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1 Non-mathematical introduction

If one were to compile a list of humanity’s greatest achievements, it would
be a grave error to omit the invention of the transistor by Lilienfeld [5] in 1925
and its first physical realization in 1947 by Bardeen, Brattain and Shockley [6].
After all, it is this humble component that allowed us to miniaturize the massive
World War II-era mainframes to the size of a fingernail and bring the sum total
of human knowledge to the palm of anyone’s hand, even in the remotest corners
of the world.

By making transistors smaller and smaller, the number of components in a
single integrated circuit has grown exponentially for decades—an observation
(and, in part, a self-fulfilling prophecy [7]) known as Moore’s law [8]. By linking
more and more transistors together, the capabilities of electronic computation
devices have followed the same trend. However, the limits of Moore’s law are
fast approaching: as transistors shrink, thermal and quantum fluctuations be-
come more significant, and inevitably produce errors. Yet, without shrinking
the transistor, increases in complexity come at the steep cost of increased power
consumption and heat production, leading to impractical cooling and power sup-
ply requirements. Exotic semiconductor materials and ultra-short-wavelength
lithography only provide a brief respite before the inevitable catastrophic break-
down of the exponential growth of computing power.

Even with virtually perfect materials and lithography techniques, transistor-
based devices run foul of a fundamental problem, stemming from the fact that
their function is to move around electrons, which invariably incurs an energy
loss in the form of Joule heating. Thus, one of the best ways to push Moore’s
law further would be to find a way to move around information that does not
involve physically moving electrons.

Enter spintronics, a field of research that seeks to use the spin of the electron
as a carrier of information [9, 10], rather than its charge. Unlike its charge,
which has the fixed value of −e def

= −1.602 176 634× 10−19C, an electron’s spin
can be either ‘up’ or ‘down’ (with respect to some quantization axis, typically
the direction of a magnetic field). Instead of defining a logical ‘one’ (‘zero’) as
the presence (absence) of an electron, one could keep the electrons present and
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1 Non-mathematical introduction

motionless, and map spin-up (spin-down) to logical ‘one’ (‘zero’). Crucially, it
is not necessary to move an electron in order to flip its spin, thus leading to
potentially lower energy consumption than conventional electronics.

In practice, using the spin of a single electron to represent a bit is difficult.
Rather, a typical spintronic device consists of one or more ferromagnetic or
antiferromagnetic materials connected to peripheral structures such as leads or
waveguides, that are used to manipulate or probe the local magnetic order. The
net (mesoscale) magnetic order of e.g. a single magnetic domain may then be
mapped to a bit. Fortunately, changes in magnetic order tend to have very
fast timescales, with switching frequencies on the order of tens of gigahertz in
ferromagnets [11, 12], and hypothetically up to terahertz in antiferromagnets
[13]. As this is much faster than the typical timescales in electronic systems, it
allows the use of higher clock speeds than those suitable for electronics, providing
another enticing benefit to spintronics.

As the field of spintronics is still in its infancy (at least in comparison to
electronics), physically realized devices generally rely heavily on electronics for
measurement and manipulation, rather than being ‘pure spintronics’. For exam-
ple, transporting spin between parts of a system often involves a spin-polarized
electron current [14], which—needless to say—runs foul of the same Joule heat-
ing problems as ordinary electronics. However, an alternative does exist in the
form of spin waves [14, 15]. In a classical ferromagnet, a spin wave is essentially
a precession of the local electron spin around its equilibrium, that is passed be-
tween neighboring electrons to form a wave. The quantum mechanical analog is
called a magnon, and carries a spin of ℏ (compared to +ℏ

2 or −ℏ
2 for electrons).

It has been shown [16] that it is possible to use magnons to transport spin
through ferromagnetic insulators, thus avoiding the need to move electrons.

Although a few spintronic devices such as magnetic hard disks have been in
commercial use for decades, serious strides can only be made with a solid theo-
retical understanding of the underlying physics. Accurate theoretical models of
magnonic spin transport could be used, for example, to design new spintronic
devices, or to optimize spin transport in spintronic circuits.

