M = 1|X = 1) compatible with the observed marginal probability of missingness and
our assumption 26. We define:

p(M = 1|X = 1, α) := (1− α)p(M = 1) (27)

For α ∈ [0, 1]. It then follows that p(M = 0|X = 1, α) = 1 − (1 − α)p(M = 1). In this setup, α = 0
represents the boundary case where the missingness in X is completely at random, and α = 1 is the
boundary case where p(M = 1|X = 1) = 0, i.e. X is always observed when X = 1.

Let πobs := p(X = 1|M = 0), the probability of weight loss in the observed cases and π∗ := p(X = 1)
denote the unknown true marginal probability of weight loss. Using Bayes rule, we can express πobs in
terms of π∗, p(M = 1) and p(M = 0|X = 1):

πobs = p(X = 1|M = 0) =
p(X = 1)

p(M = 0)
p(M = 0|X = 1)

=
π∗

1− p(M = 1)
p(M = 0|X = 1)

Now we can write:

π∗ =
1− p(M = 1)

p(M = 0|X = 1)
πobs (28)

Since we cannot estimate p(M = 0|X = 1) from the observed data, we will substitute it with the
p(M = 0|X = 1, α) using equation 27, conditional on the sensitivity parameter α.

π∗
α =

1− p(M = 1)

p(M = 0|X = 1, α)
πobs (29)

Now we have that given the observed data and the sensitivity parameter α, the unobserved quantity of
interest is identified, so we can proceed with the sensitivity analysis.

Re-weighting by weight loss For different values of α we assign weights to patients based on their
value for weight loss.

wα(x) := xw1
α + (1− x)w0

α (30)

By assigning patients with weight loss a higher weight than patients without weight loss, we can artificially
create a population with a greater prevalence of weight loss. Specifically, for each α we define weights such
that the weighted sum of the observed values of weight loss is equal to π∗

α.
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1

N

N∑
i=1

[wα(xi)xi] = π∗
α

By further requiring that the sum of weights is equal to the total number of patients,

N∑
i=1

wα(xi) = N

the weights are now uniquely defined as:

w1
α =

π∗
α

πobs

w0
α =

1− w1
απobs

1− πobs

Using these weights, for each α we calculate a new average treatment effect by taking the weighted mean
of the conditional treatment effects:

ATE(α) =
1

N

N∑
i=1

wα(xi)CATEi (31)

B.2.2 Results

The results of this sensitivity analysis are presented in Table B.2.2 and Figure B.2.2. The ATE shows a
minor shift in the direction of concurrent being more effective when the dependency of missingness on the
actual value of weight loss becomes stronger. This is explained by the fact that patients with weight loss
are estimated to have less benefit of concurrent treatment. If missingness were always observed if it was
present, this means that the true average value of weight loss is lower in the population than when weight
loss is missing completely at random.

α p(M = 1|X = 1) p(M = 1|X = 0) π∗
α w1 w0 hazard ratio CI low CI high

0.0 0.448 0.170 0.170 1.000 1.000 1.011 0.650 1.534
0.1 0.439 0.153 0.183 1.020 0.983 1.013 0.689 1.630
0.2 0.431 0.136 0.195 1.041 0.967 1.015 0.650 1.536
0.3 0.423 0.119 0.207 1.061 0.950 1.017 0.691 1.636
0.4 0.415 0.102 0.218 1.082 0.934 1.019 0.693 1.639

0.5 0.407 0.085 0.228 1.102 0.917 1.020 0.706 1.672
0.6 0.399 0.068 0.237 1.123 0.900 1.022 0.706 1.673
0.7 0.392 0.051 0.246 1.143 0.884 1.024 0.706 1.675
0.8 0.385 0.034 0.255 1.163 0.867 1.026 0.709 1.681
0.9 0.379 0.017 0.263 1.184 0.850 1.028 0.710 1.682

1.0 0.372 0.000 0.270 1.204 0.834 1.030 0.711 1.684
Results of sensitivity analysis to missing data in weight loss. α: sensitivity parameter, M missingness
indicator, X indicator for presence of weight loss, π∗

α true marginal probability of weight loss under
sensitivity parameter α, w1 weight for patients with weight loss, w0 weight for patients without weight loss,
hazard ratio: point estimate of the average treatment effect of concurrent versus sequential chemoradiation
for overall survival. CI: 95% credible interval
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Figure 7: Different average treatment effect values for different values of sensitivity parameter α with 95%
credible interval
C Extrapolation to Randomized Trials

C.1 Methods
A central assumption in our study is that the average treatment effect reported in randomized trials is not
directly transportable to our population due to differences between the patient populations. We assume
however that the conditional treatment effect is transportable. This assumption implies that a patient
in our population has the same benefit and harms of treatment as a similar patient in the randomized
trials has. Similar here means that they have the same values for the covariates, latent tumor behavior
and latent fitness. Using our estimate of the conditional treatment effect we can extrapolate our results
to calculate what the estimated average treatment effect would be if our population were more alike the
population from the randomized trials.

Matching the RCT Population Average descriptive statistics on the study population of the RCTs
(e.g. the mean age) are available from [1]. However, matching our population to theirs is not possible
based on these criteria alone. In addition to the published inclusion and exclusion criteria for each RCT
included in [1] we should expect hidden confounding between inclusion in the trial and overall survival [7].
Patients included in the randomized trials should be able to undergo all treatment arms. This means that
patients who were deemed clinically unfit for concurrent treatment can be expected to be underrepresented
in the RCT population. The assessment of this fitness for inclusion in the RCT is essentially the same as
the assessment of fitness for concurrent treatment in our real-world population, with the addition of strict
inclusion criteria from the trials. See Figure 8 for a DAG that depicts this mechanism. Using the predicted
probability of concurrent treatment from the model, we can restrict our population to a subpopulation
with higher fitness using different cut-offs for the predicted probability of concurrent treatment.

C.2 Results
We found that the estimated Average Treatment Effect increased in favor of concurrent treatment when
restricting the population to higher predicted probability of concurrent treatment, see Figure 9.

Figure 7: Different average treatment effect values for different values of sensitivity parameter α with 95%
credible interval
C Extrapolation to Randomized Trials

C.1 Methods
A central assumption in our study is that the average treatment effect reported in randomized trials is not
directly transportable to our population due to differences between the patient populations. We assume
however that the conditional treatment effect is transportable. This assumption implies that a patient
in our population has the same benefit and harms of treatment as a similar patient in the randomized
trials has. Similar here means that they have the same values for the covariates, latent tumor behavior
and latent fitness. Using our estimate of the conditional treatment effect we can extrapolate our results
to calculate what the estimated average treatment effect would be if our population were more alike the
population from the randomized trials.

Matching the RCT Population Average descriptive statistics on the study population of the RCTs
(e.g. the mean age) are available from [1]. However, matching our population to theirs is not possible
based on these criteria alone. In addition to the published inclusion and exclusion criteria for each RCT
included in [1] we should expect hidden confounding between inclusion in the trial and overall survival [7].
Patients included in the randomized trials should be able to undergo all treatment arms. This means that
patients who were deemed clinically unfit for concurrent treatment can be expected to be underrepresented
in the RCT population. The assessment of this fitness for inclusion in the RCT is essentially the same as
the assessment of fitness for concurrent treatment in our real-world population, with the addition of strict
inclusion criteria from the trials. See Figure 8 for a DAG that depicts this mechanism. Using the predicted
probability of concurrent treatment from the model, we can restrict our population to a subpopulation
with higher fitness using different cut-offs for the predicted probability of concurrent treatment.

C.2 Results
We found that the estimated Average Treatment Effect increased in favor of concurrent treatment when
restricting the population to higher predicted probability of concurrent treatment, see Figure 9.
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Figure 8: Directed Acyclic Graph of inclusion in RCTs. The same (unobserved) confounding that influences
treatment decisions in real-world practice will also influence inclusion in the RCTs. In addition to
the unobserved confounder fitness, the concrete exclusion criteria based on proxy measurements (e.g.
performance score) also determine inclusion in the RCT

Figure 9: Predicted probability of concurrent treatment versus estimated individual treatment effect per
patient. When trying to match the RCT by restricting the population to those with a higher predicted
probability of concurrent treatment, the estimated average treatment effect becomes closer to that of the
RCTs [1]. Added is a linear regression fit line with 95% prediction confidence band. Reference lines are
added for the null-effect (hazard ratio 1) and the effect reported in the randomized trials (hazard ratio
0.84) [1].
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Figure 8: Directed Acyclic Graph of inclusion in RCTs. The same (unobserved) confounding that influences
treatment decisions in real-world practice will also influence inclusion in the RCTs. In addition to
the unobserved confounder fitness, the concrete exclusion criteria based on proxy measurements (e.g.
performance score) also determine inclusion in the RCT
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ours RCT

n 504 1205
age (%)

<60 143 (28.4) 519 (43.1)
60-64 85 (16.9) 225 (18.7)
65-69 97 (19.2) 270 (22.4)

>=70 179 (35.5) 189 (15.7)
missing 0 (0.0) 2 (0.2)

histology (%)
adeno 200 (39.7) 395 (32.8)
squamous 194 (38.5) 549 (45.6)

other 89 (17.7) 256 (21.2)
missing 21 (4.2) 5 (0.4)

male sex (%) 300 (59.5) 921 (76.4)
stage (%)

I 0 (0.0) 6 (0.5)

II 0 (0.0) 12 (1.0)
IIIA 268 (53.2) 441 (36.6)
IIIB 232 (46.0) 735 (61.0)
IIIC 2 (0.4) 0 (0.0)
IV 0 (0.0) 3 (0.2)

missing 2 (0.4) 8 (0.7)

Table 1: Baseline characteristics of participants in our study (ours) and in the meta-analysis of randomized
trial (RCTs) [1]

D Results

D.1 Cohort
Patients were recruited from 9 different hospitals in the Utrecht region of the Netherlands. Specifically, the
University Medical Center Utrecht, the Antonius Hospital, locations Nieuwegein and Woerden, the Meander
Medical Center Amersfoort, the Diakonessen Hospital, Utrecht, the Beatrix Hospital, Gorinchem, the
Haaglanden Medical Center, The Hague, the Amsterdam Medical Center, Amsterdam, the Gelderse Vallei
Hospital, Ede, and the Antoni van Leeuwenhoek Hospital. These hospitals represent a rich ensemble of
university hospitals, specialized oncological hospitals and both large and small secondary care institutions.

All patients were referred to the University Medical Center Utrecht for radiotherapy, but their care was
coordinated by the physician in the referring hospital.

Baseline data of our cohort and that of the published meta-analysis of randomized clinical trials [1] are
presented in Table 1. Percentages were calculated on the available data. Note that our cohort is older, has
worse performance scores and is less frequently treated with concurrent therapy.

D.2 Supplemental Tables
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Table 2: Statistics of MCMC samples of parameters of the final bayesian model average. The variables
F_mu, F_sd and b_txbinary_y_marginal are not parameters of the model, but are deterministically
calculated from the parameters, and are included for reference. The parameters pmodel[0], pmodel[1]
and pmodel[2] are the model probabilities for the three selected hyperparameter settings: σF→tx = 2.5,
σF→y ∈ {0.1, 1.0, 2.5}. The parameters are reported on the scale of the linear model (i.e. log odds ratios
for the binary proxies and treatment, and log hazard ratios for the outcome survival). Given that a higher
hazard means a worse overall survival, the negative sign of b_F_y indicates that higher fitness leads to
better overall survival. At the same time the positive sign of b_F_tx indicates that higher fitness leads to
a higher chance of concurrent treatment

mean sd hdi_2.5% hdi_97.5% mcse_mean mcse_sd

b_F_eGFRunder60 -2.300 0.878 -4.045 -0.631 0.004 0.003
b_F_ecogbinary1 -2.047 0.575 -3.186 -0.940 0.004 0.003
b_F_tx 6.157 1.486 3.296 9.061 0.013 0.009
b_F_y -1.171 0.731 -2.511 0.125 0.006 0.005
b_Ftx_y -0.122 0.354 -0.814 0.572 0.001 0.001
b_agectd_F -0.873 0.270 -1.394 -0.466 0.003 0.002
b_histoother_F -0.189 0.573 -1.338 0.938 0.003 0.002
b_histoother_tx 0.113 0.664 -1.211 1.425 0.003 0.002
b_histoother_y 0.013 0.210 -0.401 0.429 0.001 0.001
b_histoothertx_y -0.085 0.164 -0.409 0.236 0.000 0.000
b_histosquamous_F -0.878 0.527 -1.964 0.102 0.003 0.002
b_histosquamous_tx 0.089 0.618 -1.084 1.338 0.003 0.002
b_histosquamous_y 0.226 0.198 -0.170 0.599 0.001 0.001
b_histosquamoustx_y -0.114 0.156 -0.420 0.190 0.000 0.000
b_sIIIB_F -0.517 0.492 -1.495 0.421 0.002 0.002
b_sIIIB_tx -0.771 0.545 -1.841 0.331 0.002 0.002
b_sIIIB_y 0.133 0.157 -0.176 0.443 0.001 0.000
b_sIIIBtx_y 0.169 0.151 -0.126 0.465 0.000 0.000
b_txbinary_y -0.019 0.322 -0.645 0.614 0.002 0.001
b_wtlossany_F -1.273 0.566 -2.395 -0.255 0.004 0.003
b_wtlossany_tx 1.494 0.650 0.244 2.778 0.003 0.002
b_wtlossany_y -0.135 0.202 -0.539 0.246 0.001 0.001
b_wtlossanytx_y 0.161 0.155 -0.140 0.467 0.000 0.000
mu_eGFRunder60 1.251 0.376 0.508 1.981 0.002 0.001
mu_ecogbinary1 -0.838 0.293 -1.418 -0.273 0.002 0.001
mu_tx 3.667 1.051 1.698 5.775 0.008 0.006
alpha0 0.743 0.069 0.608 0.880 0.000 0.000
beta0 -0.276 0.382 -1.010 0.467 0.003 0.002
nu0 -0.061 0.057 -0.169 0.054 0.000 0.000
F_mu 0.482 0.017 0.449 0.514 0.000 0.000
F_sd 0.285 0.026 0.242 0.337 0.000 0.000
b_txbinary_y_marginal 0.010 0.223 -0.409 0.450 0.002 0.001
pmodel[0] 0.272 0.209 0.000 0.682 0.001 0.000
pmodel[1] 0.371 0.242 0.000 0.808 0.001 0.000
pmodel[2] 0.358 0.241 0.000 0.797 0.001 0.001

All patients were referred to the University Medical Center Utrecht for radiotherapy, but their care was
coordinated by the physician in the referring hospital.

Baseline data of our cohort and that of the published meta-analysis of randomized clinical trials [1] are
presented in Table 1. Percentages were calculated on the available data. Note that our cohort is older, has
worse performance scores and is less frequently treated with concurrent therapy.

D.2 Supplemental Tables
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Table 3: Sampling statistics for parameters of the final bayesian model average. The variables F_mu, F_sd
and b_txbinary_y_marginal are not parameters of the model, but are deterministically calculated from
the parameters, and are included for reference. The parameters pmodel[0], pmodel[1] and pmodel[2] are
the model probabilities for the three selected hyperparameter settings: σF→tx = 2.5, σF→y ∈ {0.1, 1.0, 2.5}

ess_mean ess_sd ess_bulk ess_tail r_hat

b_F_eGFRunder60 50491.0 50491.0 47940.0 57108.0 1.0
b_F_ecogbinary1 20092.0 20092.0 19587.0 31950.0 1.0
b_F_tx 12583.0 12583.0 12328.0 21622.0 1.0
b_F_y 13274.0 12712.0 14190.0 21844.0 1.0
b_Ftx_y 112564.0 79754.0 112564.0 97384.0 1.0
b_agectd_F 11479.0 11479.0 12611.0 19832.0 1.0
b_histoother_F 50821.0 35482.0 53186.0 52046.0 1.0
b_histoother_tx 63335.0 63335.0 63735.0 75460.0 1.0
b_histoother_y 80292.0 62519.0 81810.0 77530.0 1.0
b_histoothertx_y 211765.0 73591.0 211766.0 95551.0 1.0
b_histosquamous_F 38386.0 30373.0 41861.0 41783.0 1.0
b_histosquamous_tx 57878.0 57878.0 59599.0 68582.0 1.0
b_histosquamous_y 41188.0 41188.0 43284.0 54958.0 1.0
b_histosquamoustx_y 196417.0 85781.0 196450.0 94168.0 1.0
b_sIIIB_F 42614.0 24811.0 49835.0 41523.0 1.0
b_sIIIB_tx 64364.0 64364.0 65085.0 73268.0 1.0
b_sIIIB_y 93295.0 90465.0 95162.0 76567.0 1.0
b_sIIIBtx_y 223477.0 115619.0 223486.0 92992.0 1.0
b_txbinary_y 29011.0 29011.0 30389.0 37142.0 1.0
b_wtlossany_F 26035.0 24869.0 28244.0 37178.0 1.0
b_wtlossany_tx 46061.0 46061.0 44526.0 49248.0 1.0
b_wtlossany_y 32376.0 32376.0 33430.0 50794.0 1.0
b_wtlossanytx_y 199570.0 107291.0 199624.0 94483.0 1.0
mu_eGFRunder60 47445.0 45579.0 47018.0 61435.0 1.0
mu_ecogbinary1 22216.0 22216.0 21742.0 36303.0 1.0
mu_tx 16716.0 16716.0 16307.0 28481.0 1.0
alpha0 188062.0 188062.0 190422.0 94694.0 1.0
beta0 17370.0 17370.0 17917.0 29165.0 1.0
nu0 75598.0 75598.0 78518.0 66719.0 1.0
F_mu 87959.0 87959.0 87552.0 85513.0 1.0
F_sd 12815.0 12677.0 13582.0 21807.0 1.0
b_txbinary_y_marginal 15367.0 15367.0 16531.0 23319.0 1.0
pmodel[0] 144220.0 105733.0 143474.0 67157.0 1.0
pmodel[1] 171243.0 134171.0 165659.0 73870.0 1.0
pmodel[2] 137870.0 110311.0 134905.0 72606.0 1.0
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E Discussion

