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This study focuses on the motion of passive tracers induced by the joint action of tidal and residual currents in
shallow seas with an irregular bottom topography. Interest in this problem has rapidly increased in recent
years, because of the detection of large-scale pollution of marinewaters by plastics. Early simplifiedmodels con-
sidered advection of tracers by a two-dimensional depth-averaged velocity field that is solenoidal, thereby result-
ing in a system that is Hamiltonian and nonintegrable. Here, two new aspects are considered. First, the sensitivity
of solutions to three different numerical schemes is investigated. To quantify the behavior of orbits, both the larg-
est Lyapunov exponent and theK-coefficient of the zero-one test for chaoswere calculated. It turns out that a new
scheme, which extends a known symplectic scheme to systems that also contain non-Hamiltonian terms, per-
forms best. The second aspect concerns the fact that a depth-averaged velocity field is actually divergent, thereby
rendering themodel of tracermotion to be non-Hamiltonian. It is demonstrated that the divergent velocity com-
ponents, no matter how small, cause the appearance of attractors in the system and thus they have a strong im-
pact on the fate of tracers. Interpretation of the numerical results is given by deriving and analyzing approximate
analytical solutions of the system.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

It has been demonstrated by Aref [1], Ottino [2] a.o. that, when
tracers are released in unsteady two-dimensional (2D) and incompress-
ible Eulerian velocity fields, the trajectories of some of these tracers are
chaotic. The underlying process is called chaotic advection, or Lagrang-
ian chaos. The reason for this behavior can be understood from the
equations for 2D tracer motion x(t), y(t),

_x ¼ u; _y ¼ v; ð1Þ

with u and v the components of the Eulerian velocity field in the x- and
y-direction, respectively. The dot denotes a total time derivative. As-
suming the fluid to be incompressible, its velocity field has zero diver-
gence, so in a 2D setting u and v are determined by a stream function
ψ: u=− ∂ψ/∂y and v= ∂ψ/∂x. When this is substituted in Eq. (1), it fol-
lows that the equations constitute a Hamilton system,withψ represent-
ing the Hamiltonian. If ψ is time-dependent, the Hamilton system is
td. This is an open access article und
nonintegrable and it will have a set of solutions that are chaotic (see
e.g. Tabor [3]).

The concepts developed by [1] were subsequently used to study the
behavior of passive tracers in tidal environments, such as the Wadden
Sea, a shallow inland sea along the wadden coasts of the Netherlands,
Germany and Denmark (Pasmanter [4], Ridderinkhof & Zimmerman
[5], Beerens et al. [6]). The motivation for these studies was to gain
more understanding aboutmixingprocesses in these areas, which is rel-
evant for properly simulating the spreading and mixing of salt, sedi-
ment, nutrients, floating microplastics, etc. In these studies, a simple
model was analyzed, in which the depth-averaged Eulerian velocity
field consists of a spatially uniform tidal current and residual currents
that are organized in alternating clockwise and anticlockwise horizontal
circulation cells. The latter are due to the interaction of the tidal current
with the bumpy bottom (Zimmerman [7]). The model has two control
parameters, the first one being the ratio of tidal excursion length (the
distance traveled by a parcel with maximum tidal current in one tidal
period) and the spacing between successive residual cells. The second
one is the ratio between the strength of the residual current and
the maximum tidal current. These studies explicitly demonstrated the
occurrence of local Lagrangian chaos and, for a range of parameter
values, even global chaos, so that global mixing occurs. Moreover, [5],
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1 When ds/dt = 0 is combined with mass conservation, it moreover follows that d
(SDδA)/dt = 0, i.e., the amount of tracer in an infinitesimal fluid column of depth D and
with surface area δA is conserved.
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aswell as later studies by e.g. Orre et al. [8] and Xu et al. [9], showed that
Lagrangian chaos was also detected when tracers were advected by ve-
locities obtained from numerical models of the Wadden Sea, a Norwe-
gian fjord and Cobscook-Passamaquoddy Bay (Gulf of Maine, US),
respectively.

Regarding the studies on tracer motion in tidal areas, several issues
have received little attention so far. One of them concerns the numerical
scheme used to solve the equations of motion (1). It is important that
this scheme is chosen such that it maintains properties of the underly-
ing differential equations. For example, the solutions shown in [6]
were found with a numerical scheme (fourth-order Runge Kutta) that
does not preserve the symplectic structure of the underlying Hamilto-
nian system and hence results in numerical inaccuracies that need to
be quantified. Another issue is that Eulerian velocity fields obtained
from depth-averaged models are two-dimensional, but yet they are di-
vergent, because the depth of the fluid is not constant. Consequently,
the tracer motion is not governed by a Hamiltonian system. In the ana-
lytical studies of [4,5] and [6] the divergent part of the velocity field was
not taken into account, so their systemsmiss an essential aspect of tidal
motion [8,9] accounted for the non-divergent component of the velocity
field, but they did not systematically explore the effect of this compo-
nent on the behavior of the tracers.

The previous considerationsmotivate the specific aims of this study,
which are threefold. The first is to investigate the sensitivity of solutions
of Eq. (1) to the applied numerical scheme. The second is to quantify the
effect of the divergent part of the velocity field on tracer motion and the
third is to explain the behavior of the system. To address the first aim,
themodel without non-Hamiltonian termswill be considered and solu-
tions obtained by three different numerical methods will be compared.
One of them is a new scheme that preserves the symplectic structure of
theHamiltonian part of the system. The comparison concerns the calcu-
lated largest Lyapunov exponent, using the method of Shimada &
Nagashima [10] and Benettin et al. [11], as well the K-coefficient result-
ing from the ‘0–1 test for chaos' (Gottwald & Melbourne, [12,13]). The
latter method does not quantify chaos, but it classifies an orbit as
being chaotic or not.

The second aim will be met by analyzing output of numerical simu-
lations of the full system, i.e., including the non-Hamiltonian terms. In-
sight into the system behavior (third aim) is achieved by studying
approximate analytical solutions of the full system, which will be con-
structed by applying an orbit expansion [6]. Furthermore, a numerical
bifurcation analysis will be performed on the periodic solutions of the
system.

The contents of the subsequent sections is as follows. In Section 2 the
model is presented, as well as three numerical schemes (ode45 of
Matlab, Runge-Kutta 4 and a symplectic second-order scheme based
on splitting) to solve the equations for the tracer orbits and brief infor-
mation about the methods to characterize the behavior of these orbits.
Section 3 outlines the orbit expansion method that results in approxi-
mate analytical solutions of the system. In Section 4 the results are pre-
sented, followed by a discussion (Section 5) and the final section
contains the conclusions.

2. Material and methods

2.1. Model

The velocity field used in this study consists of the superposition of a
background, spatially uniform tidal velocity field, characterized by a sin-
gle radian frequency σ and amplitude U, and a topographically induced
residual velocity field. The latter is obtained from solving the equations
ofmotion for depth-averaged tidal currents over an irregular bottom to-
pography, following [7,14] (see also Supplementary Information (SI)
Appendix A). The depth is represented as an undisturbed, constant
depth H, to which a perturbation h∗ is added (h∗ > 0 means larger
depth). When assuming velocities to be scaled with U, time with σ−1,
2

depth with H and distances x and y with tidal excursion length U/σ,
the equations of motion read

x
: ¼ u ¼ cos tð Þ � ∂ψ

∂y
þ ∂ϕ

∂x
, ð2aÞ

y
: ¼ v ¼ ∂ψ

∂x
þ ∂ϕ

∂y
: ð2bÞ

In these expressions, ψ is the stream function and ϕ the velocity poten-
tial of the topographically induced velocity components. The velocity
fields related to ψ and ϕ are solenoidal and irrotational, respectively.

