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Abstract
Social Network Analysis (SNA) has enabled re-
searchers to understand and optimize the key di-
mensions of collaborative learning. A majority of 
SNA research has so far used static networks, ie, 
aggregated networks that compile interactions with-
out considering when certain activities or relation-
ships occurred. Compressing a temporal process by 
discarding time, however, may result in reductionist 
oversimplifications. In this study, we demonstrate the 
potentials of temporal networks in the analysis of on-
line peer collaboration. In particular, we study: (1) so-
cial interactions by analysing learners' collaborative 
behaviour, part of a case study in which they worked 
on academic writing tasks, and (2) cognitive interac-
tions through the analysis of students' self-regulated 
learning tactics. The study included 123 students 
and 2550 interactions. By using temporal networks, 
we show how to analyse the longitudinal evolution of 
a collaborative network visually and quantitatively. 
Correlation coefficients with grades, when calculated 
with time-respecting temporal measures of central-
ity, were more correlated with learning outcomes 
than traditional centrality measures. Using temporal 
networks to analyse the co-temporal and longitudi-
nal development, reach, and diffusion patterns of 
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INTRODUCTION

The successful implementation of collaborative learning requires some essential elements 
to be realized; particularly, the development of its social and cognitive dimensions (Janssen 
& Bodemer, 2013; Soller et al., 2005). The social dimension represents the relational pro-
cesses through which interactions, norms, and roles emerge. A robust social dimension 
serves as a backbone for building productive interpersonal relationships, successful knowl-
edge co-construction, and a cohesive group, thus catalysing cognitive gains (Janssen 
& Bodemer,  2013; Kreijns et  al.,  2013). The cognitive dimension represents students' 

students' learning tactics has provided novel insights 
into the complex dynamics of learning, not commonly 
offered through static networks.

K E Y W O R D S
collaborative learning, CSCL, learning analytics, social network 
analysis, temporal networks, uptake

Practitioner notes

What is already known about this topic
•	 Representing students’ interactions as networks helps researchers analyse the 

patterns of interactions, roles, and the relations between constructs.
•	 Network level measures help quantify the level of collaborative group interaction, 

cohesion, and reciprocity.
•	 Node level centrality measures have proven useful in predicting students’ 

performance.
•	 The majority of Social Network Analysis research has so far used static networks.
What this paper adds
•	 The analysis of temporal networks offers a future potential opportunity to under-

stand the longitudinal evolution of collaborative learning networks, both visually 
and quantitively.

•	 Temporal features of students’ centralities are more correlated with good grades 
compared to traditional centrality measures.

•	 Temporal networks can help analyse the longitudinal unfolding, reach, and diffu-
sion patterns of students’ interactions.

•	 Reachability offers an opportunity to map students’ sphere of influence as well as 
maps the uptake of cognitive content of the interactions.

Implications for practice
•	 Temporal network offers a future potential opportunity to optimize collaborative 

learning as well as offer timely support.
•	 Temporal network methods offer a future potential opportunity to understand stu-

dents’ influence in a network and reach of their interactions.
•	 Temporal network offers a future potential opportunity to understand the unfolding 

of interactions over the entire period of a course while not overlooking the time 
factor.
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knowledge, skills, values and behaviours, such as self- and social regulation (Kreijns 
et al., 2013). To be able to optimize students' learning processes, and harness the key roles 
of these two dimensions, we firstly need to understand them adequately. In this, the use of 
Social Network Analysis (SNA) methods can enable such understanding. This, in turn, can 
help us to create a solid ground for optimizing students’ learning and for further improving 
the settings in which it occurs. In terms of SNA, the social dimension can be captured by an-
alysing and visualizing the social ties among actors, the network structure, and roles (Cela 
et  al.,  2014). The cognitive dimension can be captured by representing content analysis 
elements as networked components to study, for example, the interplay between students' 
self-regulation, knowledge co-construction, and epistemics (Dado & Bodemer, 2017). Such 
network representations have afforded investigators a wealth of visualization and statistical 
methods (Burt et al., 2013).

SNA tools have already proven to shed light on several aspects of collaborative learning, 
including interaction patterns, group dynamics and the learning environments in which they 
occur (Cela et al., 2014). A majority of SNA research in education, however, has so far used 
static networks, ie, aggregated networks that compile all interactions, with no regard for when 
certain activities or relationships occurred in the learning process (Dado & Bodemer, 2017; 
Peeters, 2019). Recent research has shown that compressing a temporal process by dis-
carding time may be a reductionist oversimplification of reality (Holme & Saramäki, 2019). 
As Reimann (2009) posits: “the theoretical constructs and methods employed in research 
practice frequently neglect to make full use of information relating to time and order. This is 
especially problematic when collaboration and learning processes are studied in groups that 
work together over weeks, and months, as is often the case” (p. 239). Based on these find-
ings, we deem it necessary to use temporal networks to study the dynamics of collaborative 
learning as a process that unfolds over time (Reimann, 2009) in order to better understand 
the ways in which such a process materializes and progresses.

In this study, we demonstrate the potentials of temporal networks in the analysis of 
computer-supported collaborative learning (CSCL) interactions. In particular, we examine: 
(1) social interactions through the analysis of peer collaboration, part of a case study in 
which students worked together on several academic writing tasks online, and (2) cognitive 
interactions through the analysis of students' self-regulated learning (SRL) tactics (anno-
tated content of the interactions). We do so while accounting for temporal aspects, both the 
‘co-temporal’ and ‘longitudinal.’ By ‘co-temporal’ we mean learners’ interactions occurring in 
close proximity of one another (eg, within a session or a day). By ‘longitudinal’ we mean the 
full duration of a course or its segments.

