
Articles
https://doi.org/10.1038/s41561-022-00999-y

1Oceanographic Institute, University of São Paulo, São Paulo, Brazil. 2Climate Change Research Centre, The University of New South Wales, Sydney,  
New South Wales, Australia. 3ARC Centre of Excellence for Climate Extremes, The University of New South Wales, Sydney, New South Wales, Australia.  
4Centre for Southern Hemisphere Oceans Research CSHOR, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia. 5School of Earth and 
Environment, University of Leeds, Leeds, UK. 6Centre for Earth System Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, 
Japan. 7Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany. 8NASA/GISS, Columbia CCSR, Columbia 
University, New York, NY, USA. 9Department of Physics, University of Toronto, Toronto, Ontario, Canada. 10Faculty of Life and Environmental Sciences, 
University of Tsukuba, Tsukuba, Japan. 11NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway. 12Laboratoire des 
Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ Université Paris-Saclay, Gif-sur-Yvette, France. 13Key Laboratory of Cenozoic 
Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. 14Department of Physical Geography 
and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden. 15National Center for Atmospheric Research, Boulder, CO, USA. 
16Department of Geosciences, College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT, USA. 17Institute for Marine and Atmospheric 
research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands. ✉e-mail: gabrielpontes@usp.br

El Niño/Southern Oscillation (ENSO) warm (El Niño) and cold 
(La Niña) events cause substantial changes in weather patterns 
and ocean circulation, impacting agriculture, fisheries, coral 

bleaching and cyclogenesis, among a host of other impacts1. Given 
its pronounced socioeconomic impacts and potential predictability 
of a few seasons in advance, ENSO has been under intense investiga-
tion2. Whether and how ENSO changes in response to greenhouse 
gases and other external forcing may be studied by investigat-
ing past, present and future climates with palaeoreconstructions, 
instrumental records, theory and numerical simulations. There is a 
lack of consensus among climate models in general as to how ENSO 
variability will respond to future warming3,4, although models that 
better capture ENSO nonlinearity tend to simulate enhanced vari-
ability in the eastern equatorial Pacific5 and increased frequency of 
extreme events6,7. These changes in ENSO properties are linked to 
changes in the Pacific mean state marked by a weakened Walker 

circulation, increased upper-ocean stratification, reduced zonal 
sea surface temperature (SST) gradient and equatorially enhanced 
warming that causes the intertropical convergence zone (ITCZ) to 
be displaced equatorward7–9.

Studies based on palaeoreconstructions have also suggested 
that ENSO activity is sensitive to the mean climate. A synthesis 
of mid-Holocene (~6 thousand years ago (ka)) records indicates 
a 33% reduction in ENSO amplitude in the eastern Pacific during 
this period10. ENSO activity over the past millennium was shown 
to be weaker when compared with the past half century11, poten-
tially suggesting global warming-related changes. Furthermore, 
there is evidence of significantly reduced ENSO variability during 
the Last Glacial Maximum12 (~21 ka). Proxy data for the Pliocene 
(~5 to ~3 million years ago (Ma)) are controversial with regard to 
tropical Pacific changes13–16. A Pliocene El Niño-like mean state has 
been hypothesized to reduce ENSO variability17, although there is 
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The El Niño/Southern Oscillation (ENSO), the dominant driver of year-to-year climate variability in the equatorial Pacific 
Ocean, impacts climate pattern across the globe. However, the response of the ENSO system to past and potential future tem-
perature increases is not fully understood. Here we investigate ENSO variability in the warmer climate of the mid-Pliocene 
(~3.0–3.3 Ma), when surface temperatures were ~2–3 °C above modern values, in a large ensemble of climate models—the 
Pliocene Model Intercomparison Project. We show that the ensemble consistently suggests a weakening of ENSO variability, 
with a mean reduction of 25% (±16%). We further show that shifts in the equatorial Pacific mean state cannot fully explain 
these changes. Instead, ENSO was suppressed by a series of off-equatorial processes triggered by a northward displacement 
of the Pacific intertropical convergence zone: weakened convective feedback and intensified Southern Hemisphere circula-
tion, which inhibit various processes that initiate ENSO. The connection between the climatological intertropical convergence 
zone position and ENSO we find in the past is expected to operate in our warming world with important ramifications for 
ENSO variability.
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evidence of significant interannual variability during this period18,19, 
whose magnitude could be comparable to the late Holocene20. As 
such, tropical Pacific mean-state changes during the Pliocene and 
how they have impacted ENSO activity remain uncertain.