E.1 Potential Applications of PROTECT
We now provide two examples where the PROTECT method may be used.

example 1: laryngeal carcinoma For locally advanced unresectable squamous cell laryngeal carcinoma,
concurrent chemoradiation is recommended. For patients over 70 years of age or who are unfit for concurrent
treatment, only radiotherapy is recommended [13]. RCTs comparing concurrent chemoradiation with
radiotherapy alone will be conducted in populations where concurrent chemoradiation is a feasible treatment.
Therefore, the RCTs provide no evidence on the treatment effect of concurrent treatment for older and
weaker patients. In real-world clinical practice, older and weaker patients may receive the concurrent
treatment for example when they have a strong preference for this treatment. Observational studies
comparing both treatments will have to deal with the same unobserved confounder as in the NSCLC case:
the overall fitness of the patient. To estimate the treatment effect in the older and weaker population,
PROTECT can be used to estimate the treatment effect from observational data.

example 2: esophageal cancer The second example concerns stage III squamous cell esophageal
cancer. For these patients, neoadjuvant chemoradiation followed by esophagectomy is considered the most
effective treatment while definitive chemoradiation without surgery is recommended for patients who are
unfit for surgery or refuse surgery [11]. Whether chemoradiation followed by surgery should be preferred
for every patient who is fit enough for surgery remains unanswered, as all RCTs are conducted with only
patients who are fit for surgery and receive some form of surgical treatment [9, 5], or with patients who
are unfit for surgery and never receive surgical treatment [14, 6]. In real-world clinical practice there will
be patients who are deemed fit enough for surgery but refuse the surgery due to reasons not related to
their prognosis, e.g. personal preference. Retrospective comparisons of chemoradiation with surgery versus
chemoradiation alone will arguably be biased due to the same unobserved confounding as in the case of
stage III NSCLC: the overall fitness of the patient, this time specifically fitness for surgical treatment.
To answer the question whether surgery should be preferred for every patient who is fit enough, the
PROTECT method could be applied to to observational data to mitigate the confounding bias.
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Abstract

Treatment effect estimates are often available from randomized controlled trials as a single average
treatment effect for a certain patient population. Estimates of the conditional average treatment effect
(CATE) are more useful for individualized treatment decision making, but randomized trials are often
too small to estimate the CATE. There are several examples in medical literature where the assumption
of a known constant relative treatment effect (e.g. an odds-ratio) is used to estimate CATE models
from large observational datasets. One approach to estimating these CATE models is by using the
relative treatment effect as an offset, while estimating the covariate-specific baseline risk. Whether
this is a valid approach in the presence of unobserved confounding is unknown.

We demonstrate for a simple example that offset models do not recover the true CATE in the presence
of unobserved confounding. We then explore the magnitude of this bias in numerical experiments.
For virtually all plausible confounding magnitudes, estimating the CATE using offset models is more
accurate than assuming a single absolute treatment effect whenever there is sufficient variation in the
baseline risk. Next, we observe that the odds-ratios reported in randomized controlled trials are not
the odds-ratios that are needed in offset models because trials often report the marginal odds-ratio.
We introduce a constraint to better use marginal odds-ratios from randomized controlled trials and
find that the newly introduced constrained offset models have lower bias than standard offset models.
Finally, we highlight directions for future research for exploiting the assumption of a constant relative
treatment effect with offset models.

1 Introduction
Weighing potential benefits and harms of treatment requires knowing the treatment effect, which is the
change in probability of an outcome between different treatments. The gold standard for estimating
treatment effects are randomized control trials (RCT). RCTs often report the efficacy of treatments on a
relative scale using for example the odds-ratio or hazard-ratio for the entire population (e.g. Furie et al.
(2020); Lean et al. (2018)). Though reported on a relative scale, the effect reported still corresponds to a
single average effect, i.e., absolute change in probability of an outcome, for the whole population. Ideally,
the change in probability of an outcome, rather than being known on average for a population, would be
tailored to the characteristics of a patient to produce the conditional average treatment effect (CATE). To
turn the population-level relative effect into a CATE estimate, several previous studies on breast cancer
and cardiovascular disease used the assumption of a constant relative treatment effect to develop CATE
models from observational data (Candido dos Reis et al., 2017; Ravdin et al., 2001; Alaa et al., 2021; Xu
et al., 2021). We call these constant-relative CATE (CR-CATE) models. This assumption can be better
contextualized by imagining studying the effect of a new type of medication, here the two “treatments”
being compared are the untreated or baseline regime and that same regime plus this new medication. The
assumption of a constant relative treatment effect does not preclude non-constant CATEs because even
with a constant relative treatment effect, the treatment can have a varying effect on an absolute risk scale
depending on the baseline risk of a patient. For instance, assume that a new cholesterol lowering drug
reduces the risk of cardiovascular death within the next 10 years with an odds-ratio of 0.5. A 60-year-old
male smoker with hypertension and raised cholesterol has a baseline risk of cardiovascular death of 40%
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and should expect a reduction in risk of 15% points. A 50-year-old female without hypertension has a
baseline risk of under 1% and will have a less than 0.5% points reduction in risk. Given these widely
different effects on an absolute probability scale, one may recommend the new cholesterol lowering drug to
the 60-year-old male but not the 50-year-old female.

When estimating CR-CATE models from observational data where the treatment of interest was
available, one approach is to use the constant relative treatment effect as an offset term, while estimating
the baseline risk. By combining the estimated baseline risk model and the fixed relative treatment effect,
these models estimate the absolute outcome probability under treatment or no treatment. Some CR-CATE
were found to be accurate in observational validation studies, on the basis of which treatment guidelines
acknowledged a place for them in clinical decision making (Cardoso et al., 2019; Gradishar, 2021). However,
due to confounding, the baseline risk cannot be estimated from an observational dataset where some
patients were treated and others were not (Groenwold et al., 2016; van Geloven et al., 2020).

Because CR-CATE models target interventional distributions but were developed from observational
data it is implicitly assumed that using the constant relative treatment effect assumption is sufficient for
controlling for any unobserved confounding. At first glance this implicit assumption may seem plausible as
the constant relative treatment effect is not estimated from the observational data but is plugged in from
prior RCT estimates. However, whether the assumption is correct has not been discussed or verified.

In this work we evaluate the validity of the assumption that a known constant odds-ratio for treatment
allows for CATE estimation in the presence of unobserved confounding using the known odds-ratio as an
offset term. We show that a known odds-ratio used as an offset is not sufficient for estimating CATEs.
In spite of that, we find in numerical experiments the bias was low enough that using offset models still
leads to better estimation of CATEs compared with the baseline of assuming a single risk difference for
all patients. Finally, we observe that the odds-ratios reported in RCTs are not the odds-ratios that are
needed for the offset method because RCTs generally report estimates of the marginal odds-ratio, whereas
the offset method requires the conditional odds-ratio. We introduce a constraint to the offset method that
restricts the offset models based on the marginal odds-ratio from the RCT, and find empirically that these
constrained offset models have lower bias.

2 Methods
We consider models that estimate the absolute difference in probability of a binary outcome y under
two possible treatments tx ∈ {0, 1} conditional on a possibly multi-dimensional pre-treatment covariate
vector x. This is the conditional average treatment effect (CATE), conditional on x. Treatment tx = 0 is
assumed to be the baseline treatment (or no treatment depending on the clinical context) and tx = 1 is
the treatment of interest. Using Pearl’s do-operator to indicate intervening on treatment, the CATE is
defined as:

CATE(x) := p(y = 1|do(tx = 1),x)− p(y = 1|do(tx = 0),x)

CR-CATE approaches assume that the odds-ratio for treatment is constant for the entire population.
Odds are defined relative to a probability π as odds(π) = π

1−π . The odds-ratio of two probabilities
π0, π1 is defined as OR(π1, π0) := odds(π1)/odds(π0). Writing πt′x

(x′) = p(y = 1|do(tx = t′x),x = x′),

the odds-ratios that are needed in offset models because trials often report the marginal odds-ratio.
We introduce a constraint to better use marginal odds-ratios from randomized controlled trials and
find that the newly introduced constrained offset models have lower bias than standard offset models.
Finally, we highlight directions for future research for exploiting the assumption of a constant relative
treatment effect with offset models.

1 Introduction
Weighing potential benefits and harms of treatment requires knowing the treatment effect, which is the
change in probability of an outcome between different treatments. The gold standard for estimating
treatment effects are randomized control trials (RCT). RCTs often report the efficacy of treatments on a
relative scale using for example the odds-ratio or hazard-ratio for the entire population (e.g. Furie et al.
(2020); Lean et al. (2018)). Though reported on a relative scale, the effect reported still corresponds to a
single average effect, i.e., absolute change in probability of an outcome, for the whole population. Ideally,
the change in probability of an outcome, rather than being known on average for a population, would be
tailored to the characteristics of a patient to produce the conditional average treatment effect (CATE). To
turn the population-level relative effect into a CATE estimate, several previous studies on breast cancer
and cardiovascular disease used the assumption of a constant relative treatment effect to develop CATE
models from observational data (Candido dos Reis et al., 2017; Ravdin et al., 2001; Alaa et al., 2021; Xu
et al., 2021). We call these constant-relative CATE (CR-CATE) models. This assumption can be better
contextualized by imagining studying the effect of a new type of medication, here the two “treatments”
being compared are the untreated or baseline regime and that same regime plus this new medication. The
assumption of a constant relative treatment effect does not preclude non-constant CATEs because even
with a constant relative treatment effect, the treatment can have a varying effect on an absolute risk scale
depending on the baseline risk of a patient. For instance, assume that a new cholesterol lowering drug
reduces the risk of cardiovascular death within the next 10 years with an odds-ratio of 0.5. A 60-year-old
male smoker with hypertension and raised cholesterol has a baseline risk of cardiovascular death of 40%
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If β∗
tx is given a priori, models for η of the form of Equation 1 can be estimated with likelihood based

approaches by specifying a parametric model for β̂0(x) = f(x; θ̂) where f : X ×Θ → R is from a family of
functions of x ∈ X indexed by parameter vector θ ∈ Θ. The full model is then given by

η̂(tx,x) = f(x; θ̂) + β∗
txtx (2)

In the case of logistic regression, f(x;θ) = θ0 + θxx. A fixed term in a model that is not estimated
from data is called an offset term (Watson, 2007). We therefore refer to models of the from of Equation 2
where β∗

tx is constant as treatment offset models or offset models for short. Offset models are a subclass of
CR-CATE models.

2.1 Identification of the conditional average treatment effect
We assume we are given data from an observational distribution compatible with the Acyclic Mixed
Directed Graph (AMDG) with observed multi-dimensional covariate vector x and unobserved confounder
u presented in Figure 1. The AMDG is quite general in that it allows for unobserved confounding between
the pairs of variables [{u,x}, {x, tx}, {x, y}]. It is assumed that x is a non-descendant of tx, y as implied
by the assumption that x is a pre-treatment variable that may be useful for individual treatment decisions.

y

x

tx

u

Figure 1: Acyclic Mixed Directed Graph with observed nodes tx,x, y and unobserved confounder u. Double
arrows indicate the presence of a confounder, meaning that u ← zux → x ⇐⇒ u ←→ x.

To prove that the CATE is identified it is sufficient to prove that the interventional distribution
πt′x

(x′) is identified for all t′x,x′. Due to the unobserved confounder u in the AMDG, the interventional
distribtution is not identifiable from observational data without additional assumptions. The question
is whether the assumption of a known constant log odds-ratio as stated in Equation 1 is sufficient for
x-conditional causal effect identification from observational data when u is not observed. The known
constant odds-ratio assumption implies that the query is identified when the baseline risk σ(β0(x)) is
identified, as π0(x

′) = σ(β0(x
′)) and π1(x

′) = σ(β0(x
′) + β∗

tx). We now prove with a simple counter
example that offset models do not estimate the ground truth interventional distribution.

2.1.1 Example 1: Offset models do not estimate the interventional distribution

A simple example compatible with Equation 1 and the AMDG Figure 1 is where u is binary and β0(x) = β∗
0

for all values of x, meaning that there is no variation in the baseline risk. Denoting B as the Bernoulli
distribution, pu = p(u = 1) and πtxu = p(y = 1|tx, u), then the data-generating mechanism for this example
is:

u ∼ B(pu), tx ∼ B(p(tx = 1|u = u)), y ∼ B(πtxu) (3)

two possible treatments tx ∈ {0, 1} conditional on a possibly multi-dimensional pre-treatment covariate
vector x. This is the conditional average treatment effect (CATE), conditional on x. Treatment tx = 0 is
assumed to be the baseline treatment (or no treatment depending on the clinical context) and tx = 1 is
the treatment of interest. Using Pearl’s do-operator to indicate intervening on treatment, the CATE is
defined as:

CATE(x) := p(y = 1|do(tx = 1),x)− p(y = 1|do(tx = 0),x)

CR-CATE approaches assume that the odds-ratio for treatment is constant for the entire population.
Odds are defined relative to a probability π as odds(π) = π

1−π . The odds-ratio of two probabilities
π0, π1 is defined as OR(π1, π0) := odds(π1)/odds(π0). Writing πt′x

(x′) = p(y = 1|do(tx = t′x),x = x′),
the assumption that the odds-ratio for treatment is constant implies that for any two possible values
x′,x′′ for x, OR(π1(x

′), π0(x
′)) = OR(π1(x

′′), π0(x
′′)). Or equivalently, the log odds of the interventional

distributions differ by a constant. Introducing η(tx,x) as the log odds of πtx(x), the assumption implies
that for each tx,x:

η(tx,x) = β0(x) + β∗
txtx (1)

Here β0(x) is the log odds of the interventional distribution with do(tx = 0) (i.e. the baseline risk) as a
function of x, and β∗

tx is the log odds-ratio for treatment, assumed to be constant for all x. As we will
explain later in Section 2.2, β∗

tx depends on the choice for the covariate x. For the moment we will assume
that an estimate of β∗

tx for the chosen x is available from prior RCTs. Later in Section 2.2 we discuss the
more realistic setting where this is not the case. Denote σ(x) = (1 + e−x)−1 the sigmoid function and
σ−1(π) = log odds(π); 0 < π < 1 its inverse, we can now write the CATE in terms of η:

CATE(x) = σ(η(1,x))− σ(η(0,x))
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is whether the assumption of a known constant log odds-ratio as stated in Equation 1 is sufficient for
x-conditional causal effect identification from observational data when u is not observed. The known
constant odds-ratio assumption implies that the query is identified when the baseline risk σ(β0(x)) is
identified, as π0(x

′) = σ(β0(x
′)) and π1(x

′) = σ(β0(x
′) + β∗

tx). We now prove with a simple counter
example that offset models do not estimate the ground truth interventional distribution.

2.1.1 Example 1: Offset models do not estimate the interventional distribution

A simple example compatible with Equation 1 and the AMDG Figure 1 is where u is binary and β0(x) = β∗
0

for all values of x, meaning that there is no variation in the baseline risk. Denoting B as the Bernoulli
distribution, pu = p(u = 1) and πtxu = p(y = 1|tx, u), then the data-generating mechanism for this example
is:

u ∼ B(pu), tx ∼ B(p(tx = 1|u = u)), y ∼ B(πtxu) (3)

Despite its simplicity this example is conceptually important for all cases with binary treatment and
discrete x as a) when the treatment is binary, any arbitrary confounder can be modeled as a single binary
variable while maintaining the same observational and interventional distributions (Ilse et al., 2022); and
b) in the limit of infinite data, stratifying the population for each value of x and estimating β0 in each of
the strata is equivalent to non-parametric estimation of β0(x) in Equation 2 when u is binary and x is
discrete.

Let l(y, π̂) denote the Bernoulli log-likelihood of outcome y conditional on estimated probability π̂. We
derive a closed-form expression for the expected log-likelihood depending on the single parameter of the
offset model β0: L(β0) = Epobs(y,tx,u)[l(y, π̂(tx, u, β0)] in the Appendix A.1. Taking the derivative with
respect to β0 and plugging in the ground truth value for β∗

0 we find the following expression:

∂L

∂β0

(
β0 = β∗

0

)
= pu(1− pu)

[
(π01 − π00) (p(tx = 0|u = 1)− p(tx = 0|u = 0))+

(π11 − π10) (p(tx = 1|u = 1)− p(tx = 1|u = 0))
]

In general this expression is non-zero, meaning that the ground truth solution β∗
0 is not a stationary point

of the expected log-likelihood. This proves that the offset method does not recover the true baseline risk in
the presence of confounding. In the case of no confounding when πtx0 = πtx1 or p(tx|u = 1) = p(tx|u = 0),
the derivative is zero at β∗

0 meaning β∗
0 is a stationary point of the expected log-likelihood. The question

is now how important this bias is and whether offset models can be used if the constant odds-ratio
assumption is tenable, or if offset models should be avoided altogether. We study this later in with
numerical experiments in Section 3.1.

