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ABSTRACT

In this study, we introduce an open-source dataset holding power measurements of 175 residential photovoltaic (PV) systems that are dis-
tributed throughout the province of Utrecht, the Netherlands. The dataset features power measurements with a high temporal resolution, i.e.,
1 min, for the period January 2014 until December 2017 (over 260 � 106 data points). Spatial information of the PV systems is mapped
through latitude and longitude grids, with a resolution up to 150� 150 m. In addition, we develop and publish a quality control routine that
can be applied to validate and filter PV power measurements. Finally, we propose a method to estimate the rated DC capacity of a PV system
based on the power measurements. We have deposited five files into the Zenodo repository [Visser et al. (2022). Zenodo, V. 0.0.1, Dataset
https://doi.org/10.5281/zenodo.6906504], which are publicly available. Four numerical datasets are enclosed, holding unfiltered power mea-
surements, filtered power measurements at two different stages and metadata. The latter includes information on the tilt angle, azimuth
angle, the estimated DC and AC capacity, and location. Finally, a Python package featuring the quality control routine developed to validate
and filter PV power measurements is published.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100939

I. INTRODUCTION

The installed capacity of solar photovoltaic (PV) systems is rap-
idly growing on a global scale, ensuing increasing shares of solar PV
power in the electricity system in many regions.1 Since the power out-
put of PV systems is variable and difficult to predict, the increasing
share of electricity that is produced by PV systems forms a challenge
to both transmission and distribution system operators in operating
the electricity grid. To this end, system operators have to invest in
additional measures to allow for a high PV penetration rate, e.g.,
increasing grid transport capacity and having additional balancing
capacity available. Consequently, the (marginal) costs for hosting PV
capacity in the electricity grid will increase with a growing PV penetra-
tion rate. Alternatively, system operators may set a maximum allow-
able PV capacity, due to technical or economic constraints.1

A better understanding of the PV power output, variability, and
impact on the electricity grid can lower these barriers and is needed to
support the large-scale adoption of PV systems. This can be obtained
through extensive research into a variety of topics, related to PV ramp
rates, solar power forecasting, PV-battery systems, model predictive

control, grid simulations, and more. Nevertheless, at the moment,
there is a lack of high-resolution data that is publicly available to the
research community, limiting the ability to complete such studies.2

Some exceptions include Bright et al.3 and Silwal et al.2 Kapoor et al.4

present a recent overview of additional available datasets. Yet, all these
datasets typically feature a coarse temporal resolution (�15 min) or
present data for a short period (<1month).

The lack of public datasets raises two additional issues. First of
all, since many studies rely on nonpublic datasets, published results
cannot be verified or reproduced by other researchers. Second, a lack
of publicly available data preclude the ability for researchers and other
interested parties to conduct research or compare obtained results
among several studies.

Before any dataset can be used, the quality of the data must be
validated. The objective of this quality control routine is to detect erro-
neous values. In the present literature, only few studies were found to
deal with the quality control of PV power measurements,5,6 where a
standardized quality control routine was as far as the authors are aware
of only proposed by Killinger et al.7 Therefore, this field is still in a
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pre-mature stage and less developed compared to, e.g., quality control
of solar irradiance measurements.8 The absence of standardized (pub-
lic) quality control routines for PV power data is a concern as the
obtained results in any study may be highly affected by erroneous
data. Yet, if any at all, most studies that consider PV power measure-
ments report very limited details on the process followed to quality
control the data that was used. In addition, the results of such checks
are rarely disclosed, e.g., number of values filtered. As a consequence,
there is a high need for publicly available standardized routines that
can be widely adopted to quality control PV power measurements.

