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A B S T R A C T   

Glycosaminoglycans are linear periodic and anionic polysaccharides found in the extracellular matrix, involved 
in a range of key biochemical processes as a result of their interactions with a variety of protein partners. Due to 
the template-less synthesis, high flexibility and charge of GAGs, as well as the multipose binding of GAG ligands 
to receptors, the specificity of GAG-protein interactions can be difficult to elucidate. In this study we propose a 
set of MD-based descriptors of unbound Heparan Sulfate hexasaccharides that can be used to characterize GAGs 
and explain their binding affinity to a set of protein receptors. With the help of experimental data on GAG-protein 
binding affinity, we were able to further characterize the nature of this interaction in addition to providing a 
basis for predictor functions of GAG-protein binding specificity.   

1. Introduction 

Glycosaminoglycans (GAGs) are a family of naturally-occurring 
linear periodic and anionic polysaccharides whose building blocks are 
repeating disaccharide units composed of an amino sugar and an uronic 
acid or hexose (Esko et al., 2009). Depending on their exact dimeric unit 
composition and their glycosidic linkages, several classes of GAGs can be 
distinguished: Heparan Sulfate (HS), Heparin (HP), Dermatan Sulfate 
(DS), Chondroitin Sulfate (CS), Keratan Sulfate (KS), and Hyaluronic 
Acid (HA). Heparan Sulfate (HS), composed of alternating N-actetyl
glucosamine (GlcNAc) and glucuronic acid (GlcA) residues (Esko et al., 
2009), is found often covalently attached to proteins of the extracellular 
matrix and plasma membrane, forming proteoglycans (PGs). HS is 
known to be involved in key biological processes, including cell division 
(Ughy et al., 2019) and differentiation (Kraushaar et al., 2012; Patel 
et al., 2008; Yokoyama et al., 2020), angiogenesis (Zhang et al., 2014), 
coagulation (Ho et al., 1997), viral infection (Clausen et al., 2020; Yue 

et al., 2021), neuron growth (Brickman et al., 1998; Johnson et al., 
2007), as well as tumor proliferation (Hendriks et al., 2005) and 
metastasis (Qazi et al., 2016). 

HS can undergo (selective) de-N-acetylation and N-sulfation of its 
GlcNAc residues, epimerization of GlcA to iduronic acid (IdoA), as well 
as sulfation by O-sulfotransferases on the 2-O position of its uronic acid 
(C2 of the uronic acid) and of the 6-O and 3-O positions of GlcNAc 
residues (Esko et al., 2009). While 3-O-sulfation is the rarest of all HS 
modifications, constituting only about 0.5% of the total sulfation 
(Huang et al., 2015; Pejler et al., 1987), 3-O-sulfotransferases (3-OSTs) 
represent the largest family of enzymes modifying HS polysaccharide 
chains (Thacker et al., 2014). This may indicate that 3-OSTs in coop
eration with other HS-modifying enzymes produce HS molecules that 
are unique and therefore engage in highly-specific interactions with 
proteins (Chopra et al., 2021). 

The specificity of GAG-protein binding has been studied extensively 
before for a variety of complexes (Gama et al., 2006; Gama and 
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Hsieh-Wilson, 2005; Joseph et al., 2015; Künze et al., 2021; Liu et al., 
2002; Pichert et al., 2012; Rogers et al., 2011; Sankarayanarayanan 
et al., 2017; Schlorke et al., 2012). In some cases, the only parameter 
that affects the strength of such interactions is GAG charge, which makes 
them entirely electrostatically-driven and, therefore, unspecific (Hintze 
et al., 2014; Koehler et al., 2017; Panitz et al., 2016; Rother et al., 2016). 
However, a considerable number of GAG-protein complexes rely on 
specific interactions (Almond, 2018; Guerrini et al., 2008; Künze et al., 
2021; Pomin and Mulloy, 2015; Sage et al., 2013). A number of proteins 
have been identified as receptors of 3-O-sulfated HS molecules partici
pating in specific interactions, including Antithrombin III (Guerrini 
et al., 2008), Neuropilin 1 (Thacker et al., 2016), Stabilin 2 (Pempe 
et al., 2012), Advanced Glycosylation End-Product Receptor (Thacker 
et al., 2014) and growth factors such as Fibroblast Growth Factor 7 (Luo 
et al., 2006). Anomalies of 3-O-Sulfation have been implicated in 
tumorigenesis (Denys and Allain, 2019), renal fibrosis (Ferreras et al., 
2019), and tauopathies relating to Alzheimer’s Disease (Zhao et al., 
2020). 3-O-suflated HS molecules on cell surfaces also participate in 
viral infections (O’Donnell and Shukla, 2008). Taken together, the 
characteristics of HS and their interactions with proteins, as well as 
involvement in essential biological pathways render them promising 
and interesting targets in medicine. 

Although significant research has been conducted on this topic, the 
template-less synthesis and resulting structural complexity of HS mole
cules complicates studies of their interaction with proteins. While 
research on GAG-protein specificity concentrates mostly on the GAG- 
binding sites of proteins (Jokiranta et al., 2005; Li et al., 2016; Mor
gan et al., 2015; Mosier et al., 2012; Multhaup, 1994; Pratt and Church, 
1992; Sarkar and Desai, 2015; Sun et al., 2001; Taylor et al., 1995; Witt 
and Lander, 1994), it has been also observed that the sequence (Irie 
et al., 2002; Raghuraman et al., 2010, 2006; Sankaranarayanan et al., 
2015; Sankaranarayanan and Desai, 2014; Shworak et al., 1994), sul
fation degree and pattern (Ashikari-Hada et al., 2009; Irie et al., 2002; 
Kinnunen et al., 1996; Nakato and Kimata, 2002; Patel et al., 2008; Pye 
et al., 2000; Stringer and Gallagher, 1997; Viviano et al., 2004), chain 
length (Patel et al., 2008; Viviano et al., 2004) and, to a lesser degree, 
the conformation (Guglier et al., 2008) of GAGs generally and HS spe
cifically can contribute to binding specificity. 

The aim of this study was to inspect and analyze the specificity of HS- 
protein interactions employing computational approaches. To this end, 
we applied molecular dynamics (MD) simulations as well as a standard 
Machine Learning Algorithm (MLA) to examine 27 3-, 6-, and 3,6-O- 
sulfated HS molecules characterized and studied by (Chopra et al., 
2021), followed by linear regression and cluster analysis in order to 
assess the connection between characteristics of unbound HS molecules 
and the specificity of binding to their protein partners. The analyzed 
dataset of 27 HS molecules with clearly defined sequences and sulfation 
patterns presents an unique opportunity to gain insight regarding the 
influence of specific differences in sulfation modifications on the 3D 
structure and physico-chemical characteristics of these molecules during 
Molecular Dynamics simulations. Those, in turn, can be linked to the 
affinity between the analyzed HS molecules and a set of proteins known 
to bind HS with different specificity. The application of a simple and 
well-known unsupervised MLA, Principal Component Analysis (PCA), 
enabled us to characterize the unbound HS molecules individually, but 
also the interplay between the proposed molecular descriptors in the 
context of GAG-protein binding. The investigation of the behavior of 
unbound HS molecules during MD simulations at atomistic level, that is 
not accessible using most experimental approaches, was supported and 
complemented by information gained from experiments (Chopra et al., 
2021). Taken together, both approaches helped to overcome the limi
tations of either of them when applied alone and allowed us to identify 
characteristics of unbound HS molecules that could be linked with 
confidence to differences in binding affinity for a set of HS-protein 
complexes. This knowledge may prove useful in drug design of HS 
molecules exhibiting traits in line with our findings. In particular it 

could suggest modifications of the GAG sequence that would lead to the 
appropriate conformations of the unbound HS with a higher propensity 
of binding their protein partners. Hence, our data assist in enabling the 
design and synthesis of specific HS molecules for potential use in 
regenerative medicine, cancer treatment and the prevention and treat
ment of viral infections. 

2. Materials and methods 

2.1. Heparan sulfate and protein dataset 

In our study, we considered the library of 27 HS hexasaccharides 
previously synthesized and analyzed by (Chopra et al., 2021). The 
synthetic HS molecules, constructed from 9 different backbone tem
plates, differed in the modification of their central GlcNAc residue 
(3-O-Sulfation, 6-O-Sulfation, 3,6-O-Sulfation) (sequences detailed in  
Table 1). In order to conduct simulations via computational methods, 
the 27 HS molecules were built in the xLeap module of AMBER16 (Case 
et al., 2016) and described with the GLYCAM06 force field parameters 
(Kirschner et al., 2008). The two building blocks of the analyzed HS 
hexasaccharides are shown in Fig. 1. The exact placement of the sulfate 
groups along the GAG influences the strength of electrostatic interaction 
in GAG-protein complexes and represents a “sulfation code” assumed to 
regulate the specificity of interactions with proteins (Gama and 
Hsieh-Wilson, 2005). 