Palaeoclimate studies have suggested that the mid-Pliocene 
Warm Period (mPWP; ~3.3 Ma) might be a useful analogue to the 
end-of-century climate because of the warming magnitude21–23. 
The mPWP was marked by warmer SSTs of up to 9 °C and 4 °C in 
the Northern Hemisphere and Southern Hemisphere, respectively, 
compared with pre-industrial times22 (~1850), with orbital forc-
ing and elevated atmospheric CO2 concentrations similar to pres-
ent day (~400 ppm) while polar ice was reduced23. Partly motivated 
by the similarities between the mPWP and scenarios of future 
projected warming, the Pliocene Model Intercomparison Project 
(PlioMIP)24,25 initiative was developed. Here we examine the broad 
PlioMIP ensemble, including phases 1 and 2 with a total of 25 mod-
els (Extended Data Tables 1 and 2), to better understand how ENSO 
activity might change in warmer climates.

Reduced ENSO amplitude
The PlioMIP ensemble simulates significant reduction in the vari-
ability of SST anomalies across most of the global tropics in the 
mPWP compared with pre-industrial (Fig. 1a; see Extended Data 
Fig. 1 for PlioMIP1). Although there are notable changes in the 
Indian and Atlantic oceans26, the most pronounced weakening 
occurs in the equatorial Pacific, where reduced SST variability in the 
eastern basin (Niño3 region) is simulated by 21 out of 23 PlioMIP 
models (including PlioMIP1 and 2). Considering PlioMIP2 mod-
els only, there is a multimodel mean amplitude reduction of 25% 
(±16% standard deviation; Fig. 1b).

Separating the Niño3 variability change into interannual (<10 yr) 
and longer timescale components shows that all but one model  

simulation reduced amplitude in the interannual band (Extended 
Data Fig. 2), a timescale that is dominated by ENSO. In addition, 
75% (17 out of 23) of the models suggest a shift towards lower fre-
quencies as indicated by either an increased amplitude at low fre-
quency (>10 yr) or a more pronounced weakening at interannual 
than on longer timescales. In this Article, due to data availability, 
our analysis is performed on the last 100 years of each model’s simu-
lation, making the decadal analysis more uncertain.

Role of equatorial Pacific Ocean changes
ENSO dynamics are dominated by equatorial processes, which are 
influenced by the background state27. Although the PlioMIP models 
simulate an amplified eastern Pacific warming (Fig. 2a), there are 
large intermodel differences in this pattern, as indicated by incon-
sistent changes in the zonal SST difference28 (Extended Data Fig. 3). 
Of particular importance for ENSO dynamics are changes in equa-
torial thermal gradients in the mixed layer5,6,29.

First, we evaluate changes in the thermocline slope, which plays 
an important role in ENSO dynamics. Stronger (weaker) westward 
equatorial currents are associated with increased (decreased) east–
west thermocline slope6. The thermocline slope better represents 
the resultant effect of changes in zonal equatorial ocean dynamics 
than does the zonal SST gradient in the PlioMIP models, as reflected 
in a higher intermodel correlation with ENSO amplitude change  
(Fig. 2b and Extended Data Fig. 3). Models with a steeper mean 
thermocline in the mPWP are typically associated with larger ENSO 
amplitude reductions, while a flatter mean thermocline is associated 
with either a slight increase or a weak decrease in ENSO variability 
(rs = −0.43; Fig. 2b). This indicates that an equatorial Pacific mean 
state with a steeper thermocline, which is associated with intensified 
trades and westward surface currents, is less favourable for strong 
ENSO variability. Under such a ‘La Niña-like’ mean state, stronger 
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Fig. 1 | Simulated mid-Pliocene tropical variability changes. a, Multimodel mean change in the amplitude (standard deviation) of SST anomaly (SSTa) 
variability in the PlioMIP2 models (see Extended Data Fig. 1 for PlioMIP1 models). SST anomaly is obtained through removing the mean seasonal cycle. Stippling 
indicates locations where there is significant model agreement (at least 70%) in the sign of the change. b, Change in the amplitude (standard deviation) of the 
Niño3 time series in each PlioMIP model. Red box in the eastern Pacific in a indicates the Niño3 region. Map created using the Basemap library for Python.

NatUre Geoscience | VOL 15 | September 2022 | 726–734 | www.nature.com/naturegeoscience 727

http://www.nature.com/naturegeoscience


Articles Nature Geoscience

initial anomalies are required to weaken the climatological condi-
tions sufficiently for El Niño development6.

