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The speed–accuracy trade-off (SAT) suggests that time constraints reduce

response accuracy. Its relevance in observational settings—where response

time (RT) may not be constrained but respondent speed may still vary—is

unclear. Using 29 data sets containing data from cognitive tasks, we use a

flexible method for identification of the SAT (which we test in extensive simu-

lation studies) to probe whether the SAT holds. We find inconsistent relation-

ships between time and accuracy; marginal increases in time use for an

individual do not necessarily predict increases in accuracy. Additionally, the

speed–accuracy relationship may depend on the underlying difficulty of the

interaction. We also consider the analysis of items and individuals; of particular

interest is the observation that respondents who exhibit more within-person

variation in response speed are typically of lower ability. We further find that

RT is typically a weak predictor of response accuracy. Our findings document

a range of empirical phenomena that should inform future modeling of RTs

collected in observational settings.

Keywords: response time; IRT; speed–accuracy trade-off; conditional accuracy function

1. Introduction

The basic notion of the speed–accuracy trade-off (SAT) is an intuitively

appealing one: An individual’s slow, deliberative decisions should, all else equal,

be more accurate than rushed decisions (Wickelgren, 1977; see also Figure 1).

Beyond its intuitive appeal, it has been verified using extensive work in
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FIGURE 1. Prototypical speed–accuracy trade-off. For an individual, increases in

response time are, all else equal, expected to translate into increase in accuracy relative

to expectation (gray line); this is indicated by the upward slope of the blue line. Note that

there is no time limit considered in this hypothetical scenario.

Domingue et al.

577



experimental settings, wherein a variety of manipulations are used to induce

changes in speed (Heitz, 2014). While there is great power in using experimental

manipulation of time pressure for the identification of this phenomena, experi-

mental results do not necessarily generalize to nonexperimental settings where

additional factors may impact the choice of speed and the resulting level of

accuracy. The ubiquity of digital interfaces for all manner of widely varying

psychometric instruments has rapidly increased the availability of response time

(RT) data in observational settings. This increase in RT data increases the need

for models—both conceptual and statistical—for understanding such data and

also increases the importance of questions about the generalizability of insights

regarding RT derived from experimental settings.

In settings wherein time pressures are not explicitly being manipulated, the

SAT may still be a relevant model of behavior. Earlier work has described this

kind of SAT, based on idiosyncratic within-person changes in speed during the

measurement process, as a “micro” SAT (Dennis & Evans, 1996) in contrast with

the “macro” SAT, which is typically targeted via direct experimental manipula-

tion. Initial empirical work supported the concept (Lappin & Disch, 1972; Schou-

ten & Bekker, 1967). Such work posits that individuals are continuously making

choices about trade-offs between speed and accuracy in the course of responding,

thus making it a relevant phenomenon even when speed is not being explicitly

manipulated. In nonexperimental work, respondents are potentially making deci-

sions about time usage due to other pressures (i.e., boredom, fatigue, or testing

anxiety may play a role in some settings) that may have different implications for

accuracy. This study probes the general utility of the SAT in anticipating beha-

vior across a broad variety of cognitive tasks wherein we study the association of

speed changes with accuracy.

The increase in RT data is also leading to the development of a suite of

statistical approaches for the study of RT, especially in conjunction with

response accuracy (Molenaar et al., 2018; Ranger et al., 2015; Ratcliff et al.,

2016; van der Linden, 2007). These approaches account, or do not, for the SAT in

several ways. For example, the hierarchical model (van der Linden, 2007)—

which has been widely used in educational measurement settings—posits no

within-person interplay between speed and accuracy by assuming that speed is

constant (as it might be in, for example, a high-stakes measurement scenario with

no time constraints). An alternative viewpoint posits that RT is a mixture of

guessing and solution behavior wherein these two modes have different impli-

cations for accuracy (Wang & Xu, 2015). Other approaches (e.g., the drift diffu-

sion model, Ratcliff et al., 2016) explicitly link RT and accuracy based on the

models of decision making (such an approach has experimental support, Palmer

et al., 2005) and still others (van Rijn & Ali, 2018) upweight rapid responses in

terms of how they inform inferences about respondent ability. These approaches

all make presumptions about interplay between RT and accuracy that may not be

empirically supported in specific contexts.
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While it is clear that the SAT is a useful hypothesis for describing behavior in

some settings, we argue that it deserves further scrutiny when applied to non-

experimental data across a range of tasks. We aim to study, in a variety of data,

whether the general intuition behind the SAT holds. Conceptually, this study

builds on work suggesting that additional time spent on a response does not

always increase its accuracy (Bolsinova & Molenaar, 2018; Goldhammer

et al., 2014; Ranger et al., 2021). For example, Chen et al. (2018) discuss a

curvilinear relationship between RT and accuracy: Increases in time spent on

an item were associated with increases in accuracy, but only up to a certain point.

In the spirit of earlier work on the SAT (Pew, 1969), we explore this issue

using a large number of data sets containing both response accuracy and time

from various cognitive tasks. We combine this data with a flexible exploratory

approach describing the relationship between within-person variation in time

usage and accuracy. We first use an item response model to generate an estimate

of the probability of accuracy for a person-item interaction. We then use within-

person variation in RT to ask whether extra time spent on an item tends to yield

marginal increases in accuracy net of this probability. In such cases, the basic

logic of the SAT holds, but, of course, it need not.