The analyzed HS molecules were named 1A, 1B, 1C to 9A, 9B, 9C in 
accordance with the naming scheme in (Chopra et al., 2021). The names, 
detailed in Table 1, reflect the position of the sulfate group on the 
GlcNAc residue (“A”: 3,6-O-sulfation, “B”: 3-O-sulfation, “C”: 6-O-Sul
fation) and the sequence of the 3 residues varying between the 27 
oligosaccharides. 

Binding affinity data between the 27 HS hexasaccharides and a set of 
nine functionally diverse proteins known to recognize 3-O-sulfation to 
varying degrees was taken from (Chopra et al., 2021). The nine proteins 
considered are: Antithrombin III (ATIII), Heparin Cofactor 2 (HC-II), 
Fibroblast Growth Factor 7 and 9 (FGF-7, FGF-9), Fibroblast Growth 
Factor Receptor I (FGFR-I), Neuropilin 1 (Nrp-1), Bone Morphogenic 
Protein 2 (BMP-2), Stabilin 2 (Stab-2), Advanced Glycosylation 
End-Product Receptor (RAGE). The interaction study between HS mol
ecules and the nine proteins presented in (Chopra et al., 2021) is the first 
such study examining the interaction selectivity for the set of HS hex
asaccharides of clearly defined sequences and specific sulfation patterns 
along the GAG. All nine proteins are known to interact with HS and are 
involved in key biochemical processes connected to cell-cell signalling, 
e.g. angiogenesis, immunity, axon guidance, embryonic development. 
The study by (Chopra et al., 2021) is thus a particularly exclusive dataset 
that can be studied in order to elucidate the variability in binding af
finity and selectivity of specific HS molecules and a wide range of their 
protein partners. 

2.2. Molecular dynamics 

Molecular dynamics (MD) simulations of the 27 unbound HS hex
aseccharides were carried out in AMBER16 (Case et al., 2016; Götz et al., 
2012) with the GLYCAM06 (Kirschner et al., 2008) force field in order to 
obtain descriptors of the oligosacchrides with possible predictive power 
in relation to their binding affinity and specificity. 

Each of the 27 molecules was solvated in a TIP3P octahedral periodic 
box with minimum distance between solute and box edge of 15.0 Å and 
neutralized with counterions (Na+). For every hexasaccharide, two en
ergy minimization steps were carried out (first 1.5 × 103 steepest 
descent cycles and 103 conjugate gradient cycles with harmonic force 
restraints on solute atoms, followed by 6 × 103 steepest descent cycles 
and 3 × 103 conjugate gradient cycles without restraints). Subsequently, 
the system was heated up to 300 K for 10 ps with harmonic force re
straints of 100 kcal/mol Å− 2 on solute atoms, and equilibration for 50 ps 
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at 300 K and 105 Pa in isothermal isobaric ensemble (NPT). A 100 ns 
productive MD run was carried out in an NPT ensemble. The SHAKE 
algorithm (Ryckaert et al., 1977), 2 fs time integration step, 8 Å cutoff 
for non-bonded interactions, and the Particle Mesh Ewald method 
(Darden et al., 1993) were used. 

2.3. Descriptors of unbound HS molecules 

Based on the MD trajectories of each unbound HS, a set of physico- 
chemical properties (“descriptors”) was analyzed in the PTRAJ (Roe 
and Cheatham, 2013) module of AMBER16 using default parameters 
(Table 2). Restricting the descriptors to only those relating to intra
molecular characteristics of the HS was done with the goal to discover 
what properties of the unbound molecules are putatively linked to the 
binding affinity. In case those descriptors are identified, one can argue 
that while the synthesis of HS molecules in vivo is template-less, the 
cellular machinery is required to ensure certain characteristics and 
modifications of HS molecules in vivo in order for the molecules to be 
able to interact specifically with their protein partners. The inclusion of 
other descriptors to be obtained from MD simulation of HS complexes 
with proteins as well as descriptors of the HS-binding sites on the pro
teins should also be considered, as these would likely enhance the in
formation gained from computational studies of these unbound HS 
oligosaccharides. Nevertheless, it can be assumed that the characteris
tics of unbound HS molecules are likely to affect the binding affinity to 
proteins in the extracellular matrix, as the long GAGs naturally occur
ring in cells would possibly have substantially limited flexibility in vivo 
to ensure correct complex formation with proteins (Sattelle et al., 2015; 
Spencer et al., 2010). Therefore, it is likely that certain characteristics of 
HS have to be already encoded and ensured in their unbound state, thus 

likely to be observed in the preference of certain values of the 
physico-chemical descriptors analyzed in this study. 

To detect groups of highly correlated descriptors, Pearson product- 
moment correlation coefficients were computed for the descriptor 
dataset and plotted as a heatmap. The correlation analysis was used as a 
guide in feature selection. 

2.4. Machine learning and correlation analysis 

The descriptor dataset was standardized prior to applying MLAs. The 
feature extraction and selection approaches were used to reduce the 
dimensionality of the original dataset and to uncover patterns in the 
descriptor dataset that could later be linked to the binding affinity of HS- 
protein complexes. 

PCA of the descriptor dataset of unbound HS molecules was carried 
out in python 3.8.5 using the scikit-learn library (ver. 0.24.2) (Pedregosa 
et al., 2011). PCA is a type of unsupervised machine learning technique 
used in a variety of fields to reduce the dimensionality of large datasets 
as well as to reduce noise and extract patterns from the data. The 
approach works by transforming a matrix of correlated variables into a 
new coordinate system of uncorrelated variables called Principal Com
ponents (PCs) which are linear combinations of the initial ones and 
capture the essential information from the original dataset. We applied 
PCA to the descriptor dataset to create a lower-dimensional dataset of 
PCs that explain most of the variability in the MD-derived descriptors. 
Each PC can be seen as a summary of a set of variables that captures the 
physico-chemical character shared by the descriptors that contribute the 
most to the given PC. Because the construction of the PCs did not include 
any information on the HS-protein binding affinity, the obtained PCs 
only describe the character of the unbound HS oligosaccharides 

Table 1 
Sequences of the 27 Heparan Sulfate molecules; differences in sequence between the HS types are marked in bold.  

1A: GlcA–GlcNS6S–GlcA–GlcNS3S6S–GlcA–GlcNS6S 4A: GlcA–GlcNS6S–GlcA–GlcNS3S6S–IdoA–GlcNS6S 7A: GlcA–GlcNS6S–GlcA–GlcNS3S6S–IdoA2S–GlcNS6S 
1B: GlcA–GlcNS6S–GlcA–GlcNS3S–GlcA–GlcNS6S 4B: GlcA–GlcNS6S–GlcA–GlcNS3S–IdoA–GlcNS6S 7B: GlcA–GlcNS6S–GlcA–GlcNS3S–IdoA2S–GlcNS6S 
1C: GlcA–GlcNS6S–GlcA–GlcNS6S–GlcA–GlcNS6S 4C: GlcA–GlcNS6S–GlcA–GlcNS6S–IdoA–GlcNS6S 7C: GlcA–GlcNS6S–GlcA–GlcNS6S–IdoA2S–GlcNS6S 
2A: GlcA–GlcNS6S–IdoA–GlcNS3S6S– GlcA–GlcNS6S 5A: GlcA–GlcNS6S–IdoA–GlcNS3S6S–IdoA–GlcNS6S 8A: GlcA–GlcNS6S–IdoA–GlcNS3S6S–IdoA2S–GlcNS6S 
2B: GlcA–GlcNS6S–IdoA–GlcNS3S–GlcA–GlcNS6S 5B: GlcA–GlcNS6S–IdoA–GlcNS3S–IdoA–GlcNS6S 8B: GlcA–GlcNS6S–IdoA–GlcNS3S–IdoA2S–GlcNS6S 
2C: GlcA–GlcNS6S–IdoA–GlcNS6S–GlcA–GlcNS6S 5C: GlcA–GlcNS6S–IdoA–GlcNS6S–IdoA–GlcNS6S 8C: GlcA–GlcNS6S–IdoA–GlcNS6S–IdoA2S–GlcNS6S 
3A: GlcA–GlcNS6S–IdoA2S–GlcNS3S6S–GlcA–GlcNS6S 6A: GlcA–GlcNS6S–IdoA2S–GlcNS3S6S–IdoA–GlcNS6S 9A: GlcA–GlcNS6S–IdoA2S–GlcNS3S6S–IdoA2S–GlcNS6S 
3B: GlcA–GlcNS6S–IdoA2S–GlcNS3S–GlcA–GlcNS6S 6B: GlcA–GlcNS6S–IdoA2S–GlcNS3S–IdoA–GlcNS6S 9B: GlcA–GlcNS6S–IdoA2S–GlcNS3S–IdoA2S–GlcNS6S 
3C: GlcA–GlcNS6S–IdoA2S–GlcNS6S–GlcA–GlcNS6S 6C: GlcA–GlcNS6S–IdoA2S–GlcNS6S–IdoA–GlcNS6S 9C: GlcA–GlcNS6S–IdoA2S–GlcNS6S–IdoA2S–GlcNS6S  