1.1 This thesis

In this thesis, I investigate the magnon transport properties of ferromagnetic
and antiferromagnetic insulators in contact with heavy-metal leads. Passing an
electronic current through a lead generates magnons in the magnetic material,
which may either be absorbed at another lead, or allowed to accumulate. In a
ferromagnet with only the injecting lead attached, the accumulation of magnons
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1.1 This thesis

depends on the direction of the electric current, which in turn affects the re-
sistivity of the lead itself—the magnonic contribution to a phenomenon called
unidirectional spin-Hall magnetoresistance (USMR), which has previously only
been described as originating from an electronic spin accumulation. When one
or more leads are attached to a strongly anisotropic ferromagnet, elliptically
polarized magnons are generated. Unlike ‘normal’ circular magnons, these do
not conserve spin, which gives rise to a variety of effects, such as a new parasitic
spin resistance at the lead-to-ferromagnet interface, and a phenomenon called
squeezing.

The remainder of this thesis is structured as follows. Ch. 2 is a Dutch trans-
lation of this chapter. In Ch. 3, I shall give a more technical introduction to
the concepts underlying this work. Basic knowledge of condensed matter theory
and quantum theory is assumed, e.g. concepts such as creation and annihilation
operators, Fourier transformation and the Brillouin zones. In Ch. 4, I analyse
the magnonic contribution to USMR in platinum/yttrium iron garnet bilayers.
In Ch 5, I develop a non-equilibrium Green’s function (NEGF) formalism for
the ballistic transport of elliptically polarized magnons in strongly anisotropic
ferromagnetic insulators. In Ch. 6 I outline the extension of the NEGF formal-
ism to antiferromagnets. Ch. 7 is a summary to this thesis, and an outlook into
the future of theoretical magnonics. Finally, Ch. 8 is a Dutch translation of said
summary and outlook.
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2 Niet-wiskundige inleiding in het
Nederlands

Als men een lijst zou maken van de grootste prestaties van de mensheid, zou
het een grove fout zijn om daarin niet de uitvinding van de transistor door Li-
lienfeld [5] in 1925, en de eerste fysieke implementatie daarvan in 1947 door
Bardeen, Brattain en Shockley [6] te vermelden. Het is immers deze elektroni-
sche bouwsteen die het mogelijk heeft gemaakt om de gigantische mainframe-
computers uit de Tweede Wereldoorlog te miniaturiseren tot de grootte van een
vingernagel, en om de totale kennis van de mensheid letterlijk binnen ieders
handbereik te brengen, zelfs in de meest afgezonderde uithoeken van de wereld.

Door transistoren kleiner en kleiner te maken heeft het aantal componenten
in één geïntegreerd circuit decennialang exponentiële groei ondervonden—een
fenomeen (en deels zelfvervullende voorspelling [7]) dat de Wet van Moore ge-
noemd wordt [8]. Door steeds meer tranistoren met elkaar te verbinden, is de
rekenkracht van computers aan een soortgelijke trend onderheven. De grenzen
van deze ‘wet’ komen echter snel naderbij: naarmate transistoren kleiner wor-
den, nemen thermische- en kwantumfluctuaties toe, tot het punt waarop deze
onvermijdelijk fouten veroorzaken. Als men de transistor echter niet verder ver-
kleint, moet grotere complexiteit duur betaald worden: het stroomverbruik en
de warmteontwikkeling zullen sterk toenemen, waardoor de eisen voor voedings-
en koelsystemen onpraktisch worden. Zelfs het overschakelen naar exotische
halfgeleiders en lithografie met ultra-korte golflengte bieden maar voor korte
tijd respijt van het catastrofale einde van de Wet van Moore.

Zelfs met bijna perfecte materialen en lithografietechnieken hebben circuits
die op transistoren zijn gebaseerd een fundamenteel probleem dat veroorzaakt
wordt door het feit dat ze elektronen heen en weer bewegen: hierbij is energie-
verlies door Ohmse verwarming onvermijdelijk. Eén van de beste manieren om
de granzen van de Wet van Moore op te rekken zou dus te vinden moeten zijn
in een manier om informatie te verplaatsen, waarbij men níet fysiek elektronen
hoeft te verplaatsen.

