
Reconsidering End-User Development
Definitions

Nikolaos Batalas1(B), Ioanna Lykourentzou2, Vassilis-Javed Khan3,
and Panos Markopoulos1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
p.markopoulos@tue.nl

2 Utrecht University, Utrecht, The Netherlands
i.lykourentzou@uu.nl

3 Sappi Europe, Watermael-Boitsfort, Belgium
Javed.Khan@sappi.com

Abstract. We consider definitions that End-User Development and
related fields offer for end-user developers, and identify the persistence of
viewing end-user development as antithetical to professional development
across the years, even as focus has shifted from the identity and then to
the role of the developer, and later to the intent of the development effort.
We trace the origins of this antithesis to the days of End-User Computing
in organizational settings, and argue that modern software development
resides in a different paradigm, where end-user Development is part and
parcel of any programming endeavour, in professional or other settings.
We propose that current development practice, both for those tradition-
ally regarded as end-user and as professional developers, can be better
served by EUD as a field, if the focus is shifted to the nature of the task
itself, and how technical it needs to be, by way of the platforms that
development takes place on.

Keywords: End-user development · Technical development ·
Definitions

1 Introduction

End-User Development (EUD) is a field of academic research dedicated to the
making of software. Related fields such as End-User Programming (EUP) or
End-User Software Engineering (EUSE) also address specific aspects of software
creation/maintenance. The terms are distinct; EUP can be considered as being
about program creation itself, whereas EUSE addresses concerns around reli-
ability, reuse and maintainability. EUD claims to address the wider range of
practices that are involved in software development, including design practices.
As such, EUD can be considered to be the more encompassing term, inclusive

c© Springer Nature Switzerland AG 2021
D. Fogli et al. (Eds.): IS-EUD 2021, LNCS 12724, pp. 19–35, 2021.
https://doi.org/10.1007/978-3-030-79840-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79840-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-79840-6_2

20 N. Batalas et al.

of EUP and EUSE1. In this text, the term end-user development will be the
umbrella term for all aspects of practice with regard to the end-user production
of software, unless referencing specific cases, and EUD will denote the wider field
of research, inclusive of topics researched by EUP and EUSE.

EUD’s objectives for software construction differ from the traditional aca-
demic disciplines dedicated to the task. Such disciplines as Computer Science
(CS), Electrical Engineering (EE) or Software Engineering (SE) emphasize spe-
cialized knowledge that relates to the construction of software, on areas that
include the following:

– the construction of computing machinery on a physical substrate, and the
ways these can be controlled and composed into more complex systems that
are able to execute programs (which can generally be seen as sets of instruc-
tions that operate on data, or produce signals for adjacent systems).

– the ways in which computational problems can be classified, and the finding
of efficient solutions for solving classes of problems, in terms of execution
time and memory use, as well as studying the properties of relevant data
structures.

– the methods via which the development and maintenance of software can be
practiced systematically and with discipline, so that reliable results can be
reached with predicable use of resources.

EUD on the other hand, aims to make easier the construction of computer
programs, or the modification of existing software to alter or extend its functions,
but without demanding that the developers should have to employ the depth of
knowledge and expertise that it takes to develop software on the technical level
that the traditional disciplines are concerned with, regardless of how familiar
they are with them.

This paper raises the issue that consideration needs to be placed towards the
ways with which academic communities regard End-User Development and its
place within the wider landscape of software production. It is motivated by a con-
tradiction observed when applying prevailing definitions of end-user developers
to a specific case of software development in clinical psychology, and which arises
from the tendency to define end-user developers by juxtaposing them against pro-
fessional developers. The paper traces the origins of the term end-user developer,
and the evolution of software development practices, to show that on one hand,
conceptions of end-user developers are rooted in organizational settings of the
past that do not necessarily persist any more, and on the other hand, that an

1 It is interesting to note here the observation by Barricelli et al. [2], that the choice
of field to which authors will ascribe their work tends to be a matter of academic
culture. European authors will file their work under EUD because of its namesake
European Commission initiative, the European Network of Excellence on End-User
Development (EUD-Net) which created a network of researchers and relevant con-
ferences. American authors, on the other hand, will prefer the term EUP, which did
originate in the United States, and a small subset of those, the community of US
universities that participated in the EUSES Consortium pursue work under EUSE.

Reconsidering End-User Development Definitions 21

important quest of software development has been to render itself into an EUD
endeavour, with successes along the way. Finally, it invites researchers to recon-
sider the scope of EUD, from addressing specific types of expertise or intent, to
encompassing the whole range of software development.

2 A Cause to Reconsider Commonly Used Definitions

Over time, various definitions of EUD have been offered with regard to who the
end-user developer is or what they do. Although the end-user developer tends to
be defined in some way as an opposite of the professional developer, attempts at
definitions have varied, mostly in service of illustrating a particular point that
the author is making. With regard to the workplace, some authors have seen end-
user programmers as those who have non-programming jobs to perform, or do
not care about computers, but still have to program [14,41]. In researching more
accessible ways to produce software, authors have regarded end-user developers
as novices to computer programming or less skilled at it [31,46]. Yet others have
argued that skill and expertise is irrelevant [29].

In more detail, considering someone as an end-user developer due to aspects of
personal identity (e.g., by being a novice [14] or not caring about computers [41])
excludes potential categories of end-user developers, such as system administra-
tors or research scientists, labelled as professional end-user developers [51], who
possess or acquire the technical knowledge to develop software in order to further
their professional goals. To overcome such issues, Lieberman et al. [32] cast the
end-user developer as a role, in which someone acts as (rather than is) a non-
professional, and offer a definition for the field of research, rather than the end-user
developer or their activities. They define EUD as “a set of methods, techniques,
and tools that allow users of software systems, who are acting as non-professional
software developers, at some point to create, modify or extend a software artefact”.
The antithesis to the professional developer, found in earlier definitions, remains,
but a definition for the end-user developer is missing.

