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1. Filamentous fungi and their relevance

Filamentous fungi are a diverse group of eukaryotic organisms that are found in all
biotopes on Earth. They have both positive and negative impacts on our society. On
the one hand, fungal mycotoxins affect approximately 25% of the global crop output,
leading to high economic losses worlwide'. Exposure to mycotoxins such as aflatoxin?,
can lead to severe health risks for animals and humans®. On the other hand, some
filamentous fungi are important producers of industrially relevant metabolites, including
several organic acids or drugs such as statins, antibiotics or immunosuppressives®.
Moreover, a large number of saprobic filamentous fungi are highly efficient when it
comes to degrading plant biomass, which is partly related to their high enzyme secreting
capacities. Thus, they have a great ecological importance, as they are key players in the
global carbon cycle®.

Technological developments enabled the use of fungi in the industrial and agricultural
biotechnology sectors. Industrial biotechnology, for example, has rapidly developed into
a multibillion-dollar industry over the last century, in which fungi have played a crucial
role. Aspergillus niger is one of the most iconic and revolutionary filamentous fungi in
the biotechnology industry, firstly applied for the industrial production of citric acid®2.
However, A. niger is not the only filamentous fungus to offer such biotechnological
opportunities, as other species, such as Aspergillus oryzae, have been used in various
Japanese industrial fermentation processes for more than a millennium?®. The Aspergillus
genus has become one of the most important genera of flamentous fungi due to their
broad diversity, their impact on societal needs, such as agriculture, industrial production,
and basic research, and the relative ease of applicability in industrial processes'™. On
the other hand, several Aspergillus species, including A. fumigatus' and A. flavus'?, are
pathogenic organisms, which can pose serious threats to human health. Nevertheless,
several products from Aspergilli have “generally recognized as safe (GRAS)” status,
allowing their use in food and feed applications™. Finally, a large number of Aspergillus
genomes'®' including that of A. niger'>'®, became publicly available. This allows the
scientific community to design and generate mutants with improved production abilities
through targeted mutagenesis and/or rational design.

2. Plant biomass composition

Plant biomass is the most abundant carbon source on Earth, and it is mainly comprised
of plant cell walls (Figure 1). Cell walls are composed of a network of interlinked
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polysaccharides, including cellulose, hemicellulose and pectin. However, they also
contain small amounts of protein and various amounts of lignin, an aromatic polymer that
provides rigidity and endurance. Besides plant cell walls, plant biomass also includes
storage polysaccharides, such as starch, inulin and gums'”.

Lumen —

Secondary wall (S3)
Secondary wall (S2) ——
Secondary wall (S1)
Primary wall
Middle lamella

Primary wall
Cellulose  Hemicellulose Pectin Lignin
Homogalacturonan Rhamnogalacturonan
oxugs> xyloglucan MCaZ'-crosslinked A wg
m < o galactomannan
bi | e Non-methylesterified RG | RG Il
arabinoxylan RARD Methylesterified galactan arabinan boron-diester

Figure 1. Schematic representation of plant cell walls. In general, plant cell walls contain three layers:
middle lamella, primary cell wall and secondary cell walls (S1, S2 and S3). The primary cell wall is mainly
composed of cellulose, hemicellulose and pectin, while the secondary walls also contain large amounts of
lignin. Based on'8.

Cellulose is the most abundant plant cell wall polysaccharide. It is a linear homopolymer
consisting of long chains of D-glucose units linked through (-1,4-glycosidic bonds®.
These chains are tightly bundled into microfibrils, forming an insoluble fibrous material.
Hemicelluloses are a more complex group of polysaccharides, often diversified due to
interruption, branching, or decoration with different sugar monomers or oligomers along
their structural backbone. This group of polysaccharides includes diverse structures
with xylan (B-1,4-linked D-xylose), B-glucan (3-1,4-linked D-glucose) or mannan (p-1,4-

11
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linked D-mannose) as backbone. Hemicelluloses are strongly associated with cellulose
and play an important role in strengthening plant cell walls?'.

Pectins are the most complex polysaccharides found in plant cell walls. These are
composed of homogalacturonan (a linear polymer of D-galacturonic acid units),
xylogalacturonan (a D-xylose substituted homogalacturonan), rhamnogalacturonan |
(RG-I) (consisting of an a-1,4-linked D-galacturonic acid and a-1,2-linked L-rhamnose
backbone substituted with many structurally different side chains containing arabinosyl
and galactosyl residues) or rhamnogalacturonan Il (RG-Il) (consisting of an a-1,4-linked
D-galacturonic acid backbone with side chains composed of many different sugars,
including D-galactose, L-arabinose, D-xylose and less common sugars, such as
apiose)?.

Starch is the most abundant form of storage polysaccharides in plants. It consists of
an a-1,4-linked-D-glucose polymer (amylose) which can be branched through a-1,6-
glycosidic linkages (amylopectin). Starch is typically present in seeds, roots and tubers
of various plant species, such as potatoes, yams and cereals?®. Another storage
polysaccharide is inulin. It is composed of a branched -2,1-linked chain of D-fructose
units with a terminal D-glucose residue and is also typically present in roots and tubers
of various plant species, including Jerusalem artichoke, chicory and dahlia?+-2¢.

3. Fungal enzymes and their applications

Plant polysaccharides cannot be directly taken up by fungal cells but need to be
degraded to mono- or small oligosaccharides. Therefore, flamentous fungi produce
numerous extracellular hydrolytic enzymes such as xylanases, mannanases, cellulases
or polygalacturonases'’, as well as oxidative enzymes, including lytic polysaccharide
monooxygenases (LPMOs)? to efficiently degrade lignocellulose. Table 1 presents the
main enzymatic activities required for the degradation of major plant polysaccharides.
These enzymes have been catalogued in the Carbohydrate Active enZyme (CAZy)
database (www.cazy.org) in several families and subfamilies according to amino acid
sequence similarity and enzymatic activities®. Most enzymes have a broad range of
applications in diverse industrial fields, including biofuels and biochemicals, pulp and
paper, textile, detergents or the food and feed industrial sectors.

The production of biofuels from degraded plant biomass has become an alternative for
the rapidly depleting fossil fuels, thus contributing to a sustainable society. Bioethanol
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and biomethanol can be produced from forest and agricultural residues. The degradation
of lignocellulose for biofuel production requires the synergistic action of several
cellulases (endoglucanases, cellobiohydrolases and B-glucosidases), hemicellulases
(e.g., endoxylanases, [-xylosidases, endomannanases and [(-mannosidases),
oxidoreductases (e.g., laccases and LPMOs) or accessory enzymes, such as feruloyl
esterases (FAEs)®. However, enzymes such as B-glucosidases represent a bottleneck
in the bioethanol production as they are involved in the final enzymatic reaction of
cellulose saccharification?. Therefore, many efforts are made to optimize cellulase
production in several filamentous fungi, including Trichoderma reesei*® or Penicillium
sp3'. With respect to biochemicals, FAEs are also used for the release of ferulic acid from
lignin, which is an important chemical in the cosmetic and pharmaceutical industry?2.
Inulinases are also important for the generation of inulin-derived fructooligosaccharides
and inulinooligosaccharides, which possess beneficial effects on human health®:.

In the pulp and paper industry, several plant polysaccharide degrading enzymes have
been implemented as an environmentally friendly alternative of chemical pretreatment
steps®*. Mainly fungal xylanases®*, but also laccases, pectinases or a-amylases are used
in this industrial sector®. The textile and detergent industries also use fungal enzymes
for various applications. For instance, laccases can be used for bleaching fabrics while
causing reduced environmental pollution®®, while thermo-active and alkaline lipases can
improve the efficiency of detergents®.

Fungal enzymes have a large application in the food and feed industrial sector, where
they are applied in baking, juice clarification and in the production of jams, beverages or
animal feed. Combinations of xylanases, glucanases, cellulases, pectinases, amylases,
galactosidases, phytases, proteases and lipases are often used to improve the
digestibility of grains in animal feed®. Pretreatment of animal feed with enzyme cocktails
can result in higher nutritional uptake and net energy gain. For baking, xylanases,
a-amylases, glucose oxidases and proteases are used to improve the rheological
properties, consistency and shelf life of bread®?”. Pectinases are highly demanded for
processes involved in juice clarification®, preparation of jams® and wine production?,
while amylases, proteases, peptidases, xylanases and B-glucanases are the most
important enzymes for malting and beer brewing®. Finally, it was shown that fungal
mannanases efficiently degrade coffee mannan, resulting in improved concentration of
coffee extracts*', while pectinases, cellulases and hemicellulases are important for both
coffee fermentation*? and pretreatment of tea leaves and extracts*®.

13
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Table 1. Fungal enzymes involved in plant biomass degradation.

Plant biomass polysaccharides Fungal enzymes related to specific polysaccharides
Group Polysaccharides Abbreviation Enzyme activity
BGL B-1,4-glucosidase
CBH cellobiohydrolase
Cellulose CDH cellobiose dehydrogenase
EGL 3-1,4-endo-glucanase
LPMO lytic polysaccharide monooxygenase
ML-EGL B-1,3/B-1,4-endoglucanase
ABF a-L-arabinofuranosidase
AGU a-glucuronidase
AXE acetyl xylan esterase
AXH arabinoxylan arabinofuranohydrolase
Xylan(s) BGN endo-1,6-B-D-glucanase
(xylan, glucuronoxylan, BXL B-1,4-xylosidase
arabinoglucuronoxylan, arabinoxylan) FAE feruloyl esterase
LPMO lytic polysaccharide monooxygenase
XBH xylobiohydrolase
(Hemi-)cellulose XLN B-1,4-endo-xylanase
AGL a-1,4-galactosidase
Mannan(s) BGL -1,4-glucosidase
HAE hemicellulose acetyl esterase
(mannan, galactomannan, LAC B-1,4-galactosidase
gaeciogucomanyay) MAN B-1,4-endo-mannanase
MND B-1,4-mannosidase
ABF a-arabinofuranosidase
AFC a-L-fucosidase
AGL a-1,4-galactosidase
O =
emicellulose acetyl esterase
(xyloglucan, B-(1,3)(1,4)-glucan) LAC B-1,4-galactosidase
LPMO lytic polysaccharide monooxygenase
XEG/XG-EGL xyloglucan endo-B-1,4-glucanase
XGAE xyloglucan acetyl esterase
ABF a-arabinofuranosidase
ABN endo-arabinanase
BXL B-1,4-xylosidase
FAE feruloyl esterase
GAL 3-1,4-endo-galactanase
GLN exo-1,6-galactanase
LAC B-1,4-galactosidase
PAE pectin acetyl esterase
PEL pectin lyase
Galacturonan(s) PGA endo-polygalacturonase
(homogalacturonan, xylogalacturonan, PGX exo-polygalacturonase
apiogalacturonan, rhamnogalacturonan I, | PLY pectate lyase
rhamnogalacturonan Il) PME pectin methyl esterase
RGAE rhamnogalacturonan acetyl esterase
Pectin RGL rhamnogalacturonan lyase
RGX exo-rhamnogalacturonase
RHA a-rhamnosidase
RHG endo-rhamnogalacturonase
UGH unsaturated glucuronyl hydrolase
URH unsaturated rhamnogalacturonyl
hydrolase
XGH xylogalacturonase
ABF a-arabinofuranosidase
Arabinan ABN endo—arapinanase
ABX exo-arabinanase
FAE feruloyl esterase
EXG exo-1,3-galactanase
Galactan(s) FAE feruloyl esterase
(galactan, arabinogalactan) GAL B-1,4-endo-galactanase
LAC B-1,4-galactosidase
AGD a-glucosidase
AMG amylo-a-1,6-glucosidase
Starch
(amylose, amylopectin) g’r: (g][sg)::qsyelase
Etoraoelpchi=acchaiide LPMO lytic polysaccharide monooxygenase
Inulin INU endo-inulunase
(B-(1,2)-fructan) INX exo-inulinase
Suc invertase




Chapter 1

4. Regulation of plant biomass degradation

In order to produce the enzymes required for the degradation of plant polysaccharides,
the presence of polysaccharide derivatives, such as mono- and/or disaccharides is
required**. The uptake of such mono- and disaccharides triggers signaling pathways
that subsequently activate transcription factors (TFs), which can either activate or
repress gene expression. The majority of fungal transcriptional activators belong to the
Zn,Cys, class proteins, which after activation are relocated into the cell nucleus. There
they can bind to the promoter regions of their target genes and induce their expression
to produce enzymes necessary for substrate degradation as well as utilization of the
available carbon sources*#®, However, mono- and disaccharides do not typically occur
as free sugars in plant biomass. It is still unclear how substrate degradation is induced
in fungi. It has been hypothesized that certain “scouting” enzymes are induced under
carbon-starvation conditions, which subsequently provide inducing molecules to fully
activate a response to degrade the available carbon source*#’. However, it is more
likely that fungi constitutively produce low levels of some CAZymes to subsequently
initiate complete activation when an inducer concentration threshold is reached*,

The three most abundant groups of plant cell wall polysaccharides, cellulose,
hemicellulose and pectin as well as storage polysaccharides are prominent in plant
biomass, for which plant biomass-degrading enzymes can be produced under the
regulation of numerous interplaying TFs*-%'. Understanding the transcriptional
regulatory systems involved in plant biomass degradation among Aspergilli offers
great potential for advancing biotechnology. The following sections will primarily focus
on the current knowledge, including functionality and network interactions of several
TFs in Aspergillus spp., which are involved in the degradation of plant biomass. Major
transcriptional activators involved in the degradation of cellulose, hemicellulose, pectin
and storage polysaccharides will be discussed separately.

Besides activators, transcriptional repressors also play a crucial role in the regulation
of gene expression in order to maintain an energetically favorable balance. The
main transcriptional repressor playing a major role in CCR is CreA%. Transcriptional
repressors will be discussed in a separate section.

4.1 Transcriptional activators of plant biomass degradation

The degradation of (hemi-)cellulose is mainly regulated by the transcriptional activators

15
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XInR?%, CIrA% and CIrB/ManR5%4. AraR% is also involved in the regulation of hemicellulose
degradation® and pentose catabolism®®, although it has a major role in the regulation of
pectinolytic activities®. Thus, AraR will be partly discussed in both sections regarding
hemicellulose and pectin degradation. Pectin degradation is additionally controlled by
GaaR% and RhaR®%, with putative involvement of GalX%. Finally, AmyR® and InuR®'
play a crucial role in the degradation of the storage polysaccharides starch and inulin,
respectively.

Besides these TFs, additional Aspergillus TFs or modulators have been described
which show involvement in plant biomass degradation or sugar catabolism. These
include the maltose regulator MalR, identified in A. oryzae®?, the cellobiose regulator
CIbR, described in Aspergillus aculeatus®, and the D-galactose regulator GalR®* and
MADS-box protein McmA?®®, both described in Aspergillus nidulans. Additionally, several
TFs involved in the regulation of plant biomass degradation have been described
in Sordariomycetes. These include: the modulator of glucose sensing and carbon
catabolite repression (CCR) VIB1¢, described in Neurospora crassa, which shows a
positive effect on the expression of hydrolytic enzyme genes and the expression of clr-
2 (ortholog of clrB/manR); the (hemi-)cellulolytic activators ACE2%” and ACE3%, both
identified in T. reesei; and the L-arabinose responsive TF, ARA1, described in Pyricularia
oryzae (Magnaporthe oryzae)®® and T. reesei’®, which is the functional analog of AraR
in Eurotiomycetes.

4.1.1 Transcriptionfactorsinvolved in (hemi-)cellulose degradation

In Aspergilli, there are three primary TFs that govern the gene regulation for (hemi-)
cellulose degradation, namely XInR%®, CIrA and CIrB/ManR""72, CIrA and CIrB are
orthologs of CLR-1 and CLR-2, which were originally described in N. crassa®. These
TFs are required for utilization of cellulose in N. crassa, but not for hemicellulase activity
on xylan®. Moreover, their orthologs have already been (partially) characterized in
several Aspergillus spp., including A. nidulans (CIrB)%, A. oryzae (ManR)™? and A. niger
(CIrB)™. It should be noted that the CIrB equivalent in A. oryzae is known as ManR, due
to its initial association with enzyme regulation for mannan-degradation”. A subsequent
study also showed the involvement of N. crassa CLR-2 in the regulation of mannan
utilization™, but the regulation of mannanolytic activities is not fully conserved in the
case of A. nidulans CIrB™. In N. crassa, CLR-2 is a major activator of cellulase gene
expression and is under the transcriptional regulation of CLR-1, which acts as a crucial
cellulose-sensor®. Conversely, CIrA was shown to be less prominent as a cellulose-
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sensor in A. nidulans®. However, utilization of cellobiose, a degradation product of
cellulose, was defective upon deletion of CIrA, suggesting that CIrA is still necessary
for optimal cellulolytic activity®*. These findings strongly support that CIrA may have a
conserved role in cellobiose-sensing pathways among filamentous ascomycetes, albeit
to different extent between species™. On the other hand, CLR-2 and CIrB were shown
to be highly conserved in both N. crassa and A. nidulans, respectively, as essential
cellulase activators®. As aforementioned, these TFs have also been characterized to
some extent in other Aspergillus spp., such as A. niger and A. oryzae, where CIrB
and ManR were both shown to be crucial for the regulation of cellulolytic activities”"72.
Additionally, it was shown that the role of CIrB in the regulation of cellulase gene
expression is also conserved in Penicillium oxalicum™7", suggesting a conservation of
a similar regulatory mechanism for cellulose utilization between Aspergilli and Penicillia.

Although it has been reported that orthologs of CLR-1/CIrA and/or CLR-2/CIrB are
present in genomes of diverse filamentous ascomycetes®, these are still poorly studied
in several species and further studies are required for the validation of their functions.
Apart from CLR-1/CIrA and CLR-2/CIrB, two additional (in)direct modulators of the
cellulolytic system were described in N. crassa, CLR-3"® and CLR-47°. CLR-3 was
associated with the repression of clr-1 in the absence of an inducer’®, while CLR-4 was
shown to regulate the expression of the three major (hemi-)cellulolytic TF genes cir-1,
clr-2 and xIr-1 and key genes involved in the cyclic adenosine monophosphate (cAMP)
signaling pathway in N. crassa’. An ortholog of CLR-4 was also identified in another
Sordariomycete fungus, Myceliophthora thermophila, showing a comparable role to its
N. crassa ortholog. However, it remains to be seen if functional analogs of CLR-3 and
CLR-4 are present in Asperqgillus spp.

XInR/Xyr1 was the first TF identified to be involved in the regulation of xylanase gene
expression in filamentous fungi®, and in A. niger, XInR later became one of the most
studied TF involved in glycoside hydrolase gene regulation in filamentous fungi.
Studies on XInR and its homologs have also expanded into other reference or industrial
Aspergillus species, such as A. nidulans®' or A. oryzae®. XInR orthologs have also
been described in other Aspergilli such as Aspergillus fumigatus®® and Aspergillus
tamar®. Additionally, XInR was found to be conserved in nearly all studied filamentous
ascomycetes®, including P. oxalicum™, Fusarium oxysporum®, T. reesei (Xyr1)®¥” and
Fusarium graminearum (Xyr1)%.

In A. niger, it was demonstrated that XInR is inactive in the cytoplasm and undergoes
nuclear import upon D-xylose induction, where it can function as a first step regulator
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of CAZy and D-xylose catabolic pathway gene expression®%. XInR has been shown
to primarily regulate the expression of several cellulases and hemicellulases, including
xylanases, [-xylosidases, cellobiohydrolases, endoglucanases, galactosidases,
arabinofuranosidases and carbohydrate esterases in A. niger®'. The involvement of
XInR in the regulation of cellulase gene expression in Aspergillus spp.*® suggests a
diversity of cellulase regulation mechanisms among filamentous ascomycetes via XInR,
CIrA, CIrB and their homologs’. Additionally, one study in A. niger demonstrated that
both clrA and clrB transcript levels decreased significantly after deletion of xInR™'. These
findings suggest the possibility that XInR directly regulates the expression of clrA and
clrB.

In Aspergillus, AraR shows a strong sequence similarity to XInR, and these similarities
are speculated through the help of evolutionary analysis to be the product of a gene
duplication event®®. Studies in A. nidulans and A. niger demonstrated both gene co-
regulation, as well as antagonistic interaction between AraR and XInR%¢%2-%  For
instance, AraR and XInR are both crucial for the functionality of the pentose catabolic
pathway (PCP), showing overlapping and synergistic roles in promoting the expression
of several genes involved in this pathway%%. Both D-xylose and L-arabinose are
sugars often derived from hemicellulose, and are catabolized through this pathway.
Additionally, both TFs were shown to regulate the expression of several genes involved
in the oxidoreductive D-galactose catabolic pathway in A. nidulans and the pentose
phosphate pathway in A. niger?'%, This form of co-regulation is not particularly
surprising as D-galactose, L-arabinose and D-xylose are often present together in
nature®. However, one study showed that the role of AraR differs significantly in the
PCP between A. nidulans and A. niger, despite being taxonomically closely related?®’.
Conversely, the same study showed that XInR functionality is similar between A. nidulans
and A. niger®'. A BlastP analysis within the same study suggested the involvement of a
currently unknown regulator in the regulation of PCP in A. nidulans®'. Further variation
within Eurotiomycetes was demonstrated in another study, where the single deletion
of the xInR homolog in P. oxalicum resulted in increased a-L-arabinofuranosidase
production®®. This increase was linked to AraR activity. However, similar outcomes
were not observed in A. niger, which emphasizes the different regulatory mechanisms
between these species, particularly regarding the role of AraR and its interplay with
XInR%. The significant overlap between the activity of XInR and other transcriptional
regulators shows that the regulation of substrate utilization is a highly interconnected
and intricate process®’!. More research is needed to further elucidate the contribution
of XInR to other regulatory mechanisms.
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4.1.2 Transcription factors involved in pectin degradation

Several TFs regulate genes involved in pectin degradation, including AraR%®, GaaR¥,
RhaR5% and possibly GalX®®, which has been shown to primarily play a role in D-galactose
catabolism in A. nidulans and A. niger®®%,

AraR is a well-known Zn,Cys-type TF, which typically responds to the presence of
L-arabinose or L-arabitol®”®, It is responsible for regulating the expression of a diverse
set of CAZy genes in Aspergillus spp., such as A. nidulans®, A. niger®>%28'" or A.
oryzae®®. Despite the previously described similarities between XInR and AraR, these
TFs also show distinct aspects of functionality, as it has been demonstrated that AraR
displays a more prominent contribution to the regulation of pectinolytic genes, including
genes coding for a-L-arabinofuranosidases (abfA, abfB), B-galactosidases (/acA) and
B-xylosidases (gbgA)%®. For example, a-L-arabinofuranosidases play an important
role in the degradation of pectin-containing substrates by removing L-arabinose units
from the decorating side chains®0'%. Moreover, it was shown that AraR orthologs
are also present in other fungal taxa®. For example, an AraR ortholog has already
been characterized in P. oxalicum® . In this study, it was demonstrated that AraR
can be genetically manipulated to produce significantly increased amounts of a-L-
arabinofuranosidases®.

Several other TFs involved in pectin degradation can be found in diverse Aspergillus spp.,
all of which typically respond to certain monomers present in complex pectin structures.
L-rhamnose can typically be found in the pectic polysaccharides RG-I and RG-Il found
in the plant cell walls. L-rhamnose has been shown to induce and upregulate the
expression of several genes encoding a-L-rhamnosidases, endopolygalacturonases,
exo-rhamnogalaturonan hydrolases and rhamnogalacturonan acetylesterases in
filamentous fungi. These enzymes are required for the degradation of the previously
mentioned pectic polysaccharides®® %2, L-rhamnose-mediated induction of RhaR was
shown in A. nidulans'® and A. niger®®1%31% which resulted in upregulated expression
of enzymes for both the degradation of L-rhamnose-containing substrates as well as
for L-rhamnose catabolism. More recently it was shown that the L-rhamnose derivative
2-keto-3-deoxy-L-rhamnonate (L-KDR) is responsible for the induction of the RhaR-
responsive genes in A. niger'®. Other Aspergillus species such as A. aculeatus have also
been suggested to contain similar regulatory systems based on rhamnogalacturonan
hydrolase RghA activity'.

D-galacturonic acid is a prominent monomer in pectin structures. Its catabolic
intermediate, 2-keto-3-deoxy-L-galactonate acts as the inducer of GaaR in A. niger'”’.
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Interestingly, both GaaR and RhaR inducers are 2-keto-3-deoxy-L derivatives, which
may indicate a shared ancestral induction system. Induction of GaaR activity promotes
upregulation of pectinase gene expression, such as exo-polygalacturonases, as well as
genes involved in transport and catabolism of D-galacturonic acid®”. Moreover, it has
been shown in A. nigerthat overexpression of GaaR results in upregulation or constitutive
expression of pectinases, putative D-galacturonic acid transporters, and enzymes
involved in D-galacturonic acid catabolism, even in the absence of D-galacturonic
acid'®. In contrast, a knockout of GaaR results in downregulation of pectinases and
genes involved in D-galacturonic acid utilization, highlighting the crucial role of GaaR for
growth on D-galacturonic acid-rich substrates®. Based on a phylogenetic analysis, Alazi
et al. also showed that 19 out of 20 different Aspergillus spp. contain a GaaR ortholog,
being only absent in Aspergillus glaucus®’. This also explains why A. glaucus lacks the
ability to grow on D-galacturonic acid as a sole carbon source®.

D-galactose is a very common monomer found in pectin and it was shown to be the
primary inducer of GalX/GalR activity®. In A nidulans, these two Zn,Cys, transcriptional
activators were found to be involved in the regulation of D-galactose metabolism®.
Moreover, it was shown that GalR activity may be under the control of GalX, and that
XInR and AraR are also involved in D-galactose catabolism in A. nidulans® and A. niger
(underreview). Interestingly, GalX can be found among various Aspergillisuch as A. niger,
A. nidulans, A. oryzae, A. fumigatus and Aspergillus flavus, while GalR was shown to be
unique to A. nidulans® and other species of the section Nidulantes. Additionally, it was
also shown that both GalX and GalR are absent in Aspergillus terreus and Aspergillus
clavatus®. This likely suggests a significantly different catabolic system for D-galactose
among such fungi that lack both GalR and GalX. Since D-galactose is a prominent
monomer in pectin structures, it might suggest that GalX could also be involved in pectin
degradation. However, currently there is no evidence, to our knowledge, indicating that
GalX truly has a role in pectin degradation. Further investigation is required to clarify
this.

Finally, research has also demonstrated strong interplay and combinatorial gene
regulation between GaaR, AraR and RhaR®, as well as synergistic activities of a large
number of pectinolytic enzymes controlled by these TFs'%,
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4.1.3 Transcription factors involved in storage polysaccharide
degradation

Storage polysaccharides are a form of stored or reserved energy within a living
organism, mainly represented by starch and inulin. AmyR and InuR are both highly
conserved Zn,Cys, TFs required for amylolytic and inulinolytic gene regulation among
Aspergilli®®®'. AmyR has been described to be present in several Aspergillus spp.,
namely A. niger'™®, A. oryzae'" and A. nidulans''?, but also within other taxa, including
P. oxalicum™. AmyR is typically induced in the presence of starch or maltose and it
upregulates the production of amylolytic enzymes such as a-amylases, glucoamylases
and a-glucosidases for starch degradation's. In A. nidulans, isomaltose has been
suggested to be the inducer for AmyR activity''4"5, Additionally, D-glucose-mediated
induction, as well as the regulation of a-/B-galactosidase activity was shown in A.
niger''®, which indicates a broader role of AmyR in plant biomass degradation.

In A. niger, inulinolytic enzymes have been shown to be induced when either inulin
or sucrose are present'’. Several inulin-degrading enzymes have been identified in
A. niger, including exo-inulinases'®, endo-inulinases'® and invertases'?. Results from
another study suggest that A. niger utilizes inulin and sucrose by expressing various
extracellular enzymes and sugar transporters, all of which are under transcriptional
control of InuR®'. Interestingly, phylogenetic analysis showed that InuR is closely related
to AmyR®'. Moreover, Yuan et al. have indicated that the proposed transcriptional
binding site of InuR is very similar, if not identical, to that of AmyR, which was shown
to be present in the promoters of several amylolytic genes in A. niger'. These strong
similarities between InuR and AmyR indicate that they likely have arisen from a common
ancestor, similar to XInR and AraR. Interestingly, the same study showed that A. niger
growth on inulin was not abolished when InuR was deleted®'. Further growth reduction
was observed when both InuR and AmyR were deleted, which suggests a correlation
between these two TFs for inulin utilization®’.

4.2 Transcriptional repressors involved in plant biomass
degradation

In order to maintain energetic balance, certain genes also need to be repressed when
the encoded enzymes are not required for the degradation of carbon sources found in
the environment. The most studied transcriptional repressor is CreA/CRE1, which has
been described as a well conserved repressor in filamentous fungi®®'21-123,
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CreA/CRE1 is a Cys,His, class TF and it regulates CCR, affecting the expression of a
broad range of CAZy genes'?*-'%5, However, it was shown that mutations of creA/cre 1 can
also affect additional biological functions, including colony morphology'?, sporulation'?,
carbon and nitrogen metabolism'2-1%, as well as secondary metabolism™".

Several additional repressors involved in the regulation of cellulose or hemicellulose
gene expression have been described primarily in T. reesei. These include the cellulase
repressors ACE1"®2 and Rce1'®, the xylanase repressor XPP1'** and the GH11
endoxylanase-specific repressor SxIR'™5. Similarly, a hemicellulose repressor, HCR-1,
has also been described in N. crassa'®. Moreover, in the same fungus, CLR-3 has been
identified as a repressor of cellulolytic activities through its interaction with CLR-178,
Besides (hemi-)cellulolytic repressors, GaaX has been associated with the repression
of GaaR activity in the absence of D-galacturonic acid in A. niger'®. Moreover, it has
been suggested that a GaaR-GaaX activator-repressor module is well conserved
among ascomycete fungi'’.

Although the aforementioned transcriptional repressors belong to the Cys His, class
proteins (ACE1, HCR-1 and CreA/CRE1), Rce1 and SxIR, both identified in T. reesei,
belong to the Zn,Cys, class proteins. Despite the general association of fungal
transcriptional activators with Zn,Cys, class proteins and repressors with Cys His,
class proteins, the Cys,His, Rxe1 TF described in T. reesei was shown to positively
affect the expression of the (hemi-)cellulolytic regulator gene xyr1 by direct binding to its
promoter’®, These results represent the diversity of TFs taking part in gene activation
or repression in filamentous fungi.
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5. Aims and outline of this thesis

The availability of a large number of fungal genomes has led to significant progress in
the identification and characterization of fungal TFs. The identification of the regulons
and interactions of several TFs allowed the generation of fungal strains with improved
enzyme cocktails for efficient plant biomass degradation'®. Nevertheless, there is still
much to be learned about the complexity of the fungal regulatory network for further
optimization of enzyme production. The establishment of the Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas)
gene editing system in filamentous fungi'*®-'%2 has revolutionized strain engineering by
allowing the implementation of multiplex gene editing or precise sequence modifications.

The aim of this thesis was to apply the CRISPR/Cas9 gene editing system in the
filamentous fungus A. niger to generate various mutations (gene deletion, point mutation,
domain swapping) of TFs involved in the regulation of plant biomass degradation, to
get a deeper insight into the regulatory network controlling this process. The CRISPR/
Cas9 system was used to generate a large number of single and combinatorial deletion
strains, as well as mutants carrying precise on-site modifications in selected native
genes. Results described in this thesis provide more insight into the possibilities of
strain engineering using CRISPR/Cas9 in A. niger, and better understanding of the
fungal regulatory network governing the degradation of agricultural crude substrates.

In Chapter 2, different approaches of strain engineering for improved production of
fungal enzyme cocktails have been reviewed. This chapter provides a summary of
various applications of classical transformation methods, as well as the establishment
and application of novel gene editing methods, such as CRISPR/Cas9, in different
fungal species. Additionally, this chapter provides an insight into the omics technologies
and their implementation into fungal strain engineering.

Chapter 3 presents a method for rapid generation of constitutively active forms of two TFs,
XInR and GaaR. The CRISPR/Cas9 system was used to introduce on-site mutations in
the endogenous xInR and gaaR sequences, using short single stranded oligonucleotides
as repair templates. The generated mutants showed increased production of enzymes
required for the release of D-xylose, L-arabinose or D-galacturonic acid, which resulted
in improved saccharification of wheat bran or sugar beet pulp.
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Additionally, the CRISPR/Cas9 system allowed us to replace the N-terminal region of
the endogenous xInR gene with the N-terminal region of gaaR, resulting in a chimeric
GaaR-XInR TF mutant. This mutant showed the activation of pectinolytic functions in
the presence of D-xylose. The alteration of TF specificity is a promising tool for the
generation of mutants which can produce high value enzyme cocktails on cheap
agricultural substrates. The results of this study are presented in Chapter 4.

The CRISPR/Cas9 system was also used for the generation of a large number of single
and combinatorial TF deletion strains. By analyzing these deletion mutants, it is possible
to assess which genes are under the control of a specific TF and which genes are co-
regulated by multiple TFs. One study involved the analysis of an A. niger AclrB mutant.
Our results provide more information about the inducing condition and the regulon of
this TF. These results are described in Chapter 5.

In Chapter 6, the generation and analysis of single and double deletion mutants of
amyR and inuR is presented, encoding the regulators involved in storage polysaccharide
degradation. This study shows a culture condition-dependent involvement of AmyR in
the utilization of sucrose and inulin, which was mainly evidenced by data originated from
solid plate cultures.

In Chapter 7, we report the generation of a complete set of XInR-AraR-CIrA-CIrB
deletion mutants through consecutive gene deletions by CRISPR/Cas9. We evaluated
the role of these four TFs with regard to wheat bran utilization, with main focus on
(hemi-)cellulose degradation. Moreover, the generation and analysis of a multi-deletion
stain which included the additional deletion of amyR, showed the importance of starch
utilization in wheat bran. This study provides a better understanding of the regulatory
network governing wheat bran degradation.

Chapter 8 describes the regulation of sugar beet pulp degradation by A. niger. Alarge set
of single and combinatorial deletion mutants were generated using CRISPR/Cas9. The
deleted genes included four TF genes with putative involvement in pectin degradation
(gaaR, rhaR, araR, and galX) and two TF genes with involvement in (hemi-)cellulose
degradation (x/nR and clrB). Transcriptome analysis of the control and multi-deletion
strains revealed the adaptation of A. niger towards the utilization of sugar beet pulp
components during the experimental time course.

Finally, the results of this thesis are summarized and discussed in Chapter 9.
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Abstract

Fungal strain engineering is commonly used in many areas of biotechnology, including
the production of plant biomass degrading enzymes. Its aim varies from the production
of specific enzymes to overall increased enzyme production levels and modification of
the composition of the enzyme set that is produced by the fungus. Strain engineering
involves a diverse range of methodologies, including classical mutagenesis, genetic
engineering and genome editing. In this review, the main approaches for strain
engineering of filamentous fungi in the field of plant biomass degradation will be
discussed, including recent and not yet implemented methods, such as CRISPR/Cas9
genome editing and adaptive evolution.
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1. Introduction

Filamentous fungi are a diverse group of eukaryotic organisms, which have both
positive and negative impacts on our society. Some of them are responsible for the
contamination of food and fodder and infection of living organisms®. On the other hand,
some filamentous fungi are potent producers of industrially relevant metabolites such as
antibiotics, statins or immunosuppressive drugs as well as organic acids. Filamentous
fungi have a central role in the production of various biotechnologically important
enzymes, such as those degrading complex plant materials?®. These fungal enzymes
are used e.g. in the pulp and paper, food and feed, and textile and detergent industry. In
addition, more recent application of fungal enzymes is in the biofuels and biochemicals
industries*.

Due to the broad range of applications fungal enzymes are used for, the production
level of the enzymes and the composition of the enzyme sets produced have been
actively studied over the last decades, and have been the target of strain engineering in
many academic and industrial studies®®. Increasing enzyme production level in general
is important for many applications, as it will directly affect the overall process costs.
However, also ensuring that the right set of enzymes is produced, including all required
activities and avoiding unwanted activities, is highly relevant. Often wild type strains do
not produce the protein at levels required in industry, nor do they produce exactly the
desired enzymes set. To solve this problem, strain engineering has generated industrial
fungal strains that have superior performance compared to wild type strains. Genetic
engineering approaches have been developed for industrially used fungal species
and strains in order to increase their enzyme production®'®. However, most of these
methods are available for only a limited number of model or industrial fungi. In addition,
the full capacity of fungi as enzyme factories depends on a detailed molecular level
understanding of their physiology including regulatory mechanisms that govern enzyme
production2. Although considerable progress has been made to improve the industrial
potential of fungi, our knowledge remains limited and a number of questions have yet
to be addressed. The availability of an increasing number of fungal genome sequences
and omics data can lead to broader opportunities of genetic manipulations and research
of potentially relevant industrial fungal species.

In the following sections, the approaches used for strain engineering of filamentous fungi
in terms of production of enzymes and enzyme cocktails or plant biomass degradation
will be discussed, using examples of the use of these strains to highlight their relevance
and contribution to biotechnology. The availability of fungal (post-)genomics together
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with modern genome editing technology has provided new opportunities for strain
engineering that will be especially emphasized. The examples of strain engineering in
fungi for enzyme production are numerous and it is impossible to provide a full overview
of this topic. This review will therefore focus on the main approaches used for strain
engineering, each accompanied by some examples of the specific enzymes or regulators
controlling enzyme production. It should be noted that due to legislation issues, the
implementation of some of these technologies is delayed in certain applications. As this
is highly dependent on the country in which the processes are performed, we will not
discuss restrictions of the use of the engineered strains caused by legislation in this
review.

2. Classical strain engineering approaches

2.1 UV and chemical mutagenesis to improve enzyme activity

Mutagenesis approaches have been used to obtain strains with improved plant biomass
degrading enzyme production. While this approach has been used for a variety of
enzymatic activities, especially improvement of cellulase production has received
extensive attention. To achieve this, better production strains have been obtained
by random mutagenesis methods that are simple and easy to perform. Classical
mutagenesis has been the most widely accepted method of strain improvement, and has
also been used to create most of the fungal strains employed for commercial cellulase
production, although a few have been generated through genetic modification™.

One type of classical mutagenesis is the use of physical mutagens, such as ultraviolet
(UV) radiation, which has proved to be an efficient approach for strain improvement.
The UVC rays cause mutations as they pass through DNA and excite the atoms of the
DNA molecule. The loss of electrons causes a change in the covalent bonds between
DNA nucleotides and induces two adjacent pyrimidines, thymine and cytosine, to join
and form a pyrimidine dimer (Figure 1A), most commonly resulting in point mutations. If
this DNA damage is not repaired immediately, DNA polymerase replicates the mutation,
resulting it to be present in both strands of the DNA. In most cases, UV mutations
are very harmful, but may sometimes lead to better adaptation of an organism to its
environment or in improved biocatalytic performance’. For example, when a fungus is
exposed to mutagens at a sub-lethal concentration, the level of cellulase activity has
been shown to increase™ ™,
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Asecond type of classical mutagenesis is the use of chemical agents, such asintercalating
molecules (e.g. ethidium bromide - EtBr), that can insert themselves between DNA
strands and stretch the DNA duplex in such a way that DNA polymerase will insert
an extra nucleotide opposite an intercalated molecule. Intercalating agents therefore
typically cause frameshift mutations' (Figure 1B). In addition, alkylating agents, such
as N-methyl-N’-nitro-N-nitrosoguanidine (NTG) and ethylmethane sulphonate (EMS),
have been used as mutagens in strain engineering. These chemicals add alkyl groups
to nucleotides at various positions, which may lead to transition mutations where one
pyrimidine or purine base is substituted by the other. The consequences of nucleotide
mutations in protein coding regions of a gene depend on the substitutions of the
nucleobases as well as the location of the mutations. This may lead to alteration in the
enzyme amino acid sequence that may either increase, decrease or abolish the activity
of mutant enzymes'®.
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Figure 1. Classical mutagenesis. Changes that can be produced with these mutagens are depicted. A)
UV light leads to the formation of thymine dimers, which can introduce frameshift or point mutations. B) For
chemical mutagenesis, the chemical agent (e.g. ethidium bromide) is intercalated and introduces a spacing
between base pairs, causing deletion or insertion of base pairs.
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Use of UV radiation and chemicals, either separately or in combination, has been
highly efficient in the generation of hypercellulolytic strains of filamentous fungi (Table
1). This is exemplified by the improvement of the cellulase titers of the Trichoderma
reesei wild type strain QM6a (previously named Trichoderma viride QM6a)'®, resulting
in strains with superior qualities in terms of cellulase activity levels, protein secretion
and catabolite derepression, which have been used at the industrial level'”. First, the
mutant QM9414 with four-fold increase in cellulase production and two-fold increase
in extracellular protein level compared to the wild type QM6a strain was generated by
UV irradiation of conidia''. After this, UV mutagenesis and screening for catabolite
derepression resulted in the isolation of strain M7%. A partially derepressed strain NG14
with increased production of extracellular protein and cellulase activity was obtained by
chemical mutagenesis using N-nitroguanidine. Finally, the hypercellulolytic RUT-C30
strain was obtained after another round of UV mutagenesis together with screening for
cellulase activity and catabolite derepression?'.

Other examples of increased cellulase production by classical mutagenesis were
reported for another industrially used filamentous ascomycete, Aspergillus. A wild type
Aspergillus strain was improved by two sequential treatments of Co® y-irradiation, UV
irradiation and four sequential treatments with NTG?2. This resulted in a mutant strain
that produced 2-, 3.2- and 1.8-fold higher activity of carboxymethyl cellulase (CMCase),
filter paper cellulase (FPase) and B-glucosidase, respectively, compared to the wild
type?2. Similarly, an Aspergillus niger mutant obtained by UV irradiation showed 3- and
2-fold increase in FPase and CMCase activity, respectively, compared to the parental
strain'?. Exposure of Aspergillus oryzae NRRL 3484 to sequential UV irradiation
treatments followed by chemical treatments with NTG or EtBr, resulted in a mutant with
a 4-fold higher FPase and CMCase activity than the wild type strain?.

The general suitability of classical mutagenesis is supported by its use for the
improvement of cellulase production in several other fungi that are less commonly or not
used in industry. A UV mutant strain of Penicillium echinulatum had a high filter paper
activity (FPA) compared to the wild type strain?*, while successive mutagenic treatments
with EMS followed by UV irradiation generated a Penicillium janthinellum mutant that
showed 3-fold FPase and 2-fold CMCase activity levels compared to the parent strain?.
UV treatment followed by chemical mutagenesis using NTG also generated a mutant
of Fusarium oxysporum with 80% higher cellulolytic activity than its parent strain?. In
addition to the improvement of cellulase production, classical mutagenesis has also
been used to improve the production of other industrially relevant enzymes in fungi. For
example, an Aspergillus tubingensis mutant generated by UV mutagenesis demonstrated
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improved xylanase activity, which was shown to be the result of a metabolic mutation?”.
In addition, UV irradiation has been successfully used to obtain A. niger mutants with
increased pectinase production?®, whereas A. niger mutants showing improved lipase
activity were generated with sequential exposure to UV radiation or nitrous acid?®. Of the
biotechnologically interesting fungal oxidative enzymes, increased laccase production
has been achieved with EtBr treatment in the basidiomycete fungi Cyathus bulleri*®® and
Pleurotus citrinopileatus®'.

These examples demonstrate the value of classical mutagenesis for improved enzyme
production in filamentous fungi, and many of the mutants used at the industrial level have
been obtained through this methodology. However, the use of classical mutagenesis
also has disadvantages, in particular related to the non-targeted nature of this approach.
The high dose of UV or chemical often used in industrial strain improvement strategies
makes the generation of strains with single mutation highly unlikely. Improved production
strains can acquire point mutations over several rounds of random mutagenesis leading
e.g. to a reduced growth rate, sporulation defects or genomic instability. Some of these
disadvantageous mutations will show up already in the screening of the progeny, and
therefore strains containing them are likely discarded at this stage. However, other
negative mutations may not show themselves until later stages of testing of the strains,
such as reduced fermentation properties of the strain or reduced suitability for upscaling.
Progeny with such negative characteristics would still be discarded, despite the amount
of work already invested in them. In this context, directed genome manipulation can
help to overcome the effect of deleterious point mutations®2.
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Table 1. Classical strain engineering approaches. This table includes some examples of the
improvements obtained in the production of enzymes in filamentous fungi that were engineered by classical

methods.

Species Improvements Method* References
Aspergillus 2-fold increase in FPase and CMCase UV mutagenesis 12
niger activity
Aspergillus 4-fold increase in FPase and CMCase UV mutagenesis 2
oryzae activity

Chemical mutagenesis (NTG)
Aspergillus Increased pectinase activity from 59 U/ UV mutagenesis 33
tamarii ml to 65 U/ml

Chemical mutagenesis

(Hydrogen peroxide)
Aspergillus 2- to 5-fold increase in CMCase, UV mutagenesis 34
terreus avicelase, FPase and B-glucosidase

activity Chemical mutagenesis (EMS)

Chaetomium  1.6-fold increase in CMCase activity y-irradiation %
cellulolyticum
Fusarium 80% higher cellulolytic activity UV mutagenesis 2
oxysporum

Chemical mutagenesis (NTG)
Gliocladium  Higher B-1,4-glucosidase, CMCase and UV mutagenesis 36
virens FP cellulase activity

Chemical mutagenesis (EMS)
Humicola Increase of 115% in CMCase, 303% UV mutagenesis 3
insolens in FPase and 196% in B-glucosidase

activity Chemical mutagenesis

(MNNG)
Penicillium High FPase activity UV mutagenesis 2
echinulatum
Penicillium 3-fold increase in FPase and 2-fold UV mutagenesis 2
janthinellum  increase in CMCase activity

Chemical mutagenesis (EMS)
Penicillium 2.7-fold increase in CMCase activity UV mutagenesis %
oxalicum

Chemical mutagenesis (EtBr)
Trichoderma  2.7-fold increase in protein secretion, UV mutagenesis %
reesei and 2.8-fold increase in FPase activity

Chemical mutagenesis
(N-nitroguanidine)

*Only the methods used are mentioned, the methodology and the order in which the methods were used
varies in each case and in many of them the strains were subjected to successive mutation steps. FPase =
filter paper activity, CMCase = carboxymethyl cellulase activity, NTG = N-methyl-N’-nitro-N-nitrosoguanidine,
EMS = ethylmethane sulphonate, MNNG = N-methyl-N-nitro-N-nitrosoguanidine, EtBr = ethidium bromide.
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2.2 Genetically modified strains

After the discovery of DNA-mediated transformation procedures in the 1970s and 1980s,
more targeted strategies were developed for the production of commercially valuable
microbial strains. In addition, whole genome sequencing projects opened the possibility
of genome mining, revealing a huge number of yet to be characterized genes encoding
candidate plant biomass degrading enzymes**-42. Together with the development of
novel molecular tools, such as homologous recombination (HR) and RNA interference
(RNAI), genetic engineering of fungal strains became a commonly used approach for
the development of strains with improved characteristics. Both forward and reverse
genetics have been used to improve fungal production of plant biomass degrading
enzyme production. Two early examples of forward genetics are the identification of the
starch- and xylan-related transcriptional activators, AmyR from A. oryzae*® and XInR
from A. niger*4, respectively. Examples of reverse genetics are also found for regulatory
genes involved in the production of plant biomass degrading enzymes, such as cir-1 and
clr-2 from Neurospora crassa®, rhaR from A. niger*® and gaaR from Botrytis cinerea®.

One of the genetic engineering strategies to manipulate the enzymatic spectrum of
fungal strains is the introduction of additional gene copies. In T. reesei, the introduction
of B-glucosidase genes from other fungi, such as Penicillium decumbens*®, Aspergillus
aculeatus*® and Chaetomium atrobrunneum®, was able to compensate for the low
native B-glucosidase activity in this species. In Penicillium oxalicum, overexpression of
B-glucosidase encoding genes improved the activity of this enzyme in culture filtrates
65-fold®!, while in Humicola insolens overexpression of a major cellulase gene (avi2)
resulted in an 8-fold higher Avi2 activity®?. Also other genes contribute to cellulose
degradation efficiency. It was shown in the dung fungus Podospora anserina, which
produces enzymes that act synergistically with those of T. reesei®®, that inactivation of
cellobiose dehydrogenases reduced its ability to degrade cellulose®.

Another application of genetic engineering for strain improvement is the manipulation
of promoters that drive the expression of enzyme encoding genes and therefore
affect enzyme production. Replacing the binding sites for the major carbon catabolite
repressor protein CRE1, in the cbh1 promoter by binding sites for the transcription
activators ACE2 (a cellulolytic activator) and the HAP2/HAP3/HAP5 complex (a general
expression enhancer regulator) in T. reesei, enhanced transcription of a test gene (green
fluorescent protein) under cellulase inducing conditions 7-fold®. Similarly, introduction
of additional copies of the enzyme encoding genes under control of string promoters
can also improve enzyme production. Overexpression of cellobiohydrolases (cbhl and
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cbhll) in T. reesei under control of the T. reesei cbh1 promoter achieved a 1.3- to 4-fold
overexpression®®, while overexpression of its bg/7 gene under control of the egl/3 or
xyn3 promoter, increased B-glucosidase activities by 4.0- to 7.5-fold%".