Fig. 1. The possible modifications of the HS building 
blocks in this study. All the HS molecules are made up of 
repetitive disaccharide units containing an uronic acid 
(glucuronic acid, GlcA or iduronic acid, IdoA) and N- 
acetyl-glucosamine, GlcNAc derivative. A) Glucuronic acid 
can undergo reversible epimerization to iduronic acid. B) 
Possible sulfation modifications of N-acetyl-glucosamine 
on its 3-O and 6-O positions (semi-transparent licorice 
representation) as well as the 2-O sulfation position of 
iduronic acid.   
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simulated using MD. 
As an alternative approach, Pearson correlation was used to assess 

the relationship between each individual descriptor and the HS-protein 
binding affinity. The values of each descriptor measured during the MD 
simulation were correlated with the binding affinity values for each 
complex individually to investigate which descriptors can be assumed to 
be most strongly linked with HS-protein binding strength and whether 
differences can be observed between complexes that can be attributed to 
the character and specificity of the binding. A descriptor was considered 
to be significantly associated with the binding affinity data if the p-value 
of the t-test for the correlation was below the α = 0.05 significance level. 

2.5. Linear regression analysis 

Linear regression analysis was carried out in R (stats base package) 
with the purpose of determining the strength of the link between the 
computed PCs and HS-protein binding affinity data as given in (Chopra 
et al., 2021). To evaluate the usefulness of the PCA-based approach, for 
each HS-binding protein, the first four PCs of the dataset were used in a 
matching linear regression analysis. 

Statistical significance and comparisons of regression models were 
conducted using the t-test and F-test. The cutoff for statistical signifi
cance used equals α = 0.05; p-values of the t-test for the independent 
variables (PCs) below the α level were considered statistically signifi
cant. The F-tests were used to assess how well the regression models fit 
the data. R2 (coefficient of determination) values were reported for each 
linear regression model to describe the amount of variance in the target 
variable (HS-binding affinity for each protein) accounted for by the in
dependent variables. 

2.6. Statistical and cluster analysis 

Statistical analyses were carried out in R version 3.6.3 (R Core Team, 
2020) (descriptive statistics of the descriptor dataset, Pearson correla
tion calculations using the “psych” package version 2.1.9 (Revelle, 
2021)) as well as python 3.8.5 using numpy 1.19.5 (Harris et al., 2020) 
and pandas 1.2.2 (McKinney et al., 2010). Cluster analysis via 

Hierarchical Clustering was carried out for the Pearson correlation co
efficients between PCs (“scoring function”) and the binding affinity data 
in python using seaborn 0.11.1 (Waskom, 2021). 

2.7. Visualization 

Visualization was carried out in python using matplotlib 3.3.4 
(Hunter, 2007) and seaborn 0.11.1 (Waskom, 2021). 

3. Results 

The descriptors of unbound HS hexasaccharides analyzed during the 
MD simulation are summarized in Supplementary Table 1. 

3.1. MD simulation analysis 

The properties of the 27 HS molecules throughout the MD simulation 
were analyzed and summarized in terms of the major descriptors. The 
evolution over time for Root Mean Square Deviation (RMSD) with 
respect to the starting conformation, radius of gyration and molecule 
length (end-to-end distance) are shown in Fig. 2 for molecules 1A, 1B, 
1C, which were chosen as representatives for the analysis of these de
scriptors for two reasons. First, all the three different analyzed modes of 
sulfation (3,6-O-, 3-O-, and 6-O-sulfation) can be found in 1A, 1B and 1C, 
respectively. Moreover, the majority of the analyzed hexasaccharides 
behaved throughout the MD simulation in a manner qualitatively 
indistinguishable from these three HS molecules. Therefore, the evalu
ation whether the MD simulation reached convergence and the analysis 
of the descriptors over time is described in greater detail for 1A, 1B and 
1C, as well as for any of the other molecules if their behavior over time 
during the MD was clearly different than for the majority of analyzed HS 
hexasaccharides. Supplementary Figs. 1–3 show the behavior over time 
for RMSD, radius of gyration, and end-to-end distance for all 27 simu
lated HS hexasaccharides. Upon inspecting the changes of descriptors 
over time for the 27 HS (Fig. 2 and Supplementary Figs. 1–3), it can be 
seen that the MD simulation converged, i.e. the simulated system 
reached its equilibrium state. 

Table 2 
MD-derived descriptors of unbound HS molecules used in the study.  

No. Descriptor Symbol (Units) Explanation 

1.–8. Fraction of formed H-bonds Hbond[0/1/2/3/4/5/6/7] 
(no unit) 

Sum of fraction of MD-simulation frames where 0/1/2/3/4/5/6/7 intramolecular H- 
bonds were formed by atoms of the HS molecule 

9. Radius of gyration R_gyration (Å) A measure of elastic stability (resistance to deformation of shape and conformation) of 
the HS molecule; compactness of the molecule 

10. Dipole moment Dipole (e * Å) The dipole moment: a measure of the polarity of a molecule 
11. Molecule length Length (Å) Length of the molecule in Å defined as the distance between two terminal atoms 
12.– 

19. 
Dihedral angles of glycosidic 
linkages 

glycosidic_[1min1/1min2/3min1/ 
3min2/5min1/5min1/2 min/4 min] 
(no unit) 

The distribution of dihedral angles of each glycosidic linkages defined as O5n+1-C1n+1- 
O4n-C4n and C1n+1-O4n-C4n-C5n, where n is the sequential number of the sugar 
monomeric unit; 
Specifically, the percentage of points in the distribution of the dihedral angles that belong 
to a minimum 

20. glycosidic_percent (%) Total percentage of points of the dihedral angle distribution that belong to minima 
21.–26. Fluctuation of HS 

monosaccharide units 
fluct_[r1/r2/r3/r4/r5/r5] 
(Å) 

Root mean square fluctuation analysis of atoms of HS residues 

27.–28. Ring pucker pucker_[1C4/4C1] 
(no unit) 

Fraction of1C4 and 4C1 ring pucker conformations of the sugar monomeric units; 
The conformations are defined as: 
1C4: ɣ= 48º ± 30º, δ = − 64º ± 30º, 
4C1: ɣ= − 54º ± 30º, δ = 62º ± 30º, 
where angle ɣ is defined by atoms C1–C2–C3–C4, and angle δ by atoms C1–O5–C5–C4 

29. Free energy components from 
the MM-GBSA model 

VDW (kcal/mol) Van der Waals energy 

30. Electrostatic energy EEL (kcal/mol) Electrostatic energy in vacuo 
31. EGB EGB (kcal/mol) Generalized Born electrostatic solvation energy 
32. ESURF ESURF (kcal/mol) Non-polar solvation energy 
33. Total free energy TOTAL (kcal/mol) Total free energy 
34. QH Entropy S_APPROX (kcal/mol) Quasi-Harmonic configurational entropy 
35. NM Entropy S_nm (kcal/mol) Normal mode entropy  

A. Danielsson et al.                                                                                                                                                                                                                             



Computational Biology and Chemistry 99 (2022) 107716

5

Fig. 2. A) Root Mean Square Deviation (RMSD) [Å] of HS molecules 1A, 1B, 1C calculated in reference to the starting position of the simulation. B) Radius of 
gyration [Å] of HS molecules 1A, 1B, 1C. C) Length of the simulated hexasaccharide, calculated as the end-to-end distance [Å], of HS molecules 1A, 1B, 1C. All the 
data are obtained from 100 ns of the MD simulation. 
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3.1.1. Root mean square deviation 
RMSD analysis indicated that most of the HS molecules exhibit large 

fluctuations in the RMSD value across the MD simulation, as can be seen 
for molecules 1A, 1B, 1C in Fig. 2, chosen as representatives for the HS 
dataset. This indicates a high mobility of the unbound molecules. Ex
ceptions can be observed for molecules 7B and 9A (Supplementary 
Fig. 1), which reach a stable state at a relatively early point of the MD 
simulation, as well as for 7C, for which RMSD reaches convergence to
wards the end of the simulation. 