In a later definition, Ko et al. [29] acknowledge the problems of considering
end-user programmer characteristics as a matter of personal identity. They pro-
pose that the characterization of one as being end-user vs. professional developer
is a matter of intent, and as such, expertise and skill in programming are irrele-
vant. End-user and professional developer are two endpoints of a spectrum, and
one’s place on it is determined by the number of users they are building the
software for. If they are serving their own needs, they are end-user developers.
If they are serving a large population of users of their software, they are a pro-
fessional developer. The authors here offer a way to discern between end-user
development and professional development, since the number of users functions
as an indicator of whether the software is intended for personal or wider user, and
therefore a measure of how important it is for the software to be reliable, and
therefore might require professional software engineering practices. According
to this view, end-user development is development for one’s own self, irrespec-
tively of how experienced the programmer is, whereas developing for others, is
a characteristic of professional development.

22 N. Batalas et al.

Ambulatory Assessment is a research method predominantly used within clin-
ical psychology, with the purpose of capturing bio-psycho-social processes in the
context of daily life [12], gathering self-reports and sensor measurements from
groups of people, by sampling them repeatedly over time. Researchers who use it,
deploy sampling instruments to a population of participants in their natural set-
tings, and use the collected data to discover ways in which the constructs under
investigation relate to each other. Oftentimes, they also seek to offer personalized
interventions to each participant, based on data collected. Data collection hap-
pens increasingly via mobile platforms such as smartphones and wearables, and
considerable effort goes into the making of tools to enable clinical psychologists
to define what data these platforms collect and how [3,22,49]. With these tools,
psychologists do not merely produce parameters for the configuration of pre-
built software, but effectively write programs consisting of function calls, which
perform such actions as instantiating user-interfaces or invoking the sampling of
hardware sensors, which are either executed sequentially or as a result of condi-
tional branching according to the evaluation of logical statements (if-then-else),
which involve variables representing user or system states.

Researchers who employ these methods, distribute their programs to poten-
tially hundreds of users, who participate in their studies, to use for recording data.
They might also share them with other members of their research community, who
wish to reuse them. We would traditionally (in terms of identity or role) reason
about these psychologists as end-user programmers, given the fact that their for-
mal training or work practices do not usually include elements of CS, EE or SE
that would justify viewing them as professional programmers, and the fact that
the tools that allow them to create these programs are tailored to their own profes-
sional domain.Yet in producing anddistributing their programs, they do not singly
intend them for themselves or for others, but for both. They aim both to collect lon-
gitudinal data for their own research purposes, but also to produce programs that
their participants can use to supply this data. Depending on what view of their
intent we espouse, we could use the criteria proposed by Ko et al. [29] to classify
the same activity as either end-user programming, or professional programming,
but definitions of end-user programming or development consider these notions to
be opposites. This contradiction motivates us to wonder about the discriminatory
power these definitions, which define end-user development as opposite to profes-
sional development, have across various modern development configurations.

For this reason we will try to better understand the two aspects that these
definitions address, that of the end-user and that of the professional developer.
In the rest of this paper we will discuss these concepts in more detail, and argue
that modern software-development practices in professional settings are rife with
EUD success stories. Given our motivating contradiction, we will suggest that
it is less fruitful to regard EUD-research as applicable only to non-professional
instances and it is worth to pursue a definition of end-user development driven
by platform and outcome instead.

Reconsidering End-User Development Definitions 23

3 End-User Development Is an Evolving Concept

The term end user is arguably an invention of IBM in the 1950s [34]. It was
used to point to people, such as corporate executives, who would be the budget
holders responsible for commissioning the purchase of computing technology [42].
They were considered to be separate from intermediate users, usually experts
who would operate the machines [45], working in units known as data processing
departments, and tasked with performing computations in answer to questions
posed to them by management.

In the 1960s and 1970s, solid state transistors and the microchip brought
speed and power to mainframes, and gave rise to minicomputers. Computing
became dramatically cheaper and thus more accessible to members of organiza-
tions working outside of data processing centers. The end users were now people
with access to machines, and computing departments started dealing with the
strategies for organizations to provide their members with access to applications
of the enterprise, as well as manage their workload.

As the trend continued in the late 1970s and 1980s, employees were able
to procure their own personal microcomputers [4] independently of a dedicated
department. End users were now the users of application software which they
did their own data processing with. The field of End-User Computing (EUC)
came more prominently into being, specifically concerned with enabling and
supporting computing performed by employees within organizational settings.
Growing demand for software solutions led EUC research to consider how to
enable these end users to become developers of their own programs [36], and
practice End-User Programming (EUP).

For the purpose of studying the use of computers in organizational settings,
several taxonomies of users were proposed [11,13,36,48], examining what sort of
use was made of Information Systems and for what purposes. Classifications of
this sort make sure to set apart data-processing professionals, who are employed
to write code for others. Workers of the organization, who are trained in other
domains but write code, are classified as amateurs [36] and are considered to only
write code for themselves [56], evidently so because they are not employed to write
code for others in the first place. It should be noted that data-processing profes-
sionals are designated thus by decree of the organization. Demand for such workers
was too great to fulfill by sourcing them from specific educational backgrounds or
certifications, as is the case with members of a traditional professional class, and
in order for employees to qualify for the computing-related departments, organi-
zations would oftentimes have to provide specialized training [50].