Both open-source data and code as well as standardized routines
form a key element in realizing progress in any field of study. Given
the current state of open-source data and code related to PV power
measurements, more attention should be put on publishing data and
developing and publishing quality control routines. In this paper, we
present an open-source dataset holding PV power measurements of
175 PV systems with a 1-min temporal resolution for January 2014
until December 2017. This constitutes a dataset of over 260 � 106

quality-controlled data points. With this, we provide access to a high-
quality dataset that can be used for research experiments on several
topics related to PV power and the integration of PV in the electricity
grid. Moreover, as the dataset with unfiltered power values is enclosed,
it can be used to test adapted and/or new developed quality control
routines, and verify and compare results. In addition, with this
study, we strive to set a next step into developing a standardized
routine for quality control of PV power measurements. By publish-
ing a Python package holding the functions to conduct the quality
control routine along with the dataset,9 we hope to stimulate others
to adopt and improve the routine of quality control and work
toward a widely adopted standardized routine. Finally, in this study,
we present a novel approach to estimate the rated DC capacity of a
PV system given the PV power measurements, tilt angle, azimuth
angle, and weather data.

The paper is organized as follows. Section II presents the data
records. Section III discusses the research methods and describes the
approach followed to obtain the DC and AC capacity of a PV system
as well as the quality control routine. Section IV shows the results of
this study. The conclusions and recommendations follow in Secs. V
and VI.

II. DATA RECORDS
A. PV systems

The dataset presented in this study features power measurements
of rooftop mounted residential PV systems, which all comprise c-Si
panels. The power records of these PV systems were initially collected
in context of the Solar Forecasting and Smart Grids research project,
see Elsinga.10 Furthermore, parts of this dataset were used in former
projects for the development of (peer-to-peer) solar forecasting meth-
ods.11,12 The PV systems are located in the province of Utrecht,
the Netherlands that covers an area from 52�300 N to 51�680 N and
4�790 E to 5�620 E, see Fig. 1. Due to privacy concerns, the location of
the PV systems is enclosed in the form of mapped grids that are
formed by two latitude and two longitude lines, which present the
East, West, North, and South boundaries. This anonymization proce-
dural step is in accordance with proposed GDPR-compliant anonym-
ization techniques.13

Figure 2 visualizes the characteristics of the PV systems included
in the dataset as well as their annual production. The rated DC capac-
ity of the PV systems is estimated as explained in Sec. IIIA 1.
Additionally, the annual yield per PV system is determined for the
entire period, January 2014 until December 2017, where missing val-
ues are filled by considering weather measurements at a local weather
station14 and a PV model. The PV model is discussed in Sec. IIIA 1.

B. Power measurements

1. Measurements device

Every PV system is directly connected on the AC side of the
inverter with a data logger that measures the AC power output. The
power measurements are recorded at 0.5Hz (i.e., takes approxi-
mately one power measurement per 2 s time interval) and 0.7W
resolution.15 After collection, the power measurements are via an
internet connection instantly send to the remote server where the
data are also stored.

2. Missing data

The unfiltered dataset contains missing values throughout the
period. These values are reported as NaN. As can be observed in the
unfiltered data file enclosed (unfiltered_pv_power_-measure-
ments.csv), the missing values are usually limited to a single system at
a time. These are caused by either a temporal power outage or discon-
nection of the data logger. During some periods data are missing for
all PV systems, which is due to a disconnection of the remote server,
mostly due to failure or power outage of the local WiFi router. An
overview of the data availability per system is given in Appendix B.

