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ABSTRACT: MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature measurements in com-
bination with in situ air temperature records from 119 meteorological stations are used to reconstruct a monthly near-surface
air temperature product over the Antarctic Ice Sheet (AIS) by means of a neural network model. The product is generated
on a regular grid of 0.058 3 0.058, spanning from 2001 to 2018. Comparison with independent in situ air temperature meas-
urements shows low uncertainty, with a mean bias of 0.098C, a mean absolute error of 2.238C, and a correlation coefficient of
97%. Furthermore, the performance of the reconstruction is better than ERA5 (the fifth-generation ECMWF reanalysis
model) against in situ measurements. For the 2001–18 period, the MODIS-based near-surface air temperature product yields
annual warming in the East Antarctica, but cooling in the Antarctic Peninsula and West Antarctica. However, they are not
statistically significant. This product can also be used to investigate the impact of the Southern Hemisphere annual mode
(SAM) on year-to-year variability of air temperature. The enhanced positive phase of SAM in recent decades in austral sum-
mer has a cooling effect on East and West Antarctica. In addition, the dataset has the potential application for climate model
validation and data assimilation due to the independence of the input of a numerical weather prediction model.
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1. Introduction

As a central component of the cryosphere, the Antarctic
Ice Sheet (AIS) plays a very important role in the global cli-
mate system. Near-surface air temperature is one of the most
fundamental factors in the Antarctic system, and its variations
affect not only the mass variations of the ice sheet itself, but
also the ecological environment, biochemical processes, and
species diversity of the surrounding sea areas (Herbei et al.
2016; Convey et al. 2018). For example, the increased air tem-
perature is an important direct or indirect contributor of the
current AIS mass loss, which is likely to be doubled by 2050
(Trusel et al. 2015). Seven of 12 ice shelves around the
Antarctic Peninsula significantly retreated, and even almost
completely disappeared in recent decades due to climate
warming. Since the 1960s, the habitat area and coverage of
two Antarctic native vascular plant species (Deschampsia
antarctica and Colobanthus quitensis) increased significantly
(Cannone et al. 2016). Thus, it is greatly essential to quantify
the changes of near-surface air temperature in Antarctica.

From the 1957/58 International Geophysical Year (IGY), a lot
of efforts have been put into direct meteorological observations
across the Antarctic continent. Until now, 17 manned weather
stations have continuous meteorological records from the
1957/58 IGY onward. However, most of the stations are lo-
cated at the edge of the ice sheet, with only two stations in
the interior. As a result, it is challenging to represent climate
information of the vast Antarctic interior well by relying only

on the existing stations. To address this, more than 100 auto-
matic weather stations (AWSs) have been installed on the
Antarctic continent since the 1980s (Lazzara et al. 2012),
and their observations provide an important supplement for
Antarctic climatic research (Costanza et al. 2016). However,
the extremely harsh environment (e.g., extreme temperatures
and winds) in Antarctica usually results in intermittent gaps of
AWS measurements, and hence long-term records are also
scarce. Moreover, most of the AIS is still undocumented by
AWS observations. Thus, sparseness of observed data is a pri-
mary challenge when investigating spatial and variability of
temperature over the AIS.

Although significant progress has been made to improve cli-
mate models including atmospheric general circulation models
(AGCMs) (Genthon and Krinner 2001; Xin et al. 2019; Liang
et al. 2021) and limited area models (LAMs) for polar regions,
such as the RACMO (Regional Atmospheric Climate Model)
(van Lipzig et al. 2004a,b; Noël et al. 2018), MAR (Modèle
Atmosphérique Régional) (Gallée and Gorodetskaya 2010),
and Polar WRF (Weather Research and Forecasting) models
(Guo et al. 2003; Tastula and Vihma 2011; Tastula et al. 2012),
AGCMs do not adequately represent the effect of topography
on air temperature due to their coarse resolution, and the
LAMs suffer from the lack of high-quality forcing data at their
boundaries, leading to relatively high uncertainties of the sim-
ulations (Deb et al. 2016; Zhang et al. 2022). Global reanalysis
products such as ERA-Interim (the ECMWF interim reanaly-
sis) and ERA5 are regarded as the potential resources for repre-
senting climate changes in recent decades, due to the assimilation
of in situ observations. However, they often suffer from spuriousCorresponding author: Y. T. Wang, yetangwang@sdnu.edu.cn
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trends in the high southern latitudes (e.g., Nicolas and Brom-
wich 2014; Huai et al. 2019; Wang et al. 2020).

Thanks to the rapid development of satellite remote sensing
technology, thermal infrared remote sensing images, which
can provide spatially continuous data at a high resolution,
have become an important tool to determine global surface
skin temperatures. The resulting land surface temperature
(LST) products were used as a substitute for near-surface air
temperature or in combination with limited air temperature
measurements to fill the gaps of low spatial density of weather
stations when performing a comprehensive spatial and tempo-
ral analysis (Comiso 2000; Kwok and Comiso 2002; Schneider
et al. 2004; Monaghan et al. 2008; Nielsen-Englyst et al. 2019).
For example, the National Oceanic and Atmospheric Admin-
istration (NOAA) AVHRR satellite retrievals of surface
temperature have been used as a background field for the re-
construction of AIS near-surface temperature changes over
the past 50 years (Steig et al. 2009). The Moderate Resolution
Imaging Spectroradiometer (MODIS) onboard the Terra and
Aqua satellites provides both daytime and nighttime LST
data at a relative fine resolution (∼1 km). However, satellite-
retrieved LST are not identical to, and even substantially dif-
ferent from, air temperature measurements, and thus robust
estimates of air temperature derived from LST are required.
As a consequence, many attempts have been made to utilize
the retrievals of MODIS LST to derive air temperature by
various approaches at regional scale (e.g., Mostovoy et al.
2006; Neteler 2010; Vancutsem et al. 2010; Benali et al. 2012;
Kilibarda et al. 2014; Hooker et al. 2018; Zhang et al. 2018).
Recently, a global monthly 2-m air temperature dataset was
generated based on MODIS LST and 3253 station observations
from the Global Historical Climatology Network–Monthly
(GHCN-M) dataset using the geographically weighted re-
gression (Hooker et al. 2018). However, the AIS is not in-
cluded due to the data missing of the GHCN-M dataset over
Antarctica.

Our objective is to reconstruct a monthly near-surface air
temperature dataset over the entire grounded AIS from 2001
to 2018, using MODIS LST products in combination with air
temperature records from 119 meteorological stations. The re-
sulting air temperature variability is also examined. In addition,
the dataset serves to investigate the influence of the Southern
Hemisphere annual mode (SAM) on the AIS temperature
changes.