Combining the introduction of several genes can further enhance the effectivity of an
enzyme mixture. Simultaneous expression of bgll, encoding a B-glucosidase from A.
niger (AnBGL), and egllV, encoding a lytic polysaccharide monooxygenase (LPMO)
from T. reesei (TrLPMO), in Penicillium verruculosum under the control of the inducible
gla1 promoter resulted in more efficient hydrolysis of a lignocellulosic substrate than
the control enzyme preparations®®. Similarly, modification of the expression of a major
regulator can also affect the enzyme mixture as a whole, such as the overexpression
of cIrB in Penicillium oxalicum using the gpdA promoter from Aspergillus nidulans that
resulted in higher cellulase levels®. Similar approaches have been performed for other
regulators, such as the major (hemi-)cellulolytic regulator of A. niger (XInR), resulting
in increased levels of xylanases and cellulases®. A combination of overexpression or
activation of XInR/Xyr1 and deletion of the major carbon catabolite repressor CreA/
Cre1, resulted in even higher levels of (hemi-)cellulolytic enzymes in A. niger and T.
reese®'. Similarly, overexpression of the amylolytic regulator AmyR, resulted in higher
glucoamylase and a-amylase levels in A. nigers?.

One of the drawbacks of genetic engineering in filamentous fungi has been the low
frequency of targeted integration of the introduced gene. This is due to the fact that
in these fungi DNA integration is mainly directed by non-homologous end joining
(NHEJ), resulting in a very low frequency of site-specific recombination®®. To improve
this percentage, strains that are defective in NHEJ have been constructed in several
fungal species. The NHEJ process is mediated by the DNA-dependent protein kinase
catalytic subunit, the Ku70-Ku80 heterodimer, and the DNA ligase IV-Xrcc4 complex.
A high percentage of homologous recombination is achieved when either the ku70 or
ku80 gene is disrupted or deleted®®. For example, deletion of the Ku70 homologue
in A. nidulans (nkuAA) improved homologous integration from 13% to 90%®%. Similar
results have been reported for other fungi, such as A. oryzae®s, Aspergillus fumigatus®®
and Magnaporthe grisea®. In Penicillium decumbens, deletion of ku70 improved the
targeting event to even 100%9%. The availability of this methodology has also allowed
the construction of gene knockout libraries of Neurospora and Aspergillus, leading to the
identification of several new transcription factors involved in regulation of the production
of cellulases and hemicellulases®®-"'. There is a potential risk in using this approach
as Ku proteins are important to maintain telomere length in yeast and plants, and are
necessary to ensure chromosome stability in mammals™73, Phenotypic analysis of fungal
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strain defective in NHEJ demonstrated that these strains showed higher susceptibility
to various toxins and irradiation. A recent study in T. reesei used transient silencing of
NHEJ, to prevent those negative effects of ku-deletions’. Such a transient system may
be needed when applying removal of NHEJ in industrial production strains.

3. Novel strain engineering approaches

The availability of genome sequences and novel methodologies have strongly expanded
the toolkit for fungal strain engineering, but also enable a higher level of control of the
strain modifications as well as the analysis of the resulting progenies. In particular,
highly precise genome editing technologies have broadened the range of modifications
that can be done at a targeted locus. However, this would not be anywhere near as
efficient without the current (post-)genomic methodologies that allow efficient design
of genome editing approaches as well as detailed analysis of the resulting strains.
These methodologies have also provided a better understanding of improved strains
that are generated using non-targeted strain engineering methodologies (mutagenesis,
evolutionary adaptation), providing additional leads for targeted strain engineering
approaches.

3.1 CRISPR/Cas9 technology

3.1.1 Introduction to CRISPR/Cas9

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
associated protein (Cas) system originates from bacterial and archaeal immune systems
that contain cas genes and CRISPR array(s), which consist of short sequences that
originated from foreign genetic material (also called spacers) interspaced with identical
palindromic repeats’™. The proteins encoded by the cas genes are responsible for
acquisition of new foreign sequences into the CRISPR array(s) as well as for disruption
of exogenous DNA through the activity of Cas proteins bearing endonuclease activity,
such as the Cas9 protein™.

In the CRISPR/Cas9 system, the Cas9 protein forms a complex with two RNA
molecules: CRISPR RNA (crRNA)’®, encoded by the random spacers found in the
CRISPR array(s), and trans-activating CRISPR RNA (tracrRNA)®. It has been shown,
that these two RNAs form a dual-tracrRNA:crRNA, which can also be designed as a
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single guide RNA (sgRNA) for genome editing purposes’. The Cas9-sgRNA complex is
guided to a target DNA via homology of the crRNA to the protospacer region of the target
sequence (Figure 2). The Cas9 nuclease subsequently binds the target DNA through
interaction with the protospacer adjacent motif (PAM) immediately downstream of the
protospacer sequence. If the crRNA part of the sgRNA sequence successfully pairs
with the target DNA, the Cas9 nuclease will perform a double strand break (DSB) three
nucleotides upstream of the PAM motif®®, which can be repaired either by the NHEJ
or the homology-directed repair (HDR) pathway. The simple design and construction
of a single guide RNA for precise genome editing has rapidly expanded the toolbox of
molecular methods, such as Zinc Finger Nucleases (ZFN) and Transcription Activator-
Like Effector Nucleases (TALENs)?'.

NA scaffolg i\ )

Target gene

Increased enzyme
production

Figure 2. Utilization of the CRISPR/Cas9 system in filamentous fungi for increased
lignocellulolytic enzyme production. The artificial sgRNA is composed of a guide sequence (in green)
and a scaffold sequence (in yellow), which are the corresponding parts of the naturally occurring crRNA and
tracrRNA, respectively. The sgRNA forms a complex with the Cas9 nuclease (in blue), which will be directed to
a targeted locus of a gene of interest. In case there is sequence homology between the guide sequence and
the target sequence upstream of a PAM sequence (in red), a double strand break (DSB) will be performed.
The DSB can be repaired in a targeted manner using repair templates, which can result in precise gene
editing.
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The SpCas9 from Streptococcus pyogenes is the most widely used Cas9 nuclease due
to the abundant presence of its target PAM sequence (5’-NGG-3’) throughout genomes
of many types of organisms. This short, abundant PAM sequence provides many
possibilities to edit the genes of interest, but it can also result in undesired mutations.
The unintended mutations were mostly seen in organisms with large genomes, such
as in human cell lines, where the CRISPR/Cas9 system has been reported to cause a
wide variety of insertions, deletions and point mutations or even more complex genomic
rearrangements®-84 However, there is no current evidence of complex CRISPR/
Cas9-induced rearrangements in filamentous fungi. A comprehensive CRISPR/Cas9
off-target analysis would potentially decrease the probability of undesired mutations in
these target organisms.

3.1.2 Implementation and improvement of CRISPR/Cas9 in

filamentous fungi

CRISPR/Cas9 is a cost-efficient and simple platform to perform genetic manipulations
with a single enzymatic activity guided by a pre-designed sgRNA molecule. Therefore,
it has become a common genome editing method in a variety of organisms, such as
yeast®® and human cell lines®#”, and has been reported to work in numerous filamentous
fungi, including some basidiomycete species (Table 2). In filamentous fungi, this system
has been used to either target genes involved in metabolite or enzyme production®-° or
to establish a CRISPR/Cas9 genome editing system in a new species®'%%-1%, |n some
cases, CRISPR/Cas9 was tested in closely or even distantly related fungal species to
demonstrate the versatility of the system?%.

In order to perform genetic manipulations with the CRISPR/Cas9 system, both the
Cas9 nuclease and the sgRNA need to be present in the host organism. In fungi this
can be achieved either through integration of cas9 and sgRNA encoding constructs
into the genome®", through expression from a replicative plasmid encoding both the
cas9 gene and sgRNA'™, transient expression of the system from a non-replicating
plasmid®, or by using in vitro assembled ribonucleoproteins (RNPs)'%. In some cases,
the combination of in vitro and in vivo methods was applied with the utilization of in
vitro synthesized sgRNA, while the cas9 gene was either integrated into the genome
of the host organism'® or expressed from a replicative plasmid®. Additionally, genome
editing in the mucoromycota species Mucor circinelloides was performed using in vitro
synthesized sgRNA and purified Cas9 protein, but without in vitro RNP formation'?’.
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The first report about application of the CRISPR/Cas9 system in a filamentous fungus
was for the induction of mutagenesis in the industrially relevant enzyme producer T.
reesei'®. The cas9 gene of S. pyogenes was codon-optimized and fused with the SV40
nuclear localization signal (NLS), after which the resulting expression construct was
randomly inserted into the genome of T. reesei. The cas9 gene was expressed under the
control of the constitutive promoter Ppdc or the inducible promoter Pcbh1, demonstrating
that this system can work as an efficient and controllable genome editing tool in T.
reesei'®, Shortly after the initial successful application of the CRISPR/Cas9 system
in T. reesei, Nadvig et al. published a self-replicating plasmid-based CRISPR/Cas9
transformation system, which was successfully applied in six Aspergillus species'. For
this, four plasmids were constructed, each containing a different fungal selection marker,
either an auxotrophic marker (AFUM_pyrG and AN_argB) or an antibiotic selection
marker (hygR and ble®)'%. All these plasmids carried the cas9 from S. pyogenes, which
was codon optimized for A. niger and extended with the SV40 NLS'"*, similar as in
T. reesei'®. Importantly, a key component of this system established in Aspergilli is
the ama1 gene from A. nidulans'®, which enables plasmids to autonomously replicate
in many fungal species and therefore prevents the need for integration of cas9 gene
into the fungal genome. Moreover, this self-replicating plasmid based method allows
the possibility of marker-free genome editing, enabling multiple editing steps using the
same selection marker'®. The sgRNA constructs were cloned into the CRISPR/Cas9
vectors in a single USER-cloning step'®, resulting in in vivo expression of the guides
under the control of the strong constitutive PgpdA promoter and the TtrpC terminator®,
Due to the lack of well-defined RNA polymerase Ill promoters in filamentous fungi, such
as the U6 promoter'?, the sgRNA was released from a larger polymerase Il transcript
by the action of two ribozymes'®. The plasmids of this study proved to be widely
usable for genome editing in Aspergilli and even for the establishment of CRISPR/Cas9
transformation systems in phylogenetically distinct organisms®97.98.111-116,

The establishment of a CRISPR/Cas9 system in the industrially relevant ascomycete,
A. oryzae, also provides possibilities for improved (heterologous) protein production',
While this system resulted in a low mutation rate (10-20%), it was demonstrated to work
in two strains used for sake and soy sauce production, highlighting the opportunities for
genome editing of industrially relevant strains'®2.

It was recently shown that using NHEJ deficient strains of A. nidulans, A. niger and
A. oryzae, successful gene targeting was achieved with single-stranded 90-mer
oligonucleotides as repair templates of Cas9-induced DNA double-strand breaks'”.
This approach can be used to introduce precise modifications in the sequence of a
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gene of interest. Moreover, it was reported that using the A. fumigatus U3 promoter to
mediate expression of sgRNAs, multiple gene alterations could be performed at the
same time, which facilitates complex genetic engineering in filamentous fungi'’.

Basidiomycete fungi are less commonly used in biotechnology applications, partly due to
the lack of genetic transformation systems for most species and relatively poor behavior
in submerged fermentations of many species. More recently, the use of solid state
fermentation of basidiomycete fungi for biological pre-treatment has gained increased
attention''®-2°, which may soon result in increased attempts for strain engineering of
these fungi. The availability of genome sequences has revealed the wealth of plant
biomass degrading enzymes in basidiomycete fungi*?. This has raised interest in
the development of these fungi for applications, requiring efficient strain engineering
methodologies. So far, genome editing in basidiomycetes has only been described
for few species, including Coprinopsis cinerea'?', Ganoderma lingzhi, Ganoderma
lucidum'??, Ustilago maydis'?>'?* and Ustilago trichophora'®. It is worth to mention that
the U. maydis CRISPR/Cas9 system'?® involved the utilization of a plasmid carrying an
autonomously replicating sequence (ARS)'? responsible for self-replication, which is
a similar approach to the one developed for ascomycete fungi'®. In particular, wood-
degrading white rot basidiomycetes are essential for efficient degradation of lignin* and
the adaptation of a CRISPR/Cas9 transformation system in these organisms could
facilitate the generation of hyperligninolytic strains for applications in which removal of
lignin is needed.
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3.1.3 Applications of CRISPR/Cas9 for lignocellulolytic enzyme

production

Due to the broad range of mutations that can be introduced using CRISPR/Cas9,
soon after its establishment in filamentous fungi it was used for the improvement of
the production of lignocellulolytic enzymes (Figure 2). Strain engineering to manipulate
the regulatory system controlling lignocellulolytic enzyme production is an attractive
way to not only understand the molecular mechanisms underlying production of these
enzymes, but also to generate better enzyme production strains. Typically, these studies
address species that are either industrial enzyme producers (e.g. T. reesei, A. niger,
Myceliophthora thermophila) or well-established academic reference species (e.g. N.
crassa). Some examples of this are given below.

The CRISPR/Cas9 system established in T. reesei'® was recently used to study a
negative regulator of xylanase activity, named SxIR%*. The overexpression of this
regulator resulted in reduced xylanase activity, but did not affect cellulase activity,
while the deletion of sxIR gene resulted in a significant increase in expression of genes
encoding GH11 endoxylanases. Similarly, in A. niger the auxotrophic pyrG marker
containing plasmid'® together with in vitro synthesized sgRNA were used to introduce
a mutated version of the gene encoding the D-galacturonic acid regulator, GaaR, into
the endogenous gaaR locus™'. The modified gaaR gene carried a single point mutation
causing a W361R amino acid change and resulting in a constitutively active form of
GaaR, leading to inducer-independent production of pectinolytic enzymes™".

The CRISPR/Cas9 system was also successfully implemented in the ascomycete M.
thermophila®*, an industrially relevant thermophilic species used for high-temperature
fermentations and production of thermostable lignocellulolytic enzymes'#2. The target
genes for deletions included a carbon catabolite repressor cre-1, an endoplasmic
reticulum stress regulator res-1, a -glucosidase gh7-1 and an alkaline protease alp-71%.
The gene replacement frequency was 95%, which is much higher than the 20% frequency
achieved in traditional transformations. In addition, this system was successfully applied
for multiple simultaneous deletions, deleting up to four genes in one transformation
event®. All these deletions contributed to the improved (hemi)cellulase activity, which
reached 13.3-fold increased activity compared to the wild type strain®. This system
was also used without modifications in Myceliophthora heterothallica, indicating the
possibility of application in other related Myceliophthora species®. Recently, the same
CRISPR/Cas9 system® was used for the improved production of amylolytic and (hemi)
cellulolytic enzymes through rational design of M. thermophila strains®'.
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The deletion of a major amylase gene Mycth_72393, was shown to resultin 23.6% lower
amylase activity on starch, while the overexpression of the same gene resulted in 35%
increased activity, highlighting the essential role of this enzyme in starch degradation.
Overexpression of the key amylolytic enzyme regulator encoding gene amyR increased
the amylase activity by 30%, while the deletion of this gene resulted in 23.7% reduced
amylase activity in liquid culture supernatant®'. The deletion of amyR also resulted in
3-fold increase in CMCase and xylanase activity.

The filamentous fungus N. crassa was also genetically engineered with the CRISPR/
Cas9 system in 2015%. The cas9 gene was expressed under the control of the trpC
promoter and terminator region from A. nidulans after integration into the genome of N.
crassa. The Small Nucleolar RNA 52 (SNR52) promoter from the yeast Saccharomyces
cerevisiae? was successfully used to overexpress the single-guide RNA targeting the
clr-2. The clr-2 encodes a core transcription factor involved in the regulation of cellulase
expression*. By placing the clr-2 gene under the control of a B-tubulin promoter,
approximately two hundred-fold increase of clr-2 mRNA expression was observed
compared to the wild type strain, which consequently increased the expression of
cellulase genes®.

Overall, these results show that the CRISPR/Cas9 system has been efficiently applied
in filamentous fungi to characterize transcription factors involved in the regulation of
lignocellulose utilization and to increase the lignocellulolytic enzyme production. The
establishment of this transformation system in a broad range of filamentous fungi can
further increase the possibilities to generate more efficient enzyme producing strains
suitable for industrial applications.

3.2 Adaptive evolution

In nature, fungi evolved to adapt optimally to their environment resulting in highly
diverse physiologies for different species. Applying the possibility for adaptive evolution
in strain engineering by repeated culturing on a selective medium is a relatively novel
approach in fungal biotechnology. It was first demonstrated for the yeast S. cerevisiae
by improvement of its ability to ferment D-xylose'*4, and was then also applied to
generate S. cerevisiae strains that efficiently co-fermented D-glucose, L-arabinose and
D-xylose™®. This method was also applied for other features of this species, such as
improved glycerol production and sulfite tolerance®, improved growth on glycerol'
and acetic acid tolerance™®.
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Less examples of the use of adaptive evolution have been reported for filamentous
fungi, with the first being adaptive evolution of Metarhizium anisopliae towards strains
showing robust growth at 37°C'*°. A similar approach was later used to obtain A. nidulans
strains with increased growth rate due to adaptation to growth on solid media'®°. More
recently, adaptive evolution has been shown to enable higher production of plant
biomass degrading enzymes in Aspergillus species.

A. niger grows poorly on pure cellulose, but successive growth of this species on agar
plates with cellulose as the only carbon source resulted in significantly improved growth
and sporulation''. Analysis of the best mutant demonstrated increased cellobiohydrolase
and B-glucosidase activity, while transcriptome analysis revealed reduced expression of
the ortholog of the cellulase repressor of Podospora anserina'™?. The role of this gene
in repressing cellulase production was confirmed by deleting it in A. niger, resulting in
increased levels of cellobiohydrolase and B-glucosidase activity's'.

Similarly, successive culturing of A. oryzae on agar plates with inulin resulted in
significantly improved growth of the progeny'®. Interestingly though, the best mutant
did not only display increased inulinase activity, but also several other plant biomass
degradation related activities. The molecular basis for this change is not yet clear, but
may for instance be caused by an increased overall secretion capacity.

These examples indicate the high potential of adaptive evolution for strain engineering,
especially when GMO approaches are not desired, such as in food-related applications.

3.3 Incorporation of omics technologies into fungal strain
improvement

In the post-genomic era, the development of high-throughput analyses has proven them
to be powerful tools to enhance our understanding on complex biological systems's4.
The current omics approaches include genome sequencing, global transcriptomic
profiling, proteomics and metabolomics, which allow a deeper examination of all
components, interactions and functional states of the biological molecules in the cell.
These new methodologies also provide a novel approach to strain engineering, not only
in the analysis of the progenies of both forward and reverse genetics, but also in more
strategic options to approach strain engineering.

Many of the omics methodologies were first implemented in the yeast S. cerevisiae.
While S. cerevisiae has no significant ability to degrade plant biomass, we include some
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of the strain improvement studies of this species here, as they provide examples of the
potential of omics methodologies that can be also applied to engineering of filamentous
fungi. S. cerevisiae is a glucose fermenting species, which has been intensively used by
the bioethanol industry. However, it is unable to utilize many compounds derived from
the hydrolysis of lignocellulosic biomass, such as pentoses (D-xylose, L-arabinose) and
the disaccharide cellobiose®. To broaden its applicability, a large amount of research
has been focused on engineering S. cerevisiae to convert xylose to ethanol'-'%, For
example, two S. cerevisiae strains, TMB 3399 and 3400, were described that were both
able to catabolize and ferment D-xylose to ethanol'®®. These recombinant strains were
constructed by chromosomal integration of the genes encoding D-xylose reductase
(XR), xylitol dehydrogenase (XDH) and xylulokinase (XK). S. cerevisiae TMB 3400
showed a 5-fold increase in growth rate and lower xylitol production than S. cerevisiae
TMB 3399 when both were cultivated on D-xylose under oxygen limitation and anaerobic
conditions. Subsequently, mMRNA expression levels were compared in these strains
showing a higher expression of a hexose transporter encoding gene hxt, a xylulokinase
encoding gene xks, and genes sol3, gnd1 and tkl1 encoding enzymes involved in the
pentose phosphate pathway'®. These early studies can be considered as first steps
towards a more profound understanding of S. cerevisiae metabolic engineering and
gene expression analyses, which strongly facilitate the strategies for strain improvement.

The lignocellulose pretreatment for the production of 2™ generation biofuels generates
several inhibitory compounds that prevent fungi and their enzymes to efficiently
hydrolyze the substrate. Comparative transcriptome analysis has been used to engineer
S. cerevisiae strains with increased tolerance to inhibitors derived from lignocellulose®°.
More recently, a better fermentation performance was reported for a mutant strain of
S. cerevisiae that is tolerant to acetic acid and furfural originating from lignocellulose
by applying comparative proteomics and metabolomics analyses together with high-
throughput phenotyping'®'. Changes were observed in the maintenance of energy and
redox homeostasis as well as in the minimization of stress-induced cell damages.

As mentioned above, manipulation of regulators is an attractive approach of strain
engineering to improve production of lignocellulolytic enzymes. The regulatory system
driving this process is complex, including several transcription factors that respond to
different inducers'®2. Omics analyses can provide a comprehensive understanding of
signal compounds and key transcriptional regulators, which may improve the engineering
of industrial strains for higher productivity of target enzymes. A first requirement for
this is the availability of genome sequences of relevant species, such as members of
the genus Aspergillus. In 2005, the genome sequence of A. oryzae'®®, A. nidulans'®*
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and A. fumigatus'®® were released. Some years later, the number of published and
annotated fungal genomes increased exponentially*'%5-1¢8 As model organisms for
basic research and major species for biotechnology, there is a considerable body of
literature on Aspergilli and the recent advances in post genomic analyses has generated
new knowledge for strain engineering®®-'73. Genomics and post-genomics studies have
accelerated progress in plant biomass degradation related research in these fungi,
facilitating e.g. the discovery of novel regulators*7074175 and enzymes'"®-'®, Some of
these studies demonstrated the high variation in enzyme sets produced by Aspergillus
species during growth on plant biomass, despite relatively similar genome content with
respect to these enzymes**'8'. Currently, all species of the genus Aspergillus are being
sequenced, with the first section recently published'®?, providing an unprecedented view
into the diversity of a fungal genus. The differences in the plant biomass degrading
approaches of Aspergilli revealed in these studies are perfect starting points for strategic
strain improvement strategies for specific applications.

Omics techniques and data have already been used in several studies for strain
improvement. Overexpression of gene encoding D-galacturonic acid responsive
regulator GaaR in A. niger increased the transcription of genes encoding pectinases,
D-galacturonic acid transporters and enzymes of the D-galacturonic acid pathway even
under non-inducing conditions'. Proteomic analysis of the gaaR overexpression strain
showed high level of pectinases secretion when cultivated in fructose. The further
deletion of the main carbon catabolite repressor gene creA also improved pectinase
production. This modified A. niger strain with high pectinase production capacity showed
high potential for industrial applications.

In another study, an A. nidulans hexokinase/glucokinase (hxkA1/glkA4) mutant was
generated in order to prevent hexose consumption through glycolysis'®. A triple mutant
was obtained through sexual crosses by combining these mutations with a deletion in
creA (creAA4 hxkA1 glkA4). Transcriptomic and metabolomic analyses were performed
to examine changes in gene expression profiles and identify metabolic profiles related to
sugar catabolism. The results showed that the deletion of creA combined with blocking
glycolysis resulted in an increased expression of two genes from pentose catabolic
pathway (PCP) and five genes from the pentose phosphate pathway (PPP). In addition,
several glycolytic genes were downregulated in both double and triple mutants when the
mutant strains were grown on starch and cellulose. This strongly suggests that blocking
glycolysis caused an initial negative feedback of D-glucose release and activated
alternative metabolic conversion of this sugar and indicates that metabolic engineering
of fungi for biotechnology applications will need to take into account additional pathways
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to obtain the desired result.

Re-annotation of the CAZy gene content of the T. reesei genome in combination with
the gene expression analysis in the presence of different carbon sources has identified
uncharacterized enzymes and new insights on enzymes needed for plant polysaccharide
degradation'4. Strain engineering of the industrial lineage of T. reesei, in order to
include those enzymes in the commercial mixtures, is likely to increase the efficiency
of the mixtures for plant biomass degradation. A gene co-expression network analysis
was also performed'® based on transcriptome data of the T. reesei RUT-C30'%¢ in order
to identify new target genes involved in sugarcane bagasse degradation. The xyr7 gene
encoding major positive regulator of cellulases and hemicellulases was co-expressed
with 50 upregulated cellulase, hemicellulase and oxidative enzyme encoding genes.
When the ace 1 gene, encoding ACE1 repressor involved in regulation of cellulase gene
expression, was replaced with the endoglucanase gene eg/?1 in T. reesei RUT-C30,
an increased expression of cellulolytic regulators was observed'”. Compared to the
RUT-C30 strain, the mutant showed 90% and 132.7% increase in total cellulase and
endoglucanase activities. Moreover, cellulases produced by the engineered strain were
more efficient for hydrolyzing pretreated corn stover and Jerusalem artichoke stalk than
those of RUT-C30.

Omics analysis has been widely used in other filamentous fungi as well. The genome of
another industrially used fungus, M. thermophila, revealed a wide enzymatic repertoire
including hydrolytic, oxidative and auxiliary enzymes'®, which offered a starting point
for further investigation of molecular mechanisms and strain improvement® 18910,
Similarly, the availability of a full genome of N. crassa has allowed the identification
of two essential transcription factors, CLR-1 and CLR-2, which are required for the
expression of cellulolytic genes*, and the identification of the ortholog (XLR-1)'"" of
the previously identified (hemi-)cellulolytic transcription factor XInR from A. niger*.
Lately, chromatin immunoprecipitation (ChiPseq) and RNA sequencing were performed
in order to identify biding regions for CLR-1, CLR-2 and XLR-1"2, The results showed
that CLR-1 bound to the regulatory regions of 293 genes in Avicel cellulose cultures,
while CLR-2 bound to promoter sites of 164 genes in sucrose cultures when cellulase
activity was not detectable. During growth on xylan, XLR-1 bound to the promoters of 84
genes, including genes encoding six hemicellulases, three acetylxylan esterases, one
B-glucosidase and two B-xylosidases. The identification and functional analysis of these
transcriptional regulators related to plant biomass degradation contributes to unraveling
the molecular mechanisms underlying this process in filamentous fungi. Manipulation of
transcriptional regulators is a highly promising approach for industrial strain engineering
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as it targets the system as a whole, rather than individual enzyme activities.

Advances in genome sequencing and innovative high-throughput technologies have
also revealed new insights into the molecular basis of plant biomass degradation by
basidiomycetes. While strain engineering of basidiomycetes is still in its infancy, a
number of omics studies have opened up insights towards further development of these
fungi for biotechnology. This includes the identification of the enzymatic sets employed
by basidiomycete fungi for plant biomass degradation’3-'% as well as the identification
of the small molecular mass inducers of the regulatory systems controlling this
process'®®. Recently, a comparative analysis of basidiomycete transcriptome datasets
was reported?®, which showed that a large set of conserved CAZymes encoding genes
are expressed in plant biomass related substrates, suggesting that these enzymes are
critical for degradation of any plant biomass, and should therefore always be present in
commercial enzyme cocktails.

3.4 Epigenetics in fungi and its potential for strain engineering

Typically, three types of genetic phenomena are considered under the heading
epigenetics: chromatin remodeling through histone modification, DNA methylation and
RNA interference. All three phenomena have been demonstrated in fungi, although not
always all three in the same fungal species?'. While no specific use of epigenetics for
strain engineering have been reported, indication of its potential have been obtained?®2,
In T. reesei, the nucleosomes -1 and -2 downstream of the activating element of the cbh2
promoter are loosened under inducing conditions, making the TATA box accessible?®,
Interestingly, deletion of the xylanase regulator encoding gene (xyr7) in this fungus
significantly reduced the chromatin opening?®. This is likely due to control of the
expression of 15 putative chromatin remodeling genes by XYR1. Chromatin accessibility
in T. reesei also seems to be affected by the global carbon catabolite repressor protein
CRE1, as a deletion or a truncated version of this regulator resulted in a more open
structure of the chromatin in the promoter regions of cbh1 and cbh22°52%, The direct
role of chromatin structure was confirmed by a deletion of a histone acetyltransferase in
T. reesei, which not only resulted in decreased growth and morphological changes, but
also in strong reduction of cellulolytic genes under inducing conditions??”. A similar result
was obtained for a deletion strain of a histone lysine methyltransferase in Pyricularia
(formerly Magnaporthe) oryzae, which resulted in significant reduction of the expression
of a cellulase gene?®. An aspect related to that is the fact that certain regions of the
genome provide higher expression levels than others?®2, Identification of these regions



Chapter 2

would provide better locations for genetic engineering, possibly ensuring higher enzyme
production.

Indications for a role of DNA methylation in the expression of genes encoding plant
biomass degrading enzymes have also been reported using an inhibitor of DNA
methyltransferase, 5-aza-2’-deoxycitidine?®®. In the presence of this inhibitor xylanase
activity was increased during growth on wheat bran, while expression of cellobiohydrolase
and xylanase encoding genes was increased during growth on glucose. It should
however be noted that results from studies with inhibitors should be interpreted with
caution due to side specificities they may have?'°.

While not studied in detail, the presence of antisense reads in transcriptomic studies of
T. reese?'" and A. niger?*'?, suggests the possibility of RNA interference as a regulatory
mechanism in these fungi. This is further strengthened by the observation that genes
with mainly sense transcripts on wheat bran and antisense transcripts on glucose
included several encoding plant biomass degrading enzymes?'2.

3.5 Selection and use of monokaryotic strains

Some fungi possess a sexual reproductive cycle, which provides an opportunity for
strain selection and engineering through recombination during meiosis?'®. Dikaryotic
fungal species produce monokaryotic offspring with diverse genetic combinations
and therefore successive cycles of basidiome production and crosses can result in
strain improvement without the need for mutagenesis?'*. Several examples of this
have been reported, such as for the white rot species, Trametes versicolor, where a
monokaryon grew better than its parental dikaryon on glucose-soy agar and hardwood
kraft pulp?®. Differences in laccase production were found for mono- and dikaryotic
strains of Pycnoporus cinnabarinus®'®, while this was also the case for laccases and
other lignocellulolytic activities of Pleurotus ostreatus?'7?'®, This offers interesting
possibilities for strain improvement in these fungi, although the random nature of the
genetic recombination may require the screening of an extensive set of progenies to
obtain the best producing strain.

4. Selection of screening conditions

Irrespective of the approach chosen for strain engineering, the selection of the best
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resulting strain largely depends on the screening strategy chosen for the progenies.
The ideal screening approach should provide a high probability of obtaining the desired
alteration with a low chance of side-effects, such as changes that could later show to be
disadvantageous. Typically, screening approaches can range from relatively simple (e.g.
growth profiling) to more complicated and laborious (e.g. PCR-based analysis) methods.
The design of the screen is likely the most important aspect of any strain engineering
strategy, although technical limitations may be enforced by the engineering approach.
In this section, some examples of screening approaches applied to filamentous fungal
strains are presented.

If the desired improvement results in a growth phenotype, a direct selection of the
progenies based on fungal growth on the screening media can be applied. This is for
instance possible when the aim is to obtain strains with higher xylanase activity. Growth
of progeny of the fungi on agar plates with partially soluble xylan as a carbon source,
will result in clearing around the colony, with the largest clearing diameter indicating the
highest xylanase activity?'°.

However, in many cases growth on selective medium is combined with an indicator of
enzyme activity. These can be highly specific substrates, such as 4-methylumbelliferyl
glycosides, that can be used to screen for specific enzyme activities by detecting
fluorescence of the released 4-methylumbelliferone??°, but also staining of the screening/
growth substrate is commonly used. After growth on agar plates supplemented with
carboxymethylcellulose (CMC), the plates can be flooded with Gram’s iodine, resulting
in a bluish-black complex with cellulose, while a clear zone is visible where cellulose has
been hydrolyzed, thus indicating cellulase activity??'. Use of Congo-Red will also provide
a similar clear zone on CMC as an indication of cellulase activity???, while screening for
increased starch hydrolysis can be done on starch agar plates using remazol brilliant
blue??, and for polygalacturonase activity on polygalacturonic acid agar plates using
cetyltrimethylammonium bromide??*,

When improving enzyme production in fungi, enzyme activity assay based screening
methods are advantageous as they provide detailed information about the modification
that occurred in the progenies. To screen strains with an improved ability to degrade
plant biomass, the measurement of the amount of reducing sugars using dinitrosalicylic
acid (DNS)??® has become a commonly used method, and is highly suitable for a high-
throughput (robotic) setup. The DNS method measures the overall release of sugars from
the reducing-ends of oligo- and polysaccharides and is therefore not specific to a certain
linkage of activity, but does exclude the detection of activity of oxidative enzymes, such
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as lytic polysaccharide monooxygenases (LPMOs). Some specificity can be obtained by
not using crude plant biomass as a substrate, but pure polysaccharides (e.g. cellulose,
xylan, polygalacturonic acid)??6-22°, However, this will still measure the combined activity
of all (endo- and exo-acting) enzymes that depolymerize the used substrate. This
method is therefore particularly useful for the selection of strains in which a number of
enzyme activities or overall plant biomass degrading ability is improved. Variations on
this method have also been described, some of which have a higher sensitivity than
the original method. For example, the use of the formation of osazones from reducing
sugars and p-hydroxybenzoic acid hydrazide was reported to be 5-fold more sensitive
than a typical DNS assay and could therefore be efficiently used in 96-well plates and
with low enzyme loading?®. The use of micro-plate cultures and enzyme activity assays
also allowed for the relatively simple analysis of both cellulase and xylanase activity?*'.

An example of a different method to screen for progenies is the use of the cbht
promoter in front of a gene encoding a fluorescent protein (DsRed) in T. reesei, which
allowed for screening for overproduction of cellulases by fluorescence?2. Recently, a
novel screening method using micro-fluidics was reported, in which single spores of
A. niger sorted by fluorescence-activated cell sorting (FACS) germinated and grew
in 10 nL droplets and were suitable for fluorescence-based enzymatic screening, as
demonstrated for strains with improved a-amylase activity?*®. This method may facilitate
high-throughput low volume screening that would improve current approaches.

5. Future perspective

Fungal strain engineering has a long history, but as indicated in the previous sections,
the possible approaches to obtain strains with improved performance for the production
of plant biomass degrading enzymes has broadened significantly in recent years. This
is due to the recently established methods such as CRISPR/Cas9 genome editing and
the potential of implementing epigenetics. These tools are still being further developed
to higher efficiency and are accompanied by improved fungal genome sequences,
exemplified by the gold-standard genome for A. niger*** and the recently initiated
genome sequencing project of the Joint Genome Institute of the Department of Energy of
the USA (https://jgi.doe.gov/csp-2019-finishing-genomes/). This diversity of possibilities
for strain engineering will facilitate a more strategic choice in the best approach for a
certain ultimate aim also keeping in mind legislation/public acceptance with respect to
GMO methodology.
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An important challenge is to make strain engineering applicable to a wider range of fungi,
which requires the development of efficient genetic transformation systems for them.
In addition, effective submerged or solid-state fermentation protocols are essential for
application of fungi in industrial processes. With those hurdles removed, the potential of
strain engineering will go far beyond the currently used fungal species and strains, and
will likely significantly contribute to the establishment of a bio-based economy. Similarly,
development of robotic screening methods for a wider range of enzyme activities would
strongly stimulate selection of progenies, as this is now still quite laborious for several
enzyme activities.

While combinations of different omics data (proteomics, transcriptomics, metabolomics)
have already resulted in some deeper insights into the molecular mechanisms of plant
biomass conversion of filamentous fungi'®®2%5-2% a strong development in this area can
be expected in the coming years. This will not only be due to better correlations of such
datasets, but also incorporation of other methodologies, such as ChlP-seq®%?* and
DAP-seq?®, which will provide many new leads for strain engineering.
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Abstract

The CRISPR/Cas9 system has been successfully applied for gene editing in filamentous
fungi. Previous studies reported that single stranded oligonucleotides can be used as
repair templates to induce point mutations in some filamentous fungi belonging to genus
Aspergillus. In Aspergillus niger, extensive research has been performed on regulation
of plant biomass degradation, addressing transcription factors such as XInR or GaaR,
involved in (hemi-)cellulose and pectin utilization, respectively. Single nucleotide
mutations leading to constitutively active forms of XInR and GaaR have been previously
reported. However, the mutations were performed by the introduction of versions
obtained through site-directed or UV-mutagenesis into the genome. Here we report
a more time- and cost-efficient approach to obtaining constitutively active versions
by application of the CRISPR/Cas9 system to generate the desired mutation on-site
in the A. niger genome. This was also achieved using only 60-mer single stranded
oligonucleotides, shorter than the previously reported 90-mer strands. In this study, we
show that CRISPR/Cas9 can also be used to efficiently change functional properties of
the proteins encoded by the target gene by on-site genomic mutations in A. niger. The
obtained strains with constitutively active XInR and GaaR versions resulted in increased
production of plant biomass degrading enzymes and improved release of D-xylose and
L-arabinose from wheat bran, and D-galacturonic acid from sugar beet pulp.
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1. Introduction

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
associated (Cas) system originates from bacterial and archaeal immune systems. Cas
proteins play a role in foreign sequence acquisitions, as well as disruption of exogenous
DNA through endonuclease activity of some of these proteins, such as Cas9'. In the
CRISPR/Cas9 system, Cas9 forms a complex with a CRISPR RNA (crRNA)?, which
originates from exogenous protospacer sequences, and a trans-activating CRISPR
RNA (tracrRNA)®. Due to crRNA-protospacer homology, the Cas9-crRNA-tracrRNA
complex will be directed to the target locus, where the Cas9 endonuclease interacts
with the target DNA strand through a protospacer adjacent motif (PAM), unwinds the
DNA strand, and performs a double-strand break three nucleotides upstream of the
PAM*. This system was adapted for genetic engineering using designed synthetic
single-guide RNAs instead of the original crRNA-tracrRNA complex® and it has been
successfully applied in a variety of eukaryotic organisms®2, including efficiently plant
biomass degrading filamentous fungi®. However, its application has mainly focused on
the inactivation of genes through deletions, point mutations or on the insertion of genes
at specific loci®"2.

Plant biomass is the most abundant carbon source on earth and it consists mainly of
plant cell wall polysaccharides (cellulose, hemicelluloses and pectin), and the aromatic
polymer lignin. These polymers form a complex network, ensuring the strength and
rigidity of plant cells™. The complex structure of plant biomass requires a broad set
of hydrolytic and oxidative enzymes to degrade it. Filamentous fungi are efficient
plant biomass degraders due to their ability to produce and secrete large amounts of
Carbohydrate Active enZymes (CAZymes, www.cazy.org™). Fungal enzymes also have
large variety of applications in many industrial fields such as food and feed, pulp and
paper or textile and detergent industries™.

The production of enzymes required for plant biomass degradation is regulated by
transcription factors, which can act as transcriptional activators or repressors'®. Many
transcription factors have been described in ascomycetous fungal model organisms
such as Neurospora crassa, and in organisms involved in industrial applications such
as Aspergillus niger, Aspergillus oryzae and Trichoderma reesei'.

The xylanolytic transcription factor XInR from A. niger was the first described fungal
regulator involved in (hemi-)cellulose utilization®. It was also shown that a single
V756F point mutation in the C-terminal region of the x/InR gene results in a fully active
transcription factor, even under repressing conditions'. Hasper et al. suggested that
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mutations in the C-terminal region of XInR disturb a putative inhibitory domain, which
would normally turn this transcription factor into an inactive form'. A similar A871V point
mutation in the C-terminal region of the Penicillium oxalicum XInR ortholog also resulted
in enhanced expression of lignocellulolytic enzymes?.

The pectinolytic transcription factor GaaR was also reported to show constitutive activity
caused by a single point mutation in A. niger?'. The endogenous gaaR gene was deleted
and replaced with a DNA construct carrying a W361R point mutation. Alazi et al.*'
proposed that this mutation disrupts the interaction between GaaR and its repressor,
GaaX??, under non-inducing conditions.

So far, attempts to generate constitutively active transcription factor mutants involved
either site-directed mutagenesis of the target gene and its insertion in a specific genomic
locus™, the deletion of entire C-terminal regions of the target genes?, or the insertion
of a mutant allele in the deleted locus of the endogenous gene?'. These are relatively
labor-intensive approaches, which also may cause subtle additional changes at the site
of integration or deletion that could further effect the phenotype. To demonstrate the
versatility of CRISPR/Cas9-mediated genome editing, beyond the generation of loss-
of-function deletions or point mutations and gene insertions, in this study we applied
it for the generation of specific point mutations on-site in the native genomic copy of
xInR and gaaR, resulting in the previously reported constitutively active versions of the
regulators. The exoproteomes of the mutant strains were evaluated by SDS-PAGE and
enzyme activity analyses, and their ability to saccharify crude plant biomass substrates
was assessed, to confirm the functionality of the mutated versions of the regulators.

2. Material and methods

2.1 Strains, media and growth conditions

Escherichia coliDH5a was used for plasmid propagation, and was grown in Luria-Bertani
(LB) medium supplemented with 50 pg/mL ampicillin (Sigma Aldrich). Fungal strains
used in this study were derived from the A. niger CBS 138852 strain. The generated
mutants were deposited at the culture collection of Westerdijk Fungal Biodiversity
Institute under accession numbers indicated in Table 1.
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Table 1. A. niger strains used in this study.

CBS number  Strain description Genotype Point mutations Reference
CBS 138852 N593 AkusA cspA1, pyrG:, kusA::amdS 2

CBS 145907 XInR V756F cspA1, pyrG,, kusA::amdS G2330T This study
CBS 145908 GaaR W361R cspA1, pyrG, kusA::amdS T1285C, C1293T This study

Strains were grown at 30°C in Aspergillus Minimal Medium (MM) or Complete Medium
(CM)# supplemented with 1% D-glucose and 1.22 g/L uridine (Sigma Aldrich).

For liquid cultures, freshly harvested spores were pre-grown in CM containing 2%
D-fructose and 1.22 g/L uridine for 16 h at 30°C in a rotary shaker at 250 rpm. The
mycelium was harvested by filtration through sterile cheesecloth, rinsed with MM, and
approximately 2.5 g (wet weight) mycelium was transferred into 50 mL MM containing
0.45% D-fructose (corresponding to 25 mM) or 2% D-fructose, 1% wheat bran (WB) or
1% sugar beet pulp (SBP). Supernatant samples were taken after 24 h incubation at
30°C in a rotary shaker at 250 rpm. The samples were centrifuged (20 min, 3220 x g,
4°C) and cell-free supernatant samples were stored at -20°C until further processing.

2.2 Construction of mutant strains

The ANEp8-Cas9-pyrG plasmid, which contains the autonomous fungal replicating
element AMA1, pyrG as selection marker, cas9 gene and the guide RNA (gRNA)
expression construct under the control of the proline transfer ribonucleic acid (tRNAF©1)
promoter, was used in this study?. The ANEp8-Cas9-pyrG plasmids (Figure S1) were
constructed according to the protocol described by Song et al.?. The gRNA sequences
were predicted using Geneious 11.1.4 software (https://www.geneious.com), and P1-P4
primers (Table S1) were used for the amplification of the gRNA expression constructs,
which were cloned into the ANEp8-Cas9-pyrG plasmids and subsequently transformed
into E. coli. Correct clones were identified by PCR amplification of the gRNA coding
region by using the Fw-screen and Rev-screen primers (Table S1). All primers used in
this study were ordered from Integrated DNA Technologies, Inc. (IDT, Leuven, Belgium).

Single-stranded DNA 60-mer, 90-mer or 200-mer oligonucleotides carrying specific
point mutations (Table S2) (IDT, Leuven, Belgium) were designed to be used as
repair templates to repair the double stranded DNA breaks caused by Cas9. Multiple
templates were used for the introduction of GaaR W361R mutation, including templates
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with extended length or multiple point mutations flanking the target site to facilitate a
successful T — C transition in the nucleotide position 1285.

A. niger protoplasting and transformation were performed as described by Kowalczyk
et al.?”, with minor modifications. One ug ANEp8-Cas9-pyrG plasmid, together with 5
ug of each corresponding repair template were used for each transformation. Putative
mutant strains were purified by two consecutive single colony streaking, followed by
cultivation on uridine-containing plates in order to remove the self-replicating AMA1
plasmid?®. Candidates carrying the expected mutations were subsequently grown on
medium containing 5-fluoro-orotic acid (5-FOA) in order to screen for colonies, which
have lost the ANEp8-Cas9-pyrG plasmid. All A. niger mutants were confirmed by Sanger
sequencing (Macrogen Europe, Amsterdam, the Netherlands) (Figure S2) using the
sequencing primers listed in Table S1.

2.3 SDS-PAGE and enzyme activity assays

Culture filtrates of the control and mutant strains grown in media containing WB or SBP
for 24 h were used to evaluate the produced extracellular CAZymes and their activities.

Twelve pL of the culture filtrates was added to 4 pL loading buffer (10% of 1 M Tris—HCI,
pH 6.8; 42% Glycerol, 4% (w/v) SDS; 0.02% (w/v) bromophenol blue; 4% of 14.7 M
mercaptoethanol), incubated at 85°C for 15 min, ice-cooled for 2 min and centrifuged at
~ 10,000 x g for 2 min. Finally, 10 yL were loaded onto 12% (w/v) acrylamide SDS-PAGE
gels calibrated with PageRuler Plus prestained protein marker (Thermo Scientific), and
silver stained?® and documented using HP Scanjet G2410 scanner. All samples were
evaluated in biological duplicates.

Enzyme activities were evaluated based on colorimetric para-nitrophenol (pNP)
assays. Ten pL supernatant samples were mixed with 10 uL 0.1% 4-nitrophenyl (3-D-
xylopyranoside (for B-xylosidase activity), 0.1% 4-nitrophenyl -D-galactopyranoside
(for B-1,4-D-galactosidase activity) or 0.1% 4-nitrophenyl a-L-arabinofuranoside (for
a-L-arabinofuranosidase activity) substrates, 50 yL 50 mM NaAc (pH 5) and 30 pL
demineralized water in a final volume of 100 pL. -xylosidase and (3-1,4-D-galactosidase
activities were measured after 1 h incubation at 30°C, while the a-L-arabinofuranosidase
activity was measured after 30 min incubation at 30°C. The reactions were stopped
by the addition of 100 uL of 0.25 M Na,CO, and absorption values were measured
at 405 nm wavelength using FLUOstar OPTIMA (BMG Labtech). All measurements
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were performed by using both technical and biological triplicates. Differences in enzyme
activities were determined using Student’s two-tailed type Il t-test. Significance was
regarded as p < 0.05.

2.4 Saccharification tests

Saccharification reactions were performed in 96-well flat bottom microtiter plates.
Each reaction contained 20 pL culture filtrate mixed with 50 mM sodium citrate (pH 5)
containing 3% WB or 3% SBP in a final volume of 250 pL. The reactions were incubated
for 6 h at 30°C and 400 rpm. Reactions were stopped by heat inactivation of enzymes
for 15 min at 95°C. Plates were centrifuged for 20 min at 3220 x g, and the supernatants
were 10-fold diluted in MilliQ water prior to analysis. The experiment was performed
using biological and technical triplicates.

Monosaccharides were analyzed from peak areas in HPAEC-PAD (Dionex ICS-5000 +
system; Thermo Scientific) equipped with CarboPac PA1 column (2x250 mm with 2x50
mm guard column; Thermo Scientific). The column was pre-equilibrated with 18 mM
NaOH followed by a multi-step gradient: 0-20 min: 18 mM NaOH, 20-30 min: 0-40 mM
NaOH and 0-400 mM sodium acetate, 30-35 min: 40-100 mM NaOH and 400 mM to 1
M sodium acetate, 35-40 min: 100 mM NaOH and 1 M to 0 M sodium acetate followed
by re-equilibration of 18 mM NaOH for 10 min (20°C; flow rate: 0.30 mL/min). Between
5-250 pM D-glucose, D-xylose, L-arabinose and D-galacturonic acid (Sigma-Aldrich)
were used as standards for quantification. Blank samples containing 3% WB or SBP,
without the addition of culture filtrates were measured and the values were subtracted
from each corresponding saccharification test result in order to exclude the amount of
free sugar already present in the experimental condition. Differences in saccharification
efficiency were determined using Student’s two-tailed type Il f-test. Significance was
regarded as p < 0.05.

3. Results and discussion

3.1 CRISPR/Cas9 facilitates efficient on-site functional
mutations

In order to achieve precise point mutations without unspecific genomic alterations, such
as random insertions or deletions, we used A. niger AkusA as receptor strain for all our
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transformations?*. Due to the lack of non-homologous end joining (NHEJ) DNA repair
pathway caused by the kusA deletion, Cas9 double strand breaks must be repaired with
a repair template homologous to the target DNA region, facilitating the implementation
of short templates carrying specific point mutations. The repaired DNA strand may still
serve as a target region for further Cas9 cutting events, so due to the lack of NHEJ, itis
important to introduce intended alterations of the protospacer or PAM sequence in order
to avoid further double strand DNA breaks, leading to the death of the mutant colonies.