The variables x(t), y(t) indicate the position of any tracer S that obeys
dS/dt = 0 in the Eulerian depth-averaged hydrodynamic model.1 The
model yields ψ and ϕ in terms of Fourier series, i.e.

ψ,ϕð Þ ¼ ∑
∞

m¼ � ∞
ψp,ϕp

� �
exp imtð Þ: ð3Þ

Topographic undulations are assumed to be small, i.e., bh≪H, with bh the
scale of the bottom undulations. Furthermore, following [4–6], the di-
mensionless depth variations are represented as

h ¼ γ cos κxð Þ cos κyð Þ, γ ¼
bh
H
: ð4Þ

Here, κ is the topographic wavenumber scaledwith the reciprocal of the
excursion length U/σ. As γ ¼ bh=H is assumed to be small, approximate
solutions for the velocity potential and stream function read

ϕ ¼ � 1
2
γ
κ

sin κxð Þ cos κyð Þ cos tð Þ, ð5aÞ

ψ ¼ � ν
κ

sin κxð Þ sin κyð Þ: ð5bÞ

Thus, the velocity potential has the same time dependence as the
background tidal current and only the residual part of the stream func-
tion is considered. The latter describes residual circulation cells that are
generated by tide-topography interaction. Parameter ν is considered as
an input parameter and its value measures the relative strength of the
residual currents with respect to the maximum tidal current. A color
plot of the dimensionless depth perturbation (blue is deep, red is shal-
low) and the dimensional residual stream function (scaled by its maxi-
mumvalue) is shown in Fig. 1. Substitution of these results in Eqs. (2a)–
(2b) yields the model equations that will be investigated:

x
: ¼ cos tð Þ þ ν sin κxð Þ cos κyð Þ � 1

2
γ cos κxð Þ cos κyð Þ cos tð Þ, ð6aÞ

y
: ¼ � ν cos κxð Þ sin κyð Þ � 1

2
γ sin κxð Þ sin κyð Þ cos tð Þ: ð6bÞ

Earlier studies ([6] and references therein) ignored the contributions
due to the velocity potential (γ=0). In that case, the equations consti-
tute a Hamilton system. Furthermore, in those studies a different scaling
was used, in particular, horizontal coordinates were scaled with the to-
pographic wavenumber and time was scaled with the tidal period in-
stead of with the inverse radian frequency. The connection between
the present formulation and that used in earlier studies is detailed in
SI-Appendix B.



Fig. 1. Color plot of the dimensionless depth perturbation h, overlaid with contour plot of the residual stream function ψ (scaled by its maximum value). Blue colors denote positive h,
i.e., larger than average depths, whilst red colors indicate negative h (smaller than average depth). Arrows indicate the direction of the residual currents.
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2.2. Numerical methods

Three different numerical schemes have been used to solve system
(2a)–(2b). The first one is ‘ode45’, the default integrator of Matlab for
systems of ordinary differential equations. The second scheme is the
Runge-Kutta 4 scheme (hereafter RK4), a widely used explicit scheme
that is of fourth order in the time step Δt (for details see e.g. Press
et al. [15]). A disadvantage of both schemes is that, when they are ap-
plied to Hamiltonian systems, they do not preserve the symplectic
structure (i.e., conservation of volume in phase space). A third scheme,
based on a so-called symplectic splitting method (McLachlan & Quispel
[16]), does not have that problem and it will be described in somemore
detail.

The idea behind splitting is that, given a vector field f of a dynamical
system z

: ¼ f z, tð Þ written as a sum of component vector fields whose
flows are explicitly known, a consistent numerical integrator can be
constructed as the composition of those solutions. For the present
non-autonomous equations (6a) and (6b), a second-order scheme
based on splitting is constructed by first applying the transformations

q ¼ κ xþ yð Þ, p ¼ κ x � yð Þ: ð7Þ

Here, q=constant and p=constant are the phase lines of the two spa-
tial Fourier modes that constitute the velocity potential ϕ and stream
function ψ. Besides, an additional equation t

: ¼ s is introduced. This re-
sults in

_q ¼ ∂H
∂p

þ ∂V
∂q

; _p ¼ −
∂H
∂q

þ ∂V
∂p

;

_t ¼ ∂H
∂s

; _s ¼ −
∂H
∂t

;

ð8Þ

where

H ¼ � κ cos tð Þ q � pð Þ þ 2κ2ψ x p, qð Þ, y p, qð Þð Þ þ s, ð9aÞ

V ¼ 2κ2ϕ x p, qð Þ, y p, qð Þð Þ ð9bÞ

are the newHamiltonian and the newpotential. It turns out thatℋ and
V can be written as follows:

H ¼ sþ∑
2

i¼1
Fi qð Þ þ Gi pð Þ½ �χi tð Þ,

V ¼ F qð Þ þ G pð Þ½ �χ tð Þ,
ð10Þ
3

where

F ¼ � 1
2
γ sin qð Þ, G ¼ � 1

2
γ sin pð Þ, χ ¼ cos tð Þ, ð11aÞ

F1 ¼ � κ q, G1 ¼ κ p, χ1 ¼ cos tð Þ, ð11bÞ

F2 ¼ κν cos qð Þ, G2 ¼ � κν cos pð Þ, χ2 ¼ 1: ð11cÞ

To ensure our method is symplectic for the case γ=0, we use a Hamil-
tonian splitting. In our implementation we splitℋ=ℋ1 +ℋ2, with

H1 ¼ sþ χ1 tð Þ F1 qð Þ þ G1 pð Þð Þ,
H2 ¼ χ2 tð Þ F2 qð Þ þ G2 pð Þð Þ:

ð12Þ

The ℋ1 term leads to the dynamics

_q ¼ χ1 tð ÞG0
1 pð Þ; _p ¼ −χ1 tð ÞF 0

1 qð Þ; ð13aÞ

_t ¼ 1; _s ¼ −χ
0
1 tð Þ F1 qð Þ þ G1 pð Þð Þ: ð13bÞ

Here, the prime indicates a derivative and we ignore the irrelevant con-
jugate variable s. We introduce a time transformation dτ = χ1(t)dt to
reduce the system to

dq
dτ

¼ G0
1 pð Þ, dp

dτ
¼ � F 01 qð Þ, ð14Þ

which is autonomous with respect to the new time variable. To con-
struct a symplectic map for this system we split its (now autonomous)
Hamiltonian to obtain either the map

q iþ1ð Þ ¼ q ið Þ þ ΔτG1 p ið Þ
� �

,

p iþ1ð Þ ¼ p ið Þ � ΔτF 01 q iþ1ð Þ
� �

,
ð15aÞ

or its adjoint map

p iþ1ð Þ ¼ p ið Þ � ΔτF 01 q ið Þ
� �

,

q iþ1ð Þ ¼ q ið Þ þ ΔτG1 p iþ1ð Þ
� �

:

ð15bÞ

Theℋ2 term lends itself to a similar treatment, but since the s variable
is excluded we find t

: ¼ 0. Furthermore, since χ2 = 1, no time
transformation is required.
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The full system is numerically solved by a scheme that is of second
order, constructed by composing all split flows and their adjoints in a
symmetric manner, analogous to the Störmer-Verlet method (Hairer
et al. [17]). This results in the scheme as shown in Fig. 2. The potential
terms are solved by applying the (time-symmetric) implicit midpoint
rule for integrals [15] (here implemented as a half step of the backward
Euler method followed by extrapolation). For the case γ = 0 this
method has the important advantage of preserving the symplectic
structure of the Hamiltonian dynamics.