Another mean-state factor that can affect ENSO develop-
ment is the equatorial upper-ocean stratification5. In particular, 
western-central equatorial Pacific stratification influences the vari-
ability of strong ENSO events through changes in the dynamical 
ocean–atmosphere coupling. As such, we evaluate ocean stratifica-
tion in the central-western Pacific, a region where wind anomalies 
trigger oceanic Kelvin and Rossby waves, which influence ENSO 
genesis30. Models with decreased ocean stratification are typically 
associated with larger ENSO reductions, while weaker reductions 
occur in models where ocean stratification increases (Fig. 2c). 
Given that over half of the models show increased stratification, this 
relationship cannot explain the consistent decrease in ENSO across 
the ensemble. Similarly, the fact that many models show a decrease 
in thermocline slope indicates that this is not the underlying cause 
for ENSO amplitude reduction. In summary, while changes in 
the thermocline and stratification help explain intermodel differ-
ences in ENSO amplitude changes, it appears that other processes 
that apply across models are required for the overall weakening of 
ENSO variability.

Off-equatorial Pacific changes
While ENSO development is closely related to zonal equatorial 
dynamics27, ENSO events are also affected by a variety of other 
large-scale processes beyond the equatorial Pacific7,31,32. For exam-
ple, changes to the mean meridional SST gradient or processes in the 
extratropics can play an important role in triggering ENSO events. 
In particular, all PlioMIP models simulate a weaker Equator-to-pole 
temperature gradient associated with polar amplified warming33.

We first evaluate the role of meridional SST gradients through 
possible displacements of the ITCZ in the mPWP. Southward 
(northward) ITCZ displacements, due to reduced (increased) 
off-equatorial SST gradients, affect ENSO activity through increased 
(reduced) probability of occurrences of deep convection in the 
central-eastern equatorial Pacific8,34. Here we show that a mean 
northward ITCZ shift during austral spring–summer, developing 
and mature ENSO phases, is strongly related to the ENSO weak-
ening across models (rs = −0.64; Fig. 3a). This scenario increases 
convergence throughout the tropical North Pacific that sup-
presses anomalous convergence feedback at the Equator (Extended  
Data Fig. 4). To further illustrate this effect, we evaluate models’ 
performance in simulating the nonlinear relationship between SST 
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Fig. 3 | ITCZ–ENSO relationship. a, PlioMIP2 intermodel relationship between the change in the Niño3 amplitude and mean ITCZ shift from October 
to February. Green star indicates values obtained from observations by comparing periods 1979–1999 and 2000–2020. The correlation coefficient was 
evaluated considering PlioMIP models only. b, Relationship between December–January–February (DJF) Niño3 SST anomalies and DJF Niño3 rainfall for 
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(Methods): GISS-E2-1-G (c), CESM2 (d), MRI-CGCM2.3 (e), NorESM1-F (f), CCSM4-1deg (g) and CCSM4-2deg (h). Pre-industrial simulation in blue and 
Pliocene in yellow.
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anomalies and precipitation events in the eastern Pacific (Methods 
and Extended Data Fig. 5). Six models correctly simulate this 
characteristic and indicate that the further north the mean ITCZ 
migrates, the less probable are occurrences of deep convection 
events in the eastern Pacific associated with ENSO SST anomalies 
(Fig. 3). The ITCZ shift can fully explain ENSO weakening across 
these wix models (rs = 0.94; Extended Data Fig. 6).

This PlioMIP result is analogous to the reduced ENSO activity in 
the past two decades, which corresponded with a more northward 
position of the ITCZ35 (Fig. 3a). The multi-decadal period pre-
2000 was marked by enhanced ENSO variability while post-2000, 
it has been reduced by 21%36,37, resulting in weaker rainfall events 
in the eastern Pacific (Fig. 3b). This reduction has been attributed 
to a negative phase of the Interdecadal Pacific Oscillation38 with 
enhanced trade winds and surface ocean currents, which resembles 
a La Niña-like mean state with the Pacific ITCZ displaced north-
wards. Consistently, the PlioMIP models indicate a larger reduc-
tion in ENSO activity when shifted towards a La Niña-like mean 
state (Fig. 2b).

We also evaluate possible changes to other processes that are 
favourable for initiating ENSO events, such as the reversal of the 
easterly trade winds in the western Pacific39. In the PlioMIP mod-
els, the annual mean intensification of the western Pacific trade 
winds corresponds with weaker wind variability over this region 
(Fig. 4a). Climatologically stronger easterly trades tend to inhibit: 
(1) the stochastic forcing of westerly wind bursts in the western 
Pacific40 that triggers the positive thermocline feedback; (2) south-
ward shifts of the ITCZ through positive wind–evaporation–SST 
feedback34, which cools the equatorial Pacific Ocean, increasing 
the meridional SST gradient; and (3) eastward displacements of the 
Walker circulation.