2. Data and methods

a. Data

1) IN SITU OBSERVATIONS

We compiled a dataset of the quality-controlled monthly
means of in situ near-surface temperature observations from the
READER (Reference Antarctic Data for Environmental Re-
search) of the Scientific Committee on Antarctic Research
(Turner et al. 2004), the Antarctic Meteorological Research Cen-
ter (AMRC) at the University of Wisconsin (Lazzara et al. 2012),
the Italian National Antarctic Research Programme, the Austra-
lian Antarctic AWS dataset, and the IMAU (Institute for Marine

and Atmospheric Research, Utrecht University) Antarctic AWS
Project. This compilation contains near-surface air temperature
observations from 119 Antarctic weather stations (95 AWSs
and 24 manned stations). Their spatial distribution is shown in
Fig. 1, and the corresponding coordinates, elevations, and
data availability of these stations are summarized in Table A1
of appendix A.

2) MODIS SURFACE TEMPERATURE DATA

The MODIS LST data used in this paper are the monthly
average LST datasets MODIS Level 3 data products
MOD11C3v006 and MYD11C3v006, which are synthesized
by the NASA MODIS Data Working Group after a series of
preprocessing such as geometric correction and atmospheric
radiation correction based on the processing of the Terra and
Aqua global daily LST datasets. The datasets include daytime
(LST_Day_CMG) and nighttime (LST_Night_CMG) monthly
average LST data (Wan 2013), with a spatial resolution of
0.058 3 0.058 (about 5.6 km at the equator). Here, we utilize
MOD11C3v006 data from January 2001 to December 2018,
and MYD11C3v006 between July 2002 and December 2018.
By means of a radiance-based method, the mean error of the
daily LST of MODIS V6 Level 2 (L2) products was estimated
to be within 60.68C in 10 validation datasets, and 0.88 and
1.98C in another two datasets, respectively (Wan 2014). For
Antarctica, Fréville et al. (2014) estimated the accuracy of
daily MODIS V5 LST by seven weather stations. The resulting
mean biases range from 21.88 to 0.18C, and in particular, the
root-mean-square errors are between 2.28 and 4.88C at five sta-
tions on the Antarctic plateau. Because of much higher accu-
racy of V6 LST than V5 LST (Wan 2014), we think that
MODIS V6 LST can be used as an input for the reconstruction
of gridded air temperature over the AIS.

FIG. 1. Spatial distribution of 119 weather stations; station names
can be found in Table A1 of appendix A.
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b. Methods

1) DATA PREPROCESSING

Due to the interference of cloud and other factors, the qual-
ity of each pixel of MODIS products is not always reliable.
Thus, the pixel-by-pixel quality control of the MODIS LST
data product is required before application. Here we use
Quality Control Scientific Datasets (QC SDS) in MOD11C3
product, which provides the quality about algorithm results
(LST values) of each pixel. The grid cells with “good quality”
or “fairly calibrated” in the surface temperature QC_Day
layer and QC_Night layer are extracted in the form of masks,
and then the masks are used to screen out LST pixels. Addi-
tionally, a 15-day threshold is used as the minimum number
of clear-sky days and nights available for per month, based on
the Clear_sky field provided by the MOD11C3 product. Finally,
the averaged values of the daytime and nighttime products are
calculated for both Terra andAqua satellites.

2) NEURAL NETWORK FITTING MODEL

The concept of neural network model originates from the
neural network computational model created by McCulloch and
Pitts in the 1940s, which is designed to process data by simulat-
ing the functions of the biological nervous system (McCulloch
and Pitts 1943). A complete neural network model consists of
several neurons in the input layer, hidden layer, and output
layer. The neurons in each layer are connected by weight. Com-
pared with other machine learning methods, the neural network
model is based on statistical and mathematical models, and has
more advantages in estimating and predicting sample data (Ruiz
et al. 2016; Araújo et al. 2017; Sánchez et al. 2017).

A three-layer neural network fitting model is constructed
to reconstruct the near-surface temperature field of the
Antarctica by using the temperature data from 119 meteoro-
logical stations and the corresponding grid data from the
MODIS dataset. This method uses these station values as an-
choring points, and the objective of the resulting reconstruc-
tions is very close to them. According to the input, output,
and complexity of the research problem, we determine the
number of neurons in the input, hidden, and output layers of
1, 10, and 1, respectively. First, nearest neighbor interpolation
is used to extract the preprocessed MODIS LST at the corre-
sponding station locations. The MODIS LST values are
matched with the corresponding station records. Then, the
monthly near-surface air temperature of stations and the cor-
responding MODIS LST are respectively formed into a long
time series of sample set. To improve the computing speed,
the data are normalized. The sample dataset is randomly di-
vided into training data and testing data in a ratio of 2 to 3 by
stratified random samplings with respect to the stations. For
model training, a subset of 40% of the data is used, and the
remaining 60% are used as the test subset to assess the model
performance. Training data are presented to the network dur-
ing training, and the network is adjusted according to its error.
Testing data are not involved into network fitting and thus
provide an independent estimation of network performance
during and after training (Coulibaly et al. 2000).

During the construction of neural network fitting model,
40% MODIS LST randomly screened is taken as the input
of the model to establish the quantitative relationship be-
tween the station air temperature and MODIS LST in each
month. The input layer integrates and passes information
to the hidden layer; each neuron in the hidden layer summa-
rizes the information of the previous layer and transfers it to
the output layer through nonlinear activation function. The
neuron in the output layer will process the received value into
near-surface air temperature. The output results are fitted and
compared with the near-surface air temperature of stations in the
training data to obtain the correlation coefficients and the corre-
sponding errors. To improve the accuracy of the model, multiple
neural network learning is needed. The initial weight is randomly
selected, the number of iterations is set to 1000, the predeter-
mined target error of the neural network is 0.01, and the learning
rate is 0.01. Using the error back propagation method, the error
in the network training process is fed back to the neural net-
work. The threshold and weight of the network are constantly
adjusted, until the error meets the requirements or reaches
the number of iterations to achieve the optimal fitting effect
(here monthly R of higher than 0.95, and the mean bias values
ranging from20.498 to 0.998C), so as to construct the monthly
optimal neural network fitting model. After finishing the neu-
ral network training process, the remaining 60% observations
are used to verify the reliability of the established quantitative
statistical relationship between monthly station air tempera-
ture and MODIS LST. Finally, the spatiotemporally continu-
ous MODIS LST in each month is used as the input of the
trained model to generate the final reconstructed results for
each month. Figure 2 shows the process of Antarctic near-sur-
face air temperature reconstruction based on the neural net-
work fitting model. More technical descriptions can be seen in
appendix B.