2.2 Collapsibility
An important consideration for offset models is the difference between the marginal odds-ratio and the
conditional odds-ratio. In a sufficiently large RCT where treatment tx is randomized and binary covariate
x is observed, two different models may be estimated: one that does not condition on x and estimates the
marginal log odds-ratio γtx :

p(y = 1|do(tx = t′x)) = σ(γ0 + γtxt
′
x)

and one that estimates the conditional log odds-ratio βtx :

p(y = 1|do(tx = t′x), x = x′) = σ (β0 + βtxt
′
x + βxx

′)

Note that the model with the conditional odds-ratio does not include an interaction term between tx
and x, as implied by the constant odds-ratio assumption. In contrast with linear regression, in general
βtx ̸= γtx . This means that the odds-ratio for treatment is different if the model conditions on the
covariate x or not. This property of the odds-ratio is called non-collapsibility (Greenland et al., 1999;
Burgess, 2017). To illustrate non-collapsibility, consider the extreme example with binary covariate x
where π{0,1}(x = 0) = {0.01, 0.02} and π{0,1}(x = 1) = {0.98, 0.99}. For both x ∈ {0, 1}, the x-conditional
log odds-ratio βtx ≈ log(2.0). However, when grouping patients with different values of x together we see
that, assuming p(x = 1) = 0.5, p(y = 1|do(tx = {0, 1}) = {0.495, 0.505}, thus the marginal log odds-ratio
γx ≈ log(1.0). In most RCTs the marginal log odds-ratio γtx is estimated. When γtx ̸= βtx the trials do
not provide the information required to use the offset method as defined in Equation 2. The stronger
the tx-conditional association between x and y, the greater the difference between γtx and βtx (Hauck
et al., 1991). For an illustration, see Appendix A.2. This is an important drawback as at the same time, a
stronger association between x and y conditional on tx results in more variation in the baseline risk and
thus more variation in the x-conditional treatment effect. So in the situation where offset models have
more potential added value (when x-conditional treatment effects differ substantially), the estimate of the
marginal log odds-ratio γtx from RCTs becomes a less accurate approximation of the βtx needed for the
offset model.
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pRCT(y, tx,x) = p(y|tx,x)pRCT(tx|x)p(x) = p(y|tx,x)pRCT(tx)p(x) (6)

x ∼ p(x), tx ∼ B(pRCT(tx = 1)), y ∼ B(σ(f(x′; θ̂) + β̂txtx)) (7)

The maximum likelihood estimate of the marginal log odds-ratio γtx in the data generating mechanism
of this hypothetical RCT is:

γtx = σ−1(pRCT(y = 1|tx = 1))− σ−1(pRCT(y = 1|tx = 0))

We can use Equations 4 and 5 to calculate pRCT(y = 1|tx = t′x; β̂tx , θ̂) by averaging over x. Given the
distribution in 6 we can do this averaging using p(x) because x and tx are marginally independent in the
hypothetical RCT. This leads to:

pRCT(y = 1|tx = t′x; β̂tx , θ̂) = Ex′∼p(x)σ(f(x
′; θ̂) + β̂txt

′
x)

Because we generally do not know p(x) we replace the expectation with the mean over observed values
xi of x from the empirical distribution and arrive at our estimate of the implied marginal odds-ratio:

γtx(β̂tx , θ̂) = σ−1

(
1

N

N∑
i=1

σ(f(xi; θ̂) + β̂tx)

)
− σ−1

(
1

N

N∑
i=1

σ(f(xi; θ̂))

)
(8)

Given an estimate of the marginal odds-ratio γ∗
tx from RCTs, we can now formulate a new objective

that includes both the likelihood of the observed data and a constraint defined by the known versus implied
marginal odds-ratio. Denote the Bernoulli log-likelihood of an individual observation as l(yi, xi; β̂tx , θ̂) and
L(β̂tx , θ̂) =

∑N
i=1 l(yi, xi; β̂tx , θ̂) the total log-likelihood of the observed data. We formulate the following

Lagrangian:

L(β̂tx , θ̂) = L(β̂tx , θ̂) + λ
(
γtx(β̂tx , θ̂)− γ∗

tx

)
(9)

The optimal set of parameters maximizes the likelihood of the observed data while adhering to the
constraint on the implied marginal odds-ratio. Finding these parameters given data can be done with
constrained optimization algorithms, for example an Augmented Lagrangian Algorithm (Madsen et al.,
2004).

2.3 Metric
CATE models estimate the difference in outcome probability under hypothetical interventions on treatment
conditional on covariates. A common metric for CATE estimation is the root-mean-squared error of the
predicted difference in outcome probability versus the actual difference in outcome probability, also known

where π{0,1}(x = 0) = {0.01, 0.02} and π{0,1}(x = 1) = {0.98, 0.99}. For both x ∈ {0, 1}, the x-conditional
log odds-ratio βtx ≈ log(2.0). However, when grouping patients with different values of x together we see
that, assuming p(x = 1) = 0.5, p(y = 1|do(tx = {0, 1}) = {0.495, 0.505}, thus the marginal log odds-ratio
γx ≈ log(1.0). In most RCTs the marginal log odds-ratio γtx is estimated. When γtx ̸= βtx the trials do
not provide the information required to use the offset method as defined in Equation 2. The stronger
the tx-conditional association between x and y, the greater the difference between γtx and βtx (Hauck
et al., 1991). For an illustration, see Appendix A.2. This is an important drawback as at the same time, a
stronger association between x and y conditional on tx results in more variation in the baseline risk and
thus more variation in the x-conditional treatment effect. So in the situation where offset models have
more potential added value (when x-conditional treatment effects differ substantially), the estimate of the
marginal log odds-ratio γtx from RCTs becomes a less accurate approximation of the βtx needed for the
offset model.

Having defined βtx and γtx we can now refine the assumptions underlying binary treatment offset
models stating that 1) the conditional odds-ratio βtx does not depend on x as in Equation 1, and 2) the
marginal log odds-ratio γtx is known from RCTs.

2.2.1 Using the marginal odds-ratio as a constraint

Instead of using γ∗
tx in the place of β∗

tx in an offset model we now propose a new approach for using
knowledge of γ∗

tx . We do not have knowledge of β∗
tx in Equation 2, instead, we estimate βtx as a parameter

alongside θ from the observational data. Given an estimate of the parameters (β̂tx , θ̂) we can estimate
what the marginal odds-ratio γtx(β̂tx , θ̂) would have been if an RCT had been conducted in the same
patient population. We call this γtx(β̂tx , θ̂) the implied marginal log odds-ratio. Specifically, for each
observed value x′ ∈ X , we can calculate the two estimated interventional outcome distributions:

p(y = 1|do(tx = 0),x = x′; β̂tx , θ̂) = σ(f(x′; θ̂)) (4)

p(y = 1|do(tx = 1),x = x′; β̂tx , θ̂) = σ(f(x′; θ̂) + β̂tx) (5)

The joint distribution and data generating mechanism for an RCT in this population with (unknown)
distribution pRCT(x) = p(x) of x and treatment probability pRCT(tx = 1) are:
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tx , tx , tx tx , − tx

The optimal set of parameters maximizes the likelihood of the observed data while adhering to the
constraint on the implied marginal odds-ratio. Finding these parameters given data can be done with
constrained optimization algorithms, for example an Augmented Lagrangian Algorithm (Madsen et al.,
2004).

2.3 Metric
CATE models estimate the difference in outcome probability under hypothetical interventions on treatment
conditional on covariates. A common metric for CATE estimation is the root-mean-squared error of the
predicted difference in outcome probability versus the actual difference in outcome probability, also known
as the “Precision in Treatment Effect Heterogeneity” (PEHE, Hill (2011)). If π1(x), π0(x) denote the
interventional distributions, and π̂1(x), π̂0(x) the estimated interventional distributions, the PEHE is
calculated as:

PEHE =

√√√√ 1

N

N∑
i

((π1(xi)− π0(xi))− (π̂1(xi)− π̂0(xi)))
2

CATE models are generally motivated to enable more individualized treatment decisions as opposed
to using a single average treatment effect estimate for all patients. This means that the baseline for
CATE models is using a single average treatment effect on the absolute probability scale for all patients
(ATE-baseline).

3 Experiments
We evaluate the amount of bias when estimating CATE models from observational data using the offset
method in the presence of unobserved confounding with numerical experiments. First, we investigate
Example 1 (Equation 3) and find that the bias of offset models is small even for large confounding
magnitudes. Finally we study in what situations offset models have better PEHE than the ATE-baseline
when there are measured covariates, comparing different offset model variants.

Figure 2: Solutions for different methods on Example 1 with different amounts of confounding, indexed by
ORut = ORuy the odds-ratios from confounder u to treatment tx and outcome y respectively. The contour
lines indicate solutions with the same log-likelihood of the observational data. As visualized with the
horizontal line, the offset method finds the β0 that maximizes the observational likelihood while keeping
βtx = β∗

tx . Fully observational: estimate β0 and βtx from observational data, RCT: ground truth values of
β0 and βtx , offset: offset method.

3.1 Example 1 examined
To evaluate the amount of bias in offset models in Example 1, we parameterize the magnitude of
confounding using log odds-ratios βu→tx , βu→y so that p(tx = 1|u) = σ( 12βu→tx(2u − 1)) and p(y =
1|tx, u) = σ( 12 (βtx(2tx − 1) + βu→y(2u − 1))). Note that because there is no variation in baseline risk
γ∗
tx = β∗

tx . We plot different solutions and the log-likelihood contours for different values of βu→tx = βu→y in
Figure 2, setting βtx = 1 and pu = 0.5. Even in extreme cases of confounding when βu→tx = βu→y = log 10,
the offset solution is close to the ground truth, while the observational estimate becomes more and more
biased. This indicates that when β∗

tx is known, the bias in offset models induced by the unobserved
confounder u is small.

3.2 Numerical experiments with a binary covariate
The bias induced by the confounding in Example 1 seems minor even for extreme magnitudes of confounding
when β∗

tx is known. However, a more important metric is whether the PEHE of the offset model is better
than that of the ATE-baseline when γ∗

tx is known instead of β∗
tx and there is variation in the baseline

risk, which means that γ∗
tx ̸= β∗

tx . To investigate this, we extend the example by introducing a marginally
independent binary covariate x with non-zero effect on the outcome. The updated data generating
mechanism is:
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Figure 3: Three different approaches to estimating a model for data with a binary covariate x. Each image
is a hyperplane of the parameter cube (β0, βtx , βx) dissected at a specific value of βx corresponding to
the solution of the respective method. The ground truth solution, indicated with the black asterix lies in
none of the shown hyperplanes. The contour lines indicate solutions with the same log-likelihood of the
observational data. In the marginal offset method, the solution for (β0, βx) maximizes the log-likelihood
on the line with βtx = γ∗

tx , as indicated with the orange horizontal line in the second plot. Because of
non-collapsibility, this is a suboptimal solution as γ∗

tx ̸= β∗
tx . In the constrained offset method (third

plot), reference lines are added that are dissections of level sets defined by equal values of the constraint
on the implied marginal odds-ratio γtx(β0, βtx , βx)− γ∗

tx . Here, the solution (β0, βtx , βx) maximizes the
log-likelihood on the level set defined by γtx(β0, βtx , βx)−γ∗

tx = 0, which is a saddlepoint of the Lagrangian
as formulated in Equation 9.

code to replicate these results is available at www.github.com/vanamsterdam/binaryoffsetmodels. The
constrained offset method applied to this setting is illustrated in Figure 3 and constrasted with the fully
observational baseline and the marginal offset method.

As a first observation from the results shown in Figure 4, whenever the baseline risk varies with x, the
ATE-baseline has sub optimal PEHE. Also, the PEHE of the fully observational logistic regression model
becomes worse than the ATE-baseline for higher magnitudes of confounding. Whenever the estimated
ÔRx > 1, offset models are better than the ATE-baseline with respect to PEHE. For larger magnitudes
of ÔRx the performance of the marginal offset model degrades because the issue of non-collapsibility

1|tx, u) = σ( 2 (βtx(2tx 1) + βu→y(2u 1))). Note that because there is no variation in baseline risk
γ∗
tx = β∗

tx . We plot different solutions and the log-likelihood contours for different values of βu→tx = βu→y in
Figure 2, setting βtx = 1 and pu = 0.5. Even in extreme cases of confounding when βu→tx = βu→y = log 10,
the offset solution is close to the ground truth, while the observational estimate becomes more and more
biased. This indicates that when β∗

tx is known, the bias in offset models induced by the unobserved
confounder u is small.

3.2 Numerical experiments with a binary covariate
The bias induced by the confounding in Example 1 seems minor even for extreme magnitudes of confounding
when β∗

tx is known. However, a more important metric is whether the PEHE of the offset model is better
than that of the ATE-baseline when γ∗

tx is known instead of β∗
tx and there is variation in the baseline

risk, which means that γ∗
tx ̸= β∗

tx . To investigate this, we extend the example by introducing a marginally
independent binary covariate x with non-zero effect on the outcome. The updated data generating
mechanism is:

u ∼ B(pu), tx ∼ B(p(tx = 1|u = u)), x ∼ B(px), y ∼ B(πtxxu)

where

πtxxu = p(y = 1|tx, x, u) = σ(
1

2
(βtx(2tx − 1) + βx(2x− 1) + βu→y(2u− 1))) (10)

For different values of βx, βu→tx , βu→y in Equation 10 we calculated the PEHE of the ATE-baseline.
We contrast this PEHE with 5 different approaches. As we are investigating the amount of bias due
to unobserved confounding, the reference is (1) a logistic regression model based on data where there
is no confounding as in RCTs, with prct(tx = 1|u = 0) = prct(tx = 1|u = 1) = 0.5, but the rest of the
data generating mechanism remains the same (RCT). We then compare 4 different approaches using
observational data: (2) a logistic regression model where β0, βtx , βx are estimated from the observational
data (full). (3) An offset model where β0, βx are estimated while plugging in the ground truth β∗

tx as
obtained by the RCT in model (1) (conditional). (4) An offset model where the marginal γ∗

tx is available
from RCTs and is used as an offset in place of βtx (marginal). (5) An offset model where the implied
marginal γtx(β̂tx , θ̂) is constrained to be γ∗

tx as in Equation 9 (constrained). For these experiments we
set βu→tx = βu→y = βu to four different values and varied βx, keeping βtx = 1 and pu = px = 0.5. As
for these experiments the expected log-likelihood is available in closed-form, we optimize the expected
log-likelihood directly instead of generating random samples. We implemented the constrained offset model
using a gradient-based augmented Lagrangian optimizer implemented in the R package ‘alabama‘. The
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non-collapsibility, this is a suboptimal solution as γ∗
tx ̸= β∗

tx . In the constrained offset method (third
plot), reference lines are added that are dissections of level sets defined by equal values of the constraint
on the implied marginal odds-ratio γtx(β0, βtx , βx)− γ∗

tx . Here, the solution (β0, βtx , βx) maximizes the
log-likelihood on the level set defined by γtx(β0, βtx , βx)−γ∗

tx = 0, which is a saddlepoint of the Lagrangian
as formulated in Equation 9.

code to replicate these results is available at www.github.com/vanamsterdam/binaryoffsetmodels. The
constrained offset method applied to this setting is illustrated in Figure 3 and constrasted with the fully
observational baseline and the marginal offset method.

As a first observation from the results shown in Figure 4, whenever the baseline risk varies with x, the
ATE-baseline has sub optimal PEHE. Also, the PEHE of the fully observational logistic regression model
becomes worse than the ATE-baseline for higher magnitudes of confounding. Whenever the estimated
ÔRx > 1, offset models are better than the ATE-baseline with respect to PEHE. For larger magnitudes
of ÔRx the performance of the marginal offset model degrades because the issue of non-collapsibility
becomes more pronounced. Of note, the constrained offset model is always better than the ATE-baseline
whenever ÔRx > 1, and always better than the fully observational baseline. Finally, we observe that even
the logistic regression model estimated from RCT data has non-zero PEHE which increases when the
confounding increases. The reason for this not confounding but parametric form bias. The data were
generated according to a simple logistic regression setup, linear in tx, x, u. When fitting a logistic model
conditional on tx, x in this data, marginalizing out u, simple logistic regression is no longer sufficient.
Specifically, the model now requires an added interaction term between tx and x to be unbiased.

We further expanded this example with numerical experiments where x and u are no longer marginally
independent. Details of these experiments are described in the Appendix A.3. Except in some extreme
settings when there is very little variation in baseline risk, the constrained offset models have better PEHE
than the ATE-baseline. Overall, constrained offset models perform most stable across all settings and have
better PEHE than the fully observational baseline and the marginal offset models.

4 Discussion
We evaluated whether the offset method provides valid CR-CATE models for binary outcomes in the
presence of unobserved confounding. Though not exact, offset models still have better PEHE than the
baseline of using the average treatment effect for all patients even for large confounding magnitudes.
In our numerical experiments, this holds even if an estimate of the marginal odds-ratio is used from
randomized trials instead of the conditional odds-ratio. We introduced a new way of using estimates of
the marginal odds-ratio to address the issue of non-collapsibility of the odds-ratio and find that it gives
the best performance overall in terms of PEHE.

An important question for practical applications is when it is valid to assume that the relative treatment

Figure 4: PEHEs for different strategies, indexed by ORut = ORuy, the odds-ratios from confounder u to
treatment tx and outcome y respectively. The shaded areas indicate whether the chosen approach improves
upon the ATE-baseline of assuming a single predicted difference in outcome for all patients. In the right
most plot the fully observational baseline has higher PEHE than the maximum y-value of the plot.

effect is indeed constant. There is some evidence from meta-analyses that treatment effect estimates on a
relative scale are more stable across different RCTs than treatment effects on an absolute scale (Engels
et al., 2000; Sterne and Egger, 2001). However, in some settings there may clear indications for differences
in treatment effect on a relative scale. This could hold for example for therapies whose mechanism of
action depends on certain genetic mutations. If this is the case and the difference in relative treatment
effect is known, this difference could be accounted for accordingly in offset models.

Recent work has studied combining observational data and data from randomized trials for CATE
estimation (Rosenman et al., 2020; Ilse et al., 2022). Under relatively mild assumptions, estimates from
combined datasets yield more efficient estimates of CATEs than using RCT data alone. However, these
methods require access to the individual-patient data from the RCT, whereas offset methods only rely on a
single effect estimate from RCTs. Gaining access to individual-patient data from RCTs is often challenging
due to data-access restrictions.