Alongside this main question, we ask several additional questions pertaining

to interplay between speed and accuracy. We focus on the issues of interest that

have seen relatively limited empirical work (especially across diverse data). We

ask whether there is heterogeneity in the association between time usage and

accuracy as a function of the task or item’s level of difficulty (i.e., the probability

of accuracy as specified by an item response model). We ask about the existence

of item-level and person-level variation in the degree to which marginal changes

in time predict change in accuracy. Finally, given the interest in formal models

linking time and accuracy, we use RT to predict accuracy in out-of-sample

analyses. Collectively, answers to these questions offer insight as to the degree

to which the SAT should be embedded in our conceptual and statistical models

for responses not collected in experimental settings.

2. Methods

2.1. Data

We consider item response data sets containing a variety of tasks and with

respondents of various ages; they are documented in the Supplemental Information

(SI). The primary criteria for inclusion were as follows: (1) Time pressures were not

experimentally manipulated across the tasks,1 (2) the data came from cognitive tasks,

and (3) accuracy can be appropriately modeled as a monotonically increasing func-

tion of some latent trait. Data that are appropriately modeled using item response

theory (IRT) models with monotonic item response functions would thus be permis-

sible. In contrast, data from measures of affective traits (e.g., personality) or other-

wise characterized by nonmonotonic models—e.g., “D”/“unfolding” models
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(Molenaar et al., 2015)—would not be included. We focus on data that had responses

scored in two categories (e.g., correct or incorrect).2 Collectively, these data draw

from measures that span a range of constructs measured across the lifecourse.

TABLE 1.

Descriptive Statistics for the Data Sets (Including Time Limits for Those Data Sets That

Impose Them at the Item Level)

Data # People # Items # Interactions

Mean

Time (s)

Time

Limit (s)

Lexical 93 15 66,059 0.6

RR98 accuracy 30 33 12,194 0.7

Hearts flowers 255 8 5,071 0.8 1.5

Lexical Decision Task 104 495 51,480 0.9

ECLS flanker 12,008 20 239,963 0.9 10.0

ECLS DCCS 12,023 30 360,430 1.1 10.0

Motion 106 30 31,778 1.2 10.0

Multi-Source Interference Test 740 24 16,739 1.3 2.5

Reading fluency 3,943 315 212,507 1.4

Reading comp 3,947 448 165,630 1.5

Arithmetic 895 173 133,796 1.7

Groupitizing 481 88 40,450 2.2

Rotation 95 10 950 2.6 7.5

Set 355 10 3,550 5.0 20.0

Letter chaos 233 10 2,330 5.7 20.0

Add subtract 16,190 60 200,297 6.0 20.0

Working memory 194 4 1,365 6.9

Mult. div. 14,184 60 174,517 7.0 20.0

Health and Retirement Study 2,215 20 36,785 8.2

Chess 258 80 19,135 9.7 30.0

PISA reading 42,398 223 1,850,217 11.0

PERC 1,680 15 25,132 16.9

MITRE-ETS 801 95 75,912 18.3 90.0

Assistments 2,306 3,518 131,864 21.8

National Social Life, Health, and

Aging Project

2,210 13 28,717 31.2

Programme for the International

Assessment of Adult

Competencies

2,278 104 55,563 38.4

PISA math 21,995 60 323,887 62.6

NWEA Grade 3 49,998 5,181 1,952,749 64.1

NWEA Grade 8 49,984 6,049 1,888,845 79.0

Note. PISA = Programme for International Student Assessment; ECLS = Early Childhood

Longitudinal Studies; DCCS = dimensional change card sort; PERC = Persistence, effort, resilience

and challenge-seeking task.

Speed–Accuracy Trade-Off?

580



Descriptive statistics, including the size of each data set, are in Table 1. Data

range widely in scale; e.g., 30 people or < 10 items to 50,000 people and

thousands of items. Note that the number of responses diverges widely in many

cases from the product of the number of people times the number of items. For

reasons largely of design (i.e., the assessment was delivered via blocks or adap-

tively), not all individuals attempt all items in some data (e.g., Programme for

International Student Assessment [PISA], NWEA). In other cases, items are

attempted multiple times.

Figure 2 describes RT in these data. Given the skew associated with time, we

use logged time throughout. Tests vary substantially in terms of the amount of

time required per interaction. Some tests have items that require less than 1 sec-

ond on average, while others have items that require more than 1 minute. We

order the data by mean RT in our presentation of results. There is also variation in

the difficulty of the items, as proxied by average percentage correct, across the

assessments. Some of the tests have items for which only half of the responses are

correct while others have items for which responses are nearly always correct.

We control for this variation via item response models.

2.2. Analysis

There are several conceptual rationales for combining information on RT and

accuracy (De Boeck & Jeon, 2019). RT can be used as collateral information to

improve the prediction of accuracy, RT can be incorporated for the purpose of

studying the underlying cognitive processes, or RT can be explicitly incorporated

into scoring rules. The approach used here—in particular, combining
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FIGURE 2. Response time (RT). Note. Left: Boxplots of RT (logged) for each of the data

sets. Right: Comparison of mean item-level accuracy (x-axis) and RT (y-axis) across the

items. Horizontal lines show 1 second, 10 second, and 1 minute increments.
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probabilities from item response models with fixed effects—has features of the

first two approaches.3

We view our approach as one designed to flexibly model the impacts on the

accuracy of within-person changes in time use. In particular, we argue that our

approach is reasonable for elucidating key facts about the SAT that we study here

but we would not consider it a plausible generative model; indeed, the breadth of

data here may require qualitatively different types of generative models. In being

an approach focused not on testing models that may have generated the data but

instead on key empirical relationships, we view it as being in the tradition of

Tukey and others advocating for such exploratory approaches (Fife & Rodgers,

2021; Tukey et al., 1977). Our confidence in our approach’s ability to capture key

features of the SAT is based on extensive simulation studies in the context of

several different models for the joint distribution of time and accuracy, see SI.