As this paper aims to compare and contrast the analysis of temporal versus static net-
works, we believe that the contributions could be manifold. First, it demonstrates how to 
examine the temporal evolution of the relationships between learners in a CSCL environ-
ment, as well as how to use such information to analyse the learning process in collaborative 
groups. Second, it illustrates how different temporal profiles reflect the influence and sphere 
of the students' interactions, and how such patterns are associated with better academic 
achievement. Third, it provides visual and quantitative illustrations of the longitudinal devel-
opment, reach, and diffusion patterns of SRL tactics; how students use such tactics in their 
learning process, and how these tactics spread or diffuse over time.

BACKGROUND

Recently, attention to the dynamics of learning has kindled the interest in methods that can 
be used to uncover the time dimension of the learning process, based on the examination 
of students' (log) data (Chen & Poquet, 2020; Csanadi et al., 2018; Vu et al., 2015). In their 
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study on the use of log data for CSCL research, Wise and Schwarz (2017) assert that there 
is a wealth of data mining, natural language processing and multimodal analytics to support 
online and collocated CSCL. Methods include epistemic network analysis, process mining, 
sequence mining, and, more recently, temporal networks.

One of the methods that has been gaining ground in recent years is epistemic network 
analysis. It is a quantitative ethnographic technique for modelling the co-temporal structure 
of interactions or discourse. Epistemic network analysis has for example, been used to study 
interrelationships between coded elements of discourse or text to understand the patterns 
of associations of eg, knowledge, skills, and behaviour (Shaffer et al., 2016). It allows to 
study dynamic interactions between the networked elements using a ‘moving window’ to 
model the co-temporal unfolding of cognitive learning activities (Csanadi et al., 2018; Shaffer 
et al., 2016). While epistemic network analysis has proven useful in the understanding of 
many phenomena, it falls short when it comes to the longitudinal modelling of temporal in-
teractions (eg, across the full duration of a course). Furthermore, epistemic network analysis 
does not allow for the calculation of temporal features such as temporal centralities, reach-
ability, or concurrency.

Process mining is another method that has been used to study the temporal processes 
of learning (Pechenizkiy et al., 2009). Process mining models the transition between events 
in the form of a visual process model that has been used to study, for instance, students' 
approaches to assessment (Pechenizkiy et al., 2009), the use of different learning strate-
gies (Ahmad Uzir et al., 2020) and SRL tactics (Peeters et al., 2020). The new models are 
visually intuitive, yet, subject to the chosen algorithm and individual choices made by the 
researcher (eg, the threshold of included events), which may result in a model that is over-
fitting (hardly generalizable) or underfitting (far from reality; van der Aalst, 2012). Similar 
to epistemic network analysis, process mining lacks the capacity to model the longitudinal 
unfolding of the learning process; nor does it present a method for calculating temporal 
centralities.

Finally, sequential analysis enables researchers to calculate the probability that one 
action follows another one, thus offering an understanding of the progression of learning 
(Jovanović et al., 2017; Matcha et al., 2020). The insights generated by sequential analysis 
allows researchers to effectively mine the typology of a (learning) process. However, it lacks 
the relational aspect that network methods offer. In this paper, we argue that temporal net-
works can complement the available methods (eg, epistemic network analysis and process 
mining) and offer tools for the study and understanding of longitudinal, relational, and tempo-
ral aspects of the learning process in CSCL settings. A full review of the temporal methods 
is beyond our article, and thus, interested users may refer to Lämsä et al. (2021)

Temporal networks

The study of temporal networks—often referred as time-varying networks—is a growing 
subfield of network science that is concerned with the study of time-ordered interactions 
(Holme, 2015; Holme & Saramäki, 2012, 2019). An increasing visualization and mathemati-
cal repertoire of tools have made temporal networks widely viewed to be fundamentally ad-
vantageous in modelling dynamic phenomena, including social interactions (Holme, 2015; 
Holme & Saramäki,  2012, 2019), allowing researchers to make fine-grained inferences 
about temporal networks' topology (ie, the emergence and dissolution of certain structures 
or interactions in a network), and flow (ie, the level and direction of connectivity between 
nodes, informing us on the transfer and exchange between them) (Holme & Saramäki, 2019; 
Nicosia et al., 2013). In the next section, we review the structural properties of temporal net-
works as well as previous research using temporal networks in education.
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A temporal network is composed of nodes (actors or vertices) representing the inter-
acting elements, and edges (relationships or interactions) with onset (start or activation) 
and offset (exit or deactivation) times for each edge (Holme & Saramäki,  2019; Nicosia 
et al., 2013). The network can be one of two types: (1) a contact sequence when the duration 
of the contact is negligible, eg, instant messages (Figure 1a) or (2) a time interval network, 
when the duration of the contact is of importance eg, social meetings (Figure 1c; Holme & 
Saramäki, 2019; Nicosia et al., 2013). The resolution of the network can be as high as the 
logging mechanism that has been used to record the data allows, which may be as precise 
as a fraction of a second. Yet, to make sense of the data, researchers often have to aggre-
gate the edges by creating time intervals, mostly equally sized, which is commonly referred 
to as temporal granularity (Nicosia et al., 2013).