III. METHODS
A. AC and DC capacity estimation

1. DC capacity estimation

Although the rated DC capacity of the PV systems was initially
reported by the owners of the system, several mistakes were found.
Therefore, we developed a universal method that estimates the DC
capacity by scaling the simulated power output of a PV system on a
selection of clear sky days. An overview of the procedure is presented
in Fig. 3 and considers the following steps (the numbers in Fig. 3 cor-
respond to the steps discussed next). First, daily weather information
regarding the level of cloudiness is retrieved from the closest weather
station, de Bilt (located in the province of Utrecht, 52�100 N, 5�180 E,
see Fig. 1) for the period 2014–2017. In its dataset, the Netherlands
Royal Meteorological Institute (KNMI)16 reports the daily level of
cloudiness using a classification system holding nine classes (octa’s)
from clear sky to complete overcast. From this, all clear sky days are
obtained in the period 2014–2017. As a second step, through visual
inspection of the daily power measurements of 40 PV systems, a sub-
selection is made, where days are dropped in case the PV power mea-
surements of at least 25% of the systems is inconsistent with the
expected power output on the clear sky day. As a result, the final selec-
tion contains 18 clear sky days, see Table I. These 18 days form the
base selection for the next step. Yet, in another round of visual inspec-
tion, a sub-selection of these days is made per system, where additional
days may be dropped from the assessment in case part of the power
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measurements are missing or the reported power measurements are
inconsistent with the expected production during clear sky conditions.

In the third step, the power measurements on these clear sky
days are aggregated to 15-min values by averaging. As a fourth step,
the hourly measurements reported by the weather station, including
surface pressure, temperature, wind speed, and global horizontal irra-
diance (GHI),14 are up-sampled to 15-min samples by means of linear
interpolation.

In the fifth step, the power output of each PV system is simulated
based on the weather data, and the azimuth and tilt angle (as reported
in the file metadata.csv). To this end, a number of sub-steps are to be
taken. First, the Erbs model is used to estimate the direct normal and
diffuse horizontal irrandiance (DNI, DHI) from the reported GHI val-
ues.17 Next, the Perez model is used to calculate the in-plane irradiance
components, given the azimuth and tilt angles of the PV system.18 In
addition to the system characteristics and weather variables, the Perez
model requires the input of the relative airmass, which is estimated
with the Kasten–Young model.19 The effective in-plane irradiance is
then obtained by applying the angle of incidence losses using a physi-
cal model.20 As a last sub-step, the cell temperature is calculated by the
Sandia Array Performance Model.20 Finally, the power output of the

PV system is simulated with the PVWatts model.21 Since we do not
know the DC capacity per PV system at this moment, a normalized
PV power output profile is simulated. All the required models are
available in the Python package pvlib.22 An overview of other relevant
parameters and assumptions is given in Table II.

In the sixth step, the normalized simulated PV power output pro-
file that is created for each system i individually (pns;i, expressed as
W/Wp) is scaled to the observed power output (pm) for the selection
of clear sky days. The scaling is done by considering one adjustable
parameter, i.e., the estimated DC capacity (SDC). Hence, the simulated
PV power output of a PV system is obtained by (ps ¼ pns � SDC).
Scaling is performed by means of least squares minimization of the
residual between the PV power measurements and simulations, see
Eq. (1), for each system i. An example is provided in Fig. 4. To exclude
the potential impact of inverter clipping, we limit the estimation
approach to times t where the power output is smaller than the
inverter capacity (SAC, which is obtained as explained in Sec. IIIA 2).
To limit the impact of shading of surrounding objects and because of
higher uncertainties of retrieving the DNI and DHI for high zenith
angles, the estimation process is also limited to timestamps where the
solar zenith angle (hz) is below 65�, which is given as follows:

FIG. 1. Distribution of PV systems (red squares) and weather station De Bilt (blue triangle), Utrecht, the Netherlands. The location marks the center of the mapped grids.
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minimize
XT
t¼1
ðpmðtÞ � ðpns;iðtÞ � SDCÞÞ2 � � � 8t

where ðhz < 65�Þ� ðpmðtÞ < SACÞ:
(1)

The ability of the estimation algorithm to obtain the DC capacity
per PV system is evaluated by considering the relative Root Mean
Square Error (RMSE) and bias of the residuals between the PV power
simulations and measurements for the selection of clear sky days. The

FIG. 2. An overview of the characteristics of the PV systems included in the dataset as well as the annual yield for the entire period 2014–2017. The figure should be read as
a matrix, where the sub figures in the diagonal present the probability distribution of the characteristics among the PV systems. The sub figures to the left are scatter plots,
whereas the red line shows the trend, i.e., a best fit line [f(x)] fit to minimize

PN
i¼1 ðf ðxiÞ � yÞ2, where y is the true value of the PV system characteristic for N systems. The

FIGS to the right (of the diagonal) present a heat map, where the color marks the density of systems found from low (blue) to high (red).