Ngdvig et al. previously described that 90-mer single stranded oligonucleotides could
be used for successful introduction of nonsense codons into the pigmentation gene
yA, alba and wA of A. nidulans, A. oryzae and A. niger, respectively. It was also shown
that the DNA repair did not show any preference for the targeted sense or anti-sense
strand®. Based on this, we decided to use repair templates complementary to the anti-
sense strand of the target DNA.

First, we performed a single GTC — TTC nucleotide mutation in the x/nR coding region,
resulting in a valine-756-phenylalanine (V756F) mutation’. The gRNA sequence
(P3-XInR, P4-XInR, Table S1) closest to the nucleotide of interest was predicted by
Geneious. The 90-mer oligonucleotide repair template (XInR repair template, Table S2)
did not require any additional point mutations, since the target codon was also part of
the PAM sequence, ensuring that the Cas9 endonuclease would not be able to re-bind
and cut the repaired sequence anymore. After fungal transformation, three randomly
chosen candidates were sequenced in their CRISPR/Cas9 target site (Figure 1A). All
three candidates were shown to be correct and candidate 3 was randomly selected for
further phenotype evaluation.

To obtain a constitutively active GaaR?!, a T — C transition in a TGG codon is required,
resulting in a tryptophan-361-arginine (W361R) mutation. The gRNA sequence (P3-
GaaR, P4-GaaR, Table S1) with the highest on-target activity was predicted by Geneious
based on the experimentally determined predictive model proposed by Doench, et al.*’
Contrary to the xInR point mutation design, an additional mutation was required in order
to avoid re-cutting of the repaired target strand by the CRISPR/Cas9 system. Previous
studies reported that the CRISPR/Cas9 system shows tolerance to mismatches in the
protospacer sequence®, which led us to alter the PAM sequence with a G — C silent
mutation.

A 90-mer single stranded oligonucleotide was designed to introduce the intended point
mutations, interspaced by 52 nucleotides (GaaR repair template 1, Table S2). After
transformation, four randomly selected candidates were submitted for sequencing.
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Sequencing results (Figure 1B) showed the intended alteration of the PAM sequence,
although the W361R mutation did not take place. The same transformation was
attempted with a longer 200-mer oligonucleotide repair template (GaaR repair template
2, Table S2). All sequenced colonies carried only the PAM sequence altering mutation
(data not shown). Both attempts suggest that the repair templates were not entirely
incorporated, excluding the W361R mutation, most likely due to the large distance
between the two mutated nucleotides.

Taking into account these results, a re-designed gRNA encoding sequence (P3.2-GaaR,
P4.2-GaaR, Table S1) closer to the target nucleotide was performed. Similarly to the
previous approach, a new repair template was designed carrying two point mutations
(2 PM), but this time the mutations were interspaced by only seven nucleotides. Since
the new repair template carried both the intended W361R and the PAM sequence
mutations closer to each other, we decided to reduce the length of the repair template
to 60 oligonucleotides, which would theoretically induce homologous recombination
(GaaR repair template 2 PM, Table S2).

A guide sequence PAM

xInR reference [CTGTGGATCTCCTCGGAGTCGTTiNesdstielelelslorbierNelolor Ve CGGTCGGTGCCGCAGAAGCAGCGGCAGAAATCTTGGAGTACGACCC
xInR candidate 1 CTGTGGATCTCCTCG TCGTTTGTCTCGGCC. TGAGC%TGCGTTCGGTGCCGCAGAAGCAGCGGCAGAAATC’ITGGAGTACGACCCG

xInR candidate 2 CTGTGGATCTCCTCG TCGTTTGTCTCGGCCATGAGCOATGCGTTCGGTGCCGCAGARGCAGCGGCAGARATCTTGGAGTACGACCCG
xInR candidate 3~ CTGTGGATCTCCTCGGAGTCGTTTGTCTCGGCCATGAGCOATGCGTTCGGTGCCGCAGARGCAGCGGCAGRRATCTTGGAGTACGACCCG

Cas9 cutting site

B gaaR reference [ACACTTTCCCTGGCACGCCCTCTCCAATCTGTCCAAGATCCGOYEleL VX IWler Yol delilelele CGGCCGGCACACAGGATTTGT TTGCATC)
gaaR candidate 1 ACACTTTCCCIGGCACGCCCTCTCCAATCTGTCCAAGATCCGCCAGGAACTCGACCTCTGGGCCGCCGGCACACAGGATTTGTTTGCATC
gaaR candidate 2 ACACTTTCCCTGGCACGCCCTCTCCAATCTGTCCAAGATCCGCCAGGAACTCGACCTCTEGGCCGCCGGCACACAGGATTTGTTTGCATC
gaaR candidate 3 ACACTTTCCCTGGCACGCCCTCTCCAATCTGTCCAAGATCCGCCAGGAACTCGACCTCTIGGGCCGCCGGCACACAGGATTTGTTTGCATC
gaaR candidate 4 ACACTTTCCCTGGCACGCCCTCTCCAATCTGTCCARGATCCGCCAGGAACTCGACCTCTGGGCCGCCGGCACACAGGATTTGTTTGCATC

C P N G GG C G TCAAAGGCGACTCACACT TTCCCTGGCACGCCCUSHIEC LIS e VX b Lo

gaaR candidate2PM 1 GAGGCGTCARAGGCGACTCACACTTTCCCCGGCACGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 2 PM 2 GAGGCGTCAAAGGCGACTCACACTTTCCCCGGCACGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 2 PM 3 GAGGCGTCAAAGGCGACTCACACTTTCCCCGGCACGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 2PM 4 GAGGCGTCAAAGGCGACTCACACTTTCCCCGGCACGCTCTCTCCAATCTGTCCAAGATCC
gaaR candidate 2 PM 5 GAGGCGTCAAAGGCGACTCACACTTTCCCTGGCACGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 7 PM 1 GAGGCGTCAAAGGCGACTCACATTTCCCTCGCCATGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 7 PM 2 GAGGCGTCAAAGGCGACTCACATTTCCCTCGCCATGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 7 PM 3 GAGGCGTCAAAGGCGACTCACATTTCCCTCGCCATGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 7 PM 4 GAGGCGTCAAAGGCGACTCACATTTCCCTCGCCATGCTCTCTICCAATCTGTCCAAGATCC
gaaR candidate 7PM5  GAGGCGTCAAAGGCGACTCACACTTTCCCTGGCACGCCCTCTICCAATCTGTCCAAGATCC

Figure 1. Sanger sequencing results of the XInR V756F and GaaR W361R mutant candidates.
A) Sequencing results of mutant candidates transformed with XInR repair template. All three candidates
showed the expected mutation. Sequences show the whole coverage of the used repair templates. Reference
sequence is highlighted in black. The location of target nucleotides are highlighted in gray, while the introduced
mutations are indicated in red. The PAM sequence is shown in green. The protospacer sequence is highlighted
in yellow and the Cas9 cutting site is represented by a red bar. B) Sequencing results of mutant candidates
transformed with GaaR repair template 1 (Table S2). All four sequenced candidates showed the introduction
of the PAM sequence altering mutation. However, the W361R mutation did not occur. C) Sequencing results
of mutant candidates transformed with GaaR repair template 2 point mutations (PM) or 7 PM (Table S2). Four
candidates transformed with the 2 PM or 7 PM template showed the expected mutations. The 2 PM candidate
5 showed only the introduction of the PAM sequence altering mutation, while 7 PM candidate 5 showed a
target sequence identical to the reference sequence. Results of (B) and (C) are aligned in order to emphasize
the new guide RNA selection for the transformations using the 2 PM or 7 PM repair templates. Color codes
asin (A).
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In addition, another repair template was designed carrying five additional silent mutations
(GaaR repair template 7 PM, Table S2) in order to hinder the homology of the sequence
around the nucleotide of interest, to avoid the previously observed results where only
the PAM sequence alteration occurred. Five transformant colonies were sequenced for
each transformation, resulting in four correct mutants each (Figure 1C). Interestingly, the
2 PM repair template resulted in one colony carrying only the PAM sequence altering
mutation, where most likely a recombination happened with < 12 nucleotides serving as
5’-end flanking region, suggesting that even shorter repair templates could successfully
restore the damaged DNA. This would be especially relevant when CRISPR/Cas9
genome editing is performed in an A. niger strain of a different lineage, whose genomic
DNA sequence is likely not fully identical. The colony 2 PM 1 was selected for further
phenotypic evaluation.

3.2 Constitutive versions of XInR and GaaR result in elevated
enzyme levels

Two crude plant biomass substrates were chosen for phenotypic characterization of
XInR V756F and GaaR W361R mutants. WB is rich in glucuronoarabinoxylan, suitable
for characterization of a constitutive XInR phenotype, whereas SBP has a high pectin
content and was previously used for the characterization of gaaR deletion mutants?’-3.

SDS-PAGE and enzyme activity assays of 24 h culture filtrates after growth of the
mutants and control strain on 1% WB and 1% SBP were assessed for phenotypic
characterization. SDS-PAGE results of the XInR V756F mutant grown in 2% D-fructose,
a carbon source showing low carbon catabolite repression (CCR) mediated gene
repression®4, showed the presence of mainly putative endoxylanases (predicted MW
in the range of 13-33 kDa) and B-xylosidases (predicted MW is 122 kDa)'® (Figure 2A),
which were not present in the control strain, demonstrating the inducer-independent
constitutive action of XInR. The xylanolytic enzymes were more abundant when the
mutant was grown in medium containing 0.45% D-fructose (Figure 2B), most likely due
to the reduced CCR effect mediated by CreA compared to the 2% D-fructose culture®-3.
Cultivation of the XInR V756F mutant in 1% WB medium also resulted in an increase
of the major putative xylanolytic enzymes compared to the control strain (Figure 2C),
suggesting improved saccharification abilities in this mutant.

The cultivation of the GaaR W361R mutant in liquid medium containing 2% D-fructose
as a sole carbon source did not result in an increased production of pectinolytic
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enzymes as the SDS-PAGE pattern was identical to that of the control strain (data
not shown). However, the samples from 1% SBP cultures showed elevated levels of
CAZymes, especially in the 35-66 kDa range (Figure 2D), where most A. niger endo-
and exopolygalacturonases, and pectin lyases are found'. The genes encoding these
enzymes have been shown to be controlled by GaaR¥".

The SDS-PAGE profiles were confirmed by enzyme activity assays. (-xylosidase
activity (BXL) was 53% increased in the XInR V756F supernatant from 1% WB cultures
compared to its control strain (Figure 3A). Moreover, BXL activity in the culture filtrate
of this mutant showed very similar values when cultivated in 1% SBP, while the control
strain did not show any BXL activity under this condition, due to the lack of activation
of XInR (Figure 3B). This result also proves that the XInR V756F mutant can express
its target genes in non-inducing conditions. Interestingly, the supernatant from GaaR
W361R mutant showed a 31% increase in B-1,4-D-galactosidase activity (LAC) in WB
medium. However, LAC activity was 63% reduced in samples of the SBP cultures,
compared to the control. Since the regulation of 3-galactosidase genes has been shown
to be controlled by a broad range of transcription factors, including GaaR¥, the increase
of LAC activity in WB medium and decrease in SBP medium may not be related to
a direct constitutive GaaR effect, but rather to an altered interaction between the
transcription factors controlling the production of this activity. Finally, the XInR V756F
mutant showed 15% and 10% reduced a-L-arabinofuranosidase activity (ABF) in the
WB and SBP samples, respectively. In contrast, the GaaR W361R mutant showed a
22% and 6% increase in ABF activity in WB and SBP cultures, respectively, suggesting
that the constitutive GaaR rather has an (minor) activating role in the expression of abf
genes. Overall, the low fold change values suggest that neither XInR V756F, nor GaaR
W361R play an essential role in the activation of these genes, most likely because they
are mainly controlled by the arabinanolytic regulator AraR*".
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Figure 2. Enzyme production analysis of XInR V756F and GaaR W361R mutant strains. SDS-
PAGE analysis of the supernatants of A. niger CBS 138852 (control strain), XInR V756F and GaaR W361R
mutants after 24 h incubation in different culture conditions as indicated from A-D.



Chapter 3

Wheat Bran Filtrate Sugar Beet Pulp Filtrate

70 80 T

. Bx|

. *
* 50 mExl
E ;‘z W Lac 40 W Lac
2 Abf 30 _ Abf
S 20 * 20 *
10 . 10 i
0 0 -

Control XInR V756F GaaR W361R Control XInR V756F GaaR W361R

pNP [nmol/min/mL]

Figure 3. Enzyme activity of the supernatants from XInR V756F and GaaR W361R mutant
strains and from A. niger CBS 138852. The 24 h culture filtrates originated from 1% wheat bran (WB)
(A) or 1% sugar beet pulp (SBP) (B). Different enzyme activities are indicated by gray scale color codes.
The values represent the mean and standard deviation of the amount of released pNP measured at 405 nm
wavelength. Experiments were carried out using biological and technical triplicates. Bxl = 3-xylosidase, Lac =
-1,4-D-galactosidase, Abf = a-L-arabinofuranosidase. Statistical significance is represented by (*) (p < 0.05).

3.3 The enzyme mixtures from the constitutive regulator
strains resulted in improved saccharification of wheat bran
and sugar beet pulp

Saccharification tests were performed using the 24 h culture filtrates of XInR V756F,
GaaR W361R and the control strain cultured on 1% WB or 1% SBP (Figure 4)
(subsequently referred to as WB culture filtrate and SBP culture filtrate, respectively).
Both crude substrates were used in order to test the phenotype of each mutant strain
under inducing and non-inducing conditions.

The release of D-xylose, L-arabinose, D-galacturonic acid and D-glucose from 3% WB
and 3% SBP by the WB and SBP culture filtrates was measured. D-xylose release
from xylan is regulated by XInR, while the release of D-xylose from pectin has been
suggested to be co-regulated by XInR and GaaR?"*". The release of L-arabinose is
mainly controlled by the arabinanolytic transcription factor, AraR3®, but XInR and GaaR
have also been reported to co-regulate some arabinanolytic genes?”*. The release of
D-galacturonic acid from pectin is regulated by GaaR*. Finally, D-glucose can either
be released from cellulose or starch. SBP is rich in cellulose, while WB contains both
cellulose and starch®. Since neither XInR nor GaaR was shown to play a role in starch
utilization, D-glucose release would be most likely related only to cellulose utilization, in
which XInR is involved, as first suggested by van Peij et al*.
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Saccharification of WB (Figure 4) showed increased release of D-xylose (Figure 4A)
and L-arabinose (Figure 4B) by the XInR V756F mutant for both WB and SBP culture
filtrates. When the SBP culture filtrates were used, D-xylose release by XInR V756F
was especially significant compared to the control strain, which did not release D-xylose
due to the lack of XInR induction (Figure 4A). The GaaR W361R mutant showed a
similar amount of released D-xylose (Figure 4A) compared to the control for both culture
filtrates, while L-arabinose release (Figure 4B) was similar for the WB culture filtrate, but
reduced for the SBP culture filtrate. This could be associated with a competing effect
between GaaR and XInR?, also supported by the fact that the constitutive XInR resulted
in a significant increase of L-arabinose release in this condition.
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Figure 4. Monosaccharides released from 3% wheat bran (WB) by culture filtrates from control
strain A. niger CBS 138852, and XInR V756F and GaaR W361R mutant strains. The amount of
D-xylose (A), L-arabinose (B), D-galacturonic acid (C) and D-glucose (D) released after 6 h incubations
with WB or sugar beet pulp (SBP) culture filtrates are indicated by black and gray bars, respectively. Values
represent the mean and standard deviation of sugar concentration indicated in millimolar (mM). Experiments
were carried out using biological and technical triplicates. Statistical significance is represented by (*) (p <
0.05).
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D-galacturonic acid is present in very low amounts in WB, most likely found only in
thin layers of pectin located under the outer and the epidermal cuticles®*#'. Our results
show that SBP culture filtrate from XInR V756F generated the highest D-galacturonic
acid release (Figure 4C), probably due to the more abundant presence of B-xylosidases
catalyzing the removal of D-xylose, which can decorate pectin. This could facilitate the
degradation of the galacturonan backbone by the pectinolytic enzymes also present in
the SBP culture filirates. Regarding D-glucose release (Figure 4D), the XInR V756F
mutant showed a similar value compared to the control strain when WB culture filtrate
was used. However, for the SBP culture filtrate, the XInR V756F mutant showed
significantly higher D-glucose release, which is most likely related to the improved
xylanolytic activities, making cellulose more accessible for degradation in WB. Both
GaaR W361R culture filtrates showed reduced D-glucose release from WB, possibly
due to an antagonistic effect between GaaR and XInR?, resulting in decreased
xylanolytic activity on hemicellulose in the constitutive GaaR mutant, thus reducing
cellulose degradation.

In case of SBP saccharification (Figure 5), all strains released similar levels of D-xylose
when WB culture filtrates were used (Figure 5A). In contrast, the XInR V756F SBP
culture filtrate showed a significant improvement in D-xylose release compared to
the control. Regarding L-arabinose release (Figure 5B), SBP culture filtrates showed
higher saccharification efficiency compared to that of WB culture filtrates. However, the
mutants did not show improved L-arabinose release compared to the control strain,
which indicates that other transcription factors, such as AraR, have a more predominant
role in releasing L-arabinose from pectin. These results also suggest that the XInR
V756F and/or GaaR W361R mutants have a negative effect over AraR-mediated
L-arabinose release from this substrate. In contrast, D-galacturonic acid release was
significantly improved by both GaaR W361R culture filtrates (Figure 5C), especially in
the case of WB culture filtrates, where the control strain released only a minimal amount
of D-galacturonic acid due to the lack of GaaR induction. Finally, D-glucose release was
similar for the WB culture filtrate samples, while both mutants showed a slight decrease
compared to the control when SBP culture filtrates were used (Figure 5D).This suggests
that neither XInR nor GaaR have a major influence on cellulose degradation under
these conditions.

Overall, the release of D-xylose and L-arabinose from WB was improved by the XInR
V756F mutant. D-xylose release from both WB and SBP using the non-inducing
condition for XInR (SBP culture filtrate) highlights the constitutive activity of the XInR
V756F mutant. D-galacturonic acid release from SBP was improved by the GaaR
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W361R mutant, highlighting the constitutive activity in case of the non-inducing WB
culture filtrates. The results of D-glucose release from SBP suggests that the cellulolytic
activities of each sample are comparable, which justifies the results observed in case of
WB saccharification, in which xylan degradation is the bottleneck of cellulose utilization.
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Figure 5. Monosaccharides released from 3% sugar beet pulp (SBP) by culture filtrates from
control strain A. niger CBS 138852, and XInR V756F and GaaR W361R mutant strains. The
amount of D-xylose (A), L-arabinose (B), D-galacturonic acid (C) and D-glucose (D) released after 6 h
incubations with wheat bran (WB) or SBP culture filtrates are indicated by black and gray bars, respectively.
Values represent the mean and standard deviation of sugar concentration indicated in millimolar (mM).
Experiments were carried out using biological and technical triplicates. Statistical significance is represented
by (*) (p < 0.05).

4. Conclusions

In this work, we demonstrate how CRISPR/Cas9 genome editing can be used to
efficiently modify the functionality of transcriptional regulators in A. niger by generating
on-site mutation in the native copy of the corresponding genes in the genome. This
also indicates that similar strategies could be used to change enzyme properties by
mutating enzyme encoding genes, as well as many other functional mutations, further
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expanding the versatility of this genome editing approach. We used single stranded
60-mer or 90-mer oligonucleotide-mediated gene editing to generate constitutively
active XInR and GaaR transcription factors, but our data suggests that even shorter
fragments could be used as templates to repair the Cas9-induced DNA strand cuts.
The XInR V756F mutant secreted a higher amount of CAZymes involved in the release
of D-xylose and L-arabinose from WB, confirming the functional mutation. Moreover,
D-glucose release was also improved, likely facilitated by degradation of xylan, making
cellulose more accessible for degradation in non-inducing conditions. Finally, the GaaR
W361R mutant showed enhanced release of D-galacturonic acid from SBP. Overall, the
use of CRISPR/Cas9 to generate such overproduction strains significantly reduced time
and efforts compared to traditional approaches.
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Figure Si1. Schematic representation of the ANEp8-Cas9-pyrG plasmid used to express
the cas9 gene. The Swal restriction site required for gRNA integration is indicated on the plasmid map.
Abbreviations: bla, beta-lactamase gene conferring ampicillin resistance; PpkiA, promoter of the pyruvate
kinase gene; TglaA, terminator of the glucoamylase gene; AMA1, origin of autonomous replication; pyrG,
orotidine 5’-phosphate decarboxylase gene.

Figure S2. Sanger sequencing results of screened mutants. Mutated nucleotides are
highlighted in vyellow. Peaks were visualized using SeqMan Pro software version 12.1.0 (141)
(https://www.dnastar.com).

Table S1. Primers used in this study.

Table S2. Repair templates used for transformations.
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The chimeric GaaR-XInR transcription factor induces pectinolytic activities in the presence of D-xylose in
Aspergillus niger

Abstract

Aspergillus niger is a filamentous fungus well known for its ability to produce a wide
variety of pectinolytic enzymes, which have many applications in the industry. The
transcriptional activator GaaR is induced by 2-keto-3-deoxy-L-galactonate, a compound
derived from D-galacturonic acid, and plays a major role in the regulation of pectinolytic
genes. The requirement for inducer molecules can be a limiting factor for the production
of enzymes. Therefore, the generation of chimeric transcription factors able to activate
the expression of pectinolytic genes by using underutilized agricultural residues would
be highly valuable for industrial applications. In this study, we used the CRISPR/Cas9
system to generate three chimeric GaaR-XInR transcription factors expressed by the
xInR promoter by swapping the N-terminal region of the xylanolytic regulator XInR to
that of the GaaR in A. niger. As a test case, we constructed a PpgaX-hph reporter
strain to evaluate the alteration of transcription factor specificity in the chimeric mutants.
Our results showed that the chimeric GaaR-XInR transcription factor was induced in
the presence of D-xylose. Additionally, we generated a constitutively active GaaR-XInR
V756F version of the most efficient chimeric transcription factor to better assess its
activity. Proteomics analysis confirmed the production of several pectinolytic enzymes
by AgaaR mutants carrying the chimeric transcription factor. This correlates with the
improved release of D-galacturonic acid from pectin by the GaaR-XInR V756F mutant,
as well as by the increased L-arabinose release from the pectin side-chains by both
chimeric mutants under inducing condition, which is required for efficient degradation
of pectin.
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1. Introduction

Filamentous fungi are efficient degraders of plant biomass, ensuring an essential role
in the global carbon cycle. This is associated with their ability to produce and secrete
large amounts of extracellular Carbohydrate Active enZymes (CAZymes, www.cazy.
org)', which have a variety of applications in different industrial fields, including food
and feed, pulp and paper or textile industries®>. Fungal Zn,Cys, transcriptional activators
play a key role in the regulation of enzyme production by activating the expression of
genes encoding for enzymes required for the degradation of the substrates found in the
environment. However, these transcription factors need to be activated to express their
target genes®. Thus, the availability of inducing compounds may be a limiting factor in
industrial production processes.

Pectinases have a broad application in food industry, and are mainly used for juice
clarification or in the production of jams, wine, coffee and tea*. Aspergillus niger has
a long history of safe application and is often used in industry for the production of
valuable metabolites and enzymes?®. In particular, this fungus is well known to possess a
large array of genes encoding pectinases and accessory enzymes®. A key transcription
factor in the regulation of pectinase production is GaaR’, which is activated by its
physiological inducer 2-keto-3-deoxy-L-galactonate, an intermediate compound in the
pathway of D-galacturonic acid catabolism® and has been shown to play a major role in
the regulation of pectin degradation®.

The alteration of transcription factor specificity through the generation of chimeric
transcription factors has been reported more than thirty years ago in yeasts'®-'2, More
recently, artificial transcription factors have been constructed in filamentous fungi to
enhance the production of cellulases’'® or amylases'. However, the application of this
technique to facilitate or enhance pectinase production has not yet been reported.

The xylanolytic transcription factor XInR was the first (hemi-)cellulolytic transcription
factor described in A. niger?® and it is the most studied transcriptional activator involved
in the regulation of plant biomass degradation. It is involved in the colonization of plant
biomass and in the degradation of its components such as xylan and cellulose?-22,
Moreover, D-xylose has been shown to activate XInR?°, making this transcription factor
a suitable candidate for the generation of D-xylose-inducible chimeric transcription
factors. The generation of a GaaR specific chimeric transcription factor that could be
induced when cultivated on (hemi-)cellulose-rich agricultural waste materials would be
a suitable approach for the industry, due to the high abundance of these substrates in
nature.
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In this study, we used CRIPR/Cas9 genome editing??* to generate a chimeric GaaR-
XInR transcription factor through on-site modification of the endogenous x/inR. As
a test case, we generated a hygromycin B-based reporter strain suitable for simple
identification of functional chimeric transcription factor constructs. We showed that the
chimeric GaaR-XInR transcription factor A. niger mutant was able to secrete enzymes
required for the degradation of pectin when growing on pectin supplemented with
D-xylose as inducer compound.

2. Materials and Methods

2.1 Strains, media and growth conditions

Plasmids used in this study were propagated in Escherichia coliDH5a, which was grown
in Luria-Bertani (LB) medium? supplemented with 50 ug/mL ampicillin (Sigma Aldrich,
St. Louis, MO, USA). The fungal strains used in this study were derived from A. niger
CBS 138852 (cspA1, pyrA-, kusA::amdS)?, which was obtained from the Westerdijk
Fungal Biodiversity Institute culture collection (Utrecht, the Netherlands). All strains
generated in this study were deposited at the culture collection of Westerdijk Fungal
Biodiversity Institute under accession numbers indicated in Table S1. All fungal strains
were maintained by growing at 30°C on Aspergillus Minimal Medium (MM) or Complete
Medium (CM)? supplemented with 1% D-glucose and 1.22 g/L uridine (Sigma Aldrich,
St. Louis, MO, USA).

Growth profiles were performed using Aspergillus MM with the addition of 25 mM
D-glucose, D-galacturonic acid, or D-xylose (Sigma Aldrich, St. Louis, MO, USA) or
1% beechwood xylan, cellulose, xyloglucan, or apple/citrus pectin. All media were
supplemented with 1.22 g/L uridine. For antibiotic resistance tests the media were
supplemented with 10-25 ug/mL hygromycin B (InvivoGen, San Diego, CA, USA). All
growth profile plates were inoculated with 1000 freshly harvested spores and performed
in duplicates, and were incubated at 30°C for up to 14 days. Growth was evaluated by
visual inspection and pictures were taken at multiple time points.

For liquid cultures, freshly harvested conidia were pre-grown in 250 mL CM containing
2% D-fructose (Sigma Aldrich, St. Louis, MO, USA) and 1.22 g/L uridine for 16 h at
30°C in a rotary shaker at 250 rpm. After 16 h incubation, mycelia were harvested
by filtration through sterile cheesecloth, rinsed with MM, and approximately 2.5 g (wet
weight) mycelium was transferred in triplicates into 50 mL MM containing 2% wheat
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bran, 1% D-xylose, 1% citrus pectin (CP) or 1% citrus pectin supplemented with 0.075%
(5 mM) D-xylose (CPX). Supernatant samples were taken after 24 h incubation at 30°C
in a rotary shaker at 250 rpm. The samples were centrifuged (10 min, 3220 x g, 4°C)
and cell-free supernatant samples were stored at -20°C until further processing.

2.2 Construction of mutant strains

CRISPR/Cas9 genome editing was performed using the ANEp8-Cas9-pyrG plasmid,
which contains the pyrG gene as selection marker?*. The guide RNA (JRNA) sequences
were selected by using the Geneious 11.1.4 software (https://www.geneious.com) based
on the methodology described by Doench et al.?%. Repair templates, which include ~750-
1000 bp of the 5’ and 3’ flanking regions of the target sequences, were amplified and
fused together using fusion-PCR, and were used to repair the target sequence cleaved
by the Cas9 nuclease.

The construction of CRISPR/Cas9 plasmids, generation of A. niger protoplasts,
transformation and colony purification of putative mutant strains was performed as
previously described?®. The PpgaX-hph reporter strain CBS 147359 was generated
by replacing the exopolygalacturonase X (pgaX) ORF with the hygromycin-B-
phosphotransferase (hph) ORF originated from E. col® in the A. niger CBS 138852
background strain. The mutants carrying D-xylose-inducible chimeric GaaR-XInR
constructs were generated by replacing the N-terminal region of XInR with that of
the GaaR in the A. niger CBS 138852, CBS 147359 (CBS 138852 PpgaX-hph) and
CBS 146901 (CBS 138852 AgaaR) background strains. The constitutively active form
of chimeric GaaR-XInR V756F (corresponding to amino acid mutation V732F in the
chimeric sequence) has been generated by simultaneous replacement of XInR DNA-
binding domain and insertion of a point mutation via a single-stranded oligonucleotide
in the C-terminal region of XInR as described before?°.

The generated mutant strains have been confirmed by diagnostic PCR, through the
amplification of the target gene region and/or Sanger sequencing (Macrogen Europe,
Amsterdam, the Netherlands) (data not shown). For each individual mutation, one
candidate was selected for subsequent phenotypic analysis. All primers used in this
study were ordered from Integrated DNA Technologies, Inc. (IDT, Leuven, Belgium) and
are presented in Table S2.
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2.3 In silico analyses

The prediction of coiled coil motifs (Figure S1a, S1b) was performed using the DeepCoil
online tool*" (https://toolkit.tuebingen.mpg.de/tools/deepcoil).

The estimated protein mass was calculated as follows. Signal peptides for secretion were
predicted using SignalP 5.0 software tool®? (http://www.cbs.dtu.dk/services/SignalP/).
Estimation of mature amino acid sequence was subsequently calculated using the
ProtParam tool from the ExPASy web server (https://web.expasy.org/protparam/).

2.4 SDS-PAGE and enzyme activity assays

Liquid culture filtrates of the control and mutant strains grown in media containing 1%
citrus pectin, 1% D-xylose or the combination of 1% citrus pectin and 0.075% (5 mM)
D-xylose for 24 h were used to evaluate the produced extracellular CAZymes.

Twelve pL of the culture filtrates were added to 4 yL loading buffer (10% of 1 M Tris—
HCI, pH 6.8; 42% glycerol, 4% (w/v) SDS; 0.02% (w/v) bromophenol blue; 4% of 14.7 M
mercaptoethanol), incubated at 85°C for 15 min, ice-cooled for 2 min and centrifuged at
~ 10,000 x g for 2 min. Finally, 15 uL of sample were loaded onto 12% (w/v) acrylamide
SDS-PAGE gels calibrated with PageRuler prestained protein marker (Thermo Fisher
Scientific, Waltham, MA, USA). Visualization was performed by silver staining®?, while
documentation was done by using a HP Scanjet G2410 scanner. All samples were
evaluated in biological duplicates.

Enzyme activities were performed by using the colorimetric para-nitrophenol (pNP) or
azo-dye substrate assays in 96-well flat bottom microtiter plates. For pNP assays, 10 pL
supernatant samples were mixed with 10 pyL of 0.1% 4-nitrophenyl 3-D-glucopyranoside
for B-glucosidase (BGL) activity or 4-nitrophenyl B-D-xylopyranoside for 3-xylosidase
(BXL) activity substrates, 50 yL of 50 mM NaAc (pH 5) and 30 pL of demineralized
water in a final volume of 100 pL. Both pNP assays were measured after 1 h incubation
at 30°C. The reactions were stopped by adding 100 L of 0.25 M Na,CO, and the
absorption values were measured at 405 nm wavelength using a FLUOstar OPTIMA
microplate reader (BMG Labtech, Ortenberg, Germany). For azo-dye substrate assays
20 uL supernatant samples were mixed with 30 uL of 100 mM NaAc (pH 4.6) and 50 pL
of Azo-CM-Cellulose (Megazyme, Bray, Ireland) or Azo-Xylan (birchwood) (Megazyme,
Bray, Ireland) substrate for endoglucanase (EGL) and endoxylanase (XLN) activity
measurement, respectively. The reaction mixtures were incubated for 4 h at 30°C and
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were terminated by the addition of 250 uL of precipitation solution (4% NaAc*3H,0,
0.4% ZnAc, 76% EtOH, pH 5). The plates were centrifuged at 4°C, 1000 x g for 10
min. Supernatant samples were transferred to new microtiter plates and absorption
was measured at 600 nm wavelength using a FLUOstar OPTIMA microplate reader. All
measurements were performed by using biological duplicates and technical triplicates.

2.5 Saccharification test

Saccharification tests were performed in 96-well flat bottom microtiter plates. Each
reaction had 50 mM sodium citrate (pH 5) containing 3% soybean hulls (SBH) or 3%
CP mixed with 20 uL culture filtrate in a final volume of 250 pL. The reaction plates were
incubated for 6 h at 30°C and 400 rpm. Reactions were stopped by heat inactivation for
15 min at 95°C. The reaction plates were centrifuged for 20 min at 3220 x g, and the
supernatants were subsequently 10-fold diluted in MilliQ water prior to analysis. The
experiment was performed using biological duplicates and technical triplicates.

Monosaccharides were analyzed from peak areas in HPAEC-PAD (Dionex 1CS-5000
+ system; Thermo Fisher Scientific, Waltham, MA, USA) equipped with CarboPac PA1
column (2x250 mm with 2x50 mm guard column; Thermo Fisher Scientific, Waltham,
MA, USA). The column was pre-equilibrated with 18 mM NaOH followed by a multi-step
gradient: 0-20 min: 18 mM NaOH, 20-30 min: 0-40 mM NaOH and 0-400 mM sodium
acetate, 30-35 min: 40-100 mM NaOH and 400 mM to 1 M sodium acetate, 35-40
min: 100 mM NaOH and 1 M to 0 M sodium acetate followed by re-equilibration of 18
mM NaOH for 10 min (20°C; flow rate: 0.30 mL/min). Concentrations of 5-250 yM of
D-xylose, D-galacturonic acid and L-arabinose (Sigma-Aldrich, St. Louis, MO, USA)
were used as standards for quantification. Blank samples containing 3% SBH or CP,
with the addition of sterile MilliQ water instead of culture filtrates were measured as
well. These values were subtracted from each corresponding saccharification sample
result in order to exclude the amount of free sugar already present in the experimental
condition.

2.6 Proteomics sample preparation and analysis

Proteins from 600 uL cell-free liquid culture filtrates were precipitated by mixing them
with two volumes of -20°C methanol, followed by overnight incubation at -20°C.
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The precipitated protein solution was centrifuged at 20800 x g, 4°C for 20 min. The
supernatant was aspirated and the pellet was washed once with 60% cold methanol in
water and was resuspended in 6M urea, 100 mM ammonium bicarbonate pH 8 solution.
An aliquot was subsequently taken for protein quantification performed colorimetrically
using the RCDC kit assay (BioRad, Mississauga, Ontario). In total 7.5 ug of protein
samples of biological duplicates were immobilized in acrylamide and processed for in-
gel digestion with trypsin as previously described®t. Dried digest peptide extracts were
solubilized in a solution of 5% acetonitrile, 0.1% formic acid and 4 fmol/uL of trypsin-
digested Bovine Serum Albumin (BSA) (Michrom, Auburn, CA) used as internal standard.
Five pl were analyzed by LC-MS/MS using an Easy-LC Il Nano-HPLC system connected
in-line with a Velos LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific, San
Jose, CA). LC-MS/MS data peptide and protein identification were done using the A.
niger NRRL3 protein sequence databases. Protein identification and quantification was
performed using the Proteome Discoverer 2.4 (Thermo Fisher Scientific, Waltham, MA,
USA) precursor ion quantitation workflow. Normalized individual protein area values
were expressed as a fold value of the protein area value determined for the BSA internal
standard. Data analysis was performed based on the percentage values of the total
exoproteome.

2.7 Statistical analysis

Statistical analyses were performed on all enzyme assays and saccharification
experiments, which were carried out in biological duplicates and technical triplicates.
Statistically significant differences (p value < 0.05) were determined using the one-way
analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test
(Table S3). Analyses were done using STATGRAPHICS Centurion XVI Version 16.1.17
(www.statgraphics.com/centurion-xvi).

3. Results

3.1 The PpgaX-hph expression construct allows the screening
of functional chimeric transcription factors

The pgaX gene encoding an exopolygalacturonase has previously been shown to be
under the control of GaaR in A. niger’®. Therefore, we selected the promoter of this
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gene as a target for screening the activity of GaaR-XInR chimeric transcription factors,
which are able to bind to a GaaR-specific DNA binding site. The CRISPR/Cas9 system
was used to delete the ORF of pgaX, and a repair template carrying the hph gene was
used to replace the deleted pgaX gene. In order to ensure GaaR-mediated expression
of hph under the control of pgaX promoter (PpgaX-hph), the reporter strain was grown
on media containing D-galacturonic acid as sole carbon source supplemented with
increasing concentrations of hygromycin B. Growth of the parental strain was severely
impaired at 10 pg/mL of hygromycin B whereas the reporter strain showed growth when
the hygromycin B concentration was in the range of 10-20 ug/mL (Figure 1). However,
the reporter strain failed when higher concentrations of hygromycin B were applied.
Based on these results, the concentration of 15 pg/mL hygromycin B was used for
further screening purposes.

&
<

(\
P Q

&

No hygromycin B i
10 ug/mL  hygromycin B
15 pg/mL  hygromycin B
20 pg/mL  hygromycin B

25 pg/mL  hygromycin B

Figure 1. Hygromycin B resistance test of the A. niger PpgaX-hph reporter strain. The control
(CBS 138852) and reporter CBS 147359 (CBS 138852 PpgaX-hph) strains were grown on media containing
25 mM D-galacturonic acid as sole carbon source in presence of increasing concentrations (10-25 pg/mL) of
antibiotic. Pictures were taken after 10 days of incubation at 30°C.
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We constructed three different chimeric GaaR-XInR models (168.1, 169.1 and 170.1) by
fusion PCR to identify an efficient chimera. In all cases the C-terminal region consisted
of the amino acids 202-945 of XInR, which includes the fungal transcription factor
activation domain®. The three constructs differ in the GaaR N-terminal regions, which
were selected based on prediction of putative coiled-coil elements (Figure S1a) and
amino-acid sequence conservation across a wide range of filamentous fungi (data not
shown). In case of the chimeric model 168.1, the N-terminal 1-107 amino acid sequence
of GaaR was fused together with the C-terminal region of XInR (Figure S1c). The
N-terminal sequence of GaaR retained its endogenous zinc-finger domain followed by
a linker and a hypothetical coiled-coil sequence, as in silico predicted. For model 169.1
the N-terminal GaaR region consisted of the amino acids 1-193, carrying an additional
putative coiled-coil region (Figure S1d); while in model 170.1 the GaaR fragment
consisted of a larger N-terminal fragment of 1-229 amino acids (Figure S1e). The
expression of each chimeric construct was driven by the endogenous x/nR promoter.
The chimeric GaaR-XInR mutants were generated in the PpgaX-hph background strain
to assess the function of the chimeric constructs.

Subsequently, the control (CBS 138852), PpgaX-hph and mutants carrying each of
the three chimeric GaaR-XInR constructs in a PpgaX-hph background were tested for
growth on media containing D-galacturonic acid or D-xylose supplemented with 15 pg/
mL hygromycin B (Figure 2). None of the strains showed reduced growth on the media
containing 25 mM D-glucose, 25 mM D-galacturonic acid or 25 mM D-xylose in the
absence of hygromycin B. These results suggest that the tested strains do not display
metabolic defects in the utilization of D-glucose, D-galacturonic acid and D-xylose;
and that the differential growth observed on media supplied with 15 ug/mL hygromycin
B is attributed to the presence of the drug. The PpgaX-hph reporter strain, as well
as the chimeric mutants showed substantial growth on D-galacturonic acid supplied
with hygromycin B. When D-xylose was the sole carbon source, the chimeric mutants
169.1 and 170.1 showed growth comparable to that of the reporter strain after 8 days
of incubation, suggesting insufficient expression of the reporter construct mediated
through their chimeric GaaR-XInR transcription factors. In contrast, the chimeric mutant
168.1 showed substantially improved growth and sporulation compared to the reporter
strain and the other chimeric mutants. Thus, the chimeric model 168.1 was chosen for
further characterization.
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25 mM D-glucose §

25 mM D-galacturonic acid |
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25 mM D-galacturonic acid + &
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Figure 2. Functionality test of GaaR-XInR chimeric transcription factor mutants. The growth of
control (CBS 138852), PpgaX-hph reporter strain and the PpgaX-hph strains carrying chimeric GaaR-XInR
constructs was tested on MM containing either 25 mM D-xylose or D-galacturonic acid as carbon source
supplemented with 15 pg/mL hygromycin B. Plates without hygromycin B and with D-glucose as the sole
carbon source were included as reference. Pictures were taken after 8 days of incubation at 30°C.

3.2 The chimeric GaaR-XInR mutant showed impaired XInR
activity

Based on our initial screening, the GaaR-XInR chimeric model 168.1 was used to
generate a GaaR-XInR chimeric mutant in the A. niger CBS 138852 background strain.
Moreover, the CRISPR/Cas9 system was also used to generate a constitutively active
form of the chimeric transcription factor by introducing a point mutation (V756F) in the
C-terminal region of XInR as described before?®. XInR has been described to be regulated
on a post-translational level through a proposed D-glucose inhibitory domain found in
its C-terminal region, which is responsible for turning XInR into an inactive state under
repressing conditions®®. The V756F mutation disturbs this inhibitory domain, keeping
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XInR in a permanently active form®®. Therefore, the constitutively active form of the
chimeric transcription factor is independent of the presence of the activator (D-xylose),
showing a clearer phenotype of the chimeric mutation. Growth profile results showed
that the growth of the GaaR-XInR and the GaaR-XInR V756F mutants was comparable
to that of the AxinR mutant (Figure 3a), indicating that the replacement of the XInR
N-terminal region for that of GaaR resulted in the loss of native XInR function. The
extracellular protein profile of these mutants grown on 2% wheat bran liquid cultures
further supported this observation, since the production of the major endoxylanases
found in the molecular mass range of 13-33 kDa®*® was highly reduced (Figure 3b).
Moreover, enzyme activity assays (Figure 3c) confirmed the abolition of beta-xylosidase
(BXL) activity, and the high reduction in endoxylanase activity (XLN) (Figure 3c), which
are both required for the efficient degradation of xylan and are (mainly) under the
control of XInR. The impaired growth on cellulose (Figure 3a) also correlates with the
overall reduction of cellulolytic activities, indicated by the beta-glucosidase (BGL) and
endoglucanase (EGL) activities (Figure 3c).

3.3 The GaaR-XInR chimeric transcription factor recovers
growth on pectin in a AgaaR strain

To evaluate the pectinolytic activities mediated by a GaaR-XInR chimeric transcription
factor, the GaaR-XInR and GaaR-XInR V756F mutations were generated in a
AgaaR background strain. Growth profiling (Figure 4) showed abolished growth on
D-galacturonic acid, and highly reduced growth on apple and citrus pectin for AgaaR.
The AgaaR GaaR-XInR mutant showed comparable growth to AgaaR on 25 mM
D-galacturonic acid, as well as on 1% apple pectin or 1% citrus pectin. However, the
addition of 2 mM D-xylose resulted in substantial growth recovery on these substrates. In
contrast, AgaaR GaaR-XInR V756F improved growth compared to AgaaR even without
the addition of 2 mM D-xylose, thus demonstrating the inducer-independent nature of
this chimeric transcription factor. All strains showed minimal growth on 2 mM D-xylose
as sole carbon source, indicating that the differential growth of chimeric mutants on
substrates with or without 2 mM D-xylose is not attributed to the metabolism of D-xylose
present in the media.

Despite the addition of D-xylose, none of the chimeric mutants showed fully recovered
growth on 25 mM D-galacturonic acid.
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Figure 3. Phenotypic screening of GaaR-XInR chimeric mutant strains. a) Growth profile
of A. niger control (CBS 138852), GaaR-XInR, GaaR-XInR V756F and Ax/nR strains on selected mono-
and polysaccharides. All plates were incubated at 30°C for up to 14 days. Note that the Ax/nR strain was
included as a negative control for the loss of XInR function. b) Extracellular protein analysis of A. niger control
(CBS 138852) and mutant strains. Supernatant filtrates were harvested from 2% wheat bran liquid cultures
incubated at 30°C and 250 rpm for 24 h. ¢) Enzyme activity assays of supernatant filtrates originated from
2% wheat bran liquid cultures after 24 h incubation at 30°C and 250 rpm. Graph bars represent normalized
enzyme activity values, and letters (a-c) represent the statistical differences between samples within each
specific enzyme assay. Samples showing different letters show significant differences among the strains,
while samples sharing the same letters show no statistically significant differences (ANOVA and Tukey’s HDS
test, p < 0.05).
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No carbon source

25 mM D-glucose

25 mM D-galacturonic acid §

25 mM D-galacturonic acid
+ 2 mM D-xylose

1% apple pectin
+ 2 mM D-xylose j *

1% citrus pectin

1% citrus pectin
+ 2 mM D-xylose

Figure 4. Growth test of GaaR-XInR chimeric mutants on pectin and related substrates. The
control (CBS 138852), AgaaR, AgaaR GaaR-XInR and AgaaR GaaR-XInR V756F strains were grown on media
containing 1% apple/citrus pectin and D-galacturonic acid. The tests substrates were also supplemented with
D-xylose for the induction of the chimeric transcription factor. All plates were incubated for 7 days at 30°C.
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3.4 Chimeric GaaR-XInR transcription factor activates the
production of pectinolytic enzymes

To evaluate which pectinolytic proteins are produced by the chimeric GaaR-XInR
mutants, the gaaR deficient mutants carrying the chimeric transcription factor were
cultivated in 1% citrus pectin and 1% citrus pectin + 5 mM D-xylose liquid media.
SDS-PAGE analysis showed comparable protein production for AgaaR and AgaaR
GaaR-XInR after 24h incubation in 1% citrus pectin (Figure 5a). In contrast, AgaaR
GaaR-XInR V756F showed substantially improved protein production compared to both
AgaaR and AgaaR GaaR-XInR. However, the protein pattern of the mutant carrying
the constitutively active chimeric transcription factor did not show complete recovery of
extracellular enzymes compared to the control (CBS 138852) strain. When cultivated on
1% citrus pectin + 5 mM D-xylose or on 1% D-xylose both mutants carrying the chimeric
GaaR-XInR construct showed a comparable extracellular protein profile (Figure 5a).
This result correlates with the observed growth phenotype (Figure 4), indicating the
induction of the chimeric GaaR-XInR in the presence of D-xylose and the inducer
independent activity of the constitutively active GaaR-XInR V756F form.