Further, we evaluate patterns of variability that promote wind 
anomalies in the western Pacific and contribute to the develop-
ment of El Niño events. First, the South Pacific meridional mode 

(SPMM), analogue to the North Pacific meridional mode (NPMM), 
is initiated by the weakening of off-equatorial southeast trade winds 
in the eastern Pacific. This alters the latent heat flux, triggering a 
wind–evaporation–SST feedback that propagates wind anomalies 
into the tropics32. We find that all but two PlioMIP2 models simu-
late decreased SPMM variability in the mPWP (Fig. 4b). Equivalent 
changes in the NPMM are not consistent across models and do not 
help explain ENSO changes (Extended Data Fig. 7).

Finally, extreme El Niño events are amplified by an anomalous 
zonal pressure dipole in the Southern Hemisphere31. In such con-
dition, an anomalous high pressure over Australia facilitates cold 
surges through the Coral Sea (the Southern Hemisphere booster 
(SHB))31, which promote westerly wind bursts in the western Pacific 
conducive for El Niño development. This meridional wind variabil-
ity in the SHB region also decreases in 10 out of 12 PlioMIP2 models 
(Fig. 4c). All these changes are associated with reduced probability of 
El Niño initiation, which results in weaker ENSO activity. It is impor-
tant to note that a northward ITCZ shift probably had a major effect 
on ENSO triggers from the Southern Hemisphere due to changes in 
the large-scale atmospheric circulation, as we evaluate next.

Large-scale forcing
The Pacific ITCZ–ENSO relationship demonstrated in the pre-
vious section can be a result of either a large-scale global ITCZ 
shift modulating ENSO or a local response of the Pacific ITCZ to 
changes in ENSO activity. The PlioMIP models indicate that the 
northward ITCZ shift during the mPWP occurs in all basins, as 
indicated by anomalous meridional dipoles in rainfall across the 
global tropics (Fig. 5a; see Extended Data Fig. 8 for PlioMIP1). In 
addition, the PlioMIP models systematically simulate asymmetric 
polar amplified warming in both hemispheres (Fig. 5b), which can 
give rise to large-scale changes in the meridional temperature gra-
dient and affect the ITCZ position through changes in atmospheric 
heat fluxes41.
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It is important to note that increased rainfall south of the Equator 
in the eastern Pacific may be a result of double-ITCZ bias in the 
PlioMIP models9,42. A more consistent northward ITCZ shift across 
the tropical North Pacific is evident through increased low-level 
wind convergence (Extended Data Fig. 4), which indicates that 
increased precipitation in the eastern Pacific is probably a result of 
the thermodynamic effect over the double-ITCZ region43.

The ITCZ northward shift is not consistent with the equato-
rial warming (Fig. 2a), which would otherwise tend to shift the  
ITCZ southwards. To assess the role of the large-scale SST warming  

patterns in the ITCZ shift, we performed sensitivity experi-
ments using an atmospheric general circulation model (AGCM; 
the National Center for Atmospheric Research Community 
Atmospheric Model version 4 (CAM4)). Here the AGCM is forced 
with PlioMIP climatological SSTs, which allow us to isolate changes 
in atmospheric circulation from changes in ocean–atmosphere vari-
ability, such as ENSO. Note that the mPWP climatological-mean 
warming pattern, used to force the atmospheric model, may still 
contain some nonlinear influence of ENSO changes, but this effect 
is negligible (Methods).
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In the present climate, during austral summer, increased inso-
lation in the Southern Hemisphere results in intensification of the 
Northern Hemisphere Hadley circulation, northward energy flux 
across the Equator (energy-flux-Equator), and southward ITCZ 
shift41. In the mPWP, the AGCM simulates decreased northward 
energy-flux-Equator during the austral summer (Fig. 5c). Due to 
the mutual relationship between changes in the energy-flux-Equator 
and ITCZ position, a decreased northward energy-flux-Equator 
is accompanied by a northward ITCZ shift in agreement with a 
recent PlioMIP2 study44. Higher rates of warming in the Northern 
Hemisphere drive an intensification and northward expansion 
of the Southern Hemisphere Hadley cell and weaker circulation 
in the Northern counterpart (Fig. 5d; see Extended Data Fig. 8  
for PlioMIP1), which reduces the atmospheric energy input from 
the Southern Hemisphere to the Northern Hemisphere during the 
austral summer.

The AGCM experiments suggest that the meridional displace-
ment of the ITCZ is a global feature of the PlioMIP simulations and 
occurs due to the extratropical warming. The experiments indicate 
an overall decrease in the northward atmospheric heat transport 
in the Northern Hemisphere and a slight increase in the south-
ward heat transport in the Southern Hemisphere (Fig. 5c), which 
initially points to changes in pole-to-pole temperature gradient. 
One of the most robust features of the mPWP simulations is the 
asymmetric polar amplified warming (Fig. 5b), which increases the 
inter-hemispheric temperature gradient and was caused by reduced 
sea-ice volume45. However, whether the mPWP ITCZ shift was 
driven by sea-ice changes needs to be further investigated.