3) ACCURACY ESTIMATION

Three metrics, the coefficient of determination (R2), mean
bias (MB), and mean absolute error (MAE), are used to eval-
uate the prediction accuracy of the neural network model; ad-
ditionally, R2 is used to reflect the degree of fitting between
the predicted and observed values. MB reflects the mean dif-
ference between the two datasets. MAE can avoid the offset
of positive and negative errors, and reflect the magnitude of
errors between two sets of data, which is used to quantify the
degree of deviation and dispersion of the predicted value rela-
tive to the actual value. Smaller values of MB and MAE
mean higher accuracy of the model. The formulas for these
three evaluation methods are as follows:

R2 � 1 2
∑m
j

∑n
i�1

(yi,j 2 pi,j)2

∑n
i�1

(yij 2 y)2
, (1)

MB � ∑m
j

∑n
i�1

(yi,j 2 pi,j)
n

, (2)
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MAE � ∑m
j

∑n
i�1

|yi,j 2 pi,j|
n

, (3)

where i is the spatial index (station number) and j is the tem-
poral index (month number). When calculating the monthly
performance, m = j, and when calculating the overall perfor-
mance, m = 12. Also, yi,j and pi,j are the measured and recon-
structed/ERA5 values of near-surface air temperature at the
meteorological stations in different months, respectively; y is
the average value of measured near-surface temperature over
time, and n is the number of statistical samples.

Given the complexity of the underlying Antarctic surface,
nearest neighbor interpolation is adopted to extract the
MODIS, ERA5, and reconstruction data at the corresponding
station locations.

3. Results

a. Uncertainties of AIS near-surface temperature
reconstruction

The neural network model is constructed by using the train-
ing data, and the accuracy of the model prediction is validated
against the testing data [i.e., the independent in situ data as

FIG. 2. The reconstruction process of Antarctic near-surface air temperature based on the neural network fitting model.
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described in section 2b(1)]. The overall performance of the
model is shown in Table 1. The reconstructed air temperature
exhibits slightly warm bias (0.098C), relative to the indepen-
dent in situ air temperature measurements. High and signifi-
cant correlation is found with R2 of 0.97 and the MAE is
estimated to be about 2.238C.

Table 2 indicates the seasonal cycle of reliability of the sat-
ellite-derived air temperature dataset. For any month, the R2

exceeds 0.90. Cold biases occur in April, June, and July,
whereas warm biases are observed for the other months.
MAE shows the dependence of seasonality, with the mini-
mum value (1.978C) in summer months. Seasonal dependence
of the performance for air temperature over the AIS is found
in the reanalysis products such as CFSR, ERA-Interim,
MERRA-2, and so on over the AIS (Huai et al. 2019). ERA5
also exhibits better quality over the summer, whereas rela-
tively poor performance occurs in winter (Table 2).

b. Comparison with ERA5 reanalysis

To further verify the reliability of the MODIS-derived near-
surface temperature dataset, we compare its performance with
ERA5 global reanalysis for 2-m air temperature (Tables 1 and 2).
It is notable that a large amount of station records from the test-
ing data have been assimilated by the ERA5 surface analysis
scheme, which is coupled to the atmospheric model (Hersbach
et al. 2020), and this should favor ERA5 when evaluating the
relative performance of the MODIS-derived air temperature
and ERA5. Despite this, with respective to the common inde-
pendent in situ air measurements (the testing data in the neural
network fitting model), ERA5 shows a smaller correlation and a
higher bias than the reconstructed air temperature dataset, with
an averaged R2 of 0.96, averaged MB value of 20.308C, and av-
erage MAE of 2.258C. In terms of monthly R2, eight out of
twelve R2 values from MODIS-derived air temperature are
comparable to or slightly better than ERA5, which is similar to
MAE, with the same or smaller values at eight months. Differ-
ent from the MODIS-derived monthly air temperature (warm
biases in nine months), ERA5 presents cold biases for spring,
summer, and autumn, and warm biases for winter.

c. Spatiotemporal variability of near-surface air
temperature over the AIS

Based on our reconstruction, spatial and temporal changes
and trends in the AIS air temperature during 2001–18 are in-
vestigated. They are compared with those from ERA5, to fur-
ther confirm the reliability of our reconstruction. Differences
associated with the strengths and weaknesses of each method
can be also further explored.

1) TEMPORAL VARIATION

We calculated the annual and seasonal mean air tempera-
ture anomalies of reconstruction, averaged over the Antarctic
Peninsula (AP), the EAIS (East Antarctic ice sheet), and the
WAIS (West Antarctic ice sheet), relative to their 2001–18
mean, respectively, to examine their interannual variations
(Fig. 3). A set of somewhat different time series is obtained
from ERA5 (Fig. 4). The linear trends in the time series of an-
nual and seasonal mean near-surface air temperature from
both datasets for the respective subregions are shown in Table
3. The 90% confidence level is used to test the statistical sig-
nificance of these trends.

Large year-to-year fluctuations appear in the time series of
annual mean temperature in the three regions of the AIS from
2001 to 2018, with different variation trends (see Figs. 3 and 4
and Table 3). Although on a regional scale, the magnitude of
the reconstructed annual near-surface temperature trend is
slightly different from that of ERA5, but their trend directions
are the same. Furthermore, all the trends are not significant at
the 90% confidence level. Over the EAIS, almost the same
warming trend (0.108C decade21) as ERA5 (0.078C decade21) is
observed from the reconstruction. However, the AP and WAIS
show cooling trends (20.238 and 20.098C decade21, respec-
tively). Compared with ERA5, the reconstructed temperature
trend is 0.198C decade21 lower in the AP, but 0.048C decade21

higher for the WAIS. The reconstruction is more consistent with
air temperature records based on a synthesis of six weather sta-
tions over the northern AP, revealing significant cooling from
1999 to 2014 (Turner et al. 2016). This is in contrast to the previ-
ously reported warming AP andWAIS from the late 1950s to the
end of twentieth century or the early twenty-first century (e.g.,
Turner et al. 2005; Steig et al. 2009; Nicolas and Bromwich 2014).

In terms of seasonal averaged air temperature, their trends
vary in sign and magnitude among different regions. In spring
(SON), the reconstruction results are consistent with ERA5
results; both show warming on the EAIS, whereas obvious
cooling occurs in the AP and WAIS (p , 0.10). However,
our reconstruction results do indicate stronger cooling than

TABLE 1. Overall performance of the satellite-derived air
temperature dataset (Reconstruction) and ERA5 by comparing
with independent data.