3.1.2. Radius of gyration 
An analysis of the radius of gyration (R_gyration) of the 27 HS 

molecules shows trends in line with those observed for RMSD. As can be 
seen in the example of HS 1A, 1B, 1C (Fig. 2), the hexasaccharides are 
very flexible showing a high degree of mobility. As with RMSD analysis, 
molecule 9A, and to a lesser degree 7B and 7C (Supplementary Fig. 2) 
behave differently than the other molecules by exhibiting a decrease in 
R_gyration and thereby achieving a more stable and compact confor
mation towards the end of the MD simulation. 6C also exhibited a low 
radius of gyration for a significant portion of the MD simulation, but 
towards the end the values of the radius of gyration increased again, 
signifying a switching from an extended conformation in the beginning 
of the MD, to a more compact conformation in the middle of the simu
lation, and back to a more extended and flexible conformation towards 
the end. 

3.1.3. HS length 
The hexasaccharide molecules exhibit rapid changes of molecule 

length (measured as end-to-end distance) throughout the MD 

simulation, with most molecules not converging to either an extended 
nor a compact state at the end of the simulation, as can be seen in Fig. 2 
for the representative molecules 1A, 1B, 1C. However, HS 9A is an 
exception in the dataset, converging to a clearly compact conformation, 
with a significant decrease in the end-to-end distance seen throughout 
the simulation (Supplementary Fig. 3). Similarly, molecules 7C and 9C 
are seen to shorten towards the very end of the MD simulation. 

3.1.4. Intramolecular H-bonds 
Fig. 3 shows the distribution of frequencies of intramolecular 

hydrogen bonds (H-bonds) for the 27 HS molecules. For the vast ma
jority of the analyzed molecules, the median value of H-bonds formed 
during the MD simulation equals 3 H-bonds, with some exceptions 
(median of 2 H-bonds for 7A, 8A, 9A). Conformations in which either no 
intramolecular H-bonds are formed during the MD simulation as well as 
those with the maximum possible amount of intramolecular H-bonds are 
unlikely to observe for all of the analyzed molecules. Nevertheless, the 
3,6-sulfated 9A, 8A, and 7A hexasaccharides seem to have a preference 
of conformations with less intramolecular H-bonds compared to the 
other HS molecules. 

3.1.5. Dipole moment 
All of the molecules seem to be similar in terms of polarity, with 

values of the dipole moment measured across the MD simulation ranging 
from 420.6 e*Å (for 4B) to 615.6 e*Å (for 9C) (Supplementary Table 1). 
The most polar molecules are 9C (615.8 e*Å) and 9A (600.0 e*Å), 
substantially separated from the third-most polar HS hexasaccharide 
(3A with 562.4 e*Å) by over 30 e*Å units. 

Fig. 3. Distribution of frequencies of intramolecular H-bonds formed by the HS molecules during MD simulations.  
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3.1.6. Glycosidic linkage dihedral angles 
In terms of dihedral angles of the glycosidic linkages (Supplementary 

Table 1), the HS molecules do not seem to display significant differences 
between each other. The percentage of observations belonging to 
minima of the glycosidic linkage dihedral angles are comparable be
tween the analyzed hexasaccharides. 

3.1.7. Sugar ring fluctuation 
For all of the analyzed HS molecules, the highest values of sugar ring 

fluctuations throughout the MD simulation were observed for the sugar 
ring of the first residue (Supplementary Table 1) and to a much lesser 
degree for the sugar ring of the last residue. Hexasaccharides 6C, 7C and 
9A exhibit the highest fluctuation of their first sugar ring (8.8 Å, 8.3 Å 
and 8.8 Å, respectively, versus a range of 4.7–6.8 Å for the remaining HS 
molecules of the dataset). The same trend can be observed for the last 
sugar residue (fluctuation values of 4.6 Å for 6C, 3.8 Å for 7C and 5.5 Å 
for 9A, compared to a range of 2.0–3.6 Å for the rest of the hex
asaccharides), but not for the 2nd, 3rd, 4th and 5th sugar rings. 

3.1.8. Ring pucker conformation 
A strong preference of the 4C1 sugar ring pucker conformation can be 

seen for all 27 HS hexasaccharides (Supplementary Table 1). Among the 
27 molecules, sugar rings of 1A, 6A and 7B show the highest propensity 
for the 1C4 conformation, with a fraction of MD time in which such a 
conformation could be observed equal to 0.1, 0.19 and 0.11, 
respectively. 

3.1.9. Enthalpy and entropy 
In terms of enthalpy and entropy components of the unbound HS 

molecules throughout the MD simulation, most of the analyzed hex
asaccharides have comparable values (Supplementary Table 1). A stark 
difference can be only observed for the electrostatic energy in vacuo for 
sugar 9A in comparison to the other HS molecules (1568 kcal/mol, 
versus a range of 356 kcal/mol to 1065 kcal/mol for the remaining 
sugars), indicating highly unfavorable electrostatic energy values of the 
unbound 9A hexasaccharide in solvent environment. 

In summary, the 3,6-O-Sulfated HS hexasaccharide 9A, where the 
central sugar residue is flanked by IdoA2S residues on both sides, shows 
behavior clearly different than the other sugar hexasaccharides 
throughout the MD simulation, especially in terms of its RMSD calcu
lated in reference to the starting conformation, frequency of intra
molecular H-bonds, radius of gyration, fluctuations of the first and sixth 
sugar rings and electrostatic energy in vacuo. Noteworthy, sugar 9A was 
found to bind with high affinity to all proteins except for ATIII (Chopra 
et al., 2021). 

3.2. Descriptor analysis 

Pairwise Pearson correlation coefficients were calculated for the 35 
descriptors summarized in Table 2, in order to examine the relationships 
between the descriptors. The correlation matrix visualized as a heatmap 
(Fig. 4) shows that some descriptors form clusters of strong positive and 
negative correlation, which may point to mutual relationships/de
pendencies and therefore possible redundancy in the primary descriptor 
dataset. A strong positive correlation (high positive Pearson correlation 
coefficient) is depicted by a red color, a strong negative correlation 
(negative Pearson correlation coefficient) – by violet, while no correla
tion corresponds to green colors on Fig. 4. 

H-bond–related descriptors form three clusters based on the corre
lation coefficients: low amount of or no intramolecular H-bonds 
(Hbond0, Hbond1, Hbond2), high amount of intramolecular H-bonds 
(Hbond4, Hbond5, Hbond6, Hbond7) and exactly 3 H-bonds formed 
during the MD simulation (Hbond3). These descriptors correspond to 
the fraction of MD trajectory frames in which the simulated HS molecule 
formed the given amount of H-bonds. Therefore, the distribution of 
those frequencies, shown in Fig. 3, hints at preferences of certain HS 

types regarding the formation of intramolecular H-bonds. While the 
most frequent amount of H-bonds for the majority of HS molecules was 
3 H-bonds, hexasaccharides 7A, 8A and 9A are characterized by right- 
skewed distributions with the mode equal to 2 intramolecular H- 
bonds. The differences in sequence and sulfation pattern between the HS 
molecules dictates the preference for H-bond formation within the 
molecule. This information can in turn shed light on the formation of 
intermolecular H-bonds between the given HS and proteins, because the 
preference for forming many intramolecular H-bonds may indicate also 
a high likelihood of forming intermolecular H-bonds upon binding to 
proteins. 

The closely related descriptors R_gyration and Length, corresponding 
to the mean radius of gyration of the HS molecule and its end-to-end 
distance, respectively, show a strong positive correlation to each 
other. The more compact a molecule is and thus the smaller its radius of 
gyration, the smaller is its end-to-end distance. Conversely, an extended 
molecule will display a higher radius of gyration and a greater length. 
Interestingly, among all other descriptors, both R_gyration and Length 
are strongly negatively correlated to glycosidic_3min2. A stiff hex
asaccharide structure, i.e. only a narrow range of values possible for 
glycosidic bond dihedral angles, would influence the level of compact
ness of a molecule. The negative correlation coefficient value therefore 
links a preference of lower dihedral angle values with a less compact 
structure. Among the 27 HS hexasaccharides, 6C, 7B and 9A display a 
more compact structure during the MD simulations (lower radius of 
gyration and shorter end-to-end distance) compared to the other 
oligosaccharides. 