A limitation of our work is the relatively restricted set of experiments. Future work could experiment
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effect is indeed constant. There is some evidence from meta-analyses that treatment effect estimates on a
relative scale are more stable across different RCTs than treatment effects on an absolute scale (Engels
et al., 2000; Sterne and Egger, 2001). However, in some settings there may clear indications for differences
in treatment effect on a relative scale. This could hold for example for therapies whose mechanism of
action depends on certain genetic mutations. If this is the case and the difference in relative treatment
effect is known, this difference could be accounted for accordingly in offset models.

Recent work has studied combining observational data and data from randomized trials for CATE
estimation (Rosenman et al., 2020; Ilse et al., 2022). Under relatively mild assumptions, estimates from
combined datasets yield more efficient estimates of CATEs than using RCT data alone. However, these
methods require access to the individual-patient data from the RCT, whereas offset methods only rely on a
single effect estimate from RCTs. Gaining access to individual-patient data from RCTs is often challenging
due to data-access restrictions.

A limitation of our work is the relatively restricted set of experiments. Future work could experiment
with higher dimensional, mixed-type covariates and different functional relationships between the variables.
In higher dimensions, the constraint on the implied marginal odds-ratio restricts a lower fraction of the
degrees of freedom. It is unknown whether the constraint will effectively reduce confounding bias in higher
dimensions. One potentential solution for this would be to first learn a scalar function from all covariates,
for example with a fully observational model or a marginal offset model. The constrained offset method
can then be applied using this scalar as the single covariate.

Future work could extend our experiments to relative treatment effect estimates in the form of hazard-
ratios, or to the setting of time-varying confounding. Furthermore, Bayesian extensions of our constrained
offset model can be investigated to account for uncertainty in marginal odds-ratio estimates from RCTs.
Finally, finite-sample characteristics of our estimator for the implied marginal odds-ratio in terms of bias
and variance could be studied further. We leave these extensions for future work.

In conclusion, we find that offset models do not correctly estimate CATEs in the presence of unobserved
confounding. However, from our experiments it may still be justified to use offset models in practice as
they often have better PEHE than the ATE-baseline. The newly introduced constraint on the implied
marginal odds-ratio improved the PEHE even more. Further extensions of the offset method for CR-CATE
models remain for future work.
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A Appendix

A.1 Identification
We now prove that the assumption expressed in Equation 1 is not sufficient for identifying the interventional
distribution p(y = 1|do(tx = tx

′),x = x′) from observational data using a simple example where all variables
are binary and β0(x

′) = β∗
0 for all values of x meaning that the untreated risk does not vary with x. In this

setting, estimating an offset model amounts to estimating the log odds of the untreated risk β0. We first
derive an expression for the expected log likelihood as a function of β0 L(β0) = Epobs(y,tx,u)[l(y, π̂(tx, u, β0)]
under the observational distribution in this example Then we show that the ground truth solution β∗

0 is
not a stationary point, proving our claim. Writing

pu =p(u = 1)

ptx′u′ =p(tx = tx
′, u = u′) = p(tx = tx

′|u = u′)p(u = u′)

πtx′u′ =p(y = 1|tx = tx
′, u = u′)

Then the data generating mechanism is:

u, tx ∼ B(ptx′u′), y ∼ B(πtxu)

The ground truth solutions β∗
0 and β∗

tx are:

p(y = 1|do(tx = 0)) = (1− pu)π00 + puπ01 = σ(β∗
0) (11)

p(y = 1|do(tx = 1)) = (1− pu)π10 + puπ11 = σ(β∗
0 + β∗

tx) (12)

The Bernoulli log-likelihood is

l(y|tx, β0, βtx) = y log σ(β0 + βtxtx) + (1− y) log(1− σ(β0 + βtxtx))

In offset models β∗
tx is assumed given a priori and β0 is the only parameter, resulting in the following

expression for L(β0):

L(β0) =p00 [π00 log σ(β0) + (1− π00) log(1− σ(β0))]

+p01 [π01 log σ(β0) + (1− π01) log(1− σ(β0))]

+p10
[
π10 log σ(β0 + β∗

tx) + (1− π10) log(1− σ(β0 + β∗
tx))

]

+p11
[
π11 log σ(β0 + β∗

tx) + (1− π11) log(1− σ(β0 + β∗
tx))

]

Taking the derivative with respect to β0, noting that (log σ(x))′ = 1− σ(x), we get:

∂L

∂β0
=p00 [π00(1− σ(β0))− (1− π00)σ(β0)] (13)

+p01 [π01(1− σ(β0))− (1− π01)σ(β0)]

+p10
[
π10(1− σ(β0 + β∗

tx))− (1− π10)σ(β0 + β∗
tx)

]

+p11
[
π11(1− σ(β0 + β∗

tx))− (1− π11)σ(β0 + β∗
tx)

]

We now plug in the ground truth solutions for β∗
0 , β

∗
tx .

∂L

∂β0
(β0 = β∗

0) =p00 [π00(1− puπ01 − (1− pu)π00)− (1− π00)(puπ01 + (1− pu)π00)]

+p01 [π01(1− puπ01 − (1− pu)π00)− (1− π01)(puπ01 + (1− pu)π00)]

+p10 [π10(1− puπ11 − (1− pu)π10)− (1− π10)(puπ11 + (1− pu)π10)]

+p11 [π11(1− puπ11 − (1− pu)π10)− (1− π11)(puπ11 + (1− pu)π10)]

Removing terms that cancel out in each line results in
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=p00 [pu(π00 − π01)]

+p01 [(1− pu)(π01 − π00)]

+p10 [pu(π10 − π11)]

+p11 [(1− pu)(π11 − π10)]

Substituting back ptx′u′ = p(tx = tx
′|u = u′)p(u = u′):

=p(tx = 0|u = 0)(1− pu) [pu(π00 − π01)]

+p(tx = 0|u = 1)pu [(1− pu)(π01 − π00)]

+p(tx = 1|u = 0)(1− pu) [pu(π10 − π11)]

+p(tx = 1|u = 1)pu [(1− pu)(π11 − π10)]

Factoring out pu(1− pu) and re-arranging we arrive at our result:

∂L

∂β0
(β0 = β∗

0) = pu(1− pu)
[
(π01 − π00) (p(tx = 0|u = 1)− p(tx = 0|u = 0))+

(π11 − π10) (p(tx = 1|u = 1)− p(tx = 1|u = 0))
]

If there is no confounding this expression is zero, but in general it is not which means that the ground
truth solution β∗

0 is not an optimum of the expected log-likelihood in the observational data distribution.
This proves our claim that the offset model does not recover the interventional distribution in the presence
of confounding. □

Of note, the fact that the interventional distribution is not identified does not automatically imply
that the CATE is not identified as there may be another β′

0 ̸= β∗
0 such that CATE(β0 = β′

0, βtx = β∗
tx) =

CATE(β0 = β∗
0 , βtx = β∗

tx). To investigate this, assume that for some β∗
0 = a and β∗

tx = b we have that:

δ :=CATE(β0 = a, βtx = b)

=σ(a+ b)− σ(a)

=
ea+b

1 + ea+b
− ea

1 + ea

Again, treating β∗
tx as fixed, we will now prove that this equation has at most two solutions for β0 = a

by noting that:

ea+b

1 + ea+b
− ea

1 + ea
=

ea+b(1 + ea)− (1 + ea+b)ea

(1 + ea+b)(1 + ea)

=
ea(eb − 1)

(1 + ea+b)(1 + ea)

Introducing y := ea and cross-multiplying we get:

δ =
y(eb − 1)

(1 + eby)(1 + y)
⇐⇒

δ(1 + eby)(1 + y) = y(eb − 1) =

δ + δ(1 + eb)y + δeby2 = y(eb − 1) ⇐⇒
δeby2 +

(
δ(1 + eb)− eb + 1

)
y + δ = 0

Depending on the values of δ and b this quadratic equation in y has 0, 1 or 2 real-valued solutions,
yielding 0, 1 or 2 real-valued solutions for a = log y = β0. This implies that there exists utmost one
alternative solution β′

0 ̸= β∗
0 such that CATE(β0 = β′

0, βtx = β∗
tx) = CATE(β0 = β∗

0 , βtx = β∗
tx).
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In fact, we can explicitly compute this alternative solution by exploiting the symmetry of the sigmoid
function: σ(x) = 1− σ(−x). Whenever it is true that:

σ(β∗
0 + β∗

tx)− σ(β∗
0) = δ

It must simultaneously be true that, writing β′
0 := −(β∗

0 + β∗
tx):

σ(β′
0 + β∗

tx)− σ(β′
0) =

σ(−(β∗
0 + β∗

tx) + β∗
tx)− σ(−(β∗

0 + β∗
tx)) =

σ(−β∗
0)− σ(−(β∗

0 + β∗
tx)) =

(1− σ(β∗
0))− (1− σ(β∗

0 + β∗
tx)) =

σ(β∗
0 + β∗

tx)− σ(β∗
0) = δ

This means that except in the trivial case when β∗
0 = β∗

tx = 0 there always exists a second solution β′
0

that has the same CATE δ but a different interventional distribution p(y|do(tx)). We can check whether this
coincidentally coincides with the maximum likelihood solution for β0 in the offset model on the observational
data by plugging in β′

0 := −(β∗ + β∗
tx) in the expression of the gradient of the likelihood (Equation 13).

Again we remove terms that cancel out and substitute back ptx′u′ = p(tx = tx
′|u = u′)p(u = u′) to arrive

at:

∂L

∂β0
(β0 = β′

0) = pu(1− pu)
(
p(tx = 0|u = 1)− p(tx = 0|u = 0)

)(
(π10 − π11) + (π01 − π00)

)
(14)

+ pu
(
(π11 − π10) + (π01 − π00)

)
(15)

+ 2π10 + π11 − 1 (16)

Analyzing this expression line-by-line we see that the first two lines are non-zero in general when there
is confounding such that p(tx = 0|u = 1) ̸= p(tx = 0|u = 0) and πtx1 ̸= πtx0. The last line is also non-zero
in general as πtxu are free parameters.

A.2 Non-Collapsibility
Here we provide an example and intution on what non-collapsibility of the odds-ratio is and why it increases
when the assocation between x and y becomes greater. Consider the following data-generating mechanism
for binary x with p(x = 1) = 0.5, binary treatment tx, and outcome mechanism p(y = 1|do(tx), x) =
σ(β0(x) + tx), so that the conditional odds-ratio (e1 ≈ 2.72) is constant. As we will see, depending on
how β0 depends on x, the marginal log odds-ratio γtx will vary. For two settings of β0(x) we calculate the
resulting marginal odds-ratio γtx in a few simple steps. The calculations are visualized in Figure 5. Let
πtx(x) = p(y = 1|do(tx), x):

π0(0) = σ(β0(x = 0))

π0(1) = σ(β0(x = 1))

π1(0) = σ(β0(x = 0) + 1)

π1(1) = σ(β0(x = 1) + 1)

π0 = (1− p(x = 1))π0(0) + p(x = 1)π0(1)

π1 = (1− p(x = 1))π1(0) + p(x = 1)π1(1)

η0 = σ−1(π0)

η1 = σ−1(π1)

γtx = η1 − η0

This leads to the following numerical results in Table 1 where we see that βtx > γtx > 0 and γtx → 0
when the difference between π0(0), π0(1) becomes bigger, despite βtx = 1 remaining constant.
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Figure 5: Illustration of non-collapsibility. For fixed p(x = 1) = 0.5 and βtx = 1.0, the marginal log
odds-ratio γtx of treatment becomes closer to 0 when the difference in the untreated risks π0(0), π0(1)
becomes larger.setting x η0(x) η1(x) βtx π0(x) π1(x) π0 π1 η0 η1 γtx

a 0 -1.5 -0.5 1 0.182 0.378 0.402 0.598 -0.395 0.395 0.7911 0.5 1.5 1 0.622 0.818

b 0 -3.5 -2.5 1 0.029 0.076 0.477 0.523 -0.093 0.093 0.1861 2.5 3.5 1 0.924 0.971

Table 1

A.3 Additional Experiments
Extending the experiments in 3.2, we investigate the situation where x and u are correlated. Specifically,
p(x, u) = p(u|x)p(x) with p(u|x = 0) = 1− p(u|x = 1) = α and α ∈ [0.1, 0.3, 0.5, 0.7, 0.9] , p(x) = 0.5. As
seen in Figure 6, whereas the PEHE for the marginal offset model increases with β̂x, the constrained offset
model remains relatively unbiased in a wide range of settings. Again, the PEHE of the constrained offset
model is always better than the fully observational baseline. In the areas with very high confounding
(βu→y ≥ log(5)) and strong negative correlation between u and x (α ≥ 0.7) there are some settings
where the constrained offset models perform worse than the ATE-baseline. As x and u both increase
the probability of y but x and u are anti-correlated in these settings, we get close to the situation that
p(y|do(tx), x = 0) ≈ p(y|do(tx), x = 1). This means that in these cases, the ATE-baseline has low PEHE
as there is no actual difference in baseline risk depending on x. Whether this situation is relevant in actual
applications will depend on the available background knowledge. The implication would be that the entire
population under study would have the same outcome probability if they were included in a RCT and
were assigned to the control arm. This total lack of variation in baseline risk may be deemed implausible
in many concrete applications. Outside of these settings, the constrained offset models have better PEHE
than the ATE-baseline whenever ÔRx ̸= 1.
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the probability of y but x and u are anti-correlated in these settings, we get close to the situation that
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Figure 6: PEHEs for different offset models, indexed by ORut = ORuy, the odds-ratios from confounder
u to treatment tx and outcome y respectively, and p(u|x = 0) = 1− p(u|x = 1). The fully observational
baseline is sometimes not visible because the PEHE is higher than the maximum value on the y-axis.

Figure 6: PEHEs for different offset models, indexed by ORut = ORuy, the odds-ratios from confounder
u to treatment tx and outcome y respectively, and p(u|x = 0) = 1− p(u|x = 1). The fully observational
baseline is sometimes not visible because the PEHE is higher than the maximum value on the y-axis.
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Key messages
•	 Much outcome prediction research is published with the aim to improve future treatment decisions, but fails to 

appreciate the causal nature of this task
•	 Because causal reasoning is ignored, decisions based on these prediction models can lead to substantial harm
•	 This holds even for prediction models that are found to be accurate in prospective validation studies
•	 To make outcome prediction research relevant to guiding treatment decisions, a better appreciation of causality 

is needed
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The fundamental question guiding treatment decisions is “What is the chance of a good outcome, if we give 
treatment A or B, given that we know characteristics X about this patient”. This clinical question targets the effect of 
giving treatment A or B and is therefore a causal question (1).

Oncologic treatment guidelines rely on evidence from randomised controlled trials (RCTs) which estimate the 
average treatment effect in a certain patient population. However, treatments are not equally effective in all patients thus 
knowing the individual treatment effect would empower better decisions. Hence, many studies in cancer aim to improve 
individual treatment decisions with outcome prediction models. These models use patient and tumor characteristics to 
predict a clinical outcome, such as overall survival. The motivation behind these models is that predictions from them 
can be useful for the task of selecting the best treatment for an individual patient. However, most outcome prediction 
research ignores the causal nature of selecting the best treatment and is thereby incapable of fulfilling its motivation.

We will demonstrate that non-causal outcome prediction models answer questions that render these models unsuited 
for decision-making. Outcome predictions can misguide treatment decisions, leading to worse patient outcomes, even 
when the predictions are accurate. Subsequently, we will provide directions on what is needed to estimate individual 
treatment effects, elaborating on the setting of non-randomized study designs.

Non-causal prediction models are unsuited for decision support
To explain why non-causal outcome prediction models are unsuited for treatment decision support and how this 

introduces a substantial risk of harm due to misguided decisions, we first divide non-causal prediction models in three 
types: treatment-naïve, post-decision and single-treatment.

Treatment-naïve models (2–4) make use of baseline characteristics of a patient to predict the outcome. These models 
answer the question “What is the chance of a good outcome, given that we know X about this patient with the assumption 
that we will keep making the same treatment decisions as we always did”. This assumption is necessary because if there 
would be a change in the way treatment decisions are made, for example by using the prediction model for more 
individualized treatment decisions, the patterns in the data are changed compared to when the model was developed 
and the predictions are no longer valid  (Figure 1). These models may cause more harm than good when used to support 
treatment decisions.

As a simplified example consider a model that predicts overall survival for stage IV lung cancer patients based on 
the pretreatment growth rate of the tumor. Faster growing tumors generally lead to worse overall survival so an accurate 
model would predict a lower survival for patients with faster growing tumors. Applying this model, a clinician could 
decide to refrain from palliative radiotherapy in patients with faster growing tumors under the assumption that their 
life expectancy is too short to benefit from radiotherapy. This decision based on the non-causal prediction model would 
be unjustified and harmful, as faster growing tumors are more susceptible to radiotherapy (5). Thus, introducing this 
model in clinical practice as a decision support tool is likely to cause harm, even though the predictions are accurate.
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Figure 1. Treatment-naïve models

Treatment-naïve models predict the average outcome (death) depending on patient characteristics (growth rate) under 
the historic treatment policy (palliative radiotherapy or no radiotherapy). This means the predictions are only valid if 
the treatment policy does not change. In the first treatment policy (A.) under which the treatment-naïve model was 
developed, the decision for radiotherapy did not depend on tumor growth rate. In the second policy informed by the 
prediction model (B.), patients with faster growing tumors are less likely to get radiotherapy, even though radiotherapy 
would be particularly helpful for them. Despite being accurate, introducing the non-causal model for decision support 
has caused harm.