R2 MB (8C) MAE (8C)

Recon 0.97 0.09 2.23
ERA5 0.96 20.30 2.25

TABLE 2. Performance of the satellite-derived air temperature
dataset (Recon) and ERA5 by comparing with independent data
at each month.

R2 MB (8C) MAE (8C)

Months Recon ERA5 Recon ERA5 Recon ERA5

January 0.94 0.94 0.13 21.14 2.01 2.01
February 0.96 0.97 0.20 20.67 1.97 1.75
March 0.97 0.97 0.04 20.31 2.13 2.23
April 0.97 0.96 20.11 20.15 2.34 2.61
May 0.97 0.96 0.13 0.11 2.16 2.54
June 0.97 0.96 20.03 0.13 2.35 2.63
July 0.96 0.96 20.19 0.21 2.27 2.52
August 0.97 0.97 0.08 0.37 2.30 2.58
September 0.98 0.97 0.25 0.17 2.07 2.19
October 0.96 0.97 0.22 20.33 2.36 1.99
November 0.93 0.95 0.32 20.83 2.45 1.87
December 0.90 0.92 0.01 21.14 2.34 2.14
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ERA5. In autumn (MAM) and winter (JJA), both datasets
exhibit warming in the AP, with larger warming magnitude of
ERA5 than reconstruction. In the same two seasons, cooling
trends are both observed over the EAIS. But the cooling over

the WAIS depicted by ERA5 is in contrast to the warming
seen in our reconstruction. The most significant differences
between the reconstruction and ERA5 are found mainly in
summer (DJF), with opposite temperature change trends in

FIG. 3. Time series of annual and seasonal mean near-surface air temperature anomalies of reconstruction, spatially
averaged over the (a) AIS, (b) AP, (c) EAIS, and (d) WAIS during 2001–18.

FIG. 4. Time series of annual and seasonal mean near-surface air temperature anomalies of ERA5, spatially averaged
over the (a) AIS, (b) AP, (c) EAIS, and (d) WAIS during 2001–18.
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the EAIS. And ERA5 shows even more significant cooling
(p , 0.10) in the AP. The differences between reconstruction
and ERA5 are somewhat expected given the cold bias that ini-
tially appeared in ERA5 temperature simulations.

2) SPATIAL VARIATION

Figures 5 and 6 show spatial distributions of the linear
trends of annual and seasonal temperature during 2001–18
from our reconstruction and ERA5, respectively. The trend
values of annual averaged temperature range from somewhat
different to very different from one region to another, mainly
due to the fact that the performance of ERA5 for air temper-
ature is dependent on the availability of assimilated observa-
tions over the AIS. In the EAIS, the MODIS-derived annual
temperature dataset presents significant warming trends
(.0.48C decade21, p , 0.05) in the 308W–58E sector of the
Dronning Maud Land and along the coast of Victoria Land.

In contrast, significant cooling trends (p , 0.05) are observed
in the 708–1508E sector. These are almost the same as ERA5.
But in the 408–708E sector, ERA5 shows a statistically signifi-
cant warming trend, while the reconstructed trend is not
obvious. The greatest difference occurs along east side of
transantarctic mountains and Victoria Land, where ERA5
shows a statistically significant warming trend, not in our re-
construction. An overwhelming number of grid cells of the
WAIS experience cooling trends, especially in the reconstruc-
tion with significant cooling trends in Mary Byrd Land
(.0.48C decade21, p , 0.05). However, a notable exception
to general cooling over the WAIS is the inland area near
transantarctic mountains, where exhibits strong and spatially
coherent warming in both datasets.

The trends of near-surface air temperature at any season
between 2001 and 2018 are spatially heterogeneous (Figs. 5
and 6b–e). In spring (SON), both reconstruction and ERA5
show that the EAIS has the maximal patches of significant

TABLE 3. Linear treads (8C decade21) of near-surface air temperature from reconstruction and ERA5 over the three Antarctic
subregions during 2001–18. Boldface font shows that the trend is significantly different from zero at the 90% confidence level.

Region Annual DJF MAM JJA SON

Recon
AP 20.23 6 0.05 20.05 6 0.16 0.18 6 0.10 0.17 6 0.13 21.12 6 0.11
EAIS 0.10 6 0.06 0.34 6 0.11 20.52 6 0.10 20.09 6 0.16 0.54 6 0.08
WAIS 20.09 6 0.06 0.33 6 0.10 0.10 6 0.12 0.02 6 0.16 20.95 6 0.10

ERA5
AP 20.04 6 0.06 20.72 6 0.06 0.49 6 0.08 0.64 6 0.11 20.63 6 0.14
EAIS 0.07 6 0.05 20.08 6 0.08 20.19 6 0.09 20.20 6 0.13 0.61 6 0.03
WAIS 20.13 6 0.05 0.08 6 0.08 20.05 6 0.11 20.21 6 0.14 20.45 6 0.10

FIG. 5. Spatial distribution of trends in the (a) annual and (b)–(e) seasonal (summer, autumn, winter, and spring, respectively) mean
near-surface air temperature of reconstruction for the 2001–18 period. The black lines outline the areas with trends significant at the
90% confidence interval.

Z HANG E T A L . 55431 SEPTEMBER 2022

Brought to you by UTRECHT UNIVERSITY LIBRARY | Unauthenticated | Downloaded 09/27/22 09:56 AM UTC



warming, especially in the Dronning Maud Land and the
608–708E sector (.0.68C decade21, p, 0.05). However, the AP
andWAIS are dominated by the cooling trends, and are statisti-
cally significant in our reconstruction, not in ERA5. In summer
(DJF), reconstruction and ERA5 indicate the cooling trends
largely in the AP, the inland region of the 1108–1508E sector
and part of WAIS coastal area, but warming trends in part of
the WAIS, Dronning Maud Land, Victoria Land. However,
across the 808–1008E sector, contrary to the cooling trends
shown by ERA5, the reconstructed significant warming trends
are consistent with the coastal borehole temperature records
(Roberts et al. 2013). Spatial distribution of MAM trends in the
reconstruction and ERA5 are very similar to the annual trends,
but with significantly stronger cooling trends in the part of
708–1508E sector. During winter (JJA), the two show broadly
consistent trend directions most of the AIS, but opposite tem-
perature trends on the Lambert Glacier Basin. While AP warm-
ing is observed at both datasets, ERA5 reveals stronger and
larger extent warming trends.

d. Influence of SAM on air temperature changes

The Southern Hemisphere annual mode (SAM) is the domi-
nantmode of the SouthernHemisphere extratropical atmospheric
circulation variability, which reflects a “seesaw” phenomenon of
atmospheric variability, in which pressure and geopotential height
vary in opposite phases between midlatitudes and high latitudes
in the Southern Hemisphere (Thompson and Wallace 2000).
SAMplays an important role in the climate system of theAntarc-
tic region. Since the 1970s, the continuous strengthening of SAM
to positive phase shifts in summer and autumn is considered as
one of the main causes of air temperature changes in the
EAIS (Thompson and Solomon 2002; Turner et al. 2005;

Marshall 2003; Thompson et al. 2011; Jones et al. 2019). In this
study, we use the observed annual and seasonal SAM indices de-
fined by Marshall (2003) to calculate the correlation coefficients
between SAMand the near-surface temperature at each grid cell
of our reconstruction (Fig. 7) and ERA5 (Fig. 8), which are used
to investigate the possible influence of SAM on the near-surface
temperature changes inAntarctica from 2001 to 2018.