The values of the numerical parameters in the three schemes (toler-
ances, time steps) were set as follows. First, note that system (6) has no
analytical solutions or constants of motion that can be used to quantify
the accuracy of the schemes. Therefore, a test system was considered,
which bears some similarity with the present system (i.e., it also has a
time-harmonic Hamiltonian) and which has non-trivial, yet analytical
solutions. This test system reads

_q ¼ p; _p ¼ − α−β cos tð Þð Þq; ð16Þ

which has solutions in terms of Mathieu functions (see SI-Appendix C).
Several values for the parameters α and β and initial conditions q(t =
0), p(t = 0) were chosen for which solutions were quasi-periodic.
Next, numerical solutions obtained with the three schemes were com-
pared with exact solutions (retrieved with the software package
Fig. 2. Flow diagram of the numerical scheme that solves Eqs. (8)-(9) from time tn to time
tn + Δt and that preserves the symplectic structure of the Hamiltonian terms. In the
present model, parameter N = 2, meaning that the Hamiltonian is split into two

contributions. Furthermore, Δt is the time step, Δτ
~

i ¼ R tnþ1
2Δt

tn χi tð Þdt, cΔτi ¼R tnþΔt
tnþ1

2Δt
χi tð Þdt and Δτ ¼ R tnþΔt

tn
χi tð Þdt.

4

Mathematica) and it was required that the relative error should be
slightly less than 1% after 1000 forcing periods. For the ode45-scheme
this implied that the absolute and relative tolerance had to be explicitly
set, at values of 6 ⋅ 10−6. Regarding RK4 and our scheme, the condition
required 350, respectively 1000 time steps per forcing period.
These values were subsequently used to find numerical solutions of
system (6).

2.3. Analysis of model output

2.3.1. Tidal maps
Model output isfirst used to construct tidalmaps,which are a special

kind of Poincaré maps: they show variables xj = x(t= tj), yj = y(t= tj)
at times tj = 2πj, where j = 0,1,2, … and 2π is the dimensionless tidal
period. Thus, tidal maps show the net displacement of tracers during a
tidal period. If tides would be absent, the maps would reveal the
stream lines of the residual current. In this study, tidal currents are
assumed to be much larger than residual currents, so deviations from
these stream lines are to be expected.

2.3.2. Largest Lyapunov exponent
Lyapunov exponents yield information about the time-mean expo-

nential divergence rate of the distance between nearby orbits in phase
space (see e.g. [3]). If at least one of these exponents is positive, the dy-
namics is chaotic. In the present 2D-time-dependent system, there are
two non-trivial exponents and one additional exponent that relates to
the explicit time behavior (its value being zero). Moreover, in the case
that the system is Hamiltonian, Liouville's theorem implies that the
sum of these exponents is zero.

In this study, we use the value of the largest Lyapunov exponent,
called λ, to characterize the degree of chaos in the system. This expo-
nent can be different for different tracer orbits. To calculate λ, a method
developed separately by [10,11] was used. For this, the system (2a)–
(2b) is solved, yielding a principal orbit x tð Þ ¼ x tð Þ, y tð Þð Þ, together
with its linearized tangent equations

x
: 0 ¼ ∂u

∂x

���� x ¼ �x
y ¼ �y

x0 þ ∂u
∂y

���� x ¼ �x
y ¼ �y

y0,

y
: 0 ¼ ∂v

∂x

���� x ¼ �x
y ¼ �y

x0 þ ∂v
∂y

���� x ¼ �x
y ¼ �y

y0:

ð17Þ

The latter systemdescribes the linear dynamics of small deviations from
the principal orbit (indicated by primes). Next, define the following
sequence:

x0j tð Þ ¼ x0 2π j � 1ð Þ ≤ t ≤ 2πjð Þ,
y0j tð Þ ¼ y0 2π j � 1ð Þ ≤ t ≤ 2πjð Þ,

ð18Þ

where x′, y′ are solutions of the tangent map, with initial conditions

x01 0ð Þ ¼ cos φð Þ, y1 0ð Þ ¼ sin φð Þ, ð19aÞ

x0jþ1 2πjð Þ ¼ x0j 2πjð Þ=dj, y0jþ1 2πjð Þ ¼ y0j 2πjð Þ=dj: ð19bÞ

In these expressions, φ may be assigned any value and

dj ¼ x0j 2πjð Þ2 þ y0j 2πjð Þ2
� �1=2

ð20Þ

is a distance.
The procedure is that at t=0 an initial condition for x′, y′ is imposed

with norm = 1, so the initial distance d0 = 1. Next, the system is
integrated over one tidal period and the distance d1 is calculated.
Subsequently, the solution is normalized with d1, so that the solution
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for the next tidal period has again an initial condition that has a distance
equal to 1. This step is made to prevent overflow (the solutions of the
tangent map may grow exponentially in time) and it can be done
because the tangent map is linear. After that, the integration over the
next tidal period is performed, which yields d2, etc. A numerical esti-
mate of the largest Lyapunov exponent is computed as

λ ≃ λJ ¼ 1
2πJ

∑
J

j¼1
ln dj

� �
, ð21Þ

with J the total number of tidal cycles used to calculate the coefficient.
Its value is such that ∣λJ − λJ−1 ∣ ≤ max (ϵa,ϵrλJ−1), where ϵa and ϵr are
a user-specified absolute tolerance and relative tolerance, respectively.

2.3.3. 0–1 test for chaos
In practice, accurate calculation of the largest Lyapunov exponent is

difficult in the case of weak chaos. To obtain additional support for
whether a small positive exponent indicates chaos, or if the interest is
more on knowing whether an orbit is chaotic or not, the ‘0–1 test for
chaos’ developed by [12] (see also the review by [13]) is a suitable
alternative.

The numerical implementation of this method consists of four steps.
First, from a given time series ϕ(j), j = 1, 2,…, N, in the present model
ϕ(j)= y(t=2πj) is chosen, the following so-called translation variables
are defined:

pc Nð Þ ¼ ∑
N

j¼1
ϕ jð Þ cos jcð Þ,

qc Nð Þ ¼ ∑
N

j¼1
ϕ jð Þ sin jcð Þ,

ð22Þ

for any c ∈ (0,π).
Next, the mean-square displacement

Mc n,Nð Þ ¼ 1
N � n

∑
N � n

j¼1
pc jþ nð Þ � pc jð Þ½ �2 þ qc jþ nð Þ � qc jð Þ½ �2

n o
ð23Þ

is analyzed for N≫ n≫ 1. For a chaotic signalMc(n≫ 1) grows linearly
with n, whilst for non-chaotic signalsMc(n≫ 1) approaches a constant.
Based on this, the followingmean asymptotic growth rate is calculated:

K ¼ median Kcð Þ,

Kc ¼ ln Mc n, ,Nð Þð Þ
ln nð Þ for N≫ n≫ 1:

ð24Þ

The test is expected to yield a value K= 0 (regular dynamics) or K=1
(chaotic dynamics. If this is not the case, then typically a larger N is
needed. The reason to calculate the asymptotic growth rates for differ-
ent values of c is that for some isolated values of c themethod yields out-
liers of Kc. Further details are given in [13] and references therein.

2.4. Design of numerical experiments

A list of experiments is presented in Table 1. In order tomeet thefirst
specific aim of this study, system (6) with γ=0was considered, so the
equations governing the tracermotion constitute aHamiltonian system.
Solutions for parameter values ν = 0.3 and κ = π/2, π were computed
using three different numerical schemes: ode45, RK4 and the one that
is based on the splitting method and preserves the (in this configura-
tion) symplectic structure of the system. The reason to choose the first
two parameter values is that they reveal interesting behavior [6]. Re-
sults for other parameter values are presented in SI-Appendix E.

In all experiments, the absolute and relative tolerance for calculating
the Lyapunov exponentswere set to ϵabs=1 ⋅ 10−4 and ϵrel=0.002. For
5

the 0–1 test, following recommendations by [13], a total of 5000 data
points were used, a fraction of 10% was used to calculate the mean-
square displacements Mc(n,N) in Eq. (23) and a total number of 100
values for parameter c was used, which were uniformly distributed
over the interval (π/5,4π/5).