All analyses are conducted in R. We use mirt software (Chalmers et al., 2012)

to estimate IRT models and the fixest package to estimate fixed effect models

(Bergé et al., 2018). Code is available (https://github.com/ben-domingue/rt_

meta).

2.2.1. Mapping speed–accuracy curves. Our first aim is to estimate within-person

speed–accuracy curves (i.e., conditional accuracy functions, Maris & Van der

Maas, 2012). To do this, we rely on a flexible approach to recovering these

curves that allows us to identify a variety of different configurations of speed

and accuracy. Alongside information about RT, we utilize the estimates of the

probability of a correct response via the application of a specific item response

model. We combine these estimates of accuracy with RT in a linear probability

model-based approach to identify speed-accuracy curves. The flexibility comes

at the cost of some slightly unconventional choices (i.e., the linear probability

model), but we illustrate its robust performance under a variety of assumptions in

simulation studies (see SI).

Let xij be a dichotomously scored responses from person j to item i (so

xij 2 f0; 1g). The first element of our approach involves estimating p0, the prob-

ability of a correct response generated from the application of an item response

model; specifically, the Rasch (1993) model. We estimate

p0 ¼ Prðxij ¼ 1Þ ¼ sðyj � diÞ; ð1Þ

where yj and di are the person-level and item-level parameters, respectively, and

sðzÞ ¼ ð1þ expð�zÞÞ�1
. Estimation is performed using two approaches. When

a conventional item response matrix can be constructed, we use conventional

IRT approaches (Chalmers et al., 2012); when this is not possible—in particular,

when respondents take multiple attempts at an item—we use a random effects

model (De Boeck et al., 2011), where both person and item effects are treated as

random.
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We then use p0 in our attempt to model associations between marginal within-

person changes in time usage and accuracy. Denoting the time required for the

production of person j’s response to item i as tij, we allow for nonlinear effects in

time. This flexibility is important as additional RT may be unassociated with

gains in accuracy past a certain threshold (Pachella et al., 1968) or otherwise

nonlinear (Chen et al., 2018). We do this by mapping logtij onto a b-spline basis;

we denote this as bðlog tijÞk .4 We consider as a baseline model

xij*Normal
�

Lðbðlog tijÞk ; p0;ijÞ þ lj þ gi;s
2
x

�
; ð2Þ

where LðÞ indicates a linear function of its arguments (e.g., Lðx; yÞ ¼ axþ by).

Note that we rely upon a linear probability model. While unconventional for

modeling binary item responses, it is more common in other settings (Cheung,

2007; Jaccard & Brinberg, 2021). We use this approach as it allows for the

computational flexibility of including person- and item-level fixed effects (lj

and gi, respectively). The use of fixed effects is key to identification of the SAT

as a within-person phenomenon as it allows us to control for all time-invariant

properties of persons and items, including a person’s typical time usage and an

item’s typical time demand. Given that we are ignorant as to the true relationship

between speed and accuracy across the data considered here, we use splines as a

flexible means of mapping speed–accuracy relationships; as we illustrate in the

SI, this approach reliably allows us to uncover a variety of relationships between

these quantities.

We again emphasize that we are not asserting that Equation 2 is the true data

generating process. It doesn’t, for example, allow for possible variation in item

discrimination and is also in the form of a linear probability model. We view such

an exploratory approach as appropriate given that it as a flexible yet robust

method for uncovering the SAT that arises due to a variety of different mechan-

isms for jointly generating time and accuracy; its flexibility is key given the

range of data we utilize here. This robustness is demonstrated in Section 2 of

the SI, wherein we conduct a wide variety of simulation studies demonstrating

the efficacy of our approach. It is, for example, able to detect the key features

of the SAT even if the item’s p values are far from 0.5 on average, can detect a

variety of shapes of the SAT, and functions appropriately when a variety of

models are used to generate data. As with many approaches to studying accuracy

or time usage, our approach assumes no change in a respondent’s overall ability

or speed through the assessment (i.e., yj and lj are static) and relies on a rela-

tively constrained model to generate p0; we discuss potential limitations stem-

ming from these constraints below.

2.2.2. Heterogeneity in SAT curves. Note that Equation 2 assumes that changes

in accuracy are independent of the difficulty of the interaction; a marginal

increase in time on an item that is relatively hard for a person is assumed to
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be as useful as a marginal increase in time on an item that is easy for a person. We

now relax this assumption. To explore heterogeneity as a function of p0, we

consider

xij*Normal
�

SLðbðlog tijÞk ; p0;ijÞ þ lj þ gi;s
2
x

�
; ð3Þ

where SLðÞ is a saturated linear function of its arguments (e.g., SLðx; yÞ ¼
axþ byþ hxy, with the one caveat that we do not include interaction terms

between splines). We then consider qf

qlog t
, where f is the center of the normal density

in Equation 3. The goal is to explicitly identify regions of ðp0; tÞ space, where

additional time predicts an increase ( qf

qlog t
> 0) or decrease ( qf

qlog t
< 0) in accuracy.