Therefore, each role of programmer is essentially fixed to the department’s
mission, with employees of the data processing department considered to be
the professional ones. As a result, EUP is not concerned with programming
professionals because it is not concerned with the data-processing department,
and not necessarily because the professionals do not carry out similar tasks or
do not need to be supported in similar ways, e.g. by making the understanding
or modification of code more accessible for those just-starting professionals who
do not yet have vast experience. This organizational distinction is perhaps the

24 N. Batalas et al.

reason why end-user developers are juxtaposed against professional developers,
to this day.

During this time and into the 1990s, the Graphical User Interface (GUI) was
popularized, and desktops became more user-friendly, and were adopted even
more widely. As one of the main reasons to purchase desktop computers for offices,
the electronic spreadsheet became one of the most popular applications for data
processing by end users. It offered an easy to understand and visually manipulate
data, and allowed users to perform bulk operations on it in ways more intuitive
than the type definitions, loops and memory management of typical programming.
It became one of the most prominent success stories in literature for EUP [8].

Gradually, EUC in organizations became less concerned with application soft-
ware and EUP. Data processing departments evolved into Information Technol-
ogy (IT) departments, managing the technology infrastructure which allowed an
organization to run, i.e. hardware, networks, software licences and data storage,
and supporting end-users in accessing it. Availability, scalability and security
became the more central issues.

EUP moved into the domain of Human Computer Interaction (HCI) [40],
where research was invested in understanding and supporting programming
tasks, both as a general issue, and also within specific application domains. As
computing became a staple of daily life in various forms, discussions on EUP also
became disentangled from organizational settings. More recently, in the 2000s,
research programs in the European Union and in the United States brought
about EUD as defined by Lieberman et al. [32] and EUSE as discussed by Ko
et al. [29], and which we discussed in Sect. 2. In both research programs, the con-
trast of end-users against professional programmers from the EUC days of large
organizational settings has been carried over into the modern wider landscape
of software development.

Regardless, it is easy to identify parallels between concerns that EUD pursues,
and advances in software development practice. In Table 1 we list such counter-
parts to EUD pursuits surveyed by Patterno [44]. In the following section we will
argue that many of the advances that are considered part of modern professional
programming, are essentially EUD advances.

4 Software Development Is an Evolving End-User
Development Practice

It can be argued that programmers have always tried to build platforms that
would allow them to function as end-user developers on. That is, as people who
want to get their work done and should not have to care about (some aspects
of) the computer, as in Nardi [41]. We maintain that the evolution of computer
programming and its related tools is very much an EUD success story.

Historically, many advances in computer programming have come in the form
of layers of abstraction, whereby two things are achieved; the creator of the
abstraction is able to suppress details of the underlying layers, which are irrelevant

Reconsidering End-User Development Definitions 25

Table 1. EUD pursuits and corresponding advances in software development practice

End-User Development (EUD) pursuits EUD examples from development practice

A main goal in EUD is to reduce the
learning effort that might be required to
produce non-simple/complex
functionality

Programming languages share similar goals.
Features such as garbage collection and
dynamic typing make for simpler languages,
and less bureaucratic code that is easier to
modify. IDEa-features like predictive text are
helpful too

Some EUD approaches aim to enable
users to compose and customize sets of
available basic elements, which other
programmers have developed

A lot of software libraries are produced in
service of such goals, e.g., by packaging
complex processes into simple
purpose-specific function calls with accessible
names and simpler argument listsb. Many
examples can be found across systems of
libraries specializing in GUI, audio, graphics,
I/O, numerical methods, etc.

EUD investigates collaboration processes
and environments, bur the diversity of
the backgrounds of people involved might
raise special concerns

Yet many software projects employ very
different roles, requiring not only software
design and coding, but also the facilitation of
design processes, the production of sketching
and prototyping materials, or documentation.
Online collaboration tools support many of
these tasks, using intuitive interfaces when
GUIs are involved, or accessible syntax of
textc, for producing and sharing materials

A central issue of EUD is the discovery
and utilization of intuitions, metaphors,
and concepts familiar to the domain of
interest so that designs can be explored
and specifications for software can be
produced

UX design methods, requirements elicitation,
and agile practices aim to understand the
domain in which a piece of software is meant
to function, and derive the specifications,
according to which it can be built so that it
is effective and intuitively usable

a Integrated Development Environments (IDEs) are classes of applications that automate
much of the work that goes into software development, e.g., maintaining code libraries and
versioning, compilation, linking. They often include helper applications for writing code
visually, e.g., UI editors where drag and dropping interface elements on a canvas generates
blocks of code.
b An exemplar of this is jQuery, a JavaScript library for Web-browsers, mainly for manipu-
lation of the Document Object Model (DOM), which is the data structure web browsers use
to represent an HTML document programmatically. jQuery was ubiquitous in web devel-
opment in the late 2000s and early 2010s. It provides a uniform Application Programming
Interface (API) across all browsers, which at the time still had significant differences in
their implementation of the DOM, offered higher level helper functions (e.g., click() on
top of addEventListener()), which could also operate on aggregate objects and which are
chainable, making for terse and easy to read programs.
c Markdown is an example of this, which is a now ubiquitous plain-text formatting language
that keeps the original text readable, but also contains formatting instructions for parsers
to produce rich documents e.g., in HTML.

to the programming task, and also to invent and express the model of a machine
which is more relevant to the task, and perhaps even already familiar to the user
of that abstraction [33].