The large-scale changes in the meridional circulation probably 
induce changes in horizontal circulation. In the Pacific Ocean, the 
PlioMIP models indicate that a northward ITCZ shift is signifi-
cantly related to intensified western Pacific trades (Fig. 5d), which 
is analogous to synchronized shifts of the Walker and Hadley circu-
lations during different ENSO phases46. An analysis of the low-level 
circulation indicates that the anomalously stronger western trades 
in the mPWP are sourced at the subtropical South Pacific due to an 
intensified circulation of the South Pacific subtropical-high system 
(Fig. 5e,f; see Extended Data Fig. 7 for PlioMIP1). These changes 

are not exclusive to the South Pacific but occur in all ocean basins 
(Fig. 5f). The synchronized changes in the meridional and zonal 
atmospheric circulation are probably a result of global changes in 
atmospheric heat fluxes during the warmer mPWP. This illustrates 
a possible influence of changes in global atmospheric dynamics on 
ENSO in a warmer climate.

Implications for past and future climates
The results presented here suggest a link between reduced 
ENSO amplitude and the northward shift of the ITCZ in the 
mPWP, associated with stronger climatological circulation in the 
Southern Hemisphere (Fig. 6). The northward shift of the ITCZ 
reduces the probability of ENSO-related rainfall events in the 
eastern Pacific. Northward ITCZ shift and intensified Southern 
Hemisphere Hadley and subtropical circulations are a response 
to enhanced Northern Hemisphere warming via energetic con-
straints for the ITCZ position41 (Fig. 6). This intensified Southern 
Hemisphere circulation reduces wind variability in the western 
Pacific, may suppress zonal sea-level pressure anomalies imposed 
by the SPMM and the SHB and weakens and shifts the South 
Pacific convergence zone polewards47, reducing its interaction 
with equatorial processes (Fig. 6). As such, the climatological 
stability imposed by intensified tropical Southern Hemisphere  
circulation acts to increase ENSO stability, as ENSO, by defini-
tion, is a deviation from the mean climate, and thus stronger 
climatological circulations can be viewed as unfavourable to 
ENSO-induced changes10.

In addition to the reduced ENSO amplitude, SST variability in 
other tropical basins also decreases (Fig. 1a). This may also con-
tribute to weakened ENSO variability via pan-tropical teleconnec-
tions related to a delayed and weaker negative feedback48, although 
reduced variability in other tropical basins itself might also be a 
consequence of reduced ENSO variability. Ref. 26 reported that  
all PlioMIP1 models simulate reduced tropical North Atlantic vari-
ability associated with a warming of this basin and a northward 
Atlantic ITCZ shift. Taken together, these results suggest that a 
northward shift of the global ITCZ may mute tropical Pacific and 
Atlantic SST variability.
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Fig. 6 | Schematic of the drivers of suppressed ENSO activity in the mPWP. A northward ITCZ shift reduces the probability of occurrence of deep 
convection in the central-eastern Pacific. Energetic constraints for the ITCZ position indicate that higher rates of warming in the Northern Hemisphere 
drive a northward ITCZ shift and enhanced Southern Hemisphere Hadley circulation. These changes are also associated with intensified surface 
subtropical high and western Pacific trades. Enhanced trade winds suppress wind variability in the western Pacific, which is important for El Niño initiation. 
An intensified subtropical high is thought to impede zonal pressure anomalies across the tropical South Pacific and, thus, suppress the activity of the 
SPMM and SHB, which are important for the development of strong El Niño events. Map created using MATLABⓇ.
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Our results are subject to a number of uncertainties in the 
simulations tied to sparse and limited proxy data, which are used 
to constrain the PlioMIP experiments, and systematic climate 
model biases49. Changes in the inter-hemispheric SST gradient, for 
example, could be affected by uncertainties in the extension of the 
mPWP ice sheets50, poor representation of certain polar feedbacks51 
(interactive land–ice), climate sensitivity52 and biases in tropical 
convection and SST of the climate models, such as double ITCZs42 
and an overly strong cold tongue. Despite different model biases,  
we show that the current generation of climate models simulate 
consistent changes to ENSO related to shifts in the ITCZ position 
in the mPWP.