The experiments of Series 2 were designed to meet the second aim,
i.e., to quantify the effects of including the non-Hamiltonian terms in
model (6), hence γ > 0.

3. Construction of approximate solutions and related tidal map

To interpret themodel behavior, approximate analytical solutions of
system (6), aswell as an approximate tidalmap, were derived by apply-
ing the method of orbit expansion [6]. This method assumes that pa-
rameters ν ≪ 1, γ ≪ 1, so the background tidal current is the
dominant agent for tracer motion. The new aspects in this section are
that solutions are derived and analyzed for the system up to O ν2,νγ

� �
.

Instead of using Eqs. (6a) and (6b), it is more convenient to trans-
form x, y to the new canonical variables p, q, which were defined in
Eq. (7). This results in

q
: ¼ κ cos tð Þ þ bν sin pð Þ � bγ cos tð Þ cos qð Þ, ð25aÞ

p
: ¼ κ cos tð Þ þ bν sin qð Þ � bγ cos tð Þ cos pð Þ, ð25bÞ

in which

ν̂ ¼ κν, γ̂ ¼ 1
2
κγ ð26Þ

and with initial conditions q(t= 0)= q∗, p(t= 0)= p∗. The advantage
of this system is its cyclic structure: the equation for the evolution of p
directly follows from that for q by exchanging q and p.

Application of the orbit expansion yields

q ¼ q0 þ q1 þ q2 . . . , p ¼ p0 þ p1 þ p2 . . . , ð27Þ

where

_q0 ¼ cos tð Þ; _p0 ¼ cos tð Þ; ð28aÞ

_q1 ¼ _qj q ¼ q0
p ¼ p0

− _q0; _p1 ¼ _pj q ¼ q0
p ¼ p0

− _p0; ð28bÞ

_q2 ¼ _qj q ¼ q0 þ q1
p ¼ p0 þ p1

− _q0− _q1; _p2 ¼ _pj q ¼ q0 þ q1
p ¼ p0 þ p1

− _p0− _p1; ð28cÞ

etc. The zeroth-order system, which only includes advection of tracers
by the background tidal current, can be straightforwardly solved:

q0 ¼ q∗ þ κ sin tð Þ, p0 ¼ p∗ þ κ sin tð Þ: ð29Þ

Substitution of these results into the first-order equations (28b)
yields

_q1 ¼ ν̂ sin p� þ κ sin tð Þð Þ−γ̂ cos tð Þ cos q� þ κ sin tð Þð Þ ð30Þ

and a similar equation for p
:

1
, whichdirectly follows from the cyclic struc-

ture of the system. From hereon, only solutions for q will be explicitly
written. The solution of the above equation reads



Table 1
List of experiments. Experiment Series 1 tests three different numerical methods: symplectic, ode45
(Matlab) and RK4. In all other experiments, the explicit scheme based on the splitting method
(Section 2.2) was used.

2 4 6 8 10 κ
0.2

0.2

0.6

1.
H0

Fig. 3. Plot of the zeroth-order Struve function H0(κ), which appears in the second-order
tidal maps (37), (38a) and (38b).
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q1 ¼ ν̂ sin p�ð Þ Fc tð Þ þ cos p�ð Þ Fsðt½ �
þ γ̂ − cos q�ð Þ Fcc tð Þ þ sin q�ð Þ Fcs tð Þ½ �; ð31Þ

in which

Fc tð Þ ¼
Z t

0
cos κ sin t0ð Þð Þdt0,

Fs tð Þ ¼
Z t

0
sin κ sin t0ð Þð Þdt0,

ð32aÞ

Fcc tð Þ ¼
Z t

0
cos t0ð Þ cos κ sin t0ð Þð Þdt0 ¼ 1

κ
sin κ sin tð Þð Þ, ð32bÞ

Fcs tð Þ ¼
Z t

0
cos t0ð Þ sin κ sin t0ð Þð Þdt0 ¼ 1

κ
1 � cos κ sin tð Þð Þ½ �: ð32cÞ

Next, we consider the second-order system (28c). As bν≪ 1, bγ≪ 1,
the magnitude of q1 is much smaller than that of q0. Maintaining only
the dominant contributions yields

_q2 ¼ ν̂ cos p0ð Þp1 þ γ̂ cos tð Þ sin q0ð Þq1: ð33Þ

Upon substitution of the zeroth-order and first-order solutions (28a)–
(28b), the solution for q2 (and for p2) is obtained (for the full
expression see SI-Appendix D).

The preceding information is used to construct a second-order tidal
map, by expressing q(t=2π), p(t=2π) in terms q∗, p∗, i.e., the values of
q, p one period earlier. From Eqs. (28a), (28b), it follows

q0 2πð Þ ¼ q∗, q1 2πð Þ ¼ 2πbνJ0 κð Þ sin p∗ð Þ ð34Þ

and similar expressions for p0(2π), p1(2π). In the derivation of q1(2π), p1
(2π) the identity [18].

Z 2π

0
exp iκ sin t0ð Þð Þdt0 ¼ 2πJ0 κð Þ ð35Þ

has been used, with i the imaginary number and J0(κ) the zeroth-order
Bessel function. To evaluate q(2π), results (C1.1) and (C4a) of SI-
Appendix D are used. Finally writing

qj ¼ q∗, q jþ1 ¼ q0 2πð Þ þ q1 2πð Þ þ q2 2πð Þ, ð36aÞ

pj ¼ p∗, p jþ1 ¼ p0 2πð Þ þ p1 2πð Þ þ p2 2πð Þ, ð36bÞ

where subscripts from hereon refer to the iteration number of the map,
it follows

q jþ1 ¼ qj þ 2πbνJ0 κð Þ sin pj
� �

þ π2bν2
J0 κð Þ 2J0 κð Þ sin qj

� �
cos pj

� �h
þH0 κð Þ cos qj � pj

� �i
þ bνbγ π

κ
� sin qj � pj

� �n
� 2J0 κð Þ cos qj

� �
� cos pj

� �h i
sin pj

� �
þ J0 2κð Þ sin qj þ pj

� �
� sin 2pj

� �h io
ð37Þ

and a similar equation for pj+1. In this result, H0(κ) is the zeroth-order
Struve function, which for convenience is plotted in Fig. 3 (for its ap-
pearance see SI-Appendix D).
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Together, these equations constitute the tidal map in q, p-variables.

Note that there are no contributions that are proportional to bγ and bγ2.
These findings are subsequently transformed back to x, y-variables,
yielding

x jþ1 ¼ xj þ 2πνJ0 κð Þ sin κxj
� �

cos κyj
� �

þπ2κν2J0 κð Þ J0 κð Þ sin 2κxj
� �þH0 κð Þ cos 2κyj

� �h i
þ1
2
πνγ sin 2κxj

� �h
1 � cos 2κyj

i
,

� ð38aÞ

y jþ1 ¼ yj � 2πνJ0 κð Þ cos κxj
� �

sin κyj
� �

þ π2κν2J20 κð Þ sin 2κyj
� �

� 1
2
πνγ sin 2κyj

� �
þ 4J0 κð Þ sin κxj

� �
sin κyj

� �h
� J0 2κð Þ cos 2κxj

� �
sin 2κyj

� �i
:

ð38bÞ
The first-ordermap is identical to that presented in [6]. TheO ν2

� �
terms

are corrections on those in that paper, which resulted from amistake in
the derivation. The O νγð Þ-terms are new.