As a paradigm, temporal networks should not be simply summarized as a generaliza-
tion of static networks (Holme,  2015; Holme & Saramäki,  2019), neither should they be 
confused with static networks that account for the chronological order of interactions. The 
differences between temporal and static networks are manifold. First, temporal networks 
are constrained by time, ie, paths between nodes have to follow a time-ordered sequence 
of contacts (time-respecting paths). In these network representations, when information is 
transmitted from A to B at time point T1 and from B to C at T2, this order cannot be reversed 
(Holme & Saramäki, 2019). Second, interactions are temporary, ie, edges form and dissolve, 
contrary to aggregate networks which depict edges as permanent connections (Holme & 
Saramäki, 2019). Third, interactions in temporal networks are non-transitive (Holme, 2015; 
Holme & Saramäki, 2019). In a static network (Figure 1b), one can, for example, reach from 
node A to C through B. However, this is impossible in the contact sequence temporal net-
work (Figure 1a) since the edge A–B dissolves before B–C forms (Holme & Saramäki, 2019; 
Masuda et al., 2021).

Fourth, static networks tend to overestimate the true connectivity of a network which is 
likely to render an unrealistic picture of the examined process (Holme & Saramäki, 2019). 
The network may appear densely connected while it has periods in which most nodes 
are disconnected, depending on the point in time. Compare, for example, the network in 
Figure 1b with the time point 3 in Figure 1c. The static network looks well-connected while 
the temporal network at this point, shows limited connectivity.

Another type of network is the ego network, which is helpful for the mapping of the so-
cial capital of a node, contacts, and sphere of influence (Burt et  al.,  2013). A static ego 
network maps the reach of immediate contacts (a measure of eg, social capital, access to 

F I G U R E  1   (a) A contact sequence temporal network where interactions are instant and have negligible 
duration and edges have negligible durations (eg, instant messages). (b) A static network representing the same 
A and C networks. (c) The time interval network shows interactions with various durations. (d) The network at T3 
looks less connected compared to the network in (d) 
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immediate resources and diversity), which can be expressed mathematically as degree cen-
trality. Closeness centrality maps the distance and reach to nodes in the network. However, 
both degree centrality and closeness assume that connections are persistent and, when 
formed, do not dissolve. This is not the case, however, and this assumption thus results in an 
overestimation of the connectivity and reachability of a node. This may be counterintuitive in 
the learning process where edges are essentially transient. Therefore, temporal reachability 
may be more appropriate to estimate the true reach and influence of a node as it requires 
concurrency and time order as essential conditions.

How relevant are temporal networks to CSCL?

CSCL involves groups of collaborators who work together on individual or shared tasks over 
varied periods of times. As learners post, reply or reciprocate each other's interactions, they 
leave chronologically ordered fined-grained, time-stamped data that chronicles the collabo-
rative process in detail (Reimann, 2009). Wise and Schwarz (2017) have argued that analys-
ing collaborative processes in CSCL often involves treating interaction and collaboration as 
idiosyncratic or unique processes, comprised of a number of interaction units that come to 
have meaning in an ever-evolving mediated context. In order to develop a unified approach 
to analyse these processes, multimodal analytics, including aspects of time and space, are 
considered to enable researchers to better and faster understand the dynamics within CSCL 
in this regard and distinguish key events as they unfold.

Suthers and Desiato (2012 refer to the process of building on each other's interactions 
as ‘uptake’. In this context, replies to posts are temporally contingent. The understanding of 
such temporal processes is of paramount importance to analyse how students co-construct 
knowledge by taking up each other's ideas and build threads that are contingent on others.

Suthers and Desiato (2012) have further proven that uptake networks, in combination 
with network measures such as ‘proximity prestige’, can help distinguish where the most 
engaged discussions in CSCL contexts are taking place. This information could help edu-
cators know when and where activity occurs, as well as monitor engaged and disengaged 
actors. Uptake networks, which consider contingencies between different events in which 
a participant's action builds on, or takes over, some aspects of events that came before 
it, also take into account these temporal and spatial dimensions (Suthers, 2015; Suthers 
& Desiato, 2012). In order to visualize the levels of uptake in CSCL, one can aggregate 
these contingencies and divide them into sessions. Suthers (2015) suggests that ‘uptake 
that crosses partitions can be used to identify influences across space and time, and uptake 
within partitions can be analysed to study the interactional structure of a session’ (p. 371), 
highlighting the importance of temporal dimensions in the study of CSCL.

Previous research in temporal networks

In addition to studies that have addressed the temporal aspects of learning (Section 
‘Temporal networks’) and studies that have covered the temporal aspects of uptake and 
contingencies in CSCL (Section ‘Previous research in temporal networks’), the use of tem-
poral networks has started to gain momentum. However, such studies have so far been 
scarce. Vu and colleagues (2015) used Relational Event Modelling (REM) to study the social 
and temporal structure of learner interactions in a massive open online course environment. 
Their findings stress the mutual dependency between interactions in discussion forums on 
the one hand, and the measured academic success on the other, as well as between in-
teractions in discussion forums and predicting future success. Similarly, Chen and Poquet 
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(2020) have applied REM to capture aspects of temporal participation and social dynamic 
factors such as preferential attachment and reciprocity. They have been able to capture the 
bursty nature of interactions and the role of familiarity as a motivator to form ties. Saqr and 
Nouri (2020) used temporal network methods to visualize and quantify student interactions 
in a collaborative learning course setting. Their results revealed the bursty pattern of interac-
tions as well as the value of temporal centrality measures in the early prediction of students' 
performance.