26 N. Batalas et al.

In more detail, after initial innovations in performing binary operations with
relays and switches [52] and the first electronic computers in the 40s, the 50s
saw the rise of the stored program and the programmable computer, where the
hardware does not need to be re-wired per program. Adams [1] discusses how
subroutines, accessible as symbols of abbreviated words make it possible for the
increasing number of computer users to produce usable programs of numerical
analysis. His focus lies on allowing entry level programmers to achieve results,
and envisions that a verbal statement of the problem will be sufficient for the
computer of the future.

In subsequent years, a host of programming languages and compilers were
invented by people who wished to program computers in terms closer to their
level of expertise or to their application domain. Many of the innovations we
regard today as arcane programming tools, were driven by the personal needs of
their inventors to get their job done. For example, FORTRAN, offering a way
to define algebraic expressions, was heralded as a “revolution”, one that would
”have engineers, scientists, and other people actually programming their own
problems without the intermediary of a professional programmer” [18]. UNIX
came into being because of the desire of its makers to have their own time-
sharing system [47]. Programming languages at levels higher than Assembly, such
as C, offer programmers the model of an abstracted computer, and allow them
to (largely) not care about the particulars of the hardware itself. Fischer [20]
acknowledges the promise of these innovations for making systems more “con-
vivial” [26] a term which designates technologies that foster creative connections
amongst people and their environments, combative to the alienation suffered on
account of industrialization [10], being treated as mere consumers.

Innovations with regard to making code reusable, rendered so by
programming-language constructs such as classes, objects, encapsulation, and
distributing as code libraries, is a way of making these software artifacts end-
user programmable. Notably, programmers in their daily practice set intermedi-
ate personal goals to structure their code in such ways as to build abstractions
and interfaces and hide its complexity, so as to later render themselves end-users
of it, and make it easier for themselves to get their job done by using it as a
functional unit.

Furthermore, software development is not a single domain, and does not
imply a uniform technical profile of a practitioner [15]. Different developers hone
their craft on vastly different technical or creative problems, have domain knowl-
edge on different levels of abstraction within the software-hardware stack, many
of which have their own elaborate theoretical backgrounds (e.g. graphics pro-
gramming vs database programming) and are end-users of various tools and
platforms in order to carry out their work. Illustrative of this are job listings seek-
ing programmers, which advertise not only for a particular application domain
(e.g. front-end development) or a specific programming language (e.g. JavaScript)
but for familiarity with specific code libraries and APIs (e.g. Angular vs React).
It can very well be the case that the pro in one field is naive in another.

Reconsidering End-User Development Definitions 27

There’s also a large selection of software tools in support of communities.
Those involved in a project or making use of it can share their issues and seek
support on how to solve problems in knowledge markets like StackOverflow.
They can report bugs and propose desired features in issue trackers. They pull
ready to use components from package managers which manage their updates
automatically. They can put up for discussion and run programs in code sand-
boxes so that others do not have to replicate their development environment in
order to view them. Such tools provide rich avenues for facilitating cultures of
participation, which is also a vision for EUD [19].

5 Professional Software Development

In the previous sections we have seen that so-called professional computer-
programming and software-development domains are regarded as separate from
end-user development, to a large extent due to legacy organizational points of
view for each practice. We have also pointed out that in many respects, as
evidenced by directions in which computer programming practice has evolved,
professionals pursue methods and tools that lessen the effort of their practice
and increase the reliability of their outcomes, in directions parallel to those that
EUD does. In this section we will examine various implications of the term pro-
fessional as is applied to software development, and why it is not the best way
to, by negation, define end-user development.

5.1 Connotations of Professionalism

The definition of the professional is a complex subject of sociology, and sev-
eral approaches exist in establishing criteria by which to identify professionals,
and the processes through which occupations become professions. Visiting the
main trends through which sociology discusses professions and professionals, will
give us some indication of the rich and complex landscape against which these
discussions take place.

Trait-based views [23] derive sets of characteristics that distinguish a pro-
fession from an occupation, such as having an organized body of knowledge
from which the provision of services flows, and having autonomy from employ-
ing organizations and authority over the recipients of their services (i.e., having
clients, not customers). This authority is sanctioned by the community at large,
imparted through accreditation by controlled training centers, and regulated
through a formally established code of ethics. The distinction that such traits
provide is considered to be quantitative, not qualitative [23], therefore occupa-
tions that are not professional will be found to also possess them, but to a lesser
degree. This places any given occupation on a spectrum of professionalization,
where at one end the traditional professions can be found (e.g., physician, attor-
ney, scientist) and at the other those that completely lack these traits.

Various views examine how occupations become professions. The function-
alist view regards the ways in which professions function for the benefit of the

28 N. Batalas et al.

larger societal context, and examines interactions between professions, society
and structures of authority such as the state or military. Professions provide ser-
vices based on knowledge that is that is both of great importance, and that could
be harmful if abused. They ideally support social responsibility and contribute
to the avoidance of authoritarianism and anarchy [16, page 17].

On the other hand, the conflict approach examines the process of profession-
alization, as motivated by the endemic self-interests of the professionals. Traits
such as certification and licensing, regulated by professional associations, are
seen as devices for occupational control, restricting the supply of labour and
enhancing the status and earnings of the professional. To sustain such control,
professional associations must also attend to the quality of their services [16,
page 18].