Palaeoclimate states may have particular relevance as analogues 
for the future climate. However, our findings indicate that, although 
the mPWP warming is comparable to that projected for the end of 
the twenty-first century under a ‘business as usual’ scenario (~3 °C) 
(ref. 21), the simulated mPWP ENSO response is the opposite of 
that projected8,11. An important factor in this difference is that the 
mPWP represents an equilibrium climate, albeit with similar CO2 
levels as today. If equilibrium conditions are of particular impor-
tance, this suggests that a more Pliocene-like climate might be 
possible if present-day CO2 concentrations were to be maintained 
constant and a steady state is reached. However, the current rate of 
atmospheric CO2 rise is unprecedented in Earth’s history, resulting 
in warming trends that differ compared with past regimes. Thus, 
relating past and future warmings is not straightforward. Here 
evaluating the empirically based mPWP warming, we find that a 
northward ITCZ shift suppresses ENSO activity. If this relation-
ship can be applied to the twenty-first-century projections where a 
southward shift of the Pacific ITCZ is projected7, then an increase in 
ENSO variability5 appears to be a potential outcome.
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Methods
Models and data. A total of 9 PlioMIP1 and 16 PlioMIP2 models were analysed. 
See Extended Data Table 1 for a list of the models included in our analysis. The 
number of models used in each analysis varies according to data availability in the 
PlioMIP1 and PlioMIP2 databases. The last 100 years of each model’s simulation is 
used. We additionally use observational SST and precipitation from the Extended 
Reconstructed Sea Surface Temperature version 5 and Global Precipitation 
Climatology Project datasets, respectively.

PlioMIP1 and 2 protocols. PlioMIP phases 1 and 2 apply rather similar boundary 
conditions (Extended Data Table 2). Nonetheless, there were significant differences 
at some regional locations, which can potentially affect large-scale climate24,25. Both 
phases applied an mPWP land–sea mask, but PlioMIP2 land–sea mask accounts 
for glacial isostatic adjustments and changes dynamic topography. This resulted in 
a subaerial Canadian Archipelago, Bering Strait and emergence of Sunda and Sahul 
shelves in the Indonesia and Australia region. Phase 2 models also applied soils  
and lakes reconstructions and a newer reconstruction of the Greenland ice sheet 
that now accounts for a 70% retreat, instead of the 50% retreat applied in phase 1.  
These reconstructions were derived from the US Geological Survey PRISM 
dataset, specifically, the most recent and fourth iteration of the reconstructions 
(PRISM4)53. In PlioMIP2, modelling groups could use either the reconstructed 
vegetation54, same as PlioMIP1, or the dynamic model vegetation option. COSMOS 
was the only model among PlioMIP2 participants to use dynamic vegetation. CO2 
concentrations were set to 405 and 400 ppm in phases 1 and 2, respectively. For a 
detailed description of each model’s implementation, see refs. 55–74 (Extended Data 
Table 1). Beyond differences in boundary conditions, there are also fundamental 
differences in the conception of PlioMIP2 versus PlioMIP1. Although both phases 
have not applied changes in orbital parameters, phase 1 was designed to simulate  
a time-averaged global SST reconstruction between 3.0 and 3.3 Ma, while phase 2  
focuses on a narrower time slice (Marine Isotope Stage KM5c at 3.205 Ma) with 
almost identical orbital parameters to modern.

Statistical significance of the changes. This is measured through model 
agreement on the sign of the change. This method is based on a binomial 
distribution of equal probability (P = q = 0.5). Here we consider that all models 
have an equal probability of simulating positive and negative changes in the 
mPWP simulation. As such, the cumulative probability distribution function of a 
binomial distribution of N = 9 (PlioMIP1) and N = 16 (PlioMIP2) models shows 
that the 95% probability level is reached when there is a model agreement on 
the sign of the change of 7 and 11 models, respectively. In addition, we use the 
non-parametric Spearman rank-correlation test (rs) to determine whether there is 
a monotonic relation between two variables. Note that the assumption of sample 
independence may not be completely satisfied, given that climate models share 
common components and physical equations. In addition, the CESM family of 
models may be overrepresented in the PlioMIP ensemble; however, the differing 
results obtained among their simulations may allow us to consider these models 
independent. To illustrate that, we performed a sensitivity analysis where each 
model from the CESM family was considered at a time when computing the 
Spearman rank correlation for the relationship shown in Fig. 3a. The coefficients 
ranged from −0.55 (P = 0.01) to −0.63 (P = 3 × 10–3).

ENSO amplitude. The standard deviation of Niño3 index is used to represent 
ENSO amplitude. The Niño3 index is calculated from SST anomalies averaged  
over the eastern Pacific region between 5° N and 5° S latitude and between  
150° W and 90° W longitude. SST anomalies were computed by removing the  
mean annual cycle.

Frequency separation. The amplitude of low-frequency variability (>10 yr) is 
evaluated through the variance of the 11 yr running mean Niño3 time series in 
each model. The amplitude of the interannual period is estimated as the variance 
of the residual time series, that is, original Niño3 time series subtracted from the 
Niño3 decadal time series.