2.2.3. Item- and person-level analyses. To study the associations of marginal

increases in time with accuracy for individual items, we consider the following

model separately for each item

xj*Normal
�
b1ðlog tjÞ þ b2p0;p;s2

x

�
; ð4Þ

where j indexes all individuals. The estimate of b1 is an indicator of the marginal

association between time and accuracy for each item. To determine whether there

is a patterning of this indicator of association with the item’s difficulty, we also

consider rðb1; diÞ (with di from Equation 1).

To study person-level associations between speed and ability (i.e., y in Equa-

tion 1), we estimate

�
ðlog tijÞ*Normalð�1 � tj;s2

t Þ; ð5Þ

where
�
ðlog tijÞ represents demeaned (at item-level, so as to omit the between-item

variation in time intensity) RTs and we additionally assume tj*Normalð0;s2
tÞ.

We multiply t by�1, so that t represents speed (i.e., a higher t will be associated

with lower time). We first examine rðtj; yjÞ so as to determine whether higher

ability respondents tend to be faster or slower responders. Motivated by previous

observations of within-person variation in speed (Wise, 2015), we then consider

such variation. Focusing on items with at least 100 responses, we find the quan-

tile in the RT distribution of each response (i.e., the rank) for a person and take

the standard deviation of that quantity (which we denote srank).5 We then con-

sider rðyj; srankÞ as an indication of whether within-person variation in speed is

associated with ability.

2.2.4. Predictive accuracy. Finally, we ask about the relative gain in the predic-

tion of accuracy that we get from RT. The goal here is to benchmark the potential

value of RT as a predictor of accuracy; such findings will supplement those of the

SAT-focused analyses in helping to offer insight about interplay between speed

and accuracy. We focus on the predictive power of RT for an item response by
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comparing the accuracy of predictions in a 10% hold-out-sample of item

responses using models trained in the remaining 90%.6 For this exercise, we first

standardize RT within each item. Predictive performance is based on a transfor-

mation of the likelihood meant to provide intuition about item-level responses; if

‘ij is the log-likelihood for a response with predicted accuracy of Pij,

‘ij ¼ xijðlog PijÞ þ ð1� xijÞðlog 1� PijÞ; ð6Þ

we consider expð�‘ijÞ (where the average is taken over j and i).

We consider six models for Pij in Equation 6 (denoted A–F) that utilize

information on person- and item-level accuracy, information about the individ-

ual’s overall time usage, and combinations thereof. As context for evaluating

gains in each data set, we first predict (A) using the invariant proportion of

correct responses in each data set, Pij ¼ �x. We then consider item-level variation

in accuracy and predict based on (B) the proportion correct by item,

Pij ¼
P

jxij=ni, where there are ni responses to item i. We now incorporate

person-level information using three quantities: the individual’s proportion of

correct responses, the individual’s mean standardized RT, and, due to conceptual

(Davidson et al., 2006) and empirical (Su & Davison, 2019) interest in RTs for

correct responses, the individual’s mean standardized RT for correct responses.7

For each of these three predictors, z, we predict (C–E) based on fitted logistic

regression models containing the item proportion correct and one of the three

predictors; that is, Pij ¼ sðb0 þ b1

P
jxij=ni þ b2zijÞ, where b0; b1; and b2 are

estimated via logistic regression. Finally, we use both time and accuracy infor-

mation and predict (F) based on both the individual’s proportion correct

responses and mean standardized RT. Note that out-of-sample responses are

predicted purely on the basis of in-sample information (i.e., out-of-sample RT

is not used). We consider analyses focusing on item-level RT in the SI.8

3. Results

3.1. Mapping the SAT

We first construct baseline speed–accuracy curves using the approach

described in Equation 2 (see Figure 3). Each panel in that figure has a similar

form; they are also similar to the format of Figure 1. The x-axis captures time

spent on the item.9 The y-axis shows changes to the estimated accuracy net of p0.

The curves show the estimated changes in accuracy as a function of time; recall

that the SAT would suggest that such lines be monotonically increasing as longer

responses are associated with increases in accuracy.

We readily observe a large variety of behavior in terms of the within-person

relationship between RT and accuracy. In some cases (e.g., Lexical, Arithmetic),

longer RTs do generally translate into increased accuracy. However, this is not

universally true. For example, longer time can be uniformly associated with a
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decline in accuracy (e.g., working memory, National Social Life, Health, and

Aging Project [NSHAP]). In other cases (e.g., rotation, reading fluency), asso-

ciations with accuracy for additional RT can be positive or negative. While these

results suggest that a wide variety of relationships are possible, we emphasize

two points of consistency here and further elaborate on some other potential

explanatory mechanisms in the discussion.

Note the role of time limits. Consider the hearts flowers and rotation tasks. For

those, we observe steep declines in accuracy as a function of time increases when

RTs are near their maximum. In these cases, we hypothesize that respondents

began to choose answers with less certainty when they neared the time limit for

each task. Note that we also detect a relative increase in the density of incorrect

responses prior to the time limit for these two data sets. We further illustrate the

role of time limits along the lines described here using variation in time pressure

in additional data from the hearts flowers task, see SI.

Within age, we generally observe variation in curve shape. However, if we

focus on older respondents (the Health and Retirement Study [HRS] and NSHAP

data), we observe strong negative slopes. In the context of these data, we

hypothesize that the nature of the curve is due in part to both the age of the

respondent and the type of task in these data. We further investigated this pos-

sibility using the Programme for the International Assessment of Adult Compe-

tencies (PIAAC) data, see SI; this analysis supports the supposition that the

nature of the HRS and NSHAP tasks play some role (it does not seem to be

simply the age of the respondent).