Evidently, professions and the professionals are created through complex
dynamic societal processes, and can have different expressions in different locales,
e.g., they are often purposefully shaped by state policies. Therefore, profession-
alism cannot be reduced to mere technical expertise (as is the case with EUC),
which is the focal point in organizational settings [17, page 100]. To do so, would
be to exclude from consideration influential demands on the shape of both the
professionals’ modes of performing work, but also the realms of their responsi-
bility. Many skilled labourers call themselves professionals, but they do so, as
many others who perform skilled labour, within and in reference to the complex-
ities and their manner of developing their knowledge, practicing their vocation
and offering their services along their career path. Used in daily life, the term
professionalism conveys the colloquial sense, and can be considered the opposite
of amateur, associated with performing the work for payment, or not botching
the job, concepts which aren’t necessarily mutually exclusive.

5.2 Software Development Does Not Have a Singular
Model of Labour

Developers of software in particular take up the occupation through a variety
of paths, not all of which originate from academic education [54]. Indicatively,
McConnell [35], summarising published demographics [24,53,55], notes how in
the USA, there are 50,000 new developers each year, but only 35,000 software-
related degrees are awarded each year. Muffatto [38, page 50] presents the find-
ings of several studies on the demographics of open source developers, according
to which, in terms of education 20% have just a high school degree, and in
terms of professional background, 20% are students in academia. Paterno [44]
states that “more and more applications are being written not by professional
developers, but people with expertise in other domains”. Developers can arrive
from academic education, to training on the job, to self-study. The roles that
participate in the making of software have expanded and diversified as comput-
ers acquire more capabilities and form factors. For example, whereas before the
era of multimedia, in the 1980s, it was enough to have the skills of a computer
programmer, in the era of the World Wide Web it became crucial to employ the

Reconsidering End-User Development Definitions 29

skills of a graphic designer. Nowadays the development of many types of soft-
ware is increasingly an interdisciplinary effort, populated both by professionals
in the more traditional sense, with education and certification in their own fields,
and knowledge workers of more recent fields of expertise that take part in soft-
ware development. For example, user-facing pieces of software have contributions
from User Experience (UX) designers or psychologists (such as workplace psy-
chologists) who pay attention to requirements, or projects with frequent update
cycles employ experts in tools for Continuous Integration/Continuous Deploy-
ment (CI/CD).

As software permeates ever more aspects of daily life, its misfunctions, which
happen by unintended design [21], can effect loss of income2, amplify inequality3

or even cost lives4. There is therefore very active discussion within software devel-
opment communities but also in legal, governmental circles, and society at large,
with regard to the greater responsibility that needs to be taken up by software
developers, providers, and the regulation of their services. However, software devel-
opment as such, still lacks the training, qualifications, and modes of regulation
that are associated with the traditional professions [39]. There is yet no standard
of care that software development professionals can be expected to uphold when
cases are tried in legal courtrooms [9]. Potentially, a trajectory could be charted
where future legislators will require certain types of software development to be
carried out in the more traditionally professional sense, while others not.

To illustrate the different modes in which software can be produced, the
diversity of roles that may take up its production, as well as how ubiquitous
it is becoming in modern societies, it may be useful to draw analogies to the
production, preparation and use/distribution/consumption of food in various
settings, and the diversity of configurations in which this activity can be encoun-
tered5. Food is produced, processed, prepared, and consumed at various levels
of preparation, and engages a wide range of workers with equally varying exper-
tise, from highly trained, expert chefs who explore novel gastronomic horizons,
to teenagers assembling hamburgers out of industrially manufactured compo-

2 The cost of poor quality software in the US in 2018 was estimated to be approximately
$2.84 trillion dollars, the largest component of which (37.46%) were losses from soft-
ware failures, at $1.064 trillion [30].

3 opaque algorithms assessing the risk of an offender repeating a crime, heavily used
in the judicial system of the USA, have been suspect of encoding societal and racial
biases [25], resulting in harsher punishments [43].

4 The two fatal accidents of the Boeing 737 MAX aircraft in 2018 and 2019 have been
attributed to Boeing’s introduction of a software component, called the Maneuvering
Characteristics Augmentation System (MCAS), which was working against the pilot’s
maneuvers. MCAS was unique to that aircraft, and its existence had largely been kept
quiet [27].

5 The choice of analogy is not unfamiliar. Algorithms are often compared to food
recipes [28], and there is an abundance of programming “Cookbooks” for various
frameworks and Software Development Kits (SDKs) or problem domains. One impor-
tant exception is that to a certain extent, food production is more regulated than
software.

30 N. Batalas et al.

nents, and of course also in non-professional environments, e.g., at home, for
own consumption. They ways in which all handlers of food oversee the supply of
materials, create recipes, and execute them, do have aspects that are specific to
the person’s particular position (e.g., freedom for initiative, or supply of special
materials and tools), but also many other aspects (tools, methods and raw or
processed materials) are shared widely across all configurations, irrespectively of
whether they function as professionals or not.

Such is the diversity of configurations that can found in the production of
software as well, e.g., having highly tailored solutions created for unique clients
by highly specialized experts, or maintaining legacy systems from past eras of
computing, or customizing the same blueprint for different customers. There is
of course art, craft, and science in many stages of software development, and
a growing, detailed body of knowledge with regard to good practices for pro-
ducing software [7]. However, not all the components that make up a software
product are developed in the same way. For example, even while inventing novel
solutions for a particular problem, a developer will be the end user of packaged
components that encapsulate often complex functionality. There is therefore no
way to exclude particular methods or tools from the arsenal of anything that
might for any number of reasons be considered professional practice.