FIG. 3. Flowchart of the procedure followed to estimate the DC capacity per PV system. Numbers denote steps that are discussed in the text.
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RMSE and bias are given in as follows, where 1
SDC

is added to obtain the
relative error values:

RMSE ¼ 1
SDC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1
ðpmðtÞ � ðps;iðtÞÞ

vuut ; (2)

Bias ¼ 1
SDC

1
T

XT
t¼1
ðpmðtÞ � ðps;iðtÞÞ: (3)

2. AC capacity estimation

Similar to the DC capacity, multiple mistakes were found in
the initial documentation of the inverter or AC capacity. In order
to infer the rated AC capacity per PV system, we followed a simple
and effective approach, where we empirically evaluate the capacity.
To this end, per PV system we performed a visual inspection on the
cumulative distribution function of all power measurements (see
Fig. 5) and on the time series of the PV power measurements for
April, May, and June, which hold the highest PV power output val-
ues in the Netherlands. An example of the latter is shown in Fig. 6.
In case a PV system experiences inverter clipping, this is character-
ized by a cut off power value, which is rarely exceeded. This cutoff
value is expressed as the horizontal part of the cumulative distribu-
tion curve in Fig. 5 and the maximum power output value observed
in Fig. 6. The cut off value per PV system (marked by the red lines
in Figs. 5 and 6) is set equal to the AC capacity of the PV system.
Note that a larger ratio DC to AC capacity is accompanied by a
more significant cut off value.

B. Quality control routine

1. Quality control criteria for single PV systems

An overview of the quality control routine developed in this
study is given in Fig. 7. The routine can be subdivided into a system

specific and an inter-system part, referred to as single and across. The
former indicates quality control criteria (i.e., filters) that rely only on
the power measurements of the specific system, the latter
executes quality control criteria that require input from neighboring
systems.

The first filter in the quality control routine checks the daily
data availability rate of the power measurements, i.e., it ensures a
minimal daily data availability. A complete day is removed from
the dataset in case the daily power measurements fall below 50% of
the number of timestamps, considering a 1-min resolution, for
hz < 85�.

Second, a night filter is applied that sets all power output values
during nighttime to zero, see Eq. (4). The filter considers nighttime as
those timestamps where the expected power output of a PV system for
clear sky conditions is smaller than or equal to zero, given the system’s

FIG. 4. An example of the simulated (Ps) and measured (Pm) power output of PV
system ID128 for August 17, 2016 (a clear sky day from the selection presented in
Table I). The light gray area indicates the period from sunrise to sunset. The dark
gray area indicates the period where the zenith angle is smaller than 65�, which
period is selected to estimate the rated DC capacity.

TABLE I. The clear sky days selected and used to estimate the rated DC capacity of
each PV system.

Year Date Count

2014 March 9, 12, 13; and April 16 4
2015 March 12; April 9; June 4, 30; and October 2 5
2016 May 8; July 19; August 17; and September 13, 14 5
2017 February 13; April 9; May 26; and October 15 4

TABLE II. Parameter settings for power output calculations of the PV systems. DC
capacity is expressed per square meter and inferred from typical DC capacities of
PV modules as listed in the CEC22 and Sandia20 module databases.