We now briefly discuss the fixed points of the tidal map (37), here
denoted as qj ¼ q̂, pj ¼ p̂. They represent periodic solutions of the un-

derlying differential equations. As bν≪ 1, bγ≪ 1, approximations of
these fixed points can be constructed as

q̂ ¼ Q00 þ ν̂Q10 þ γ̂Q01 þ . . . ,

p̂ ¼ P00 þ ν̂P10 þ γ̂P01 þ . . . :
ð39Þ

Substitution into the tidal map equations and analyzing the results at
different orders yields

sin Q00ð Þ ¼ 0 so Q00 ¼ mπ m ∈ Zð Þ, ð40aÞ

sin P00ð Þ ¼ 0 so P00 ¼ nπ n ∈ Zð Þ, ð40bÞ

Q10 ¼ � 1ð Þnþ1 π
2
H0 κð Þ, Q01 ¼ 0, ð40cÞ
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P10 ¼ � 1ð Þmþ1 π
2
H0 κð Þ, P01 ¼ 0: ð40dÞ

These results imply that,when bν, bγ≪ 1,fixed points occur in the vicinity
of q=mπ, p= nπ. The latter are the corner points of the residual circu-
lation cells when (m + n) is even and the midpoints of the cells when
(m + n) is odd. The effect of increasing bν is that their locations shift:
those near the corner points shift only in the x-direction, whereas those
near the midpoints shift only in the y-direction. The direction of the
shifts is controlled by H0(κ). For example, when κ is smaller than the
first zero of H0(κ), which occurs at κ ≃ 4.33, fixed points are to the left
of the bottom-left and top-right corner, to the right of the top-left and
bottom-right corner and below the center point. Interestingly, varia-
tions in bγ do not affect these fixed points, so periodic solutions for bγ ¼
0 are also periodic solutions for small bγ.

Finally, we consider the stability of the fixed points of the map forbγ ¼ 0. In that case, themap is (toO ν3
� �

) symplectic and thus the stabil-
ity of fixed points is determined by the trace Tr of the tangent map, i.e.
Tr = ∂qj+1/∂qj + ∂pj+1/∂pj, evaluated at the fixed points (see e.g.
Section 4.3 in [3]). It turns out that Tr > 2 when (m + n) is even,
meaning that these fixed points (located close to the corner points)
have two real eigenvalues, one smaller and one larger than 1.
Consequently, they are unstable, hyperbolic points. When (m + n) is
odd, Tr < 2, so two complex eigenvalues (which are each other's
conjugates) with modulus 1 are obtained. These fixed points, located
near the midpoints of the cells, are center points and thus Lyapunov
stable. The effect of setting bγ > 0 will be presented and discussed in
subsequent sections.

4. Results

4.1. Sensitivity of model results to numerical scheme

Fig. 4 shows tidal maps and time series, calculated with the
symplectic code for model (6), assuming γ=0, ν=0.3, and two differ-
ent values of the dimensionless topographic wavenumber: κ= π/2 and
κ = π. The time step was Δt = 2π/1000 (see Subsection 2.2). Different
initial conditions were chosen in the domain −π ≤ κx ≤ π, 0 ≤ κy ≤ π.
As shown in Fig. 1, this domain covers two cells with clockwise and an-
ticlockwise residual circulations in the left half and right half of the do-
main, respectively.

Note that it seems that the tidal maps are invariant under the trans-
formation x, yð Þ ! � x, πκ � y

� �
, but a closer inspection reveals that this

is not the case. Instead, the equations are invariant under the transfor-
mations (x,y, t) → (x + 2nxπ/κ,y + 2nyπ/κ, t) and (x,y, t) → (−x,−y,
t + (2nt − 1)π), with nx, ny and nt being integers. This explains why the
domains shown cover at least two adjacent residual circulation cells.

Tidal maps, for the same parameter values and initial conditions as
in Fig. 4, were also generated with two other numerical schemes:
ode45 and RK4. The results (not shown) are overall similar, i.e., the
same patterns are found. However, run times were different. For κ =
π/2 the code with the symplectic scheme took approximately 8 s with
Matlab -R019B on a Macbook Air. For ode45 and RK4 the run times
were a factor ~2, respectively ~5, longer. Thus, besides preserving the
symplectic structure of the Hamiltonian part of the system, the new
code is also faster.

The tidalmap for κ= π/2 (Fig. 4a) reveals the existence of both ellip-
tical points (in the interior) and hyperbolic points (at the boundaries
y=0and y= κπ). The presence of these fixed pointswas demonstrated
in Section 3. There aremany regular orbits, which loop around the ellip-
tical points. The sense of revolution of these orbits is identical to that of
the residual circulation cells, i.e., clockwise in the left part of the domain
and anticlockwise in the right part. However, for initial conditions with
y(t=0) close to y=0or y=1, chaotic trajectories appear (see also the
time series of κx/π κy/π and in panels b and c). These orbits remain close
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to stable and unstable manifolds of the hyperbolic points that are lo-
cated at y = 0 and y = 1. When orbits get close to these hyperbolic
points the orbits may cross the border of the domain and enter a differ-
ent cell.

For κ = π (Fig. 4d), the area with regular orbits is smaller than that
in panel a and much more orbits are chaotic (some time series are
shown in panels e and f). The regular orbits are also more complex
than those in panel a: the closed blue curve and red curve each enclose
an area where quasi-periodic solutions occur with a dominant period
that is three times the period of the imposed tide. Moreover, in contrast
to the previous case, regular solutions now revolve in a direction
that is opposite to that of the residual circulation. The latter implies
that the residual Lagrangian velocity (i.e., the net displacement of par-
cels in one tidal period) opposes the Eulerian velocity. This is due to
Stokes drift [19], which results from the fact that a moving tracer expe-
riences at each time a velocity that differs from the velocity at the initial
point.

The difference in direction of revolution of regular orbits between
κ = π/2 and κ = π can be explained from the approximate analytical
tidal map (38). This map shows that the sense of rotation changes at
values κ = κn that are zeros of Bessel function J0(κ), i.e. κ1 = 2.4048. . ,
κ2 = 5.5201. ., etc. [18]. According to (38), for these values all points
in the domain are fixed points, implying the occurrence of global
bifurcations. As is detailed in SI-Appendix E, the numerical tidal map
shows similar, yet slightly different behavior. It turns out that in the vi-
cinity of κn (for example, in the range 1.97 < κ < 2.58), a series of
ordinary bifurcations occur that ultimately result in the change in
sense of revolution of orbits about elliptical points.

4.2. Quantification of chaos and dependence of results on the numerical
scheme

Color plots of the computed largest Lyapunov exponent for different
initial conditions in the domain are shown in Fig. 5 for the parameters
ν = 0.3 and κ = π/2. Similar plots are shown in Fig. 6 for ν = 0.3 and
κ= π. The different panels in each figure are for our numerical scheme
(default setting, 1000 time steps per tidal cycle), the same schemewith
1500 time steps per tidal cycle, the ode45 schemewith abstol= reltol=
6 ⋅ 10−6) and the RK4 scheme with 350 time steps per tidal cycle.

For κ = π/2, the largest Lyapunov exponent has a value of 0.03
(panel a), which means that small perturbations on the chaotic orbit
grow a factor e in (1/0.03) tidal periods. Furthermore, for most initial
conditions (those in theblue area in panel a) the resulting orbits are reg-
ular. Chaotic behavior may occur when initial conditions are chosen
close to the stable and unstable manifolds of the hyperbolic points at
y = 0 (x ≃ − 0.15κπ and x ≃ − 0.85κπ) and at y = κπ (x ≃ 0.15κπ and
x ≃ 0.85κπ). When the time step in the symplectic scheme is increased
from 1000 to 1500 steps per tidal cycle, differences are very small for
most initial conditions (panel b). There are however isolated initial con-
ditions near the stable and unstable manifolds where one numerical
setting yields a zero maximum exponent, whereas the other setting
yields a positive value. These ‘spikes' do not disappear when the time
step is further reduced. Their occurrence is probably due to the fact
that near these manifolds a complex pattern of both chaotic and regular
orbits occurs. Which orbit is realized for a given initial condition near
these manifolds depends on the time step and the outcome is erratic,
no matter how small the time step. We will return to this aspect in
Section 5.