All descriptors of sugar ring fluctuation are positively correlated to 
each other, however the fluctuation of the second sugar ring (fluct_r2) 
only shows a strong correlation to the first sugar ring and a weak cor
relation to the other fluctuation descriptors. For all studied HS mole
cules, the first sugar ring shows the highest fluctuations, with the 2nd, 
3rd, 4th, 5th and 6th rings being considerably less mobile throughout 
the MD simulation. Molecules 6C, 7B, 7C and 9A have the most fluctu
ating 1st sugar residue among the HS hexasaccharides and this trend, 
although weaker, is also seen for residues 3, 4, 5 and 6. However, the 
2nd sugar residue for 6C, 7B, 7C, 9A shows fluctuation levels compa
rable to the other HS molecules. Therefore, the distinction between 
fluct_r2 and the remaining fluctuation descriptors can be attributed to 
the behavior of those four HS hexasaccharides. At the same time, all 
fluctuation parameters are strongly correlated to R_gyration and Length 
(negative correlation) as well as to the second dihedral angle minimum 
of the third glycosidic bond (glycosidic_3min2, positive correlation). 
The fluctuation of a molecule is strongly linked to the molecule’s 
compactness as well as the rigidity of its structure, with less fluctuation 
corresponding to an extended structure with a higher radius of gyration. 

All of the 27 HS show a strong preference for the 4C1 geometry. Ring 
pucker descriptors (pucker_1C4 and pucker_4C1) are strongly anti- 
correlated to each other and similarly correlated to most other de
scriptors. However, while pucker_1C4 is positively correlated to the first 
dihedral angle minimum of the first glycosidic linkage (glyco
sidic_1min1), pucker_4C1 shows a negative correlation to this 
descriptor. 

The descriptors of the glycosidic bond dihedral angle minima do not 
form clusters as distinct and clear as the other descriptors. Nevertheless, 
some of the glycosidic linkage descriptors can be seen to be strongly 
correlated to certain other descriptors in the dataset, e.g. the strong 
negative correlation between the second minimum of the 3rd linkage 
and R_gyration and Length, as well as the aforementioned positive 
correlation to fluctuation descriptors. 

The enthalpy and entropy terms, as well as the dipole moment 
descriptor establish two separate clusters. Descriptors relating to the 
dipole moment, electrostatic energy, the non-polar solvation energy, the 
total free energy and the normal mode-calculated entropy are positively 
correlated to each other (correlation coefficient above 0.78). At the same 
time, the van der Waals energy term, the polar solvation energy term, 
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and the quasi-harmonic entropy form another group of highly- 
correlated descriptors (correlation coefficients above 0.87). The nega
tive correlation of the two entropy descriptors can seem surprising. 
What is important to consider for these descriptions of entropy, in this 
study they correspond to unbound ligand molecules and not, as may 
usually be the case when calculating entropy, to the protein-ligand 
complex formation. This negative correlation can be rooted in the dif
ference in approaches used to calculate the entropy of a system. Quasi- 
harmonic entropy, corresponding to descriptor S_approx, is better at 
describing the translational and rotational changes in a molecule’s 
conformation, closely related to the lengths, angles and torsions of 
bonds within the molecule. This approach also implicitly includes the 
effect of solvent on the entropy of the analyzed system. Normal mode 
entropy calculations, corresponding to S_nm in the descriptor data set, is 
linked to vibrational entropy, i.e. the bending and stretching of the 
molecule. Hence, both approaches describe different characteristics of 
the HS hexasaccharides and do not have to necessarily be positively 
correlated. The two groups formed by descriptors of enthalpy and en
tropy can be roughly classified as a group of “electrostatics” descriptors 
and a group of “shape” or “conformation” descriptors. The electrostatic 

energy part of the total energy of the unbound HS molecules is the 
highest for 6A, 8A and 9A. The same oligosaccharides also exhibit very 
low van der Waals interaction energy, polar energy and quasi-harmonic 
entropy values. This could mean that the relatively high (i.e. unfavor
able) electrostatic energy caused by the conformation of those molecules 
is balanced out by the favorable shape adapted by the molecules during 
the MD simulation. 

The MD analysis of the 27 HS molecules provides invaluable infor
mation about the conformational landscape of those GAG molecules, 
uncovering preferences among the different HS types that may ulti
mately influence the affinity and specificity of binding to proteins. 

3.3. Correlation analysis using Pearson product-moment correlation 

The correlation between each of the 35 descriptors and the binding 
affinity data for 9 HS-protein complexes was assessed using Pearson 
product-moment correlation. Supplementary Table 2 contains the cor
relation coefficient values for all the descriptors. One immediate 
observation is that for different proteins, particular descriptors are 
correlated with binding affinity of respective HS-protein complexes. 

Fig. 4. Heatmap of Pearson correlation coefficients between the analyzed HS descriptors obtained from MD simulations.  
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ATIII is the most distinct from all other considered proteins – only a 
small number of descriptors can be found to be linked to the binding 
affinity: the fluctuation of the second sugar ring and the dihedral angle 
descriptor for the 4th glycosidic linkage. 

3.3.1. Intramolecular H-bonds 
H-bond descriptors do not seem to be strongly correlated with the 

binding affinity of the remaining proteins, except for BMP2 (strong 
correlation for Hbond0 and Hbond3), FGFR1 (strong correlation for 
Hbond0, Hbond1, Hbond3) and Stab-2 (strong correlation for Hbond0, 
Hbond1, Hbond3). 

3.3.2. Radius of gyration 
The radius of gyration and length of the HS molecules are similarly 

linked only to the binding affinity for complexes containing BMP2, 
FGFR1 and Stab-2. The dipole moment seems to be strongly correlated 
for all proteins except for ATIII. 

3.3.3. Glycosidic linkage dihedral angles 
In the case of glycosidic linkage dihedral angle descriptors, the 

descriptor relating to the second minimum of the first glycosidic linkage 
is strongly negatively correlated only with HCII and FGF-7. The 
descriptor of the first minimum of the 3rd glycosidic linkage as well as 
the first minimum of the 5th glycosidic linkage exhibit strong anti- 
correlation with the binding affinity of all protein complexes except 
for ATIII. The descriptor of the dihedral angle of the 4th glycosidic 
linkage positively correlated with complexes containing HCII, BMP2, 
Nrp1, and negatively correlated with ATIII. 

3.3.4. Sugar ring fluctuation 
The fluctuation of the sugar residues is linked to the binding affinities 

only in the cases of: the second sugar ring and ATIII, the fourth sugar 
ring and BMP2, FGFR1, Stab-2, Nrp1, the fifth sugar ring and FGFR1, 
Stab-2, and the sixth sugar ring and BMP2, FGFR1, Stab-2, Nrp1. 

3.3.5. Enthalpy and entropy 
The enthalpy and entropy strongly correlated for all proteins except 

for ATIII as well as in the case of the solvation descriptor (ESURF) and 
the total energy descriptor (TOTAL) and proteins FGFR1 and Stab-2. 

Taken together, this analysis indicates that there is no clear unique 
pattern of correlation across the complexes, with each exhibiting dif
ferences in correlation sign and value. Therefore, no one elegant 
analytical function, linking the descriptors of intramolecular physico
chemical properties of the HS molecules with the binding affinity of 
complexes, could be constructed even for groups of HS-protein com
plexes. Instead, any further analysis incorporating these correlation 
values would necessarily have to be tailored to each HS-protein 
complex. 

3.4. Principal component analysis 

Based on the conclusion drawn in the previous section, PCA seems, 
therefore, to be a appropriate next step for the investigation of the de
scriptors set. This alternative approach to the calculation of correlation 
coefficients for each pair of descriptor and HS-protein complex binding 
affinity is feature extraction, by which initial properties (here: the 
physico-chemical descriptors of HS hexasaccharides) are transformed 
into a set of new, independent descriptors (Principal Components, PCs). 
The constructed PCs are linear combinations of the original descriptors 
and as such combine information from the whole unreduced initial 
dataset. 

The scree plot (Fig. 5) was generated in order to assess the optimal 
amount of PCs needed to explain as much of the variance in the 
descriptor dataset as possible while still offering a reduction in dimen
sionality. Since the goal of applying PCA was not to reduce the 
descriptor dataset for visualization in a 2D- nor 3D-space but rather to 

find an overarching model describing the relationship between charac
teristics of the unbound HS hexasaccharides and their protein binding 
affinity, the amount of PCs for subsequent analysis was reduced to 4 PCs. 
It can be seen that the first 4 PCs combined explain 74% of the variance 
of the initial descriptor dataset, whereas adding the 5th PC would not 
increase that cumulative variance in a meaningful way. 