DC capacity (Wp/m2) 18020,22

Inverter efficiency (%) 96.021

Temperature coefficient of power �0.003521

FIG. 5. Cumulative distribution curve (ascending) of the PV power output values for
system ID077. The red horizontal line presents the estimated AC capacity, i.e.,
2950W. Note that the sub figures present an enlargement of the area marked with
a black square.
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characteristics (i.e., tilt, azimuth, DC and AC capacity). The produc-
tion of a PV system for clear sky conditions is simulated following the
same procedure as discussed in Sec. IIIA 1, where the GHI is replaced
by the clear sky irradiance (pcsðtÞ).23 Some data loggers were found to
register negative power output values during sunrise and sunset. These
negative values arise as a consequence of the orientation of the PV sys-
tem, low GHI during sunrise and sunset, and shading caused by sur-
rounding obstacles, e.g., buildings or trees. As a result, the night filter

also sets these values to zero. This is limited to a maximum time devia-
tion of 30-min around sunrise and sunset,

pcsðtÞ � 0) pmðtÞ ¼ 0; (4)

pmðtÞ < 0; 8t � sunriseþ 30minð Þ�t � sunset � 30minð Þ
) pmðtÞ ¼ 0: (5)

FIG. 6. Time series of the unfiltered power measurements of PV system with ID077, the red horizontal line presents the estimated AC capacity, i.e., 2950W.

FIG. 7. Flowchart of the criteria (i.e., filters) included in the quality control routine for PV power measurements. The Python source code and output files are made available at
the following repository. [Associated dataset available at https://doi.org/10.5281/zenodo.6906504] (Ref. 9).
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Third, similar to Killinger et al.,7 a lower limit filter is applied.
The lower limit filter simply assigns NaN values to all negative values.
Given that this filter is applied after the night filter, the lower limit fil-
ter will only affect daytime values,

pmðtÞ < 0) pmðtÞ ¼ NaN: (6)

An upper limit filter is applied to identify unrealistic high values.
The filter sets power output values that exceed the upper limit to
NaN. This filter exists of two components. The first component
assigns NaN values to all values that exceed the AC capacity of the
PV system, see Eq. (7). Here, t is a constant as previously it was
identified that the inverter capacity can be exceeded for short peri-
ods up to 10-min.24 The constant is set to 1.025, i.e., considers a
temporary AC power output increase in 2.5%. Unrealistic high val-
ues can still occur as PV power output measurements may still
exceed the PV power output for clear sky conditions.7 A second
component is added to identify these instances. Here, the upper
limit is defined by simulating the power output of a PV system
under clear sky conditions, as also discussed in the night filter. Yet,
given the high temporal resolution, cloud enhancement effects may
occur.24 In addition, estimated GHI for clear sky conditions as sim-
ulated by the clear sky model comes with uncertainty. As a result of
the simplifications in the clear sky model (e.g., related to turbidity),
the measured GHI as reported by Ref. 14 is occasionally found to
exceed the simulated clear sky irradiance. Therefore, we consider a
threshold value (kPV) of 1.4. For small values of pcs, i.e., high zenith
angles, the upper limit can be exceeded,7 since the clear sky model
and subsequently the simulated power output come with greater
uncertainty for high (hz > 80�) solar zenith angles. Therefore, we
adapt the upper limit filter for high zenith angles, see Eqs. (8)–(10).
An example is presented in Fig. 8.

pmðtÞ > SAC ) pmðtÞ ¼ NaN; (7)

pmðtÞ � pcsðtÞ � kPV…8t where hz < 80� ) pmðtÞ ¼ NaN; (8)

ðpmðtÞ � pcsðtÞ � kPVÞ� ðpmðtÞ � pmðtÞ � 0:125 � SDCÞ;…;8t;
where hz � 80� � < 85� ) pmðtÞ ¼ NaN; (9)

ðpmðtÞ � pcsðtÞ � kPVÞ�ðpmðtÞ � pmðtÞ � 0:075 � SDCÞ;…;8t;
where hz � 85� ) pmðtÞ ¼NaN: (10)

This is followed by a linear data filter that is introduced to detect
temporary failure of the data logger. This filter was developed as some
data loggers were found to temporary report a constant, a linear
increasing or decreasing value,

@pmðtÞ
@t

¼ C; 8t ¼ t; t� 1;…; t� 19f g �hz < 85� ) pmðtÞ ¼NaN;

(11)

where C represents a constant, which is 0 for constant power, or nega-
tive (positive) for a linear decrease (increase) of power. Equation (11)
guarantees that the power measurements are set to NaN in case the
filter is violated for at least 20 consecutive time steps, i.e., a period of
20 min or more. Figure 9 shows an example of the implementation of
this filter.