Proteomic analysis showed partial or full recovery of the production of several proteins
involved in pectin degradation in AgaaR GaaR-XInR V756F compared to AgaaR (Figure
5b) when cultured on citrus pectin (CP) and citrus pectin supplemented with D-xylose
(CPX). Several proteins (e.g., NRRL3_5252, RgaeB, PgxB and GalA) increased in
levels in both conditions (CP and CPX) in the constitutively active mutant. However,
the addition of D-xylose to the culture media did not result in increased production of
these proteins in AgaaR GaaR-XInR. In contrast, an endo-polygalacturonase (PgaB),
an endo-1,6-beta-galactanase (NRRL3_8701) and two a-L-arabinofuranosidases (AbfA
and AbfB) showed substantially increased abundance in both CP and CPX filtrates of
AgaaR GaaR-XInR V756F, as well as in the CPX filtrate of AgaaR GaaR-XInR. The
arabinofuranosidase AbfB showed the highest abundance in the exoproteome of both
AgaaR GaaR-XInR and AgaaR GaaR-XInR V756F filtrates. Interestingly, both the
cellobiohydrolase CbhB and the glucoamylase GlaA showed upregulation in the CPX
filtrate exoproteome of both chimeric mutants compared to AgaaR (Supplementary Data
1). These proteins were also the most abundant ones in the exoproteome next to AbfB.
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1% citrus pectin 1% citrus pectin + 1% D-xylose
5 mM D-xylose
Estimated AgaaR AgaaR
AgaaR AgaaR
Gene number  n® Activityldescription Snay ot | SR %R Gaarxmr CPRANR| GOl 2207 Gaarxinr SRR

(kDa) P CP. oPX CPX
NRRL3_3768  abfB ABF (a-arabinofuranosidase) GH54 50.66 577 468 278 968 1285 199 | 513" 16.00
NRRL3 5252 - PME (pectin methyl esterase) CE8 4133 851 000 000 0.48 805 000 002 051
NRRL3_5407  abnC  ABN (endo-arabinanase) GH43 3221 008 042 044 0.42 013 075 029 062
NRRL3_7501  rgaeB RGAE (thamnogalacturonan acetyl esterase) ~ CE12 26.20 156 004 004 033 037 004 005 027
NRRL3_8281  pgxB PGX (exo-polygalacturonase) GH28 46.79 225 000 000 029 130 000 000 027
NRRL3_2630  /acA  LAC (B-14-galactosidase) GH35 108.04 041 082 020 027 005 068 077 0.53
NRRL3_5859  pgaB PGA (endo-polygalacturonase) GH28 35.88 093 015 010 0.26 034 009 [N024% 0.39
NRRL3_8701 - GLN (exo-1,6-galactanase) GH5_16 4359 015 008 006 0.16 002 006 . 031% 0.92
NRRL3_7469  xghA XGH (xylogalacturonase) GH28 40.20 235 008 006 0.16 103 001 0.05 0.08
NRRL3_10643 galA  GAL (B-1,4-endo-galactanase) GH53 37.05 061 000 000 0.14 090 000 000 011
NRRL3_965  pelA  PEL (pectin lyase) PL1_4 37.85 023 000 001 013 009 002 000 0.06
NRRL3_1606  abfA  ABF (a-arabinofuranosidase) GH51 6538 024 005 007 012 003 016 [031% 046
NRRL3_8325  pmeA PME (pectin methyl esterase) CE8 3393 042 000 000 0.04 043 000 000 0.02
NRRL3_3144  pgaX PGX (exo-polygalacturonase) GH28 4504 190 000 000 0.00 029 000 000 0.00
NRRL3_10559 rgxC  RGX (exo-thamnogalacturonase) GH28 4385 131 000 000 0.00 013 000 000 0.00
NRRL3_8805  pgaC PGA (endo-polygalacturonase) GH28 3857 064 000 000 0.00 002 000 000 0.00
NRRL3_2835  pgaE  PGA (endo-polygalacturonase) GH28 37.70 046 000 000 0.00 007 000 000 0.00
NRRL3_7470  pmeB PME (pectin methyl esterase) CE8 3281 042 000 000 0.00 000 000 000 0.00
NRRL3_2571 pgal  PGA (endo-polygalacturonase) GH28 36.31 0.33 0.00 0.00 0.00 0.01 0.00 0.00 0.00
NRRL3_9126 rhgA  RHG (endo-rhamnogalacturonase) GH28 4522 0.29 0.00 0.00 0.00 0.14 0.00 0.00 0.03
NRRL3_5260  pgxC PGX (exo-polygalacturonase) GH28 4576 014 000 000 0.00 008 000 000 0.00
NRRL3_10115 - RGL (thamnogalacturonan lyase) PL4_3 71.78 003 023 013 0.00 000 059 046 0.05
NRRL3 3279 - RHA (a-thamnosidase) GH78 89.73 001 019 [1033 0.00 000 021 0.14 0.05
NRRL3 2162 - RHA (a-thamnosidase) GH78 68.54 000 103 079 0.00 000 095 011 0.00
NRRL3_7 faeA _FAE (feruloyl esterase) esterase 28.36 000 028 003 0.00 000 020 000 0.00

Figure 5. Exoproteome analysis of GaaR-XInR chimeric mutants in AgaaR background strain.
a) SDS-PAGE analysis of supernatant samples. Supernatant filtrates of control (CBS 138852), AgaaR, as well
as AgaaR GaaR-XInR and AgaaR GaaR-XInR V756F chimeric transcription factor mutants were harvested
after 24 h incubation at 30°C and 250 rpm. Different liquid culture conditions are indicated in the figure.
Samples are shown as biological duplicates. b) Selected proteins associated with the degradation of pectin
detected by proteomics analysis in the exoproteome of control (CBS 138852) and mutant strains. Samples
were harvested from 1% citrus pectin (CP) or 1% citrus pectin + 5 mM D-xylose (CPX) liquid cultures. Protein
abundance is represented as percentage of the total exoproteome. Proteins with an abundance < 0.1% of the
total exoproteome are indicated in grey cells. Proteins showing > 1.5-fold increase in the chimeric mutants
compared to the AgaaR strain are indicated in green cells. Asterisk (*) indicates the proteins which showed
increased abundance compared to the AgaaR strain only when the media was supplemented with D-xylose.
The total exoproteome data are found in Supplementary Data 1.

3.5 The GaaR-XInR V756F chimeric transcription factor
improves the release of D-galacturonic acid and L-arabinose
from pectin

The saccharification and sugar release analysis of 3% soybean hulls (SBH) and 3% CP
was performed to evaluate the enzymatic activities present in the CP and CPX liquid
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culture filtrates of the control (CBS 138852) and mutant strains after 24 h incubation.
Soybean hulls has been selected as a crude substrate for saccharification due to its
high pectin content represented by the abundant presence of D-galactose, L-arabinose
and D-galacturonic acid in its composition®’. The amount of released D-xylose from
SBH was low (< 0.1 mM) for all strains, including the control (Figure S2). However, no
D-xylose has been detected when either the filtrate of AgaaR GaaR-XInR or AgaaR
GaaR-XInR V756F was used. None of the filtrates resulted in the release of D-xylose
from 3% CP, most likely due to the low abundance of this sugar in its composition.
Surprisingly, the release of D-galacturonic acid from either 3% SBH (Figure 6a) or 3%
CP (Figure 6b) did not improve in case of AgaaR GaaR-XInR compared to AgaaR at
any of the conditions tested. In contrast, AgaaR GaaR-XInR V756F showed consistently
improved D-galacturonic acid release when either the CP or CPX filtrates were used
(Figure 6a, b). However, this amount was lower than that of the control strain. On the
other hand, the release of L-arabinose from 3% SBH (Figure 6¢) and 3% CP (Figure
6d) was comparable for all mutant strains when the CP filtrates were used, with a
slight improvement of release in case of the constitutive GaaR-XInR V756F from 3%
CP (Figure 6d). The chimeric mutants showed the most significant improvement of
L-arabinose release compared to AgaaR when the CPX filtrates were used.
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Figure 6. Saccharification analysis of 3% soybean hulls and 3% citrus pectin substrates by A.
niger control (CBS 138852) and mutant strain supernatant filtrates. Supernatant filtrates were
harvested from 1% citrus pectin (CP) or 1% citrus pectin + 5 mM D-xylose (CPX) liquid cultures. Graphs
illustrate the amount of released D-galacturonic acid from 3% soybean hulls (a) and 3% citrus pectin (b), as
well as the released L-arabinose from 3% soybean hulls (c) and 3% citrus pectin (d). Letters (a-c) represent
the statistical differences between samples within each specific saccharification assay. Samples showing
different letters show significant differences among the strains, while samples sharing the same letters show

no statistically significant differences (ANOVA and Tukey’s HDS test, p < 0.05).
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4. Discussion

In this study, we tested three versions of GaaR-XInR chimeric transcription factor
mutants to generate an A. niger strain that is able to produce pectinolytic enzymes by
using D-xylose as inducing sugar.

The majority of fungal transcriptional activators belong to the Zn,Cys, cluster family
proteins. These proteins usually carry the DNA binding motif at the N-terminal region,
while the activation domain is found in the C-terminal region of the protein®. It has
been reported that the binding specificity of a Zn,Cys; transcription factor is affected
by the linker region on the C-terminal end of the zinc-finger motif'®3*. However, it has
also been shown that binding specificity can be influenced by the N-terminal end of a
putative dimerization element represented by a coiled-coil following the linker region™.
Considering these observations, we decided to fuse the C-terminal region of XInR (202-
945 aa) together with three different N-terminal GaaR fragments, all of them including
the zinc-finger motif (26-53 aa), linker region (54-64 aa) and the neighboring putative
coiled-coil element (65-85 aa) (Figure S1).

To simplify the screening of chimeric GaaR-XInR constructs, we constructed a PpgaX-
hph reporter strain. The utilization of the endogenous pgaX promoter-reporter system
for the analysis of GaaR-mediated activation of a selection marker gene (amdS) has
previously been reported“. In our study, we used the hygromycin B phosphotransferase
gene (hph) for screening purposes. It has been reported that A. niger is able to grow
when the concentration of hygromycin B is even higher than 100 ug/mL*'. However,
in most cases the hph gene is expressed under the control of a strong constitutive
promoter, such as PgpdA from Aspergillus nidulans. Initial screening indicated that the
GaaR (1-107 aa)-XInR (202-945 aa) chimera (model 168.1) showed the best resistance
to hygromycin B when induced by D-xylose (Figure 2), indicating that the presence
of additional GaaR sequence elements (models 169.1, 170.1) might result in the loss
of function and/or reduced stability of the chimeric transcription factor. However, the
slow growth of this mutant indicates that the chimeric transcription factor only partially
activates the expression of the reporter gene compared to the endogenous GaaR. This
result correlates with the observation that certain chimeric constructs show relatively
low affinity towards some specific target genes’.

Phenotypic analysis indicated the high reduction or even abolition of enzymatic activities
affected by XInR in the GaaR-XInR and GaaR-XInR V756F mutants (Figure 3). Although
the XLN, BGL and EGL enzyme activities were highly reduced, they were not completely
abolished in any of the chimeric mutants, most likely due to the involvement of other
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(hemi-)cellulolytic transcription factors, such as ClrAand/or CIrB in the regulation of these
activities in A. niger*2. However, the residual cellulolytic activities were not sufficient to
support growth on cellulose (Figure 3a). Interestingly, the XLN, BGL and EGL activities
were in general slightly higher than in the AxInR strain, which might indicate residual
direct or indirect activation of the corresponding genes. The growth on pectin was not
increased in the chimeric mutant strains compared to the control, suggesting that the
chimeric transcription factor does not improve the expression of pectinolytic genes in
the presence of an active GaaR. However, the activation of the pectinolytic system by
the chimeric transcription factor was more prominent when the chimeric mutation was
introduced in a AgaaR background strain. The addition of 2 mM D-xylose to the growth
test substrates clearly shows the activation of the GaaR-XInR chimeric transcription
factor, which subsequently resulted in a substantial growth recovery on pectin. The
chimeric mutant was able to grow on D-galacturonic acid after induction with D-xylose,
but growth was only partially recovered. This indicates that the chimeric transcription
factor is also able to activate all the essential genes encoding for the D-galacturonic
acid catabolism. However, the artificial transcription factor might not have sufficient
expression level or might not be stable enough to maintain a metabolic flux similar to
the wild type. One alternative to improve the overall activity of the chimeric transcription
factor would be the utilization of a strong constitutive promoter, as done in previous
studies for the expression of other artificial transcription factors''5181% resulting in
higher enzymatic activities.

The exoproteome patterns (Figure 5a) of AgaaR GaaR-XInR and AgaaR GaaR-
XInR V756F correlate with the growth profile results (Figure 4), indicating that the
constitutively active version of the chimeric transcription factor can activate its target
genes in the absence of the inducing sugar. Proteomics analysis confirmed the
activation of pectinolytic genes by the GaaR-XInR chimeric transcription factor, showing
substantially increased abundance of pectinolytic enzymes in the constitutively active
AgaaR GaaR-XInR V756F mutant compared to AgaaR. Of the proteins that showed
increased abundance by AgaaR GaaR-XInR in the CPX condition, AbfA”® and PgaB?®
have previously been described to be controlled by GaaR. The low abundance of AbfB
in AgaaR compared to the control and the substantially increased abundance in the
chimeric transcription factor mutants in the CPX condition indicates that production
of this enzyme is also dependent on GaaR mediated-induction of the corresponding
gene. Although GaaR is responsible for the production of most enzymes involved in
the degradation of the polygalacturonic acid backbone?®, in our experimental conditions,
especially in the CPX medium, the expression of arabinanolytic genes was the most
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prominent. The molecular weight of the pectinolytic proteins found in the supernatants
of the chimeric mutants have been estimated in this study (Figure 5b), but due to post-
translational modifications such as glycosylation, the estimated molecular weight of the
proteins detected by proteomics analysis and the exoproteome pattern observed by
SDS-PAGE analysis cannot be directly correlated. However, the molecular weight of the
a-L-arabinofuranosidases AbfA and AbfB have been experimentally determined to be
83 kDa and 67 kDa, respectively*®, which appear at a higher intensity on the SDS-PAGE
profile of the chimeric mutants when D-xylose is present in the liquid media (Figure 5a).

The saccharification results also support the activation of arabinofuranosidases in the
chimeric mutants. Interestingly, both CbhB and GlaA showed significant increase in
abundance in the chimeric mutants, which is most likely an indirect effect of the chimeric
mutation.

In conclusion, in this study we report the utilization of CRISPR/Cas9 genome editing to
generate a GaaR-XInR chimeric transcription factor by precise on-site mutagenesis in
A. niger for the first time. This artificial transcription factor was able to recover lost GaaR
functions when induced by D-xylose. Moreover, the alteration of the specificity of the
endogenous XInR resulted in the downregulation of several (hemi-)cellulolytic enzymes
due to the loss of XInR activity, which can reduce the purification costs of pectinase-rich
enzyme cocktails. Even though the chimeric mutant showed the upregulation of several
pectinolytic proteins compared to the AgaaR strain, the abundance was in general lower
than that of the control strain. These results may indicate that the expression level or
the stability of the chimeric transcription factor could be improved. The utilization of a
strong constitutive promoter for the expression of GaaR-XInR might further improve the
expression level of this artificial transcription factor and could possibly result in enriched
pectinolytic enzyme cocktails when grown on D-xylose or xylan-rich substrates, with all
the benefits that this would entail at the biotechnological and industrial level.

Data availability
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obtained upon request from the author.

Figure S1. Sequence analysis of A. niger GaaR and XInR transcription factors. a, b) Prediction of
putative coiled-coil regions in GaaR (a) and XInR (b) amino acid sequence. Vertical black lines indicate the
approximate position of the terminal amino acid of the N-terminal region of GaaR (a) and the starting amino
acid of the C-terminal region of XInR (b). c-e Amino acid sequence of chimeric GaaR-XInR transcription factor
model 168.1 (c), 169.1 (d) and 170.1 (e). The zinc-finger domain is indicated in green letters and the linker
region in bold letters. The predicted coiled coil, which is putatively responsible for dimerization is indicated
with underlined letters. The 202-945 aa C-terminal region of XInR is indicated in red.

Figure S2. D-xylose released from 3% soybean hulls by A. niger control (CBS 138852) and
mutant strains. Supernatant filtrates of tested strains originated from 1% citrus pectin (CP) or 1% citrus
pectin + 5 mM D-xylose (CPX) liquid cultures.

Table S1. Aspergillus niger strains used in this study.
Table S2. Primers used in this study. Homology flanks are highlighted in red.
Table S3. Summary of the ANOVA analysis for each enzyme assay and saccharification test.

Supplementary Data 1. Proteomics results of A. niger control (CBS 138852) and AgaaR, AgaaR
GaaR-XInR and AgaaR GaaR-XInR V756F mutant strains. Supernatant filtrates originated from 1%
citrus pectin (CP) or 1% citrus pectin supplemented with 5 mM D-xylose (CPX). Protein percentage values,
which are < 0.1% are highlighted in grey cells.
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Abstract

Low-cost plant substrates, such as soybean hulls, are used for various industrial
applications. Filamentous fungi are important producers of Carbohydrate Active enZymes
(CAZymes) required for the degradation of these plant biomass substrates. CAZyme
production is tightly regulated by several transcriptional activators and repressors.
One such transcriptional activator is CLR-2/CIrB/ManR, which has been identified
as a regulator of cellulase and mannanase production in several fungi. However, the
regulatory network governing the expression of cellulase and mannanase encoding
genes has been reported to differ between fungal species. Previous studies showed
that Aspergillus niger CIrB is involved in the regulation of (hemi-)cellulose degradation,
although its regulon has not yet been identified. To reveal its regulon, we cultivated an
A. niger AclrB mutant and control strain on guar gum (a galactomannan-rich substrate)
and soybean hulls (containing galactomannan, xylan, xyloglucan, pectin and cellulose)
to identify the genes that are regulated by CIrB. Gene expression data and growth
profiling showed that CIrB is indispensable for growth on cellulose and galactomannan
and highly contributes to growth on xyloglucan in this fungus. Therefore, we show that
A. niger CIrB is crucial for the utilization of guar gum and the agricultural substrate,
soybean hulls. Moreover, we show that mannobiose is most likely the physiological
inducer of CIrB in A. niger and not cellobiose, which is considered to be the inducer of
N. crassa CLR-2 and A. nidulans CIrB.
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1. Introduction

Plant biomass is the most abundant carbon source on Earth and consists mainly of
plant cell wall polysaccharides (cellulose, hemicellulose and pectin), and the aromatic
polymer lignin. Various plant substrates are used for applications in food, pharmaceutical,
textile or paper & pulp industry’. One such substrate is guar gum (GG), an abundant
biopolymer found in Cyamopsis tetragonolobus seed endosperm?, which is used as
a thickener, stabilizer agent and additive in pharmaceutical, paper, textile or food
industries®. Its main component is galactomannan®, a polymer which is also abundantly
present in soybean hulls (SBH)%. Soybean is cultivated in large amounts worldwide (up
to 240 million tons per year), producing approximately 20 million tons of SBH per year
as a major by-product®. Soybean hulls are used as animal feed, in the treatment of
waste water or as dietary fibers®.

To produce valuable compounds from plant biomass, a broad set of hydrolytic and
oxidative enzymes are required to degrade its main polymers. Filamentous fungi are
efficient plant biomass degraders due to their extensive set of Carbohydrate Active
enZymes (CAZy, www.cazy.org)’ they can secrete. Transcription Factors (TF) play an
essential role in the regulation of gene expression, controlling the production of a set of
enzymes that matches the polysaccharides that are present in the environment of the
fungus. Several fungal TFs related to plant biomass degradation have been described?.
Some transcription factors are associated with the degradation of specific substrates,
such as GaaR?®, which is the key regulator of pectin degradation'. Other TFs control the
degradation of a broader set substrates. For instance, XInR" controls the expression of
cellulolytic, xylanolytic, mannanolytic and xyloglucanolytic genes'>-'4, while AraR" plays
an important role in hemicellulose and pectin degradation®.

In N. crassa, the regulation of cellulose degradation is controlled by two TFs, CLR-
1 and CLR-2'. CIrA, the ortholog of CLR-1, has also been identified in Aspergillus
nidulans' and A. niger'”'® and was reported to be involved in cellulose degradation
in these species. Orthologs of CLR-2 have been identified in A. nidulans (CIrB)'®19,
A. niger (CIrB)", A. oryzae (ManR)?* and Penicillium oxalicum (CIrB)?' that showed
conserved function with respect to cellulose degradation, although A. oryzae CIrB
(ManR) had been first reported as a TF regulating mannan degradation?. A later study
also showed the involvement of N. crassa CLR-2 in the regulation of mannan utilization?.
A detailed study of the CIrB ortholog from A. nidulans showed that CIrB controls the
expression of several mannanolytic genes such as the (3-mannosidase mndB or the
endomannanase manB?®. However, it was reported that the induction of mannanases
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in A. nidulans is more likely controlled by a CIrB paralogue, AN6832%, which is not
present in A. oryzae or A. niger®. The induction and/or the role of CLR-2/CIrB/ManR
orthologs within the regulatory network of (hemi-)cellulose degradation appears
strikingly different'®'®24. More recently, a homolog of CIrB (TcIB2) has been identified
in Talaromyces cellulolyticus that is involved in the regulation of mannan degradation,
but not cellulose or xylan degradation®. A less conserved homolog of CIrB (CLR-2) has
also been described in Trichoderma reesei, but results showed only a minor influence
of CLR-2 on cellulase regulation in this species?. In contrast, light-dependent control of
xylanase and pectinase encoding genes has been associated with CLR-2 in T. reesei’.
Even though the involvement of A. niger CIrB in cellulose utilization has been previously
reported' '8, it is not fully known to which extent it may also control the degradation of
mannan or other plant polysaccharides.

In this study, we assessed the involvement of CIrB in the degradation of SBH and
GG by A. niger. We showed that CIrB is involved in the degradation of cellulose,
galactomannan and xyloglucan in A. niger. Moreover, we showed that mannobiose is
most likely the inducer of CIrB in this species, despite cellobiose being the inducer of
CIrB in A. nidulans, suggesting distinct activation of (hemi-)cellulolytic systems within
closely related ascomycetes.

2. Materials and methods

2.1 Strains, media and growth conditions

Fungal strains used in this study were derived from the A. niger CBS 138852 (cspA1,
pyrG-, kusA::amdS) strain®. All deletion mutants used in this study were previously
generated by using the CRISPR/Cas9 system'® and were deposited at the culture
collection of Westerdijk Fungal Biodiversity Institute under strain numbers indicated in
Table S1. Strains were grown at 30°C in Aspergillus Minimal Medium (MM) or Complete
Medium (CM)# supplemented with 1% D-glucose and 1.22 g/L uridine (Sigma Aldrich).
Growth profiles were performed using Aspergillus MM containing 25 mM mono-/
disaccharides or 1% polysaccharides/crude substrates.

The SBH used in this study was washed as previously reported’®. The washed
supernatant-free pellet was resuspended in MM with 1% final concentration for both
growth profiles and liquid culturing. All media were supplemented with 1.22 g/L uridine.
All growth profile plates were inoculated in duplicates with 10% spores and incubated
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at 30°C for up to 14 days. Pictures were taken after 5, 6, 7, 8, 10 and 14 days of
incubation and were evaluated by visual inspection, considering the colony diameter,
mycelial density and sporulation.

2.2 Transcriptomic analysis

For transcriptomic analysis, freshly harvested spores were pre-grown in CM containing
2% D-fructose and 1.22 g/L uridine for 16 h at 30°C in a rotary shaker at 250 rpm. The
mycelium was harvested by filtration through sterile cheesecloth, thoroughly washed
with MM, and approximately 2.5 g (wet weight) mycelium was transferred to either 10
mL MM containing 2 mM cellobiose (Acros Organics) or mannobiose (Megazyme),
or to 50 mL MM containing 1% SBH or GG (Table S2). Mycelia were harvested for
RNA isolation after 1 h incubation at 30°C in a rotary shaker at 250 rpm in case of 2
mM mannobiose/cellobiose cultures, and after 2, 8 and 24 h incubation at the same
condition in case of 1% SBH/GG cultures. Mycelia were frozen in liquid nitrogen followed
by storage at -80°C until further use. Samples were collected in biological triplicates.
The transcriptomes of the parental and mutant strains were analyzed using RNA-seq.
RNA isolation, purification and quantitative and qualitative evaluation was performed as
previously described*°.

Purification of mRNA, synthesis of cDNA library and sequencing were performed at
the Joint Genome Institute (JGI). Plate-based RNA sample prep was performed on
the PerkinElmer Sciclone NGS robotic liquid handling system using lllumina’s TruSeq
Stranded mRNA HT sample prep kit utilizing poly-A selection of mRNA following the
protocol outlined by lllumina in their user guide: https://support.illumina.com/sequencing/
sequencing_Kkits/truseqg-stranded-mrna.html, and with the following conditions: total
RNA starting material was 1 ug per sample and 8 cycles of PCR was used for library
amplification. The prepared libraries were then quantified using KAPA Biosystem’s next-
generation sequencing library gPCR kit and run on a Roche LightCycler 480 real-time
PCR instrument. The quantified libraries were then multiplexed and the pool of libraries
was then prepared for sequencing on the lllumina NovaSeq 6000 sequencing platform
using NovaSeq XP v1 reagent kits, S4 flow cell, following a 2x150 indexed run recipe.
The processing of raw fastq reads and evaluation of raw gene counts were performed
as previously described®. Three biological replicates were generated and sequenced
for each condition. Two individual samples were discarded from further analysis due to
their poor sequencing quality.
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Differentially expressed genes (DEGs) were detected using the R package DESeq2*'.
Transcripts were considered differentially expressed if the DESeq2 fold change
of the AclrB mutant strain compared to the control was > 2 (upregulation) or < 0.5
(downregulation) and padj < 0.01 and at least one of the two expression values was
FPKM > 20. Heat maps for gene expression data visualization were generated using
the “gplots” package of R software, with the default parameters: “Complete-linkage
clustering method and Euclidean distance”. The data used for the generation of heat
maps are shown in Data S1. Genes with an expression value of FPKM < 20 in each
sample were considered lowly expressed and were excluded from the analysis.

2.3 Binding site analysis

The CIrB consensus binding site was identified by using the online MEME version 5.3.3
tool*? on the promoter regions of a set of 45 downregulated genes in the AclrB strain
grown on SBH or GG. Promoter sequences were obtained from the JGI MycoCosm
database (https://genome.jgi.doe.gov/Aspni_NRRL3_1/Aspni_NRRL3_1.home.html).
Motif discovery mode was set to discriminative mode, using the promoter regions of
all genes excluding the promoters of the 45 primary genes as control. Motif length was
restricted to 10-18 nucleotides and specified the occurrences to zero or to one per
sequence.

Binding site analysis was performed using the RSAT online tool* (http://rsat-tagc.univ-
mrs.fr/rsat/dna-pattern_form.cgi) as previously reported®. The presence of binding sites
in the promoter regions of putatively ClrB-regulated genes are indicted in Table S3.

3. Results and discussion

3.1 The deletion of ClrB strongly reduces Aspergillus niger
growth on soybean hulls and guar gum

To evaluate the contribution of CIrB to the utilization of SBH in A. niger, we performed
a growth profile on this crude substrate, as well as on several major constituent mono-
and polysaccharides, and GG (Figure 1). GG is mainly composed of galactomannan,
while SBH contains significant amounts of cellulose, galactomannan, pectin, xylan and
xyloglucan342®, The sugar composition of SBH and GG are indicated in Table S2.
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No carbon source
14 days |

1% cellulose [ : 1% soybean hulls
10 days \ 5 8 days

1% cellulose [l i@ 1% soybean hulls [
14 days § & 10 days

25 mM D-glucose
8 days |

25 mM D-xylose

1% xyloglucan 1 Y 1% soybean hulls
8 days \

14 days

25 mM L-arabinose
8 days

1% xyloglucan [
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1% guar gum f
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1% guar gum
6 days g

25 mM D-galacturonic acid [}
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1% beechwood xylan ] 1% guar gum
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- 7

1% apple pectin
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25 mM D-mannose [
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6 days

25 mM cellobiose
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Figure 1. Growth profile of the A. niger control (CBS 138852) and AclrB strain. The solid medium
containing selected carbon sources were inoculated with 1000 spores and incubated at 30°C for up to 14
days.

Growth on GG was strongly reduced in the clrB deletion mutant (Figure 1), indicating
a large contribution of CIrB towards the degradation of galactomannan by A. niger.
Growth on D-mannose was not affected in the AcirB strain, indicating little or no effect
on the regulation of D-mannose transport or metabolism. Surprisingly, while SBH
contains diverse polysaccharides, the deletion of c/rB also resulted in strongly reduced
growth on SBH. This suggests that CIrB is involved in the degradation of several
major SBH components, such as cellulose, galactomannan and xyloglucan. Previous
studies reported the involvement of CIrB in cellulose degradation in A. niger'”'®, which
correlates with abolished growth on cellulose in our study (Figure 1). However, no growth
reduction was observed on cellulose for an A. oryzae manR disruption mutant, despite
its involvement in cellulose utilization®. These results demonstrate differences in the
extent of cellulase regulation by CIrB or the involvement of other cellulolytic regulators
between these two species. Interestingly, growth on cellobiose was not affected by
the deletion of clrB (Figure 1). Growth reduction on this substrate was observed in A.
nidulans’®, but not in N. crassa'®, also highlighting differences in the role of CIrB in these
species.
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A transient growth reduction was observed on xyloglucan for the A. niger AclrB mutant,
showing partial growth recovery after 14 days of growth (Figure 1). The slow growth on
xyloglucan may be related to the involvement of CIrB in the regulation of xyloglucanases,
such as the Glycoside Hydrolase Family 12 (GH12) enzyme EgIA', which is also
supported by transcriptome data (see next sections). No growth reduction was observed
on xylan or pectin, or on some of the (major) constituent sugars, D-xylose, L-arabinose,
L-rhamnose and D-galacturonic acid (Figure 1). The presence of xylan and pectin in
SBH could only partially support growth of the cIrB deletion strain, possibly because it
has reduced access to xylan and pectin in SBH.

The crucial role of CIrB in the degradation of SBH and GG was also confirmed by an
additional growth profile involving combinatorial deletions of major (hemi-)cellulolytic TFs
XInR, AraR, CIrA and CIrB that were previously generated. Our results showed that the
AclrB single deletion strain, as well as each combinatorial deletion mutant carrying the
deletion of clrB more strongly reduced growth on the test substrates compared to any
other deletion strain (Figure S1). Moreover, the AclrB strain showed an even stronger
growth reduction than the AxinRAaraRAcIrA triple mutant, confirming that CIrB has a
dominant role in the regulation of SBH and GG degradation. The important role of CIrB
in the degradation of both SBH and GG could (mainly) be associated with the impaired
ability of the ciIrB deletion mutants to degrade galactomannan. This is supported by the
observation that none of the XInR-AraR-CIrA combinatorial deletion mutants showed
substantial growth reduction on GG (Figure S1), which is almost exclusively composed
of galactomannan.

3.2 Mannobiose is the inducer of ClrB in Aspergillus niger

Several studies have suggested that the inducer of CLR-2/CIrB/ManR is either
cellobiose®1920.2336 or mannobiose?*3®. Mannobiose-mediated activation of CIrB in A.
niger has been hypothesized before*, but no studies have confirmed it so far.

To identify if either cellobiose or mannobiose is the inducer of CIrB in A. niger, the A.
niger control (CBS 138852) and AclrB strain were cultivated in liquid medium containing
either 2 mM cellobiose or 2 mM mannobiose as sole carbon source. RNA from mycelial
samples was collected after 1 h incubation, and transcriptomic data were generated
and analyzed. The expression level of clrB in the control strain was 3-fold higher in the
mannobiose culture (147.1 FPKM) compared to the cellobiose culture (48.7 FPKM) (Data
S1A). Analysis of CAZy, metabolic and transporter genes indicated no downregulation
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(fold change < 0.5; padj < 0.01) in the Ac/rB mutant compared to the control when grown
in medium containing 2 mM cellobiose (Data S1A). In contrast, in the 2 mM mannobiose
cultures differential expression of 18 CAZy, two metabolic and three transporter genes
was observed in the AclrB strain compared to the control (Table 1). The differentially
expressed CAZy genes encode enzymes with a diverse specificity, including two
xylanolytic genes (axeA and gbgA), six cellulolytic genes (eglA, egIC, cbhB, cbhD, bgl4
and NRRL3_3383), six galactomannanolytic genes (agl/B, aglC, manA, mndA, mndB
and haeA), three pectinolytic genes (abnA, rgaeA and rglA) and one xyloglucanolytic
gene (xegA) (Table 1). The downregulation of six cellulolytic and galactomannanolytic
genes correlates with the expectation that CIrB is mainly involved in cellulose and
mannan utilization. Although two metabolic genes (larB and oahA) were differentially
expressed in the clrB deletion strain (Table 1), these results do not necessarily indicate
an involvement of CIrB in the regulation of metabolic pathways. Of the three transporter
genes which showed differential expression in the AclrB strain (Table 1), ctA showed the
highest reduction in expression. Interestingly, the transporter encoded by this gene has
previously been described as cellodextrin (including cellobiose) transporter®®. However,
our data did not show the expression of this gene when grown on 2 mM cellobiose
(Data S1A). This suggests that this gene may in fact encode a mannobiose transporter
rather than a cellobiose transporter. This observation is further supported by a previous
study, reporting that the CtA ortholog in N. crassa, CDT-1, showed competitive uptake
of cellobiose and mannobiose, with preference for mannobiose®.

Overall, our data shows that mannobiose is most likely the inducer of CIrB in A. niger.
However, a previous study reported that the overexpression of A. niger cirB could result
in the production of some cellulases, but not the mannanase ManA, in the absence of
an inducer®. Furthermore, the expression of c/rB is positively affected by the xylose-
inducible TF XInR", which could likely explain the role of CIrB in the utilization of diverse
substrates containing low levels, or even lacking mannobiose in their composition'”:18:3%,
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Table 1. Differentially expressed genes in the AclrB strain compared to the control when
cultivated in minimal medium containing 2 mM mannobiose as sole carbon source. Gene
expression values represent FPKM values, while the fold change is based on Deseq?2 calculation. Enzyme
activity abbreviations are described in Table S4.

CAZy-encoding genes

DeSeq2
Gene ID Gene Activity CAZy family Substrate FPKM FPKM fold padj
name control AcirB change
NRRL3_3339 axeA AXE CE1 (Arabino)xylan 74.13 0.79 0.01 0.000
NRRL3_11773  gbhgA BXL GH43 - CBM35  (Arabino)xylan 66.88 12.44 0.19 0.000
NRRL3_4917 eglC EGL GH5_5 Cellulose 147.06 0.06 0.00 0.000
NRRL3_10870  cbhD CBH GH6 Cellulose 24.28 0.24 0.01 0.000
NRRL3_3383 - LPMO AA9 Cellulose 26.67 1.20 0.05 0.000
NRRL3_8517 bgl4 BGL GH1 Cellulose 1380.90 114.09 0.08 0.000
NRRL3_2584 cbhB CBH GH7 - CBM1 Cellulose 95.40 1.45 0.02 0.000
NRRL3_2585 eglA EGL GH5_5-CBM1  Cellulose 219.80 0.26 0.00 0.000
NRRL3_5358 aglB AGL GH27 Galactomannan  1221.38 23.58 0.02 0.000
NRRL3_16 aglC AGL GH36 Galactomannan 93.25 41.27 0.45 0.000
NRRL3_8912 manA MAN GH5 Galactomannan 479.99 5.17 0.01 0.000
NRRL3_9612 mndA MND GH2 Galactomannan 1039.38 14.18 0.01 0.000
NRRL3_9051 mndB MND GH2 Galactomannan  2593.21 157.21 0.06 0.000
NRRL3_4916 haeA AE CE16 Galactomannan 280.84 0.87 0.00 0.000
NRRL3_92 abnA ABN GH43 Pectin 938.85 159.80 0.17 0.000
NRRL3_169 rgaeA RGAE CE12 Pectin 24.51 2.67 0.1 0.000
NRRL3_684 rglA RGL PL4_1 Pectin 97.06 5.87 0.06 0.000
NRRL3_1918 XegA XG-EGL GH12 Xyloglucan 25.14 10.21 0.42 0.000
Metabolic genes
Gene ID Gene Activity Metabolic pathway FPKM FPKM D‘:i:‘qz padj
name control AcirB change
NRRL3_10868 larB L-arabinose reductase PCP 54.59 25.88 0.48 0.001
NRRL3_6354 oahA oxaloacetate acetylhydrolase ~ TCA & glyoxylate cycles 3212.33  1439.89 0.46 0.000
Transporter genes
Gene FPKM FPKM DeSeq2
Gene ID name Specificity control AcirB . ;::‘dg . padj
NRRL3_10052  x/tC major facilitator superfamily glucose transporter 176.29 37.67 0.22 0.000
NRRL3_3028 CtA major facilitator superfamily, sugar/inositol transporter-like protein 1657.42 14.81 0.01 0.000
NRRL3_5614 - major facilitator superfamily, sugar/inositol transporter-like protein 206.15 55.66 0.28 0.000
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3.3 Transcriptome data shows slow activation of galacto-
mannan degradation in soybean hulls and guar gum liquid
cultures by Aspergillus niger

Transcriptome analysis of A. niger grown on SBH and GG was performed to study the
phenotypic response of this fungus to the analyzed substrates at the molecular level.
For this, pre-grown fungal mycelia were transferred to liquid medium containing 1% GG
or 1% washed SBH. The expression of CAZyme-encoding genes was initially evaluated
in the A. niger control (CBS 138852) strain to assess the major genes involved in the
degradation of the tested substrates (Figure 2).

On SBH, the overall expression of CAZyme-encoding genes was low after 2 h, showing
an increase after 8 h (Figure 2A). However, at 24 h, a relatively high increase in the
expression of CAZy genes was observed, indicating a slow adaptation of A. niger to the
degradation of SBH. This is in contrast with the gene expression pattern observed on
another dicot, sugar beet pulp, where the overall expression of CAZy genes was only
slightly higher at 24 h compared to 8 h*. The total number of CAZy genes showing an
expression of FPKM > 20 also increased over time, with 57, 84 and 98 CAZy genes in
E\otal after 2, 8 and 24 h, respectively (Figure 2A).
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100000
Low High
g oo Substrate  Control 2h AcirB 2h Control 8h AclrB 8h Control 24h AclrB 24h
£ pectin 14 16 28 17 se 25
5 pectin/xylan 4 4 6 6
g 60000 hemicellulose 2 2 2 2
g (arabino)xylan " 8 13 10 14 13
2 galactomannan 6 5 6 5 9 7
8 wom
© xyloglucan 4 2 5 3 8 6
cellulose 10 10 18 10 17 9
starch 7 8 6 6 6 7
2000
. inulin 2 2 2 2
— — - Total 57 54 84 59 98 75
B | — —
Control 2h AckB 2h Control 8h AckB 8h Control 24h AchB 24h
inulin s starch  mcellulose = xyloglucan mpectin
B
100000
= 8000 . Substrate  Control 2h AclrB 2h Control 8h AcirB 8h Control 24h AclrB 24h
H pectin 13 11 [Ne0n 24 13 17
'g pectin/xylan 4 3 3 4 3 3
2 e hemicellulose 2 2 2 2
%.' (arabino)xylan 9 8 12 12 10 9
; galactomannan 7 6 7 6 10 4
8 w0 xyloglucan 5 4 8 6 7 4
- — cellulose 5 5 17 1 13 9
starch 7 7 6 7 7 7
o — — inulin 2 3
[ - Total 53 48 85 73 66 55
o

Control 2h AciB2h Control 8h AciB 8h Control 24h AclB 24h
inulin = starch mcellulose = xyloglucan = pectin

Figure 2. Schematic representation of the relative expression of CAZyme-encoding genes in A.

niger (CBS 138852) and AclrB strain grown on soybean hulls (A) or guar gum (B). Graphsiillustrate
the cumulative expression of genes associated with the degradation of major plant biomass components
(indicated by different colors). Tables describe the number of genes associated with the degradation of each
substrate with a FPKM > 20.
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At the initial stage of growth, the a-glucosidase encoding gene agdB showed the
highest expression in the control strain (Data S1B). The high expression of agdB, as
well as additional amylolytic genes (e.g., glaA, amyA and agdA) indicated the utilization
of starch after 2 h on SBH. However, the starch content of SBH used in our study
is only 0.2% (data not shown), which is in line with previous studies reporting less
than 1% starch in SBH***'. None of the genes related to the degradation of other SBH
components were expressed at relatively high levels, suggesting that A. niger did not
degrade other polymers at this stage of growth (Figure 2A).

In contrast, after 8 h, the expression of three endo-arabinanase encoding genes (abnA,
abnC and NRRL3_3855) was the highest (Figure 3 and Data S1B). In accordance
with the highly expressed endo-arabinanase encoding genes, additional pectinolytic
genes were most abundantly expressed, accounting for a total number of 28 at this time
point (Figure 2A). In general, (hemi-)cellulolytic genes showed the highest expression
levels only after 24 h, including genes encoding cellobiohydrolases (cbhA, cbhD),
endoxylanases (xInA, xInC/xynA), arabinoxylan arabinofuranohydrolase (axhA), acetyl
xylan esterase (axeA), hemicellulose acetyl esterase (haeA) and xyloglucanases (xegA,
eglA) (Figure 3 and Data S1B). In contrast to SBH, A. niger grown in GG cultures
showed the highest expression of CAZyme-encoding genes after 8 h, with a substantial
decrease in expression after 24 h (Figure 2B). The expression level of cIrB was also
the highest in the control strain grown on SBH for 24 h and GG for 8 h (Figure 4 and
Data S1C), correlating with the expression profile of CAZyme-encoding genes. This
correlation supports the major role that CIrB plays in the degradation of both substrates.

At the initial stages of growth on GG, several amylolytic genes (glaA, aamA, agdA,
agdB) were highly expressed (Figure 2B and Data S1B). Moreover, the endoinulinase
encoding gene inuE and invertase encoding gene sucA were also highly expressed
after 2 h on GG. Even though starch and inulin are not present in GG, it was previously
shown that GG contains trace amounts of various components that might induce the
expression of a broad set of CAZyme-encoding genes, including amylases and/or
inulinases in A. niger*?. Additionally, a trace component-mediated induction of amylolytic
and inulinolytic gene expression in the 2 h GG condition compared to the 2 h SBH
condition might be explained by the fact that the SBH used in this study was previously
washed, while GG was not. The washing procedure removes a large proportion of (free)
monosaccharides or short oligosaccharides from the substrate composition, decreasing
the availability of putative inducer molecules.
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Figure 3. Hierarchical clustering of CAZyme-encoding genes in A. niger control (CBS 138852)
and AclrB strain. Data originated from 8 and 24 h of culturing in 1% soybean hulls (SBH) or 1% guar gum
(GG) liquid media. The substrates associated with the corresponding genes are indicated by different colors.
Enzyme activity abbreviations are described in Table S4.
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After 8 h a large number of pectinolytic genes were expressed in GG, but these were
not among the genes showing the highest expression levels (Figure 2B and Data S1B).
Several genes that showed high expression values in the SBH culture after 24 h were
also highly expressed in GG at the 8 h time point. These include axeA, xInA, xInC/
xynA, axhA, xegA and haeA (Figure 3 and Data S1B). Additionally, the endoglucanase
encoding gene NRRL3_4917 and the cellobiohydrolase encoding gene cbhB showed
high expression levels, indicating a strong response to the presence of low amounts
of cellulose. The expression data indicated that the GG cultures showed the strongest
genetic response to the presence of its main constituent, galactomannan, only after 24 h,
showing the highest expression of the a-galactosidase encoding ag/B, the hemicellulose
acetyl esterase encoding haeA, the B-1,4-endomannanase encoding manA and the
two B-1,4-mannosidase encoding genes mndA and mndB (Figure 3 and Data S1B).
Comparison of the expression profile of galactomannan-specific genes in the GG and
SBH conditions at each time point suggests that the degradation of galactomannan
mainly occurs at a later stage of growth, possibly even after 24 h of growth in case of
SBH.
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Figure 4. Hierarchical clustering of xInR

transcription factor genes in A. niger

control (CBS 138852) and AclrB amyR
strain. Data originated from 2, 8 and 24 h of

culturing in 1% soybean hulls (SBH) or 1% creA

guar gum (GG) liquid media. Downregulated

genes (fold change < 0.5; padj < 0.01) in gaax
AclrB compared to the control are indicated gaaR
by an asterisk (*). The analyzed genes

include the genes encoding the carbon inuR

catabolite repressor CreA, the (hemi-)
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xylanolytic regulator XInR, the arabinanolytic

regulator AraR, the amylolytic regulator rhaR
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the regulator of D-galactose utilization gaix
GalX and the activator and repressor of
D-galacturonic acid utilization GaaR and cIrB

GaaX, respectively.
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3.4 Transcriptomic analysis of the clrB deletion mutant
confirms the key role of ClrB in the regulation of key cellulases,
galactomannanases and xyloglucanases in Aspergillus niger

To evaluate the role of CIrB in the regulation of CAZymes involved in the degradation of
SBH and GG, we compared the transcriptome of the AclrB mutant to that of the control
described above (Figure 3 and Data S1B). CAZyme-encoding genes were evaluated
based on substrate specificity for both growth conditions (SBH and GG) during the
experimental time course. Only seven genes showed downregulation in the AcirB
mutant compared to the control on SBH after 2 h (Figure 5 and Table S3).
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Figure 5. Downregulated CAZyme-encoding genes in A. niger grown on 1% soybean hulls or
1% guar gum. Venn-diagrams indicate the number of downregulated (fold change < 0.5; padj < 0.01) genes
in AcIrB strain compared to the control at different time points. Only the genes which are downregulated in
both growth conditions are listed for each time point. The substrates associated with the corresponding genes
are indicated by different colors. Arrow colors match those of the different time points. Bold gene numbers
indicate the genes which possess the CIrB consensus binding site [5’-CGGN,CCG-3'] in their promoter region.
Enzyme activity abbreviations are described in Table S4.
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However, the number of downregulated genes increased to 33 and 78 after 8 h and
24 h on SBH, respectively. Interestingly, all the genes which were downregulated in
the cIrB deletion mutant at 2 or 8 h were also downregulated at 24 h, so no unique
downregulated genes were found in this mutant at early time points (Figure 5).

Compared to the SBH cultures, a lower number of genes were affected by the deletion
of cIrB on GG. This includes 6, 30 and 36 downregulated genes after 2, 8 and 24 h,
respectively. Thirteen of the downregulated genes were unique to the 8 h time point,
while 19 were unique to the 24 h time point in the GG culture (Figure 5 and Table S3).
In total, 80 CAZyme-encoding genes showed downregulation in AclrB on either SBH or
GG (Table S3). Of these, 45 genes were downregulated on SBH and GG at identical
time points (Figure 5).

After 2 h, the deletion of cIrB showed low impact, downregulating only bgl4, aglB, mndA,
rgaeA and egl/A. In contrast, the 8 h time point showed the downregulation of 24 genes
on both substrates, notably including eight genes involved in cellulose degradation
(Figure 5). A similar set of eight cellulase genes was downregulated at the 24 h time
point, of which bgl4, cbhA, cbhB, eglA and egIC were downregulated at both 8 and
24 h time points (Figure 5). Previously, it was shown that XInR plays a major role in
the regulation of cellulases in A. niger by controlling the expression of both c/rA and
cIrB". However, our study shows that the expression of cIrA is (partially) dependent
on CIrB in A. niger (Figure 4). This indicates that the decreased expression of clrAin a
AxInR mutant’” might also be indirectly mediated through CIrB. Moreover, the reduced
expression of clrA can further facilitate the reduction of cellulase gene expression in A.
niger.

Besides cellulase genes, three galactomannanolytic genes (aglB, manA and haeA)
were downregulated after 8 h of growth on SBH and GG (Figure 5). These genes seem
to be activated by CIrB, even when the general response of A. niger to galactomannan
degradation is low in case of SBH (Figure 2A). However, the 24 h time point showed the
downregulation of additional galactomannanolytic genes, including ag/C, NRRL3_4196
(putative endomannanase), mndA and mndB (Figure 5). The control of manA by CIrB
in A. niger was shown in a previous study where a constitutively active version of CIrB
resulted in elevated levels of the B-mannanase ManA, but no data was provided about
the production of additional major mannanolytic enzymes by this mutant*’. Regulation of
manC and mndB by N. crassa CLR-2 and A. nidulans CIrB has been reported before'®.
However, neither of these orthologs have been shown to control the expression of
genes encoding a-galactosidases or acetyl mannan esterases, which are accessory
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enzymes involved in galactomannan utilization. In contrast, A. oryzae ManR was shown
to control the expression of a GH27 and a GH36 a-galactosidase gene (ag/B and ag/C,
respectively), as well as the Carbohydrate Esterase Family 16 (CE16) acetyl mannan
esterase encoding gene ameA?°%. Our data indicates that the CIrB-mediated activation
of galactomannanases in A. niger is similar to that of the ManR in A. oryzae, indicating
a divergent regulation of mannan utilization compared to N. crassa or A. nidulans. Only
a few pectinolytic genes were downregulated in the AclrB mutant after 8 h or 24 h on
SBH and GG (seven and five, respectively) (Figure 5), and none of these genes showed
overlap between the two time points, indicating that they might not be under direct
control of CIrB.

Previous studies showed that CLR-2/CIrB orthologs can affect the expression of
xylanolytic genes as well as overall xylanase activity in N. crassa and A. nidulans when
grown on Avicel'®', However, this was not the case for A. oryzae ManR, which showed
no significant effect on xylanolytic gene expression on Avicel®. Although our growth
condition was different, A. niger AcirB did not show extensive involvement of CIrB in the
regulation of (arabino)xylan utilization. Likewise, it was shown that P. oxalicum ClIrB?’
and T. cellulolyticus TcIB225 are not strictly required for xylanolytic gene expression.
Only some genes involved in (arabino)xylan degradation were downregulated on both
SBH and GG after 8 h and 24 h (three and four, respectively), two of which (axeA and
xInB) were downregulated at both time points (Figure 5). A previous study showed that
the expression of xInB (xynA) decreased in A. niger AclrB on wheat straw'’. The minor
involvement of A. niger CIrB in the process of (arabino)xylan utilization was supported
by the unaffected growth of Ac/rB mutant on xylan (Figure 1), as well as by the results
of our previous study, where an A. niger AclrB mutant showed an unexpected growth
improvement on an (arabino)xylan-rich substrate, wheat bran'®. Those results suggest
the existence of an unknown interaction between XInR and CIrB, where the presence of
CIrB negatively affects the production of xylanolytic enzymes while XInR is the dominant
transcription factor in the degradation of the substrate’@.

The expression of xyloglucanolytic genes was also affected in AclrB (Figure 5).
Reduced xyloglucanolytic activities are also indicated by the reduced growth of AclrB
on xyloglucan (Figure 1). The importance of CLR-2 in the degradation of xyloglucan was
reported before in N. crassa??, but no evidence has been given for involvement of CIrB/
ManR orthologs in xyloglucan degradation in P. oxalicum, A. nidulans or A. oryzae. To
this point, it is not fully known to which extent the regulation of xyloglucan degradation
by CIrB is conserved in filamentous fungi.
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The set of 45 genes identified in this study that were simultaneously downregulated in
AclrB on SBH and GG (Table S3) was used to in silico predict the consensus binding site
of CIrB in A. niger (Figure 5). Our predicted consensus binding site [5-CGGN,CCG-3]
matched the one previously described for A. nidulans CIrB% and shows high similarity to
the experimentally determined [5-CGGN,,CCG-3] binding site in N. crassa®.

