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Abstract: Staphylococcus pseudintermedius can be transmitted between dogs and their owners and can
cause opportunistic infections in humans. Whole genome sequencing was applied to identify the
relatedness between isolates from human infections and isolates from dogs in the same households.
Genome SNP diversity and distribution of plasmids and antimicrobial resistance genes identified
related and unrelated isolates in both households. Our study shows that within-host bacterial
diversity is present in S. pseudintermedius, demonstrating that multiple isolates from each host should
preferably be sequenced to study transmission dynamics.

Keywords: S. pseudintermedius; transmission; One health; whole genome sequencing; zoonotic;
bacterial diversity

1. Introduction

Staphylococcus pseudintermedius is both a commensal and opportunistic pathogen in
dogs. Infections in humans are occasionally found; however, in humans, S. pseudintermedius
might be underdiagnosed as it can be misidentified as Staphylococcus aureus or Staphylococcus
intermedius [1,2]. Human infections with S. pseudintermedius are generally considered to
be of zoonotic origin [3], although in exceptional cases no dog contact is reported [4].
Dog-to-human transmission of S. pseudintermedius has been reported, in which isolates
from dogs and their owners were indistinguishable based on multi-locus sequence typing
and pulsed field gel electrophoresis [4,5]. Nevertheless, carriage rates of S. pseudintermedius
in humans remain very low compared to the carriage rates of dogs, even in dog owning
households [6]. Longitudinal studies on methicillin-resistant S. pseudintermedius (MRSP)
showed that dogs carried MRSP for prolonged periods of time (several months), whereas
carriage in humans was rare and short-term. Human carriage is therefore considered
to be contamination instead of colonization, though opportunistic infections in humans
can occur [5,7]. In longitudinal studies, MRSP was found in the environment and in
other dogs in the household [7,8]. Generally, isolates within one household belong to the
same sequence type (ST), although occasionally different STs can be found in the same
household [5]. Most studies on dog-to-human transmission of S. pseudintermedius include
only a single isolate from each host. This approach might lead to misinterpretations when
within-host bacterial diversity exists. We used whole genome sequencing of multiple
isolates from dogs to investigate within-household transmission and bacterial diversity of
S. pseudintermedius in two unrelated human infections caused by S. pseudintermedius and
the dogs in these households.
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2. Results
2.1. Household 1

Patient 1 was a 64-year-old woman with a wound infection on her foot in June
2016. One dog, suffering from a chronic skin condition, was present in the household.
S. pseudintermedius was isolated from three sampling sites and multiple isolates were se-
lected for genome analysis (n = 5 from each site) based on morphological colony differences.
This provided insight into the number of single nucleotide polymorphisms (SNP) in isolates
from this dog. Dog isolates belonged to two clades that differentiated by 6913 core-genome
SNPs. One clade consisted of six dog isolates (obtained from perineum and axillary) that
displayed a very low level of diversity (differing by up to 5 SNPs) and belonged to ST387
(Figure 1). All six dog isolates carried the blaZ resistance gene and no plasmid was detected.
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Figure 1. Minimum spanning tree of core-genomes showing the phylogenetic relationship between
isolates from the two households, with the number of SNPs indicated on the branches. Isolates are
identified by host species, followed by isolation site A = axillary, P = perineum, S = skin, W = wound,
and lastly followed by the last three digits of their isolate number. Isolates from household 1 are
shown against a blue background. Isolates from household 2 are shown against a white background.
Isolates with no SNP differences are not shown.

In the other clade, the human isolate and nine of the dog isolates, obtained from the
skin and axillary, differentiated between 0 and 7 core-genome SNPs and belonged to ST1337
(Figure 1). All isolates carried the resistance gene tet(M), and all but one (16S06095-5) isolate
carried the blaZ gene. The human isolate carried the blaZ and tet(M) resistance genes, no
plasmid sequences, and differed by 7 SNPs from a dog isolate from the same household
that also carried these genes and no plasmid sequences (Table 1).

2.2. Household 2

Patient 2 was a 63-year-old woman with an infected skin ulcer in July 2017. Three
dogs were present in the household. No clinical conditions were reported for the dogs. All
dogs were found to be positive for S. pseudintermedius, but not for all sites. Selection of
morphologically different colonies resulted in one isolate from the skin of dog 1, one isolate
from the perineum of dog 2, and 5 isolates from the skin (n = 3), the perineum (n = 1), and
axillary (n = 1) of dog 3.
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Table 1. Isolate characteristics.