When Lyapunov exponents are calculated with ode45, and with
RK4, results are quite similar to those obtained for the default setting,
except for isolated initial conditions. The main differences are that
ode45 and RK4 are slower (by a factor of ~2 and ~5, respectively) than
our symplectic code.

In case that the topographic wavenumber κ = π, the largest value
of the Lyapunov exponent is about 0.07 and, compared to the
previous case, much more initial conditions result in chaotic orbits



Fig. 4. a. Tidal map for γ=0, ν=0.3, κ= π/2, symplectic method, 1000 time steps per tidal period, number of tidal periods N=2000. Initial conditions for κ= π/2: κx/π=− 0.5001, κy/
π=0.999 down to 0.7 with steps of 0.03 and κx/π=0.5001, κy/π=0.001 up to 0.3 with steps of 0.03. b. Time series of κx/π of the first orbit shown in panel a at multiples of the imposed
tidal period. c. As panel b, but for κy/π. d. As panel a, but for κ= π,N=1000; initial conditions for κ= π: as in a., but steps of 0.05 and down to 0.7/up to 0.3. e. Time series of κx/π of thefirst
two orbits shown in panel d at multiples of the imposed tidal period. f. As panel e, but for κy/π of the first orbit.
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(Fig. 6a). Still, there are two relatively large (blue) areas where orbits
will behave regular. Note that outside these areas, there are small sets
of initial conditions for which orbits are regular. Likewise, inside these
areas there are subsets of initial conditions (light-blue points) for
which orbits will be weakly chaotic (largest Lyapunov exponent of
about 0.01).

When decreasing the time step of the symplectic code, again differ-
ent values of Lyapunov exponents are found for specific initial condi-
tions (Fig. 6b). The latter are mainly found around the fringes of the
blue areas shown in panel a. Similar isolated differences in values of
the Lyapunov exponents are seenwhen the default scheme is compared
with ode45 and RK4 (Fig. 6c,d). Regarding the computational time, also
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for this setting ode45 and RK4 perform much slower than the default
scheme.

Fig. 7 shows the results of the zero-one test for chaos for the two
cases that are considered in this subsection. There is a clear correlation
between the values of the K-coefficient and those of the largest
Lyapunov exponent (compare Fig. 7a with Fig. 5a and Fig. 7b with
Fig. 6a). The calculated K-coefficients further confirm that for κ = π
there are two larger areas where mostly regular orbits occur, but inside
these areas small bands of initial conditions are found that result in cha-
otic orbits. Conversely, in the large area where mostly chaotic orbits
occur, there are small subareas of initial conditions for which orbits
will behave regularly.



Fig. 5. a: Color plot of the largest Lyapunov exponent (κ= π/2, ν = 0.3) as a function of initial conditions in the x − y-plane, default setting (symplectic method, 1000 steps/tidal cycle,
absolute tolerance <0.0002, relative tolerance <0.01. b) Difference plot of the largest Lyapunov exponent calculated by the symplectic method, 1500 steps/tidal cycle, with respect to the
default setting. c. As b, but for ode45 (abstol = reltol = 6 ⋅ 10−6) with respect to default. d. As b., but for RK4-350 steps/tidal cycle with respect to default.
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4.3. Effects of non-Hamiltonian velocity field on tracers motion

Fig. 8 shows tidalmaps for the sameparameter values as in Fig. 4, but
now the velocity field includes a contribution that originates from po-
tential ϕ. The magnitude of the latter term is measured by parameter
γ. Here,γ=0.01, so aweakly perturbedHamilton system is considered.
The perturbed velocity field causes the system to have multiple
attractors, which are either periodic or strange attractors. They are lo-
cated in the areas where the Hamiltonian system has chaotic orbits
(i.e., the red areas in Fig. 7). The transient motion towards these
attractors is in the order of 100 tidal periods. Thus, tracer material
moves to specific regions of the phase space, but their precise orbits
strongly depend on the initial condition. The distribution of Lyapunov
exponents in the x − y phase space (not shown) is quite erratic,
i.e., there are no large connected areas of initial conditions for which
the nontransient motion will be periodic or chaotic.

Fig. 9 shows another example of how the potential termsdestroy the
Hamiltonian structure of the system. In this case ν = 0.04 and two
values of the topographic wavenumber are considered: κ = π/2 (left
panels) and κ = π (right panels). The upper panels show tidal maps
for the Hamilton system, i.e. γ = 0. Fixed points (near the corners of
the domain, as well as two near the centres of the residual circulation
cells) and closed orbits are found. Thus, solutions x(t), y(t) of system
(6) are periodic or quasi-periodic. In the lower panels γ = 0.3 and the
non-Hamiltonian terms cause the fixed points in the centres to become
repellers and all invariant tori to break up. On the long term solutions
tend to attractors, i.e., orbits that closely follow the edges of the residual
circulation cells. Solutions converge to different attractors, depending
on their initial conditions and in some cases tracer orbits go from one
9

circulation cell to another (see the blue and green curves in panel c).
For the distribution of a tracer S this implies that at fixed locations
(x,y) in the interior of each cell, in the course of time values of S are re-
placed by values of S that originate from locations that are closer to the
center point of the cell). Furthermore, near the edges of each cell strong
variations in S will occur (unless the initial distribution of S is spatially
uniform).

The effect of adding non-Hamiltonian terms is also evident from the
approximate analytical tidal map (38). As was shown in Section 3,
adding these terms do not affect thefixed points of theHamiltonian sys-
tem, but they do affect their stability properties. When computing the
eigenvalues of the tangent map, it follows that the fixed points that
are elliptical for γ = 0 become unstable spiral points when γ > 0.

The reason that stable periodic orbits of the Hamiltonian system be-
comeunstable for γ>0, can be deduced from analyzing the evolution of
small elements δV= δxδy in phase space along such periodic orbits. The
equation for δV for our system (2b) reads

1
δV

δ
:

V ¼ ∂ x
:

∂x
þ ∂ y

:

∂y
≡ D: ð41Þ

This result shows that if the averaged value of D, calculated along a
periodic orbit, is positive, δV will grow in time and so, the orbit will be
unstable.

In the present model D can be straightforwardly calculated. More-
over, it has a clear physical interpretation: since x

: ¼ u and y
: ¼ v, D

is the divergence of the Eulerian velocity field and it is determined
by the continuity equation for depth-averaged tidal motion over a



Fig. 6. As Fig. 5, but for κ = π, ν = 0.3.
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small-amplitude bottom topography (see [14] and Eq. (A1a) of
SI-Appendix A):

D ¼ � cos tð Þ ∂h
∂x

, ð42Þ

with h denoting the variations in depth, given in Eqs. (5a) (5b) and
shown in Fig. 1.

The averaged value of D can be calculated if the periodic orbit is
known, which corresponds to a fixed point of the tidal map. Fig. 10
Fig. 7. Color plots of K-coefficient of the zero-one test for chaos, sym

10
shows periodic orbits of system (6) for κ= π/2 and κ= π; the other pa-
rameters are ν=0.3 and γ=0.3. The parts of the orbits whereD is pos-
itive are colored red, while the blue parts indicate negative D. The sense
of rotation of the orbits is anticlockwise. Clearly, along most part of the
orbitsD is positive, i.e. duringflood (cos(t)> 0) the parcel following this
orbit is mostly in an area where ∂h/∂x ≡ hx is negative, whereas during
ebb (cos(t) < 0) the parcel experiences mostly positive hx. Near the
turn of the tide, i.e., in the areas where the largest and smallest x-
values are attained, values of D are variable, but also weak, because
here both cos(t) are hx are small (the latter is because y ≃ 1

2π=κ). Thus,
plectic method, ν = 0.3 and κ = π/2 (left) and κ = π (right).