Thermocline slope. Thermocline slope is the difference between mean eastern 
(5° S–5° N; 150° W–90° W) and western (5° S–5° N; 160° E–150° W) Pacific 
thermocline depths. The thermocline depths are computed from the mean 
temperature profile in each of the boxes indicated in the preceding. This is the 
weighted average depth, based on depths in which the temperature gradients are 
greater than 50% of its maximum.

Equatorial Pacific Ocean stratification. This is the difference between the mean 
temperature in the top 75 m and the temperature at 100 m from 150° E to 140° W 
(as indicated in Fig. 2a).

Pacific ITCZ position. The ITCZ position45 is taken as the average latitudes over 
which precipitation in the tropical Pacific Ocean (20° S–20° N) is greater than 50% 
of the maximum zonally averaged precipitation over 120° E–90° W. This method 
may consider the double-ITCZ bias42 if the double-ITCZ associated precipitation 
is greater than 50% of the maximum. The double-ITCZ bias is an artificial feature 

produced by most climate models that overestimates the tropical precipitation 
south of the Equator. Here we define the ITCZ bias as the difference between 
simulated pre-industrial Pacific ITCZ position and the observed position averaged 
from 1979 to 2020. Although the PlioMIP models suffer from double-ITCZ bias 
(mean bias: -4.1° ± 2.1° s.d.), we do not find a statistically significant relationship 
with ENSO amplitude changes (rs = –0.16; P = 0.45). Note that the ITCZ bias is 
evaluated by comparing the pre-industrial model simulations with modern climate, 
which is already under the influence of global warming.

Criteria for model selection. Models were selected according to their ability to 
simulate ENSO nonlinear characteristics8. Models were required to be able to 
simulate December–January–February Niño3 precipitation greater than 5 mm d–1 
and Niño3 precipitation skewness greater than 1 in the pre-industrial control run. 
These criteria underscore the essential definition of an extreme El Niño8, which is 
fundamental to the ENSO system in observations75. Out of 14 PlioMIP2 models, 6 
models met these criteria (Extended Data Fig. 5). The skewness criterion filters out 
models that systematically simulate overly wet and dry conditions in the eastern 
equatorial Pacific. Such biases tend to reduce rainfall skewness in the models as 
they simulate SSTs well below or above the convective threshold of 26–28 °C (ref. 76),  
affecting Niño3 precipitation variability.

Atmospheric subtropical high systems. Quantifying the intensity of the 
subtropical highs is not a simple task when dealing with different climate 
backgrounds (+2–3 K) as the global pressure weakens in a warmer atmosphere. 
To overcome this pressure issue, we compute the stream function at 850 hPa to 
identify the position and intensity of the subtropical high systems. The stream 
function can be derived from the geostrophic balance:

f × v = −

1
ρ
∇Hp

where ∇H, v = (ug, vg), p, f  and ρ denotes the horizontal gradient, velocity vector, 
pressure, Coriolis function and density, respectively. Knowing that for a fluid of 
horizontally uniform density, the geostrophic flow in an f-plane is non-divergent, 
that is

∂ug
∂x +

∂vg
∂y = 0 for ρ = ρ0 (g) and f = f0 = 2Ωsinθ,

we can define a stream function that yields to

ug = −

∂ψ
∂y = −

1
ρ0f0

∂p
∂y and vg =

∂ψ
∂x =

1
ρ0f0

∂p
∂x

Note that in the Southern Hemisphere, increased pressure gradients over 
geostrophic flows result in intensified anticyclonic circulation (negative stream 
function).

SPMM amplitude. SPMM amplitude is computed as the amplitude (standard 
deviation) of mean SST anomalies from 15° S to 25° S and from 110° W to 120° W.

NPMM amplitude. NPMM amplitude is computed as the amplitude (standard 
deviation) of mean SST anomalies from 20° S to 25° S and from 142° W to 138° W.

SHB amplitude. SHB amplitude is computed as the amplitude (standard  
deviation) of meridional wind anomalies from 10° S to 30° S and from 140° E  
to 170° E.

CAM4 experiments. We undertook four experiments, with multiple ensemble 
members, using the National Center for Atmospheric Research CAM4: (1) 
mean mid-Pliocene SST and sea-ice forcing from PlioMIP1. PlioMIP1 SST and 
sea-ice were time and ensemble averaged to force the CAM4 model; (2) mean 
pre-industrial SST and sea ice as simulated by PlioMIP1 models for comparison; 
experiments 3 and 4 consisted of repeating experiments 1 and 2 but with PlioMIP2 
SST and sea ice. For each experiment, five ensemble members were integrated with 
slightly different initial conditions: each ensemble member was initialized from a 
different day of the year. The CO2 forcing was kept as pre-industrial at 280 ppm, 
and no changes over continental areas were made in all experiments. Each 
experiment was run for 31 years. The first year of each simulation was discarded 
due to the atmospheric spin-up. To check whether nonlinearities in ENSO affected 
the mean SST change, we compared the multimodel mean mPWP warming during 
all years and during non-ENSO years only. Differences in the tropical Pacific were 
approximately two orders of magnitude (<0.05 K) lower than the mean tropical 
Pacific warming (~2 K).