Significant negative correlations between annual SAM and
annual averaged air temperature appear in most of EAIS and
WAIS, which suggests that year-to-year oscillation of annual
temperature follows the opposite interannual patterns of
SAM (Figs. 7 and 8). By comparison, the reconstruction has
significantly higher correlations with SAM than ERA5. Simi-
lar patterns are observed in the WAIS and EAIS, except along
the transantarctic mountains, and only slight differences can
be observed in the AP, where opposite correlations happen in
some grid cells. In autumn (MAM), both reconstruction and
ERA5 show significant negative correlations between SAM
and near-surface air temperatures in the EAIS, except for the
western Dronning Maud Land and Victoria Land, whereas sig-
nificant positive correlations occur in the northern AP, which
is consistent with previous research (Marshall et al. 2006). This
is mainly caused by the decrease of meridional heat exchange
in the troposphere and downward turbulent heat flux near the
surface of the ice sheet because of the enhancement of SAM
positive phase, which leads to the cooling effect near the surface
of most parts of the EAIS (van den Broeke and van Lipzig
2004). The SAM positive phase strengthens the Antarctic cir-
cumpolar wind and increases the transport of warm air to the
AP, bringing a corresponding warming of the AP (Marshall
et al. 2006; van Lipzig et al. 2008). There are no completely
significant correlations between SAM and temperature in all

FIG. 6. Spatial distribution of trends in the (a) annual and (b)–(e) seasonal (summer, autumn,winter, and spring, respectively)meannear-surface
air temperature of ERA5 for the 2001–18 period. The black lines outline the areas with trends significant at the 90% confidence interval.
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seasons except winter (JJA) in the 08–608W range of the
EAIS, especially ERA5. The correlations between SAM and
air temperature in any season are negative in most regions of
the WAIS. In particular, the reconstruction is more significant,
and the range of significant correlations is largest in winter.
This implies that SAM-induced cooling effects also occur in the
WAIS but may be altered by the Southern Oscillation/El Niño.
In the AP, ERA5 shows a positive correlation between SAM
and air temperature, especially in spring. On the contrary, in
most regions of the AP excluding the northern AP, reconstruc-
tion shows that SAM is negatively and insignificantly correlated
with temperature of almost all seasons. This seems to suggest
little influence of the SAM on AP air temperature over these
regions, which may be explained by the fact that the Weddell
Sea is influenced by cyclones from midlatitude jet stream, re-
sulting in high frequency of cold southeastern winds to blow to-
ward the eastern AP and sea ice to move toward the eastern
coast of the AP (Turner et al. 2016), which impedes warm
northwesterly air caused by SAM onto the interior of the AP.

The results demonstrated above are consistent with and build
on previous studies (Marshall 2007; Marshall and Thompson
2016; Fogt and Marshall 2020). Analysis confirms that SAM
plays a key role in the regulation of Antarctic temperature on
the year-to-year scale. And it has significant regional and sea-
sonal differences in its effect on the near-surface temperature
changes of the AIS. The strengthening positive phase of SAM
has cooling effects to different extents on the EAIS and WAIS
(except for the coastal areas of Berkner Island and Coats
Land). On the contrary, SAM positive polarity results in the
warming effect on the AP. The general pattern of a positive

(negative) correlation between SAM and near-surface tempera-
ture in Antarctica has been stable over the past half-century,
but there are detailed differences between seasons. Marshall
(2007) shows that during 1957–2004, SAM–temperature corre-
lations are the most significant in autumn, and the spatial dis-
tribution pattern of correlations during winter are similar to
those during autumn, but the magnitude of correlations de-
creases, which is contrary to our results (Marshall 2007).

4. Discussion

Because of the sparseness of in situ measurements in
Antarctica, it is a challenging task to directly gather the obser-
vations to accurately reconstruct Antarctic near-surface air
temperature fields. Here, we utilize the spatial covariance of
surface temperature measurements from MODIS thermal
infrared observations in combination with up-to-date AWS
measurements for our near-surface air temperature recon-
struction. The statistics of verification against independent
measurements and the comparison with ERA5 reveal the ro-
bust quality of our reconstruction, because ERA5 represents
the mean air temperature climatology best among the current
global reanalysis products (Gossart et al. 2019).

Uncertainty estimation based on independent observations
indicates less accurate air temperature reconstruction in win-
ter than other seasons. This may be attributable to highly vari-
able temperature conditions from the katabatic winds during
winter (Nylen et al. 2004). Previous studies also reported the
influence of wind speed on the relationship between the near-
surface air temperature and surface skin temperature over the

FIG. 7. Spatial distribution of correlation coefficients in the (a) annual and (b)–(e) seasonal (summer, autumn, winter, and spring, re-
spectively) mean SAM indices and the corresponding near-surface temperature of reconstruction in the AIS. The black and gray lines out-
line the areas with trends significant at the confidence levels of 90% and 95%, respectively.
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ice (e.g., Adolph et al. 2018; Nielsen-Englyst et al. 2019).
Thus, the performance of the reconstruction should be im-
proved if wind speed is used as one of the predictors. To do
this, a high-quality Antarctic wind speed field is a prerequi-
site. However, current reanalyses and climate models usually
suffer from representing katabatic winds with high accuracy
and resolution in Antarctica (e.g., Rodrigo et al. 2013; Nygård
et al. 2016; Dong et al. 2020), which possibly has an important
impact on the accuracy of reconstruction. As Nielsen-Englyst
et al. (2021) pointed out, even if the wind speed fields from
ERA-Interim or ERA5 were included, the performance of
Arctic air temperature reconstruction based on satellite-derived
LST did not improve much.