If EUD’s goal to facilitate design exploration, specification and implementa-
tion of software artifacts, and produce methods and systems that make prob-
lem solving through programming more accessible for people who would not be
expected to develop software without its interventions, then it can provide simi-
lar benefits, such as easier implementation of complex functionality and greater
accessibility to unfamiliar systems and to people who do develop software. More-
over, the methods and tools that EUD produces can certainly constitute means,
with which software services that bear professional characteristics can be built.

As history has shown, (professional) developers will take up this challenge
to empower themselves anyway. Taking these into account, given how software
development has changed since the first investigations of EUP, and the mul-
tiple connotations of professionalism, it might now be opportune to explore
other directions for defining end-user development, than continuing to use the
professional/non-professional dichotomy. Table 2 shows how end-user develop-
ment can be a concern orthogonal to professionalism, not opposite to it.

Table 2. Disentangling end-user development from professionalism allows more nuance
in classifying development activities. Here, four broad-spectrum examples of domain
and platform are mentioned, but further nuance can be afforded as one looks at different
sub-problems and how they are solved.

End-user development Technical development

Amateur Excel macros with Visual
Basic For Applications

Home automation with
Raspberry Pi

Professional Interactive UI prototyping
with inVision

Game development with the
Unreal Engine

Reconsidering End-User Development Definitions 31

6 Replacing Professional Development with Technical
Development

If professionalism is a concern independent from end-user development, then we
propose that the term technical development take its place as the notion that is
opposite to end-user development. In his Theoretical Introduction to Program-
ming, Mills [37] devotes a section to the notion of Technical Programming:

Technical programming is about defining a specific problem as clearly as
possible, and obtaining a clear solution.[...] It has much in common with
the technical (rather than bureaucratic) aspects of all engineering disci-
plines.[...] Precise sub-problems are identified.[...] What is or is not techni-
cal, depends on the techniques available.

The term technical translates only to the characteristics of the development
task itself, not the person performing it, and denotes the kind of engagement with
problem-solving that demands good grounding in methodology, and the ability
to identify sub-problems and to give structure to the problem domain [37]. For
example, where end-user programming would consist of, e.g., using function calls
on a platform/abstraction, Technical Programming would be building the plat-
form/abstraction in the first place, and exposing the functions that subsequently
end-user programmers can call.

Software is developed on some sort of platform, or if viewed in greater detail,
various components of a larger piece of software are developed on several comple-
mentary platforms. A Platform is a framework (be it hardware or software) that
supports other programs. Platform studies [5] offer the theoretical framework
both for conducting a discourse on platforms and when and whether it is useful
to view a given system as such [6], not only from a technical, but also from a
cultural perspective. We can regard as platform the hardware of a computer, an
operating system, an API (e.g. OpenGL), a toolkit (such as Qt), or an appli-
cation such as the Web-browser. Platforms that enable software development,
expose concepts to the user in which certain types of problems and solutions can
be directly expressed. For example, a programming language like C enables one
to write loops, so when iterating over a set of instructions is the issue, there is a
concept available directly related to that. Likewise, Matlab offers a function for
computing the Discrete Fourier Transform (DFT) of a signal, so a solution that
can be expressed in terms of a DFT can be supported by that platform.

A platform then enables end-user development for a given task, to the extent
that it offers readily accessible functionality, that allows the task to be accom-
plished in more or less straightforward ways (e.g., a certain function call), rather
than requiring the implementation of deeper-layered functionality in order to
later enable it. On the other hand, technical development occurs to the extent
that the concepts that are related to a particular solution also need to be devel-
oped, in order then to be used.

32 N. Batalas et al.

7 Resolution of the Contradiction

We propose that a platform-driven lens can be developed to help determine the
nature of one’s software development task at a specific point in time, as being
end-user development or technical development, and to what degree. In adopting
a platform-driven view, one would have to acknowledge that end-user develop-
ment is part and parcel of any creative programming endeavour, and practiced
routinely alongside technical development in professional or other settings, since
making use of the abstractions a platform offers, is to perform end-user develop-
ment on it. As these abstractions are used in the service of solving more technical
problems, so does the development task become of a technical nature, possibly
leading to a new layer of abstraction, and the cycle repeats.

A platform-driven view can help avoid the contradiction that comes up in
our motivating case of clinical psychologists writing Ambulatory Assessment
(AA) programs, where the twofold intent these researchers pursue in writing
and distributing their data-collection programs can have their work classified
as either opposite, i.e., end-user development or professional development. In
a platform-drive view, when the encode tasks of their own problem domain as
programs, expressed in familiar terms by way of purposely-built tools, or software
components, the perform end-user development, but in cases when deeper layers
of system functionality needs to be accessed to implement constructs of the
higher-level domain, development becomes more technical in nature.

For example, Batalas et al. [3] offer a set of components written in HTML5,
which render user interfaces for data input when invoked. These components
constitute a layer built on top of the syntactic structural elements of a web-
page as defined by the W3C standard (e.g., div, span, p), and provide a way to
write a web-application for data collection using terminology of the researcher’s
domain instead. By using these components, the researchers perform end-user
programming, but they would have to do more technical work if they wanted to
produce new interfaces at the same semantic level, since they would have to have
knowledge of the underlying layer, which is the web-browser with its Document
Object Model, Document Flow, Cascading Style Sheets and JavaScript APIs.

8 Conclusion

The roles of the end-user and the developer are largely inventions of the plat-
form being used each time. In other words, it is not only the case that users, who
put requirements forward, and developers, who design and write the code, shape
software platforms. It also happens that through the conventions they employ,
abstractions that they put forward and types of work they allow, software plat-
forms also in effect bring into being the substance of what their end-users or those
who develop on them do. As the platforms evolve through history, so does our
understanding of who the end-user developers are and what they do, and so do
the definitions of end-user development that researchers consider representative.