We considered several sensitivity analyses to complement the results in

Figure 3. We consider p0 values generated from an alternative item response

model (i.e., the 2PL). We modeled responses using logistic regression rather than

the linear probability model. We also considered results based on the first resi-

dualized RTs for person and item fixed effects. Results from analyses are

described in Section 3 of the SI; our conclusion that a wide variety of relation-

ships between speed and accuracy are possible in observational data is robust to

these alternative specifications.

Figure 3 focuses on associations between RT and accuracy net of the under-

lying difficulty (i.e., p0) of the interaction. We now ask whether there may be

heterogeneous effects by constructing curves similar to the ones shown in

Figure 3 but that vary by the difficulty of the interaction. Rather than focusing

on the curve, we focus on the curve’s instantaneous slope (i.e., qf

qlog t
).

3.2. Heterogeneity as a Function of p0

Conceptually, the analysis of heterogeneity as a function of p0 is equivalent to

asking whether the shape of the curve shown in Figure 1 is sensitive to the value

of p0 (i.e., the location of the horizontal gray line). Results based on the approach

in Equation 3 are shown in Figure 4. In this figure (as in Figure 3), the x-axis
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shows RT for the test. The y-axis shows the p0 of the interaction; a value of, for

example, 0.7 means that an individual responding to a given item is projected by

the Rasch model to have a 70% probability of getting the item correct. At a given
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FIGURE 4. Estimated change in accuracy as a function of both response time (RT; x-axis)

and p0 (y-axis). Colors can be interpreted based on legend on right. Blue indicates points

where a marginal increase in time spent by a respondent on an item is expected to increase

accuracy; red indicates points where the opposite is true. A lack of color represents a point

with no estimated association between marginal increase in RT and accuracy.
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point in each panel of the figure, the color represents qf

qlog t
. Areas in blue corre-

spond to qf

qlog t
> 0, suggesting that a marginal increase in time for an interaction

of the given difficulty is associated with increased accuracy (i.e., the SAT seems

to be operant). Areas in red correspond to qf

qlog t
< 0; in such areas, marginal

increases in time are associated with decreases in accuracy. If we consider a

vertical strip, a change in color suggests sensitivity in the time/accuracy rela-

tionship as a function of p0. Likewise, when we consider a horizontal strip a

change in color suggests sensitivity in the time/accuracy relationship to the base-

line duration of the response.

We start with the data sets consisting of rapid tasks. Results are fairly hetero-

geneous. One fairly universal finding (rotation and set being exceptions) is that,

across values of p0, shorter responses are those that are likely to benefit from

some increase in accuracy if they are marginally longer (i.e., the left side of

each panel tends to be blue); this is perhaps due to marginally longer responses

being less due to rapid guessing. The boundary between blue and red also tends

to slope from upper left to bottom right such that, for a constant RT, marginal

increases are more likely to be in the blue as opposed to the red if they

represent more challenging interactions. Consider the Add Subtract data set. If

logðtÞ ¼ 1:8 and p0 � 0:5, we observe qf

qlog t
> 0, while if p0 � 0:8, we observe

qf

qlog t
< 0.

With less rapid tasks, many of the same patterns appear. In particular, we

observe larger blue regions on the left and boundaries between blue and red

regions tend to be negatively sloped. However, there are also cases where the

partial derivative is uniformly positive (e.g., PIAAC) or negative (e.g., HRS). All

told, these analyses suggest that whether the SAT holds may vary both across the

nature of the task but also as a function of the precise conditions within the set of

tasks in a given data set.

3.3. Item-Level Heterogeneity

Using a modified approach (e.g., Equation 4), we focus on SAT curves for

individual items. We focus on the marginal effect of time net of p0. Results are

shown in Table 2 focusing on only those items that have at least 100 responses.

Given that each data set contained numerous items, we identified those items

showing positive/negative marginal associations with time based on the esti-

mates of b1 that were significant after adjusting (via Bonferroni correction) for

multiple testing of all items within data set.

In general, associations tended to be positive or null. However, note that, for

example, the chess data that had a relatively large proportion of items show a

negative association and nearly all data had at least some items that showed

negative associations; we speculate on the reasons for such negative associations

Domingue et al.

589



TABLE 2.