Subsequently, the minimal daily data availability filter is repeated
in order to remove dates where the daily availability rate of power
measurements for hz < 85� fell below 50% as a result of the filters
applied above.

Finally, a persistence filter was adopted to filter spurious data [see
Eq. (12)]. The filter has the ultimate objective to flag and remove days
where persistent or highly fluctuating power values are reported,
resulting in minimum or extreme variability of the reported values.
The persistence filter was first introduced by Journ�ee and Bertrand,25

FIG. 9. An example of the operation of the linear data filter. The figure presents the
measured (Pm) power output of PV system ID082 for August 7, 2014. Values
around noon (red) are identified and set to NaN as the marked values present a lin-
ear line with a constant value of 0, which is caused by temporary failure of the data
logger.

FIG. 8. An example of the operation of the upper limit filter. The figure presents the
threshold value, simulated (Ps) and measured (Pm) power output of PV system
ID082 for July 6, 2014. The filter identifies the values (red) that exceed the thresh-
old values and sets these instances to NaN.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 14, 043501 (2022); doi: 10.1063/5.0100939 14, 043501-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rse


where it was meant to filter spurious GHI measurements. In Killinger
et al.,7 it was adapted for the purpose of filtering PV power
measurements.

1
8
l

pm=SDC
Eext

� �
� r

pm=SDC
Eext

� �
� s; (12)

where l and r represent the mean and standard deviation, Eext is the
extraterrestrial solar radiation obtained with the pvlib package, and s
is a constant, which is set as 0.35.7

2. Quality control criteria across PV systems

The final step in the quality control routine concerns the applica-
tion of the across system daily energy ratio filter, which is adopted
from Killinger et al.7 The filter utilizes the information available from
all PV systems by benchmarking the daily production values, as simi-
lar daily production values can be expected for neighboring systems.
In the across filter, the daily energy ratio ðrdeÞ [Eq. (13)] of each system
is compared to the mean daily energy ratio of all PV systems, �rde [Eq.
(14)]. Consequently, for each PV system, the across system filter ena-
bles to flag and remove every day (d) with significant deviating power
production values.

rdeðdÞ ¼

XT¼24hr
t¼1min

pmðtÞ

XT¼24hr
t¼1min

pcsðtÞ
; (13)

�k�rdeðdÞ � rde;iðdÞ � k�rdeðdÞ; (14)

where k presents a constant, which was empirically set to 0.25. The
across system filter can only be applied to quality controlling the
power output values of PV systems installed in the same region.

IV. RESULTS
A. DC capacity estimation

Since the reported DC capacity values were deemed unreliable
for some of the PV systems, the performance of the DC capacity esti-
mation algorithm is evaluated empirically by comparing the simulated
and measured PV power output for clear sky days, see Fig. 10. Where
Fig. 4 already demonstrated an example of the ability of the algorithm
to estimate the DC capacity by simulating the PV power output for

one PV system (ID128) on a single day, Fig. 10 presents the power
measurements (pm) and simulations (ps) for the same PV system on
all selected clear sky days. The minimal difference (i.e., residuals)
between both time series in Fig. 10 proves the ability of the algorithm
to estimate the DC capacity. The residuals for all 175 PV systems on
the selected clear sky days are summarized in terms of RMSE and bias
in Fig. 11. The figure shows an average RMSE of below 4%, and three
quarters of the systems obtain an error of under 5%. Also, a mean bias
of less than�0.2% is observed.