In this work however, we have avoided stating any particular wording for
another definition of end-user development, and we regard this to be out of the

Reconsidering End-User Development Definitions 33

scope of the discussion presented here. Rather, we consider it more productive
to submit the points made here to the consideration of the researchers in the
field and hopefully enrich relevant discourse. These points include the legacy
origins of viewing end-user development as opposite to professional development,
the extent to which this view is representative of modern software-development
configurations, and the possibility to instead account not for the identity or role
of the developer, nor for their intent in developing a piece of software, but for the
nature of the task (i.e. how technical it is) when performed on a given platform.

Increasingly, software development takes place on such multiple layers of
abstraction, with platforms and tools for the construction of software already
delivered to the developers, that an end-user development aspect is always
involved. For this reason, we propose that a platform-driven view of end-user
development, inclusive of all types of developers as beneficiaries of EUD’s find-
ings, could better reflect this state of things and, in this manner, better anticipate
the future.

References

1. Adams, C.W.: Small problems on large computers. In: Proceedings of the 1952
ACM National Meeting (Pittsburgh), pp. 99–102 (1952)

2. Barricelli, B.R., Cassano, F., Fogli, D., Piccinno, A.: End-user development, end-
user programming and end-user software engineering: a systematic mapping study.
J. Syst. Softw. 149, 101–137 (2019)

3. Batalas, N., Khan, V.J., Franzen, M., Markopoulos, P., aan het Rot, M.: Formal
representation of ambulatory assessment protocols in html5 for human readability
and computer execution. Behav. Res. Methods 51(6), 2761–2776 (2019). https://
doi.org/10.3758/s13428-018-1148-y

4. Benson, D.H.: A field study of end user computing: findings and issues. Mis Quar-
terly, pp. 35–45 (1983)

5. Bogost, I., Montfort, N.: New media as material constraint: an introduction to
platform studies. In: Electronic Techtonics: Thinking at the Interface. Proceedings
of the First International HASTAC Conference, pp. 176–193 (2007)

6. Bogost, I., Montfort, N.: Platform studies: frequently questioned answers. Digital
Arts Culture 2009 (2009)

7. Bourque, P., Fairley, R.E. (eds.): SWEBOK: Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society, Los Alamitos, CA, version 3.0 edn.
(2014). http://www.swebok.org/

8. Burnett, M., Cook, C., Rothermel, G.: End-user software engineering. Commun.
ACM 47(9), 53–58 (2004). https://doi.org/10.1145/1015864.1015889

9. Choi, B.H.: Software as a profession. Harvard J. Law Technol. 33 (2020)
10. Clearver, H.: Industrialism or capitalism? conviviality or self-valorization? (1987).

https://la.utexas.edu/users/hcleaver/hmconillich.html
11. Committee, C.E.U.F., et al.: Codasyl end user facilities committee status report

(1979)
12. Conner, T.S., Mehl, M.R.: Ambulatory assessment: Methods for studying everyday

life. Emerging Trends in the Social and Behavioral Sciences: An Interdisciplinary,
Searchable, and Linkable Resource (2015)

https://doi.org/10.3758/s13428-018-1148-y
https://doi.org/10.3758/s13428-018-1148-y
http://www.swebok.org/
https://doi.org/10.1145/1015864.1015889
https://la.utexas.edu/users/hcleaver/hmconillich.html

34 N. Batalas et al.

13. Cotterman, W.W., Kumar, K.: User cube: a taxonomy of end users. Commun.
ACM 32(11), 1313–1320 (1989)

14. Cypher, A., Halbert, D.C.: Watch What I Do: Programming by Demonstration.
MIT Press, Cambridge (1993)

15. Denning, P.J.: Computing the profession. In: Computer Science Education in the
21st Century, pp. 27–46. Springer (2000)

16. Dent, M., Bourgeault, I.L., Denis, J.L., Kuhlmann, E.: The Routledge Companion
to the Professions and Professionalism. Routledge (2016)

17. Elliott, P.R.C.: The sociology of the professions. Macmillan International Higher
Education (1972)

18. Ensmenger, N.L.: The Computer Boys Take Over: Computers, Programmers, and
the Politics of Technical Expertise. MIT Press, Cambridge (2012)

19. Fischer, G.: End-user development and meta-design: foundations for cultures of
participation. In: Pipek, V., Rosson, M.B., de Ruyter, B., Wulf, V. (eds.) IS-EUD
2009. LNCS, vol. 5435, pp. 3–14. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00427-8 1

20. Fischer, G., Girgensohn, A.: End-user modifiability in design environments. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 183–192 (1990)

21. Floridi, L., Fresco, N., Primiero, G.: On malfunctioning software. Synthese 192(4),
1199–1220 (2015)

22. Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: MyExperi-
ence: a system for in situ tracing and capturing of user feedback on mobile phones.
In: MobiSys’07: Proceedings of the 5th International Conference on Mobile Sys-
tems, Applications and Services, pp. 57–70. ACM (2007). https://doi.org/10.1145/
1247660.1247670

23. Greenwood, E.: Attributes of a profession. Social work, pp. 45–55 (1957)
24. Hecker, D.E.: Occupational employment projections to 2012. Monthly Lab. Rev.