All in all, given the paucity of research that has used temporal networks, this study aims 
to contribute to the literature by studying the potentials of temporal networks –compared to 
static networks—in a collaborative learning context by exploring temporal network analysis 
on three levels: graph-level (which is related to the collaborative group), node-level (which 
is related to the individual collaborators) as well as visualization (which explores the visual-
izations of both levels: group and individual). First, we investigate the use of temporal graph-
level measures to analyse the evolution of collaborative group networks (RQ1); second, we 
investigate the value of temporal node-level measures as correlates of performance and 
reach (RQ2); third, we investigate the value of temporal network visualizations as possible 
tools for visualizing the collaborators and the collaborative process (RQ3). In answering 
every research question, we compare the resulting insights with static network analysis 
whenever relevant. The research questions of this study are as follows:

RQ1: How can temporal networks help analyse the longitudinal evolution of collaborative 
learning networks?
RQ2: To what extent do temporal features of students' interactions correlate with perfor-
mance (represented as grades) compared to traditional centrality measures calculated 
with static networks?
RQ3: How can temporal networks help analyse the co-temporal and longitudinal unfold-
ing, reach, and diffusion patterns of students' self-regulated learning tactics?

METHODS

Context

In this study, we aim to demonstrate the potentials of temporal networks in the analysis of 
CSCL interactions. The dataset used in this study originated from a case study in which 
first-year foreign language majors of English (n = 123) at the University of Antwerp (Belgium) 
used Facebook as a collaborative space for peer review in an academic writing course. It 
was a blended course, with 12 face-to-face contact hours, an online self-access module on 
academic literacy, and a peer review space on Facebook. Learners were required to write 
three 300-word essays over the course of three months. They could brainstorm in class and 
were reminded regularly that they could consult with their peers on Facebook about their 
writing or about the challenges they faced at any given time. There were no teachers present 
in the online group.

Data and theoretical lens

In order to analyse the data and make inferences about the CSCL patterns that can be 
distinguished, the log data was coded using the principles of digital conversation analysis 
to distinguish recurring learning activities for academic writing. The examination of these 
learning activities focused on the students' self-regulated learning (SRL) tactics, which refer 
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to the specific, applied ways in which an SRL strategy (eg, goal setting or reflecting) is being 
used to meet a goal in a certain situation (Oxford, 2016). Learners engaged in planning, 
as they discussed how to proceed in writing and learning, organization, as they discussed 
goals, objectives and requirements of the tasks, and identity construction, as they shared 
personal stories, expectations and experiences about their academic trajectory (Peeters 
et al., 2020). These tactics are part of the strategic forethought phase (Oxford, 2016). Next, 
learners spent time on text composition, discussing textual features and structure of the 
writing tasks, argumentation, or discussing thesis statements and argumentation for the 
writing tasks, resource management, where they shared and evaluated resources and user-
generated content, bonding, where they talked about hobbies, free time and leisure, and 
acknowledgement, where they expressed positive emotions and gratitude. These tactics are 
part of strategic performance in learning. Finally, learners reflected on the purpose of the 
tasks and the course and evaluated their performance by discussing and applying feedback 
from peers and educators. These tactics are part of reflection and evaluation in the SRL 
process. Further details on the theoretical lens and coding process are detailed in Peeters 
et al. (2020) as well as in the Appendix Table S3

Analysis

The analysis methods implemented in this study are charted in Figure 2. To answer the first 
and second research questions, a temporal post-reply temporal network was constructed 
according to Saqr and Nouri (2020) and Vu et al. (2015). Another static post-reply network 
was constructed using the same data to compare the results generated by both networks. 
The graph and node-level measures are reported as a time series (TS) of 49 time points 
(the active days of the course): a time point for every single day. We calculated the dynamic 

F I G U R E  2   A flowchart of methods implemented in the study 
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Graph Level (GL) measures which reflect the level of interactivity, embeddedness, distribu-
tion of participation among students, type and quality of ties, and mixing patterns of high 
and low achievers using the Tsna R Package (Bender-deMoll & Morris, 2016). Dynamic GL 
measures calculated at each time point: (1) dynamic density (ie, the sum of edges divided by 
the maximum possible edges) as an indication of the activity and distribution of interactions 
among the whole group, (2) dynamic mutuality (ie, the number of reciprocated edges) as 
an indication of the strong relations, valued mutuality and balance, (3) dynamic simmelian 
ties (reciprocal strong edges where both nodes have mutual and strong connection to a 
third node forming a triad) to reflect frequency of tightly and strongly connected and cohe-
sive subgroups of students, (4) high and low achievers' mixing pattern, ie, the probability 
of high achievers (top 50%) collaborating with low achievers (bottom 50%) to reflect the 
mixing pattern of students, (5) dynamic degree centralization (ie, the distribution of degree 
centrality among participants) that measures the distribution/dominance of centrality dur-
ing the interaction process, and (6) dynamic Eigenvector centralization to reflect the distri-
bution of Eigenvector centrality and measure the strength of connectedness of a student 
network. The GL measures were also calculated for the static network and compared to a 
null model of 1000 matching networks of the same number of nodes and interactions. For 
a detailed definition and calculation methods, please see Bender-deMoll and Morris (2016), 
and Freeman (1978).