Considering each set of downregulated genes per different growth conditions and time
points, only three genes were consistently downregulated in all conditions, bgl4, aglB
and eglA, indicating the direct ClrB-mediated activation of their expression in A. niger
at all time points. Interestingly, binding site analysis did not indicate the presence of a
[5-CGGN,CCG-37] site in the promoter region of ag/B. However, a [5-CGN,CCG-3]
motif could be identified within the 1000 bp promoter region of ag/B, indicating that the
binding site of CIrB in A. niger might be slightly different from the sequence reported for
A. nidulans CIrB2, or that slightly different sequence motifs to the one predicted in this
study may be also recognized by this activator. Nevertheless, the identification of the
binding site in A. niger requires experimental validation.

3.5 CIrB controls the expression of several transporter genes,
but shows no direct control of sugar metabolic pathways in
Aspergillus niger

The expression of putative sugar transporter and metabolic genes was assessed on
both SBH and GG cultures at all time points (2, 8 and 24 h) to evaluate the effect
of the deletion of cIrB on the overall utilization of these substrates. Only the putative
cellodextrin transporter gene, ctA®, showed consistent downregulation at all time points
in both growth conditions (Table 2 and Data S1D). The promoter region of cfA contains
the consensus binding site of CIrB (5-CGGN,CCG-3'), likely indicating direct control
by CIrB. A Cdt-1 cellodextrin transporter, the putative ortholog of A. niger CtA, was also
identified within the conserved regulon of CLR-2/CIrB in N. crassa and A. nidulans™®.
Additionally, the putative transporter encoding NRRL3 5614 was downregulated after
8 h and 24 h on both substrates, while NRRL3_ 8663 showed downregulation only
on SBH after 8 and 24 h in AclrB (Table 2 and Data S1D). However, NRRL3_8663
was upregulated in Ac/rB on GG after 8 h, similar to NRRL3_10866, which showed
no differential expression when grown on SBH. NRRL3_8663 also showed increased
expression levels in the control strain on SBH compared to GG (Table 2 and Data S1D).
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Based on the higher L-arabinose content of SBH determined by the sugar composition
analysis of both substrates (Table S2), this data correlates with previous observations
suggesting the putative involvement of NRRL3 8663 in arabinose transport*. In contrast,
no function has been associated yet with NRRL3_ 5614 and NRRL3_10866 genes*.
While only a low number of transporter genes showed differential expression after 2 or
8 h of growth, several additional transporter genes were differentially expressed on SBH
and GG after 24 h in AclrB. This includes 10 upregulated and 14 downregulated genes
in SBH and 12 upregulated and 11 downregulated genes in GG. Only seven genes were
upregulated, and seven genes were downregulated in both conditions (Table 2 and
Data S1D). Considering the role of CIrB as a transcriptional activator, the large number
of upregulated genes after 24 h of growth indicates that several transporter genes are
differentially expressed most likely due to an indirect effect triggered by the deletion of
clrB.

Only a low number of metabolic genes showed differential expression in AclrB grown
on SBH or GG for 2 or 8 h. The affected genes belong to several sugar metabolic
pathways (Data S1E), indicating no substantial involvement of CIrB in the regulation
of any major sugar metabolic pathway. In contrast, a large number of metabolic genes
were downregulated on both substrates in Ac/rB after 24 h of growth (Data S1E). Similar
to the relatively large number of differentially expressed transporter genes after 24 h
of growth, the differential expression of these metabolic genes is most likely a result
of an indirect effect caused by the deletion of clrB. Moreover, the unaffected growth of
AclIrB on the major constituent monosaccharides (Figure 1) further supports the lack of
involvement of CIrB in the regulation of major metabolic pathways.

4. Conclusions

In conclusion, we show that CIrB plays a major role in the regulation of genes coding
for CAZymes necessary for the degradation of SBH and GG in A. niger. CIrB is
essential to maintain growth on cellulose and galacto(mannan) and is highly involved
in the degradation of xyloglucan. Gene expression data also shows that CIrB regulates
(arabino)xylanolytic genes, although to a lesser extent. Moreover, the role of CIrB
extends beyond (hemi-)cellulose degradation through the partial (in)direct regulation
of several pectinolytic genes (e.g., rglA or abnA). Furthermore, gene expression data
indicate the involvement of CIrB in the regulation of several transporter genes, including
CctA, but shows no (direct) involvement in the regulation of primary metabolic pathways.
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Finally, we show that mannobiose is most likely the inducer of CIrB in A. niger. The
determination of the key genes regulated by CIrB, as well as its inducing molecule in A.
niger, allows us to improve the production of plant biomass degrading enzymes through
targeted gene editing and the optimization of culture conditions.

Data availability
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Figure S1. Growth profile of A. niger control (CBS 138852) and single and combinatorial
deletion mutants on soybean hulls. The solid medium was inoculated with 1000 spores and incubated

at 30°C for up to 14 days.

Table S1. A. niger strains used in this study.

Table S2. Sugar composition analysis of soybean hulls and guar gum. The analysis was performed

as previously described.
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Table S3. Downregulated genes in A. niger AclrB strain compared to the control (CBS 138852).
Strains were grown for 2, 8 and 24 h in soybean hulls (SBH) and guar gum (GG) liquid cultures. (+) indicates
the condition in which the analyzed genes are downregulated (fold change < 0.5; padj < 0.01). The genes
which were downregulated on both SBH and GG after 8 and 24 h of growth are highlighted in bold. Genes
which were also downregulated on mannobiose are indicated by an asterisk (*).

Gene ID Gene name Activity CAZy family Substrate S;‘H S;‘H i‘:: (:E (;ﬁ ZG;:‘ s;:;atgé(;::gg%
NRRL3_1069 |aguA [AGU(a-glucuronidase) GH67 + 0
NRRL3_11773*|gbgA BXL(B-1,4-xylosidase) GH43 - CBM35 v+ + 1
NRRL3_1648 |xinA  XLN(B-1,4-endo-xylanase) GH11 + + + 1
NRRL3_2827 |- XLN(B-1,4-endo-xylanase) GH11 + 1
NRRL3_3339* |axeA AXE(acetyl xylan esterase) CE1 o+ o+ - 1
NRRL3_3928 |x/nB  XLN(B-1,4-endo-xylanase) GH11 + + + + L]
NRRL3_6244 |xynB BXL(B-1,4-xylosidase) GH43 + 0
NRRL3_6419 [xarB BXL/ABF(8-1,4-xylosidase/a-arabinofuranosidase) |GH3 + 0
NRRL3_8738 |engA BGN(endo-1,6-B-D-glucanase) GH30_3 + + 0
NRRL3_10449 (bgiA/bgl1  |BGL(B-1,4-glucosidase) GH3 Cellulose + + + 0
NRRL3_10870*cbhD CBH(cellobiohydrolase) GH6 Cellulose + + + 0
NRRL3_11105 |- ML-EGL(B-1,3/8-1,4-endoglucanase) GH131 Cellulose + 1
NRRL3_11147 |- LPMO(lytic polysaccharide monooxygenase) AA9 Cellulose + + 0
NRRL3_2584* |cbhB CBH(cellobiohydrolase) GH7 - CBM1 Cellulose + + + + 1
NRRL3_2585* |eglA EGL(B-1,4-endo-glucanase) GH5_5-CBM1  |Cellulose - P 2
NRRL3_3383* |- LPMO(lytic polysaccharide monooxygenase) AA9 Cellulose + + + 1
NRRL3_4917* |eg/C EGL(B-1,4-endo-glucanase) GH5_5 Cellulose + + + + 1
NRRL3_4953 (cbhA CBH(cellobiohydrolase) GH7 Cellulose + + + + 1
NRRL3_6436 |- BGL(B-1,4-glucosidase) GH3 Cellulose + o+ + 0
NRRL3_6791 |eg/B EGL(B-1,4-endo-glucanase) GH5_5 - CBM1 Cellulose + 0
NRRL3_814 |- LPMO(lytic polysaccharide monooxygenase) AA9 - CBM1 Cellulose + 0
NRRL3_8517* |bgl4 BGL(-1,4-glucosidase) GH1 Cellulose T 1
NRRL3_9019 [cbhC CBH(cellobiohydrolase) CBM1 - GH6 Cellulose + + + 3
NRRL3_16* aglC AGL(a-1,4-galactosidase) GH36 + + 0
NRRL3_4196 |- MAN(B-1,4-endo-mannanase) GH26 + + + 0
NRRL3_5358* |ag/B AGL(a-1,4-galactosidase) GH27 + + + + + + (]
NRRL3_8912* |manA MAN(B-1,4-endo-mannanase) GH5 + + + + 1
NRRL3_9051* |mndB MND(B-1,4-mannosidase) GH2 + + + 2
NRRL3_9612* (mndA MND(B-1,4-mannosidase) GH2 + + + + + 1
NRRL3_4916* |haeA AE (acetyl esterase) CE16 + + + + 1
NRRL3_6053 |haeB AE (acetyl esterase) CE16 + + 1
NRRL3_3087 |inuE INX(exo-inulinase) GH32 Inulin + 0
NRRL3_10115 |- RGL(thamnogalacturonan lyase) PL4_3 Pectin + 3
NRRL3_10558 |- RHA(a-rhamnosidase) GH78 Pectin + + 0
NRRL3_10559 |rgxC RGX(exo-rhamnogalacturonase) GH28 Pectin + 0
NRRL3_10643 |galA GAL(B-1,4-endo-galactanase) GH53 Pectin v+ 1
NRRL3_11738 |lacC LAC(B-1,4-galactosidase) GH35 Pectin + 1
NRRL3_1237 |pelD PEL(pectin lyase) PL1_4 Pectin + 1
NRRL3_169* |rgaeA RGAE(rhamnogalacturonan acetyl esterase) CE12 Pectin + + + + + 0
NRRL3_2479 (lacB LAC(B-1,4-galactosidase) GH35 Pectin + + 0
NRRL3_2571 |pgal PGA(endo-polygalacturonase) GH28 Pectin + + 0
NRRL3_2630 |lacA LAC(B-1,4-galactosidase) GH35 Pectin + + 1
NRRL3_2832 |rgxA RGX(exo-rhamnogalacturonase) GH28 Pectin + 0
NRRL3_2835 |pgaE PGA(endo-polygalacturonase) GH28 Pectin + 1
NRRL3_3144 |pgaX PGX(exo-polygalacturonase) GH28 Pectin + 0
NRRL3_4000 (pgall PGA(endo-polygalacturonase) GH28 Pectin + + 0
NRRL3_5252 |- PME(pectin methyl esterase) CE8 Pectin + 0
NRRL3_5260 [pgxC PGX(exo-polygalacturonase) GH28 Pectin + 0
NRRL3_5859 |pgaB PGA(endo-polygalacturonase) GH28 Pectin + 0
NRRL3_6782 |pgaA PGA(endo-polygalacturonase) GH28 Pectin + 0
NRRL3_684* (rglA RGL(rhamnogalacturonan lyase) PL4_1 Pectin + + + 1
NRRL3_7094 |abnD ABN(endo-arabinanase) GH43 Pectin + + 0
NRRL3_7469 [xghA  XGH(xylogalacturonase) GH28 Pectin + + + 1
NRRL3_7470 |pmeB PME(pectin methyl esterase) CE8 Pectin + + + 1
NRRL3_7501 |rgaeB RGAE(rhamnogalacturonan acetyl esterase) CE12 Pectin + 0
NRRL3_824  |abxA ABX GH93 Pectin + + 0
NRRL3_8281 |pgxB PGX(exo-polygalacturonase) GH28 Pectin + + 0
NRRL3_8325 |pmeA PME(pectin methyl esterase) CE8 Pectin + 0
NRRL3_839 urhgA URH(unsaturated rhamnogalacturonyl hydrolase) GH105 Pectin + 0
NRRL3_8631 |rgxB RGX(exo-rhamnogalacturonase) GH28 Pectin + 0
NRRL3_8701 |- GLN(exo 1,6 galactanase) GH5_16 Pectin + + + 1
NRRL3_8805 |pgaC PGA(endo-polygalacturonase) GH28 Pectin + + + 1
NRRL3_9126 |rhgA RHG(endo-rhamnogalacturonase) GH28 Pectin + + + 0
NRRL3_92* abnA |ABN(endo-arabinanase) GH43 Pectin + + + + 1
NRRL3_965 |pelA PEL(pectin lyase) PL1_4 Pectin + + + 1
NRRL3_9810 |pgxA PGX(exo-polygalacturonase) GH28 Pectin + 0
NRRL3_4153 |pelF PEL(pectin lyase) PL1_4 Pectin + 0
NRRL3_1606 |abfA |ABF (a-arabinofuranosidase) GH51 + 0
NRRL3_3768 |abfB ABF(a-arabinofuranosidase) GH54 - CBM42 + + + 2
NRRL3_6387 |abfE |ABF(a-arabinofuranosidase) GH51 + + 0
NRRL3_7700 [agdA AGD(a-glucosidase) GH31 Starch + + 0
NRRL3_8300 |glaA GLA(glucoamylase) GH15 - CBM20 Starch + + 0
NRRL3_9875 |aamA AMY (a-amylase) GH13_1- CBM20 [Starch + + 1
NRRL3_1787 |egIC XG-EGL(xyloglucanase) GH74 - CBM1 + + + + 2
NRRL3_1918* |xegA XG-EGL(xyloglucanase) GH12 + + + + (]
NRRL3_268 |axIA/iylS |AXL(a-xylosidase) GH31 + + 0
NRRL3_7089 |(afcA AFC(a-L-fucosidase) GH95 + 0
NRRL3_7382 |- AFC(a-L-fucosidase) GH95 + 0
NRRL3_819 |eg/A XG-EGL(xyloglucanase) GH12 + + + + + + 1
NRRL3_8380 |- XG-EGL GH12 + + 1
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Table S4. Abbreviations of enzyme activities presented in this study.

Data S1A. Gene expression analysis of A. niger control (CBS 138852) and AclrB cultivated
on 2 mM cellobiose (CB) or 2 mM mannobiose (MB) for 1 h. Transporter, metabolic, CAZy and
transcription factor-encoding genes are indicated in different colors. Genes with an expression value of FPKM
< 20 were considered low and are indicated in red. Upregulated genes (fold change > 2) are indicated in blue,
while downregulated genes (fold change < 0.5) are indicated in orange. Statistically significant changes (padj
< 0.01) are indicated in green.

Data S1B. Expression analysis of CAZy-encoding genes in A. niger control (CBS 138852) and
AclrB strain. Samples originate from 1% soybean hulls (SBH) or 1% guar gum (GG) cultures, incubated
for 2, 8 or 24 h. Genes with an expression value of FPKM < 20 were considered low and are indicated in red.
Upregulated genes (fold change > 2) are indicated in blue, while downregulated genes (fold change < 0.5) are
indicated in orange. Statistically significant changes (padj < 0.01) are indicated in green.

Data S1C. Expression analysis of transcription factor genes in A. niger control (CBS 138852)
and AclrB strain. Samples originate from 1% soybean hulls (SBH) or 1% guar gum (GG) cultures, incubated
for 2, 8 or 24 h. Genes with an expression value of FPKM < 20 were considered low and are indicated in red.
Downregulated genes (fold change < 0.5) are indicated in orange. Statistically significant changes (padj <
0.01) are indicated in green.

Data S1D. Expression analysis of transporter genes in A. niger control (CBS 138852) and AclrB
strain. Samples originate from 1% soybean hulls (SBH) or 1% guar gum (GG) cultures, incubated for 2,
8 or 24 h. Genes with an expression value of FPKM < 20 were considered low and are indicated in red.
Upregulated genes (fold change > 2) are indicated in blue, while downregulated genes (fold change < 0.5) are
indicated in orange. Statistically significant changes (padj < 0.01) are indicated in green.

Data S1E. Expression analysis of metabolic genes in A. niger control (CBS 138852) and AclrB
strain. Samples originate from 1% soybean hulls (SBH) or 1% guar gum (GG) cultures, incubated for 2,
8 or 24 h. Genes with an expression value of FPKM < 20 were considered low and are indicated in red.
Upregulated genes (fold change > 2) are indicated in blue, while downregulated genes (fold change < 0.5) are
indicated in orange. Statistically significant changes (padj < 0.01) are indicated in green.
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The amylolytic regulator AmyR of Aspergillus niger is involved in sucrose and inulin utilization in a culture
condition-dependent manner

Abstract

Filamentous fungi degrade complex plant material to its monomeric building blocks, which
have many biotechnological applications. Transcription factors (TFs) play a key role in
plant biomass degradation in fungi, and several TFs have been reported to control the
degradation of polysaccharides such as xylan, cellulose, pectin or starch. However, little
is known about the interaction of TFs in the regulation of polysaccharide degradation.
Here, we studied the regulators of storage-polysaccharide utilization, AmyR and InuR
in Aspergillus niger. So far, independent regulatory functions have been assigned to
these two TFs. AmyR has been described to control starch degradation, while InuR was
identified as a regulator involved in the utilization of sucrose and inulin. In our study,
the phenotypes of the parental A. niger, and AamyR, AinuR and AamyRAinuR mutants
were evaluated on media containing sucrose or inulin as carbon source to evaluate the
roles of AmyR and InuR in substrate utilization. Moreover, each strain was grown on
both solid and liquid media to assess the effect of culture conditions on their roles. In
correlation with previous studies, our data shows that AmyR has a minor contribution
to sucrose and inulin utilization when InuR is active. In contrast, growth evaluation and
transcriptomic data showed that the deletion of amyR in the AinuR background strain
resulted in further reduced growth ability on both substrates, mainly evidenced by data
originated from solid plate cultures.
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1. Introduction

Plant biomass is the most abundant carbon source on Earth and is mainly composed
of polysaccharides (cellulose, hemicellulose and pectin), the aromatic compound lignin,
and storage polymers, such as starch and inulin'2. Filamentous fungi secrete a wide
arsenal of hydrolytic and oxidative enzymes that degrade these complex plant materials,
and many of these enzymes have been commercially used for several industrial and
biotechnological applications, such as pulp and paper, food and feed, detergents, textile
and biofuel and biochemicals®*.

Starch degradation is performed by the production of amylolytic enzymes, (e.g.,
a-amylases, glucoamylases, and a-glucosidases) which are mainly classified into the
families of glycoside hydrolases GH13, GH15 and GH31 (www.cazy.org)®®. Starch
degradation is regulated at the transcriptional level in Aspergillus mainly by the
transcriptional activator AmyR"8, which was the first GAL4-like transcription factor
(TF) identified in filamentous fungi®. The role of AmyR in starch degradation has been
studied in the last decades in many Aspergillus species'®'2, although a broader role of
this regulator was observed in Aspergillus niger®'*-'5. AmyR triggers the production of
amylolytic enzymes due to the presence of starch, maltose or low levels of D-glucose,
which act as inducer compounds®16.'7,

Inulin is another reserve carbohydrate found in plants, especially chicory, dahlia, and
Jerusalem artichoke. Inulin-acting enzymes, such as exo-inulinases, inulin lyases,
and invertases are fructofuranosyl hydrolases that target the -2,1 linkages of inulin
and hydrolyze it into fructose and glucose', and are an important class of industrial
enzymes belonging to family GH32. The production of these enzymes is induced in
the presence of inulin or sucrose, and has been reported to be under the control of a
complex regulatory system?°2?', where the TF InuR plays the most dominant role. InuR
acts as a positive transcriptional activator for the expression of genes involved in the
breakdown of inulin and sucrose and the uptake of inulin-derived compounds, and has
been reported to be closely related to AmyR?. These two regulators share structural
similarities and putative DNA binding sites (CGGN,[C/A]GG)'#?>%, indicating that they
could have originated form the same ancestor gene. Despite these similarities, gene co-
regulation or possible interaction of AmyR and InuR in the regulation of starch or inulin
degradation has not been assessed yet in flamentous fungi.

In this study, we evaluated the influence of the amylolytic TF AmyR on the utilization of
sucrose and inulin in the industrially relevant fungus A. niger. For this, single AamyR
and AinuR deletion mutants, and the double AamyRAinuR deletion mutant were
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obtained using CRISPR/Cas9 genome editing technology?*, and phenotypical and
transcriptomic analyses were performed. It has been previously shown that different
cultivation methods involving the use of solid or liquid medium can highly affect the
expression of genes involved in substrate degradation®. Therefore, we assessed the
genetic response of the analyzed strains to growth on both solid or liquid medium
containing sucrose or inulin as carbon source. Results showed that AmyR contributes
to the utilization of sucrose and inulin, which is represented by the reduced growth and
expression levels of Carbohydrate Active enZyme (CAZyme)-encoding genes when the
fungus was grown on solid substrates.

2. Materials and methods

2.1 Strains, media and growth conditions

Escherichia coli DH5a was grown in Luria-Bertani (LB) medium supplemented with 50
pg/mL ampicillin (Sigma-Aldrich), and was used for plasmid propagation. Aspergillus
niger CBS 1388522¢ was used as a parental strain for construction of the mutants. The
generated A. niger AamyR, AinuR and AamyRAinuR mutants were deposited at the
culture collection of Westerdijk Fungal Biodiversity Institute and the accession numbers
are shown in Table S1.

For strain propagation, A. niger control (CBS 138852), AamyR, AinuR, and AamyRAinuR
strains were cultured in Aspergillus Minimal Medium (MM) or Complete Medium (CM)*
at 30°C supplemented with 1% D-glucose and 1.22 g/L uridine (Sigma-Aldrich). Conidia
were harvested and dispersed in ACES buffer, and their concentration was adjusted
using a haemocytometer.

Growth profiles were carried out using MM containing 25 mM D-glucose, D-fructose,
sucrose or maltose (Sigma-Aldrich), and 1% soluble starch (Difco™) or inulin from
chicory (Sigma-Aldrich). All media were supplemented with 1.22 g/L uridine. Plates
were inoculated in duplicates with 2 uL containing 10® conidia and incubated at 30°C
for up to 8 days. Plates were evaluated daily by visual inspection, taking into account
colony diameter, mycelial density and sporulation. Pictures were taken after 8 days of
incubation.
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2.2 DNA construction and fungal transformation

The ANEp8-Cas9-pyrG plasmid, which contains the autonomous fungal replicating
elementAMA1, pyrG as selection marker, cas9 gene, and the single guide RNA (sgRNA)
expression construct under the control of the proline transfer ribonucleic acid (tRNAP™")
promoter was used in this study for the generation of fungal transformants?*. The design
of the 20 bp protospacers for the sgRNAs were performed using the Geneious 11.04.4
software tool (https://www.geneious.com). The sgRNA sequences (Table S2) with no
predicted off-targets and the highest on-target activity were designed based on the
experimentally determined predictive model described by Doench et al.%. The sgRNAs
for each gene were obtained to delete amyR (gene ID: NRRL3_07701) and inuR (gene
ID: NRRL3_03593) genes in A. niger CBS 138852. All repair templates (RTs), which
include the 5’ and 3’ flanking regions of the target genes, were obtained by fusion-PCR
using Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific). Two PCR
fragments were generated by amplifying approx. 750 bp upstream and downstream
of the inuR and amyR genes. These two fragments were fused together in a second
nested PCR obtaining ~1,200 bp RT, and were subsequently purified (Wizard® SV Gel
and PCR Clean-Up System, Promega).

CRISPR/Cas9 plasmid construction, generation of A. niger protoplasts, transformation
and purification of putative mutant strains were performed as previously described?® with
minor modifications®. Mutant strains were confirmed by PCR through the amplification
of target gene region (Figure 1). All primers used in this study are shown in Table S2 and
were ordered from Integrated DNA Technologies (IDT, Leuven, Belgium).

2.3 Mycelial dry weight measurement

For mycelial dry weight measurements from liquid cultures, 10° conidia/mL of A.
niger control, AamyR, AinuR, and AamyRAinuR strains were inoculated in 50 mL MM
containing 1% sucrose or 1% inulin supplemented with 1.22 g/L uridine and 5 mM
D-fructose to facilitate fungal germination. Triplicate samples were harvested after
48 h of cultivation in a rotary shaker at 250 rpm and 30°C. For mycelial dry weight
measurements from solid cultures, 10° conidia of A. niger control, AamyR, AinuR, and
AamyRAinuR strains were inoculated between two sterile Polycarbonate Track Etched
(PCTE) membrane layers (disc diameter 76 mm, PCTE 0.1 um, Poretics™, GVS Filter
Technology) on MM plates containing 1% inulin or 1% sucrose as carbon source
supplemented with 1.22 g/L uridine and 5 mM D-fructose. Non-sporulated mycelia were
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collected after 7 days of growth at 30°C. Plates were inoculated in technical duplicates.
Mycelia obtained from both liquid and solid cultures were subsequently dried o/n at
60°C and weighed. Statistical significance was determined using Student’s two-tailed
type Il t-test. Significance was regarded as p < 0.05.

2.4 SDS-PAGE assays

For protein production analysis, 10% spores/mL of A. niger control, AamyR, AinuR, and
AamyRAinuR mutant strains were pre-cultured in 250 mL CM containing 2% D-xylose
and 1.22 g/L uridine for 16 h at 30°C and 250 rpm. Mycelia (~2.5 g wet weight) were
transferred to 50 mL MM containing 1% inulin or 1% soluble starch as carbon source,
supplemented with 1.22 g/L uridine, and were incubated at 30°C and 250 rpm. Supernatant
samples were taken after 4, 8, 24 and 32 h of incubation and were centrifuged for 10
min at 13,500 x g. Ten yL of each sample were analyzed by SDS-PAGE using SDS-
12% polyacrylamide gels calibrated with PageRuler™ Plus Prestained Protein Ladder
(Thermo Scientific) and silver stained®'. Samples were evaluated in biological triplicates.

2.5 Transcriptomics analysis

For transcriptomics analysis of liquid culture samples, freshly harvested spores from A.
niger control, AamyR, AinuR and AamyRAinuR strains were pre-grown in 250 mL CM
containing 2% D-xylose and 1.22 g/L uridine for 16 h at 30°C in a rotary shaker at 250
rom. After 16 hours, mycelia were harvested by filtration through sterile cheesecloth,
rinsed with MM, and approximately 2.5 g (wet weight) mycelium was transferred into 50
mL MM containing 1% sucrose, and 1% inulin. Mycelia were collected after 2 and 8 h
and were frozen in liquid nitrogen followed by storage at -80°C. Samples were collected
in triplicates.

For transcriptomics analysis of solid culture samples, 10° conidia of A. niger control,
AamyR, AinuR and AamyRAinuR strains were inoculated and pre-grown between two
sterile Polycarbonate Track Etched (PCTE) membrane layers (disc diameter 76 mm,
PCTE 0.1 ym, Poretics™, GVS Filter Technology) on MM plates containing 1% soybean
hulls as carbon source supplemented with 1.22 g/L uridine at 30°C. After two days, the
polycarbonate membrane layers containing the fungal mycelia were transferred to MM
plates containing 1% sucrose or 1% inulin supplemented with 1.22 g/L uridine and were
grown at 30°C. Mycelia were collected after 40 h of growth and were frozen in liquid
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nitrogen and stored at -80°C. Samples were collected in triplicates.

The transcriptomes of the control and deletion mutant strains cultivated for 2 and 8 h in
liquid cultures and cultivated for 40 h on solid cultures were analyzed using RNA-seq.
RNA isolation, purification and quantitative and qualitative evaluation was performed as
previously described?2.

For liquid culture samples, purification of mMRNA isolated from liquid cultures, synthesis
of cDNA library and sequencing were performed at the Joint Genome Institute (JGI,
US). RNA sequencing, processing of raw fastq reads and evaluation of raw gene counts
were performed as previously reported®?. Three biological replicates were generated
and sequenced for each condition. Two individual samples were discarded from further
analysis due to their poor sequencing quality.

For solid culture samples, the preparation of libraries and sequencing of the mRNA
along with the analysis of the raw data was performed by GenomeScan B.V. The
RNA concentration and integrity was assessed using the Agilent Fragment Analyzer
system. Subsequently, samples were processed using the NEBNext Ultra Il directional
RNA library prep kit for lllumina®. Briefly, rRNA was depleted from total RNA using
the rRNA depletion kit (Qiagen fast select). After fragmentation of the rRNA reduced
RNA, a cDNA synthesis was performed. This was used for ligation with the sequencing
adapters and PCR amplification of the resulting product. The quality and yield after
sample preparation was measured with the Fragment Analyzer. The size of the resulting
products was consistent with the expected size distribution (a broad peak between 300-
500 bp). Clustering and DNA sequencing were performed using lllumina Novaseq6000
in line with manufacturer’s instructions at the concentration of 1.1nM of DNA. Image
analysis, base calling and the quality check were conducted using the lllumina data
analysis pipeline RTAv3.4.4 and Bclfastqv2.20. Data obtained from the Novaseq6000 in
fastq format was used as source for the downstream data analysis. Alignment of fastq
reads was performed using STAR2 version v2.5.4b against the A. niger NRRL3. The
aligned reads are stored in a sorted BAM format and indexed using Samtools v1.95.
For the removal of PCR duplicates within the library Picard MarkDuplicates v2.23.66
was used. This tool uses UMI sequences (BAM tags) to determine which sequences
are PCR duplicates and therefore should be removed. The deduplicated mapped reads
are counted for each exonic feature in the reference GTF annotation using htseqg-count
v0.11.07.

In all cases, differentially expressed genes (DEGs) were detected using the R package
DESeq2%. Transcripts were considered differentially expressed if the DESeq2 fold
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change of the deletion mutant strains compared to the control was > 2 (upregulation) or
< 0.5 (downregulation) and padj < 0.01 and at least one of the two expression values
was FPKM > 20.

3. Results and discussion

3.1 Generation of AamyR, AinuR and AamyRAinuR strains in
A. niger in a single transformation event

In order to obtain A. niger AamyR, AinuR and AamyRAinuR strains, one single
transformation event was performed in which 1 pg of each ANEp8-Cas9-pyrG plasmid
carrying sgRNAs targeting amyR or inuR were mixed and co-transformed together with
5 ug of each corresponding RT into A. niger protoplasts as previously described®°. Forty-
eight transformants were obtained and ten were further isolated to monosporic culture
and screened (data not shown). From these ten, six transformant colonies were positive
AamyR mutants, two were positive AinuR mutants and two were double AamyRAinuR
mutants (Figure 1). All single and combinatorial mutants were identified by PCR using
specific primers designed to differentiate between mutants and the control strain (Table
S2) (Figure 1).

3.2 The amylolytic transcription factor AmyR influences
growth of A. niger on sucrose and inulin

To evaluate the contribution of the amylolytic transcriptional activator AmyR and the
inulinolytic transcriptional activator InuR to the utilization of storage polysaccharides
and related carbon sources in A. niger, the parental, AamyR, AinuR and the double
AamyRAIinuR strains were grown on agar plates containing different carbon sources.
These include D-glucose, D-fructose, sucrose, maltose, starch and inulin (Figure 2).
Growth on D-glucose and D-fructose was similar for all strains, whereas AinuR showed
reduced growth on sucrose and inulin compared to the control and AamyR strains, as
previously reported?.
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Figure 1. Molecular characterization of A. niger AamyR, AinuR and AamyRAinuR strains. A)
Schematic representation of the genomic DNA (gDNA) reparation by homologous recombination after Cas9
cleavage in the amyR (blue arrow) and inuR (orange arrow) genes. The ~600 bp complementary arms to
the upstream and downstream regions of amyR and inuR are represented in green. To generate the repair
template (RT), a 20-bp sequence (red) was introduced for complementarity during fusion PCR. Black arrows
represent the primers used for RT generation and transformant confirmation by PCR (Table S2). Figure is
not drawn to scale. B) PCR confirmation of the A. niger AamyR, AinuR and AamyRAinuR strains. Low bands
(~1.2 kb) correspond to the deletants in amyR (top panel) and inuR (bottom panel), while upper bands (~ 3.5
and 4.2 kb) correspond to the parental strain (CBS 138852). Primer pairs used are located as indicated in

the figure.

No carbon source [
25 mM D-glucose |

25 mM D-fructose

Figure 2. Growth profile of
A. niger control, AamyR,
AinuR and AamyRAinuR
strains grown on starch,
inulin and other related
carbon sources after 8 days
of incubation at 30°C.
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These results confirm the involvement of InuR in sucrose and inulin utilization in A.
niger. The AamyRAinuR double deletion strain showed a further reduced growth on
both sucrose and inulin compared to the single AinuR strain, suggesting a role for AmyR
in sucrose and inulin utilization in A. niger. Finally, the growth on maltose and starch
was only affected by the deletion of amyR, confirming the dominant role of AmyR in
starch utilization'®'",

3.3 The contribution of AmyR to sucrose and inulin utilization
depends on the cultivation method

In order to evaluate the influence of AmyR on growth on sucrose and inulin, the mycelial
weight of A. niger control, AamyR, AinuR and the double AamyRAInuR strains was
evaluated from both liquid and solid medium cultures (Figure 3). In both cases, the
media contained either 1% sucrose or 1% inulin as carbon source, supplemented with
5 mM D-fructose to facilitate initial germination of fungal spores.

In case of liquid cultures, the deletion of inuR resulted in substantially decreased
mycelial weight in liquid minimal medium (MM) containing 1% sucrose or inulin
(average weight of 32 mg and 15 mg, respectively) compared to the control (117 mg
and 107 mg, respectively) after 48 h of growth (p < 0.05) (Figure 3A). In contrast, dry
weight measurement results from liquid cultures did not suggest the contribution of
AmyR to growth on sucrose or inulin, indicated by the comparable growth of AamyR and
AamyRAInuR strains to that of the control and AinuR strain, respectively (Figure 3A).
SDS-PAGE analysis showed reduced protein production by the AamyRAinuR mutant
compared to the AinuR strain after 24 h and 32 h of growth (Figure S1). However,
the mycelial weight measurement results indicate that most proteins abolished by the
additional deletion of amyR in the AinuR strain are most likely not essential for inulin
utilization.

In contrast to the dry weight measurements from liquid cultures, when the tested strains
were cultivated on solid MM plates containing the same carbon sources, the AamyR
strain showed reduced mycelial weight on both substrates compared to the control
(Figure 3B). Moreover, the AamyRAinuR double deletion strain showed significantly
reduced mycelial weight on sucrose compared to the AinuR deletion strain (2.5 mg
compared to 27 mg) (p < 0.05), which correlates with our growth profile results (Figure
2). Despite the reduced mycelial weight of the AamyR strain compared to the control
on inulin (Figure 3B) and the reduced growth of AamyRAinuR mutant compared to
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the AinuR strain on the same substrate (Figure 2), the mycelial weight of AinuR and
AamyRAinuR was comparable on inulin in both culture conditions. Overall, these results
indicate that AmyR can highly influence the growth on sucrose, and to a lesser extent on
inulin, but only when the fungus is cultivated on solid medium.
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Figure 3. Mycelial dry weight measurement results of A. niger control (CBS 138852), AamyR,
AinuR and AamyRAinuR strains grown on liquid (A) or solid (B) medium containing 1%
sucrose or inulin as carbon source, supplemented with 1.22 g/L uridine and 5 mM D-fructose
to facilitate initial germination of fungal conidia. Liquid culture triplicates were incubated for 48 h in
a rotary shaker at 250 rpm and 30°C, while solid medium cultures were grown for 7 days at 30 °C. Samples
showing different letters (a-d) show statistically significant differences among the strains (Student’s two-tailed
type Il t-test, p < 0.05).
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3.4 A. niger AmyR shows minor involvement in the regulation
of gene expression when the fungus is cultivated in liquid
medium containing sucrose and inulin

In order to evaluate the regulatory mechanisms playing a role in sucrose and inulin
utilization on a molecular level, transcriptome data were generated from liquid cultures
of A. niger control, AamyR, AinuR and AamyRAinuR strains. Samples were taken after
2 and 8 h of growth following a transfer from CM medium containing 2% D-xylose to MM
medium containing 1% sucrose or 1% inulin.

Considering the genome wide response of the fungus, the deletion of either amyR, inuR
or both resulted in relatively low number of DEGs compared to the control on inulin
after 2 h of growth (Figure 4A, right panel). However, after 8 h of growth, the double
deletion of amyR and inuR resulted in the upregulation of 1995 and downregulation of
1955 genes, which can mostly be associated with the deletion of inuR, showing the
upregulation and downregulation of 1575 and 1708 genes, respectively (Figure 4A, right
panel). In contrast to the inulin culture, the number of DEGs was substantially higher
at both timepoints when grown on medium containing 1% sucrose as carbon source,
mainly affected by the deletion of inuR (Figure 4A, left panel). Interestingly, the AinuR
strain showed a higher number of downregulated genes compared to the AamyRAinuR
strain after 8 h of cultivation on sucrose, highlighting the major role of InuR for the
utilization of this substrate (Figure 4A, left panel). The large number of upregulated
genes in the inuR single and double deletion mutants correlates with the upregulation
of major regulators involved in plant biomass degradation (Figure S2). The upregulation
of major TF genes might be an indirect consequence of the downregulation of creA,
resulting in a carbon catabolite de-repressed phenotype® (Figure S2). The relation of
AmyR and InuR to the utilization of sucrose and inulin on a genetic level correlates with
the mycelial weight results originated form liquid cultures (Figure 3A).

The expression level of a set of 481 plant biomass utilization-related genes, including
217 CAZy, 168 metabolic genes, 85 transporter genes and 11 TF genes were analyzed
to evaluate the involvement of both TFs in the regulation of sucrose and inulin utilization
in more detail. As expected, the deletion of inuR showed the highest individual impact
on CAZy, metabolic and transporter gene expression when grown on the test substrates
(Figure 4B, Data S1). A large number of plant biomass utilization-related genes were
downregulated in the AinuR mutant at both timepoints on sucrose (72 and 71 genes
after 2 and 8 h of growth, respectively), while only 8 and 46 genes were downregulated
on inulin after 2 and 8 h of growth, respectively (Figure 4B).
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Figure 4. Differentially expressed genes in A. niger AamyR, AinuR and AamyRAinuR liquid
cultures compared to the control (CBS 138852). Samples originated from 2 or 8 h of growth in liquid
minimal medium containing 1% sucrose or 1% inulin as carbon source. A) Total number of differentially
expressed genes across the genome. Up- or downregulated genes are indicated by different tints of grey.
B) Downregulated plant biomass degradation-related genes. CAZy, metabolic and transporter genes are
indicated by different tints of grey.
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Therefore, only a small set of 7 genes were affected by the deletion of inuR in all four
experimental conditions (Table 1). These include sucA/suct, inuE/inu1, mstH and the
putative maltose/sucrose transporter gene NRRL3 3594%, Based on our results, an
additional putative inositol/fructose transporter gene, NRRL3_11807% is controlled by
InuR. The expression of ag/C was substantially reduced in the AinuR strain compared
to the control. Similarly, reduced expression of ag/C was observed in a AamyR mutant
when grown on maltose and starch, but not on D-glucose?®, which was shown to induce
the expression of ag/C®. Therefore, in our study, the reduced expression of ag/C in
the AinuR strain is most likely related to impaired release of D-glucose from sucrose
and inulin. However, the dependency of ag/C expression on D-glucose concentration is
not fully understood. The previously reported InuR dependent genes, inuA and sucB?,
were also downregulated in the AinuR mutant. However, these genes showed generally
low expression (FPKM < 20) in the control strain and were excluded from the analysis
(Data S1). Interestingly, the invertase gene sucC, was not expressed in any of our test
conditions (Table S1).

Table 1. Downregulated genes in the A. niger AinuR strain compared to the control. The genes
included in this table were downregulated on both media containing 1% sucrose or 1% inulin after 2 and 8 h
of growth. Gene expression is represented as FPKM values.

Sucrose Inulin
Gene Gene
Description Reference  control  AinuR ~ Control  AinuR  Control ~ AinuR ~ Control  AinuR
e hame 2h 2h 8h 8h 2h 2h 8h 8h
SuUC
A/ (invertase/B-
NRRL3 11752 S/ (invertase/p ® 1606.86 025 21888 279 22034 046 31210 048
suct fructo-
furanosidase)
putative
NRRL3_11807 - inositol/fructose 36 376.17 51.66 235.22 22.16 572.01 21.53 1474.03 29.23
transporter
AGL (a-1,4-
NRRL3_16 aglC (a X 37 469.34 25.44 30.79 3.91 127.91 15.72 97.77 2.57
galactosidase)
inuE/  INX (exo-
NRRL3 3087  MUE/ INX(ex ® 171650 178 16876  2.85 135205 141 168195  1.24
inut inulinase)
putative
It
NRRL3_3504 - maltose/ ® 84.89 1234 4487 397 13479 996 17026 579
sucrose
transporter
high-affinity
NRRL3_3879 mstH  glucose 39 662.64 60.42 579.77 17.08 385.58 49.97 1084.95 10.74
transporter
pyruvate
NRRL3_8073 pycA 40 5154.97 379.43 650.99 292.21 638.20 303.34 1705.41 524.39
carboxylase
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In contrast, the deletion of amyR did not indicate substantial contribution of AmyR to
sucrose and inulin utilization when cultivated in liquid medium. Only three CAZy and six
metabolic genes were downregulated in the AamyR strain compared to the control after
2 h of growth on sucrose, while an even lower number of genes were downregulated in
any of the other conditions. Moreover, only a putative glycerol proton symporter gene
(NRRL3_817)* showed significantly decreased expression in the AamyRAinuR strain
compared to the AinuR single deletion mutant after 8 h of growth on inulin.

Overall, gene expression data generated from liquid cultures did not support an
involvement of AmyR in sucrose or inulin utilization at the transcriptomic level, which
correlates with the mycelial dry weight measurement results from liquid cultures (Figure
3A).

3.5 AmyR contributes to the utilization of sucrose and inulin
when A. niger is grown on solid media

In order to explain the impact of amyR deletion on growth on solid medium containing
1% sucrose or 1% inulin as carbon source (Figure 2, Figure 3B), transcriptomics data
were generated from A. niger control, AamyR, AinuR and AamyRAinuR cultures grown
on solid agar plates.

Genome wide transcriptome results indicated that AmyR has a minimal impact on
sucrose and inulin utilization in the presence of InuR. This was evidenced by the low
number of DEGs in the AamyR strain compared to the control on both substrates (Figure
5A). However, the additional deletion of amyR in the AinuR background strain resulted in
further upregulation and downregulation of 554 and 381 genes on sucrose, respectively
(Figure 5A). In total, 31 plant biomass utilization-related genes, including 13 CAZy, 14
metabolic and 4 transporter genes, were downregulated in the double deletion strain
compared to AinuR on sucrose. In contrast, a very small number of genes showed
downregulation in the double deletion strain compared to the AinuR on inulin (Figure
5B), which can be associated with the very low expression of amyR (3.83 FPKM) in
the AinuR strain on inulin (Data S2). Moreover, mycelial weight measurements did not
indicate either significant difference between the AinuR and AamyRAinuR strains on
inulin (Figure 3).
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The involvement of AmyR in sucrose and inulin utilization is most likely mediated
through the regulation of a-glucosidase activity. This activity has been reported to
play a role in sucrose utilization*'** and can be involved in the removal of terminal
a-D-linked glucose units from inulin. A previous study indicated that the expression of
a-glucosidase-encoding genes agdA and agdB was reduced when amyR was deleted?.
In contrast, our results showed increased expression of agdB in the AamyRAinuR
strain compared to the control when grown on solid sucrose and inulin containing
medium. In fact, agdB was the highest expressed CAZy gene in the AamyRAinuR strain
cultivated on both solid carbon sources, correlating with previous observations that the
expression of this gene is not AmyR dependent'. However, the expression of agdA was
significantly downregulated in both AamyR and AamyRAinuR deletion strains compared
to the control when cultivated on solid medium containing sucrose or inulin as carbon
source. Moreover, the deletion of inuR resulted in the upregulation of agdA compared
to the control (302.13 FPKM compared to 68.86 FPKM, respectively) (Data S2) on solid
medium containing sucrose, most likely to compensate for the reduced expression of
invertase-encoding genes (eg., sucA and sucB)*. Therefore, the additional deletion of
amyR in the AinuR strain, and the subsequent downregulation of agdA (15.13 FPKM)
(Data S2) could explain the significant growth reduction of the AamyRAinuR strain
compared to AinuR on sucrose (Figure 2 and Figure 3B).

Interestingly, on solid medium, the putative endo-arabinanase encoding gene abnC was
among the highest expressed CAZy genes in the AinuR and AamyRAinuR strains grown
on inulin, as well as in the AamyRAinuR strain grown on sucrose, but not in the AinuR
strain grown on the same substrate. The high expression of this gene could be associated
with stress or starvation, as it was also observed to show high expression values (along
with the putative exo-galactanase encoding gene NRRL3_10498 and the putative endo-
arabinanase encoding gene NRRL3 _3855) on a complex crude substrate, sugar beet
pulp, when the utilization of major components was blocked by the deletion of key TFs?2.
In contrast, in liquid cultures, besides abnC, both NRRL3 10498 and NRRL3 3855
were the highest expressed CAZy genes in the AinuR and AamyRAinuR strains when
grown on sucrose or inulin for 8 h. This indicates signs of stress or starvation in liquid
medium, even in the AinuR strain that retains the amyR gene. This data further supports
some involvement of AmyR in the utilization of sucrose and inulin in liquid media and its
role in the utilization of sucrose on solid plate cultures.
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4. Conclusions

In conclusion, the analysis of data originated from liquid culture samples indicated no
involvement of AmyR in sucrose and inulin utilization. However, growth profiling, analysis
of mycelial dry weight and transcriptome data originated from solid medium cultures
indicated substantial involvement of AmyR in the regulation of sucrose utilization, as
well as in the regulation of inulin utilization to a limited extent. Our data show that the
amylolytic regulator AmyR is partially involved in the utilization of sucrose and inulin
in A. niger, by controlling the expression of a-glucosidase genes. In particular, the
expression of the AmyR-dependent gene agdA correlates with the ability of A. niger to
grow on sucrose and inulin when the major inulinolytic regulator, InuR, is deleted. In
contrast, agdB does not show an AmyR dependent expression, and the residual growth
of AamyRAinuR strain observed on sucrose and inulin could be associated with the
activity of AgdB.

Overall, these results show that submerged cultures, which are most often used in
laboratory and industrial setups do not always reflect the role of TFs in the natural growth
conditions of the fungus, which is rather represented by growth on solid substrates?.

Data availability

The raw RNAseq data originated from liquid culture samples were deposited at the
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data are available in the main text or in the supplementary files.
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Figure S1. Protein production analysis of A. niger parental, AamyR, AinuR and AamyRAinuR
strains. SDS-PAGE analysis of the cell-free supernatants after 4, 8, 24 and 32 h of growth on MM + 1% inulin.
Ten L of supernatant were loaded per well. Three biological samples are shown per strain. M: PageRuler™
Plus Prestained Protein Ladder (Thermo Scientific).
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Figure S2. Hierarchical clustering of transcription factor genes in A. niger control (CBS
138852) and AamyR, AinuR and AamyRAinuR deletion mutants. Data originated from 2 and 8 h of
culturing in 1% sucrose (A) or 1% inulin (B) liquid minimal medium. Downregulated genes (fold change < 0.5;
padj < 0.01) in the deletion mutants compared to the control are indicated by a downward arrow. Upregulated
genes (fold change > 2; padj < 0.01) are indicated by an upward arrow. The analyzed genes include the
genes encoding the carbon catabolite repressor CreA, the (hemi-)cellulolytic regulators CIrA and CIrB, the
xylanolytic regulator XInR, the arabinanolytic regulator AraR, the amylolytic regulator AmyR, the inulinolytic
regulator InuR, the regulator of L-rhamnose utilization RhaR, the regulator of D-galactose utilization GalX and
the activator and repressor of D-galacturonic acid utilization GaaR and GaaX, respectively.
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Table S1. A. niger strains used in this study.
Table S2. Primers used in this study.

Data S1. Gene expression values of CAZy-, metabolic-, sugar transporter- and transcription
factor genes of A. niger control (CBS 138852) and deletion mutant strains cultivated in liquid
medium. Samples originate from 1% sucrose or inulin liquid cultures after 2 and 8 h of growth. Gene
expression values of FPKM < 20 were considered low, and are indicated in red. Upregulated genes (fold
change > 2) are indicated in blue, while downregulated genes (fold change < 0.5) are indicated in orange.
Statistically significant changes (padj < 0.01) are indicated in green.