Data availability
PlioMIP2 data (with exception of IPSL-CM6A and GISS2.1 G) are available upon 
request to Alan M. Haywood (a.m.haywood@leeds.ac.uk). PlioMIP2 data from 
CESM2, EC-Earth3.3, NorESM1-F, IPSL-CM6A and GISS2.1 G can be obtained 

NatUre Geoscience | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


Articles Nature Geoscience

directly through the Earth System Grid Federation repository (ESGF; https://
esgf-node.llnl.gov/search/cmip6/). Observational SST and precipitation data  
can be found in the NOAA-USA (NOAA Extended Reconstructed SST version 5) 
and NCAR-USA (Global precipitation climatology project) online repositories, 
respectively.

Code availability
Computer codes are available at https://github.com/gmpontes/Nature_Geoscience_
ENSO_ITCZ_PlioMIP.git or upon request to the corresponding author.
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Extended Data Fig. 1 | Change in amplitude of Sea Surface Temperature anomalies in the PlioMIP1 models. SST anomalies were computed by removing 
the mean annual cycle. Amplitude is defined as the standard deviation of the SST anomaly timeseries. Stippling indicates where the change is significant at 
the 95% level. Map created using the Basemap library for Python.
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Extended Data Fig. 2 | Mid-Pliocene changes in eastern Pacific SST variability by frequency bands. Percentage change in Niño3 (5°N-5°S; 150°-90°W) 
standard deviation separated by interannual (dark blue) and low-frequency (>10 yr; light blue) variability. The amplitude of low-frequency oscillations is 
evaluated through the variance of the 11-year running mean Niño3 time series in each model. The amplitude of the interannual period is estimated as the 
variance of the residual time series, that is, original Niño3 timeseries subtracted from the Niño3 decadal timeseries.
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Extended Data Fig. 3 | Relationship between ENSO amplitude change and zonal SST difference. Zonal SST change evaluated as the difference between 
the cold tongue (5°S-5°N; 120°W-100°W) and warm pool regions (5°S-5°N; 150°E-170°E) in the equatorial Pacific. PlioMIP1 models are represented by 
magenta squares while PlioMIP2 models are represented by red circles.
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Extended Data Fig. 4 | Changes in the low-level wind (850hPa) divergence. a PlioMIP1 and b PlioMIP2 from preindustrial. Stippling indicates where 
changes are significant at the 95% level. A consistent increased convergence in the tropical North Pacific indicates a northward ITCZ shift across the 
Pacific Ocean. Maps created using the Basemap library for Python.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | ENSO non-linear characteristics for each PlioMIP2 model. Relationship between Niño3 SST anomalies (x-axis, °C) and Niño3 
rainfall (y-axis, mm/day) for the last 100 years of the pre-industrial control simulation of each model. Observed relationship was computed from GPCP 
and ERSSTv5 datasets from 1979 to 2020. Models that simulate rainfall skew greater than 1 and rainfall anomalies greater than 5 mm/day are marked with 
a ‘red star’.
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Extended Data Fig. 6 | ITCZ-ENSO relationship for selected models. Relationship between the change in the Niño3 amplitude and the mean 
October-to-February ITCZ shift for the models that correctly captured ENSO non-linear characteristics.
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Extended Data Fig. 7 | North Pacific Meridional Mode amplitude change. Simulated change in the amplitude of the North Pacific Meridional Mode.
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Extended Data Fig. 8 | Atmospheric circulation changes for PlioMIP1 models. a multi-model mean DJF precipitation change (mPWP minus 
pre-industrial). Stippling indicates where changes are significant at the 95% level. b Changes in the meridional streamfunction in the AGCM experiment 
forced with climatological PlioMIP1 SST and sea-ice (see Methods). c multi-model mean change in low-level (850 hPa) winds and streamfunction. Wind 
changes are only plotted where there is a significant change at the 95% level. Map created using the Basemap library for Python.
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Extended Data Table 1 | Models used in the present study

For more information on how each modelling group has applied the PlioMIP boundary conditions and performed the numerical simulation, please see their respective referenced study.

NatUre Geoscience | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


ArticlesNature Geoscience

Extended Data Table 2 | PlioMIP phases 1 and 2 boundary conditions

LSM: land-sea mask. Topo: topography. Ice: land-ice. *MRI-CGCM2.3 was the only model that could not apply the enhanced reconstruction from PRISM4 and, thus, applied the previous, standard, 
reconstruction.
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