To study both the temporal evolution of GL variables what opportunities may exist to 
optimize the network, we represented GL measures as a psychological network, in which 
the nodes are variables and the relationships among them are represented as an estimated 
Vector Autoregression (VAR) model that is commonly plotted as a graph (graphical VAR). 
The graphical VAR model captures if a variable (a GL measure in our case) predicts another 
one in the next time window, ie, what is happening next as a result of what is happening 
now (lag-1) after controlling for all other variables. Details of the estimation and method are 
detailed in Epskamp et al. (2018).

To answer the second research question, we calculated the dynamic node-level centrality 
measures according to Saqr and Nouri (2020) at each time point: (1) dynamic outdegree 
centrality as the frequency of posts by a student to reflect a student's participation and con-
tribution to the collaborative process; (2) dynamic indegree centrality, ie, the number of re-
ceived replies, which reflects the uptake of a student's contributions; (3) flow betweenness, 
ie, the times a student has bridged or mediated interactions between others (dynamic flow 
betweenness considers all paths that involve the node and thus gives a better idea about 
actor interactivity), and (4) dynamic Eigenvector centrality as the sum of the students' cen-
tralities and the centrality of his/her connections, giving a better idea about the ego network 
and its strength. The static node level centralities were also calculated for each student for 
comparison. In addition, the diffusion centrality—the probability that a node spreads a prop-
erty to neighbours, added to the probabilities of neighbours transmitting it further—to study 
the diffusion of students' tactics, detailed definitions, and computation methods are available 
in Freeman (1978), Liao et al. (2017), and Nicosia et al. (2013).

The temporal features of the dynamic centralities were calculated using R package ts-
features (Hyndman et  al.,  2019) to investigate whether the pace of interactions is better 
correlated with performance. The following features were calculated: TS mode (mode of the 
TS using histograms with a seven-day (week) bin), crossing points (frequency of crossing 
the median) denoting a period of activity, flat spots (the maximum run length within the TS 
intervals) usually periods of inactivity, and the entropy of the time series according to the 
periods of regular contribution to the forum. To reveal the temporal reach and range of in-
fluence of nodes, we calculated the reachability as the number of reachable nodes using 
time-respecting forward paths. We also plotted the forward temporal path (the reachable se-
quence of nodes) to map the range of influence of a node and how this type of visualization 
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can help us understand the reach and influence compared to the commonly used ego net-
works. We also plotted the hierarchal and transmissibility path plots to demonstrate the 
earliest uptake path using the R package NDTV (Bender-deMoll,  2018). The correlation 
coefficient was calculated using Spearman's Rank-Order Correlation.

To answer the third research question, a temporal network was created for the coded 
interactions. We demonstrated the longitudinal interactions between the examined tactics 
using a proximity timeline. A proximity timeline uses an innovative combination of layouts 
to visualize a relational process longitudinally. The algorithm slices the temporal network at 
each time point (creating 49 networks) and implements multidimensional scaling to cluster 
together related nodes according to their geodesic distance on a vertical timeline. A spline 
is then drawn connecting nodes along their position. This results in a timeline where closely 
related nodes are rendered close together through the plot. To reveal the reach and diffusion 
of each coded tactic, a hierarchal path was plotted as well as the transmissibility graph. The 
visualizations were implemented using the R package NDTV (Bender-deMoll, 2018). The 
performance measure was the total of the grades of the tasks submitted by the students.

RESULTS

To answer the first research question, we first calculated the GL measures of the static 
network and compared it to the plotted dynamic GL measures to show how the dynamic GL 
measures offer a more fine-grained and nuanced view of the properties of the network. This 
view, consequently, offers more insights into the interactions, the divisions of work, and the 
quality of formed ties. We later present how each of the dynamic GL measures influences 
each other and how to use these insights to optimize the learning process in CSCL. The 
static GL measures network shows that the network had 123 nodes, 2550 edges with a 
degree of 41.48. The density was 0.15 and the reciprocity was 0.12 (slightly below what was 
expected at random (the average value of the random model 0.17, p < 0.001)). The degree 
centralization was 0.6, which was significantly higher than what is expected at random (0.07, 
p < 0.001). The static GL measures point to a moderately active group with below-average 
reciprocity and high centralization denoting the possible presence of hubs in which students 
tend to communicate frequently.

F I G U R E  3   The dynamic GL measures and their evolution over time. The measures were normalized (range 
0) to allow comparison 
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The dynamic network GL measures allow continuous fine-grained monitoring of the 
graph. The dynamic GL measures plot (Figure 3) shows a bursty pattern of the density, 
mutuality, and simmelian ties where the activity was more intense during the days the 
students had to work on their assignments, and low in-between, with smaller bursts of 
activity. The timeline of the density and mutuality measures were similar during the first 
assignment period. However, the simmelian ties tend to lag, which may be due to the time 
it takes to establish strong ties, form common interests, and have intense discussions. 
The simmelian ties started to peek after two weeks and stayed high until the fifth week. 
The mixing of high and low achievers (Figure 4) shows that simmelian ties peaked at the 
beginning of the course but soon (around the second assignment), the high achievers 
were more likely to interact with high achievers. Both plots of dynamic GL measures in 
which high and low achievers are mixed (Figures 3 and 4) exhibit a bursty pattern, with 
an intense period of activity at the beginning of the assignment and a slower pace in 
between assignments. These graphs also show more selective mixing of students over 
time, as well as the formation of strong ties.