Previous studies have reported that the accuracy of LST re-
trieval from satellite infrared data largely depends on the success
of cloud masking (Comiso 2000). We further estimate the daily
cloud contaminated MOD11C1 LST products using the meas-
urements from seven weather stations located in the AP, Dron-
ning Maud Land, and Berkner Island, respectively (Table 4).
Robust correlations between MODIS retrievals and in situ LST
measurements are found, with the correlation coefficients (R) of
higher than 0.80 (p , 0.05). However, there are obvious devia-
tions between the two types of LST measurements at each
station site, with the MAE of 2.848–3.918C, and the larger
MAE values occur on the coastal stations. All MB values are
less than 0, meaning the underestimation by MODIS LST. The
large deviation is mainly due to cloud contamination, which is
not conducive to the reconstruction of near-surface temperature
in Antarctica. Therefore, in order to reduce cloud interference,
we make per-pixel quality control for MODIS LST products,

and extract LST pixels with good quality or fairly calibrated, so
as to better correct atmospheric influence, and to further im-
prove the accuracy of MODIS LST data.

We analyze near-surface air temperature trends at 62 stations
with long continuous records (Fig. A1). The results are consis-
tent with the trends inferred from our reconstruction. In annual
trends, it is confirmed that there are strong and significant cooling
trends in most stations of the AP andWAIS, but warming trends
in the EAIS since 2000. In the seasonal temperature trends, the
cooling is obvious in the AP, the WAIS, and the coast of the
EAIS. In DJF and SON, most stations of the AP show significant
cooling trends. In SON, Byrd Station, which has large fractions
of temperature changes over the WAIS, also shows a cooling
trend. In MAM and JJA, most stations of the EAIS also show
statistically significant cooling trends. These findings are consis-
tent with previous reported by Jones et al. (2019).

FIG. 8. Spatial distribution of correlation coefficients in the (a) annual and (b)–(e) seasonal (summer, autumn, winter, and spring, re-
spectively) mean SAM indices and the corresponding near-surface temperature of ERA5 in the AIS. The black and gray lines outline the
areas with trends significant at the confidence levels of 90% and 95%, respectively.

TABLE 4. Overall performance of the cloud contaminated
MODIS LST by comparing with independent data. Statistically
significant correlations above the 95% confidence level are
denoted by two asterisks.

Station Lat (8) Lon (8) R MAE (8C) MB (8C)

Latady 270.9 274.9 0.97** 3.76 23.58
Wormold 267.5 268.1 0.93** 2.91 22.56
Syowa 269.0 39.6 0.83** 3.91 22.71
AWS5 273.1 213.2 0.88** 3.66 23.64
AWS6 274.5 211.5 0.89** 3.24 23.21
AWS9 275.0 0 0.93** 2.84 22.57
AWS10 279.6 245.8 0.90** 3.80 23.70
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MODIS thermal infrared observations only provide clear-sky
skin temperature measurements, not the temperatures under
cloudy conditions, which often are present in the WAIS and
over the ice sheet margins in October (Bromwich et al. 2012),
and may provide no data at all on the floating ice shelves. This
results in the gaps of reconstruction where MODIS data are un-
available due to the coverage of clouds, and even could cause
spurious trends in the temperature reconstruction. However,
the average coverage of clear-sky MODIS LST data exceeds
85% for the entire ice sheet during 2001–18, which means there
are limited gaps of our reconstruction caused by clouds. This
also suggest that a large fraction of information on all monthly
near-surface air temperature is included in our reconstruction,
despite the reconstruction derived from only clear-sky satellite
observations. Statistical models can be used to fill in the gaps
caused by clouds, as done by the European Union’s Horizon
2020 project (EUSTACE) (Brugnara et al. 2019). However,
gap filling is beyond the scope of this study.

5. Conclusions

In this study, we combine MODIS LST data with a neural
network model to reconstruct a temporally and spatially contin-
uous near-surface air temperature dataset of the AIS. The anal-
ysis shows that MODIS LST data are suitable for the estimation
of near-surface air temperature. Validation against independent
in situ observations reveals that the overall accuracy of the
MODIS-based reconstruction is robust, with monthly MAE val-
ues of less than 2.458C, R2 of higher than 0.90, and MB values
ranging from 20.198 to 0.328C. In particular, the reconstructed
temperature dataset presents higher accuracy than ERA5, a re-
analysis dataset with smallest bias with respective to the obser-
vations than other global atmospheric reanalyses. Thus, we
argue that the quality of our reconstruction is robust. Besides
making up for the shortage of in situ observations, the MODIS-
based air temperature reconstruction can be used as an impor-
tant tool for data assimilation and validation of climate models,
and has important applications for investigating the spatial and
temporal patterns in air temperature changes in Antarctica and
its possible connection with large-scale atmospheric circulation.
In the future, it should be possible to further improve the model
prediction accuracy by adding the other parameters such as
wind speed and solar radiation into the reconstruction model.
Nevertheless, before doing this, detailed investigation of the fac-
tors affecting the difference between air temperature and skin
LST over Antarctica is required.

Our temperature reconstruction by means of satellite remote
sensing data has greatly improved the spatial resolution of the
reconstructed data. Based on the MODIS-based near-surface
air temperature product, we find that annual cooling in the early
twenty-first century extends from the AP to most of West Ant-
arctica, and this is a much larger area than ever reported. This
appears to show that global warming hiatus events also occur in
these two regions. The examination of the impact of SAM on
gridded temperature further confirms the spatial pattern of
the SAM–temperature relationship reported in previous
studies (Marshall 2007; Marshall and Thompson 2016; Fogt
and Marshall 2020). The positive polarity of SAM has a

warming effect on the AP, but a cooling effect on the EAIS
and WAIS. Many sources may affect the SAM-related cool-
ing, including anthropogenic factors such as stratospheric
ozone depletion and increased greenhouse gas concentrations,
as well as the role of natural variability in SAM changes, or
the effect of ENSO on SAM, which contributes to climate
change in Antarctica. Due to the complexity of the climate
system, it is necessary to further explore the mechanism of the
spatiotemporal variability of surface temperature in the AIS.
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APPENDIX A

Main Characteristics of Weather Station and Station
Observation Trends

Table A1 summarizes the coordinate, elevation, region,
time span, station type, and data availability of 119 Antarctic
weather stations, and their corresponding spatial distribution
is shown in Fig. 1. Figure A1 presents the trends of annual
and seasonal mean near-surface air temperature at 62 sta-
tions with records for the 2001–18 period.

APPENDIX B

Neural Network Fitting Model

In this paper, a two-layer feed-forward network with sig-
moid hidden neurons and linear output neurons is used,
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TABLE A1. Main characteristics of 119 weather stations. The number of each station is presented in Fig. 1.