To decipher the chemical nature of the constructed PCs, the contri
bution of each descriptor to the PCs was calculated and visualized by 
means of a heatmap (Fig. 6). The main contributors to the first PC (PC1) 
are H-bond descriptors (with the exception of Hbond3) and terms 
relating to enthalpy and entropy. PC2 is mostly influenced by R_gyra
tion, Length, ring fluctuation (except fluct_r2), ESURF, enthalpy/en
tropy terms, and most of the glycosidic linkage dihedral angle 
descriptors. The dihedral angle descriptors are the main driving force 
behind PC3, whereas enthalpy, entropy and H-bond terms contribute 
less to this PC. The dominant HS properties governing PC4 are the ring 
pucker descriptors, the first minimum of the first glycosidic linkage 
dihedral angle and, to a lesser extent, Hbond3. The colors in Fig. 6 
indicate the interplay between different descriptors and strength of 
contribution to each PC. 

Some of the observed relationships are to be expected, e.g. the op
position of VDW to EEL – in cases where structural complementarity 
plays a greater role, the van der Waals interaction energy matters more 
than the electrostatic energy and vice versa. The antagonistic behavior 
of the low- and high-H-bond descriptors is also understandable and in 
accordance with previous observations. However, Hbond3 shows a 
surprising pattern: while for PC1 and PC2 it is not strongly tied to either 
of the two other groups of H-bond descriptors, in PC3 it follows the same 
trend as low-H-bond terms, while in PC4 it behaves more similar to high- 
H-bond descriptors. Another intriguing detail is the complete absence of 
fluct_r2 from PC2, despite the strong presence of all other fluctuation- 
related descriptors in that PC. Moreover, the two descriptors R_gyra
tion and Length operate in the same direction in all descriptors except 
PC1, where they act in an opposing manner. 

Additional information on the cooperation between different de
scriptors and PCs can be gained from inspecting the loading plots 
(Supplementary Fig. 4). In loading plots, the length of the vectors 
indicate the importance of the given descriptor for the PC. The orien
tation in space of the vectors depicts whether the descriptor has an in
fluence on both, only one or none of the PCs considered in the plot. 

Analysis of the interactions between descriptors in the PC-space 

Fig. 5. Scree plot detailing the fraction of variance explained by the Prin
cipal Components. 
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illustrates a variety of coexisting conformations characterized by 
distinct values adopted by the analyzed descriptors. A low amount of 
intramolecular H-bonds formed, together with a less compact molecule 
(high radius of gyration and length of the HS molecule) coincides with 
high ring fluctuations, a larger dipole moment, high (unfavorable) 
electrostatic energy values, a greater entropy stemming from vibration 
and stretching of the molecule, as well as less entropy linked to the 
bending of the HS molecule. This corresponds to an extended, highly 
polar HS molecule; by analyzing the biplots of Supplementary Fig. 4, it 
can be seen that oligosaccharides likely to be found in such conforma
tions are e.g. 9A, 9C, 7A, 7C, 8A, 8B, 8C, 1A, 4A, 9B, 5A. A contrasting 
conformation would be characterized by a more compact structure, a 
higher amount of intramolecular H-bonds, less fluctuation of the sugar 
rings, low solvation energy, more entropy contributed by bending of the 
molecule and low electrostatic energy. The HS hexasaccharides that 
seem to correspond to this combination of characteristics are 1B, 1C, 2A, 
2B, 2 C, 3B, 4B, 4C, 5B, 5C. 

A different look on the conformation would consider the glycosidic 
linkages. A preference of the dihedral angles of the 4th glycosidic link
age for specific dihedral values (i.e. a high concentration of observations 
belonging to the dihedral angle minimum, described by glyco
sidic_4min) co-occurs with dihedral angle values spread out more for the 
1st, 2nd, 3rd, 5th glycosidic linkages (less observations found in the 
minima during the MD simulations). This situation would be accompa
nied by very low fluctuations of the 1st and 2nd sugar rings, a high 
electrostatic energy, higher solvation energy, and a higher vibrational 
entropy (S_nm). HS hexasaccharides that could be linked to this 
conformation include 2A, 3A, 3B, 3C, 5A, 6A, 9A, 9B, 9C. 

While ring pucker descriptors contribute mostly to PC4, which ex
plains the least variation in the initial dataset compared to the other PCs, 
the information they carry is still valuable for describing the charac
teristics of some of the HS oligosaccharides. A strong preference for the 
1C4 sugar ring puckering is linked to a high concentration of dihedral 
bonds of the 1st glycosidic linkage that belong to the minimum dihedral 
angle values, as well as a high fraction of structures throughout the MD 
trajectory that display 3 intramolecular H-bonds. This arrangement of 
characteristics can be linked to oligosaccharides 1A, 1B, 6A, 7B. The 
opposite situation, corresponding to a preference for 4C1 sugar ring 
puckering, can be seen to be characteristic especially for HS 9A. 

When taking into account the HS-binding affinities determined by 
(Chopra et al., 2021), additional information can be gained about the 
preference of the HS-binding proteins regarding the characteristics of 
the hexasaccharides. As detailed in Fig. 1 in (Chopra et al., 2021), ATIII 
shows a high affinity for 7A, 7B, a weaker affinity for 4A, 4B, and only 
minimal affinity for the other hexasaccharides. In the PC-space, un
bound 7A and 7B exhibit low intramolecular H-bonding and high ring 
fluctuations, while differing in the ESURF and length of the molecules 
(7A is more extended than 7B) and ring puckering conformations (7A 
prefers 4C1, while 7B prefers 1C4). Unbound 4B forms more intra
molecular H-bonds than 7A and 7B. Both 4A and 4B are characterized by 
a less defined conformation of the glycosidic linkages (limited 

preference of the minimum conformation) and less fluctuation of the 
sugar rings. 

The other analyzed proteins show a clear preference for hex
asaccharides 9A and 3A. According to our MD analysis, in its unbound 
form 9A is compact, forms little to no intramolecular H-bonds, exhibits 
high fluctuation of sugar ring atoms and shows a strong preference for 
4C1 ring puckering. At the same time, 3A is not characterized by 
considerable fluctuations of its sugar rings. Both unbound 9A and 3A 
show little preference of glycosidic linkage dihedral bond minima. 

The obtained PCs provide a sort of model explaining the physico- 
chemical properties of the 27 unbound 3-O-sulfated HS hex
asaccharides. Each of the HS molecules differs to some extent from the 
others in the PC-space which is significantly reduced in dimensionality 
relative to the original descriptor-space yet contains all relevant infor
mation on the chemical and structural characteristics of the studied 
GAGs. The observed differences may contribute to the understanding of 
HS-protein binding specificity and of the sulfation code. 

3.5. Linear regression analysis 

Linear regression was used to evaluate the extent to which de
scriptors of the unbound HS hexasaccharides can explain HS-protein 
binding affinity. The experimental binding affinity data between the 
27 analyzed HS molecules and a set of protein targets known to specif
ically recognize 3-O-sulfation was taken from (Chopra et al., 2021). The 
independent variables of the linear regression model were the four PCs 
obtained from PCA, with the binding affinity value expressed in Relative 
Fluorescent Unit (RFU) as response variable. The results of this analysis 
are detailed in Supplementary Table 3. 

For all proteins except ATIII, PC1 and PC3 are consistently statisti
cally significant (p < α = 0.05). These PCs corresponded mostly to, in 
the case of PC1, H-bonds, enthalpy and entropy, as well as glycosidic 
linkage dihedral angles for PC3. Hence, it could be assumed that those 
sets of descriptors of unbound HS hexasaccharides are unlikely to have 
any substantial influence on the HS/ATIII binding affinity. While the 
other two PCs, PC2 and PC4, do not exhibit statistically significant links 
to the response variable, it cannot be ruled out that the descriptors these 
PCs summarize contribute to the binding affinity of the GAG-protein 
complexes. For all proteins except ATIII, the PC-based linear regres
sion model offers a high degree of explanation of the target variable, 
with R2 values ranging between 0.68 and 0.8 (adjusted R2 between 0.62 
and 0.77). Thus, the MD-derived descriptors of unbound 3-O-sulfated HS 
hexasaccharides, simulated by MD, are alone capable of explaining up to 
around 70% of the binding affinity data in 3-O-sulfated HS-protein in
teractions. In the case of ATIII, the R2 equals 0.11 (adjusted R2 = − 0.06), 
which indicates that the PC-based linear regression models fails at 
explaining the variance in HS/ATIII binding affinity. Consequently, it 
can be deduced that the descriptors serving as main signals in the four 
PCs considered are not the driving force behind the binding affinity 
between ATIII and 3-O-sulfated HS. 