Post-decision models (6–8) incorporate historical treatments but do not estimate the causal effect of these treatments. 
Thereby they target the question: “What is the chance of a good outcome, given that we know X about this patient 
with the assumption that the decision to give treatment A (or B) has already been made”. In contrast with RCTs, treatment 
decisions in clinical practice are not made at random. This results in systematic differences between patient groups 
who underwent different treatments. When these systematic differences are not fully accounted for by the variables 
included in the prediction model and are at the same time related to the outcome, the problem of confounding occurs, 
sometimes referred to as confounding by indication or selection bias. Because of confounding, differences between 
outcome predictions from a post-decision model are not attributable to the causal effect of the treatment (Figure 2).

As a simple example, stage I non-small cell lung cancer (NSCLC) patients who are medically unfit for surgery due to 
advanced age and comorbidities will generally be treated with radiotherapy instead of surgery. Patients who underwent 
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surgery for stage I NSCLC have better overall survival than patients who underwent radiotherapy, but this difference is 
not directly attributable to the causal effect of surgical treatment as the patient groups were not comparable to begin with. 
Importantly, the average survival of surgically treated patients is not the expected survival if one were to operate on patients 
who are unfit for surgery. Due to the confounding caused by the patient selection policy for surgery, the predictions 
of a post-decision model do not answer the question on what the outcome would be if we would give treatment A or 
B. Post-decision models should only be used when the treatment decision has already been made. Unaware of this 
caveat, a clinician or multi-disciplinary team may be tempted to use a post-decision model for a specific patient before 
the treatment decision has been made. If confounding makes the treatment appear more effective this could lead to 
overtreatment compared to the situation before introduction of the prediction model and vice versa. Many studies based 
on cancer registries such as the Surveillance, Epidemiology and End Results registry fall in the post-decision category.

Figure 2. Post-decision models

Post-decision models predict the outcome (death) of patients depending on their characteristics (tumor type) in different 
treatment groups (surgery or radiotherapy) but are only valid after the treatment decision is made. This is because the 
distribution of the confounder (old and frail vs young and fit) differs between the two treated populations due to the 
treatment selection policy (young and fit patients are more likely to get surgery). As a result, neither treated populations 
are a valid reference group for the pretreatment population. Due to the differences in the distribution of the confounder, 
the model predictions are only valid in the populations in which the model was developed (the respective post-treatment 
decision populations), but not in the pretreatment population, making it unsuitable to guide treatment decisions.

Single-treatment models (9,10) are a special type of post-decision model that consider patients who had a single 
treatment of interest and answer the question: “What is the chance of a good outcome, given that we know X about 
this patient and have decided to give treatment A” (Figure 3). As there is no decision between multiple treatments here, it 
may seem that there can be no confounding. However, these models suffer from the same bias as multi-treatment post-
decision models. Again, the population in which the model was developed, the patients who had treatment A, differs 
substantially from the population in which the treatment decision is not yet made with respect to the confounders. 
This makes the model unreliable in this wider population and likely to cause overtreatment or undertreatment. Many 
response prediction studies fall in the single-treatment category (9).

Figure 3. Single-treatment models
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Single-treatment models predict the outcome (death) under a certain treatment of interest (surgery) depending on the 
characteristics of a patient (tumor type). Just as post-decision models, single-treatment models are only valid in the 
population for whom the treatment decision has already been made, as the distribution of the confounder (old and frail 
vs young and fit) differs between the pre-treatment population and the population in which the treatment decision is 
already made due to the treatment policy (young and fit patients are more likely to get surgery).

Prospective validation is not sufficient
Prospective validation studies are the gold-standard for evaluating the accuracy of a prediction model (11), but they 

do not provide information on whether a prediction model is suitable for treatment decision support. In a prospective 
validation study, patient characteristics and outcomes are recorded for a new patient cohort according to a predefined 
protocol. Comparing the predictions of a model with the observed outcomes in these patients provides an estimate of 
how accurate the model is outside of the cohort in which the model was developed. 

Introducing a prediction model to support treatment decisions constitutes an intervention that changes treatment 
decisions and thus patient outcomes. Prospective validation is not a suitable study design to test the effects of this 
intervention on treatment decisions and patient outcomes. In fact, even if a model is found to be accurate in a prospective 
validation study it could still lead to harm if it were used to guide treatment decisions. To illustrate this we continue 
with the earlier example of palliative radiotherapy for stage IV lung cancer where patients with fast growing tumors were 
recommended to not get radiotherapy. If this model were tested in a prospective validation study, the patients with fast-
growing tumors would be given radiotherapy less often due to the treatment recommendation of the model, leading to 
even worse survival for these patients than before introduction of the prediction model. The introduction of the model 
has thus caused harm, but paradoxically it is still found to be accurate in the validation study as the model already 
predicted that patients with fast-growing tumors have a bad prognosis.

Hence, high accuracy in prospective validation studies is not sufficient evidence that a model is safe to use for guiding 
treatment decisions. Despite this, some guidelines on breast cancer (12) and prostate cancer (13) recommend usage of 
outcome prediction models for treatment decision support on the basis of prospective validation studies.

Developing individual treatment effect models in observational data 
Now that we understand how non-causal prediction models fail to guide treatment decisions, the question remains: 

what research addresses this properly? 

The ideal prediction model for supporting treatment decisions is an individual treatment effect model. Technically, a 
more appropriate term is the ‘conditional average treatment effect’, but as ‘individual treatment effect’ is more commonly 
used, we use this term instead. Individual treatment effect models estimate the effect of treatment for an individual 
patient based on their characteristics. Ideally, individual treatment effect models are estimated in data from RCTs (14). 
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However, the costs to have sufficient statistical power in all patient subgroups for all treatment protocols in RCTs are 
prohibitive. In addition, there are important settings in cancer care where treatment effect estimates from observational 
data are required. For example as provisional evidence to motivate a new trial; when specific patient subgroups are not 
represented in historic trials and when new biomarkers become available after the trials (15,16).

Individual treatment effect estimates from observational data require background knowledge and causal reasoning. 
The basic approach requires knowledge of the confounders (1). When some confounders are not available it is generally 
not possible to estimate the individual treatment effect, though there are important exceptions to this rule.

One such exception is when proxy measurements of the confounders are available (17–19). For example, in many 
cancer settings, the overall fitness of a patient is an important confounder (19). While there is no record of the overall 
fitness of a patient as assessed by the treating clinician, the performance score is a frequently available proxy measurement 
of the confounder overall fitness. In cases like these, dedicated proxy methods allow treatment effect estimation despite 
the unobserved confounder. Another situation is when instrumental variables are available (20,21). An instrumental 
variable is related to the treatment but is not confounded with the outcome, and influences the outcome only through 
the treatment. As an example, the general preference of a physician for a certain treatment strategy is sometimes used as 
an instrumental variable (22). Finally, methods that combine observational data and experimental data to further increase 
the efficiency of subgroup treatment effect estimates are under development and may yield interesting applications in 
cancer research (23,24).

Whatever approach is used, sensitivity analyses are an important tool for estimating the effects of potential violations 
of the made assumptions on the individual treatment effect estimates. For example, the effect of a potentially omitted 
confounder on the resulting treatment effect estimate can be calculated, resulting in a range of plausible treatment effects 
(25). Promising individual treatment effect models could be tested in cluster-randomized trials. In a cluster-randomized 
trial some groups of clinicians are randomly selected to get access to the model while others are not. In contrast with 
non-randomized validation studies, this allows for the estimation of the effect of introducing the model on treatment 
decisions and patient outcomes. Finally, the individual treatment effect is informative for the shared decision making 
process but needs to be put in perspective based on a patient’s values and preferences.

Discussion
We highlighted that improving treatment decisions with prediction models is a fundamentally causal endeavour. 

Without causal reasoning, outcome prediction models cannot achieve the goal of improving treatment decisions. Based 
on unaddressed causal issues, non-causal prediction models that are found to be accurate can lead to worse decisions 
and patient harm. As the issue lies in causality, these problems cannot be resolved by larger datasets, more sophisticated 
prediction algorithms (e.g. machine learning) or even by prospective validation of prediction models.

In future research that aims to contribute to treatment decision support there should be more emphasis on addressing 
causal issues such as confounding instead of merely focusing on measures of predictive accuracy. Answering the 
fundamental question for shared treatment decision making “what is the chance of a good outcome if we give treatment 
A or B, given that we know X about this patient” cannot be done with ignorance of causality. Given the importance of 
this question, researchers, patient associations, journal editors, research funders and research consumers should prioritize 
research that addresses this over the multitude of non-causal prediction research.
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Outcome prediction is popular in cancer research. The assumption motivating most of this research is that good 

outcome predictions help make better treatment decisions. In this discussion we emphasize that supporting treatment 
decisions is a causal task and thus requires causal reasoning. Most outcome prediction research in cancer ignores causal 
reasoning. This introduces a substantial risk of harm as decisions based on non-causal predictions can lead to worse 
patient outcomes, even if the predictions were found to be accurate in prospective validation studies. We illustrate 
potential causal issues using clinical examples. After highlighting these issues we explain what is needed to develop 
prediction models that can be useful for supporting treatment decisions. To make outcome prediction research relevant 
to supporting treatment decisions, a better appreciation of causality is needed.
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Treatment decisions are guided by individual treatment effect estimates
Cancer is a disease with great variability in clinical outcomes, even within a single cancer type and cancer stage. 

Consequently, a large field of research is dedicated to predicting clinical outcomes for cancer patients. With the increasing 
popularity of machine learning methods and the availability of larger datasets, the interest in outcome prediction has 
grown even faster. In 1990, 3.4% of the PubMed matches for ‘cancer’ were also a match for ‘prediction’. This fraction 
went up to 5.7% in 2000, steadily rising to 12.2% in 2021. The general assumption driving outcome prediction 
research in cancer is that accurate outcome predictions will allow patients and physicians to make better, more informed 
treatment decisions, ultimately improving patient outcomes.

Prediction models can support treatment decisions when they predict relevant clinical outcomes under different 
potential treatments. To date, few prediction models are recommended by oncologic treatment guidelines to support 
treatment decisions. To pass the scrutiny of treatment guideline requirements, the utility of a prediction model for 
treatment decisions needs to be clearly demonstrated, preferably in randomized controlled trials 1–3. Notable examples 
are Oncoprint DX 4 and MammaPrint 5 for the selection of adjuvant therapy after surgical resection of breast cancer, and 
several molecular markers that are used to guide targeted therapy and immunotherapy in non-small cell lung cancer 1.  
The fundamental principle of these models is the presence of treatment effect heterogeneity, meaning that the effect of 
treatment is not the same for all patients. We will use the term ‘individual treatment effect model’* to denote prediction 
models that estimate the probability of an outcome under different hypothetical treatments based on pre-treatment 
patient characteristics. The fundamental question driving treatment decisions is: “What is the probability of outcome Y if 
we would give treatment A (or B), given that we know X about this patient”. This is a causal question and requires causal 
methods to answer.

Estimating the effect of treatments is not the target for many outcome prediction models 6–17. A recent systematic 
review on prognostic factors for stage III non-small cell lung cancer (chapter 2) identified 65 studies. We re-examined 
the included studies to find whether the motivation of the prediction models was to improve future decisions and 
whether the studies appreciated the potential causal issues with how their research may address that aim. Out of 55 
studies available through PubMed, 33 (60%) explicitly mentioned improving future treatment decisions as a motivation 
for the study 18–50. Though all these studies were conducted in observational data, only 8 out of 33 (24%) noted that 
confounding may limit the validity of their results 19,24,27,28,34,35,45,50. As we will explain later, confounding can render non-
causal prediction models useless or even harmful for treatment decisions. The proportions are visualized in Figure 1. 
Though this review was limited to stage III non-small cell lung cancer, we have no reason to assume that these numbers 
will differ substantially in other cancer settings. 

Figure 1. Frequency of motivation for prediction research being “to support treatment decisions” versus considerations 
of the potential issue of confounding with targeting this causal task. Studies are taken from chapter 2.

In this discussion, we first point out the causal dimension of the assumption that good outcome predictions are useful 
for treatment decisions. We show that without appropriate appreciation of this causal dimension, accurate predictions 
can paradoxically lead to worse treatment decisions. To facilitate the discussion, we introduce three types of non-causal 
prediction models: treatment-naïve, post-decision and single-treatment. For each type, we describe what problems 
arise when using these models for decision making. We then describe what is needed to develop individual treatment 
effect models that have the potential to support future decisions.

*	 A technically more correct term is ‘conditional average treatment effect model’, but as individual treatment effect 
model is more used, we will use that term here as well.
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Non-causal prediction models are unfit for decision making
Treatment-naïve models 6,8–13,18–37 make use of characteristics of a patient to predict the outcome. These models 

answer the question “What is the chance of a good outcome, given that we know X about this patient with the assumption 
that we will keep making the same treatment decisions as we always did”. This assumption is necessary because if there 
would be a change in the way treatment decisions are made, for example by using the prediction model for more 
individualized treatment decisions, the patterns in the data are changed compared to when the model was developed 
and the predictions are no longer valid (Figure 2). These models may cause more harm than good when used to support 
treatment decisions.

As a simplified example consider a model that predicts overall survival for stage IV lung cancer patients based on 
the pretreatment growth rate of the tumor. Faster growing tumors generally lead to worse overall survival so an accurate 
model would predict a lower survival for patients with faster growing tumors. Applying this model, a clinician could 
decide to refrain from palliative radiotherapy in patients with faster growing tumors under the assumption that their life 
expectancy is too short to benefit from radiotherapy. This decision based on the non-causal prediction model would be 
unjustified and harmful, as faster growing tumors are more susceptible to radiotherapy 53. Thus, introducing this model 
in clinical practice as a decision support tool is likely to cause harm, even though the predictions are accurate.

Figure 2. Treatment-naïve models predict the average outcome (death) depending on patient characteristics (growth 
rate) under the historic treatment policy (palliative radiotherapy or no radiotherapy). This means the predictions are only 
valid if the treatment policy does not change. In the first treatment policy (A.) under which the treatment-naïve model 
was developed, the decision for radiotherapy did not depend on tumor growth rate. In the second policy informed by the 
prediction model (B.), patients with faster growing tumors are less likely to get radiotherapy, even though radiotherapy 
would be particularly helpful for them. Despite being accurate, introducing the non-causal model for decision support 
has caused harm.
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Post-decision models 7,38–45 incorporate historical treatments but do not estimate the causal effect of these treatments. 
Thereby they target the question: “What is the chance of a good outcome, given that we know X about this patient 
with the assumption that the decision to give treatment A (or B) has already been made”. In contrast with RCTs, treatment 
decisions in clinical practice are not made at random. This results in systematic differences between patient groups 
who underwent different treatments. When these systematic differences are not fully accounted for by the variables 
included in the prediction model and are at the same time related to the outcome, the problem of confounding occurs, 
sometimes referred to as confounding by indication or selection bias. Because of confounding, differences between 
outcome predictions from a post-decision model are not attributable to the causal effect of the treatment (Figure 3).

As a simple example, stage I non-small cell lung cancer (NSCLC) patients who are medically unfit for surgery due to 
advanced age and comorbidities will generally be treated with radiotherapy instead of surgery. Patients who underwent 
surgery for stage I NSCLC have better overall survival than patients who underwent radiotherapy, but this difference is 
not directly attributable to the causal effect of surgical treatment as the patient groups were not comparable to begin with. 
Importantly, the average survival of surgically treated patients is not the expected survival if one were to operate on patients 
who are unfit for surgery. Due to the confounding caused by the patient selection policy for surgery, the predictions 
of a post-decision model do not answer the question on what the outcome would be if we would give treatment A or 
B. Post-decision models should only be used when the treatment decision has already been made. Unaware of this 
caveat, a clinician or multi-disciplinary team may be tempted to use a post-decision model for a specific patient before 
the treatment decision has been made. If confounding makes the treatment appear more effective this could lead to 
overtreatment compared to the situation before introduction of the prediction model and vice versa. Many studies based 
on cancer registries such as the Surveillance, Epidemiology and End Results registry fall in the post-decision category.

Figure 3. Post-decision models predict the outcome (death) of patients depending on their characteristics (tumor type) 
in different treatment groups (surgery or radiotherapy) but are only valid after the treatment decision is made. This is 
because the distribution of the confounder (old and frail vs young and fit) differs between the two treated populations 
due to the treatment selection policy (young and fit patients are more likely to get surgery). As a result, neither treated 
populations are a valid reference group for the pretreatment population. Due to the differences in the distribution of the 
confounder, the model predictions are only valid in the populations in which the model was developed (the respective 
post-treatment decision populations), but not in the pretreatment population, making it unsuitable to guide treatment 
decisions.
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Single-treatment models 54,55 are a special type of post-decision model that consider patients who had a single 
treatment of interest and answer the question: “What is the chance of a good outcome, given that we know X about 
this patient and have decided to give treatment A” (Figure 3). As there is no decision between multiple treatments here, it 
may seem that there can be no confounding. However, these models suffer from the same bias as multi-treatment post-
decision models. Again, the population in which the model was developed, the patients who had treatment A, differs 
substantially from the population in which the treatment decision is not yet made with respect to the confounders. 
This makes the model unreliable in this wider population and likely to cause overtreatment or undertreatment. Many 
treatment response prediction studies fall in the single-treatment category 51,54.

Figure 4. Single treatment models predict the outcome (death) under a certain treatment of interest (surgery) depending 
on the characteristics of a patient (tumor type). Just as post-decision models, single treatment models are only valid in 
the population for whom the treatment decision has already been made, as the distribution of the confounder (old and 
frail vs young and fit) differs between the pre-treatment population and the population in which the treatment decision 
is already made due to the treatment policy (young and fit patients are more likely to get surgery).

Prospective validation is not sufficient
Prospective validation studies are the gold-standard for evaluating the accuracy of a prediction model 56, but do 

not provide information on whether a prediction model is suitable for treatment decision support. In a prospective 
validation study, patient characteristics and outcomes are recorded for a new patient cohort according to a predefined 
protocol. Comparing the predictions of a model with the observed outcomes in these patients provides an estimate of 
how accurate the model is outside of the cohort in which the model was developed. 