Isolate Origin Isolation Date Specimen MLST Resistance Genes Mobile Elements

Household 1

16S06119-2 human June 2016 wound 1377 blaZ tet(M)
16S06095-1 dog 1 June 2016 skin 1377 blaZ tet(M)
16S06095-2 dog 1 June 2016 skin 1377 blaZ tet(M)
16S06095-4 dog 1 June 2016 skin 1377 blaZ tet(M)
16S06095-5 dog 1 June 2016 skin 1377 tet(M)
16S06095-6 dog 1 June 2016 skin 1377 blaZ tet(M)
16S06097-3 dog 1 June 2016 axillary 1377 blaZ tet(M)
16S06097-6 dog 1 June 2016 axillary 1377 blaZ tet(M)
16S06097-7 dog 1 June 2016 axillary 1377 blaZ tet(M)
16S06097-8 dog 1 June 2016 axillary 1377 blaZ tet(M)
16S06096-1 dog 1 June 2016 perineum 387 blaZ
16S06096-3 dog 1 June 2016 perineum 387 blaZ
16S06096-7 dog 1 June 2016 perineum 387 blaZ
16S06096-8 dog 1 June 2016 perineum 387 blaZ
16S06096-9 dog 1 June 2016 perineum 387 blaZ
16S06097-9 dog 1 June 2016 axillary 387 blaZ

Household 2

17S01534-1 human July 2017 skin 241 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222

17S01587-1 dog 1 July 2017 skin 241 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222;
2,7 kb plasmid

17S01591-1 dog 3 July 2017 skin 241 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222;
2,7 kb plasmid

17S01591-2 dog 3 July 2017 skin 241 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222;
2,7 kb plasmid

17S01591-3 dog 3 July 2017 skin 241 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222;
2,7 kb plasmid

17S01592-1 dog 3 July 2017 perineum 241 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222;
2,7 kb plasmid

17S01593-2 dog3 July 2017 axillary 241 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222;
2,7 kb plasmid

17S01590-2 dog 2 July 2017 perineum 940 blaZ sat4 cat(pC221) erm(B) ant(6)-Ia,aph(3′)-III PRE25-like; p222

The human isolate, and all isolates from dog 1 and dog 3, belonged to ST241. The
ST241 isolates from dog 1 and dog 3 differed by between 0 and 9 SNPs, whereas the
human isolate showed 87 SNPs differed from its closest related canine isolate (dog 1).
In the MS-tree, the SNPs were filtered for recombination and the 87 SNPs between dog
and human isolates were not clustered in one location on the genome, indicating that
these SNPs were not the result of a single recombination event. Isolate 17S01590-2 of
dog 2 displayed 7835 SNPs compared to its closest relative, belonged to ST940, and was
considered genetically unrelated to other isolates (Figure 1). All isolates of household 2
carried the p222 plasmid (coverage 97%, identity 99%) [9] and other predicted plasmid
sequences. The BLASTn analysis of these contigs identified sequence homology with
the PRE-25-like element [10], carrying sat4; ant(6)-Ia; aph(3′)-III; cat(pC221); and erm(B)
resistance genes (coverage 67.9%, identity 99.9%) in all these isolates. A 2.7 kb plasmid
sequence in all ST241 dog isolates belonged to the rep21 gene plasmid family (Table 1).

3. Discussion

Whole genome sequencing of S. pseudintermedius isolates from two unrelated human
infections showed very low SNP diversity with canine isolates of colonized dogs in both
households. The isolates retrieved from the human infections were considered genetically
related to the isolates of the dogs. This is in accordance with longitudinal studies on MRSP
showing that generally similar or indistinguishable S. pseudintermedius isolates can be
present in humans, dogs, and environmental samples within the same household [5,7].

This study analyzed multiple dog isolates in one household, as it is known that infer-
ring transmission by sequencing single colonies can be hindered by within-host bacterial
diversity [11,12]. The SNP diversity in the genomes between several of the studied dog
isolates in household 1 was very low, most likely reflecting the diversity that occurs during
colonization. However, the genomes with higher SNP diversity (6913 and 7835) indicated
that dogs were colonized with genetically unrelated isolates. This highlights the need for
sequencing multiple isolates from dogs to investigate household transmission. SNP diver-
sity correlated with assigned MLST sequence types as isolates from the same ST generally
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carried less than 10 SNP differences, whereas isolates with different STs differentiated by
either 6913 or 7835 SNPs. Sequence type and SNP differences between MSSP isolates of
different body sites were also observed, with dogs being positive for either one or multiple
body sites, with different frequencies for each site [13]. This study also showed that isolates
presenting morphological differences can be very closely related.