Fig. 6. Heatmap showing the contribution of descriptors of unbound HS molecules to the Principal Components.  
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3.6. Cluster analysis 

In order to discover any patterns and subgroups in the binding af
finity data in relation to the descriptor-based PC space, cluster analysis 
by means of Hierarchical Clustering (HC) with average linkage was 
conducted. The clusterization of the PC versus binding affinity correla
tion matrix is depicted as a heatmap in Fig. 7. 

Three main groups of proteins could be identified by cluster analysis 
– “group 0′′ composed only of ATIII, “group 1” comprising BMP-2, FGFR- 
I and Stab-2, and “group 2” corresponding to RAGE, Nrp-1, HC-II, FGF-7, 
FGF-9. All proteins are positively-correlated with PC1 (the H-bond and 
free energy PC), however for ATIII this correlation is the weakest. In the 
case of PC3, ATIII shows negative correlation with all other proteins and 
a strong positive correlation with the values of PC3. The same pattern, 
although reversed in direction, can be observed for PC4, however here 
groups 1 and 2 differ visibly in the strength of correlation. In the case of 
PC2, only group 1 follows a clear trend as a whole, with all group 1 
proteins negatively correlated to PC2. ATIII shows only a very weak 
positive correlation, while group 2 is more heterogeneous in its corre
lation to PC2 across its protein members, with some showing a weak 
positive and other a weak negative correlation. 

Cluster analysis by HC revealed differences between the proteins in 
PC-space that may point to interesting information about the character 
of their binding with 3-O-sulfated HS. Among the descriptors consid
ered, the binding between group 2-proteins and HS seems to be thus 
mostly linked to H-bond formation, enthalpy and entropy, as well as the 
glycosidic bond dihedral angle. Based on the HC analysis, HS/ATIII 
binding is influenced by, in order of importance, glycosidic bond dihe
dral angle descriptors, H-bonds and free energy components, ring 
puckering, and the least by sugar ring fluctuations. Meanwhile, the 
binding between group 1-proteins and 3-O-sulfated HS can be said to be 

influenced by all four PCs considered. 
Taken together with the information about contribution of each 

descriptor to the PCs, it is possible to further speculate on the exact 
character of the HS-protein binding. PC3 is strongly linked to descriptors 
of glycosidic linkage dihedral angle minima and for all those descriptors 
except glycosidic_4min the correlation to PC3 is negative. A positive 
correlation between the HS-binding affinity of a protein and PC3 
consequently also means a negative correlation to the glycosidic linkage 
descriptors and a more spread out distribution of dihedral angle values 
sampled from the MD trajectories. Conversely, a negative correlation 
with PC3, as is the case for ATIII, means a positive correlation with the 
glycosidic bond descriptors, thus pointing towards a preference of a high 
fraction of data points in the minima and a specificity of dihedral angle 
values of the HS molecules sampled from the MD simulations. 

Similar conclusions can be drawn about proteins of group 1 and 
sugar ring fluctuation and puckering. Both sugar ring puckering and 
fluctuation describe the flexibility of the HS molecule. The strong cor
relation of group 1-binding affinity with PC2 and PC4 indicates a clear 
preference of certain conformational states. A negative correlation with 
PC2 corresponds to a positive correlation with fluctuation descriptors, 
thus a greater link between binding affinity and high fluctuation and 
consequently a greater entropy of the HS molecule. At the same time, the 
negative correlation with PC4 entails a link between binding affinity and 
a tendency for the 4C1 ring pucker conformation, thus less flexibility in 
terms of ring puckering. Conversely, no strong correlation with PC4, as 
is the case e.g. for some proteins of group 2, would indicate no strong 
tendency towards either pucker conformation and thus perhaps an 
increased flexibility of the HS molecules bound with high affinity. 
Interestingly, ATIII is known to have a preference of certain ring pucker 
conformations of its ligands (Demeter et al., 2018), while in our analysis 
only a weak correlation with PC4 could be observed (Fig. 7). However, 

Fig. 7. Heatmap and hierarchical clustering of the correlation coefficients between PCs and HS-protein binding affinity values.  
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(Stancanelli et al., 2018) found that the ring pucker conformation of 
unbound HP is not obligatory for high-affinity binding, as the correct 
conformation is adopted by HP upon binding to ATIII. Therefore, a weak 
correlation with PC4 does not necessarily correspond to a lack of pref
erence of sugar ring conformation. 

3.7. Assessment of binding affinity based on the MD-derived Principal 
Components 

In order to use the obtained PCs as a scoring function, adding de
scriptors of either the protein or specifically the HS-binding site would 
be necessary. However, knowledge of structure or function similarity, 
evolutionary relationships between proteins or co-localization of pro
teins in different sub-cellular locations, tissues or organs can also be used 
to form hypotheses on the interaction of proteins with ligands. We used 
the experimental binding affinity between Fibroblast Growth Factor 2 
(FGF-2) and the 27 3-O-sulfated HS hexasaccharides (Chopra et al., 
2021) to examine the usefulness of our PCA-based approach in pre
dicting the approximate physico-chemical nature of the HS/FGF-2 
binding. Due to being a member of the FGF family and interacting 
with Nrp-1 (Uniewicz and Fernig, 2008), we hypothesized that the 
binding of FGF-2 to the 27 HS molecules will be similar in character to 
the binding affinity of FGF-7, FGF-9 and Nrp-1. Therefore, FGF-2 would 
be assigned to group 2” of HS-binding proteins by HC. 

We calculated the mean binding affinity for each sub-group identi
fied by cluster analysis (i.e. group 0, group 1, group 2) and calculated the 
Pearson product-moment correlation between the FGF-2 binding affinity 
and the mean binding affinities. The highest correlation was between 
FGF-2 and the mean binding affinity of group 2 (correlation coefficient 
equal to 0.82), followed by group 1 (correlation coefficient 0.78) and 
ATIII (group 0, correlation coefficient = − 0.006). After including the 
FGF-2 data into the HC analysis, the clustering algorithm thus correctly 
sorted FGF-2 to group 2. As can be seen in Supplementary Fig. 5, the 
binding profile of FGF-2 is indeed similar to the binding profile of the 
other proteins of group 2: RAGE, Nrp-1, HC-II, FGF-7, FGF-9. Proteins of 
this group seem to lack the slightly higher selectivity of HS binding that 
can be observed for proteins of group 1. Therefore, the PCA approach, 
trained on data not including the FGF-2 binding affinity, was able to 
distill the information contained in the unbound HS molecules in such a 
way that enabled us to correctly link the experimental binding affinity 
with principal components containing the most relevant physico- 
chemical information on the unbound HS structures. 

4. Conclusions 

The analysis of the physico-chemical descriptors of unbound HS 
hexasaccharides using computational approaches gave insight into the 
specificity and nature of binding between HS and a set of diverse pro
teins as well as into understanding of the sulfation code. Differences in 
sequence dictated preferences of unbound HS molecules regarding 
shape and flexibility. The conformational landscape of unbound HS that 
arose from the cooperation of physico-chemical descriptors is likely an 
important factor in the determination of binding affinity and specificity 
in HS/protein binding. 

The elucidation of the links between properties of the HS molecules 
to the HS/protein binding affinity determined by (Chopra et al., 2021) as 
well as removing redundancy from the available data was achieved by 
applying PCA to the initial descriptor dataset and identifying four 
principal components corresponding to the main groups of character
istics that explained most of the variance of the HS descriptors. The 
calculation of correlation between the obtained PCs and the HS-protein 
binding affinity values followed by hierarchical clustering of the cor
relation coefficients, as well as analysis of the association between PCs 
and binding affinity data clearly showed that information obtained from 
MD simulations of unbound HS molecules can offer insight into 
HS/protein binding. All analyses underlined the difference in 

HS-binding specificity between ATIII and the other proteins, which is in 
accordance with multiple experimental and theoretical studies (e.g. 
Mosier et al., 2012; Raghuraman et al., 2010). Additionally, we were 
able to further divide the remaining proteins into two subsets depending 
on the correlation of their HS-binding affinity with PCs describing the 
unbound HS GAGs. 