The optimization of the network requires the relational as well as the temporal relationship 
between the variables to be analysed. We selected graphical VAR models resulting in a di-
rected network as shown in Figure 5, where a blue arrow indicates that the source variable 
predicts the target variable after controlling for all other variables. The graphical VAR model 
shows that the formation of mutual ties predicts: (1) the formation of future mutual ties, (2) 
the formation of simmelian ties, (3) the mixing of high and low achievers, as well as (4) a 
denser network. Thus, an intervention that aims at optimizing collaboration in the network 
would best aim at increasing mutual interactions as a key to foster favourable collabora-
tion patterns. Furthermore, the mixing of achievers predicts mutuality and simmelian ties. 
Interestingly, degree centralization predicts future Eigenvector centralization which in turn 
predicts future mixing. A possible explanation is that hubs may stimulate responses from all 
groups and stimulate future productive interactions. The values of correlations are detailed 
in Table S1.

To answer the second research question, temporal centrality measures were computed 
in the form of a time series with a temporal granularity of a single day to explore their tem-
poral features using time series methods. Such temporal features have been shown in other 
learning contexts to contribute to our understanding of students' activities and improve pre-
dictive models (Jovanović et al., 2019). As Table 1 shows, the temporal features of centrality 

F I G U R E  4   The dynamic plot of the mixing of high and low achievers. The measures were normalized 
(range 0 to 1) to allow comparison 
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measures show higher and statistically significant correlation coefficients compared to the 
values of the corresponding static centralities. The correlation coefficient of the entropy 
of dynamic outdegree centrality was (r = 0.44, p < 0.01), compared to (r = 0.23, p = 0.03) 
for the static outdegree centrality. Similarly, crossing points also showed relatively higher 
correlation coefficients with grades (r = 0.38, p < 0.01), flat spots showed marked negative 
correlation coefficients (r = −0.4, p < 0.01). While the correlation coefficient of grades and 
the total aggregate of outdegree centrality was low and statistically insignificant (r = 0.15, 
p = 0.10). The comparison (using r-to-z transformation) between static outdegree centrality 
and the temporal features thereof was statically significant for all the three temporal features 
(crossing points, entropy, and flat spots), indicating significantly higher values for the tempo-
ral features, as can be seen in Table 1.

Similarly, the correlations coefficients between grades and the temporal features of inde-
gree centrality were higher than the static centrality and statistically significant. For cross-
ing points, the correlation was (r = 0.31, p < 0.01), entropy (r = 0.24, p = 0.03), and flat 
spots (r = −0.25, p = 0.03)) compared to their static centrality indegree centrality (r = 0.20, 
p = 0.07) and the total aggregate indegree centrality which was lower and statistically in-
significant (r = 0.11, p = 0.24). For the flow centrality, the temporal features show similar 
patterns: higher correlation coefficients in the temporal features compared to the static cen-
trality or its aggregate values. The crossing points of flow centrality was (r = 0.26, p < 0.01), 
entropy was (r = 0.22, p = 0.10) compared to the static flow centrality (r = 0.21, p = 0.07) and 
the aggregate total (r = 0.14, p = 0.22). Again, the same pattern was evident in Eigen cen-
trality. The correlation coefficients with grades and crossing points (r = 0.24, p = 0.02) and 
entropy (r = 0.22, p = 0.02) were higher than the static Eigen centrality (r = 0.22, p < 0.03) or 
its aggregate total (r = 0.06, p = 0.048). Mode (most frequent value) showed lower or similar 
correlation coefficients (compared to static counterparts). Only in Eigen centrality the mode 
was the highest correlated parameter with grades (r = .36, p < 0.01). However, for indegree, 

F I G U R E  5   The dynamic graph level measures and how they predicts each other in the future 
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flow and Eigen centralities, the differences between the temporal features and the centrality 
thereof were only significant in flat spots, see Table 1 for details.

In summary, the temporal features—in our case—were more correlated with perfor-
mance than the actual values of static centralities, or their aggregated values (total, mode) 
for outdegree centrality and were statistically significant for the flat spot feature of the inde-
gree, flow and Eigen centralities.

The reachability maps show the reachable set of nodes or, in other words, the range of 
diffusion and transmissibility of, for instance, ideas, knowledge and information. A person 
is expected to have higher reachability when her/his ideas are more likely to be picked up 
by others and used to build a case or argument (Suthers & Desiato, 2012). To demonstrate 
how mapping reachability offers more information compared to the traditional ego networks, 
we visualized and compared two nodes with equal ego networks (11 nodes) in Figure 6. We 
then compared it to the reachability graph and the transmissibility graph. Figure 6a,b shows 
that both nodes have the same ego size according to statics representation. However, the 
reachability map shows a completely different story. Figure 6c shows that node 21—one 
of the two students in this example–can reach 20 nodes (16% of all nodes), while Node 

TA B L E  1   Correlation between the temporal features of four centrality measures and grades and 
comparison of correlation to static centrality measures