Mobile genetic elements were identified in all isolates from household 2: the p222 [9]
and the PRE25-like elements. The presence of these elements in CC241 isolates, and the
presence of this clonal complex in human isolates, has been previously reported [14]. The
plasmid present in dog isolates in household 2 was absent in the ST241 human isolate and
shows that gain or loss of a plasmid occurred among highly genetically related isolates.
This is in line with observed gene loss or acquisition events in S. aureus, which is involved
in the host jump of CC398 from livestock to human, and there are other examples of gene
acquisitions in S. aureus that have facilitated adaptations to other animal species [15,16].
The mobile elements in S. pseudintermedius carrying multiple resistance genes and potential
virulence genes are important epidemiological markers to monitor, as they can act as a
reservoir for transmission to humans [14]. Nevertheless, the genome comparison showed
that ST241 isolates from dogs in household 2 were more closely related to each other
(<10 SNPs) than to the human isolate (87 SNPs). The higher SNP diversity might suggest
that evolution occurred over the course of infection, but as the patient was only sampled
once this could not be confirmed. Furthermore, as the dogs in this study were sampled
within the same month the patients were hospitalized, it is impossible to infer the direction
and timing of transmission. It would be interesting to have multiple samples from the
human to see if the diversity observed in the dog is also present in human hosts. Larger
studies using whole genome sequencing combined with epidemiological data would be
of interest to determine if SNP differences between related isolates are common and can
indicate the direction of transmission.

4. Materials and Methods
4.1. Bacterial Isolates

S. pseudintermedius isolates from two human patients were obtained from the Amster-
dam UMC location AMC in the Netherlands. Both patients were dog owners and gave their
consent for samples from their dog(s) to be taken. Dogs (one in household 1 and three in
household 2) were sampled by the owner at three body sites (skin, perineum, and axillary)
within a month of confirmed infection of the owner. Samples were inoculated on sheep
blood agar (bioTRADING, Mijdrecht, The Netherlands) and, after overnight incubation at
37 ◦C, presumptive colonies were identified as S. pseudintermedius by Maldi-TOF (Bruker
MALDI Biotyper, Bruker Daltonics, Bremen, Germany). In each sample, all morphologically
distinct colonies were selected for identification, resulting in multiple isolates per sample
and per dog. The characteristics of the isolates are shown in Table 1.

4.2. Molecular Analysis

For whole genome sequencing, DNA was isolated using the Qiagen DNA isolation kit
(Qiagen, Venlo, The Netherlands). DNA libraries were prepared with the Illumina Nextera
kit according to manufacturer’s instructions and sequenced with NextGen paired-end
sequencing with 150 bp reads (Illumina, San Diego, CA, USA). Genomes were assembled
with SPAdes v3.10.1 [17] and annotated using Prokka v1.13 [18]. Resistance genes were
determined using Resfinder [19] and Multi Locus Sequence Type (MLST) was determined
with MLSTFinder [20]. Core–gene alignment was performed using Parsnp v1.2 [21]. Gub-
bins was used to filter recombination regions [22]. SNPs were extracted from the core–gene
alignment using SNP-sites v2.4.0 [23] and a minimum-spanning tree (MST) was constructed
using the goeBURST algorithm and visualized using Phyloviz v2.0 [24]. Plasmid content
was determined using RFPlasmid with a minimum plasmid prediction cut-off of 0.6 and a
minimum length of 1 kb [25]. The plasmid contigs were characterized using BLASTn.
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Isolates containing the combination of resistance genes ant(6)-Ia; aph(3′)-III; cat(pC221);
and erm(B) were analyzed for the presence of the pRE25-like element. This element has
been previously described in S. pseudintermedius and was identified using Geneious version
2020.1.1 (Biomatters, Auckland, New Zealand).

4.3. Data Availability

Whole genome sequence reads of the canine isolates have been uploaded in ENA under
bio project PRJEB53745 and the human isolates were previously uploaded under the follow-
ing accession numbers: 17S01534-1 (GCA_903992455.1), 16S06119-2 (GCA_903991985.1).
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A.J.T.; software, L.v.d.G.-v.B. and A.L.Z.; validation, B.D., E.M.B. and J.A.W.; formal analysis, A.W,
L.v.d.G.-v.B. and B.D.; investigation, A.W., L.v.d.G.-v.B. and B.D.; resources, C.E.V.; data curation, A.W.
and B.D.; writing—original draft preparation, A.W.; writing—review and editing, A.W.; L.v.d.G.-v.B.,
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