Item-Level Analysis for Those Items With > 100 Responses

Data

N

Items

%
ðb1 > 0Þ

%
ðb1 < 0Þ rðb1; diÞ

Confident

Interval-

Lower

Confident

Interval-

Upper

Lexical 15 40 13 0.22 �0.33 0.66

RR98 accuracy 32 0 0 �0.11 �0.44 0.25

Hearts flowers 8 12 12 0.86 0.39 0.97

Lexical Decision Task 495 1 0 �0.14 �0.22 �0.05

ECLS flanker 20 70 10 0.78 0.52 0.91

ECLS DCCS 30 40 0 0.87 0.74 0.94

Motion 30 13 10 �0.48 �0.71 �0.14

Multi-Source

Interference Test

24 50 0 0.70 0.41 0.86

Reading fluency 292 10 4 �0.13 �0.24 �0.01

Reading comp 408 11 2 �0.40 �0.48 �0.32

Arithmetic 170 31 1 0.25 0.11 0.39

Groupitizing 88 59 0 0.29 0.08 0.47

Rotation 10 0 0 �0.04 �0.65 0.61

Set 10 0 80 �0.41 �0.82 0.30

Letter chaos 10 20 0 0.30 �0.40 0.78

Add subtract 60 38 7 �0.11 �0.35 0.15

Working memory 4 0 75 0.83 �0.64 1.00

Mult. div. 60 3 63 �0.05 �0.30 0.20

Health and Retirement

Study

20 5 65 0.17 �0.30 0.57

Chess 80 5 26 �0.03 �0.25 0.19

PISA reading 218 39 16 �0.25 �0.37 �0.12

PERC 15 13 40 �0.26 �0.68 0.29

MITRE-ETS 95 13 2 �0.63 �0.73 �0.49

Assistments 604 0 1 0.10 0.02 0.18

National Social Life,

Health, and Aging

Project

13 8 54 0.21 �0.38 0.68

Programme for the

International

Assessment of Adult

Competencies

104 71 0 0.53 0.37 0.65

PISA math 60 28 15 0.05 �0.20 0.30

NWEA Grade 3 3,694 3 0 �0.09 �0.13 �0.06

NWEA Grade 8 3,331 3 2 �0.02 �0.06 0.01

Note. The percentage of items showing positive or negative coefficients of logðtÞ predicting accuracy

(e.g., estimates of b1 from Equation 4) is those that remain after Bonferroni correction. Only

significant correlations between difficulty and b1 are shown. PISA = Programme for International

Student Assessment; ECLS = Early Childhood Longitudinal Studies; DCCS = dimensional change

card sort; PERC = Persistence, effort, resilience and challenge-seeking task.
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TABLE 3.

Person-Level Associations Between Ability (y), Speed (t), and Variation in Speed (srank)

Data rðy; tÞ EðsrankÞ rðy;srankÞ

Confident

Interval-

Lower

Confident

Interval-

Upper

Lexical .15 .25 .06 �.14 .26

RR98 Accuracy .17 .25 �.14 �.47 .24

Hearts flowers �.20 .25 �.36 �.46 �.25

Lexical Decision Task �.05 .22 �.61 �.72 �.47

ECLS flanker �.05 .19 �.18 �.20 �.16

ECLS DCCS �.11 .23 �.22 �.24 �.20

Motion .06 .26 �.43 �.57 �.26

Multi-Source Interference

Test

�.23 .24 �.27 �.34 �.20

Reading fluency �.03 .21 �.12 �.15 �.09

Reading comp �.28 .22 �.20 �.23 �.17

Arithmetic .19 .22 �.56 �.61 �.52

Groupitizing �.46 .24 �.41 �.48 �.33

Rotation .12 .22 �.05 �.25 .15

Set .16 .25 �.11 �.21 �.01

Letter chaos �.08 .22 �.20 �.32 �.07

Add subtract .08 .23 �.13 �.14 �.11

Working memory .31 .23 �.08 �.22 .06

Mult. div. .05 .24 �.13 �.15 �.11

Health and Retirement Study .41 .24 �.06 �.10 �.02

Chess .44 .24 �.01 �.13 .11

PISA reading �.23 .25 �.28 �.29 �.27

PERC �.43 .24 �.20 �.24 �.15

MITRE-ETS �.62 .22 �.23 �.29 �.16

Assistments �.36 .24 �.27 �.31 �.23

National Social Life, Health,

and Aging Project

.30 .24 �.07 �.11 �.03

Programme for the

International Assessment of

Adult Competencies

�.33 .23 �.48 �.51 �.45

PISA math �.15 .24 �.06 �.08 �.05

NWEA Grade 3 .02 .24 �.14 �.15 �.14

NWEA Grade 8 .04 .23 �.21 �.22 �.20

Note. PISA ¼ Programme for International Student Assessment; ECLS ¼ Early Childhood

Longitudinal Studies; DCCS ¼ dimensional change card sort; PERC ¼ Persistence, effort, resilience

and challenge-seeking task.
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FIGURE 5. Comparison of out-of-sample predictions (via expð�‘Þ; see Section 2.2.4) in

10% holdout. Predictions are made based on predictors shown in the legend. (A) is based

on the overall mean accuracy in the data (see Figure 2). (B) is based on the mean

accuracy for each item. (C) is based on the mean accuracy for each person. (D and E)

are based on the mean standardized response time for each person (with E focusing just on

correct responses). (F) combines C and D.

Speed–Accuracy Trade-Off?

592



in Section 4. We also investigated correlations between item difficulty and the

marginal time/accuracy associations. Such associations varied widely across the

data sets.

3.4. Person-Level Heterogeneity

We next analyze person-level speed via Equation 5. Results are shown in

Table 3. We first consider correlations between the estimates of ability and

speed. Correlations vary widely. In some cases, more able respondents are also

faster (e.g., chess); in other cases, the opposite is true (e.g., the PIAAC and

PISA).

We next consider within-person variation in speed during the test. We

observed variation in speed—as indexed by changes in a respondent’s rank

ordering of RT across items—that was fairly consistent across all the data sets

although the Early Childhood Longitudinal Studies (ECLS) flanker tasks showed

the least amount of within-person variation. This quantity has an interesting

pattern of association with ability. Across nearly all data sets (lexical being the

exception), respondents with larger estimates of y showed less variation in speed.

Although this association was not always significant, we think it suggestive of a

potentially important insight regarding fluctuations in respondent speed across

responses and resulting estimates of ability based on the collected responses.