Centrality Parameter r

Confidence 
interval

p

Compared to static 
c

Low High Z p

Outdegree Static 0.23 0.06 0.39 0.03

Total 0.15 −0.03 0.32 0.10 1.46 0.92

Mode 0.22 0.05 0.39 0.03 0.15 0.56

Crossing points 0.38 0.21 0.52 <0.01 −1.8 0.03

Entropy 0.44 0.28 0.57 <0.01 −2.6 <0.01

Flat spots −0.40 −0.54 −0.24 <0.01 4.7 <0.01

Indegree Static 0.20 0.03 0.37 0.07

Total 0.11 −0.07 0.28 0.24 0.18 0.96

Mode 0.19 0.02 0.36 0.07 0.37 0.64

Crossing points 0.31 0.14 0.46 0.00 −1.34 0.09

Entropy 0.24 0.06 0.40 0.03 −0.41 0.34

Flat spots −0.25 −0.41 −0.07 0.03 3.0 <0.01

Flow Static 0.21 0.03 0.37 0.10

Total 0.14 −0.03 0.31 0.22 0.87 0.8

Mode 0.21 0.03 0.37 0.10 0.01 0.5

Crossing points 0.26 0.09 0.42 0.03 −0.62 0.27

Entropy 0.22 0.04 0.38 0.10 −0.1 0.46

Flat spots −0.12 −0.29 0.06 0.22 2.4 <0.01

Eigen Static 0.22 0.05 0.38 0.03

Total 0.06 −0.11 0.24 0.48 1.75 0.96

Mode 0.36 0.19 0.50 <0.01 −1.44 0.07

Crossing points 0.24 0.07 0.40 0.02 −0.31 0.38

Entropy 0.26 0.08 0.41 0.02 −0.54 0.29

Flat spots −0.32 −0.47 −0.15 <0.01 3.7 <0.01
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40—another student– in Figure 6c can reach 111 nodes, which is 90% of the nodes. Thus, 
node 40 can communicate or get information from a bigger group. Figure 6d,e present the 
forward transmissibility graph, showing the path of probable transmission or diffusion. Again, 
Node 40 can reach larger contacts at different timepoints. It is obvious from the three graphs 
that reachability graphs offer a more nuanced view of how information may spread using 
concurrency and time respecting paths.

The possible practical value of measuring reachability was evaluated through (1) cor-
relation measures with students' grades to see if reachability can be a possible indicator of 

F I G U R E  6   (a) and (b) (top) Two ego networks of nodes 21 and 40 with equal sizes. C and D (middle) 
the path visualization of the reachable nodes, (e) and (f) (bottom) transmissibility graph showing the forward 
transmission/diffusion of each node 
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success; (2) centrality measures to understand the structural factors that define the reach-
ability and uptake of student contributions; and (3) coded SRL tactics to investigate which 
factors define the range and uptake of students' contributions. The results indicate that the 
correlation between the temporal reachability of a node and grades was r = 0.33, p > 0.001, 
which was higher than the static centrality measures of participation, and slightly higher than 
Eigenvector centrality, emphasizing the value of reachability as a possibly better indicator 
for students' success. Regarding the structural position of a node, reachability was strongly 
correlated with diffusion centrality, emphasizing the value of reachability as a measure for 
uptake. Regarding the coded SRL tactics, students who used the identity construction, eval-
uating, and argumentation tactics were more likely to have more reach as students are more 
likely—in our context—to take up such contributions and build on them. Detailed correla-
tions can be found in Table S2.

To answer the third research question, using temporal networks to understand the forward 
pathways and reach of students' SRL tactics over time can contribute to our understanding 
of the way knowledge is constructed, how the collaboration between peers is managed, and 
how the learning process unfolds over time. The proximity timeline (Figure 7) was created by 
slicing the temporal network into separate networks for each day and using multidimensional 
scaling to place the closely linked nodes together along a horizontal line. This enabled us to 
trace the trajectory and the relationship between one tactic and all other tactics at any point 
in time (co-temporal), when a tactic is linked to (or close to) other tactics and when and for 
how long it swerves. In doing so, the visualization shows the co-temporal relationships (at 
each time point) as well as longitudinal progression of these relationships between the used 
tactics.

In Figure 7, the tactic text composition (related to the tasks of the course), argumentation 
and identity construction remain intertwined and tightly linked all the way across the visual-
ized course segment (which represents a period of two weeks, as an example). The visual-
ization also shows that planning is only linked to other tactics at the beginning of the CSCL 
process, and later dissociates. Resource management is only linked to other tactics at the 
end of the first week and at the end of the second week. On the 10th day of the course, and 
close to the first assignment deadline, all tactics are dissociated. We also see the bursty na-
ture of the interactions among tactics: they are tightly linked around the middle point (except 
for planning and resource management) and disperse more by the end of the second week.

F I G U R E  7   Shows the longitudinal and temporal relationship among the coded SRL tactics. Closely related 
nodes have shorter geodesic distance at the given time point 
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The visualization of concurrency (the time the tactics were simultaneously activated) 
in Figure 8 may help us understand another aspect of temporality, ie, duration of con-
currency. In Figure 8, node size corresponds to the total duration of the activity that 
node represents; the edges show the total time these codes have been concurrent. This 
time-based visualization of duration and concurrency demonstrates another aspect of 
temporality (ie, how long). Argumentation has been found to be the most discussed 
tactic, followed by text composition (both tactics which are strongly task-related). We 
also uncovered a strong link between the argumentation, acknowledgment, reflection, 
and identity construction tactics, with marked thick edges, indicating a long duration of 
concurrency.