Fig. 8. As Fig. 4, but an additional non-Hamiltonian term is included in the system that
originates from the velocity potential ϕ. Magnitude of this term is γ = 0.01.

Fig. 10. Periodic orbits for κ = π/2 (panel a) and κ = π (panel b), the values of the other
parameters are ν = 0.3 and γ = 0.3. The thick markers indicate the initial time t = 0
and arrows point the direction of increasing values of t. The orbit is colored red when
the local value of flow divergence D is positive, whilst a blue color is used when D is neg-
ative. The variable hx = ∂h/∂x, with h the depth perturbation as is given in Eq. (5) and
Fig. 1.
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the largest contributions to the averaged value ofD occurwhen the tidal
current is strong and these contributions are positive.

5. Discussion

To quantify the behavior of themodel of tracermotion,which has no
exact solutions, numerical methods were employed to simulate tracer
orbits. As always, the challenge is to choose a suitable scheme. Here,
three of them were considered: the built-in ode45 scheme of Matlab,
RK4 and a new second-order scheme that conserves the symplectic
structure of the Hamiltonian part of the system. The accuracy of each
scheme could not be objectively determined using our dynamical sys-
tem (6), as it has no exact solutions or constants of motion that can be
used to assess the performance of the schemes. We therefore decided
to apply the schemes to a test system that bears similarity to our system
(it has a time-harmonic Hamiltonian and complex solutions), but its an-
alytical solutions are known (see SI-Appendix C). The test system was
configured such that its solutions were bounded and quasi-periodic.
Fig. 9. a: Tidal map for ν = 0.04, κ = π/2 and γ = 0.0 b) As a., but for κ = π c. As a,
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The condition imposed for accuracy of each numerical scheme was
that its relative error was slightly less than 0.01 after 1000 forcing pe-
riods. When subsequently being applied to our system 6, it appeared
that, of the three schemes, the new scheme performs best, because it
but including the non-Hamiltonian velocity field, γ= 0.3. d. As c., but for κ = π.
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conserves the symplectic structure of the Hamiltonian terms that
occur in our model and moreover, it is a factor five faster than ode45
and RK4. The new scheme is of second order and could be extended to
be of higher order (examples of higher order symplectic schemes are
mentioned in [20]). However, it would be more difficult to design
such schemes such that they can also deal with additional potential
terms.

Note that the possibility to use a symplectic scheme relies on the
condition that splitting of the stream function and velocity potential of
the underlying velocity field can be achieved, so that each subsystem
can be integrated in a simplerway than the original system. For our par-
ticular model this leads to Eq. (10). For most dynamical systems, split-
ting is indeed possible (see e.g. [16,21]). In the context of our problem,
splitting would still be possible when additional time harmonics in
the stream function and velocity potential would be included (only a
few of the full set given in Eq. (3) are used), and also when the bottom
topography in Eq. (4) would have additional spatial Fourier modes.
While our scheme works well when using the idealized 2D hydrody-
namicmodel of SI-Appendix A, it cannot be used to integrate particle or-
bits using gridded velocity data, as obtained from e.g. a sophisticated
numerical hydrodynamicmodel, since no useful splitting of the velocity
field determined by these data can bemade. Thus, in these cases, Runge-
Kutta schemes, as for example used in [8,9] and [22], are obvious
choices.

To quantify the characteristics of orbits, we have calculated both the
largest Lyapunov exponent and the K-coefficient of the zero-one test for
chaos for various model settings and for a range of different initial con-
ditions. The advantage of the largest Lyapunov exponent is that it has a
clearmeaning: it gives themean growth rate of small perturbations that
evolve on the principal orbit. In some cases however, their values are
positive, but small. That raises the question whether they characterize
orbits that are weakly chaotic, or whether the outcome is an artefact
of the numerical method. According to their definition, Lyapunov expo-
nents involve an integration over an infinitely long time. In our code, the
value of the largest Lyapunov exponent λ is determined as follows. First
λ(T) is calculated for a time interval of at least 2000 tidal periods. When
integration is continued over 1000 more tidal periods and changes
in the value of the exponent are smaller than a certain tolerance (here
1 ⋅ 10−4, then λ= λ(T), otherwise T is increased. However, this method
does not guarantee that for even larger value of T the criterion is not
met. It is therefore very useful to calculate the K-coefficient of the
zero-one test for chaos as well: any orbit that has a K-value that is
close to 1 will be chaotic.

A remarkable feature is the occurrence of ‘spikes' in the plots that
show the changes in values of the largest Lyapunov exponent when
e.g. a different time step or numerical scheme is used (see panels b–d
in Figs. 5 and 6. A likely cause for their appearance is that for that param-
eter setting the system is fully Hamiltonian and its tidal map contains
hyperbolic fixed points. Especially in the areas near the stable and un-
stable manifolds of these points, chaotic and regular orbits occur that
can be at very close distance. In other words, when choosing a certain
initial condition in that area, the joint occurrence of round-off errors
and truncation errors might cause the simulated orbit to be chaotic or
regular. This sensitivity does not decrease when for example choosing
smaller time steps: the spikes will still occur.

It is important to stress that the velocity field that causes the
advection of particles results from a model [14] that considers depth-
averaged fluid motion over a bumpy bed. The result is a two-
dimensional velocity field that is divergent and thus the equations
describing tracer motion do not constitute a Hamilton system. This
fact was ignored in previous studies on tracer motion in tidal seas ([6]
and references herein), who only considered the part of the velocity
field that is governed by the residual stream function. Our findings
show that the divergent part of the velocity field, no matter how
small, has a profound impact on tracer motion. It appears that periodic
orbits, which are Lyapunov stable for γ = 0, become unstable for γ >
12
0. Moreover, in the latter case orbits tend to attractors in the tidal
map, which (for the parameter values that we explored) are either
limit cycles or strange attractors.

The hydrodynamic model that is used in this study is highly ideal-
ized. In natural tidal systems, tracers are subject to three-dimensional
(3D) motion, they experience effects of Coriolis, wind, and they will
be subject to Stokes drift resulting from both sea waves and phase dif-
ferences in the tidalwave, etc. These aspects are accounted for in 3Dnu-
merical models ( e.g. [22,23]). In our model a depth-averaged Stokes
drift does occur (see Section 4.2), but its source is not the phase differ-
ence in progressive waves, but rather the joint action of a spatially uni-
form tidal current and Eulerian residual currents that are induced by
tide-topography interaction.

Studies on tracer motion are important to gain more understanding
on e.g. the fate ofmicroplastic, transport of nutrients and salt, etc. In this
context, it is important to discuss ourfindings in the context of thework
of [23], who concluded that tides are not important for the net transport
of plastics in the oceans. Indeed, in their model the role of tides is mar-
ginal, but the resolution of their model is such that it cannot account for
tide-topography interactions at the scale of the tidal excursion, which is
of the order of 10 km. Thus, net advection of floating microplastics by
tides occurs at the subgrid scale of their model and needs to be param-
etrized. This could be done by using a model, like the one analyzed in
this study, in which the model parameters (topographic wavenumber,
bottom friction, amplitudes and phases of tidal constituents) are esti-
mated from local bathymetric data and tidal data.

6. Conclusions

A model for tracer motion in shallow seas with a bumpy bed was
studied. Trajectories of tracers were simulated for different velocity
fields and model parameters, using different numerical schemes. The
conclusions are as follows.