Data S2. Gene expression values of CAZy-, metabolic-, sugar transporter- and transcription
factor genes of A. niger control (CBS 138852) and deletion mutant strains cultivated on solid
medium. Samples originate from 1% sucrose or inulin solid cultures after 40 h of growth. Gene expression
values of FPKM < 20 were considered low, and are indicated in red. Upregulated genes (fold change > 2)
are indicated in blue, while downregulated genes (fold change < 0.5) are indicated in orange. Statistically
significant changes (padj < 0.01) are indicated in green.
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Blocking utilization of major plant biomass polysaccharides leads Aspergillus niger towards utilization of
minor components

Abstract

Fungi produce awide range of enzymes that allow them to grow on diverse plant biomass.
Wheat bran is a low-cost substrate with high potential for biotechnological applications.
It mainly contains cellulose and (arabino)xylan, as well as starch, proteins, lipids and
lignin to a lesser extent. In this study, we dissected the regulatory network governing
wheat bran degradation in Aspergillus niger to assess the relative contribution of the
regulators to utilization of this plant biomass substrate. Deletion of genes encoding
transcription factors involved in (hemi-)cellulose utilization (XInR, AraR, CIrA and CIrB)
individually and in combination significantly reduced production of polysaccharide-
degrading enzymes, but retained substantial growth on wheat bran. Proteomic analysis
suggested the ability of A. niger to grow on other carbon components, such as starch,
which was confirmed by the additional deletion of the amylolytic regulator AmyR. Growth
was further reduced but not impaired, indicating that other minor components provide
sufficient energy for residual growth, displaying the flexibility of A. niger, and likely
other fungi, in carbon utilization. Better understanding of the complexity and flexibility
of fungal regulatory networks will facilitate the generation of more efficient fungal cell
factories that use plant biomass as a substrate.
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1. Introduction

Plant biomass is the most abundant carbon source on earth and mainly consists of plant
cell wall polymers (cellulose, hemicellulose, pectin and lignin)'. In nature, filamentous
fungi such as Aspergillus niger, secrete large arrays of hydrolytic enzymes to degrade
the aforementioned polymers. Fungal Carbohydrate-Active enZymes (CAZymes) are
used in many industrial sectors for the production of pulp and paper, food and feed,
detergents, textiles, and biofuels and biochemicals?. In this context, low-cost substrates
are of high interest for many biotechnological applications. Wheat bran, a byproduct of
wheat milling, is the outer layer of wheat grain. It contains mainly cellulose and (arabino)
xylan, as can be seen from the total sugar composition (Table S1). Wheat bran also
contains starch, mixed-linked -D-glucans (including xyloglucan), as well as lignin,
proteins and small amounts of lipids®~.

Transcriptional regulators or transcription factors play a key role in plant biomass
degradation by fungi as they control the expression and synthesis of enzymes required
for the degradation of different plant polysaccharides. The regulation system governed
by transcription factors ensures that only those enzymes that are needed to degrade
the prevalent substrate will be produced to avoid wasting energy on the production
of enzymes that are not required. Several fungal transcription factors involved in
plant biomass degradation have been identified across industrial species and fungal
reference species®.

The first identified (hemi-)cellulolytic regulator is the A. niger XInR®, and orthologs have
been widely studied in other fungal species?, highlighting the key role of XInR in the
process of cellulose and hemicellulose utilization in fungi. Another hemicellulolytic
transcription factor, AraR, controls the arabinanolytic system', and together with XInR,
controls the Pentose Catabolic Pathway. The Pentose Catabolic Pathway is required
for the utilization of two main monomeric sugars found in hemicellulose, D-xylose and
L-arabinose™. In addition, the transcription factors CLR-1 and CLR-2 were identified
in Neurospora crassa, and their corresponding gene deletions were shown to result in
impaired cellulolytic activities'?. So far, CLR-1 homologs showing conserved function
have been reported for A. nidulans' and A. niger'® (CIrA) while CLR-2 homologs
have been described for multiple species, such as A. nidulans™, A. niger'®, Penicillium
oxalicum' (CIrB), and A. oryzae'®. In A. oryzae the CLR-2 homolog was initially described
as a regulator of B-mannan utilization (ManR)', but whether it regulates mannan
degradation in the other species has not been reported. In A. niger, CIrB plays a more
dominant role in cellulose utilization compared to CIrA and both appear to be influenced
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by XInR'™. Considering the composition of wheat bran, these four transcription factors
are expected to have a major role in its degradation by A. niger, while other transcription
factors, such as AmyR" (starch degradation), InuR™ (inulin degradation) and GaaR?,
RhaR?' and GalX?? (pectin degradation) are expected to have no or a minor role.

In this study, we used CRISPR/Cas9 genome editing® to generate a set of A. niger
XInR-AraR-CIrA-CIrB deletion mutants to assess their relative contribution to wheat
bran degradation and identify other possible transcription factors involved in wheat
bran utilization by this fungus. The characterization of mutants carrying individual and
combinatorial deletions of key transcription factors helps our understanding of the
complexity of the regulatory network involved in the degradation of a crude substrate.
This knowledge can facilitate the generation of fungal cell factories with high industrial
applicability that use plant biomass as a substrate, through targeted engineering of the
regulatory system.

2. Results

2.1 Combined deletion of xInR, araR, clrA, and clrB does not
impair growth on wheat bran

Null mutations of XInR, AraR and CIrA reduced growth on wheat bran, while CIrB-null
resulted in improved growth on this substrate (Figure 1A and Figure S1). The improved
growth of CIrB-null was also observed in strains with combined deletions, but mainly
when XInR remained present in the strain. All other combined deletion strains showed
reduced growth on wheat bran, but significant residual growth remained in all strains. To
better capture the influence of the different regulators, growth was also evaluated on the
polymeric and monomeric components of wheat bran (Figure 1A). Deletion of xInR or
clrB abolished growth on cellulose, while AclrA and AaraR mutants displayed reduced
and normal growth, respectively. Only deletion of xInR affected growth on xylan. While
growth on xyloglucan was mostly affected by deletion of araR or xInR, AclrB mutant only
showed growth reduction at initial stages of growth on this substrate, and growth ability
was recovered over time. No growth reduction was observed for any of the mutants on
maltose, starch or cellobiose. Growth differences on D-xylose and L-arabinose reflect
the influence of XInR and AraR on sugar catabolism. Growth on D-xylose was abolished
in strains in which both xInR and araR were deleted, but only minor differential growth
phenotype compared to the control strain was observed in the other mutant strains.
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Figure 1. Characterization of A. niger XInR-AraR-ClrA-ClrB deletion mutants. A) Growth profile of
A. niger control and mutant strains. Selected carbon sources were inoculated with 1000 spores and incubated
at 30°C for up to 14 days. B) Extracellular protein production of A. niger control and mutant strains analysed
by SDS-PAGE after 24 h of growth on 3% wheat bran liquid cultures. Supernatant samples are analysed
in biological duplicates. C) Enzyme activity assays of the supernatants from A. niger control and mutant
strains. The control, and the single-, double-, triple- and quadruple mutant strains are indicated by different
colours. Data represents the normalized mean values of biological duplicates and technical triplicates and the
standard deviation. The absorbance values measured at 405 nm and the amount of released p-nitrophenol
by each strain are described in Data S1B. BGL = (3-1,4-D-glucosidase, BXL = -1,4-xylosidase, ABF = a-L-
arabinofuranosidase, AGL = a-1,4-D-galactosidase, LAC = 3-1,4-D-galactosidase activity. Letters (a-h) are
shown to explain the statistical differences between samples within each specific enzyme assay. Samples
showing different letters show significant differences among the strains within each specific enzyme assay,
while samples sharing the same letters show no statistically significant differences (ANOVA and Tukey’s HDS
test, p < 0.05).
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Growth on L-arabinose was reduced in strains where araR was deleted, with a stronger
reduction if xInR was also absent.

Overall, the strongest growth reduction on wheat bran was observed in strains in
which xInR was deleted in combination with any of the other three transcription factors,
especially after six days of growth. The AxInRAaraRAclrAAclrB mutant (subsequently
referred to as quadruple mutant) was still able to grow on wheat bran, suggesting that it
was utilizing other components, such as starch, a polysaccharide on which none of the
tested mutants showed any differential phenotype.

2.2 The relative growth reduction in the mutant strains
correlates with reduced levels of key enzyme activities

To evaluate whether the reduced growth shown by the different mutant strains (Figure
1A) could be a direct result of reduced enzyme levels, samples of liquid cultures
containing 3% wheat bran were first analysed by SDS-PAGE (Figure 1B). Deletion of
xInR had the highest impact on the overall amount of extracellular protein, although in
the quadruple mutant protein production was further reduced. Activity measurements
for some relevant enzymes (Data S1A and B) were performed to provide insight into the
molecular mechanisms that underlie the phenotypic differences between the strains.

The abolished growth of AxInR on cellulose (Figure 1A) correlates with the reduction
of B-1,4-D-glucosidase (BGL) activity in this strain (Figure 1C), which is crucial for the
release of D-glucose units from cellulose or cellobiose. However, both growth and BGL
activity suggest that CIrA is less involved in the regulation of cellulose degradation
than XInR in A. niger. The abolished growth on cellulose of AclrB cannot be explained
by reduced BGL activity, suggesting that CIrB is more important for the production of
cellobiohydrolases and/or endoglucanases', which are crucial enzymes for degradation
of cellulose.

D-xylose release from (arabino)xylan, which is one of the most abundant polysaccharides
of wheat bran, is catalyzed by B-xylosidase (BXL) activity. Similar to BGL activity,
deletion of xInR showed the highest impact on BXL activity (Figure 1C), which was
abolished in every mutant in which x/InR was deleted, and which correlated with minimal
growth of these strains on beechwood xylan (Figure 1A). Contrary to AxInR, the AaraR
and AclrB mutants showed increased levels of BXL activity. However, they did not lead
to increased growth on beechwood xylan. The BGL and BXL activities together with
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the growth profile indicate that XInR has the overall highest impact on cellulose and
(arabino)xylan utilization.

There was limited correlation between the levels of three accessory enzymes (a-L-
arabinofuranosidase (ABF), a-1,4-D-galactosidase (AGL) and (3-1,4-D-galactosidase
(LAC), involved in degradation of several plant cell wall polysaccharides) (Figure 1C) and
the growth profile (Figure 1A). However, the deletion mutants revealed which regulators
affect the production of these enzymes. The AclrA mutant did not show decreased ABF
or AGL activity while the reduction in LAC activity was minimal, indicating that CIrA does
not control the genes encoding ABF, AGL or LAC. The AxInR mutant showed significant
reduction of AGL and LAC activities while deletion of araR significantly reduced ABF
activity, and to a lesser extent LAC activity. Finally, deletion of cIrB resulted in decreased
AGL activity. Overall, the results confirm the regulatory roles of XInR, AraR and CIrB on
the genes encoding the enzymes responsible for the three accessory activities. Since
these enzymatic activities are important for the degradation of xyloglucan, the results
match the reduced ability of AxInR and AaraR to grow on xyloglucan. As ABF, AGL
and LAC activities contribute to growth on xylan, the abolished enzymatic activities in
the quadruple mutant in all tested conditions correlate with the abolished growth on
cellulose, xylan and xyloglucan.

2.3 Residual starch in wheat bran explains the limited growth
reduction of the quadruple mutant

Proteomics of selected samples (Data S2A) was performed to analyse in-depth the
effect of regulatory mutations on the production of individual plant biomass degrading
enzymes in A. niger. The high amount of (arabino)xylan in wheat bran resulted in an
abundant presence of xylanolytic enzymes (24.24% of the total exoproteome), as well
as cellulolytic enzymes (four cellobiohydrolases and one BGL) in the control strain
(Figure 2 and Data S2B). However, the two detected endoglucanases represented only
0.16% (EgIC) and 0.03% (EgIB) (Data S2A) of the total exoproteome, correlating with
the slow utilization of cellulose by A. niger.

Of the single deletion mutants, Ax/InR showed the highest reduction of CAZymes, which
is also reflected in the SDS-PAGE (Figure 1B) and enzyme activity (Figure 1C) results.
The minimal presence of (arabino)xylan-acting enzymes in the AxInR supernatant was
similar to that of the quadruple mutant, although the overall abundance of cellulolytic
enzymes was further reduced in the supernatant of the quadruple mutant (Figure 2).
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Binding site analysis confirmed that all genes encoding the (arabino)xylanolytic and
cellulolytic enzymes affected by the deletion of x/nR carry the putative XInR binding site
(GGCTAR)?* in their promoter sequences (Table S2), thus suggesting direct regulation
of these genes by XInR.

The quadruple deletion mutant showed further reduction of the abundance of two
cellobiohydrolases (CbhA and CbhB), an acetylesterase (HaeA) and a [-1,4-endo-
mannanase (ManA) compared to the AxInR mutant (Figure 2, Cluster C). These are
all enzymes that are negatively affected by the single c/rB deletion, and the promoter
sequences of their corresponding genes contain the putative CIrB binding site
(CGGN,CCG)* (Table S2), suggesting direct regulation of the Cluster C genes by CIrB.
A broad range of other CAZymes showed highly reduced abundance or absence in
the quadruple mutant compared to any single deletion strain (Figure 2), suggesting
combinatorial control by the studied transcription factors.

Amylases are the major carbohydrate-degrading enzymes present in the secretome
of the quadruple mutant (Data S2B). This correlates with the residual starch present
in washed wheat bran (as described in Experimental procedures), which most likely
has become the only carbohydrate that supports the growth of the quadruple mutant.
Furthermore, nearly all proteins in the quadruple mutant decrease in abundance by at
least two-fold (Figure 2). Among the few proteins that do not decrease in abundance
in the quadruple mutant are three enzymes: a glucoamylase (GlaA), an a-amylase
(AamA) and an a-1,4-galactosidase (AglA). The genes encoding these enzymes have
been shown to be regulated by the amylolytic transcription factor AmyR26-%°,

To confirm the use of starch by the quadruple mutant during growth on wheat bran,
we deleted amyR in this mutant and compared the phenotype to that of the quadruple
mutant and the single AamyR strain. The AamyR mutant was unable to grow on maltose
and starch, but growth on wheat bran was not affected after 6, 8 or 10 days (Figure 3A).
This unaltered growth suggests that the starch found in washed wheat bran contributes
little to the growth of A. niger. In contrast, the AxInRAaraRAclrAAclrBAamyR mutant
(subsequently referred to as quintuple mutant) showed a strong growth reduction
compared to the quadruple mutant (Figure S2). This result demonstrates the ability of A.
niger to maintain growth by using the starch component of wheat bran, when utilization
of the major carbohydrates is blocked.
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Figure 3. Characterization of A. niger AxInRAaraRAclrAAclrBAamyR quintuple
deletion mutant. A) Growth profile of A. niger control, and the AamyR, AxInRAaraRAclrAAcirB and
AxinRAaraRAclrAAcirBAamyR mutant strains. Selected carbon sources were inoculated with 1000 spores
and incubated at 30°C for up to 10 days. B) Extracellular protein production of A. niger control and mutant
strains analysed by SDS-PAGE. The 24 h supernatant samples originated from 3% wheat bran liquid
cultures. Samples are analysed in biological duplicates. C) Hierarchical clustering of CAZymes found in
the supernatant of A. niger control, and the AxInRAaraRAclrAAcirB and AxIinRAaraRAclrAAclrBAamyR
mutant strains. Colour code represents averaged percentage value of the total exoproteome of duplicate
samples. Black rectangles indicate CAZymes from the AxInRAaraRAclrAAcirBAamyR mutant showing >2-
fold decrease in abundance compared to the AxInRAaraRAcIrAAcirB strain. Regulation of genes is based
on previous studies'?1333-36.19.2026-31 ' Enzyme abbreviations are described in Table S7. Enzymes with a lower
abundance than 0.1% of the total proteome in each sample were excluded from the analysis. The complete
exoproteome data are described in Data S3A.
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2.4 The AxInRAaraRAclrAAclrBAamyR mutant utilizes
residual carbon sources found in wheat bran

Proteomics of liquid culture samples of the control, quadruple and quintuple mutant
strains (Data S3A) demonstrated a further reduced protein production profile for the
quintuple mutant compared to the quadruple strain due to the lack of amylolytic enzymes
(Figure 3B). The CAZyme content in the supernatant of the quintuple mutant (Figure
3C) reduced to only 1.61% of the total exoproteome (Data S3B). The abundance of the
single detected glucoamylase (GlaA) and the major a-amylase (AamA) in the quadruple
mutant, was strongly reduced when amyR was deleted (Figure 3C, cluster B). Moreover,
the a-1,4-D-glucosidase (AGD) and glucoamylase (GLA) activities involved in starch
degradation have also been abolished in the quintuple mutant (Figure S3 and Data
S1C). These results suggest that the quintuple mutant is not able to utilize starch, which
explains the observed further growth reduction on wheat bran (Figure 3A). Interestingly,
the abundance of an arabinoxylan arabinofuranohydrolase (AxhA) (Figure 3C, cluster
A) and an exo-inulinase (Inuk) (Figure 3C, cluster C) was also reduced more than two-
fold compared to the quadruple strain. Analyses of the promoter sequences of their
corresponding genes revealed that both carry putative AmyR binding sites (Table S2),
suggesting that AmyR may be involved in the regulation of these genes.

The exoproteome of the quintuple mutant contained a broad range of proteases that
were also observed in the other strains. Due to the reduction in CAZymes, the relative
contribution of non-CAZy proteins increased from 40.32% in the control strain to 98.39%
in the quintuple strain (Figure 4A and Data S3B). In all strains, the most abundant non-
CAZy protein was the aspartic peptidase PepA (Figure 4B, cluster A), which is under
the control of the transcription factor PrtT, a specific regulator of extracellular proteases
in filamentous fungi®. PepA, together with other PrtT-controlled proteases (ProtA,
ProtB, NRRL3_11745, PepF, NRRL3_05873 and NRRL3_01776)% showed a relative
increase in abundance when the (hemi-)cellulolytic enzyme system was impaired in
the quadruple and quintuple deletion mutants (Figure 4B and Data S2A and S3A).
Lipases were detected in very small amounts, with only one (Lipanl) detected at > 0.1%
abundance in all strains (Figure 4B, cluster B), but with its highest abundance (1.95%)
in the quintuple mutant (Data S3A). Overall, these results indicate that the quintuple
mutant utilizes proteins as a primary carbon source when carbohydrate catabolism is
blocked.
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Figure 4. Analysis of non-CAZyme proteins produced by A. niger control and deletion mutant
strains. A) Relative composition of the total exoproteome of A. niger control and mutant strain supernatant
samples originated from 3% wheat bran after 24 h. CAZymes are classified based on the substrates they
are acting on and are indicated by different colours. Percentage values represent the abundance of non-
CAZymes indicated by grey colour. The relative amount of proteins produced by each culture indicated on
top has been determined by RCDC kit assay after protein precipitation. The represented samples originated
from two independent proteomics analyses (Data S2B and S3B) indicated by different background colours.
B) Hierarchical clustering of non-CAZymes found in the supernatant samples of A. niger control and mutant
strains. The colour code represents the averaged percentage value of the total exoproteome of duplicates.
Proteins under putative control of PrtT are indicated by (*). Y = predicted secretion; M = putative secretion.
Proteins with abundance lower than 0.1% of the total proteome in each sample were excluded from the
analysis. The control, AxInR, AaraR, AclrA, AclrB and AxInRAaraRAcIrAAcirB represent the results from the
first proteomics data set (Data S2A), while the AxInRAaraRAcIrAAcirBAamyR data originates from the second
proteomics data set (Data S3A).
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Predicted intracellular proteins are found in very low quantities in the secretome (Table
S3), indicating that cell lysis did not occur extensively in our experiments. Moreover, the
most abundant putative intracellular protein (NRRL3 _00054) was also present in the
control strain (Table S3), suggesting that the presence of some intracellular proteins
may be linked to the experimental condition rather than to the deletion of transcription
factors and poor growth. Overall, these results suggest that A. niger is able to survive on
wheat bran after 24 h incubation by utilizing residual carbon sources when carbohydrate
utilization is blocked.

3. Discussion

The development of the biobased economy stimulates the development of fungal
cell factories that convert plant biomass directly to desired products (e.g. proteins,
metabolites)***°. However, efficient design of such cell factories requires a detailed
understanding of the plant biomass conversion process at the molecular level*'. Plant
biomass conversion by fungi involves a complex system of transcriptional regulation to
ensure that the right set of enzymes is produced that matches the composition of the
prevailing substrate. Several transcription factors involved in this process have been
identified in fungi, but their relative contribution, interaction and possible overlapping
sets of target genes have not been addressed in detail. In the present study, we
addressed these questions by performing an in-depth analysis of the contribution of five
transcriptional activators involved in the conversion of wheat bran by A. niger.

Exoproteomics of the control strain revealed that A. niger degrades mainly (arabino)
xylan. However, enzymes involved in cellulose degradation do not appear to be
coordinately regulated under growth on wheat bran. Exo-acting cellulases are
abundantly represented in the exoproteome while endoglucanases, which are essential
for efficient degradation of cellulose, are detected at low levels. The low abundance of
endoglucanases together with the slow growth on cellulose suggest that cellulose is not
a preferred carbon source for A. niger. Lower levels of amylolytic and xyloglucanolytic
enzymes were also detected, which correlates with the levels of xyloglucan and residual
starch reported to be present in washed wheat bran®#2. In addition, mannanolytic,
pectinolytic and inulinolytic enzymes were detected, but based on the composition of
wheat bran it is not likely that galactomannan, pectin and inulin are present in sufficient
amounts to support growth of A. niger. Nevertheless, trace amounts of the inducers
for the production of these enzymes may explain their presence, as it was observed
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previously in a transcriptome study of A. niger during growth on guar gum*. Although,
the composition of fungal CAZymes is largely dependent on the incubation time and
substrate composition, comparable results have been reported for the thermophilic
fungus Myceliophthora thermophila. A combined transcriptome and exoproteome study
showed mainly the upregulation of genes involved in xylan and cellulose degradation
when grown on monocot plants**. However, a comparative study of the Trichoderma
reesei and Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) secretomes
showed differences in the major enzymatic activities*®. The supernatant derived from
the T. cellulolyticus showed higher cellulolytic activity and D-glucose yield from plant
biomass, while the T. reesei supernatant showed higher xylanolytic activities than the
supernatant of T. cellulolyticus. Among others, the synergistic action of xylanases and
cellulases is necessary for the enzymatic degradation of various agricultural residues or
woody substrates for biofuel production“®.

The phenotype and exoproteome of the A. niger AxInR mutant confirmed previous
studies that reported impaired growth on cellulose, (arabino)xylan and xyloglucan®3',
Enzyme activity assays and proteomics studies also demonstrate the key role of XInR in
the utilization of (arabino)xylan and cellulose when grown on wheat bran, and correlate
with a previous study that showed that colonization of wheat bran is mainly dependent
on XInR*". However, it cannot be excluded that the phenotype of Ax/nR includes reduced
production of CIrA and CIrB targets, as it has previously been shown that XInR affects
the expression of the genes encoding these two transcription factors'. Therefore, we
conclude that XInR is the dominant transcription factor for wheat bran utilization by A.
niger.

Deletion of clrA has low impact on growth on the tested substrates. The significantly
reduced BGL and BXL activity in the single AclrA mutant suggests that CIrA at least
in part regulates the expression of their encoding genes. However, no reduced BGL
activity was observed in the AaraRAclIrA, AclrAAcirB and AaraRAcIrAAcirB, while BXL
activity was increased in the AclrAAcirB and AaraRAclrAAcirB mutants. We therefore
conclude that BGL and BXL encoding genes are controlled by XInR and CIrA in A.
niger. Furthermore, our proteomics results show that the main BGL (BglA) and BXL
(XInD/XynD) proteins are controlled by XInR and CIrA, and XInR appears to be able
to compensate for the loss of clrA in the absence of araR and/or cIrB. These results
suggest that under our conditions CIrA is not crucial for the regulation of BGL and BXL
activities, but is part of the interactive regulatory system during growth of A. niger on
wheat bran.
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CIrB has been previously described to have a more extensive role in the breakdown
of wheat straw compared to CIrA in A. niger', in particular with respect to cellulose
utilization. Our proteomics and enzyme assay data suggest that this transcription factor
controls the expression of cellobiohydrolases and endoglucanases, but not BGL genes,
which is supported by the presence of a putative CIrB binding site?® in the promoters of
endoglucanases and cellobiohydrolases, but not in the analysed BGL gene (bg/A). The
impaired cellobiohydrolase and endoglucanase production shown by the ciIrB deletion
mutant correlates with its inability to grow on cellulose.

The growth profile, enzyme activity assays and exoproteomics of the single AaraR
mutant suggest a minor role for AraR in the degradation of wheat bran. Deletion of
araR only abolished growth on xyloglucan, which is a minor component of wheat bran.
The abolished growth can possibly be explained by the reduced ability of AaraR to
remove L-arabinose units from the sidechains decorating xyloglucan, most likely
mediated by AbfB*. This observation correlates with our results, showing highly reduced
ABF activity, as well as reduced abundance of both analysed ABFs (AbfA and AbfB)
in the exoproteome of AaraR strain. All the genes encoding these proteins have been
previously described to be under the control of AraR™.

In general, results from growth profiing and enzyme assays show that gene co-
regulation is required for efficient utilization of crude substrates. Gene co-regulation
by three different transcription factors (AraR, GaaR, RhaR) has already been reported
in the case of sugar beet pectin degradation in A. niger®®. In our case, none of the
single (hemi-)cellulolytic transcription factor deletion mutants showed strong reduction
of growth on wheat bran, but a small reduction was observed in the quadruple mutant,
indicating the integrative roles of the studied transcription factors in the overall utilization
of this crude substrate. In addition, alternative carbon components of wheat bran
can still largely compensate for the inability to use (hemi-)cellulose, as evidenced by
the abundant growth of the quadruple mutant on wheat bran. The high abundance
of CAZymes involved in starch utilization in the quadruple mutant's exoproteome
suggested that utilization of starch was responsible for growth. Degradation of starch
is mainly controlled by AmyR*. The strong reduction in growth of the quintuple mutant
indicated that starch is responsible for the only small growth reduction of the quadruple
mutant, a phenotype confirmed by the exoproteome data of the quintuple mutant, where
the major amylolytic enzymes (GlaA and AamA) were strongly reduced. Moreover,
the deletion of amyR also resulted in the decreased abundance of the arabinoxylan
arabinofuranohydrolase AxhA and the exo-inulinase InuE in the quintuple mutant.
These results suggest that the role of AmyR extends beyond starch degradation, as
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it was also shown to control the expression of BGL, AGL and LAC encoding genes?.
However, the quintuple mutant still showed residual growth on wheat bran, most likely
by utilizing proteins and other minor components, such as lipids*®%°. The presence
of these components is supported by the slightly upregulated protease profile of the
quintuple mutant and the presence of lipases in the exoproteome. The most abundant
proteases found in the exoproteome are controlled by PrtT?7-*, The major PrtT-controlled
proteases (PepA, ProtA and ProtB) represented a relatively higher proportion of the
exoproteome in the quintuple mutant compared to the quadruple deletion strain. This
may be caused by the deletion of AmyR, as AmyR has been shown to have a negative
effect on PrtT-mediated regulation of protease gene expression®. However, it is more
likely that this is a starvation-induced response as utilization of the major carbohydrates
is blocked in the quintuple mutant and starvation has been shown to cause protease
induction®'. The adaptation to the utilization of proteins in the quintuple mutant could
be further investigated by the additional deletion of PrtT. This approach could possibly
result in the abolishment of the residual growth that we observed on wheat bran. Finally,
our data also shows that while the quintuple mutant grows slower, it is apparently still
highly viable as cell lysis did not occur extensively in this mutant, as indicated by a low
total abundance of putative intracellular proteins. This supports our hypothesis that A.
niger is able to utilize proteins and other minor non-carbohydrate components present
in wheat bran when the utilization of every major and even residual carbohydrates is
blocked in this species.

To our knowledge, this is the first study in which the major transcription factors involved
in the regulation of CAZymes required for the utilization of the major (and most
abundant) polysaccharides found in a crude substrate have been studied in combination
in a fungus. Using combinatorial deletions, we achieved a strain showing a minimal
CAZyme content in its extracellular proteome, making it unlikely for the fungus to be
able to utilize any carbohydrates found in wheat bran. By analysing the single deletion
mutants, we observed an unexpected growth improvement on wheat bran for the cIrB
deletion mutant, which correlated with an increased abundance of the main xylanolytic
enzymes and improved BXL activity. This may be the result of a (in)direct interaction
with XInR, through a currently unknown mechanism. Moreover, we observed a transient
growth of Ac/rB and an abolished growth of AaraR mutant on xyloglucan. The deficient
growth may correlate with the overall decreased abundance of xyloglucanases and
a-L-arabinofuranosidases in the AclrB and AaraR strains, respectively. These results
provide leads for additional studies into the interaction between individual transcription
factors.
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In conclusion, our study shows hierarchical roles of the studied transcription factors
with respect to (hemi-)cellulose utilization in wheat bran. XInR is the major transcription
factor for this substrate in A. niger, followed by CIrB, while CIrA and AraR show lower
contribution (Figure 5A). The apparent minor role of AraR, CIrA and CIrB in wheat bran
utilization is most likely due to their overall low contribution to (arabino)xylan degradation.
We also conclude that AmyR contributes to the degradation of wheat bran components

(Figure 5B).
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Figure 5. Hierarchy of transcriptional activators involved in wheat bran utilization. A)
Contribution of XInR, AraR, CIrA and CIrB in the regulation of major (hemi-)cellulases when grown on wheat
bran. The (hemi-)cellulose specific CAZymes that showed >2-fold decrease in abundance in the exoproteome
of single deletion mutants (Data S2A) are indicated under the control of the corresponding transcription
factor. The regulated enzymes include one a-L-arabinofuranosidase (AbfA), one B-D-arabinoxylan
arabinofuranohydrolase (AxhA), two acetyl esterases (HaeA and HaeD), one feruloyl esterase (FaeA), two
a-1,4-galactosidases (AgIB and AgID), one [-1,4-endo-mannanase (ManA), one (-1,6-endo-glucanase
(EngA), one B-1,4-endo-glucanase (EgIC), four cellobiohydrolases (CbhA, CbhB, CbhC and CbhD), one
-1,4-glucosidase (BglA), one xyloglucanase (EglA), one (-1,4-endo-xylanase (XInC/XynA) and two (3-1,4-
xylosidases (XInD/XynD and GbgA). B) Relative contribution of XInR, AraR, CIrA, CIrB and AmyR towards
utilization of wheat bran. Contribution of each transcription factor is represented by the relative growth
reduction of the corresponding deletion mutants compared to the control. Relative growth has been estimated
after 6 days of incubation at 30°C. No growth difference was observed between biological replicates.
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The hierarchy of all these transcriptional activators with respect to their relevance for
wheat bran degradation may be species dependent and therefore explain the diverse
enzyme sets published for different species during growth on wheat bran or other plant
biomass substrates®-2, This hypothesis is supported by the different roles of CIrA and
CIrB in N. crassa'?, A. nidulans' and A. oryzae'®, compared to A. niger, as well as the
highly diverse set of target genes of XInR in different fungi®. Finally, we show that A.
niger prefers to utilize (arabino)xylan over cellulose, but it is also able to maintain growth
through the utilization of residual polysaccharides or even proteins and other minor
components when the utilization of the main polysaccharides is blocked. These results
highlight that A. niger possesses a flexible regulatory system, facilitating the use of most
of the components found in plant biomass, which is likely a major reason for its high
suitability for industrial applications.

4. Experimental procedures

4.1 Strains, media and growth conditions

Escherichia coli DH5a was used for plasmid propagation, and was grown in Luria-
Bertani (LB) medium supplemented with 50 ug/mL ampicillin (Sigma Aldrich). Fungal
strains used in this study were derived from the A. niger CBS 138852 (cspA1, pyrG-,
kusA::amdS) strain®*. The generated mutants were deposited at the culture collection of
Westerdijk Fungal Biodiversity Institute under accession numbers indicated in Table S4.
Fungal strains were grown at 30°C on Aspergillus Minimal Medium (MM) or Complete
Medium (CM)%® supplemented with 1% D-glucose and 1.22 g/L uridine (Sigma Aldrich).

Growth profiles were performed using Aspergillus MM containing 25 mM D-glucose/D-
xylose/L-arabinose/maltose (Sigma Aldrich), 25 mM cellobiose (Acros organics) or 1%
cellulose/beechwood xylan/xyloglucan/starch/wheat bran. The wheat bran used in this
study was washed to remove free monosaccharides and a large part of the soluble
starch*2. Washing was performed by autoclaving wheat bran at 5% concentration in
demineralized MilliQ water. After autoclaving, the medium was centrifuged at 1800 x
g for 10 min. The supernatant was removed and the insoluble wheat bran pellet was
resuspended in sterile demineralized MilliQ water. The suspension was centrifuged
again and the final supernatant-free pellet was resuspended in MM with 1% final
concentration for growth profile or 3% final concentration for liquid cultures. All media
were supplemented with 1.22 g/L uridine. All growth profile plates were inoculated in
duplicates with 1000 spores and incubated at 30°C for up to 14 days. Pictures were
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taken after 5, 6, 8, 10 and 14 days of incubation and evaluated by visual inspection,
taking into account colony diameter, mycelial density and sporulation.

For liquid cultures, freshly harvested spores were pre-grown in 250 mL CM containing
2% D-fructose and 1.22 g/L uridine for 16 h at 30°C in a rotary shaker at 250 rpm. After
16 hours, mycelia were harvested by filtration through sterile cheesecloth, rinsed with
MM, and approximately 2.5 g (wet weight) mycelium was transferred into 50 mL MM
containing 3% wheat bran. Supernatant samples were taken after 24 h incubation at
30°C in a rotary shaker at 250 rpm. The samples were centrifuged (20 min, 3220 x g,
4°C) and cell-free supernatant samples were stored at -20°C until further processing.

4.2 Construction of mutant strains

The ANEp8-Cas9-pyrG plasmid?, which contains the autonomous fungal replicating
element AMA1%¢, pyrG as selection marker, cas9 gene and the guide RNA (gRNA)
expression construct under the control of the proline transfer ribonucleic acid (tRNAP™")
promoter, was used in this study.

Selection of guide RNA (gRNA) sequences was performed using the Geneious 11.1.4
software (https://www.geneious.com) based on the methodology described by Doench
and collaborators®. Repair templates, which include the 5’ and 3’ flanking regions of the
target genes, were amplified and fused together using fusion-PCR. Flanking regions
represent 500-1000 bp homologous sequences before and after the target gene’s open
reading frame (ORF).

CRISPR/Cas9 plasmid construction, generation of A. niger protoplasts, transformation
and purification of putative mutant strains was performed as previously described®.
The AxInR, AaraR, AxInRAaraR, as well as the AclrA, AclrB and AclrAAclrB mutants
were obtained by simultaneous double deletions using the A. niger CBS 138852 strain
as background. The AxInR, AaraR and AxInRAaraR mutant strains have been used as
background for further deletion of AclrA and AclirB, resulting in all possible combinations
of deletions. Finally, the amyR gene was deleted in the AxInRAaraRAcIrAAcIrB strain by
performing a single deletion.

Mutant strains have been confirmed by analytical PCR, through the amplification of the
target gene region. All primers used in this study were ordered from Integrated DNA
Technologies, Inc. (IDT, Leuven, Belgium) and are shown in Table S5.
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4.3 SDS-PAGE and enzyme activity assays

Cell-free supernatant samples of 3% wheat bran liquid cultures were harvested after 24
h incubation at 30°C in a rotary shaker at 250 rpm. Twelve pL of supernatant samples
have been mixed with 4 pL loading buffer (10% of 1 M Tris—HCI, pH 6.8; 42% Glycerol,
4% (w/v) SDS; 0.02% (w/v) bromophenol blue; 4% of 14.7 M mercaptoethanol), of which
10 pL aliquots have been analysed by SDS-PAGE as previously described®®. Enzyme
activities were evaluated based on colorimetric p-nitrophenol (oNP) assays. Supernatant
samples (10 pyL) were mixed with 10 pyL 0.1% 4-nitrophenyl B-D-glucopyranoside (for BGL
activity), 0.1% 4-nitrophenyl (3-D-xylopyranoside (for BXL activity), 0.1% 4-nitrophenyl
a-L-arabinofuranoside (for ABF activity), 0.1% 4-nitrophenyl a-D-galactopyranoside
(for AGL activity), 0.1% 4-nitrophenyl p-D-galactopyranoside (for LAC activity), 0.1%
4-nitrophenyl a-D-glucopyranoside (for AGD activity) or 0.1% 4-nitrophenyl maltoside
(for GLA activity) substrates, 50 uL 50 mM NaAc (pH 5) and 30 pL demineralized water
in a final volume of 100 yL. BGL, BXL and LAC activities were measured after 1 h, ABF
activity was measured after 30 min, AGL activity was measured after 15 min, while
AGD and GLA activities were measured after 20 h incubation at 30°C. The reactions
were stopped by the addition of 100 pL of 0.25 M Na,CO, and absorption values
were measured at 405 nm wavelength using FLUOstar OPTIMA (BMG Labtech). All
measurements were performed by using biological duplicates and technical triplicates.

4.4 Statistical analysis

The number of experimental replicates is described in the figure legends. Differences
in enzyme activities were determined using the one-way analysis of variance (ANOVA)
and Tukey’s HSD test (Table S6). Statistical significance was referred for p value <
0.05. Analyses were done using STATGRAPHICS Centurion XVI Version 16.1.17 (www.
statgraphics.com/centurion-xvi).

4.5 Proteomics analysis

Proteins from 500 uL cell-free supernatant aliquots were precipitated by mixing them with
two volumes of -20°C methanol, followed by overnight incubation at -20°C. The protein
solution was centrifuged at 20800 x g, 4°C for 20 min. The supernatant was aspired
and the pellet was washed with 60% cold methanol solution and was resuspended
ina 6 M urea, 100 MM ammonium bicarbonate pH 8 solution. Protein amounts have
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been determined colorimetrically by using the RCDC kit assay (BioRad, Mississauga,
Ontario). Five ug of protein samples of biological duplicates were digested with trypsin
for proteomic analysis as previously described®. Dried peptide digest samples were
solubilized in a solution of 5% acetonitrile, 0.1% formic acid and 4 fmol/uL of trypsin-
digested Bovine Serum Albumin (BSA) (Michrom, Auburn, CA) used as internal standard.
Five yl were analysed by LC-MS/MS using an Easy-LC Il Nano-HPLC system connected
in-line with a Velos LTQ-Orbitrap mass spectrometer (Thermo-Fisher, San Jose, CA).
LC-MS/MS data peptide and protein identification were done using the A. niger NRRL3
protein sequence databases. Protein identification and quantification was performed
using the Proteome Discoverer 2.2 (Thermo-Fisher) precursor ion quantitation workflow.
Normalized individual protein area values were expressed as a fold value of the protein
area value determined for the BSA internal standard. The abundance of proteins has
been analysed using percentage values of the total exoproteome.

Heat maps for proteome data visualization were generated using the “gplots” package
of R software, with the default parameters: “Complete-linkage clustering method and
Euclidean distance”. Proteins with a lower abundance than 0.1% of the total proteome
in each sample, were excluded from the analysis.

4.6 Binding site analysis

Binding site analysis for the target transcription factors was performed using the
RSAT online tool® (http://rsat-tagc.univ-mrs.fr/rsat/dna-pattern_form.cgi). The 1000
bp length promoter sequences upstream of the coding regions of the analysed genes
were obtained from the JGI MycoCosm database (https://genome.jgi.doe.gov/Aspni_
NRRL3_1/Aspni_NRRL3_1.home.html). Binding sites were searched using the “DNA
Pattern Matching” algorithm, with the default parameters of “search on both strands” and
“prevent overlapping matches”. The reported putative binding motifs 5’-GGCTAR-3"%
and 5-CGGNTAAW-3'¢" for XInR, 5-CGGDTAAW-3"" for AraR, 5-CGGN,CCG-3'* for
CIrB and 5-CGGN,CGG-3"® for AmyR were analysed in this study.
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Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE®? partner repository with the dataset identifier PXD023338
and 10.6019/PXD023338 (http://www.ebi.ac.uk/pride/archive/projects/PXD023338). All
other data are available in the main text or in the supplementary files.
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Figure S1. Relative contribution of XInR, AraR, CIrA and ClrB towards utilization of wheat
bran and related substrates. Contribution of each transcription factor is represented by the relative
growth reduction of the corresponding single or multiple deletion mutants compared to the control. Relative
growth has been estimated after 5, 6, 8, 10 and 14 days of incubation at 30°C. No growth difference was
observed between biological replicates.

Figure S2. Relative contribution of AmyR towards utilization of maltose, starch and wheat
bran. Contribution towards utilization of each substrate is represented by the relative growth reduction of
the AamyR strain compared to the control, as well as the growth reduction of AxiInRAaraRAclrAAclrBAamyR
compared to AxInRAaraRAcIrAAcirB. Relative growth has been estimated after 6, 8 and 10 days of incubation
at 30°C. No growth difference was observed between biological replicates.

Figure S3. a-glucosidase (AGD) and glucoamylase (GLA) activity of control,
AxInRAaraRAclrAAclrB and AxlnRAaraRAclrAAclrBAamyR mutant strains. Data represents
the normalized mean values of biological duplicates and technical triplicates and the standard deviation.
Letters (a-c) are shown to explain the statistical differences between samples within each specific enzyme
assay. Samples showing different letters show significant differences among the strains within each specific
enzyme assay (ANOVA and Tukey’s HDS test, p < 0.05).

Table S1. Sugar composition of the wheat bran used in this study. The analysis was performed as
described previously for other plant biomass substrates.

Table S2. Binding site analysis of analysed CAZymes. The position of the binding site is specified with
respect to the transcription start codon. The orientation of binding sites is represented by F (forward strand)
or R (reverse strand).

Table S3. Putative intracellular proteins found in WB liquid culture supernatants. Prediction
of secretion was performed based on WoLF PSORT and Phobius protein localization and signal peptide
prediction tools. Values represent the percentage of the total extracellular proteome. The proteins which were
not detected in the samples are marked in grey cells.

Table S4. Aspergillus niger strains used in this study.

Table S5. Primers used in this study. Homology flanks are highlighted in red.

Table S6. Summary of the ANOVA analysis for each enzymatic assay.
Table S7. Enzyme abbreviations used in this study.

Data S1. Enzymatic activities measured in this study. A) Enzymatic activities and their substrates.
The substrates present in wheat bran are highlighted in bold. B) Enzyme assay results. Statistical analysis
was performed using the converted (nmol/min/mL) values, while the visualization (Figure 1C) was performed
using the normalized mean and standard deviation (SD) values. C) a-glucosidase (AGD) and glucoamylase
(GLA) activity assay results. Statistical analysis was performed using the converted (nmol/min/mL) values,
while the visualization (Figure S3) was performed using the normalized mean and standard deviation (SD)
values.
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Data S2. Extracellular proteome of A. niger control and AxInR, AaraR, AclrA, AclrB and
AxInRAaraRAclrAAclrB mutant strains. A) Proteomics results of A. niger control and AxInR, AaraR,
AclrA, AcIrB and AxInRAaraRAclrAAcirB mutant strains. Protein percentage values, which are < 0.1% are
highlighted in red. Proteins, which show < 0.1% average value across all strains were excluded from analysis
and are highlighted in grey. B) Extracellular protein composition of control and mutant strains. Values represent
the percentage of the total exoproteome.

Data S3. Extracellular proteome of A. niger control, AxInRAaraRAclrAAclrB and
AxInRAaraRAclrAAclrBAamyR mutant strains. A) Proteomics results of A. niger control,
AxInRAaraRAcIrAAcirB and AxinRAaraRAcIrAAcirBAamyR mutant strains. Protein percentage values, which
are < 0.1% are highlighted in red. Proteins, which show < 0.1% average value across all strains were excluded
from analysis and are highlighted in grey. B) Extracellular protein composition of control and mutant strains.
Values represent the percentage of the total exoproteome.
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Unraveling the regulation of sugar beet pulp utilization in the industrially relevant fungus Aspergillus
niger

Abstract

Efficient utilization of agro-industrial waste, such as sugar beet pulp, is crucial for the
biobased economy. The fungus Aspergillus niger possesses a wide array of enzymes
that degrade complex plant biomass substrates, and several regulators have been
reported to play a role in their production. The role of the regulators GaaR, AraR and
RhaR in sugar beet pectin degradation has previously been reported. However, genetic
regulation of the degradation of sugar beet pulp has not been assessed in detail. In this
study, we generated a set of single and combinatorial deletion mutants targeting the
pectinolytic regulators GaaR, AraR, RhaR and GalX as well as the (hemi-)cellulolytic
regulators XInR and CIrB to address their relative contribution to the utilization of sugar
beet pulp. We show that A. niger has a flexible regulatory network, adapting to the
utilization of (hemi-)cellulose at early timepoints when pectin degradation is impaired.
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1. Introduction

Plant biomass is the most abundant renewable terrestrial resource, and is considered a
valuable raw material for an increasing number of biotechnological applications such as
pulp and paper, food and feed, textiles, detergents, biofuels and biochemicals’. It mainly
consists of plant cell wall polysaccharides (cellulose, hemicellulose, pectin), lignin,
proteins, and storage polysaccharides (starch, inulin, and gums)2. Achieving an efficient
use of plant biomass as feedstock is crucial in the current bio-based economy scenario
of valorizing renewable resources. In this context, low-cost plant biomass substrates
are of high interest.

Sugar beet pulp is the main by-product of industrial sugar beet (Beta vulgaris) processing,
and is currently sold as low-value animal feed. Only in USA, around 30 million tons of
sugar beets are produced annually, generating over 1.5 million tons of sugar beet pulp
as dry residue®. It has been reported that 1 ton of sugar beet yields approximately
150 kg of sugar and 500 kg of wet beet pulp (or 210 kg pressed beet pulp, or 50 kg
dehydrated beet pulp)*. Degradation of sugar beet pulp polymeric carbohydrates into
monosaccharides is a promising step toward increasing the value of this by-product of
the sugar industry. This substrate is especially rich in cellulose (20-24%), hemicellulose
(25-36%) (mainly xyloglucan), and pectin (15-25%)°, of which the structure has been
well-studied’.

Filamentous fungi, particularly ascomycetes and basidiomycetes, are highly efficient
degraders of plant biomass®’. They secrete large amounts or hydrolytic and oxidative
enzymes to efficiently degrade the complex structure of plant material®®. These enzymes
have been catalogued in the Carbohydrate Active enZyme (CAZy) database (www.cazy.
org) in several families and subfamilies according to amino acid sequence similarity and
enzymatic activities'®. Filamentous fungi control the production of plant polysaccharide-
degrading enzymes at the transcriptional level to ensure a space-time balanced and
optimized enzyme production. Transcription factors (TFs) are regulatory proteins that
activate or repress gene expression by specific binding to conserved motifs in the
promoters of their target genes. Several TFs involved in the regulation of plant biomass
utilization have been characterized in fungi'.

Aspergillus niger is a biotechnologically relevant ascomycete with a long history of safe
use for the production of enzymes and metabolites'>'3. This fungus has a great potential
for plant biomass degradation''¢, and is the most commonly used species in industry.
In A. niger, sugar-specific TFs are activated or repressed by the presence of monomeric
sugars or intracellular compounds thereof. The TFs involved in the degradation of the

215



Unraveling the regulation of sugar beet pulp utilization in the industrially relevant fungus Aspergillus
niger

polysaccharides present in sugar beet pulp (cellulose, xyloglucan and pectin) and the
utilization of the resulting monosaccharides are of particular interest for sugar beet
pulp valorization. Three transcriptional activators, the galacturonic acid-responsive
regulator GaaR, the rhamnose-responsive regulator RhaR, and the arabinanolytic
regulator AraR, have already been described in A. niger'™'°, and their co-regulation
for pectin degradation has been studied in this fungus®, with GaaR playing the most
dominant role. D-galactose is particularly present in xyloglucan, pectin and gums
(mainly galacto(gluco)mannans)?'. In A. niger, the galactose-responsive regulator GalX
has been reported to play a key role in D-galactose catabolism via the oxido-reductive
pathway??. Additionally, four other TFs have been reported to be involved in (hemi-)
cellulose degradation in this species: the xylanolytic regulator XInR?3; AraR, which not
only controls pectin and hemicellulose degradation in A. niger®®? but also the Pentose
Catabolic Pathway (PCP) together with XInR?; and the cellulose-responsive regulators
CIrA and CIrB26. However, CIrB plays a more dominant role in the process of cellulose
degradation than CIrA in A. niger'®?, and both have been suggested to be under the
control of XInR?,

The present work aims to study the relative contribution of a set of TFs — GaaR, AraR,
RhaR, GalX, XInR, and CIrB — to the degradation of sugar beet pulp by A. niger. For
this purpose, we generated a combination of single and multiple deletion mutant strains
in these six regulators, and their phenotype and genetic response on sugar beet pulp
were analyzed.

2. Results

2.1 Combined deletion of GaaR, AraR, RhaR, GalX, XInR and
ClrB abolished the growth of A. niger on sugar beet pulp

In order to study whether the six TFs chosen in this work (GaaR, AraR, RhaR, GalX,
XInR, and CIrB) affect A. niger growth on sugar beet pulp, single and multiple deletion
mutants were obtained and their phenotypes on washed sugar beet pulp and related
carbon sources were analyzed (Figure 1). Growth on D-glucose was used as an internal
control and was similar in all strains.