Another useful visualization of concurrency is the hierarchical path plot (Figure 9a) which 
shows the directed pathway of a tactic that respects time and requires concurrency be-
tween tactics (ie, the map of reachability of a tactic). It plots the temporal contingency of 

F I G U R E  8   A chord network graph showing nodes as arcs and the edge thickness is corresponding to the 
duration of concurrency of the activated tactics 
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SRL tactics, ie, which tactic is contingent upon the other. It maps such a pathway, as well 
as calculates the time it takes to receive a response. The plotted path for text composition, 
for example, shows that discussing formal aspects of academic writing is often followed by 
discussing argumentation, which, in turn, is followed by evaluation, bonding, or planning 
tactics. Another possible path for text composition features acknowledgment, albeit with 
a short latency. The transmissibility graph (Figure 9b) shows the transmission process of 
these tactics and how they disseminate forward, with planning at the fifth time point (ie, the 
fifth day). This timeline shows that, after having written their essays and having discussed 
their argumentation, students can start planning their next steps, all over the course of one 
work week.

F I G U R E  9   (a) A hierarchical path plot showing the earliest interactions between the text composition tactic 
and the tactic that followed. (b) A transmissibility graph showing the forward flow and earliest interactions with 
the text composition tactic 
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DISCUSSION

Interactions between peers, educators and other stakeholders in CSCL settings are rela-
tional, temporal, and longitudinal (Reimann, 2009). However, such aspects are barely stud-
ied and rarely combined. Nevertheless, the use of multimodal analytics, including time and 
space dimensions, have been found to enable researchers to better understand the CSCL 
process while it gives educators the opportunity to make timely decisions in their daily prac-
tice (Knight et  al.,  2017). We have seen that previous frequency approaches completely 
disregard time aspects, process mining approach poorly represents the relational aspects 
of CSCL, and ENA approach tends to solely focus on co-temporal relationships. This study 
aimed to apply temporal network modelling to reveal the importance of the time dimension 
in the learning process. This includes the emergence, pathways, reach, uptake, and rela-
tionships of learners and the content of their interactions, and how such social processes 
unfold over time. Our results have uncovered several interesting findings about the net-
work configuration, the collaborating group, the actors, and the content of the discussions 
in our case study. Using temporal networks to study the GL measures helped the analysis 
of the continuous and longitudinal graph properties and enabled us to distinguish when 
key changes happened and for how long students were active and engaged within the col-
laborative group. Our work builds on the insights of Lee and Tan (2017), Suthers (2015), as 
well as Suthers and Desiato (2012) who have demonstrated the value of tracing knowledge 
uptake through networks. We extend such work through temporal networks in CSCL. To the 
best of our knowledge, our study is the first one to implement temporal networks to trace 
the reachability of students' influence and their contributions, the transmissibility pathway of 
contributions, as well as longitudinal reach.

Such fine-grained analysis may allow researchers to analyse how group interactions 
evolve and how learners adapt to changes in the collaborative process, for example, 
when a teacher would start contributing, or when a collaborator would withdraw. The use 
of Graphical VAR contributed to our understanding of how GL properties influenced each 
other. Our analysis has shown the role of mutual ties in promoting more mutuality, strong 
ties, and mixing of high and low achievers, offering possible future opportunities to optimize 
the collaboration process. For example, teachers could offer a collaborative script that helps 
students enhance argumentation and reciprocity (Janssen & Bodemer, 2013).

Regarding the second and third research questions, the temporal features of the cen-
trality measures have shown promising results by being more correlated with grades, es-
pecially the entropy of the outdegree measures (representing the posting process). Such 
results corroborate the findings in other learning settings (Jovanović et al., 2019), and in 
temporal networks (Saqr & Nouri, 2020). Additionally, the reachability has shown slightly 
higher correlation coefficients than static centrality measures. More importantly, the visu-
alization of the reachable sets of nodes as well as forward transmissions may be of inter-
est to educators who wish to analyse students' interactions, their reach, and how ideas 
spread or diffuse in a CSCL setting. Interactions are more likely to spread when they are 
discussed, when they stimulate further discussion, or when they are used as a basis for 
co-constructing knowledge (Saqr & López-Pernas, 2021). These findings extend the work 
on the uptake of ideas in social networks (Suthers & Desiato, 2012). Our results provide 
a possible opportunity of tracing the uptake process (reachability and traversal pathways) 
as well as the collective role of the student in the uptake process while accounting for 
temporal pathways. Such measures may allow for the creation of better reflective visual 
dashboards that are used to monitor students or the contents of their interactions. We are 
unaware of previous studies that have studied reachability in this regard; however, interest 
in the concept of diffusion is starting to gain momentum in the learning analytics commu-
nity (Saqr & López-Pernas, 2021).
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This study has some limitations. Being a case study in a limited context restrains the 
generalizability of results. Nevertheless, we emphasize the methodological relevance of 
our contribution to a wide range of CSCL settings. Facebook posts and their reply structure 
are similar to the mainstream features of most popular learning management systems, and 
therefore, the methods used in this study should be applicable with little or no modification.

Future research

Future research may extend our work by studying different contexts and use probabilistic 
network methods to infer generative factors behind the formation and dissolution of ties. 
We also suggest investigating the value of using in-time interventions based on continuous 
temporal network monitoring. One can also expand on the temporal measures used in this 
study. Diffusion, concurrency, and influence maximization are uncharted territories in the 
field of learning in general. The patterns of temporality are barely studied in CSCL: research 
is needed to understand the implications of bursts in interactive processes. Furthermore, 
little is known about how to aggregate the temporal features of interactions. Future research 
could, therefore, explore different time series aggregations. Time series networks are an 
intuitive and novel way to represent temporal patterns and are yet unexplored in learning 
settings. Lastly, VAR models may offer a valuable tool for studying the complex interactions 
among variables, which can help predict the next steps in collaborative networks that are 
yet to be harnessed.
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