No. Station Lat (8) Lon (8) Elevation (m) Region Period Manned/AWS Data availability (%)

1 AGO-4 282.0 96.8 3597 EAIS 2012–18 AWS 97.6
2 Austin 276.0 287.5 1292 WAIS 2016–17 AWS 58.3
3 Baldrick 282.8 213.1 1968 EAIS 2008–18 AWS 91.7
4 Bear Peninsula 274.5 2111.9 416 WAIS 2011–18 AWS 99.0
5 Brianna 283.9 2134.2 520 WAIS 2000–15 AWS 62.5
6 Butler Island 272.2 260.2 91 AP 2000–12 AWS 91.0
7 Byrd 280.0 2119.4 1539 WAIS 2000–18 AWS 79.4
8 Cape Bird 277.2 166.4 38 EAIS 2000–18 AWS 78.5
9 Cape Denison 267.0 142.7 31 EAIS 2000–11 AWS 25.0
10 Cape Hallett 272.2 170.2 1 EAIS 2011–18 AWS 78.1
11 Clean Air 290.0 0 2835 EAIS 2000–04 AWS 81.7
12 D_10 266.7 139.8 243 EAIS 2000–18 AWS 53.5
13 D_47 267.4 138.7 1560 EAIS 2008–18 AWS 88.6
14 D_85 270.4 134.2 2651 EAIS 2009–18 AWS 65.0
15 Dome C II 275.1 123.4 3250 EAIS 2000–18 AWS 95.2
16 Dome Fuji 277.3 39.7 3810 EAIS 2002–18 AWS 71.1
17 Doug 282.3 2113.2 1433 WAIS 2000–01 AWS 83.3
18 E-66 268.9 134.6 2485 EAIS 2008–11 AWS 54.2
19 Elizabeth 282.6 2137.1 523 WAIS 2000–18 AWS 56.1
20 Erin 284.9 2128.9 988 WAIS 2000–18 AWS 73.7
21 Evans Knoll 274.9 2100.4 178 WAIS 2011–18 AWS 95.8
22 Fossil Bluff 271.3 268.3 63 AP 2009–12 AWS 95.8
23 Harry 283.0 2121.4 956 WAIS 2000–18 AWS 91.2
24 Henry 289.0 20.4 2781 EAIS 2000–17 AWS 83.8
25 Herbie Alley 278.1 166.7 30 EAIS 2000–03 AWS 100
26 Janet 277.2 2123.4 2085 WAIS 2011–18 AWS 91.7
27 JASE2007 275.9 25.8 3661 EAIS 2000–18 AWS 92.4
28 Kathie 278.0 297.3 1607 WAIS 2016–18 AWS 97.2
29 Kominko-Slade 279.5 2112.1 1801 WAIS 2007–18 AWS 83.3
30 Marble Point II 277.4 163.8 111 EAIS 2011–18 AWS 81.3
31 Marble Point 277.4 163.8 108 EAIS 2000–18 AWS 100
32 Marlene 283.6 2167.4 83 WAIS 2011–14 AWS 91.7
33 Minna Bluff 278.6 166.7 895 EAIS 2000–18 AWS 82.0
34 Mizuho 270.7 44.3 2260 EAIS 2000–18 AWS 94.3
35 Mount Fleming 277.5 160.3 1868 EAIS 2008–10 AWS 75.0
36 Mulock 279.0 160.2 378 EAIS 2006–11 AWS 45.8
37 Nico 289.0 90.0 2979 EAIS 2000–17 AWS 82.9
38 Noel 279.3 2111.1 1833 WAIS 2000–2000 AWS 41.7
39 PANDA-South 282.3 76.0 4027 EAIS 2008–18 AWS 23.5
40 Penguin Point 267.6 146.2 30 EAIS 2000–02 AWS 77.8
41 Port Martin 266.8 141.4 39 EAIS 2000–17 AWS 25.0
42 Possession Island 271.9 171.2 30 EAIS 2000–18 AWS 89.9
43 Relay Station 274.0 43.1 3353 EAIS 2000–18 AWS 77.2
44 Siple Dome 281.7 2149.0 667 WAIS 2000–18 AWS 79.8
45 Sky Blu 274.8 271.5 1510 AP 2000–12 AWS 52.6
46 Sutton 267.1 141.4 871 EAIS 2000–2000 AWS 58.3
47 Swithinbank 281.2 2126.2 959 WAIS 2000–10 AWS 36.4
48 Theresa 284.6 2115.9 1454 WAIS 2000–18 AWS 85.5
49 Tom 284.4 2171.5 79 EAIS 2011–14 AWS 62.5
50 Uranus Glacier 271.4 268.8 753 AP 2000–03 AWS 70.8
51 White Island 278.1 167.5 686 EAIS 2015–18 AWS 79.2
52 Windless Bight 277.7 167.7 40 EAIS 2000–18 AWS 72.4
53 A028-B 268.4 112.2 1622 EAIS 2000–05 AWS 93.1
54 Apfel 266.3 100.8 150 EAIS 2000–01 AWS 75.0
55 Aurora Basin North 271.2 111.4 2714 EAIS 2014–17 AWS 70.8
56 Brown Glacier, Heard Island 253.1 73.6 640 EAIS 2000–02 AWS 61.1
57 Dome_A 280.4 77.4 4084 EAIS 2005–17 AWS 95.5
58 DSS 266.8 112.8 1376 EAIS 2000–05 AWS 86.1
59 Eagle 276.4 77.0 2830 EAIS 2005–17 AWS 96.2
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TABLE A1. (Continued)

No. Station Lat (8) Lon (8) Elevation (m) Region Period Manned/AWS Data availability (%)