The AclrB mutant and all mutant combinations containing clrB deletion highly reduced A.
niger growth on sugar beet pulp. AaraR, AgaaR, and to a lesser degree ArhaR mutants
showed a slight reduction of growth on sugar beet pulp after 8 days of growth, while
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growth of AxInR and AgalX was comparable to that of the parental strain. Interestingly,
AaraR, AxInR, ArhaR, AgalX and AgaaR showed a similar growth pattern on sugar beet
pulp compared to the reference after 14 days of growth. These results suggest that
from the six TFs used in this study, CIrB is the most dominant regulator for sugar beet
pulp degradation in A. niger solid cultures, likely owing to the high cellulose content
of this crude substrate. Surprisingly, AgaaR did not show a differential phenotype on
sugar beet pulp compared to that of the reference strain at late timepoints, even though
GaaR is the most dominant regulator of pectin, which is one of the main components
of sugar beet pulp. In contrast, the pectin-related mutants AgaaRAaraRArhaR and
AgaaRAaraRArhaRAgalX showed reduced growth ability on sugar beet pulp. Finally,
the sextuple mutant AgaaRAaraRArhaRAgalXAxInRAcIrB almost completely abolished
A. niger's ability to grow on sugar beet pulp and all tested sugar beet pulp-related
carbon sources (except for D-glucose) at all timepoints. In order to reveal the individual
contribution of the different regulators on sugar beet pulp degradation, growth was also
evaluated on the polymeric and monomeric components of this crude substrate (Figure

1),

No carbon source
14 days &8

25 mM D-glucose ff

8 days A%

25 mM L-arabinose [f
8 days |8

25 mM D-xylose /4

8 days

25 mM D-galacturonic acid |
8 days

25 mM L-rhamnose [
8 days |8

1% Cellulose

14 days

1% Beechwood xylan
8 days [N

1% Xyloglucan

14 days

1% Sugar beet pectin [fg
8 days

1% Sugar beet pulp §
6 days

1% Sugar beet pulp F
8 days

1% Sugar beet pulp
14 days

Figure 1. Phenotypic analysis of A. niger reference (CBS 138852) and regulatory mutant strains
grown on sugar beet pulp and related carbon sources for up to 14 days at 30°C.
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No growth was observed for AxInR and AclrB on cellulose, confirming the key role of
XInR and CIrB in cellulose degradation. In addition, AaraR, followed by AxInR, showed
a strongly reduced growth on xyloglucan, the most abundant hemicellulose present in
sugar beet pulp. As expected, AgaaR showed poor growth on pectin and D-galacturonic
acid. Despite D-galactose being an abundant component of pectin, galX deletion did not
significantly affect growth of A. niger on pectin, although its deletion strongly affected
growth on L-arabinose in multiple combinatorial deletion mutants (Figure 1). This would
suggest a possible involvement of GalX in L-arabinose utilization in this fungus, which
is also a major pectin component.

Taking all these results together, abolished growth on sugar beet pulp and all sugar beet
pulp components can only be accomplished with the combinatorial deletion of all TFs of
this study, suggesting that they all play a role in sugar beet pulp utilization.

2.2 AraR plays a major role in the regulation of extracellular
activities in sugar beet pulp liquid cultures

To study the possible correlation between reduced growth ability on sugar beet pulp
shown by the different mutant strains (Figure 1) and protein production levels, fungal
mycelia were transferred to liquid medium containing 1% washed sugar beet pulp,
and cell-free supernatant samples of selected strains grown for 2, 8, and 24 h were
analyzed by SDS-PAGE (Figure S1). No protein production could be detected in any of
the supernatants after 2 h of incubation on sugar beet pulp (data not shown). Deletion
of araR or gaaR had the highest impact on the overall amount of extracellular proteins
produced, which was evident after 8 h of growth. This pattern positively correlates with
the growth reduction of AaraR and AgaaR on sugar beet pulp shown at early timepoints
(Figure 1), which disappears after 14 days of growth. In contrast, deletion of c/rB did
not cause a significant change in the protein production pattern compared to that of
the reference strain, despite the high impact of clrB deletion on growth on sugar beet
pulp (Figure 1). All combinatorial mutants showed a highly reduced ability to produce
extracellular proteins, with the quadruple AgaaRAaraRArhaRAgalX and the sextuple
AgaaRAaraRArhaRAgalXAxInRAclrB mutants showing the same protein production
pattern. However, the aforementioned quadruple mutant still showed residual growth
ability on sugar beet pulp, whereas the growth of the sextuple mutant was abolished
(Figure 1). Assays were performed to evaluate the enzymatic activities present in the
exoproteome of the reference and deletion mutant strains (Figure 2).
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The deletion of xInR and clrB significantly reduced endoxylanase (XLN) and
endoglucanase (EGL) activities, which was also observed for AxInRAclrB. Moreover, the
deletion of clrB had a higher impact on the endogalactanase (GAL), arabinofuranosidase
(ABF) and B-galactosidase (LAC) activities than that of x/nR. These activities contribute
to the degradation of pectin, which is abundantly present in sugar beet pulp. However,
the growth profile results do not indicate a major involvement of CIrB in the degradation
of sugar beet pectin (Figure 1). Deletion of rhaR or galX resulted in overall little or no
change in the measured activities compared to the reference strain. In contrast, the
deletion of araR or gaaR abolished GAL activity, while the AaraR strain also showed
abolished ABF activity. All combinatorial deletion mutants carrying the deletion of
araR (AxInRAaraR, AxInRAaraRAcIrB, AgaaRAaraRArhaRAgalX and AgaaRAaraR
ArhaRAgalXAxInRAclrB) showed abolished ABF and GAL activities, as well as highly
reduced XLN and EGL activities. Interestingly, these strains also showed significantly
increased a-galactosidase (AGL), LAC, a-rhamnosidase (RHA) and B-glucosidase
(BGL) activities. These activities were minimal in the exoproteome of the reference,
AxInRAclIrB and the single deletion strains. These results may indicate a shift toward the
utilization of alternative components of sugar beet pulp by the combinatorial deletion
mutants carrying the deletion of araR.

2.3 Gene expression levels show the preferential use of sugar
beet pulp components by A. niger

Transcriptome analysis of 2, 8, and 24 h liquid culture samples has been performed to
assess the genetic response of A. niger toward the utilization of sugar beet pulp. The
expression profile of CAZy-encoding genes of this fungus showed a significant change
over the time course, indicating the preferential use of sugar beet pulp components at
different timepoints and the adaptation of A. niger to the remaining carbon sources over
time (Figure 3).

The exo-inulinase-encoding gene inuE showed the highest expression level after 2
h (Data S2), most likely as a response to the presence of sucrose, which may still
be present in washed sugar beet pulp. Additionally, sucA, encoding an extracellular
invertase, was among the highest expressed CAZy genes at this timepoint. The high
expression level of these two enzymes at this early timepoint, as well as the minimal/
abolished expression after 8 h and 24 h of growth indicates that A. niger first utilizes
sucrose as a mean of quick recovery after the transfer to sugar beet pulp. Several
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pectinolytic and/or hemicellulolytic genes (eg., abfB, abnA, abfC, axhA, NRRL3 8701
(putative exo-galactanase encoding gene), gbgA, lacA, abfA, lacB, eglA, galA) also
showed high expression levels (FPKM > 500) in the reference strain after 2 h of growth.

A B
70000
60000 Substrate 2h 8h 24h
Pectin 22
§ 50000 Pectin/xylan (esterified) 1 2 3
& 40000 Hemicellulose/pectin 9 11 9
5 - (Arabino)xylan 6 7 8
§ Xylan/galactomannan 5 5 4
£ 30000
H Galactomannan 3 3 4
2 Xyloglucan 5 8 8
3 —
oo Cellulose 9 13 19
Inulin/sucrose 3 1
10000
Starch 10 10 12
o Not annotated 11 8 9
2h 8h 24h Number of genes
Not annotated Starch = Inulin/sucrose = Cellulose
Xyloglucan Galactomannan = Xylan/galactomannan (Arabino)xylan Low High

Hemicellulose/pectin = Pectin/xylan (esterified) = Pectin

Figure 3. Expression of CAZy-encoding genes in the reference strain (CBS 138852). A) Cumulative
expression of genes associated with the degradation of specific substrates after 2 h, 8 h and 24 h of growth in
1% sugar beet pulp liquid cultures. Substrates are shown in the figure legend. B) Number of genes associated
with the degradation of each substrate at individual timepoints. Only genes with an expression value of FPKM
> 20 were considered for this analysis.

Expression analysis of genes involved in the primary sugar metabolic pathways
(D-galacturonic acid pathway (Figure 4A); L-rhamnose pathway (Figure 4B); D-galactose
pathways (Figure 4C); pentose catabolic pathway (PCP) (Figure 4D) and glycolysis
(Figure 4E)) showed that the expression of the PCP genes was the highest at this
stage of growth (Figure 4D). This result correlates with the expected high release of
L-arabinose catalyzed by the aforementioned CAZymes.

The relative expression of pectinolytic and hemicellulolytic (including (arabino)xylanases,
galactomannanases, xyloglucanases) genes was higher after 8 h (Figure 3). The genes
encoding pectinolytic enzymes showed the highest increment in expression (Data S2),
indicating that A. niger mainly utilizes pectin at this timepoint. This is further supported
by the increased expression of genes involved in D-galacturonic acid metabolism (gaaA,
gaaB, gaaC and larA) (Figure 4A), which is the main constituent of the pectin backbone.

The expression level of cellulolytic genes was relatively low after 2 h or 8 h, which
correlates with our observation that cellulose is utilized only at a later stage of growth
(Figure 1). However, the significant decrease in the expression of pectinolytic genes,
as well as the increase in case of cellulolytic genes (eg., cbhB, cbhC, eglA, bgl4, bglA,
eglC, bgIM, NRRL3 3383 (putative lytic polysaccharide monooxygenase (LPMO)) and
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NRRL3_6436 (putative B-glucosidase) (Data S2) after 24 h, indicates a shift toward
cellulose utilization at this timepoint (Figure 3).

Several genes coding for enzymes involved in starch degradation (eg., agdB, glaA,
amyA, agdA, aamA) (Data S2) also showed an overall consistent expression at each
timepoint. However, considering the composition of sugar beet pulp, it was not likely
that the fungus utilized starch for growth at any of the studied timepoints. Most likely
the presence of low levels of D-glucose in the medium induced the production of
the aforementioned starch-degrading enzymes mediated by the amylolytic regulator
AmyR2:28,
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Figure 4. Hierarchical clustering of genes involved in the major primary carbon metabolic
pathways in the A. niger reference (CBS 138852) and selected combinatorial deletion strains.
Gene expression data are presented for the D-galacturonic acid pathway (A), L-rhamnose pathway (B),
the Leloir and oxidoreductive D-galactose pathway (C), Pentose Catabolic Pathway (D) and glycolysis (E).
Dashed lines indicate the connections between different pathways when applicable.
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2.4 The contribution of major TFs toward the degradation of
sugar beet pulp is time dependent

Among the strains of this study, only the strains carrying the deletion of
araR (AaraR, AxInRAaraR, AxInRAaraRAcIrB, AgaaRAaraRArhaRAgalX,
AgaaRAaraRArhaRAgalXAxInRAcIrB) showed a different CAZyme pattern than the
reference strain after 2 h of growth (Figure S2, clusters F and G). However, the reduced
or impaired pectinolytic and hemicellulolytic activities in these deletion mutants did not
result in the upregulation of genes involved in the degradation of other components,
such as cellulose, at this timepoint. Additionally, none of the single or combinatorial TF
deletions resulted in a significant change (fold change > 2 or < 0.5, and padj < 0.01) in
the expression level of inuE and sucA (Figure S2). These results support the primary
utilization of sucrose by each deletion mutant after 2 h of growth.

In contrast, after 8 h and 24 h, several single and combinatorial deletion mutants indicated
substantial alteration in the utilization of sugar beet pulp components. Hierarchical
clustering of the expression of CAZy-encoding genes after 8 h highlighted the important
role of AraR and GaaR in the degradation of sugar beet pulp (Figure 5). Both single
deletions resulted in the downregulation of a wide range of pectinolytic genes (Figure 5,
cluster G). Moreover, the deletion of araR resulted in the downregulation of additional
genes encoding accessory enzymes required for the efficient degradation of pectin
(gbgA, abfB, lacA) (Figure 5, clusters H and I). The gene encoding the repressor of
D-galacturonic acid utilization, GaaX?°, showed high expression in the reference strain
after 8 h of growth, when the fungus was most likely utilizing pectin as primary carbon
source. Both the single and combinatorial araR and gaaR deletion mutants showed the
downregulation of gaaX after 8 h compared to the reference strain (Figure 6). However,
only the mutants carrying the deletion of gaaR showed downregulation of gaaX after 24
h of growth (Figure 6).

Several genes were also upregulated in AaraR and/or AgaaR. Several cellulolytic genes
(eg., cbhB, eglA, eglC, and NRRL3_ 6436 (putative B-glucosidase encoding gene))
(Figure 5, cluster K) were highly expressed when either araR or gaaR was deleted.
Moreover, the B-glucosidase encoding genes bg/M and bgl4, the cellobiohydrolase
encoding genes cbhA and cbhC, as well as the putative LPMO encoding gene
NRRL3_3383 were also upregulated in the araR deletion mutant (Figure 5, clusters J
and K). The majority of these cellulolytic genes (cbhB, cbhC, cbhD, eglA, NRRL3 3383)
showed minimal expression in the reference strain, which correlates with the increased
number of cellulolytic genes expressed in the AaraR and AgaaR mutants (Figure S3).
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Figure 5. Hierarchical clustering of CAZy-encoding genes in the A. niger reference (CBS

138852) and single deletion mutants. Gene expression data originated from 8 to 24 h of growth in 1%
sugar beet pulp liquid cultures. The substrates associated with the corresponding genes are indicated by
different colors. Enzyme activity abbreviations are described in Table S2.
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Moreover, the increased cellulolytic gene expression also correlates with the higher
expression of clrB in AaraR (Figure 6). These results suggest an early switch toward
the utilization of cellulose in the studied deletion mutants. Moreover, a possible shift
toward the utilization of hemicellulose components has been observed in these two
single deletion mutants. Hemicellulose-specific upregulated genes include axeA, xIinB/
xynB, faeA, eglA and egIC (Figure 5, clusters J and K). Overall, the deletion of gaaR
further increased the expression of these genes compared to the deletion of araR, and
resulted in the upregulation of additional (arabino)xylanase encoding genes, such as
xynA, axhA and xInC/xynA (Figure 5, clusters H and I; Figure S3).
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Figure 6. Hierarchical clustering of transcription factor genes in the A. niger reference (CBS
138852) and deletion mutant strains. Gene expression data originated from 8 to 24 h of growth in 1%
sugar beet pulp liquid cultures. Genes that are downregulated compared with the reference (fold change <
0.5; padj < 0.01) are indicated by an asterisk (*). Genes that are upregulated compared with the reference
(fold change > 2; padj < 0.01) are indicated by two asterisks (**).
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After 24 h, the reference strain showed the high expression of several (hemi-)cellulases
(Figure 5, clusters J and K), indicating mainly the utilization of cellulose and xyloglucan
at this stage of growth. Based on the hierarchical clustering of CAZy-encoding genes,
the xInR and cIrB single deletion mutants showed a distinct pattern from that of the
reference strain. In AxInR, a broad range of CAZy genes encoding several (hemi-)
cellulases (Figure 5, clusters H-K), as well as several pectinolytic enzymes, such as
pgaX, pmeC or pgxB (Figure 5, cluster G) were downregulated. Although the deletion of
xInR did not result in the upregulation of any CAZy-encoding genes, several cellulolytic
genes, such as cbhB and bgl4 were the most highly expressed CAZyme genes in this
mutant (Figure 5, clusters J and K; Figure S4). This result may suggest an attempt of
the fungus to use the cellulose present in sugar beet pulp, although the growth profile
showed the inability of Ax/InR to grow on this component (Figure 1).

In contrast, the deletion of clrB resulted in both the downregulation and upregulation of
several CAZy-encoding genes, mainly affecting cellulose utilization (Figure 5, clusters
J and K). Moreover, the expression of the cellulolytic regulator encoding gene clrA was
reduced in the clrB deletion mutant (Figure 6), which may explain (part of) the reduction
of the expression of cellulolytic genes. Additionally, a large number of hemicellulolytic
genes were downregulated in this mutant (Figure 5, clusters H-K), mainly affecting the
utilization of xyloglucan. However, several genes involved in pectin utilization were
upregulated compared to the reference strain (Figure 5, cluster G; Figure S4), indicating
that in contrast to the reference strain, the clrB deletion mutant did not shift to the
utilization of cellulose after 24 h, and it continuously utilized the residual pectin found in
sugar beet pulp for growth.

Based on the hierarchical clustering of CAZyme genes at both 8 and 24 h, the deletion
of galX did not result in differential expression of any of the genes analyzed.

2.5 Combining TF deletions forces A. niger to switch to the
utilization of alternative carbon sources

Transcriptome analysis of combinatorial deletion mutants was assessed to evaluate
the interactions between TFs within the regulatory network governing sugar beet pulp
degradation. The AxInRAcIrB double mutant was primarily expected to have an impact
on cellulose and xyloglucan utilization. This mutant did not show a distinct CAZyme
profile from that of the reference strain after 8 h, as it did not have a significant impact
on the pectinolytic system. Thus, its CAZyme gene expression profile mostly resembles
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that of the reference strain. However, after 24 h, the AxInRAclrB mutant showed a strong
downregulation of major (hemi-)cellulolytic genes (Figure 7, see clusters B, C and F as
examples). Most pectinolytic genes were not affected in this mutant, suggesting that it
mainly utilizes residual pectin for growth, similar to AclrB after 24 h (Figure S4).

All combinatorial deletion mutants except for AxInRAcIrB showed a strong downregulation
of the major pectinolytic genes (Figure 7, clusters D, G, H and 1) after 8 h. However,
several (putative) pectinolytic genes (abnC, NRRL3_10498 (putative exo-galactanase
encoding gene), and NRRL3_3855 (putative endo-arabinanase encoding gene)) (Figure
7, cluster J) were highly upregulated in most combinatorial deletion strains after both 8 h
and 24 h. While most combinatorial deletion mutants showed the upregulation of these
pectinolytic genes, the quadruple deletion strain AgaaRAaraRArhaRAgalX also showed
the upregulation of several cellulolytic genes (bgIM, blg4, NRRL3 9644 (putative
B-glucosidase encoding gene), NRRL3_3383 (putative LPMO encoding gene), cbhB,
and eglA) (Figure 7, clusters B, E and F). All these genes except for bgIM and bgl4,
showed minimal to no expression in the reference strain, indicating that the quadruple
deletion mutant may have switched to the utilization of cellulose after 8 h of growth,
similar to AaraR and AgaaR (Figure 5, Figure S3).

Moreover, all strains, including the reference, showed expression of proteolytic genes
after 8 h of growth (Figure S5), which was higher in mutants carrying the araR deletion.
The aspartic peptidase gene pepA showed the highestincrease in expression in the araR
deletion mutants. The expression of proteolytic genes was, in general, lower at 24 h, with
the exception of AxInRAcIrB, most likely as an alternative for the inability to utilize cellulose
at this timepoint. In contrast, the AxInRAaraRAcIrB mutant showed a low expression of
selected proteolytic genes (Figure S5), as well as an overall strongly downregulated
CAZyme gene profile comparable to that of the AgaaRAaraRArhaRAgalXAxInRAcIrB
mutant (Figure 7). This indicates that both strains are most likely unable to efficiently
utilize any of the sugar beet pulp components after 24 h of growth.
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Figure 7. Hierarchical clustering of CAZy-encoding genes in the A. niger reference (CBS
138852) and combinatorial deletion mutants. Gene expression data originated from 8 to 24 h of
growth in 1% sugar beet pulp liquid cultures. The substrates associated with the corresponding genes are
indicated by different colors. Enzyme activity abbreviations are described in Table S2.
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3. Discussion

In the bio-based economy, it is crucial to understand the fungal regulatory network
governing plant biomass degradation to facilitate the generation of fungal strains with
improved abilities to degrade major plant biomass substrates. In this study, we assessed
the regulatory network of A. niger involved in the degradation of a bulk agro-industrial
waste material, sugar beet pulp. We generated a broad set of single and combinatorial
deletion mutants targeting the pectinolytic regulators GaaR, AraR, RhaR and GalX as
well as the (hemi-)cellulolytic regulators XInR and CIrB to evaluate the degradation of
major sugar beet pulp components.

Sugar beet pulp mainly consists of pectin, cellulose and xyloglucan®, as confirmed by
the sugar composition analysis (Table S1). The process of sugar beet pulp degradation
by A. niger in both solid and liquid cultures has already been reported®®*'. Moreover, the
contribution of three major TFs to the degradation of sugar beet pectin was previously
assessed?®. However, the contribution of the major TFs to the overall degradation of
sugar beet pulp by A. niger has not been reported in detail. Transcriptome data of the
A. niger reference (CBS 138852) strain showed the preferential use of sugar beet pulp
components of this fungus, which correlates with previously reported observations®'.
Our data confirmed that after 2 h, sucrose was the primary carbohydrate of sugar beet
pulp that was utilized by A. niger. The gene showing the overall highest expression level
in all strains at this timepoint was inuE, encoding an exo-inulinase, which has been
reported to be highly expressed in the presence of sucrose*2. However, the expression
of metabolic genes also suggests an early utilization of L-arabinose residues, indicated
by the expression of major PCP genes involved in its metabolism. Thus, the response to
the presence of sucrose is closely followed by the degradation of pectin, which is most
likely followed by the degradation of hemicellulose (e.g., xyloglucan), supported by the
high expression level of genes related to degradation of these substrates after 8 h and
24 h of growth. Cellulose serves as a last resort substrate, mainly evidenced by the 24
h transcriptome data. The response to the presence of cellulose is most likely triggered
when the pectin and hemicellulose content is depleting. The slow utilization of cellulose
by A. niger was already described'®®, and is further supported by our growth profile
results, showing growth only after long incubation times.

Among all the single deletion mutants, the AgaaR strain had the strongest reduction
in growth on sugar beet pectin, as previously reported?’. However, the deletion of
clrB resulted in the overall strongest growth defect on sugar beet pulp solid medium,
considering the whole composition of this substrate. In contrast, in liquid cultures, the
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deletion of araR had the strongest effect on the exoproteome after both 8 h and 24 h, as
evidenced by SDS-PAGE analysis. The phenotypic difference between these mutants
is most likely related to the different experimental time course and culturing condition,
that cannot be directly compared?'.

Moreover, transcriptomic data supported the highest impact on CAZyme production by
the deletion of araR after 2 h, as AaraR showed a distinct CAZyme pattern compared
to that of the reference strain after 8 h. The deletion of gaaR resulted in a comparable
effect on CAZyme production to that of the AaraR strain after 8 h, showing a higher
impact than the deletion of araR after 24 h. These results confirm that AraR has a more
important role in the initial degradation of pectin, regulating the release of L-arabinose
units from the arabinan and arabinogalactan side chains of pectin, while GaaR is more
involved in the degradation of the galacturonan backbone?. Moreover, the deletion of
araR and gaaR indicated a shift toward the utilization of (hemi-)cellulose, evidenced
by the increased expression of (hemi-)cellulolytic genes. The upregulation of XInR-
regulated (hemi-)cellulolytic genes has previously been suggested to occur when gaaR
is deleted?. After 24 h, the deletion of clrB showed the highest impact on CAZyme
production, highly reducing the expression of genes encoding CAZymes involved in the
degradation of cellulose and xyloglucan.

Our results also show that the deletion of galX had only a minor phenotypic impact,
evidenced by the further reduced growth of AgaaRAaraRArhaRAgalX compared to the
AgaaRAaraRArhaR mutant on L-arabinose. Transcriptome data showed no differential
expression of CAZyme or metabolic genes in the AgalX mutant compared to the
reference strain at any of the studied timepoints. These results suggest that GalX is not
a main TF involved in sugar beet pulp degradation, but it contributes to the utilization of
L-arabinose and D-galactose?. ARA1, the functional ortholog of AraR in Trichoderma
reesei, has been reported to regulate D-galactose catabolism in this fungus®. However,
no correlation between D-galactose responsive regulators and L-arabinose utilization
has been reported yet. In Aspergillus nidulans, GalX was shown to control GalR, another
D-galactose-responsive regulator only present in this species®, but is not involved in
regulation of pentose catabolism®. Whether GalX would contribute to L-arabinose
metabolism together with AraR in A. niger remains to be addressed.

Our results show that the abolished growth on a major component does not indicate the
highest impact on the growth on a complex substrate such as sugar beet pulp. Owing
to the complexity and redundancy of the regulatory network involved in plant biomass
degradation, which is well indicated by the co-regulation of several crucial genes'®2024.36
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the analysis of combinatorial deletion strains is required to better understand the
regulation of the degradation of specific substrate components.

As expected, the double deletion of x/nR and araR had a high impact on sugar
metabolism, as evidenced by the downregulation of major PCP genes as well as
the reduced growth on D-xylose and L-arabinose?. The double deletion of x/nR and
clrB resulted in the lowest impact on the expression of CAZyme genes after 8 h, and
showed an overall minor reduction in the expression of metabolic genes at all analyzed
timepoints. However, both XInR and CIrB were reported to play an important role in
(hemi-)cellulose utilization's22637  which correlates with the minor phenotypic impact
after 8 h, when pectin is the primary carbon source in sugar beet pulp. In contrast, the
AxInRAclrB mutant showed a more distinct phenotype after 24 h when the utilization of
cellulose was more prominent in the reference strain. The CAZyme gene expression
profile of AxInRAcIrB mutant indicated that most likely pectin, which was still present in
the medium, was the primary carbohydrate utilized by this mutant after 24 h of growth.
Moreover, the expression of proteolytic genes was the highest in the AxInRAcIrB after 24
h, which supports a reduced ability to grow by utilizing carbohydrates at this timepoint.

The significant increase in expression of the putative pectinolytic genes abnC,
NRRL3_10498 (putative exo-galactanase) and NRRL3 3855 (putative endo-
arabinanase) in most combinatorial deletion mutants indicates that these genes might
be part of back-up system when the expression of major pectinolytic genes is reduced.
This hypothesis is also supported by the fact that only the AxInRAcIrB double deletion
mutant, which still shows expression levels of most major pectinolytic genes comparable
to the reference strain, did not show a substantial increase in the expression of these
putative back-up genes after 8 h.

Interestingly, all tested strains showed the expression of several genes encoding
amylolytic proteins (e.g., agdB, glaA, amyA, agdA) in our experiment, despite the
absence of starch in sugar beet pulp. These genes are not likely to be directly affected
by the studied TFs, and the expression through the amylolytic regulator, AmyR, might
be a result of the presence of the released D-glucose in the medium?#.

Overall, this study shows that the single and combinatorial deletion of araR resulted in a
highly altered phenotype, supported by a distinct CAZyme gene expression profile after
2 h and 8 h of growth, indicating a shift toward the utilization of alternative carbon sources
at the later timepoint. Moreover, the transcriptome data of 8 h samples suggested the
additional utilization of proteins in the combinatorial deletion strains carrying the deletion
of araR, evidenced by the increased expression of proteolytic genes, such as pepA or
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NRRL3_800 (putative tripeptidyl peptidase). The enzyme activity studies also supported
a distinct approach for the utilization of sugar beet pulp components for these mutants.

Finally, the AxInRAaraRAcIrB and the AgaaRAaraRArhaRAgalXAxinRAclrB mutants
showed comparable CAZyme gene expression profiles at all timepoints, as well as
comparable proteolytic gene expression profile at the analyzed 8 h and 24 h. The
data suggests that both of these strains are likely starving after 24 h in the sugar beet
pulp liquid cultures. Even though the AxInRAaraRAcIrB mutant showed a substantially
improved growth compared to the AgaaRAaraRArhaRAgalXAxInRAclrB mutant on solid
medium, the overall data indicate that AraR, XInR and CIrB are responsible for the
regulation of the major activities involved in the efficient degradation and utilization of
sugar beet pulp components.

4. Limitations of the study

The current study shows phenotypic characterization of single and combinatorial
deletion mutants of the main TFs involved in sugar beet pulp utilization. Moreover, SDS-
PAGE, enzymatic assays and gene expression profiles of selected strains have been
shown, compared and discussed. Whereas the number of genetic modifications that we
can perform in A. niger with CRISPR/Cas9 is not a limiting factor, owing to the very high
number of strains generated with the combinatorial gene deletion approach, it is not
possible to analyze and show all of them in this study. Thus, only a selection of strains
was analyzed. The transcriptome data generated in this study shows the adaptation of
A. nigertoward the utilization of alternative components of sugar beet pulp when several
TFs are deleted. These data also suggest the upregulation of putative pectinolytic genes.
Proteomics would also help validate the gene expression data showed in this study
through the analysis of the presence of the corresponding proteins in the exoproteome.
However, proteomics analyses have not been performed in this study.
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5. STAR Methods
5.1 Resource availability

5.1.1 Lead contact

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the lead contact, Ronald P. de Vries (r.devries@wi.knaw.nl).

5.1.2 Materials availability

All fungal strains generated in this study were deposited at the culture collection of
Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands) under the accession
numbers listed in Table S3.

5.1.3 Data and code availability

The RNA-seq data generated in this study have been deposited at the Sequence
Read Archive at NCBI (Accession numbers: SRP296371 - SRP296379, SRP296381
- SRP296396, SRP296398 - SRP296424, SRP296426 - SRP296434, SRP296436
- SRP296444, SRP299075 - SRP299083, SRP299091 - SRP299099, SRP308099 -
SRP308107, SRP332363 - SRP332366 and SRP332368 - SRP332371).

All other data are available in the main text or in the supplemental information files.

5.2 Experimental model and subject details

5.2.1 Microbial strains and growth conditions

Escherichia coli DH5a was used for plasmid propagation and was grown in Luria-Bertani
(LB) medium with 50 pg/mL ampicillin (Sigma-Aldrich) at 37°C.

All fungal strains used in this study (Table S3) are derived from A. niger CBS 138852
and were deposited at the culture collection of Westerdijk Fungal Biodiversity Institute
(Utrecht, The Netherlands). They were grown and maintained at 30°C on Aspergillus
Complete Medium (CM)® containing 1% D-glucose and supplemented with 1.22 g/L
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uridine (Sigma-Aldrich). For conidia collection, spores were harvested, dispersed in
ACES buffer, and concentration was adjusted using a hemocytometer.

Growth profiles were performed on Minimal Medium (MM)3® plates containing 25 mM
D-glucose, L-arabinose, D-xylose, D-galacturonic acid or L-rhamnose (Sigma-Aldrich);
or 1% beechwood xylan, cellulose, xyloglucan, sugar beet pectin or sugar beet pulp.
Total sugar composition of the sugar beet pulp used in this study is shown in Table S1.
In order to remove residual free sugars, dried and finely ground sugar beet pulp was
autoclaved and washed as previously described'. All media were supplemented with
1.22 g/L uridine. Growth profile plates were inoculated in duplicates with 103 conidia and
incubated at 30°C for up to 14 days. Growth was monitored daily by visual inspection.

5.3 Method details

5.3.1 DNA constructions and fungal transformation

All strains generated in this study were obtained using the CRISPR/Cas9 genome
editing system®®. The autonomous replicative plasmid ANEp8-Cas9-pyrG was
used in this work. The A. niger regulators deleted in this study were AraR (gene ID:
NRRL3_07564), XInR (NRRL3_04034), CIrB (NRRL3_09050), GaaR (NRRL3_08195),
RhaR (NRRL3_01496), and GalX (NRRL3_07290). The design of the gRNA sequences
(20 bp) was performed using the Geneious 11.04.4 software tool (https://www.geneious.
com). The gRNA sequences (Table S4) with no predicted off-targets and the highest on-
target activity were designed based on the experimentally determined predictive model
described by Doench et al.*°. All rescue templates (RTs), which include ~500 bp of the 5’
and 3’ flanking regions of the target genes, were obtained by fusion-PCR using Phusion
High-Fidelity DNA Polymerase (Thermo Fisher Scientific). Two PCR fragments were
generated by amplifying ~600 bp upstream and downstream sequence of the target
genes. These two fragments were fused together in a second nested PCR obtaining
~1,000 bp RT, and were subsequently purified (Wizard® SV Gel and PCR Clean-Up
System, Promega).

CRISPR/Cas9 plasmid construction was performed following previously described
protocols®*#'. The generation and transformation of A. niger protoplasts were carried out
as previously reported® with some modifications*'. One ug ANEp8-Cas9-pyrG plasmid,
together with 5 pg of each corresponding RT were used for each transformation. Putative
mutant strains were purified by two consecutive single colony streaking, followed by
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cultivation on uridine-containing plates in order to remove the self-replicating plasmid.
Candidates carrying the expected mutations were subsequently grown on medium
containing 5-fluoro-orotic acid (5-FOA) in order to screen for colonies which have
lost the ANEp8-Cas9-pyrG plasmid. Single AxInR, AaraR, AclrB, AgaaR, ArhaR and
AgalX mutants were obtained by single deletion using A. niger CBS 138852 as genetic
background. The AxInRAaraR and AxInRAclIrB strains were obtained by simultaneous
double deletions using the same parental strain as a background. The triple mutants
AxInRAaraRAcIrB and AgaaRAaraRArhaR were obtained after a single araR deletion
in the AxInRAclIrB, and AgaaRArhaR genetic backgrounds, respectively. The quadruple
AgaaRAaraRArhaRAgalX was obtained after simultaneous araR and galX deletions in
the AgaaRArhaR genetic background. The quintuple AgaaRAaraRArhaRAgalXAxInR
and AgaaRAaraRArhaRAgalXAclrB mutant strains were obtained after single xinR
or clrB deletions in the AgaaRAaraRArhaRAgalX genetic background, respectively.
Finally, the sextuple mutant AgaaRAaraRArhaRAgalXAxInRAclrB was obtained after
a simultaneous double deletion of xinR and cIrB in AgaaRAaraRArhaRAgalX genetic
background. Mutant strains were confirmed phenotypically (Figure 1) and by analytical
PCR through the amplification of each target gene region (data not shown). All primers
used in this study are shown in Table S4 and were ordered from Integrated DNA
Technologies, Inc. (IDT, Leuven, Belgium).

5.3.2 Protein production and enzyme activity assays

Cell free supernatants of 1% washed sugar beet pulp samples from A. niger reference
strain, AxInR, AaraR, AclrB, AgaaR, ArhaR, AgalX, AxInRAaraR, AxInRAcIrB,
AxInRAaraRAcIrB, AgaaRAaraRArhaRAgalX and AgaaRAaraRArhaRAgalXAxInRAcIrB
mutant strains were harvested after 2, 8 and 24 h of growth at 30°C and 250 rpm.
Ten pL of each supernatant sample were analyzed by SDS-PAGE using SDS-12%
polyacrylamide gels calibrated with PageRuler™ Plus Prestained Protein Ladder
(Thermo Scientific), silver stained*?, and documented using HP Scanjet G2410 scanner.
Samples were evaluated in biological duplicates.

Enzyme activities were evaluated by using colorimetric para-nitrophenol (pNP) or azo-
dye substrate assays in 96-well flat bottom microtiter plates. For pNP assays, 10 yL24 h
supernatant samples were mixed with 50 uL of 50 mM NaAc (pH 5), 30 L of demineralized
water and 10 pL of 0.1% 4-nitrophenyl a-L-arabinofuranoside (for a -arabinofuranosidase
(ABF) activity), 0.1% 4-nitrophenyl a-D-galactopyranoside (for a-galactosidase (AGL)
activity), 0.1% 4-nitrophenyl B-D-galactopyranoside (for $-galactosidase (LAC) activity),
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0.1% 4-nitrophenyl a-L-rhamnopyranoside (for a-rhamnosidase (RHA) activity) or 0.1%
4-nitrophenyl B-D-glucopyranoside (for 3-glucosidase (BGL) activity) in a final volume of
100 pL. The assays were measured after 30-360 min incubation at 30°C. The reactions
were stopped by adding 100 pL of 0.25 M Na,CO, to the mixture and the absorption
values were measured at 405 nm wavelength using a FLUOstar OPTIMA microplate
reader (BMG Labtech).

For azo-dye substrate assays, 20 yL 24 h supernatant samples were mixed with 30
puL of 100 mM NaAc (pH 4.6) and 50 pL of Azo-galactan (potato) (Megazyme) (for
B-galactanase (GAL) activity), Azo-Xylan (Birchwood) (Megazyme) (for endoxylanase
(XLN) activity) or Azo-CM-Cellulose (Megazyme) (for endoglucanase (EGL) activity).
The reaction mixtures were incubated for 4 h at 30°C and were terminated by the
addition of 250 uL of precipitation solution (4% NaAc*3H,0O, 0.4% ZnAc, 76% EtOH, pH
5). The microtiter plates were centrifuged at 4°C, 1000 x g for 10 min. Subsequently, the
supernatant samples were transferred to another microtiter plates and the activity was
determined based on the absorption measured at 600 nm wavelength using a FLUOstar
OPTIMA microplate reader (BMG Labtech).

5.3.3 Transcriptomic analysis

For transcriptomic analysis, freshly harvested spores from A. niger parental strain,
AXInR, AaraR, AclrB, AgaaR, ArhaR, AgalX, AxInRAaraR, AxInRAcIrB, AxInRAaraRAcIrB,
AgaaRAaraRArhaRAgalX and AgaaRAaraRArhaRAgalXAxInRAcIrB mutant strains
were pre-grown (10° spores/mL) in 250 mL 2% D-fructose CM supplemented with 1.22
g/L uridine for 16 h at 30°C in a rotary shaker at 250 rpm. After that, mycelia were
harvested by filtration through sterile cheesecloth, rinsed with MM, and ~2.5 g (wet
weight) mycelium was transferred into 50 mL MM containing 1% washed sugar beet
pulp with 1.22 g/L uridine. Mycelia were collected after 2, 8, and 24 h, frozen in liquid
nitrogen, and stored at -80°C until further use. Samples were collected in biological
triplicates. The transcriptomes of the parental and mutant strains were analyzed using
RNA-seq. RNA was extracted from grinded mycelia using TRIzol reagent (Invitrogen)
and purified with NucleoSpin RNA kit for RNA purification (Macherey-Nagel) with
DNAse treatment. RNA quality and quantity were assessed by RNA gel electrophoresis
and NanoDrop ND-1000 (Thermo Scientific). Purification of mMRNA, synthesis of cDNA
library and sequencing were conducted at Joint Genome Institute (JGI, California, US).
RNA samples were single-end sequenced using lllumina NovaSeq platform (http://
illumina.com). Raw fastq file reads were filtered and trimmed using the JGI quality
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control (QC) pipeline. Using BBDuk (https://sourceforge. net/projects/bbmap/) raw
reads were evaluated for artefact sequence by kmer matching (kmer = 25), allowing
one mismatch and detected artefact was trimmed from the 3" end of the reads. RNA
spike-in reads, PhiX reads and reads containing any undetermined nucleotides (Ns)
were removed. Quality trimming was performed using the phred trimming method set
at Q6. Reads under the length threshold were removed (minimum length 25 bases or
1/3 of the original read length - whichever is longer). The cleaned reads were mapped
to A. niger NRRL3 genome (https://mycocosm.jgi.doe.gov/Aspni_ NRRL3_1/Aspni_
NRRL3_1.home.html)** using HISAT2 version 2.2.0*. Strand-specific coverage files
were generated using deepTools v3.1%°. FeatureCounts*® was used to generate the raw
gene counts file using gff3 annotations. Only primary hits assigned to the reverse strand
were included in the raw gene counts. Raw gene counts were used to evaluate the level
of correlation between biological replicates using Pearson’s correlation. Three biological
replicates were prepared and sequenced for each condition. Three individual samples
were discarded for further analysis due to their poor sequencing quality.

Differentially expressed genes (DEGs) were detected using the R package DESeq2*.
Transcripts were considered differentially expressed if the DESeq2 fold change of
mutant strains compared to the control was > 2 (upregulation) or < 0.5 (downregulation)
and padj < 0.01 and at least one of the two expression values was FPKM > 20. Heat
maps for transcriptome data visualization were generated using the “gplots” package
of R software, with the default parameters: “Complete-linkage clustering method and
Euclidean distance”. The data used for the generation of heat maps is shown in Data
S2. Genes with an expression of FPKM < 20 in each sample, were excluded from the
analysis.

5.4 Quantification and statistical analysis

Enzymatic activity assays were performed by using biological duplicates and technical
triplicates. Differences in enzyme activities were determined using the one-way
analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) test
(Table S5). Statistical significance was referred for p < 0.05. Analyses were done using
STATGRAPHICS Centurion XVI Version 16.1.17 (www.statgraphics.com/centurion-xvi).
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Figure S1. SDS-PAGE analysis of extracellular protein production of A. niger reference (CBS
138852) and regulatory mutant strains, related to Figure 2. Samples originated from 8, and 24 h
growth in 1% liquid sugar beet pulp and were evaluated in biological duplicates.

Figure S2. Hierarchical clustering of CAZy-encoding genes in A. niger reference (CBS 138852)
and deletion mutant strains, related to Figure 7. Gene expression data originated from 2 h of growth
in 1% sugar beet pulp liquid cultures. The substrates associated with the corresponding genes are indicated
by different colors. Enzyme activity abbreviations are described in Table S2.
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Xylan/galactomannan 5 5 4 4 Number of genes
Galactomannan 3 3 2 2 r -
Xyloglucan 8 8 7 4 Low High
Cellulose 13 18 19 14
Inulin/sucrose _ 2 2
Starch 10 11 12 12
Not annotated 8 7 12 10

Figure S3. Expression of CAZy-encoding genes in the reference (CBS 138852) and AaraR,
AgaaR and AgaaRAaraRArhaRAgalX deletion strains, related to Figure 7. A) Cumulative
expression of genes associated with the degradation of specific substrates after 8 h of growth in 1% sugar
beet pulp liquid cultures. B) Number of genes associated with the degradation of each substrate after 8 h of
growth. Only genes with an expression value of FPKM > 20 were considered for this analysis.
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Figure S4. Expression of CAZy-encoding genes in the reference (CBS 138852) and AclrB, AxInR
and AxInRAclrB deletion strains, related to Figure 7. A) Cumulative expression of genes associated
with the degradation of specific substrates after 24 h of growth in 1% sugar beet pulp liquid cultures. B)
Number of genes associated with the degradation of each substrate after 24 h of growth. Only genes with an
expression value of FPKM > 20 were considered for this analysis.

Figure S5. Hierarchical clustering of genes involved in proteolytic activities in A. niger
reference (CBS 138852) and combinatorial deletion mutant strains, related to Figure 7. The
prtT gene encoding the proteolytic transcription factor PrtT is highlighted in bold. Gene expression data
originated from 8 h and 24 h of growth in 1% sugar beet pulp liquid cultures.

Table S1. Sugar composition of sugar beet pulp used in this study, related to STAR Methods.
Composition analysis was performed as previously described.

Table S2. Abbreviations of enzyme activities presented in this study, related to Figure 5 and
Figure 7.

Table S3. A. niger strains used in this study, related to STAR Methods.

Table S4. Primers used in this study, related to STAR Methods. Homology flanks are highlighted in
red.
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Table S5. Summary of the ANOVA analysis for each enzymatic assay, related to STAR Methods
and Figure 2.

Data S1. Enzyme activity measurements performed in this study, related to Figure 2. A) Results
of pNP enzyme assays performed in this study. Statistical analysis was performed using the converted
(nmol pNP/min/mL) values, while the visualization (Figure 2) was performed using the normalized mean
and standard deviation (SD) values. B) Results of azo-substrate enzyme assays performed in this study.
Statistical analysis was performed using the corrected absorbance values, while the visualization (Figure 2)
was performed using the normalized mean and standard deviation (SD) values.

Data S2. Gene expression values of CAZy-, metabolic- and transcription factor genes of A.
niger reference (CBS 138852) and mutant strains analyzed in this study, related to Figures
3-7. Samples originate from 1% sugar beet pulp liquid cultures after 2, 8 and 24 h of growth. Gene expression
values of FPKM < 20 were considered low, and are indicated in red.
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Summary and general discussion

1. Introduction

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
associated protein (Cas) system is a rapidly developing molecular tool for precise
genome editing. Since its establishment as a genome editing tool in 2012, it has been
applied in a wide range of organisms, ranging from bacteria to human cell lines?2.
Figure 1A illustrates the number of publications reporting the application of CRISPR/
Cas9 system for this purpose.

In Chapter 2, we summarized the applications of the CRISPR/Cas9 system in filamentous
fungi in the first four years since its establishment in Trichoderma reesei* and several
Aspergillus® species in 2015. However, the number of studies involving CRISPR/
Cas9-mediated genome editing in filamentous fungi has rapidly increased in recent
years (Figure 1B). Moreover, the establishment of CRISPR/Cas9 system in several
new fungal species, such as Penicillium subrubescens®, P. digitatum’, P. expansum’,
Fusarium proliferatum® or Ashbya gossypii® was also reported. However, the increased
application of CRISPR/Cas9 in filamentous fungi is partly attributed to its application
in the genus Aspergillus (Figure 1B). In these fungi, the use of non-integrative AMA1-
bearing plasmids®'® expressing both the cas9 gene and the single guide RNA (sgRNA)
allowed for efficient marker-free transformations™.
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Figure 1. Number of studies associated with the CRISPR/Cas system since its establishment as
a genome editing tool in 2012. Graphs represent the number of publications per year containing the terms
“CRISPR” (A), or “CRISPR fungi” (B) in their titles or abstracts. Data was retrieved from PubMed in May 2022.

The CRISPR toolbox has also been expanded in filamentous fungi by the utilization
of modified versions of the Cas9 protein. These involve the utilization of a nuclease-
deficient Cas9 (dCas9), which was used for the activation of a silent gene cluster in P,
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rubens'?, or the utilization of a nickase Cas9 (nCas9), used for efficient single base editing
in A. niger'®. Moreover, genome editing using the alternative class 2 CRISPR nuclease
Cas12a/Cpf1 from Lachnospiraceae bacterium' has also been reported in A. niger'®
and in the thermotolerant fungi Thermothelomyces thermophilus and Myceliophthora
thermophila'®. The conventional Streptococcus pyogenes Cas9 (SpCas9) recognizes
a 5-NGG-3’ protospacer adjacent motif (PAM), while Cpf1 recognizes a T-rich PAM
sequence, 5-TTTN-3. This allows for targeting a larger repertoire of genomic sites
with a CRISPR/Cas-system, especially AT-rich regions'. Additionally, the CRISPR/Cpf1
system is more suitable for multiplex genome editing than the CRISPR/Cas9 system,
since Cpf1 requires only a crispr RNA (crRNA) and no trans-activating crispr RNA
(tracrRNA) for this purpose”.

With respect to commercial applications, the use of CRISPR/Cas9 or Cpf1-mediated
genome editing requires royalty-bearing licenses'®. However, an alternative to Cpf1,
called MAD7 was released by Inscripta (Boulder, CO), which offers a royalty-free license
for various commercial applications™. Recently, successful CRISPR/MAD7-mediated
gene targeting was reported in A. niger, A. nidulans, A. oryzae and A. aculeatus®,
promoting new possibilities of genetic engineering in filamentous fungi.

The aim of this thesis was to apply the CRISPR/Cas9 system in A. niger for the generation
of diverse mutations targeting transcription factors (TFs) involved in the regulation of
plant biomass conversion. The generated mutations included point mutations, domain
swaps and multiple subsequent gene deletions. The results of this thesis provide more
insight into the possibilities of CRISPR/Cas9-mediated genome editing in A. niger, as
well as more information about the individual roles of several TFs and their interactions
within the regulatory network governing plant biomass degradation in this fungus.

2. Expanding the applications of CRISPR/Cas9 in
Aspergillus niger

A. niger is one of the most studied filamentous fungi due to its long history of
industrial applications?'. Therefore, its ability to degrade plant biomass??, its metabolic
pathways?>?, as well as its ability to produce primary?® or secondary metabolites® has
been investigated to a great extent. For this, a large number of A. niger mutant strains
have been generated in various studies, often by performing gene deletions based on
classical homologous recombination?’. However, the number of gene deletions that can
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be performed in one strain by classical gene deletion is limited by the number of available
selection markers. The application of marker-free CRISPR/Cas9 transformation™
by using a recyclable AMA1-bearing plasmid?® can facilitate the generation of multi-
deletion strains. In Chapter 7 and Chapter 8 we presented the generation of two large
sets of TF deletion strains related to the degradation of wheat bran and sugar beet pulp,
respectively.

In Chapter 7, a complete set of XInR-AraR-CIrA-CIrB combinatorial deletion strains
were generated in the A. niger N593 AkusA (Aku70) (CBS 138852) background using
CRISPR/Cas9 in multiple rounds of transformations. In total 107 transformant colonies
were screened, and only 2 colonies showed a comparable genotype to the parental
strain, resulting in an overall 98.13% efficiency for gene deletion (Table 1). Both single
and simultaneous double deletion mutants were efficiently generated, however, results
showed discrepancy in the number of colonies for certain genes. The double deletion of
xInR and araR resulted in the generation of five AxInR, two AaraR and three AxInRAaraR
mutants out of ten screened colonies (Table 1). A similar ratio was observed in the
case of amyR and inuR double deletion, resulting in six AamyR, two AinuR and two
AamyRAinuR mutants out of the ten screened colonies (Chapter 6). However, in case
of cIrA and clrB double deletion, only 8.14% (seven out of eighty-six colonies) were
successful double deletion strains, likely due to the low efficiency of clrA deletion (Table
1). Comparable gene targeting efficiency (0-25%) was reported for CRISPR/Cas9-
mediated double gene deletion in A. niger by using in vitro assembled Cas9/sgRNA
ribonucleoprotein complexes?. However, generation of double gene knockout strains
by simultaneous deletion using a dual-plasmid approach which is comparable to ours
was also reported at an 89% efficiency"'. Differences in sgRNA activity could explain
the differences between the reported double gene deletion efficiencies, and further
improvements of sgRNA activity prediction tools®*® could lead to more efficient generation
of combinatorial deletion strains. Nonetheless, simultaneous transformations with two
Cas9 plasmids harboring different sgRNA-encoding sequences and the same selection
marker are an efficient method for generating combinatorial deletion mutants in A. niger.
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Table 1. Gene deletion efficiency during the generation of A. niger xInR-araR-clrA-clrB
combinatorial deletion strains using CRISPR/Cas9. The number of screened colonies is indicated
in bold. In case of double deletions, numbers represent the number of colonies counted for each individual
single, as well as for successful double deletions.