Introducing a prediction model to support treatment decisions constitutes an intervention that changes treatment 
decisions and thus patient outcomes. Prospective validation is not a suitable study design to test the effects of this 
intervention on treatment decisions and patient outcomes. In fact, even if a model is found to be accurate in a prospective 
validation study it could still lead to harm if it were used to guide treatment decisions. To illustrate this we continue 
with the earlier example of palliative radiotherapy for stage IV lung cancer where patients with fast growing tumors were 
recommended to not get radiotherapy. If this model were tested in a prospective validation study, the patients with fast-
growing tumors would be given radiotherapy less often due to the treatment recommendation of the model, leading to 
even worse survival for these patients than before introduction of the prediction model. The introduction of the model 
has thus caused harm, but paradoxically it is still found to be accurate in the validation study as the model already 
predicted that patients with fast-growing tumors have a bad prognosis.

Hence, high accuracy in prospective validation studies is not sufficient evidence that a model is safe to use for guiding 
treatment decisions. Despite this, some guidelines on breast cancer 3 and prostate cancer 57 recommend usage of outcome 
prediction models for treatment decision support on the basis of prospective validation studies.
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Developing individual treatment effect models in observational data 
Now that we understand how non-causal prediction models cannot guide treatment decisions, the question remains: 

what research addresses this properly? 

The ideal prediction model for supporting treatment decisions is an individual treatment effect model. Individual 
treatment effect models estimate the effect of treatment for an individual patient based on their characteristics. Ideally, 
individual treatment effect models are estimated in data from RCTs 58. Guidelines for developing individual treatment 
effect models from randomized trial data are available in 58 and a tutorial is presented in 68.  However, the costs to have 
sufficient statistical power in all patient subgroups for all treatment protocols in RCTs are prohibitive. In addition, there 
are important settings in cancer care where treatment effect estimates from observational data are required. One such 
situation is when gathering pre-trial evidence on the efficacy of repurposed drugs for a new indication 59,60. A second 
example is when treatment effect estimates are needed for patients who are not represented in the trials, for example 
older and weaker patients (chapter 5). As the trials provide no direct evidence on the effect of a treatment in these 
subpopulations, observational data may be used to find preliminary evidence of a treatment effect. Another example is 
when new biomarkers that are expected to be related to the treatment effect become available after the average treatment 
effect of a treatment has been established in randomized trials. The association between this new biomarker and the 
treatment effect must be studied in observational data 61,62 before there are enough grounds to study this association in 
new randomized trials 5,63. 

Estimating treatment effects outside of RCTs (meaning from observational data) requires background knowledge and 
causal reasoning. The basic approach requires knowledge of the confounders 64. When the confounders are known and 
accurately measured, there are many different approaches to estimating individual treatment effect models. These include 
outcome regression, inverse probability weighting methods, doubly robust estimators and other machine learning based 
estimators such as causal random forests 65 and neural network based estimators 66,67. When some confounders are not 
available it is generally not possible to estimate the individual treatment effect, though there are important exceptions 
to this rule.

One such exception is when proxy measurements of the confounders are available (chapter 5, 69,70). For example, in 
many cancer settings, the overall fitness of a patient is an important confounder (chapter 5). While there is generally no 
record of the overall fitness of a patient as assessed by the treating clinician, the performance score is a frequently available 
proxy measurement of the confounder overall fitness. In cases like these, dedicated proxy methods allow treatment effect 
estimation despite the unobserved confounder. 

Another situation is when instrumental variables are available 71,72. An instrumental variable is related to the treatment 
but is not confounded with the outcome, and influences the outcome only through the treatment. As an example, the 
general preference of a physician for a certain treatment strategy is sometimes used as an instrumental variable 73. 

As a third exception, some individual treatment effect prediction models (offset models, chapter 6) use a treatment effect 
estimate from randomized trials on a relative scale (e.g. hazard ratio, risk ratio or odds ratio), combined with an untreated 
risk prediction model to estimate the individual treatment effect on an absolute risk scale. A treatment with a constant 
relative treatment effect has a different efficacy in different patients on an absolute risk scale based on the untreated risk of 
the patient. For example, suppose that randomized controlled trials have shown that heparin injections reduce the risk of 
thromboembolisms by a factor of 2. A patient with a 50% risk of developing thromboembolisms without prophylaxis will 
have a 25% reduction in absolute risk, whereas a patient with a 0.5% risk of developing thromboembolisms has a 0.25% 
reduction in absolute risk. Examples of offset models are Adjuvant! 74, Predict 2.0 75 and Adjutorium 76, which predict the 
value of adjuvant therapy in breast cancer patients after surgical resection. We investigated offset models in chapter 6 of this 
thesis and found that offset models are biased in the presence of confounding, though the resulting bias seems low. Based 
on statistical considerations we defined a refinement of offset models with a new constraint, and found that the constrained 
offset models have better performance than standard offset models.

Finally, methods that combine observational data and experimental data to further increase the efficiency of subgroup 
treatment effect estimates are under development and may yield interesting applications in cancer research 77,78.

Whatever approach is used, sensitivity analyses are an important tool for estimating the effects of violations of the made 
assumptions on the individual treatment effect estimates. For example, the effect of a potentially omitted confounder 
on the resulting treatment effect estimate can be calculated, resulting in a range of plausible treatment effects 79.  
Promising individual treatment effect models could be tested in cluster-randomized trials. In a cluster-randomized trial 
some groups of clinicians are randomly selected to get access to the model while others are not. In contrast with 
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non-randomized validation studies, this allows for the estimation of the effect of introducing the model on treatment 
decisions and patient outcomes. 

Table 1. Overview of different prediction models.
Model type Question answered Implied Assumption Examples

Treatment-naïve “What is the probability of outcome Y given 
that we know X”

No change in treatment decision 
policy

(6,8–13,18–37)

Post-decision model “What is the probability of outcome Y given 
that we know X and have decided to give 
treatment A or B”

Treatment decision already made (7,38–45)

Single treatment  
post-decision model

“What is the probability of outcome Y given 
that we know X and have decided to give 
treatment A”

Treatment decision already made (14–17,19,47–50)

Offset models “What is the probability of outcome Y if we 
give treatment A or B given that we know X”

Constant relative treatment effect 
known from RCTs

(74,75), chapter 6

Individual treatment 
effect model

“What is the probability of outcome Y if 
we give treatment A or B, given that we 
know X”

Derived from RCT data or 
confounding otherwise addressed

(5,63), chapter 5

To highlight the differences between the different models in clinical practice, we include two hypothetical dialogues 
between a patient and an oncologist. The first is based on information from non-causal prediction models, the second is 
based on an individual treatment effect model derived from observational data.

Dialogue between patient and oncologist 1: non-causal models
Oncologist: Your work-up is done, we know your cancer type and stage

Patient: What is my prognosis?

Oncologist (treatment-naïve model): on average, other patients who share characteristics X with you live … more 
years.

Patient: Is there a treatment you can give me to improve my prognosis?

Oncologist: We know from randomized trials that treatment A leads to several more months survival than treatment 
B on average, though some patients do not respond well to treatment A and there may be severe side effects.

Patient: And how long do patients live with treatment A?

Oncologist: The average patient in the randomized trial who got treatment A lived … years, but those patients were 
younger and in better overall health than you so their results may not apply to your case.

Patient: So how long do patients like me survive when they get treatment A?

Oncologist (post-decision model): Looking back, patients who share characteristics X with you and got treatment 
A lived … years. However, I am not convinced that these patients are a good reference group for you as there are other 
characteristics Z that are important for survival but we have no information on Z for the historical patients.

Patient: This is getting a bit confusing, should I or should I not get treatment A?

Oncologist: I know this is a very tough decision, but ultimately it’s yours to make.

Dialogue between patient and oncologist 2: individual treatment effect model
Oncologist: Your work-up is done, we know your cancer type and stage

Patient: What is my prognosis?

Oncologist (individual treatment effect model): That depends on what treatment strategy we will decide on. We 
cannot be exactly sure due to uncertainties associated with individual treatment effect estimation, but the best estimate 
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based on our collective expertise and historical patient data is that you would on average live … years on treatment A, 
versus … years on treatment B.

Patient: Thank you for this information.

Conclusion
In this discussion we highlighted that improving treatment decisions with prediction models is a fundamentally 

causal endeavor. Much prediction research is published with the motivation to improve treatment decisions but causal 
the dimension of this task is often not acknowledged, let alone addressed. Without causal reasoning, prediction models 
cannot answer to the clinical motivation to improve treatment decisions. Based on unaddressed assumptions, non-causal 
prediction models that are found to be accurate in observational studies can lead to worse decisions and will likely fail 
to demonstrate value when evaluated in a randomized trial. As the issues lie in causality, they are not resolved by larger 
datasets, more flexible prediction algorithms (e.g. machine learning) or even by prospective validation of prediction 
models. In the ideal world from the eyes of individual treatment effect predictions there would be many large RCTs for 
all treatment comparisons where all important biomarkers are measured. In the reality, there are often only small RCTs 
in heterogeneous populations and with heterogeneity in treatment protocols. The trials are conducted without recording 
important biomarkers and are conducted in restricted subpopulations that may not reflect the entire target population. 
Therefore, treatment effect estimates from observational data remain needed in some settings.

Recommendations for future research
In outcome prediction research much weight is given to achieving high performance on metrics of prediction 

accuracy. As shown in this discussion, even prospectively validated highly accurate prediction models can cause more 
harm than good when used for decision making due to causal issues. In future research that aims to provide treatment 
decision support, there should be more emphasis on addressing causal issues such as confounding and treatment effect 
heterogeneity. A powerful way of formulating and presenting assumptions on confounders is with Directed Acyclic 
Graphs (DAG). In a DAG, the treatment, outcome and potential confounders are presented using nodes that depict 
variables, and arrows that depict causal dependencies between variables. A clear advantage of DAGs is that they provide 
a visual way of presenting the made assumptions to readers so that they may evaluate the appropriateness of these 
assumptions. If future individual treatment effect models are presented with DAGs, these DAGs can be discussed and 
expert consensus could arise on what DAGs are appropriate for what situations. A scaffold DAG that is amenable to 
many different cancer situations is presented in chapter 5, Figure 1. In addition to making the assumptions clear, 
performing sensitivity analyses as a standard practice will be highly beneficial as scientific claims regarding the utility of 
a new prediction model are contingent on the made assumptions. As unmeasured confounding such as caused by overall 
fitness will be a prevailing problem, proxy measurement methods and instrumental variable methods should be further 
developed and applied. If it is tenable to assume that a treatment has a constant effect on a relative scale, offset models 
are a very practical approach to estimating individual treatment effect models. Furthermore, prediction algorithms that 
use unstructured data such images directly, like neural networks, add an additional layer of complexity as it is no longer 
clear what information is in these images and how this information relates to known confounders (chapter 4). Finally, 
methods that combine observational data and experimental data to further increase the efficiency of subgroup treatment 
effects are under development and may yield interesting applications in cancer research (77,78).

In conclusion, answering the fundamental question in treatment decisions “what is the probability of outcome Y if we 
give treatment A or B, given that we know X about this patient” is at the same time crucial for clinical practice and very 
challenging from a research perspective. Given the importance of this question, researchers, patient associations, journal 
editors, research funders and research consumers should prioritize research that addresses this over the multitude of 
non-causal prediction research.
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General Summary
In this thesis we studied the prediction of overall survival in non-small cell lung cancer and the estimation of 

individual treatment effects. Part 1 focusses on the prediction of overall survival. Part 2 is dedicated to estimating 
individual treatment effects and includes studies on the methodological challenges of this task as well as a concrete 
application to stage III non-small cell lung cancer.

Part 1: predicting overall survival
In chapter 2 we present a study that summarizes the literature on prognostic factors measurable on CT scans for 

stage III non-small cell lung cancer. With a systematic search strategy 65 articles were included, describing 26 unique 
prognostic factors and including 144,513 patients. There was a wide variation in study quality and only 4 studies 
compared the added value of potential new prognostic factors measured on CT scans with the standard available 
prognostic factors. This summary of the literature indicates that the total volume of the primary tumor and lymph 
node metastases, tumor diameter, volume of lymph node metastases and presence of pleural fluid are related to survival. 
Recommendations from this study are that future studies on prognostic factors should better report their method and 
results, and compare potential new prognostic factors with known prognostic factors.

In chapter 3 we study the importance of muscle quantity and muscle density for overall survival in non-small cell 
lung cancer. A commonly used measure of the amount of muscle volume of a patient on CT scans is the cross-sectional 
muscle area of the psoas muscle on the third lumbar vertebra. This psoas muscle area correlates strongly with the total 
amount of muscle volume in the entire body. By dividing the psoas muscle area by the square of a patient’s height, one 
gets the ‘psoas muscle index’ (PMI). A link between PMI and survival has been demonstrated in many cancers. Patients 
with a higher PMI (more muscle) live longer on average, presumably because they are in better general condition and/
or because the tumor has taken a lesser toll on the body at the time of diagnosis. In addition to the amount of muscle, 
the quality of the muscle is also important. Through various processes, including aging, immobility and inflammatory 
reactions related to cancer, muscle tissue can be slowly replaced by fat tissue, making the muscle weaker. Fat tissue has a 
lower density than muscle tissue, the density of a muscle as measured on a CT scan is thus a measure of the amount of fat 
infiltration into that muscle and a proxy measure of muscle quality. The average density of the psoas muscle as seen on a 
CT scan at the level of the 3rd lumbar vertebra is a standardized measurement called psoas muscle radiodensity (PMD). 

  Several studies have examined the association between muscle area and muscle density and survival in lung cancer 
patients, but the studies have conflicting results. In chapter 3 we present a possible explanation for the contradictions 
with a new hypothesis that the association between PMI and survival is stronger if muscle density, measured in PMD, 
is sufficient. The biological motivation behind this hypothesis is that more muscle volume (PMI) is only associated 
with better survival if the muscle quality, measured by proxy with PMD, is sufficient. In statistical terms, this means 
that there is a statistical interaction between PMI and PMD and survival. If the hypothesis is true, and if the patients 
in the previously published studies differ on average with respect to PMD, this could explain that the relationship 
found between PMI and survival differs per study. To answer this question, we collected a large group of 2480 non-
small cell lung cancer patients who were treated at the radiotherapy department of the University Medical Center 
Utrecht. An automated computer algorithm based on a technique called ‘deep learning’ was used to measure the PMI 
and PMD in these patients. The association between PMI, PMD and survival was analyzed in the context of known 
tumor characteristics (histological subtype) and patient characteristics (age, sex, performance score and BMI). There was 
clear statistical evidence for our hypothesis. This means that future studies on the association between muscle quantity 
and overall survival should accommodate the effect that muscle radiodensity has on the association between muscle 
quantity and overall survival. Though our study was conducted in non-small cell lung cancer patients only, given the 
biological rationale it seems likely that this interaction is present in other cancer types as well. Technical challenges in 
this study were the high proportion of patients who had missing values ​​for any of the data, and the possible non-linear 
relationships between the different variables and overall survival.

Part 2: estimating individual treatment effects
The study in chapter 4 explored the possibility of estimating a treatment effect from medical images using a statistical 

technique called deep learning. The basis for this study is a combination of real CT images of lung tumors and simulated 
(artificial) outcome data. Due to the simulation, two characteristics of the tumors visible in the images were related to 
a simulated outcome: tumor size and tumor heterogeneity, measured as the total number of pixels in the tumor and 
variation in the intensity of pixels in the tumor respectively. The aim of the study was to estimate both patient prognosis 
and treatment effect based on the image of the tumor. Through the simulation, both the size and the heterogeneity of the 
tumor were correlated with the outcome. However, the size of the tumor was a collider. A collider distorts the estimation 
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of the treatment effect if a model conditions on it. The only way to properly estimate the treatment effect in this 
situation was to ignore the collider (size of the tumor) in the prediction. At the same time, the whole image could not 
be ignored because then the information that the tumor heterogeneity holds about survival would be lost. The challenge 
with deep learning methods is that by virtue of the method, deep learning can discover all characteristics in an image 
that are related to the outcome. This is often attractive as it might discover new patterns that were previously unknown. 
As a downside, there is no direct way of knowing or controlling what patterns are used by the model. In this case we 
want the model to use the information on tumor heterogeneity but not tumor size, but when left unrestricted the deep 
learning model would use both characteristics, as both are correlated with the simulated outcome. To solve this problem, 
we devised a method in which a deep learning model was developed in two stages. In the first stage, both the outcome 
and the size of the tumor were predicted. In the second stage, the predicted tumor size information was shielded from 
the outcome prediction and the outcome was re-predicted based on all information from the image except tumor size. 
In this way it was possible to extract the important prognostic information from the image (tumor heterogeneity) and 
at the same time correctly estimate the treatment effect, by ignoring the collider tumor size. An important challenge 
in this study was connecting abstracted concepts such as tumor size and heterogeneity with the pixels in an image. The 
presented method worked very well for the simulated data, but needs to be extended to be more widely applicable.