127, 80 (2004)
25. Huq, A.Z.: Racial equity in algorithmic criminal justice. Duke LJ 68, 1043 (2018)
26. Illich, I., Lang, A.: Tools for conviviality (1973)
27. Johnston, P., Harris, R.: The boeing 737 max saga: lessons for software organiza-

tions. Softw. Quality Prof. 21(3), 4–12 (2019)
28. Knuth, D.E.: The Art of Computer Programming, vol. 1. Addison-Wesley, Mas-

sachusetts (1973)
29. Ko, A.J., et al.: The state of the art in end-user software engineering. ACM Comput.

Surv. 43(3), 1–44 (2011). https://doi.org/10.1145/1922649.1922658. http://portal.
acm.org/citation.cfm?doid=1922649.1922658

30. Krasner, H.: The cost of poor quality software in the us: A 2018 report. Consortium
for IT Software Quality, Tech. Rep 10 (2018)

31. Lieberman, H.: Your Wish is my Command: Programming by Example. Morgan
Kaufmann, San Francisco (2001)

32. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: an emerg-
ing paradigm. In: Lieberman, H., et al. (eds.) End User Development, pp. 1–8.
Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-5386-X 1

33. Liskov, B., Zilles, S.: Programming with abstract data types. ACM Sigplan Notices
9(4), 50–59 (1974)

34. Mackay, W.E.: Users and customizable software: a co-adaptive phenomenon. Ph.D.
thesis, Citeseer (1990)

35. McConnell, S.: Code Complete, 2nd edn. Microsoft Press (2004). http://portal.
acm.org/citation.cfm?id=1096143

https://doi.org/10.1007/978-3-642-00427-8_1
https://doi.org/10.1007/978-3-642-00427-8_1
https://doi.org/10.1145/1247660.1247670
https://doi.org/10.1145/1247660.1247670
https://doi.org/10.1145/1922649.1922658
http://portal.acm.org/citation.cfm?doid=1922649.1922658
http://portal.acm.org/citation.cfm?doid=1922649.1922658
https://doi.org/10.1007/1-4020-5386-X_1
http://portal.acm.org/citation.cfm?id=1096143
http://portal.acm.org/citation.cfm?id=1096143

Reconsidering End-User Development Definitions 35

36. McLean, E.R.: End users as application developers. MIS quarterly, pp. 37–46 (1979)
37. Mills, B.I.: Theoretical Introduction to Programming. Springer Science & Business

Media, New York (2005)
38. Muffatto, M.: Open source: a multidisciplinary approach, vol. 10. World Scientific

(2006)
39. Muzio, D., Ackroyd, S., Chanlat, J.-F.: Introduction: lawyers, doctors and busi-

ness consultants. In: Muzio, D., Ackroyd, S., Chanlat, J.-F. (eds.) Redirections in
the Study of Expert Labour, pp. 1–28. Palgrave Macmillan UK, London (2008).
https://doi.org/10.1057/9780230592827 1

40. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited research overview: end-user program-
ming. In: CHI’06 Extended Abstracts on Human Factors in Computing Systems,
pp. 75–80 (2006)

41. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Program-
ming. The MIT Press, Cambridge (1993)

42. Noyes, J., Baber, C.: User-Centred Design of Systems. Springer Science & Business
Media, New York (1999)

43. Pasquale, F.: Secret algorithms threaten the rule of law (2018)
44. Paternò, F.: End user development: survey of an emerging field for empowering

people. ISRN Softw. Eng. 2013, 11 (2013)
45. Plusch, S.P.: The evolution from data processing to information resource manage-

ment. Technical report, ARMY WAR COLL CARLISLE BARRACKS PA (1984)
46. Repenning, A., Ioannidou, A.: What makes end-user development tick? 13 design

guidelines. In: Lieberman H., et al. (eds.) End User Development. Human-
Computer Interaction Series, vol. 9, pp. 51–85. Springer, Dordrecht (2006)

47. Ritchie, D.M., Thompson, K.: The unix time-sharing system. Bell Syst. Tech. J.
57(6), 1905–1929 (1978)

48. Rockart, J.F., Flannery, L.S.: The management of end user computing. Commun.
ACM 26(10), 776–784 (1983)

49. Rough, D., Quigley, A.: Jeeves-a visual programming environment for mobile expe-
rience sampling. In: 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 121–129. IEEE (2015)

50. Ruiz Ben, E.: Defining expertise in software development while doing gender. Gen-
der, Work Organ. 14(4), 312–332 (2007)

51. Segal, J.: Professional end user developers and software development knowledge.
Department of Computing, Open University, Milton Keynes, MK7 6AA, UK, Tech.
Rep (2004)

52. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Electr. Eng.
57(12), 713–723 (1938)

53. Snyder, T.D., Tucker, P., Stone, A.: Digest of education statistics. National Center
for Education Statistics (2002)

54. Thayer, K., Ko, A.J.: Barriers faced by coding bootcamp students. In: Proceedings
of the 2017 ACM Conference on International Computing Education Research, pp.
245–253 (2017)

55. US Bureau of Labor Statistics: Occupational Outlook Handbook 2004–05 edition.
Bureau of Labor Statistics (2004)

56. Weinberg, G.M.: The psychology of computer programming; 1971. von Nostrand
Reinhold, New York (1998)

https://doi.org/10.1057/9780230592827_1

	Reconsidering End-User Development Definitions
	1 Introduction
	2 A Cause to Reconsider Commonly Used Definitions
	3 End-User Development Is an Evolving Concept
	4 Software Development Is an Evolving End-User Development Practice
	5 Professional Software Development
	5.1 Connotations of Professionalism
	5.2 Software Development Does Not Have a Singular Model of Labour

	6 Replacing Professional Development with Technical Development
	7 Resolution of the Contradiction
	8 Conclusion
	References