3.5. Predictive Power of RT

Finally, we examine the predictive power of RT as compared to alternative

predictors. Recall that all predictions of out-of-sample data are based on quantities

computed in a training sample; fit is evaluated via expð�‘ijÞ, where ‘ij is as in

Equation 6. Results are shown in Figure 5. We focus here on three comparisons

(denoted via letters assigned in Section 2.2.4 and referenced in Figure 5 legend).

We ask how prediction changes when we exchange person-level response accuracy

for person-level RT (C vs. D), exchange RT information for RT based only on

correct items (D vs. E), and combine accuracy and RT information (F vs. C/D).

With respect to the first comparison (C vs. D), we generally make better

predictions based on accuracy rather than RT. There are exceptions (ECLS

flanker, set, add subtract, working memory, and mult. div.); we emphasize that,

especially for data containing more complex tasks that take longer than 10 sec-

ond, we are better able to predict novel responses using accuracy rather than RT.

With respect to the second comparison (D vs. E), differences were quite small. In

only two cases were differences larger than 0.01; in both cases (groupitizing and

MITRE-ETS), prediction was superior when using all RT information. With

respect to the third comparison (F vs. C/D), we generally find that prediction

using both RT and accuracy is generally inferior to models based on just a single

predictor (RT or accuracy). Similarly, results from analyses in the SI suggest that
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using RT from an individual item response tends to degrade prediction as com-

pared to predicting based on p0 alone. In sum, these analyses—especially when

combined with results from SI 3.4—suggest that RT may not be an especially

useful predictor of accuracy in many cases. This could be due, in part, to the fact

that additional time on an item may predict both positive and negative changes in

accuracy (i.e., Figure 3).

4. Discussion

We use the standardized analysis of 29 RT data sets to study the interplay

between speed and accuracy in nonexperimental settings. In nonexperimental

settings, marginal increases in time do not necessarily lead to increased accuracy.

In some cases, we observed patterns consistent with those predicted by the SAT

but, in other cases, we do not. Accuracy occasionally declined with increased RT

but more frequently showed an inconsistent relationship with increased RTs. In

many cases, we observe a curvilinear relationship as anticipated by previous

work (Chen et al., 2018). Further, there may be additional heterogeneity within

a set of tasks when we stratify by the underlying difficulty (i.e., p0) of the

interaction. We also note that we saw few cases where the within-person inde-

pendence of speed and accuracy (as indicated by a flat line in Figure 3) required

by some models (e.g., van der Linden, 2007) held. While substantial experimen-

tal evidence (Heitz, 2014) indicates that artificial manipulation of time pressure

has an effect on accuracy, our findings suggest that other factors may be at work

in observational data and generally tend to reduce the role of the SAT as a

sufficient first-order explanation for observed behavior.

When we observe results inconsistent with the SAT, what might explain such

behavior? The tasks we consider are varied and may not allow for a single

explanation but several psychological phenomena may be relevant. One possi-

bility is that reductions in accuracy for long responses are associated with a

decline in goal-oriented action (i.e., mind wandering; Smallwood and Schooler,

2015), but we note two challenges to articulation of precise theoretical mechan-

isms. The first is the wide range of tasks considered here. The second is that we

have attempted to conduct analysis within item and person. For example, specific

item features may induce attentional capture (Simons, 2000), thus leading to

decreased accuracy for longer RTs for those items. However, our analysis is not

focusing on between-item differences, thus reducing item- or person-specific

features as potential explanatory factors.

Focusing on respondents, we observe inconsistent relationships between

respondent speed and ability. While faster respondents are not necessarily more

able, we do observe a consistent relationship between variation in respondent

speed across items and their ability; respondents who receive lower estimates of

ability tend to vary their speed more. Such variation in speed could be a
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phenotype worth further study. Previous work suggests that such variation tends

to predict cognitive aging in older samples (Lövdén et al., 2007).

Indeed, one substantively interesting case wherein the SAT does not hold

involves older respondents (i.e., the HRS and NSHAP). In these data, additional

time predicts a decrease in accuracy. We suspect that this finding has to do with

both the nature of cognition in older respondents and the tasks in question. With

respect to the age of the respondents, they may be experiencing cognitive aging

(Tucker-Drob, 2019), an age-related decline in cognitive functioning. For

respondents experiencing cognitive aging, it is possible that a within-person

reduction in response speed isn’t associated with deliberation and increased

accuracy but, rather, confusion and decreased accuracy. Our findings can be read

alongside others suggesting a change in the SAT (Heitz, 2014; Salthouse, 1979)

as respondents age.

Turning to items, we identify those for which longer RT predicts increased

accuracy—as anticipated by the SAT—as well as others for which the opposite is

true. This inconsistency across items is one reason that RT is of limited predictive

value. This limited predictive utility is also apparent in Figure 3 as curves

showing association between time and accuracy are either relatively flat or

otherwise not monotonic in many cases. Generally, RT is typically less useful

than accuracy in predicting out-of-sample responses. That said, we would also

advocate for extensive interrogation of, for example, the assumption that within-

person variation in speed is unassociated with accuracy. Such an assumption is

key to some models (van der Linden, 2007); our findings suggest that such a

relationship may be complex and context-dependent but are largely inconsistent

with the notion that such variation can be entirely ignored in attempts to better

understand accuracy.

Our work connects with other recent studies of the SAT. Recent work suggests

combining speed and accuracy into a single metric (Hughes et al., 2014; Liese-

feld & Janczyk, 2019; Vandierendonck, 2017, 2018). Our findings suggest that

there may be between-task heterogeneity that necessitates caution in develop-

ment of such metrics. Our results also suggest, dovetailing with others, that

accuracy is integral for understanding individual differences (i.e., RT alone may

be insufficient; Draheim et al., 2019; Draheim et al., 2020). Our approach—

emphasizing multiple data sets and nonparametric models—could also be incor-

porated into further tests of newly developed models (e.g., Kang et al., 2021).