In chapter 5 we estimate the individual treatment effect for stage III non-small cell lung cancer patients. The 
treatment choice examined was the decision between chemotherapy and radiotherapy simultaneously (concurrent 
chemoradiation) or chemotherapy followed by radiotherapy (sequential chemoradiation). Previous randomized 
studies have shown that concurrent chemoradiation leads to better survival on average, but that not all patients are fit 
enough to undergo concurrent chemoradiation. The trade-off between sequential and concurrent chemoradiation must 
be made on an individual level. The aim of this study was to predict survival under both concurrent and sequential 
chemoradiation in order to support individual treatment decisions. The fundamental challenge was to estimate the 
causal effect of treatment on survival for the individual patient. In the data for this study, the choice between concurrent 
or sequential therapy was made based on standard clinical judgment, not randomization. Because patients in good 
overall fitness are more likely to receive concurrent treatment, the survival difference between patients with concurrent 
and sequential therapy in these patients does not equal the causal effect of the treatments. The treatment groups also 
differ in overall fitness. Better overall fitness leads to better survival, regardless of which treatment is chosen. Because 
overall fitness determines both treatment choice and outcome, overall fitness is called a ‘confounder’. The causal effect 
of the treatments can be estimated in this population by grouping patients based on overall fitness and then comparing 
the difference in survival between concurrent and sequential chemoradiation at equal overall fitness. The crux of this 
study was that no direct measurement of overall fitness is available. The treating physician makes an implicit estimate of 
the patient’s overall fitness based on many different signs and measurements. This includes objective measures such as 
age and performance score. However, there are also characteristics that are difficult to measure, such as how the patient 
looks, how the patient walks into the consultation room, how the patient’s voice sounds, and so on. While these pieces 
of information are part of the physician’s estimate of overall fitness, they are not recorded. Overall fitness is therefore not 
observed from the researcher’s point of view and it is thus impossible to group patients on the basis of overall fitness. This 
means that overall fitness is an ‘unobserved’ confounder. Only variables such as age and performance score are known, 
but these are ‘proxy’ measures of overall fitness and not the real overall fitness as estimated by the treating physician. 
This unobserved confounder makes it impossible to make a fair comparison between patients treated with concurrent 
or sequential chemoradiation. This problem is not only present in stage III lung cancer but applies broadly health care.

There are existing methods for estimating treatment effects when only proxy measurements of unobserved confounders 
are available, but none of these methods were suited to our case. For this reason, we have developed a new method that 
makes it possible to estimate the causal treatment effect based on the proxy measurements. The method is called ‘proxy-
based individual treatment effect modeling in cancer’ (PROTECT). In the PROTECT method, additional background 
knowledge is used to estimate the unobserved confounder “overall fitness” based on the available proxy measurements. 
For example, background knowledge says that patients with better overall fitness will also have a better performance 
score. Explicitly including background knowledge like this in the statistical model makes it possible to estimate the 
causal treatment effect. The application of PROTECT to the stage III non-small cell lung cancer patients yielded 
relevant findings. While conventional statistical methods seemed to overestimate the treatment effect, PROTECT’s 
treatment effect estimate was in line with what was expected based on background knowledge. Due to the relatively 
limited number of patients included in the study (507), the statistical uncertainty about this estimate remained relatively 
high. It is important to further investigate the PROTECT method in other cancer types and in larger cohorts.

In chapter 6 we evaluate offset models as a method for estimating individual treatment effects. Offset methods rely 
on the assumption that treatments have a constant and known ‘relative’ treatment effect, but that patients differ with 
respect to their ‘baseline risk’: the risk of an outcome if they would not be treated. For example, suppose that a certain 
cholesterol lowering drug reduces the 10-year risk of cardiovascular death by a factor of 2 for all patients. A 60-year-old 
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male smoker with hypertension and raised cholesterol has a baseline risk of cardiovascular death of 40% and should 
expect a reduction in risk of 20% points. A 50-year-old female without hypertension has a baseline risk of under 1% 
and will have a less than 0.5% points reduction in risk. Given these different effects on an absolute probability scale, 
one may recommend the new cholesterol lowering drug to the 60-year-old male but not the 50-year-old female. The 
challenge with this approach is how to estimate the baseline risk. Oftentimes, randomized controlled trials are too small 
to estimate this risk on a granular level depending on many patient characteristics. Conversely, in historical observational 
patient data, some patients may have had the treatment whereas others have not. Because of confounding, the patients 
who did not get the treatment of interest are not a good reference population for estimating the baseline risk in the entire 
pre-treatment-decision population, see for example Figure 3 in chapter 7. Offset models estimate the baseline risk for 
patients by accounting for the effects of historical treatments using a fixed ‘offset term’ that is based on an estimate of 
the relative treatment effect from prior randomized controlled trials. Variants of the offset method have been used for 
example to estimate the benefit of chemotherapy after surgical resection of a breast tumor. Some of these models are 
recommended for treatment decision support by current clinical guidelines. However, it is unknown if the assumption 
of a constant relative treatment effect underlying the offset method is indeed sufficient to account for unobserved 
confounding. In chapter 6 we demonstrate that offset methods for binary outcomes do not estimate the ground truth 
baseline risk or treatment effect in the presence of confounding, but find that the resulting systematic error is low in 
most cases. Also, based on statistical considerations, we introduce a more refined way of using the estimate of the relative 
treatment effect by introducing a new constraint. We find that constrained offset models perform better than standard 
offset models, and are a defendable approach to individual treatment effect estimation whenever the assumption of a 
constant relative treatment effect is tenable.

 
The thesis concludes in chapter 7 with a viewpoint article on the (dis)utility of outcome predictions for decision 

support in cancer. We note that predicting outcomes in itself is rarely the goal. Ultimately, the aim is to make a better 
treatment decision based on the prediction. The question “what is the expected survival, given that we know X about 
the patient?” is not the most important, but “what is the expected survival, if we were to give treatment A or B, given 
that we know X about the patient?”. As shown in chapter 4, chapter 5 and chapter 6, answering the latter question is 
much more complex than the former question that is purely predictive. The crux of the matter lies in the causal nature 
of the treatment decision question: which treatment has a better survival as a causal effect? In chapter 7 we emphasize 
the importance of this causal question and explain how much of the published research on predicting outcomes cannot 
contribute to answering this question because the causal nature of the question is not acknowledged. In the article we then 
discuss what is needed to answer this important question properly. We conclude with a call for a better understanding 
of the methodological knowledge needed to answer causal questions and for more research that can provide an answer 
to the question that really matters in clinical practice. To achieve the goal of a care that is increasingly tailored to the 
individual patient, it is crucial to strive for research of the highest methodological standard.
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Met een geschatte 1.761.007 overlijdens per jaar is longkanker de belangrijkste oorzaak van kanker gerelateerde 
sterfte wereldwijd. In Nederland is longkanker eveneens de grootste oorzaak van kanker gerelateerde sterfte en overlijden 
jaarlijks ongeveer 14.000 mensen aan longkanker. Een bepalende factor voor de kans op overleving is het stadium van de 
ziekte bij diagnose. Als de longkanker in een vroeg stadium wordt gevonden kan het vaker genezen worden. Als de ziekte 
al verspreid is naar andere organen is genezing in de regel niet meer mogelijk. Op basis van internationale afspraken 
wordt longkanker in vier stadia verdeeld naar gelang hoe ver de ziekte verspreid is. Voor patiënten met het vroegste 
ziektestadium, stadium I, is de vijfjaarsoverleving is 53%. Dat betekent dat van alle patiënten die bij diagnose van de 
longkanker in ziektestadium I zijn, na vijf jaar nog 53% in leven is. Voor stadium II is de vijfjaarsoverleving 38%, voor 
stadium III is dit 17% en voor stadium IV slechts 3%. Hoewel het ziektestadium dus veelzeggend is voor overleving, 
is er ook binnen een stadium nog veel spreiding in overleving. Zo overlijdt 25% van de stadium II patiënten binnen 
een jaar na diagnose, maar een andere 25% van de patiënten leeft na 10 jaar nog. Op basis van hoe de cellen van een 
longtumor er onder de microscoop uit zien wordt longkanker in twee grote groepen verdeeld: kleincellige longkanker 
en niet-kleincellige longkanker. Ongeveer 85% van de longkankers in Nederland zijn niet-kleincellig en dit proefschrift 
is toegespitst op deze variant.

Voorspellen van overleving
Gezien deze grote spreiding in overleving is het toespitsen van de verwachte levensduur op de individuele patiënt 

een lang bestaand onderzoeksdoel. Deel 1 van dit proefschrift is gewijd aan het voorspellen van overleving voor 
longkankerpatiënten op basis van de gegevens die ten tijde van de diagnose bekend zijn. Een deel van de spreiding 
in overleving is gebaseerd op het toeval. Er zijn bekende risicofactoren die de kans op het krijgen van longkanker 
vergroten, zoals roken. Toch is het krijgen van longkanker uiteindelijk het resultaat van een interne en willekeurige 
mutatie. Nadat een longtumor ontstaan is, blijven er willekeurige mutaties optreden die het verdere ziektebeloop en 
de gevoeligheid van de tumor voor eventuele behandelingen bepalen. Naast de longkanker is de overleving van een 
patiënt ook aan externe willekeurigheid onderhevig, zoals het krijgen van infectieuze ziekten, slachtoffer worden van 
een ongeval of oneindig veel meer mogelijke factoren. Dit maakt het fundamenteel onmogelijk om op het moment 
van diagnose met hoge nauwkeurigheid de overleving van een patiënt te voorspellen. Naast deze willekeurigheden 
zijn er echter ook eigenschappen van de longtumor en van de patiënt zelf die van belang zijn voor overleving en die 
wel gemeten kunnen worden op het moment van de diagnose. Deze eigenschappen kunnen worden opgedeeld in 
twee groepen: eigenschappen van de tumor en eigenschappen van de patiënt. In hoofdstuk 2 van dit proefschrift 
worden eigenschappen van de tumor die voorspellend zijn voor overleving nader onderzocht. In hoofdstuk 3 wordt 
een studie gepresenteerd die naar eigenschappen van de patiënt kijkt, specifiek eigenschappen die gerelateerd zijn aan de 
hoeveelheid spiermassa van de patiënt. 

Het belang van beeldvorming
Als de diagnose longkanker gesteld is, maar voordat er een keuze gemaakt wordt voor een eventuele behandeling, 

is het van belang om de longtumor zo goed mogelijk in beeld te brengen. Naast het verkrijgen van weefsel van de 
tumor voor microscopisch onderzoek is radiologische beeldvorming van groot belang. Beeldvorming bij longkanker 
is met name gebaseerd op “computed tomography scans”, CT-scans met intraveneus jodiumhoudend contrast. Bij een 
CT-scan worden veel opeenvolgende röntgenfoto’s genomen die telkens een paar millimeter opgeschoven zijn. Elke 
afbeelding van een CT-scan is een doorsnede van een patiënt op een bepaalde hoogte, gemeten vanaf de tenen naar 
de kruin. Door veel doorsnedes te maken op korte afstand van elkaar kan er door de patiënt ‘gescrolled’ worden en 
ontstaat er beeld van de 3D anatomie. De röntgenfoto’s geven verschillen in radiodichtheid weer als verschillende 
lichtintensiteiten in het beeld. Radiodichtheid is nagenoeg recht evenredig met dichtheid van massa (gewicht gedeeld 
door volume). Omdat longen luchthoudend zijn en dus een veel lagere dichtheid hebben dan een longtumor resulteert 
dit in een helder zichtbaar contrast op CT beelden. Op CT-scans is te zien hoe groot een tumor is, hoe de tumor 
gesitueerd is ten opzichte van andere organen, of de tumor mogelijk ingroeit in andere organen en of er op meerdere 
plekken in het lichaam mogelijke uitzaaiingen zijn van de tumor. Daarnaast is te zien of de tumor een gelijkmatige 
dichtheid heeft, of dat er misschien regio’s in de tumor zijn met een verschillende dichtheid. Als deze informatie over 
een tumor gekwantificeerd wordt in metingen kan worden onderzocht of deze metingen samenhangen met overleving. 
Deze kwantitatieve metingen zijn mogelijke ‘prognostische factoren’. Een voor de hand liggende vraag is bijvoorbeeld 
of de grootte van een tumor samenhangt met een slechtere overleving. Gezien de wijdverbreidheid van CT-scans in 
longkankerzorg is er veel onderzoek gedaan naar hoe bepaalde eigenschappen van de longtumor, zoals zichtbaar op 
CT-scans, samenhangen met overleving. Een belangrijk gegeven bij het zoeken naar nieuwe prognostische factoren is 
wat de nieuwe informatie toevoegt aan informatie die al standaard voorhanden is tijdens het klinisch proces. Bekende 
eigenschappen van een patiënt die belangrijk zijn voor overleving zijn leeftijd, algemene gezondheid en de aanwezigheid 
van gewichtsverlies. Een veelgebruikte meting van algemene gezondheid is “performance score”, een semi-kwantitatieve 
meting van hoe goed een patiënt in staat is om voor zichzelf te zorgen.
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Overzicht van de literatuur
In hoofdstuk 2 presenteren we een studie die de literatuur samenvat over prognostische factoren meetbaar op 

CT-scans voor stadium III niet-kleincellig longkanker. De studie was uitgevoerd met een uitgebreide systematische 
zoekstrategie. Na selectie op relevantie voor de onderzoeksvraag werden er 65 artikelen geïncludeerd die samen 26 
unieke prognostische factoren beschrijven en gezamenlijk 144.513 patiënten geïncludeerd hadden. Alle artikelen werden 
beoordeeld op kwaliteit om in te schatten hoe betrouwbaar de gepresenteerde resultaten zijn. Er was een grote variatie in 
kwaliteit, en slechts 4 studies vergeleken de toegevoegde waarde van potentiële nieuwe prognostische factoren gemeten 
op CT-scans met de standaard beschikbare prognostische factoren. Deze samenvatting van de literatuur wijst erop 
dat het totale volume van de primaire tumor, lymfeklier uitzaaiingen, de tumor diameter, het volume van lymfeklier 
uitzaaiingen en de aanwezigheid van longvliesvocht gerelateerd zijn aan overleving. Door de manier waarop de analyses 
zijn gedaan is het niet duidelijk hoe meerdere prognostische factoren samen gerelateerd zijn met overleving. Het 
kan zijn dat sommige prognostische factoren elkaar versterken of juist verzwakken, maar dat wordt niet beantwoord 
door de gebruikte analysemethoden. Aanbevelingen die in deze studie gedaan worden zijn dat toekomstige studies 
over prognostische factoren beter hun methode en resultaten moeten rapporteren, en potentiële nieuwe prognostische 
factoren moeten vergelijken met bekende prognostische factoren.

Spier volume en dichtheid zijn belangrijk voor overleving
Naast eigenschappen van de tumor zijn eigenschappen van de patiënt ook gerelateerd aan overleving. Eerder genoemd 

is dat performance score een maat is voor algemene gezondheid. Een andere meting die gerelateerd is aan gezondheid is 
de body-mass index (BMI). Om de algemene gezondheid nog beter in kaart te brengen zijn er verscheidene mogelijke 
metingen uit te voeren op CT-scans. Zo kan er op CT-scans bijvoorbeeld gekeken worden naar de verspreiding van vet 
en naar de hoeveelheid spierweefsel van een patiënt. Een veelgebruikte maat om op CT-scans de hoeveelheid spiervolume 
van een patiënt te meten is door op het niveau van de 3e rugwervel te kijken hoe groot het spieroppervlak van de psoas-
spier is. Dit oppervlak correleert sterk met de totale hoeveelheid spiervolume in het gehele lichaam. Door dit psoas 
spieroppervlak te delen door het kwadraat van de lengte van een patiënt krijgt men de ‘psoas muscle index’ (PMI), een 
soort spier-analoog van de BMI. In veel kankersoorten is er een verband aangetoond tussen PMI en overleving. Patiënten 
met een hogere PMI (meer spier) leven gemiddeld langer, vermoedelijk omdat ze in beter algemene conditie zijn en/of 
omdat de tumor een minder hoge tol heeft geëist op het lichaam op het moment van de diagnose. Naast de hoeveelheid 
spier is de kwaliteit van de spier ook van belang. Door verscheidene processen, waaronder veroudering, immobiliteit 
en ontstekingsreacties gerelateerd aan kanker, kan spierweefsel langzaam vervangen worden door vetweefsel. Hierdoor 
wordt de kwaliteit van het spierweefsel aangetast. Vetweefsel heeft een lager dichtheid dan spierweefsel. De dichtheid 
van een spier zoals gemeten op een CT-scan is dus een maat voor de hoeveelheid vetinfiltratie in die spier en een maat 
van spierkwaliteit.