B. Quality control routine

The results of the quality control routine are summarized in
Table III. The table shows the absolute and relative filtered and
residual power measurements for each filter applied in the quality
control routine. Here, the residual values present the power values
in the dataset after each filter in the quality control routine is

FIG. 10. The simulated (ps) and measured (pm) power output of a PV system for all selected clear sky days (see Table I) for system with ID128.

FIG. 11. Violin plot showing the distribution of the PV system DC capacity estima-
tion errors that consider the difference between the simulated and measured power
output for all clear sky days. The RMSE and bias are expressed relative to the DC
capacity [and calculated by Eqs. (2) and (3)].
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applied. The filtered values present the values that are flagged and set
to NaN or removed per filter. The absolute values present the sum of
all 175 PV systems, e.g., in total 4.35 � 106 values are filtered from
the dataset in the lower limit filter. The relative values consider the
mean of the share of values filtered per system. For example, the daily
availability filter 1 is on average responsible for the removal of 2.28%
of the power measurements per system. The value associated with
the night filter is negative because the night filter sets values to zero,
including values that were formerly reported as NaN.

Overall, as discussed in Sec. III B, the quality control routine
delivers two filtered datasets. The first dataset concerns the filtered
power values after only single system criteria are applied. Up to this
point, a total of 10.7 � 106 power measurements were filtered

from the dataset, resulting in a quality-controlled dataset holding
264.3 � 106 power measurements, which is presented in filtered_pv_
power_measurements_sc.csv. The second output also concerns the
across systems criteria, where an additional 4 � 106 power measure-
ments were filtered and removed from the dataset. Hence, this dataset
holds 260.3 � 106 power measurements and is given in filtered_pv_
power_measurements_ac.csv. An overview of the published datasets is
given in Table IV.

C. Selection of PV systems

The original dataset from which the power measurements of the
175 enclosed PV systems are obtained holds data of 202 PV systems.

TABLE III. Overview of the number of residual and filtered values per filter in the quality control routine. Absolute values consider the sum of all 175 PV systems. Relative values
present the mean of the share per system.

Filter
Number of values residual Number of values filtered

Absolute (mln) Relative (%) Absolute (mln) Relative (%)

Summary of unfiltered values
Unfiltered values total 324.3 100 � � � � � �
Unfiltered values true 275.0 85.1 � � � � � �
Unfiltered values NaN 49.2 14.9 � � � � � �

Single system filters
Daily availability filter #1 267.4 82.9 7.60 2.28

Night filter 275.3 85.3 �7.90 �2.44
Lower limit filter 271.0 84.0 4.35 1.34
Upper limit filter 269.4 83.5 1.53 0.47
Linear values filter 269.1 83.3 0.38 0.13

Data availability filter #2 266.7 82.6 2.39 0.73
Persistence filter 266.5 82.5 0.16 0.05

Across systems filter
Daily energy ratio filter 262.4 81.5 4.08 1.12

TABLE IV. Description of the published files.9 The four numerical data files are in comma separated values (csv) format. Missing and filtered data entries are marked as NaN,
as discussed in Sec. III B.

File Description

metadata.csv Metadata of PV systems (tilt, azimuth, DC and AC capacity, location, begin and
end of recording period).

unfiltered_pv_power_measurements.csv Unfiltered power measurements of all PV systems with 1-min resolution.
filtered_pv_power_measurements_sc.csv Quality controlled power measurements of all PV systems with 1-min resolu-

tion, single criteria (i.e., filters) applied only.
filtered_pv_power_measurements_ac.csv Quality controlled power measurements of all PV systems with 1-min resolu-

tion, single and across criteria (i.e., filters) applied.
qcpv.py Python package containing all filter functions to perform the quality control

routine of the PV power measurements.
example.py Example Python code to call the qvpv package and use the filter functions.
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Yet, 27 of these systems were removed from the dataset for two main
reasons. First, systems with data records for less than one year, either
before or after applying the quality control routine, were excluded.
Second, systems for which the DC capacity estimation algorithm was
deemed unreliable were removed. This holds solely for PV systems
that experience significant shadowing during the day. An example is
presented in Appendix A. These systems were identified through
visual inspection.