60 Eder_Island 267.0 143.9 52 EAIS 2000–2000 AWS 75.0
61 GC41 271.6 111.3 2791 EAIS 2000–05 AWS 98.6
62 GF08-A 268.5 102.2 2123 EAIS 2000–07 AWS 95.8
63 Lanyon-A 266.3 110.8 390 EAIS 2000–08 AWS 87.0
64 LGB00-C 268.7 61.1 1830 EAIS 2000–09 AWS 92.5
65 LGB10-A 271.3 59.2 2620 EAIS 2000–06 AWS 86.9
66 LGB20 273.8 55.7 2741 EAIS 2000–04 AWS 93.3
67 LGB35 276.0 65.0 2342 EAIS 2000–08 AWS 94.4
68 LGB59 273.5 76.8 2537 EAIS 2000–04 AWS 88.3
69 LGB69 270.8 77.1 1854 EAIS 2002–08 AWS 84.5
70 MtBrown 269.1 86.0 2064 EAIS 2000–11 AWS 74.3
71 Panda 274.7 77.0 2584 EAIS 2008–17 AWS 51.7
72 Ranvik 268.9 78.0 339 EAIS 2000–01 AWS 87.5
73 Rumdoodle 267.7 62.8 430 EAIS 2000–01 AWS 95.8
74 Amundsen_Scott 290.0 0 2835 EAIS 2000–18 Manned 100
75 Arturo_Prat 262.5 259.7 5 AP 2000–18 Manned 62.3
76 Belgrano_II 277.9 234.6 256 EAIS 2000–18 Manned 71.1
77 Bellingshausen 262.2 258.9 16 AP 2000–18 Manned 100
78 Casey 266.3 110.5 42 EAIS 2000–18 Manned 99.6
79 Dumont_Durville 266.7 140.0 43 EAIS 2000–18 Manned 87.3
80 Esperanza 263.4 257.0 13 AP 2000–18 Manned 99.6
81 Ferraz 262.1 258.4 20 AP 2000–05 Manned 95.8
82 Great_Wall 262.2 259.0 10 AP 2000–18 Manned 95.2
83 Jubany 262.2 258.6 4 AP 2000–18 Manned 87.7
84 King_Sejong 262.2 258.7 11 AP 2000–17 Manned 58.8
85 Marambio 264.2 256.7 198 AP 2000–18 Manned 99.1
86 Mario_Zucchelli 274.7 164.1 92 EAIS 2000–18 Manned 68.0
87 Marsh 262.2 258.9 10 AP 2000–18 Manned 89.5
88 Mawson 267.6 62.9 16 EAIS 2000–18 Manned 99.6
89 Molodeznaja 267.7 45.9 40 EAIS 2014–18 Manned 36.7
90 Novolazarevskaya 270.8 11.8 119 EAIS 2000–18 Manned 99.6
91 O_Higgins 263.3 257.9 10 AP 2000–18 Manned 73.7
92 Orcadas 260.7 244.7 6 AP 2000–18 Manned 88.6
93 Rothera 267.5 268.1 32 AP 2000–18 Manned 99.6
94 San_Martin 268.1 267.1 4 AP 2000–18 Manned 84.2
95 Syowa 269.0 39.6 21 EAIS 2000–18 Manned 100
96 Vostok 278.5 106.9 3490 EAIS 2000–18 Manned 92.1
97 Zhongshan 269.4 76.4 18 EAIS 2000–18 Manned 99.1
98 Arelis 276.7 163.0 150 EAIS 2000–18 AWS 100
99 Concordia 274.5 123.0 3280 EAIS 2005–18 AWS 91.1
100 Eneide 274.7 164.1 92 EAIS 2000–18 AWS 99.6
101 Giulia 275.6 145.8 2200 EAIS 2000–18 AWS 62.3
102 Irene 271.6 148.7 2000 EAIS 2001–15 AWS 50.6
103 Jennica 274.7 164.1 92 EAIS 2000–03 AWS 39.6
104 Lola 274.1 163.4 1621 EAIS 2000–18 AWS 95.2
105 Maria 274.6 164.0 355 EAIS 2000–18 AWS 65.4
106 Modesta 273.6 160.7 1924 EAIS 2000–18 AWS 83.3
107 Paola 272.8 159.0 0 EAIS 2003–18 AWS 47.4
108 Rita 274.7 164.0 268 EAIS 2000–18 AWS 92.5
109 Silvia 273.5 169.7 536 EAIS 2000–18 AWS 84.2
110 Zoraida 274.2 162.9 644 EAIS 2000–18 AWS 72.8
111 AWS5 273.1 213.2 360 EAIS 2000–14 AWS 93.9
112 AWS6 274.5 211.5 1160 EAIS 2000–09 AWS 90.8
113 AWS8 276.0 28.1 2400 EAIS 2000–02 AWS 100
114 AWS9 275.0 0 2900 EAIS 2000–18 AWS 94.3
115 AWS10 279.6 245.8 890 WAIS 2000–05 AWS 55.6
116 AWS11 271.2 26.8 690 EAIS 2007–15 AWS 76.9
117 AWS12 278.7 35.6 3620 EAIS 2008–16 AWS 90.7
118 AWS13 282.1 55.0 3730 EAIS 2008–15 AWS 100
119 AWS16 272.0 23.3 1300 EAIS 2009–15 AWS 82.1
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which can fit mapping problems arbitrarily well, and give
consistent data and enough neurons in its hidden layer
(Jang et al. 2004; Chronopoulos et al. 2008). By construct-
ing algorithms and functions of typical neural networks, we
can build, train, visualize, and simulate networks for specific
network structures.

A single hidden layer neural network is used to fit the
model. Assuming that the number of neurons in the hidden
layer is i (i = 10), the number of neurons in the output layer
is 1, xi is the i input of the neuron, the threshold value of neu-
rons is Q, wi is the connection weight of the hidden layer and
the output layer, then the output y of neurons is as follows:

y � f
∑10
i

wixi 2 u

( )
, (B1)

where f is the activation function of neurons, and the sigmoid
function is adopted in this paper; that is, f � 1/(11 e2x). The
network learning function is set as Learngdm, and the net-
work training function is set as Trainlm. The corresponding
Levenberg–Marquardt algorithm is used, which usually re-
quires more memory but less time (Hagan and Menhaj 1994;
Tan and Van Cauwenberghe 1999).

If the expected output mode is not obtained in the output
layer by forward propagation, the process is turned to error
back propagation. The gradient descent method (namely, the
Traingd function) is used to adjust the weighted wi. After re-
peated learning and training, the error signal is minimized. A
premature termination strategy is used to prevent the occur-
rence of overfitting (McCord-Nelson and Illingworth 1991;
Prechelt 1998). Training automatically stops when generalization

stops improving, as indicated by an increase in the mean
square error of the validation samples. Due to differences in
initial conditions and samples, multiple training sessions will
produce different results.
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Muñoz-Sabater, and J. N. Thépaut, 2020: The ERA5 global
reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803.

Hooker, J., G. Duveiller, and A. Cescatti, 2018: A global dataset
of air temperature derived from satellite remote sensing and
weather stations. Sci. Data, 5, 180246, https://doi.org/10.1038/
sdata.2018.246.

Huai, B., Y. Wang, M. Ding, J. Zhang, and X. Dong, 2019: An as-
sessment of recent global atmospheric reanalyses for Antarctic
near surface air temperature. Atmos. Res., 226, 181–191,
https://doi.org/10.1016/j.atmosres.2019.04.029.

Jang, J. D., A. A. Viau, and F. Anctil, 2004: Neural network estima-
tion of air temperatures from AVHRR data. Int. J. Remote
Sens., 25, 4541–4554, https://doi.org/10.1080/014311603100016
57533.

Jones, M. E., D. H. Bromwich, J. P. Nicolas, J. Carrasco, E.
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