Future work could also examine the degree to which our approach could be used

as a test of whether models that make restrictions on the SAT are appropriate; for

example, identification of a fairly flat curve using the approach of Figure 3 could

be a positive sign that the hierarchical model (van der Linden, 2007) could be

used.

We also argue that our work documents a range of empirical phenomena that

may exist in observational settings. These findings suggest that RT data are rich

and may offer wide-ranging information about respondent behavior and the
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functioning of a measure. Future work should focus on an exploration of such

riches. In a given data set, we’d advocate for substantial investigatory work prior

to the application of models based on relatively strong assumptions, given that

our results suggest many different potential behaviors, several of which may

violate necessary assumptions.

We acknowledge limitations. Other features of data collection may be rele-

vant. We have not addressed ordering effects (Debeer & Janssen, 2013; Dom-

ingue et al., 2021; Vida et al., 2021). There are presumably motivational

differences across the data sets that we do not measure and cannot study. There

is evidence to suggest that emotional states—e.g., worry (Hallion et al., 2020)—

that may vary as a function of motivational differences and/or testing pressure

may affect the SAT.

We also note assumptions required by our analytic approach. The Rasch

model that we use is relatively restrictive and unlikely to capture all of the

features of the relevant item response functions; this may induce bias in Figure 4

if estimates of p0 are distorted. We did consider the 2PL in supplemental anal-

yses, but future work could further investigate whether still other item response

models may offer different perspectives on these issues. There are also cases

where our ability to identify items (e.g., working memory) is relatively weak in

the sense that we are classifying a relatively broad class of tasks as a single item.

In other cases (e.g., assistments), the assumption of a static ability may be

inappropriate. We think that the potential insights from a common analysis

applied to a broad variety of data sets offer great value, but findings should be

interpreted in light of these limitations.

The heterogeneity of our findings suggests that there are many occasions

wherein additional RT is not necessarily associated with an increase in accu-

racy. We argue that this suggests a need to be vary about the assumption that

the SAT is a viable first-order descriptor of behavior in data wherein time

pressure is not being explicitly manipulated, especially for challenging cog-

nitive tasks. It may indeed be useful in describing behavior in some settings,

but this assumption requires empirical verification. In observational settings,

people vary their speed for a variety of reasons that diverge from the reasons

that people vary their speed in the context of experimental SAT studies. When

one manipulates time pressure with appropriate cognitive tasks, one observes

the SAT. However, in broader settings, people are making decisions that affect

speed and accuracy for lots of reasons, not all of which lead to results antici-

pated by the SAT.

Acknowledgments

The authors acknowledge the support of the iLEAD Consortium’s investigators: Melina

Uncapher, Adam Gazzaley, Joaquin Anguera, Silvia Bunge, Fumiko Hoeft, Bruce

McCandliss, Jyoti Mishra, and Miriam Rosenberg-Lee.

Speed–Accuracy Trade-Off?

596



Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research and/or

authorship of this article: This work was supported in part by the Institute of Education

Sciences (R305B140009) and a gift from an anonymous donor. The Health and Retire-

ment Study is sponsored by the National Institute on Aging (grant number NIA

U01AG009740) and is conducted by the University of Michigan.

ORCID iDs

Benjamin W. Domingue https://orcid.org/0000-0002-3894-9049

Matthieu Brinkhuis https://orcid.org/0000-0003-1054-6683

James Soland https://orcid.org/0000-0001-8895-2871

Notes

1. In some cases (e.g., the hearts and flowers data), time pressure is manipulated

across blocks. We examine this variation in the SI but focus here on a single

block with constant time pressure. In other cases (e.g., the reading fluency and

comp data), the test as a whole was timed, but there was not intentional

variation of the time pressure across tasks.

2. In a few cases (e.g., National Social Life, Health, and Aging Project), we

dichotomized polytomously scored responses so as to increase the number of

available items.

3. An analytic plan was registered on June 1, 2020, https://osf.io/eqrd6/?view_

only¼ae099af11ed54c09b9fd0844a2f93a7a. We do not describe this as a

preregistration as it was registered following preliminary analysis of some

data. Further, as described in the SI, we have made some (relatively modest)

adjustments to this analytic plan.

4. As used here, B-splines are a map from R1 to RK , where K is specified by the

user; our use is similar to previous work (Domingue et al., 2021). To imple-

ment this mapping, we use K ¼ 4 and the defaults in the bs function in R (i.e.,

splines are cubic). Illustrations of spline transformations can be seen in, for

example, Figure 5.20 of Friedman et al. (2001) or Figure 1 of Woods and

Thissen (2006).

5. We note one important limitations of this analysis. Data collected in an

adaptive fashion lead to potential concentration of respondents into certain

items.

6. Note that we omit both the NWEA and assistments data from this analysis,

given the fact that the first data are adaptive and the second data may have

dynamics in ability that are poorly captured by our assumption of a constant yj.
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7. So as to make comparisons between relatively similar bits of information, we

focus on predictions based on quantities computed in relatively comparable

manners instead of focusing on, for example, the item response theory–based

probability p0.

8. The analyses presented in the SI are the ones proposed in the original

registration.

9. We focus here on log t, but results are similar when we consider results in

seconds, see SI.
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