V. CONCLUSIONS

Public datasets are essential in reaching a mature stage of all
research related to PV power output, including but not limited to
solar forecasting, model predictive control, PV-battery systems, and
simulation of micro and smart-grids. In addition, standardized
quality control routines form a fundamental element of progress in
all research fields that rely on such data. Considering the minimal
availability of public datasets that feature high-resolution PV power
measurements, we present an open-source dataset holding 1-min
power measurements of 175 PV systems located in Utrecht for a
period of four years. In addition, we include an open-source quality
control routine that can be applied to filter erroneous PV power
measurements in the form of the Python package qcpv. The numer-
ical datasets are made available at https://doi.org/10.5281/
zenodo.6906504,9 holding unfiltered power measurements (unfil-
tered_pv_power_measurements.csv), quality-controlled power
measurements after single system filters are applied (filtered_pv_
power_measurements_sc.csv), and quality-controlled power
measurements after all filters are applied (filtered_pv_power_
measurements_ac.csv). These datasets are accompanied by meta-
data (metadata.csv), presenting the system’s azimuth and tilt angle,
the estimated DC and AC capacity, and location. We also devel-
oped and presented a novel approach that estimates the DC capac-
ity of a PV system from power measurements.

VI. RECOMMENDATIONS

We highly encourage researchers to take advantage of the data
and code presented in this study and use it in future work. Therefore,
we like to inform those interested in using the data on the Dutch cli-
mate, interesting periods, data availability, and complementary data.
According to the K€oppen classification system, the climate in the
Netherlands is characterized as oceanic or maritime, which typically
feature mild summers and cool winters.26 An optimal PV system is
oriented south (i.e., an azimuth angle of 180�) and a tilt angle of 37�.27

Optimally installed PV systems generate most power during
April–July. Future work that aims to assess (extreme) PV power ramp
rates, cloud enhancement, spatial smoothing, highly variable days,
and/or high yield days should consider April and May. These months
are particularly interesting as they feature a mix of overcast, highly var-
iable and clear sky days, with high irradiation and compared to sum-
mer relative cold temperatures. An overview of the data availability
per PV system is shown in Appendix B. The highest availability of
data for all systems is found from January 2014 until August 2015. For
a substantial amount of systems, data availability is also high from
September 2016 until December 2017. Complementary data that may
be of interest include weather measurements and forecasts. KNMI14,28

provides weather measurements for various locations near the PV

systems including de Bilt and Cabauw. For Cabauw, solar irradiance
measurements with a temporal resolution of 1-min are also available.29

ECMWF30 provides weather forecasts and re-analysis data for
Utrecht.
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FIG. 12. Unfiltered power measurements and manually adjusted best estimate of
simulated clear sky production of a single PV system on July 19, 2016. The PV sys-
tem was excluded from all datasets, due to shading effects.
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APPENDIX A: EXAMPLE OF PV SYSTEM THAT
EXPERIENCES SHADOW

Figure 12 shows the power time series of a single PV system on
one of the selected clear sky days, July 19, 2016. The dip in the power
output is caused by an object in the immediate vicinity of the PV sys-
tem, possibly a chimney. The observed power measurements in the
time series affect the ability of the algorithm presented in Sec. III A 1
to estimate the system’s DC capacity. Therefore, by means of visual
inspection, these systems were removed from the dataset.

APPENDIX B: DATA AVAILABILITY

Figures 13 and 14 present an overview of the monthly availability
rate of power measurements per PV system. The data availability rate
indicates the share of quality-controlled power measurements (as reported
in filtered_pv_power_measurements_ ac.csv) during daylight hours as

1
M

XM
t¼1

pmðtÞ 6¼ NaN;

M ¼ T…8t; where ðt � sunriseþ 30min�t � sunset � 30minÞ:

FIG. 13. Data availability rate of the quality-controlled power measurements for PV systems ID088–ID175.
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