De gemiddelde dichtheid van de psoas-spier gezien op een CT-scan op het niveau van de 3e rugwervel is een 
gestandaardiseerde meting die ‘psoas muscle radiodensity’ heet (PMD). In hoofdstuk 3 presenteren we een studie die 
de samenhang PMI en PMD met overleving in niet-kleincellig longkanker bestudeert. Er zijn meerdere studies die de 
samenhang tussen spier kwantiteit, spier dichtheid en overleving hebben onderzocht in longkankerpatiënten, maar 
de studies hebben conflicterende resultaten. Als mogelijke verklaring voor de tegenstrijdigheden presenteerden wij de 
hypothese dat de samenhang tussen PMI en overleving sterker is als de spierdichtheid, gemeten in PMD, voldoende 
is. De biologische motivatie achter deze hypothese is dat de kwantiteit van spier (PMI) alleen samenhangt met betere 
overleving als de kwaliteit, gemeten met de spierdichtheid PMD, voldoende is. In statistische termen betekent dit dat 
er een statistische interactie is tussen PMI en PMD en overleving. Als de hypothese waar is, en als de patiënten in 
de eerder gepubliceerde studies gemiddeld van elkaar verschillen wat betreft PMD, zou dit kunnen verklaren dat de 
gevonden samenhang tussen PMI en overleving verschilt per studie. Om deze vraag te beantwoorden hebben we een 
grote groep van 2480 niet-kleincellig longkankerpatiënten verzameld die behandeld zijn bij de radiotherapieafdeling van 
het Universitair Medisch Centrum Utrecht. Met een geautomatiseerd computeralgoritme gebaseerd op een techniek die 
‘deep learning’ heet, is bij deze patiënten een meting van de PMI en PMD gedaan. De samenhang tussen PMI, PMD en 
overleving werd geanalyseerd in de context van bekende eigenschappen van de tumor (histologisch subtype) en de patiënt 
(leeftijd, geslacht, performance score en BMI).  Er was duidelijk statistisch bewijs voor onze hypothese. Dit betekent 
dat toekomstige studies over de associatie tussen spierhoeveelheid en algehele overleving rekening moeten houden met 
het effect dat spierdichtheid heeft op de associatie tussen spierhoeveelheid en algehele overleving. Hoewel onze studie 
alleen werd uitgevoerd bij patiënten met niet-kleincellig longkanker, lijkt het, gezien de biologische achtergrond van de 
hypothese, waarschijnlijk dat deze interactie ook bij andere kankertypes aanwezig is. Technische uitdagingen bij deze 
studie waren het grote aandeel van patiënten die missende waarden hadden voor een van de gegevens, en de mogelijke 
niet-lineaire verbanden tussen de verschillende variabelen en het risico op overlijden. 
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Individueel behandeleffect schatten
In deel 2 van dit proefschrift hebben we de onderzoeksvraag verschoven van het voorspellen van overleving naar 

het beantwoorden van een nog belangrijkere vraag. De meest relevante vraag in de klinische praktijk is: “Wat zou de 
verwachte overleving zijn, als we behandeling A of B zouden geven, gegeven dat we eigenschap X over deze patiënt 
weten”. Deze vraag gaat over het individuele behandeleffect en gaat er dus van uit dat niet elke behandeling voor elke 
tumor en patiënt even goed zal werken. Deze vraag is een niveau complexer dan alleen overleving voorspellen. Dit komt 
omdat het gaat over het oorzakelijke effect van de behandeling. Oorzakelijke effecten (causaliteit) zijn niet hetzelfde als 
(statistische) correlaties. Er zijn veel statistische correlaties die niet op een oorzakelijk effect berusten. Zo is er bijvoorbeeld 
een sterke correlatie tussen de hoeveelheid mozzarella consumptie per persoon in de Verenigde Staten en het aantal 
civiel ingenieur doctoraten in de periode tussen 2000 en 2009 (voor statistisch geletterden, de r-coëfficiënt is 0.96, een 
zeer sterke correlatie). Zie de website https://www.tylervigen.com/spurious-correlations voor meer voorbeelden. Om 
oorzakelijke verbanden aan te tonen zijn ofwel experimenten nodig ofwel gedetailleerde kennis van hoe de gegevens 
precies verzameld zijn en specifiek waarom bepaalde behandelingen historisch gegeven zijn.

Verstorende signalen filteren
De studie in hoofdstuk 4 onderzocht de mogelijkheid om een behandeleffect te schatten op basis van medische 

beeldvorming terwijl er gebruik gemaakt wordt van een computeralgoritme dat ‘deep learning’ heet. Zoals we in 
hoofdstuk 2 en hoofdstuk 3 gezien hebben bevat een CT-scan informatie over zowel de tumor als de patiënt. Deze 
informatie hangt mogelijk samen met de effectiviteit van verschillende behandelingen voor een individuele patiënt. 
Door deze informatie te gebruiken voor het schatten van een individueel behandeleffect kan de behandeling voor 
patiënten gepersonaliseerd worden. De gebruikte techniek ‘deep learning’ is hierbij aantrekkelijk omdat dit algoritme 
zelf leert om de relevante patronen in afbeeldingen te herkennen. Conventioneel onderzoek is gebaseerd op gerichte 
metingen van karakteristieken van de beeldvorming die de onderzoeker zelf heeft bedacht, zoals de grootte van de tumor, 
de hoeveelheid spieroppervlak enzovoorts. Aangezien de onderzoeker nooit alles kan weten van wat er belangrijk is om te 
meten, kan het zijn dat er belangrijke informatie gemist wordt. Het voordeel van deep learning is dat dit algoritme zelf 
leert welke patronen in beelden relevant zijn voor wat er voorspeld moet worden. Dit doet het algoritme door te leren 
van voorbeelden. In een ‘trainingset’ worden combinaties aangeboden van beelden (bijvoorbeeld uit een CT-scan) en 
uitkomsten (bijvoorbeeld de overleving van een patiënt). Met een optimalisatietechniek leert het algoritme om de meest 
voorspellende patronen in het beeld te herkennen. Een nadeel aan deep learning is dat het model een relatieve ‘black box’ 
is. Het is niet mogelijk om direct te achterhalen op basis van welke patronen het model een bepaalde voorspelling doet. 

 In de simulatiestudie van hoofdstuk 4 bestudeerden we een belangrijk probleem dat gerelateerd is aan de ‘black-
box’ voorspellingen van deep learning. De basis voor deze studie is een combinatie van echte CT afbeeldingen van 
longtumoren en gesimuleerde (kunstmatige) uitkomstdata. Door de simulatie waren er twee eigenschappen van de 
tumoren zichtbaar op de afbeeldingen die gerelateerd waren aan een gesimuleerde uitkomst: overleving. Het ging hierbij 
om de omvang van de tumor en de heterogeniteit van de tumor. Heterogeniteit was gedefinieerd als de variatie van 
de intensiteit van de pixels van de tumor. Tumoren met subregio’s van verschillende dichtheid hebben een hogere 
heterogeniteit dan tumoren die uit één homogeen weefseltype bestaan. Het doel van de studie was om zowel de prognose 
van de patiënt als het behandeleffect te schatten, op basis van de afbeelding van de tumor. Door de simulatie waren 
zowel de omvang als de heterogeniteit van de gecorreleerd met de uitkomst. Echter, de omvang van de tumor was een 
‘collider’. De precieze definitie van een collider is hier niet belangrijk, maar het netto-effect van een collider is dat een 
collider de schatting van het behandeleffect verstoort. De enige manier om in deze situatie het behandeleffect goed 
te schatten is door de collider (omvang van de tumor) te negeren in de voorspelling. Tegelijkertijd kon niet de hele 
afbeelding genegeerd worden omdat dan de informatie die de tumor heterogeniteit over overleving had verloren zou 
gaan. Om dit probleem op te lossen hebben we een methode bedacht waarbij een deep learning model in twee stadia 
werd ontwikkeld. In het eerste stadium werden zowel de uitkomst als de omvang van de tumor voorspeld. In de tweede 
fase werd de voorspelde informatie over tumor omvang afgeschermd van de voorspelling van de uitkomst en werd de 
uitkomst opnieuw voorspeld op basis van alle informatie uit de afbeelding, behalve de omvang van de tumor. Op deze 
manier was het mogelijk om de belangrijke prognostische informatie uit het plaatje te extraheren (tumor heterogeniteit) 
en tegelijkertijd het behandel effect correct te schatten, door de collider ‘tumor omvang’ te negeren. Een belangrijke 
uitdaging bij deze studie was het verbinden van abstracte begrippen zoals tumor omvang en heterogeniteit en de pixels 
in een afbeelding. De gepresenteerde methode werkte erg goed voor de gesimuleerde data, maar moet nog uitgebreid 
worden om breder toepasbaar te zijn.

Corrigeren voor latente confounders
In hoofdstuk 5 presenteren we wederom een studie waarin het individuele behandeleffect centraal staat, ditmaal 

toegepast op stadium III niet-kleincellig longkankerpatiënten. De behandelkeuze die onderzocht werd was de 
afweging tussen chemotherapie en radiotherapie tegelijkertijd (concurrente chemoradiatie) of chemotherapie gevolgd 
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door radiotherapie (sequentiële chemoradiatie). Uit eerdere gerandomiseerde studies is gebleken dat concurrente 
chemoradiatie tot betere overleving leidt, gemiddeld genomen, maar dat niet alle patiënten fit genoeg zijn om 
concurrente chemoradiatie te ondergaan. De afweging tussen sequentiële en concurrente chemoradiatie moet op 
een individueel niveau gemaakt worden. Het doel van deze studie was om de overleving te voorspellen onder zowel 
concurrente als sequentiële chemoradiatie om op deze manier de individuele afweging te ondersteunen. Hierbij was 
het van cruciaal belang om het oorzakelijke effect van de behandeling op overleving voor de individuele patiënt te 
schatten. De gegevens voor deze studie kwamen van patiënten die in het Universitair Medisch Centrum Utrecht 
behandeld waren met radiotherapie. De keuze tussen concurrent of sequentiële therapie werd gemaakt op basis van 
standaard klinische afwegingen, niet door randomisatie. Omdat patiënten die in goede algemene gezondheid zijn vaker 
concurrente behandeling krijgen, is het overlevingsverschil tussen patiënten met concurrente en sequentiële therapie in 
deze patiënten niet gelijk aan het oorzakelijke effect van de behandeling. De patiënten verschillen namelijk ook met 
betrekking tot algemene gezondheid. Betere algemene gezondheid leidt tot betere overleving, onafhankelijk van welke 
behandeling er wordt gekozen. Omdat algemene gezondheid zowel bepalend is voor de behandelkeuze als de uitkomst 
wordt algemene gezondheid een ‘confounder’ genoemd. De enige manier om het juiste behandeleffect in deze populatie 
te schatten is door patiënten te groeperen op basis van gezondheid en dan het verschil in overleving tussen concurrente 
en sequentiële chemoradiatie bij gelijke algemene gezondheid te vergelijken. De crux bij deze studie was dat er geen 
goede meting van algemene gezondheid beschikbaar is. De behandelend arts maakt een impliciete schatting van de 
gezondheid van de patiënt op basis van veel verschillende gegevens. Het gaat hierbij om objectieve metingen zoals leeftijd 
en ‘performance score’. Er spelen echter ook factoren mee die moeilijk meetbaar zijn, zoals hoe de patiënt er uit ziet, hoe 
de patiënt de spreekkamer in loopt, hoe de stem van de patiënt klinkt, enzovoorts. Hoewel deze gegevens deel uitmaken 
van de inschatting van de arts zijn ze niet beschikbaar voor onderzoek. Dit betekent dat de algemene gezondheid vanuit 
het oogpunt van de wetenschapper niet geobserveerd is en het dus onmogelijk is om patiënten correct te groeperen op 
basis van gezondheid. We spreken hier van een latente confounder. Alleen variabelen zoals leeftijd en performance score 
zijn bekend, maar dit zijn ‘proxy’ metingen van gezondheid en niet de echte algemene gezondheid zoals de behandelend 
arts het inschat. Door deze latente confounder is het onmogelijk om een eerlijke vergelijking te maken tussen patiënten 
die met concurrente of sequentiële chemoradiatie zijn behandeld. Dit probleem speelt zich niet alleen bij stadium III 
longkanker af maar is wijdverbreid in de gezondheidszorg. Tegelijkertijd is er een grote vraag naar geïndividualiseerde 
behandeladviezen op basis van historische niet-experimentele gegevens. Hierom hebben we een methode ontwikkeld 
die het mogelijk maakt om op basis van de proxy metingen toch nog het oorzakelijke behandeleffect te schatten. De 
methode heet ‘proxy based individual treatment effect modeling in cancer’ (PROTECT). Bij de PROTECT methode 
wordt aanvullende achtergrondkennis gebruikt om de latente confounder “algemene gezondheid” te schatten op basis 
van de aanwezige proxy metingen. De achtergrondkennis is bijvoorbeeld dat patiënten met betere gezondheid ook een 
betere performance score zullen hebben. Door deze achtergrondkennis expliciet op te nemen in het statistische model 
wordt het mogelijk om het oorzakelijke behandeleffect te schatten. De toepassing van PROTECT op de stadium III 
niet-kleincellig longkankerpatiënten leverde relevante bevindingen op. Waar conventionele statistische methoden een 
overschatting leken te geven van het behandeleffect, was de behandeleffectschatting van PROTECT in lijn met wat er 
verwacht werd op basis van achtergrondkennis. Door het relatief beperkt aantal patiënten dat geïncludeerd was in de 
studie (507) bleef de statistische onzekerheid over deze schatting relatief groot. Het is van belang om de PROTECT 
methode bij andere kankersoorten en in grotere populaties verder te onderzoeken.

Van relatief naar absoluut behandeleffect
In hoofdstuk 6 evalueren we zogenaamde ‘offsetmethoden’ voor het schatten van individuele behandeleffecten. 

Offsetmethoden gaan op een andere manier om met latente confounders, door de aanname te maken dat behandelingen 
een constant en bekend ‘relatief ’ behandeleffect hebben, maar dat patiënten verschillen met betrekking tot hun 
‘basisrisico’: het risico op een uitkomst als ze niet behandeld zouden worden. Als voorbeeld, stel dat een bepaald 
cholesterolverlagend medicijn het 10-jaarsrisico op cardiovasculaire sterfte met een factor 2 vermindert. Een 60-jarige 
mannelijke roker met hypertensie en verhoogd cholesterol heeft een basisrisico op cardiovasculair overlijden van 40% 
en zou een risicoreductie van 20% punten hebben. Een 50-jarige vrouw zonder hypertensie heeft een basisrisico van 
minder dan 1% en zal een risicoreductie van 0,5% punten hebben. Gezien deze sterk verschillende effecten in absolute 
procentpunten, kan men het nieuwe cholesterolverlagende medicijn bijvoorbeeld aanbevelen aan de 60-jarige man, 
maar niet aan de 50-jarige vrouw. De uitdaging bij deze benadering is hoe het basisrisico kan worden ingeschat. Vaak zijn 
gerandomiseerde onderzoeken te klein om dit risico op een granulair niveau in te schatten, afhankelijk van de kenmerken 
van de patiënt. Omgekeerd, in historische observationele patiëntgegevens kunnen sommige patiënten de behandeling 
hebben gehad, terwijl anderen dat niet hebben gedaan. Vanwege confounders zijn de patiënten die de behandeling niet 
hebben gekregen geen goede referentiepopulatie voor het schatten van het basisrisico in de gehele populatie voorafgaand 
aan de behandel beslissing. Offsetmodellen schatten het basisrisico voor patiënten door rekening te houden met de 
effecten van historische behandelingen met behulp van een vaste ‘offsetterm’ die is gebaseerd op een schatting van het 
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relatieve behandelingseffect uit eerdere gerandomiseerde onderzoeken. Varianten van de offsetmethode zijn bijvoorbeeld 
gebruikt om het voordeel van chemotherapie na chirurgische resectie van een borsttumor in te schatten. Deze modellen 
worden aanbevolen voor ondersteuning van de behandelbeslissing door de huidige klinische richtlijnen. Het is echter niet 
bekend of de aanname van een constant relatief behandelingseffect die ten grondslag ligt aan de offsetmethode inderdaad 
voldoende is om het effect van latente confounders teniet te doen. In hoofdstuk 6 laten we zien dat offset-methoden 
voor binaire uitkomsten niet het basisrisico of het behandelingseffect schatten in de aanwezigheid van confounders, 
maar dat de resulterende systematische fout in de meeste gevallen laag is. Ook introduceren we, op basis van statistische 
overwegingen, een meer verfijnde manier om de schatting van het relatieve behandelingseffect te gebruiken door een 
nieuwe restrictie te introduceren. We vinden dat offsetmodellen met de nieuwe restrictie beter presteren dan standaard 
offsetmodellen, en een verdedigbare benadering zijn voor het schatten van individuele behandelingseffecten wanneer de 
aanname van een constant relatief behandelingseffect houdbaar is.

 

De beste behandeling kiezen, een causale taak
Het proefschrift sluit af in hoofdstuk 7 met een ‘viewpoint’ artikel over de waarde het voorspellen van uitkomsten 

voor behandelbeslissingen in kanker. De centrale stelling is dat het voorspellen van uitkomsten op zichzelf slechts zelden 
het ultieme doel is. Uiteindelijk is het de bedoeling om op basis van de voorspelling een betere behandelkeuze te maken. 
De vraag “wat is de verwachte overleving, gegeven dat we X over de patiënt weten?” is niet de belangrijkste, maar “wat 
is de verwachte overleving, als we behandeling A of B zouden geven, gegeven dat we X over de patiënt weten?”. Zoals in 
hoofdstuk 4, 5 en 6 is aangetoond is het beantwoorden van deze vraag methodologisch veel complexer dan de vraag die 
puur voorspellend is. De crux zit in het oorzakelijke karakter van de behandelbeslissingvraag: welke behandeling heeft 
als oorzakelijk effect een betere overleving? In hoofdstuk 7 benadrukken we het belang van deze vraag en leggen we uit 
hoe een groot deel van het gepubliceerde onderzoek over het voorspellen van uitkomsten bij kanker niet kan bijdragen 
aan het beantwoorden van deze vraag omdat het oorzakelijke karakter van de vraag niet goed wordt meegenomen in de 
opzet van de studie en de uiteindelijke analyse. In het artikel bespreken we vervolgens wat er nodig is om deze belangrijke 
vraag wel goed te beantwoorden. We sluiten af met een oproep voor een betere verdieping in de methodologische kennis 
rondom oorzakelijke vragen en voor meer onderzoek dat een antwoord kan geven op de vraag waar het in de kliniek echt 
om gaat. Om het doel te behalen van een zorg steeds beter toegespitst wordt op de individuele patiënt is het cruciaal om 
onderzoek van de hoogste methodologische standaard na te streven.
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zijn geweest. Dank voor het vertrouwen dat je me gaf toen ik na mijn bachelor natuurkunde en sterrenkunde nog wilde 
beginnen aan geneeskunde. Dank je me steunde toen ik (onbetaald) wetenschappelijke projecten wilde doen in plaats 
van werken voor geld. Dank voor je onophoudelijke steun toen promoveren erg veel uithouding van me vergde. Dank 
dat je bereid was om 3 maanden met mij naar New York te gaan en voor Vesper te zorgen terwijl je zwanger was van 
Doris, en voor de avonden en weekenden die ik soms moest werken terwijl jij de zorg voor onze kinderen op je nam. 
Met jou kan ik alles aan.

Dankwoord
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