Background Single deletions Double deletions
strain AxInR AaraR AxInRIAaraRIAxInRAaraR  AclrAlAcirB/AcirAAcirB
Aku70 3 outof 3 5 out of 5 5/2/3 out of 10 4/7/2 out of 13
AxInR - 3 outof 3 - 5/31/2 out of 38
AaraR - - - 6/13/1 out of 22
AxInRAaraR - - - 4/7/2 out of 13

Generally, the efficiency of CRISPR/Cas9 genome editing highly depends on the
used sgRNA as previously indicated, as well as on the cas9 and sgRNA expression
constructs®'. Moreover, the transformed species or even strains®? can influence the
transformation efficiency. For instance, the first study describing the application of
CRISPR/Cas9 system in another industrial Aspergillus species, A. oryzae, reported 10-
20% efficiency using an integrative cas9 gene under the control of amyB promoter®.
However, using the same cas9 expression construct in a plasmid bearing AMA1, resulted
in highly improved transformation efficiency of 50-100%3*. In this study, the improved
efficiency was associated with the increased expression of cas9 gene and sgRNA, most
likely owing to the presence of multiple plasmid copies in the same cell**. This study
further recommends the use of self-replicating plasmids for CRISPR/Cas9 genome
editing, and can partly explain the high transformation efficiency observed for gene
deletions in this thesis. AMA1-bearing plasmids for CRISPR/Cas9 were also used in
species belonging to the closely related genus, Penicillium, including P. subrubescens®,
P. digitatum and P. expansum’. However, transformation efficiency was in general low
(8.70-14.90%)", showing that further optimizations are required in these species. The
limited applications of CRISPR/Cas9 in evolutionarily more distant species, including the
industrial and fungal model organisms T. reesei and Neurospora crassa, respectively, is
likely due to the lack of a reliable self-replicating plasmid system.

An additional advantage of CRIPSR/Cas9 genome editing using AMA1-plasmids
compared to classical genetic engineering methods, is the possibility for precise marker-
free modification of native genes, including point mutations, domain swapping or gene
tagging and fusion. However, most studies reported the application of the CRISPR/
Cas9 system for the generation of deletion strains in A. niger, while its application
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for the introduction of other precise genetic modifications in the native fungal genes
was reported to a lesser extent. In this thesis, we aimed to explore the possibilities of
CRISPR/Cas9 genome editing in A. niger, not only by generating multi-deletion strains,
but also by performing precise point mutations, fluorescent tagging or by fusing together
two independent parts of different transcription factors by domain swapping.

In Chapter 3, based on an approach described by Ngdvig et. al*5, the CRISPR/Cas9
system was used to generate transcription factor mutant strains harboring on-site
specific point mutations introduced by using single-stranded oligonucleotides as repair
templates. Moreover, we showed efficient introduction of single nucleotide mutations
using only 60-mer oligonucleotides, further reducing the costs of template generation
compared to the previously reported method using 90-mer oligonucleotides®. The
results of this study showed that CRISPR/Cas9-mediated introduction of point mutations
is a time- and cost-efficient method for the generation of strains showing increased
enzyme production and activity. Our results showed that the proximity of the desired
point mutation to the DNA cutting site is a crucial factor in designing the oligonucleotide
repair templates. The outcome of the transformation could not be influenced by
increasing the length of the repair template (up to 200 bp) when the mutated nucleotide
was distant form the cutting site. Interestingly, our data showed that DNA repair was
also possible with £12 nucleotides as flanking regions next to the DNA cutting site. This
indicates that conventional 20-25 bp primers could also be used as repair templates
to precisely introduce single nucleotide mutations by CRISPR/Cas9 genome editing,
further reducing the costs of this method. Furthermore, micro-homology-based gene
deletions using 50 bp flanking regions were also reported before in filamentous fungi®,
expanding the array of cost-efficient possibilities for the generation of DNA templates.

In Chapter 4, we showed that the CRISPR/Cas9 system can be used to efficiently
generate a chimeric GaaR-XInR TF by fusing together the N-terminal region of the
pectinolytic TF, GaaR®*, with the C-terminal region of the xylanolytic TF, XInR%¥. The
chimeric TF showed induction of pectinolytic activities in the presence of D-xylose,
offering new opportunities for enzyme production on alternative, cheap agro-industrial
substrates. Generation of chimeric TFs involved in the regulation of plant biomass
degradation has been reported before in P. oxalicum®, A. nidulans® and T. reesei***,
However, to our knowledge, our study was the first to report the generation of a chimeric
TF by CRISPR/Cas9-mediated on-site modification of a native TF gene in a filamentous
fungus.

Additionally, we used the CRISPR/Cas9 system to generate on-site edited fluorescent-
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tagged versions of several endogenous TF genes. Precise fluorescent tagging of multiple
native TF genes can provide new insights into the localization and interactions of key
TFs during growth on plant biomass. The fluorescent tagging of the C-terminal region
of three transcription factors, namely XInR, AraR and GaaR, was performed using three
different fluorescent proteins, mNeonGreen, tdTomato and mTurquoise, respectively*t.
The TF genes and the fluorescent proteins were linked by a sequence encoding a short
flexible linker, GGGGS*. However, out of the three different fluorescently tagged mutant
strains, only the GaaR:mTurquoise mutant showed slightly detectable fluorescent signal
(Figure 2).

25 mM D-galacturonic acid 25 mM D-galacturonic acid

25 mM D-glucose

transmission

fluorescence

Figure 2. Screening of an A. niger GaaR mutant tagged with a mTurquoise fluorescent protein.
Fluorescence was detected using an excitation wavelength of 450-490 nm, and emission wavelength of 525
nm. The medium containing 25 mM D-glucose represents a negative control, while the medium containing 25
mM D-galacturonic acid represents a positive control.

Moreover, the GaaR:mTurquoise and the AraR:tdTomato mutant showed impaired
function, indicated by reduced growth on D-galacturonic acid (Figure 3B) and L-arabinose
(Figure 3C), respectively. The colony density of the XInR:imNeonGreen mutant was
also slightly reduced compared to the control strain on beechwood xylan (Figure
3A), indicating partial loss of XInR function as well after tagging with the fluorescent
protein. Either the implementation of the fluorescent tag on the N-terminal region of the
target gene, and/or the use of a different linker sequence or fluorescent protein could
possibly result in the generation of TF mutants showing improved fluorescent signal and
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conserved TF functionality. Although further optimization is required for this approach,
tagging of native fungal genes is another possible application of the CRISPR/Cas9
system, as it was also reported in Fusarium oxysporum*, Magnaporthe oryzae***° and
A. fumigatus®'.

No carbon source No carbon source

25 mM D-glucose

25 mM L-arabinose |

Figure 3. Growth profile of fluorescently tagged A. niger transcription factor mutant strains.
The fluorescently tagged XInR mutant was grown on medium containing 25 mM D-xylose or 1% beechwood
xylan (A), the fluorescently tagged GaaR mutant was grown on medium containing 25 mM D-galacturonic
acid (B) and the fluorescently tagged AraR mutant was grown on medium containing 25 mM L-arabinose (C)
as substrate. Each growth test included the A. niger control (CBS 138852) strain as a positive control and a
AxInR, AgaaR or AaraR strain as a negative control, respectively.

3. Risk assessment of the application of CRISPR/Cas9
in Aspergillus niger

The quick development and application of the CRISPR/Cas9 system in a wide range of
species raised concerns about the possible off-target effects (e.g., random insertions
or deletions) and negative consequences of its application for genome editing. Several
studies have reported numerous undesired deletions, insertions or complex genomic
rearrangements linked to CRISPR/Cas9 in zebrafish%?, mice®*% or human cell lines54%°,
Moreover, in 2018, the Court of Justice of the European Union decided that organisms
which are subject to CRISPR/Cas9 genome editing fall under the genetically modified
organism (GMO) directive, thus banning the use of CRISPR/Cas9-edited crops in the
agricultural sector. With respect to filamentous fungi, a thorough safety assessment
regarding CRISPR/Cas9 genome editing has not been performed yet to evaluate the
safety of its application in these species.
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In this thesis, a large number of strains have been generated through the introduction of
various mutations by CRISPR/Cas9 in A. niger, including multi-deletions, point mutations
or domain swapping. In order to evaluate possible side-effects of CRISPR/Cas9 genome
editing, a selected set of strains were subjected to whole genome sequencing (WGS).
For this, we designed a control experiment, in which multiple parallel transformations
have been performed in the parental A. niger Aku70 (CBS 138852) strain using three
different AMA1-plasmids: (i) a plasmid which did not carry the cas9 gene, (ii) a plasmid
carrying the cas9 gene, but without a sgRNA expression construct, and (iii) a plasmid
carrying both the cas9 gene and a sgRNA expression construct. Based on WGS data,
we assessed if the abundance of single nucleotide polymorphisms (SNPs) or random
insertions and deletions (indels) could be linked to the presence and activity of the Cas9
nuclease. Results showed that the presence of Cas9 or Cas9 and sgRNA did not resultin
significantly increased number of undesired mutations (p < 0.05) (Figure 4A). Therefore,
the occurred undesired mutations could rather be linked to the transformation event
instead of the Cas9 activity (Figure 4A). It is worth mentioning that the transformation
of an A. niger strain retaining an active Ku70-mediated non-homologous end joining
(NHEJ) repair system with a plasmid that did not carry the cas9 gene resulted in the
accumulation of 87.75 SNPs on average. The number of SNPs further increased by
up to 2.69-fold when an active CRISPR/Cas9 system was used for genome editing
in this strain (data not shown). These results showed that ku70-defficiency results in
a significantly more stable genetic background compared to its wild type in A. niger,
highlighting the importance of background strain selection for CRISPR/Cas9-mediated
transformations. It is important to note that all strains described in this thesis were
derived from a ku70-defficient A. niger parental strain.

Several strains presented in Chapter 7 and Chapter 8 were subject to multiple rounds
of transformation. Therefore, we aimed to assess the likelihood of undesired mutation
accumulation in these strains. We analyzed WGS data of the sextuple deletion mutant
(AgaaRAaraRArhaRAgalXAxInRAclrB), and compared it to its parental strains, the
quadruple AgaaRAaraRArhaRAgalX and double AgaaRAaraR deletion mutants (all
described in Chapter 8). Results showed that subsequent transformation events
resulted in the accumulation of genomewide mutations, but to a very low extent (Figure
4B). Moreover, these mutations are more likely occurring due to the transformation
event, and not due to Cas9 activity, as presented in the control experiment (Figure 4A).
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Figure 4. Risk assessment of CRISPR/Cas9 genome editing in A. niger Aku7o strain. Graphs
represent the total number of unexpected single nucleotide polymorphisms (SNP), insertions and deletions
occurring in the genome of strains that were subjected to transformation events. Data was compared to the A.
niger Aku70 parental (CBS 138852) genome. A) Number of mutations occurring in strains transformed with
a plasmid lacking the cas9 gene (No Cas9), lacking the sgRNA expression construct (Inactive Cas9), or with
a plasmid carrying both the cas9 gene and the sgRNA expression construct (Active Cas9). B) Assessment
of mutation accumulation after consecutive CRISPR/Cas9 transformation events. Data represents the
accumulated undesired mutations after one transformation event (2 deletion strain), two transformation
events (4 deletion strain) or three transformation events (6 deletion strain).

Overall, we showed that CRISPR/Cas9 is a reliable and safe technology when used
in an A. niger Aku70 strain, since unexpected mutations are most likely related to the
transformation event and not to Cas9 activity. Moreover, based on the low number of
accumulated mutations in the multi-deletion strains, we do not expect that undesired
random mutations would affect the fitness of the strains studied in this thesis in an
unexpected manner.

However, more extensive research is required to assess the safe application of CRISPR/
Cas9 system across filamentous fungi. Additionally, with the improvement of sgRNA
off-target assessment tools® and results showing safe application of CRISPR/Cas9 in
cotton plants® or mice®” through rational selection of optimal target sites can facilitate
the public acceptance of CRISPR/Cas9 genome editing.

4. New insights into the regulation of plant biomass
degradation

Filamentous fungi are primary degraders of plant biomass, and therefore, they play a
pivotal role in a bio-based economy. For this, the understanding of their abilities and
limits regarding plant biomass degradation is essential.
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So far, a large number of A. niger carbohydrate active enzymes (CAZymes) involved in
plant polysaccharide degradation have been identified (e.g., cellulases®®, xylanases®®
or pectinases®), and several key transcription factors regulating their expression (e.g.,
XInR and GaaR) have been studied in detail as well. Moreover, co-regulation of genes
involved in substrate degradation®’, as well as in the metabolism of sugar components®?
was previously reported. However, the regulation of the degradation of complex crude
substrates and the relative contribution of TFs to this process remains poorly understood.
The use of CRISPR/Ca9-mediated marker-free transformation enables the generation
of multi-deletion strains suitable for the analysis of TF interactions on a network level in
the process of plant biomass degradation.

In this thesis, we evaluated the contribution of major TFs to the utilization of the agro-
industrial waste materials, soybean hulls, wheat bran and sugar beet pulp. Proteomic
and transcriptomic data of the parental and multi-deletion strains provided new insights
into the combinatorial control of gene expression and the time-dependent utilization of
polysaccharide components found in crude substrates.

4.1 Preferential use of crude substrate components by
Aspergillus niger

In Chapter 5, Chapter 7 and Chapter 8, we assessed the ability of A. niger to
utilize three agricultural waste materials, soybean hulls, wheat bran and sugar beet
pulp, respectively. All of these substrates contain large amounts of cellulose in their
compositions. Additionally, wheat bran is rich in (arabino)xylan; sugar beet pulp is rich
in pectin and xyloglucan; while soybean hulls contain substantial amounts of (galacto)
mannan next to xyloglucan and pectin. The analysis of omics data from A. niger Aku70
strain (CBS 138852) showed the adaptation of A. niger to the utilization of the major
components in each substrate in a timely manner.

Transcriptomic data originated from cultures grown for 2 h on soybean hulls (Chapter 5)
and sugar beet pulp (Chapter 8) showed the highest expression of the a-glucosidase-
encoding gene agdB, and the exo-inulinase-encoding gene inuE, respectively. Although,
sugar beet pulp might contain low levels of residual sucrose in its composition, the high
expression of agdB on soybean hulls was unexpected. This can possibly be explained
by the induction of AmyR in the presence of trace amounts of inducing components®,
such as D-glucose®. Similarly, in Chapter 5, transcriptomic data originated from
2 h cultivation of A. niger on guar gum also showed the highest expression of four
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amylolytic (glaA, agdA, aamA and agdB) and one inulinolytic (inuE) gene, as well as
4-4 5-fold higher expression of the major transcriptional repressor gene creA, compared
to later timepoints. CreA activity in the early stages of growth has been reported before
in this fungus when grown on crude substrates®. Generally, these data showed that the
induction of the amylolytic and inulinolytic system is predominant in the early stages
of growth in A. niger, even if the inducers of these systems are present only in trace
amounts. Moreover, early CreA activity can be linked to the presence of D-glucose and
D-fructose released by the amylolytic and inulinolytic enzymes.

After 8 h of growth on soybean hulls (Chapter 5) and sugar beet pulp (Chapter 8),
the expression of pectinolytic genes was predominant (28 and 34 pectinolytic genes,
respectively). Although, both substrates are rich in pectin and xyloglucan as well, A.
niger appears to respond to the presence of pectin at an earlier stage of growth. This
preference is also indicated by the large number of pectinolytic genes found in the
A. niger genome®. Most hemicellulolytic genes (coding for xyloglucanases, (arabino)
xylanases or (galacto)mannanases) were mainly expressed in the later stages of growth,
after 8 or 24 h of cultivation in these studies. Finally, the expression of cellulolytic genes
showed high upregulation after 24 h of cultivation compared to earlier timepoints.

In Chapter 7, proteomic data originated from 24 h wheat bran cultures showed the
most abundant presence of the 3-1,4-endoxylanase XInC/XynA and the arabinoxylan
arabinofuranohydrolase AxhA, followed by several cellulolytic proteins. This indicates
the preference for the degradation of (arabino)xylan over cellulose in wheat bran by A.
niger.

Overall, omics data from all three studies indicate slow utilization of cellulose by A.
niger, despite its abundant presence in each tested crude substrate. Moreover, slow
utilization of cellulose is also supported by the growth profile results of these studies.

In conclusion, data described in this thesis provide more understanding about the ability
of A. nigerto adapt to the degradation polysaccharides found in agro-industrial materials,
and can facilitate the selection of suitable substrates for industrial applications.

4.2 Contribution of transcription factors to the regulation of
plant biomass utilization

The roles of several TFs involved in plant biomass utilization, including XInR%, AraR®,
GaaR?%*, RhaR® or AmyR® have been studied to a large extent in A. niger. However,
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only a few reports have described the roles of CIrA®, CIrB%, InuR™ and GalX"" in this
process. In this thesis, we expanded the knowledge about several major regulators of
plant biomass utilization by analyzing both their individual impact on substrate utilization,
as well as their roles within the regulatory network.

In Chapter 5, using transcriptomic data, we showed that mannobiose is most likely
the inducer of CIrB in A. niger. Moreover, gene expression data from guar gum and
soybean hulls cultures showed the control of CIrB over the expression of several
(galacto)mannanase-, cellulase-, xyloglucanase- and transporter-encoding genes.
Overall, data showed that the role of A. niger CIrB is comparable to the role of CIrB
in A. oryzae™, while its regulon is different from that of the CIrB ortholog described
in A. nidulans™. Interestingly, the growth impairment of the Ac/rB mutant on soybean
hulls was comparable to the growth defect of a AxInRAaraRAcIrAAcirBAamyR quintuple
deletion mutant on wheat bran or a AgaaRAaraRArhaRAgalXAxIinRAcIrB sextuple
deletion mutant on sugar beet pulp. The fact that CIrB does not control the expression
of major pectinolytic or xylanolytic genes indicates that most likely the degradation of
(galacto)mannan is crucial during soybean hulls utilization.

Additionally, in Chapter 7, proteomic data demonstrated a major contribution of CIrB to
the utilization of wheat bran, while in Chapter 8, the single deletion of c/rB resulted in
the highest growth defect when grown on solid medium containing sugar beet pulp as
substrate. However, the dominant role of CIrB in sugar beet pulp utilization could not
be supported by exoproteome or gene expression analysis of liquid culture samples.
Similar results were observed in Chapter 6, where data indicated the involvement of
AmyR in inulin utilization, only demonstrated by data originated from cultures grown
on solid media. These results support the observation that phenotypes of solid and
liquid cultures cannot be directly compared’. Although studying the characteristics
of submerged fungal cultures is valuable for industrial applications, these do not fully
represent the natural behavior of the fungus.

The involvement of CIrA in the regulation of (hemi-)cellulose utilization was assessed
in Chapter 7. The analysis of enzyme activity assay and proteomic results indicated
only partial involvement of CIrA in cellulose degradation. Although, the deletion of clrA
resulted in decreased B-glucosidase (BGL) activity, and it reduced the production of
three cellobiohydrolases (CbhA, CbhB and CbhC), it did not fully abolish growth on
cellulose. Interestingly, CIrA showed partial control over B-xylosidase (BXL) activity,
however, this was overruled by XInR. In Chapter 5, we showed that the expression of
clrA is (partially) dependent on CIrB. Therefore, it cannot be excluded that a part of the
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genes associated with the CIrB regulon are in fact controlled by CIrA.

In Chapter 6, compared to previous literature™, we identified additional genes under
the control of InuR, while in Chapter 8 we concluded that GalX does not control the
expression of CAZy-encoding genes, and its role is restricted only to the regulation of
sugar metabolism?.

4.3 Insights into gene co-regulation and transcription factor
interactions

The generation and analysis of combinatorial deletion mutants allow for the identification
of co-regulated genes, and can reveal TF interactions during the process of plant biomass
utilization. The co-regulation of CAZy-encoding genes in A. niger was previously studied
only to a limited extent®'7s.

In Chapter 7, the combined analysis of (hemi-)cellulolytic regulators revealed several
cases of gene co-regulation. For instance, the B-galactosidase (LAC) activity was not
abolished in any of the single deletion mutants (Ax/InR, AaraR, AclrA or AcirB). In contrast,
each double mutant with a deleted x/nR showed abolished LAC activity. Similarly,
proteomic results showed the abolished production of the B-galactosidase LacA, which
was only observed in the exoproteome of the quadruple AxiInRAaraRAcIrAAcirB mutant.
Additionally, the single deletion of clrA indicated partial control of BGL and BXL activity
by CIrA. However, data showed that XInR could fully compensate for the loss of CIrA
function in several double and triple deletion strains. In contrast, the single deletion of
clrB showed an unexpected growth improvement on wheat bran, which indicates no
role for this TF in wheat bran utilization. However, the analysis of combinatorial deletion
strains showed that CIrB plays a major role within the regulatory network governing
wheat bran degradation. These results showed the importance of the analysis of
combinatorial TF deletion strains in order to assess the relative role of each TF within
the regulatory network governing plant biomass degradation.

Regarding TF interactions, our data provided more information about the interaction
of the (hemi-)cellulolytic regulators XInR, CIrA and CIrB. Previously, different
activation patterns have been reported for CIrA/CLR-1 and CIrB/CLR-2 in N. crassa
and Aspergillus species’”. Moreover, it has also been shown that XInR controls the
expression of clrA and clrB in A. niger®®, but no interaction between CIrA and CIrB was
suggested in this species. In contrast with the CLR-1 dependent activation of CLR-2
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observed in N. crassa’, in Chapter 5, we showed that the expression of the A. niger
clrA depends on CIrB activity. Based on proteomic data analyzed in Chapter 7, we
showed that XInR contributed the most to wheat bran degradation, which was followed
by CIrB and CIrA, in the corresponding hierarchical order. The relative contribution of
these three TFs to the regulation of (hemi-)cellulose utilization could partly be explained
by sequential activation of CIrA by CIrB, which is in turn regulated by XInR. Therefore,
our data provides a better understanding of TF interactions within the (hemi-)cellulolytic
regulatory network of A. niger.

Previous studies suggested antagonistic interactions between the (hemi-)cellulolytic
regulator XInR and the pectinolytic regulators AraR™ and GaaR®'. In Chapter 8, we
showed evidence of the upregulation of (hemi-)cellulolytic genes when the utilization
of pectin was impaired in the AaraR, AgaaR and AgaaRAaraRArhaRAgalX mutants.
Moreover, the increased expression of (hemi-)cellulolytic genes was also supported by
the highly increased expression of clrB. This shows that the antagonistic effect is not
only restricted to the interactions of XInR and AraR/GaaR, but involves multiple TFs
involved in the complex regulatory network of (hemi-)cellulose and pectin utilization.

The ability of A. niger to adapt its regulatory network to the utilization of alternative
components when the utilization of major polysaccharides is impaired suggests that
this fungus possesses a flexible regulatory network controlling plant biomass utilization.
This is likely a major reason for the high suitability of A. niger for various industrial
applications.

5. Identification of novel transcription factors
involved in plant biomass utilization

The genome of A. niger contains over 500 putative transcription factor-encoding genes,
of which only nine major transcriptional activators (XInR, CIrA, CIrB, GaaR, AraR, RhaR,
GalX, AmyR and InuR) and two repressors (CreA and GaaX) have been identified
to be involved in the regulation of plant polysaccharide utilization. These TFs show
diverse rate of conservation across species. For instance, XInR is conserved in nearly
all filamentous ascomycetes studied so far, while AraR appears to be conserved only
in the order of Eurotiales®. Moreover, the function of conserved TFs can also differ to
a varying extent across species. For instance, CLR-2/CIrB is a conserved TF which
was reported in N. crassa’™ and several Aspergillus®>78 species. However, it shows
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distinct induction pattern between N. crassa and Aspergillus species’, and its regulon
differs even between the closely related A. niger and A. nidulans™. Nevertheless,
the availability of genome sequences has promoted the identification of novel TFs in
different species based on phylogenetic analysis.

A previous study reported the identification of a transcriptional activator of cellulose
utilization in N. crassa, identified as CLR-4%'. Based on sequence homology, we
predicted the NRRL3_04942 (CIrD) as a putative ortholog of N. crassa CLR-4, with
possible involvement in cellulose utilization. Similarly, we investigated the role of
a putative endoxylanase repressor, NRRL3_00417, predicted based on sequence
similarity to the T. reesei SxIR®¥. Besides the phylogenetic approach, a machine
learning-based approach®® that evaluated gene expression profiles originated from
large gene expression datasets generated in this thesis also suggested putative roles in
plant biomass utilization for the CIrD and SxIR candidates in A. niger (data not shown).

The CRISPR/Cas9 system was used to delete both candidate TFs in the A. niger Aku70
(CBS 138852) strain, and the phenotype of the deletion mutant strains was compared
to the A. niger parental strain on several substrates related to their expected functions.
However, based on initial characterization, no function related to (hemi-)cellulose
utilization could be associated with CIrD in A. niger (Figure 5A). Similarly, the deletion
of the sxIR candidate did not result in the expected increase of xylanase activity when
cultivated on wheat bran or beechwood xylan (Figure 5B), and the growth of the AsxIR
mutant was not affected either on these substrates (data not shown). The Asx/R mutant
showed statistically significant increase of endoxylanase activity only when cultivated
on beechwood xylan for 24 h (Figure 5B). However, the increase of activity was minimal,
and the selection of a stricter statistical cut-off value (p < 0.01) would result in no
significant differences between the control and mutant strain.

Interestingly, in Chapter 6 and Chapter 8, transcriptomic data showed high expression
of several putative pectinolytic genes (abnC, NRRL3 10498 and NRR3_3855), when
the substrate utilization was impaired. This could be a result of culture stress, however,
the possibility of the activation of a regulatory back-up system for substrate utilization
mediated by unknown transcription factors cannot be excluded. Although in silico
prediction of TF genes is necessary for the identification of novel TFs, experimental
validation (e.g., generation and analysis of deletion strains) needs to be performed to
identify these genes.
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Figure 5. Phenotypic screening of two putative transcription factor deletion strains. A) Growth
profile results of A. niger control (CBS 138852) and two independent AclrD (N. crassa clr-4 ortholog) strains.
Each plate was inoculated with 1000 freshly harvested conidia, and grown at 30°C for up to 14 days. Each
plate was inoculated in technical duplicates. B) Endoxylanase activity assay of A. niger control (CBS 138852)
and AsxIR (T. reesei sxIR ortholog) strain. Cell-free culture supernatant samples originated from 1% wheat
bran or 1% beechwood xylan after 8 or 24 h incubation in a rotary shaker at 30°C and 250 rpm were used for
this assay. Activity is represented as relative absorbance value measured at 600 nm. Statistically significant
(p <0.05) difference between the control and mutant strain is indicated by (*).

6. Concluding remarks and future work

The regulation of plant biomass degradation in A. niger is controlled by a complex and
intricate system involving the interaction of several TFs in this process. The individual
roles of several major TFs have previously been described, however, their roles within
the regulatory network controlling the degradation of complex agricultural waste
materials remain poorly understood. The analysis of deletion mutants generated in
Chapter 7 and Chapter 8 contributes to the understanding of the combinatorial gene
expression for the utilization of two agro-industrial substrates, wheat bran and sugar
beet pulp, respectively. Additionally, the analysis of omics data showed the adaptation
of A. niger to the utilization of substrate components, even when the degradation of
major polysaccharides was blocked. Moreover, the deletion of major TFs involved in
polysaccharide utilization can reveal putative back-up regulatory mechanisms, which
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can possibly indicate the action of novel TFs involved in this process. The generation
and analysis of a strain carrying the deletion of all nine major transcriptional activators
analyzed in this thesis could provide more information about such back-up regulatory
functions in A. niger. Moreover, the combined deletion of TFs regulating the expression
of CAZy-encoding genes as well as the deletion of the protease regulator gene prtT
can result in strains suitable for cell factories by showing minimal background protein
production.

The application of the CRISPR/Cas9 system for the introduction of various precise
mutations in native A. niger genes showed the possibility to time- and cost-efficiently
engineer strains showing improved (Chapter 3) or altered CAZyme production
(Chapter 4). The utilization of CRISPR/Cas9 system enables new possibilities for
further improvement of CAZyme producer strains. For instance, production could be
improved by placing a constitutively active chimeric TF under the control of a strong
promoter, such as gpdA®. Moreover, on-site fluorescent-tagging of chimeric TFs could
provide more understanding about their localization and functions, however, more
improvements need to be performed in this regard.
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Het toepassen van het CRISPR/Cas9-systeem om het
regulatie netwerk van plantenbiomassa afbraak in
Aspergillus niger te bestuderen

Het CRISPR/Cas9-systeem is in 2012 ontwikkeld als hulpmiddel voor het bewerken van
genen en wordt sindsdien voor verschillende doeleinden toegepast in een breed scala
van organismen, waaronder filamenteuze schimmels (hoofdstuk 2).

Filamenteuze schimmels zijn primaire afbrekers van plantaardige biomassa en spelen
daarom een cruciale rol in de biobased economy. Hiervoor is het begrijpen van
hun mogelijkheden en limities met betrekking tot de afbraak van plantenbiomassa
essentieel. De regulatie van de afbraak van plantenbiomassa in Aspergillus niger wordt
gecontroleerd door een complex en ingewikkeld systeem waarbij de interactie van
meerdere transcriptiefactoren (TF’s) betrokken is die elk de expressie reguleren van
genen die coderen voor koolhydraat afbrekende enzymen (CAZyme). De individuele rol
van verschillende belangrijke TF’s (bijv. XInR en GaaR) zijn eerder beschreven, maar
hun rol binnen het regulerende netwerk dat de afbraak van complexe agro-industriéle
afvalstoffen controleert, blijven slecht begrepen. Hoewel klassieke gendeleties met
homologe recombinatie op grote schaal werden uitgevoerd in A. niger om TF’s te
bestuderen, waren deze methoden beperkt met betrekking tot precieze modificaties
van de endogene TF-coderende genen.

In dit proefschrift werd CRISPR/Cas9-genbewerking zonder markers uitgevoerd om
precieze puntmutaties te genereren (hoofdstuk 3), domeinuitwisseling (hoofdstuk 4)
en gentagging door fluorescerende markers die zich richten op verschillende belangrijke
TF’s die de afbraak van plantenbiomassa codrdineren. In hoofdstuk 3 hebben we de
efficiénte introductie van enkelvoudige nucleotide mutaties in de x/nR- en gaaR-genen
laten zien met zeer korte als reparatietemplates, tot 60-meer-oligonucleotiden. De
resultaten van deze studie toonden aan dat CRISPR/Cas9-gemedieerde introductie
van puntmutaties een tijd- en kostenefficiénte methode is voor het genereren van
stammen die verhoogde enzymproductie en activiteit vertonen. In hoofdstuk 4 hebben
we laten zien dat het CRISPR/Cas9-systeem kan worden gebruikt om op efficiénte
wijze een chimere GaaR-XInR TF te genereren, door het N-terminale gebied van de
pectinolytische TF, GaaR, te fuseren met het C-terminale gebied van de xylanolytische
TF, XInR. De chimere TF toonde inductie van pectinolytische activiteiten in de
aanwezigheid van D-xylose, wat nieuwe mogelijkheden biedt voor enzymproductie op
alternatieve, goedkope agro-industriéle substraten.
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Bovendien werden markervriie CRISPR/Cas9-transformaties uitgevoerd om de
beperkingen van klassieke transformatiemethoden met betrekking tot het aantal
gendeleties te overwinnen. We toonden het genereren van enkele (hoofdstuk 5) of
dubbele (hoofdstuk 6) deletiestammen in een enkele transformatiegebeurtenis, of multi-
deletiestammen (hoofdstuk 7 en 8) door opeenvolgende transformatiegebeurtenissen.
Door CRISPR/Cas9 gemedieerde transformatie met behulp van het AMA1-dragende
plasmide en de daaropvolgende eliminatie door tegenselectie liet geen beperkingen
zien met betrekking tot het aantal genen dat kan worden verwijderd in A. niger.

Bovendien leverde de analyse van transcriptomische of proteomische gegevens
afkomstig van de ouder- en (multi-)deletiestammen van A. niger op agro-industriéle
afvalstoffen meer inzicht in het preferentiéle gebruik van substraatcomponenten. In
hoofdstuk 5, hoofdstuk 7 en hoofdstuk 8 hebben we het vermogen van A. niger
onderzocht om drie agro-industriéle afvalmaterialen, respectievelijk sojabonenschillen,
tarwezemelen en suikerbietenpulp, te gebruiken. Al deze substraten bevatten grote
hoeveelheden cellulose. Daarnaast zijn tarwezemelen rijk aan (arabino)xylaan,
suikerbietenpulp is rijk aan pectine en xyloglucaan, terwijl sojabonen naast xyloglucaan
en pectine aanzienlijke hoeveelheden (galacto)mannaan bevatten. De analyse van
omics-gegevens onthulde de efficiénte aanpassing van A. niger aan het gebruik van
de belangrijkste componenten in elk substraat, zelfs wanneer de afbraak van de
belangrijkste polysachariden werd geblokkeerd.

De gegevens die in dit proefschrift zijn gegenereerd, de kennis uitgebreid over de
individuele rol van en interacties tussen verschillende belangrijke TF’s die betrokken
zijn bij de regulatie van het gebruik van plantenbiomassa. In hoofdstuk 5 hebben we
met behulp van transcriptomische data laten zien dat mannobiose de inductor is van
CIrB in A. niger. Bovendien toonden genexpressiegegevens van cultures op guar gum
en sojabonen de controle van CIrB aan over de expressie van verschillende (galacto)
mannanase-, cellulase-, xyloglucanase- en transporter-coderende genen. Daarnaast
toonden in hoofdstuk 7 proteomische gegevens een belangrijke bijdrage van CIrB aan
het gebruik van tarwezemelen, terwijl in hoofdstuk 8 een vergelijkende groeianalyse
van meerdere enkelvoudige TF-deletiestammen aantoonde dat de deletie van cIrB
resulteerde in de grootste groeivermindering wanneer gegroeid werd op vast medium
met suikerbietenpulp als substraat. Deze gegevens tonen de belangrijke rol van CIrB bij
de afbraak van verschillende ruwe substraten met diverse samenstellingen.

De generatie en analyse van combinatorische deletiemutanten maakte de identificatie
van co-gereguleerde genen mogelijk en onthulde TF-interacties tijdens de omzetting
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van plantenbiomassa. In hoofdstuk 7 onthulde de gecombineerde analyse van
(hemi-)cellulolytische regulatoren verschillende gevallen van co-regulatie van genen
en de relatieve rol van elke TF binnen het regulerende netwerk dat de afbraak van
tarwezemelen regelt. Met betrekking tot TF-interacties hebben we in hoofdstuk 5 laten
zien dat de expressie van A. niger clrA afhankelijk is van ClrB-activiteit. Bovendien
toonden de proteomische data geanalyseerd in hoofdstuk 7 aan dat XInR het
sterkst bijdroeg aan de afbraak van tarwezemelen, gevolgd door CIrB en CIrA, in de
overeenkomstige hiérarchische volgorde. De relatieve bijdrage van deze drie TF’s aan
de regulering van het gebruik van (hemi-)cellulose kan gedeeltelijk worden verklaard
door de opeenvolgende activering van ClrAdoor CIrB, dat op zijn beurt wordt gereguleerd
door XInR. Daarom bieden onze gegevens een beter begrip van TF-interacties binnen
het (hemi-)cellulolytische regulerende netwerk van A. niger.

Eerdere studies suggereerden antagonistische interacties tussen de (hemi-)
cellulolytische regulator XInR en de pectinolytische regulatoren AraR en GaaR. In
hoofdstuk 8 hebben we bewijs geleverd van de opregulatie van (hemi-)cellulolytische
genen wanneer het gebruik van pectine verminderd was in de AaraR-, AgaaR- en
AgaaRAaraRArhaRAgalX-mutanten. Bovendien werd de verhoogde expressie van
(hemi-)cellulolytische genen ook ondersteund door de sterk verhoogde expressie van
clrB. Dit toont aan dat het antagonistische effect niet alleen beperkt is tot de interacties
van XInR en AraR/GaaR, maar ook betrekking heeft op meerdere TF’s die betrokken
zijn bij het complexe regulerende netwerk van (hemi-)cellulose en pectinegebruik. Het
vermogen van A. niger om zijn regulerend netwerk aan te passen aan het gebruik van
alternatieve componenten wanneer het gebruik van belangrijke polysachariden wordt
geblokkeerd, suggereert dat deze schimmel een flexibel regulerend netwerk bezit dat
het gebruik van plantenbiomassa regelt. Dit is waarschijnlijk een belangrijke reden voor
de hoge geschiktheid van A. niger voor verschillende industriéle toepassingen.

Ten slotte ondersteunen de gegevens beschreven in dit proefschrift ook de observatie
dat fenotypes van vaste en vloeibare culturen niet direct kunnen worden vergeleken.
In hoofdstuk 8, ondanks de sterke groeivermindering veroorzaakt door de deletie
van clrB wanneer gekweekt op vast medium dat suikerbietenpulp bevatten, kon de
dominante rol van CIrB in het gebruik van dit substraat niet worden ondersteund door
exoproteoom- of genexpressie-analyse van vloeibare culturen. Vergelijkbare resultaten
werden waargenomen in hoofdstuk 6, waar gegevens de betrokkenheid van AmyR
bij het gebruik van inuline aantoonden, alleen kwamen van kweken op vaste media.
Hoewel het bestuderen van de kenmerken van vloeibare schimmelculturen waardevol
is voor industriéle toepassingen, vertegenwoordigen deze niet het natuurlijke gedrag
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van de schimmel.

Samengevat laten de resultaten die in dit proefschrift worden beschreven zien dat
verschillende toepassingen van het CRISPR/Cas9-systeem voor de ontwikkeling van
TF’s diede regulatie van het gebruik van plantenbiomassa controleren, en de analyse
van verschillende TF’s op netwerkniveau in A. niger mogelijk maakten. Bovendien kan
de deletie van belangrijke TF’s die betrokken zijn bij het gebruik van polysachariden
vermeende back-upregulerende mechanismen aan het licht brengen, die mogelijk
kunnen wijzen op de werking van nieuwe TF’s die bij dit proces zijn betrokken. Bovendien
kan de gecombineerde deletie van TF’s die de expressie van CAZyme-coderende genen
reguleren, evenals de deletie van het protease-regulatorgen prtT resulteren in stammen
die geschikt zijn voor celfabrieken met een verminderde productie van achtergrondeiwit.
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A CRISPR/Cas9 rendszer alkalmazasa
az Aspergillus niger novényi biomassza
lebontasat iranyité regulaciés halézatanak
tanulmanyozasara

A CRISPR/Cas9 rendszert el6szor 2012-ben alkalmaztak génszerkeszté eszkodzként,
€s azota is kulonféle célokra hasznaltak élélények széles kdrében, beleértve a fonalas
gombakat is (2. fejezet).

A fonalas gombak a ndévényi biomassza els6dleges lebontdi, ezért kulcsszerepet
jatszanak a bioalapu gazdasagban. Ehhez elengedhetetlen a névényi biomassza
lebontasaval kapcsolatos képességeik és hataraik megértése. A névényi biomassza
lebontasat Aspergillus niger-ben egy komplex rendszer szabalyozza, amely magaban
foglalja a szénhidrat aktiv enzimeket (CAZyme) kddold gének expresszidjat szabalyozo
transzkripcids faktorokat (TF). Szamos kulcsfontossagu TF (példaul XInR és GaaR)
egyéni szerepét korabban leirtak, azonban funkcidjuk a komplex 6sszetétell agraripari
hulladékanyagok lebontasat iranyité regulacios halézaton belll tovabbra sem teljesen
ismert. Az A. niger-ben széles korben végeztek szelekcidos marker alapu homoldg-
rekombinacidval jaré klasszikus géndeléciokat a TF-ek tanulmanyozasara, azonban
hasonlé transzformaciés metdédusok korlatozottak voltak az endogén TF-eket kodold
gének preciz médositasainak céljara.

Ebben a kutatasban szamos markermentes CRISPR/Cas9 génszerkesztést
végeztunk, beleértve preciz pontmutaciokat (3. fejezet), doméncserét (4. fejezet) és
gének fluoreszcens markerekkel valo jeldlését, amelyek szamos ndévényi biomassza
lebomlasat iranyité TF-eket érintettek. A 3. fejezetben egyetlen nukleotid mutaciok
hatékony bevezetését mutattuk be az xInR és gaaR génekben, akar 60 bazisbdl
allo oligonukleotidok hasznalataval. A tanulmany eredményei azt mutattak, hogy a
markermentes CRISPR/Cas9 transzformalas egy id6- és koltséghatékony modszer
fokozott enzimtermelést és aktivitast mutatd torzsek létrehozasara, egyszeri
pontmutaciok bevezetése altal. A 4. fejezetben megmutattuk, hogy a CRISPR/
Cas9 rendszer hatékonyan hasznalhaté egy GaaR-XInR kiméra TF létrehozasara, a
pektinolitikus TF, GaaR N-termindlis régiéjanak és a xilanolitikus TF, XInR C-terminalis
régidjanak kombinalasaval. A kiméra TF pektinolitikus aktivitast mutatott D-xiloz
jelenlétében, Uj lehet8ségeket kinalva az enzimtermeléshez, olcsé alternativ agraripari
szubsztratumokon.
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Ezeken kivil, tovabbi markermentes CRISPR/Cas9 transzformacidkat végeztiink
delécios mutansok generalasara is, lektizdve a klasszikus transzformacios modszerek
korlatait a géndelécidk szamat illetéen. Megmutattuk az egyszeres (5. fejezet) vagy a
dupla (6. fejezet) delécios torzsek létrehozasat egyetlen transzformalas altal, vagy a
tobbszoros delécids torzsek (7. és 8. fejezet) létrehozasat tébb transzformacios 1épés
altal. Az AMA1-et hordozé plazmid alapu CRISPR/Cas9 transzformalas altal, majd
ennek a plazmidnak a kontraszelekcioval torténé eliminalasaval nem tapasztaltunk
korlatokat az A. niger-ben deletalhatd gének szamat illetéen.

Ezen eredményeken kivil, az agraripari hulladékanyagokon ndvesztett A. niger szul6i
és (multi-)delécios torzsekbdl szarmazd transzkriptomikai vagy proteomikai adatok
elemzése betekintést nyujtott a szubsztratum komponensek preferencialis hasznalataba.
Az 5., 7. és 8. fejezetben felmértiik az A. niger képességét harom mezégazdasagi
hulladékanyag, a szdjabab héj, a buzakorpa és a cukorrépapép hasznositasara. Ezek a
szubsztratumok nagy mennyiségi cellulézt tartalmaznak 0sszetételiikben. Raadasul, a
buzakorpa (arabino)xilanban, a cukorrépapép pektinben és xiloglukanban gazdag, mig
a szoOjabab héj a xiloglukan és a pektin mellett jelentés mennyiségli (galakto)mannant
is tartalmaz. Az omikai adatok elemzése bemutatta, hogy az A. niger az id6 folyaman
alkalmazkodott az egyes szubsztratumok komponenseinek hasznositasahoz, akkor is,
ha a fébb poliszacharidok lebomlasat iranyitd regulacios halézat blokkolva volt.

Ebben a tézisben leirt adatok bévitették a ndvényi biomassza lebontéds szabalyozasaban
részt vevd jelentésebb TF-ek egyéni szerepeirdl és kdlcsdnhatasairdl sz6lo ismereteket.
Az 5. fejezetben transzkriptomikai adatok felhasznalasaval bemutattuk, hogy A. niger-
ben a mannobiéz indukalja a CIrB TF-t. A guargumin és sz6jabab héjon ndvesztett
tenyészetekbdl szarmazé transzkriptomikai adatok azt mutattak, hogy a CIrB szabalyozza
szamos (galakto)mannanaz-, cellulaz-, xiloglukanaz- és transzporter-k6dolé gének
expressziojat. Ezenkivil, a 7. fejezetben, a proteomikai adatok azt mutattak, hogy
a CIrB jelentés mértékben hozzajarul a buzakorpa hasznositasahoz. Raadasul, a 8.
fejezetben tobb TF delécios torzseknek a komparativ ndvekedési kisérlete azt mutatta,
hogy a cIrB delécidja eredményezte a legszignifikdnsabb ndvekedés csokkenést
cukorrépapépet tartalmazo szilard taptalajon. Ezek az adatok igazoljak a CIrB fontos
szerepét szamos kilonbdz6 dsszetételll nyers agraripari szubsztratum lebontasaban.

A kombinatorikus deléciés mutansok generalasa és elemzése lehetévé tette a ko-
regulalt gének azonositasat, és feltart szamos TF koélcsOnhatasokat a ndvényi
biomassza hasznositasanak folyamata soran. A 7. fejezetben a (hemi)cellulolitikus
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TF-ek relativ szerepét tarta fel a buzakorpa lebomlasat szabalyozé halézaton bellil.
A TF kolcsdnhatasokat illetéen az 5. fejezetben megmutattuk, hogy az A. niger cirA
expresszidja a CIrB aktivitasatdl fligg. Ezenkivll, a 7. fejezetben elemzett proteomikai
adatok azt mutattak, hogy leginkabb az XInR jarult hozza a buzakorpa lebontasahoz,
amelyet a CIrB és a CIrA kdvetett, a megfeleld hierarchikus sorrendben. Ennek a harom
TF-nek a relativ hozzajarulasa a (hemi)cellul6z hasznositas szabalyozasahoz részben
a CIrA-nak a CIrB altali szekvencialis aktivalasaval magyarazhatd, amelyet viszont az
XInR szabdlyoz. Kévetkezésképpen, adataink jobban ravilagitanak az A. niger (hemi)
cellulolitikus szabalyozé halézatan bellli TF kdlcsdnhatasokra.

Korabbi tanulmanyok antagonista kolcsdnhatasokat javasoltak a (hemi)cellulolitikus
regulator XInR és a pektinolitikus regulatorok AraR és GaaR kozott. A 8. fejezetben
bemutattuk a (hemi)cellulolitikus gének expresszidjanak ndvekedését, amikor a
pektin hasznosulasa korlatozva volt a AaraR, AgaaR és a AgaaRAaraRArhaRAgalX
mutansokban. Ezenkivil, a (hemi)cellulolitikus gének fokozott expresszidjat a cirB
expresszidjanak ndvekedése is tamogatta. Ez azt mutatja, hogy az antagonista hatas
nem csak az XInR és az AraR/GaaR kdélcsOnhatéasaira korlatozodik, hanem tobb
TF-t is érint, amelyek részt vesznek a (hemi)cellul6z és pektin hasznositas komplex
szabalyozasi halézataban. Az A. niger képessége, hogy a regulaciés haldzatat az
alternativ komponensek hasznositasahoz tudja igazitani, amikor a f6bb poliszacharidok
lebontasa korlatozott, arra utal, hogy ez a gomba egy rugalmas szabalyozasi halézattal
rendelkezik a ndvényi biomassza hasznositasara. Valoszinlileg, ez az egyik f6 oka
annak, hogy az A. niger kivaléan alkalmas kulonféle ipari alkalmazasokra.

Végll, az ebben a tézisben ismertetett adatok alatamasztjak azt a megfigyelést is, hogy
a szilard és folyékony kultdrak fenotipusai nem koézvetleniil 6sszehasonlithatdak. A 8.
fejezetben a cIrB delécioja altal okozott, cukorrépapépet tartalmazé szilard kultirakon
megfigyelt nagymértékii ndvekedés csokkenés ellenére, a CIrB dominans szerepe
a cukorrépapép hasznositasaban nem volt alatamaszthaté a folyékony kulturakbol
szarmazo6 adatokkal. Hasonlé eredményeket figyeltink meg a 6. fejezetben is, ahol
az adatok az AmyR szerepét jelezték az inulin hasznositdsban, amit csak a szilard
taptalajon novesztett tenyészetekbdl szarmazoé adatok igazoltak. Habar a folyékony
kulturak jellemzbinek tanulmanyozasa értékes az ipari alkalmazasokhoz, ezek nem
reprezentaljdk a gomba természetes viselkedését.

Osszességében, ezen dolgozatban ismertetett eredmények bemutattadk a CRISPR/
Cas9 rendszer kulonféle alkalmazésait a névényi biomassza hasznositasat szabalyozo
TF-ek moédositasara, és lehetdveé tették tobb TF haldzati szintli elemzését A. niger-
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ben. Ezen tulmenéen, a poliszacharid hasznositasban részt vevd 6 TF-ek delécioja
tovabbi, Uj TF-ek szerepét tarhatja fel a szabalyozasi hal6zatban. Véguil, a CAZyme-t
kédold gének expresszidjat szabalyozd TF-ek kombinalt delécidja, valamint a proteaz
regulatort kodold gén, prtT tovabbi delécidja olyan korlatozott hattérfehérje-termeléssel
rendelkezé platform torzseket eredményezhet, amelyek alkalmasak lehetnek ipari
termelésre.
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