1. Three numerical schemes were tested: the built-in ode45 scheme of
Matlab, a fourth order Runge-Kutta scheme and a new scheme. The
latter is an extension of an existing symplectic scheme to systems
that also contain non-symplectic terms. It was found that the latter
performs best, because of its conservation properties and its short
computation times.

2. Early simplified models considered advection of tracers by a velocity
field that is fully described by a stream function ψ. Consequently, the
equations governing tracer motion constitute a Hamilton system,
with ψ being the Hamiltonian. However, depth-averaged velocity
fields in tidal seas are divergent, resulting in additional components
described by a velocity potential ϕ. When the latter is accounted
for, no matter how small its magnitude, it causes major changes in
the behavior of the tracers: net displacements will be towards
attractors.

3. To characterize the behavior of tracer orbits, it is recommended to
calculate both the largest Lyapunov exponent and the K-coefficient
for chaos. The latter are particularly helpful when Lyapunov expo-
nents are positive, but small.

4. Analysis of approximate analytical solutions and the related tidal
map, obtained by the method of orbit expansion, turned out to be a
helpful tool to interpret the behavior of the model.
CRediT authorship contribution statement

H.E. de Swart: conceptualization, methodology, simulations, writing
- original draft preparation.

S.T. van der Wal: simulations, writing, reviewing.
J.E. Frank: numerics, reviewing.
G.P. Schramkowski: methodology, reviewing.



H.E. de Swart, S.T. van der Wal, J.E. Frank et al. Chaos, Solitons and Fractals 161 (2022) 112318
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.chaos.2022.112318.

References

[1] Aref H. Stirring by chaotic advection. J Fluid Mech. 1984;143:1–21. https://doi.org/
10.1017/s0022112084001233.

[2] Ottino JM. Mixing, chaotic advection, and turbulence. Annu Rev Fluid Mech. 1990;
22:207–53. https://doi.org/10.1146/annurev.fl.22.010190.001231.

[3] Tabor M. Chaos and integrability in nonlinear dynamics: an introduction. New York:
John Wiley and Sons; 1989.

[4] Pasmanter R. Dynamical systems, deterministic chaos and dispersion in shallow
tidal flow. In: Dronkers J, van Leussen W, editors. Physical processes in estuaries.
Springer Verlag; 1988. p. 42–53.

[5] Ridderinkhof H, Zimmerman JTF. Chaotic stirring in a tidal system. Science. 1992;
258:1107–11. https://doi.org/10.1126/science.258.5085.1107.

[6] Beerens SP, Ridderinkhof H, Zimmerman JTF. An analytical study of chaotic stirring
in tidal areas. Chaos Solitons Fractals. 1994;4:1011–29.

[7] Zimmerman JTF. Topographic generation of residual circulation by oscillatory (tidal)
currents. Geophys Astrophys Fluid Dyn. 1978;11:35–47.
13
[8] Orre S, Gjevik B, LaCasce JH. Characterizing chaotic dispersion in a coastal tidal
model. Cont Shelf Res. 2006;26:1360–74. https://doi.org/10.1016/j.csr.2005.11.015.

[9] XuD, Xue H. A numerical study of horizontal dispersion in amacro tidal basin. Ocean
Dyn. 2011;61:623–37. https://doi.org/10.1007/s10236-010-580 0371-6.

[10] Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dy-
namical systems. Prog Theor Phys. 1979;61:1605–16.

[11] Benettin G, Galgani L, Giorgilli A, Strelcyn J-M. Lyapunov characteristic exponents for
smooth dynamical systems and for hamiltonian systems; a method for computing
all of them. Part 1: theory. Meccanica. 1980;15:9–20.

[12] Gottwald GA, Melbourne I. A new test for chaos in deterministic systems. Proc R Soc
Lond A. 2004;2042:603–11.

[13] Gottwald GA, Melbourne I. The 0-1 test for chaos: a review. In: Skokos C, Gottwald
GA, Laskar J, editors. Chaos detection and predictability. Berlin Heidelberg:
Springer Verlag; 2016. p. 221–47. https://doi.org/10.1007/978-3-662-48410-4\_7.

[14] Zimmerman JTF. Vorticity transfer by tidal currents over an irregular topography. J
Mar Syst. 1980;38:601–30.

[15] Press WH, Teulkolsky SA, Vetterling WT, Flannery BP. Numerical recipes: the art of
scientific computing. Cambridge University Press; 2007.

[16] McLachlan RI, Quispel GRW. Splitting methods. Acta Numer. 2002;11:341–434.
https://doi.org/10.1017/S0962492902000053.

[17] Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the
Störmer-Verlet method. Acta Numer. 2003;12:399–450. https://doi.org/10.1017/
S0962492902000144.

[18] Abramowitz M, Stegun IA. Handbook of mathematical functions. New York: Dover
Publications; 1965.

[19] Longuet-Higgins MS. On the transport of mass by time-varying ocean currents.
Deep-Sea Res. 1969;16:431–47.

[20] Cartwright JHE, Piro O. The dynamics of Runge-Kutta methods, 605. Int J Bifurcation
Chaos. 1992;2:427–49.

[21] Hairer E, Hochbruck M, Iserles A, Lubich C. Geometric numerical integration.
Oberwolfach Rep. 2006;3(1):805–82.

[22] Stanev E, Badewien TH, Freund H, Grayek S, Hahner F, Meyerjürgens J, Ricker M,
Schöneich-Argent RI, Wolff J-O, Zielinski O. Extreme westward surface drift in the
North Sea: public reports of stranded drifters and lagrangian tracking. Cont Shelf
Res. 2019;177:24–32. https://doi.org/10.1029/2019JC01558.

[23] Sterl M, Delandmeter P, van Sebille E. Influence of barotropic tidal currents on trans-
port and accumulation of floating microplastics in the global open ocean. J Geophys
Res Oceans. 2020;125:e2019JC015583. https://doi.org/10.1029/2019JC015583.

https://doi.org/10.1016/j.chaos.2022.112318
https://doi.org/10.1016/j.chaos.2022.112318
https://doi.org/10.1017/s0022112084001233
https://doi.org/10.1017/s0022112084001233
https://doi.org/10.1146/annurev.fl.22.010190.001231
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102258498153
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102258498153
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102258566350
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102258566350
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102258566350
https://doi.org/10.1126/science.258.5085.1107
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102305330728
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102305330728
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102259142401
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102259142401
https://doi.org/10.1016/j.csr.2005.11.015
https://doi.org/10.1007/s10236-010-580 0371-6
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102259344763
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102259344763
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102305495432
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102305495432
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102305495432
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102300273312
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102300273312
https://doi.org/10.1007/978-3-662-48410-4\_7
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102300278782
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102300278782
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102300338980
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102300338980
https://doi.org/10.1017/S0962492902000053
https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1017/S0962492902000144
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102301492392
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102301492392
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102302036986
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102302036986
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102302445950
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102302445950
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102302553676
http://refhub.elsevier.com/S0960-0779(22)00528-8/rf202206102302553676
https://doi.org/10.1029/2019JC01558
https://doi.org/10.1029/2019JC015583

	Sensitivity of modeled tracer motion in tidal areas to numerics and to non-�Hamiltonian perturbations
	1. Introduction
	2. Material and methods
	2.1. Model
	2.2. Numerical methods
	2.3. Analysis of model output
	2.3.1. Tidal maps
	2.3.2. Largest Lyapunov exponent
	2.3.3. 0–1 test for chaos

	2.4. Design of numerical experiments

	3. Construction of approximate solutions and related tidal map
	4. Results
	4.1. Sensitivity of model results to numerical scheme
	4.2. Quantification of chaos and dependence of results on the numerical scheme
	4.3. Effects of non-Hamiltonian velocity field on tracers motion

	5. Discussion
	6. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References