The linear regression analysis on the PCA and HS-binding affinity 
data showed that, except for ATIII, the binding of HS by the proteins 
could be explained to a high degree by the information summarized in 
the PCs. Therefore, PCA not only reduced the dimension of the initial 
descriptor dataset but also allowed us to identify the main characteris
tics of HS that can putatively contribute to protein binding affinity. 
However, depending on the HS/protein complex considered, a part of 
variance in binding affinity was left unaccounted for by the HS de
scriptors and PCs. This unexplained variance may be caused by the lack 
of descriptors of either the proteins or the GAG-binding sites located on 
those proteins in our study. While GAG-binding sites on proteins are 
usually composed of clusters of positively-charged amino-acid residues, 
(Sarkar and Desai, 2015) describe the importance of other types of 
residues in the binding site and its vicinity for the specificity of pro
tein/GAG binding. (Joseph et al., 2015) identified residues of IL–8 
outside of the GAG-binding site that do not directly bind the GAG but 
contribute to GAG-binding by enhancing the plasticity of the binding 
site in order to accommodate GAG molecules. Therefore, the differences 
between the proteins that can be reflected by other descriptors than 
those included in our study, not only restricted to the binding site size 
and amino-acid sequence, is likely to further improve our model. 
Additional factors known to influence GAG/protein binding affinity and 
specificity, which could contribute to our analysis in future research, is 
the presence of ions (Kogut et al., 2021; Multhaup, 1994), the change in 
protein conformation upon GAG-binding (Rosenberg et al., 1997; Sage 
et al., 2013) or considering the presence of water molecules in the 
GAG-binding site of proteins (Mosier et al., 2012). 

The use of in silico methods allowed us to study in detail the prop
erties of 3-O-sulfated HS hexasaccharides in relation to their protein 
binding specificity. This shed light on relationships between structural 
properties of the HS molecules and protein binding affinity. A deeper 
understanding of HS/protein-binding specificity attributed to the sul
fation code and of the physico-chemical characteristics of HS molecules 
that assist in the identification and design of specific GAG molecules and 
their mimetics with applications in medicine and pharmacology. 
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Schnabelrauch, M., Rademann, J., Hempel, U., Pisabarro, M.T., Scharnweber, D., 
Hintze, V., 2017. Sulfated Hyaluronan Derivatives Modulate TGF-β1:Receptor 
Complex Formation: Possible Consequences for TGF-β1 Signaling. Sci. Rep. 7, 1210. 
https://doi.org/10.1038/s41598-017-01264-8. 

Kogut, M.M., Maszota-Zieleniak, M., Marcisz, M., Samsonov, S.A., 2021. Computational 
insights into the role of calcium ions in protein-glycosaminoglycan systems. Phys. 
Chem. Chem. Phys. PCCP 23, 3519–3530. https://doi.org/10.1039/d0cp05438k. 

Kraushaar, D.C., Rai, S., Condac, E., Nairn, A., Zhang, S., Yamaguchi, Y., Moremen, K., 
Dalton, S., Wang, L., 2012. Heparan sulfate facilitates FGF and BMP signaling to 
drive mesoderm differentiation of mouse embryonic stem cells. J. Biol. Chem. 287, 
22691–22700. https://doi.org/10.1074/jbc.M112.368241. 

Künze, G., Huster, D., Samsonov, S.A., 2021. Investigation of the structure of regulatory 
proteins interacting with glycosaminoglycans by combining NMR spectroscopy and 
molecular modeling - the beginning of a wonderful friendship. Biol. Chem. https:// 
doi.org/10.1515/hsz-2021-0119. 

Li, Y., Sun, C., Yates, E.A., Jiang, C., Wilkinson, M.C., Fernig, D.G., 2016. Heparin 
binding preference and structures in the fibroblast growth factor family parallel their 
evolutionary diversification. Open Biol. 6, 150275 https://doi.org/10.1098/ 
rsob.150275. 

Liu, J., Shriver, Z., Pope, R.M., Thorp, S.C., Duncan, M.B., Copeland, R.J., Raska, C.S., 
Yoshida, K., Eisenberg, R.J., Cohen, G., Linhardt, R.J., Sasisekharan, R., 2002. 
Characterization of a heparan sulfate octasaccharide that binds to herpes simplex 
virus type 1 glycoprotein D. J. Biol. Chem. 277, 33456–33467. https://doi.org/ 
10.1074/jbc.M202034200. 

Luo, Y., Ye, S., Kan, M., McKeehan, W.L., 2006. Structural specificity in a FGF7-affinity 
purified heparin octasaccharide required for formation of a complex with FGF7 and 
FGFR2IIIb. J. Cell. Biochem. 97, 1241–1258. https://doi.org/10.1002/jcb.20724. 

McKinney, W., others, 2010. Data structures for statistical computing in python. In: 
Proceedings of the 9th Python in Science Conference. p. 51–6. 

Morgan, A., Sepuru, K.M., Feng, W., Rajarathnam, K., Wang, X., 2015. Flexible Linker 
Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A. Biochemistry 
54, 5113–5119. https://doi.org/10.1021/acs.biochem.5b00253. 

Mosier, P.D., Krishnasamy, C., Kellogg, G.E., Desai, U.R., 2012. On the specificity of 
heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin 
and thrombin are fundamentally different. PloS One 7, e48632. https://doi.org/ 
10.1371/journal.pone.0048632. 

Multhaup, G., 1994. Identification and regulation of the high affinity binding site of the 
Alzheimer’s disease amyloid protein precursor (APP) to glycosaminoglycans. 
Biochimie 76, 304–311. https://doi.org/10.1016/0300-9084(94)90163-5. 

A. Danielsson et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.compbiolchem.2022.107716
https://doi.org/10.1016/j.sbi.2017.11.008
https://doi.org/10.1016/j.sbi.2017.11.008
https://doi.org/10.1093/glycob/cwp031
https://doi.org/10.1074/jbc.273.8.4350
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref4
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref4
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref4
https://doi.org/10.1073/pnas.2012935118
https://doi.org/10.1073/pnas.2012935118
https://doi.org/10.1016/j.cell.2020.09.033
https://doi.org/10.1063/1.464397
https://doi.org/10.1063/1.464397
https://doi.org/10.1038/s41598-018-31854-z
https://doi.org/10.3389/fonc.2019.00507
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref10
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref10
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref10
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref10
https://doi.org/10.1016/j.bbagen.2019.02.009
https://doi.org/10.1016/j.bbagen.2019.02.009
https://doi.org/10.1016/j.cbpa.2005.10.003
https://doi.org/10.1016/j.cbpa.2005.10.003
https://doi.org/10.1038/nchembio810
https://doi.org/10.1038/nchembio810
https://doi.org/10.1021/ct200909j
https://doi.org/10.1074/jbc.M801102200
https://doi.org/10.1021/bi801007p
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/sj.cdd.4401647
https://doi.org/10.1021/bm5006855
https://doi.org/10.1021/bm5006855
https://doi.org/10.1074/jbc.272.27.16838
https://doi.org/10.1074/jbc.272.27.16838
https://doi.org/10.1021/ac503248k
https://doi.org/10.1021/ac503248k
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref22
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref23
http://refhub.elsevier.com/S1476-9271(22)00096-2/sbref23
https://doi.org/10.1634/stemcells.2006-0445
https://doi.org/10.1634/stemcells.2006-0445
https://doi.org/10.1016/S0002-9440(10)61205-9
https://doi.org/10.1016/S0002-9440(10)61205-9
https://doi.org/10.1042/BJ20150059
https://doi.org/10.1074/jbc.271.4.2243
https://doi.org/10.1074/jbc.271.4.2243
https://doi.org/10.1002/jcc.20820
https://doi.org/10.1038/s41598-017-01264-8
https://doi.org/10.1039/d0cp05438k
https://doi.org/10.1074/jbc.M112.368241
https://doi.org/10.1515/hsz-2021-0119
https://doi.org/10.1515/hsz-2021-0119
https://doi.org/10.1098/rsob.150275
https://doi.org/10.1098/rsob.150275
https://doi.org/10.1074/jbc.M202034200
https://doi.org/10.1074/jbc.M202034200
https://doi.org/10.1002/jcb.20724
https://doi.org/10.1021/acs.biochem.5b00253
https://doi.org/10.1371/journal.pone.0048632
https://doi.org/10.1371/journal.pone.0048632
https://doi.org/10.1016/0300-9084(94)90163-5


Computational Biology and Chemistry 99 (2022) 107716

14

Nakato, H., Kimata, K., 2002. Heparan sulfate fine structure and specificity of 
proteoglycan functions. Biochim. Biophys. Acta 1573, 312–318. https://doi.org/ 
10.1016/s0304-4165(02)00398-7. 

O’Donnell, C.D., Shukla, D., 2008. The Importance of Heparan Sulfate in Herpesvirus 
Infection. Virol. Sin. 23, 383–393. https://doi.org/10.1007/s12250-008-2992-1. 

Panitz, N., Theisgen, S., Samsonov, S.A., Gehrcke, J.-P., Baumann, L., Bellmann- 
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