Ziedaar, spintronica: een vakgebied dat probeert om de spin van het elektron
als informatiedrager te gebruiken [9, 10], in plaats van de lading. In tegenstelling
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2 Niet-wiskundige inleiding in het Nederlands

tot de lading, die de vaste waarde −e def
= −1.602 176 634× 10−19C heeft, kan de

spin van een elektron danwel ‘up’ (‘omhoog’), danwel ‘down’ (‘omlaag’) zijn (ten
opzichte van een gegeven kwantisatieas, meestal de richting van een magneet-
veld). In plaats van een binaire ‘één’ (‘nul’) te definiëren als de aanwezigheid
(afwezigheid) van een elektron, kan men dan de elektronen altijd aanwezig en
bewegingsloos laten, en de spin-up (spin-down) toestand vertalen naar de bi-
naire ‘één’ (‘nul’). Het cruciale punt is hierbij dat het niet nodig is om een
elektron te verplaatsen om de spin om te klappen, waardoor het mogelijk wordt
om minder energie te verbruiken dan in gewone elektronica het geval is.

In de praktijk blijkt het lastig om de spin van één elektron als een bit te
gebruiken. In plaats daarvan bestaat een typisch spintronisch apparaat uit één
of meer ferromagnetische of antiferromagnetische materialen in verbinding met
‘randapparatuur’ zoals draden of golfgeleiders, die gebruikt worden om lokaal
de magnetische orde te manipuleren of meten. De netto (mesoscopische) mag-
netische orde van bijvoorbeeld een enkel magnetisch domein kan dan naar een
bit vertaald worden. Het voordeel is dat veranderingen in magnetische orde
zeer korte tijdschalen hebben, met schakelfrequenties op de orde van tiental-
len gigahertz in ferromagneten [11, 12], en hypothetisch tot een terahertz in
antiferromagneten [13]. Aangezien dit veel sneller is dan de typische tijdscha-
len in elektronische systemen, kan men hogere kloksnelheden gebruiken dan in
elektronica het geval is, wat spintronica dus nog een verleidelijk voordeel geeft.

Gezien spintronica als vakgebied nog in de kinderschoenen staat (in elk geval
vergeleken met elektronica), hebben fysieke spintronische apparaten doorgaans
nog veel elektronica nodig voor metingen en manipulatie, waardoor van ‘pure
spintronica’ nog geen sprake is. Het transporteren van spin tussen onderdelen
van een systeem gebruikt bijvoorbeeld vaak een spin-gepolariseerde elektrische
stroom [14], die—het mag geen verassing zijn—nog steeds last heeft van het-
zelfde Ohmse verwarmingsprobleem als gewone elektronica. Er bestaat echter
een alternatief: spingolven [14, 15]. In een klassieke ferromagneet is een spingolf
kortgezegd een precessie van de lokale elektronspin rond zijn evenwicht, die tus-
sen naburige elektronen doorgegeven wordt om zo een golf te vormen. De kwan-
tummechanische tegenhanger wordt een magnon genoemd, en draagt een spin
van ℏ (vergeleken met +ℏ

2 of −ℏ
2 voor elektronen). Men heeft aangetoond [16]

dat het mogelijk is om via magnonen spin te transporteren door ferromagneti-
sche isolatoren, waarbij het verplaatsen van elektronen dus vermeden wordt.

Hoewel enkele spintronische apparaten zoals harde schijven al decennia op
commercieel niveau in gebruik zijn, kan men alleen echte voortgang boeken
door een goed theoretisch begrip van de onderliggende fysica. Nauwkeurige
theoretische modellen van magnonisch spintransport zouden bijvoorbeeld ge-
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2.1 Deze scriptie

bruikt kunnen worden om nieuwe spintronische apparaten to ontwerpen, of om
spintransport in spintronische circuits te optimaliseren.

2.1 Deze scriptie

In deze scriptie onderzoek ik de transporteigenschappen van magnonen in ferro-
magnetische en antiferromagnetische isolatoren in contact met draden gemaakt
van zware metalen. Door elektrische stroom door een draad te sturen worden
in het magnetische materiaal magnonen opgewekt, die danwel door een andere
draad geabsorbeerd kunnen worden, danwel opeen kunnen hopen. In een fer-
romagneet met alleen de ingaande draad bevestigd, hangt de opeenhoping van
magnonen af van de richting van de elektrische stroom, welke op zijn beurt
de soortelijke weerstand van de draad zelf beïnvloedt—de magnonische bij-
drage aan een verschijnsel genaamd unidirectionele spin-Hallmagnetoresistentie
(USMR), wat voorheen alleen beschreven is als voortkomende uit een opeen-
hoping van eletronenspin. Als één of meer draden bevestigd worden aan een
sterk anisotrope ferromagneet, worden elliptisch gepolariseerde magnonen opge-
wekt. In tegenstelling tot ‘gewone’ circulaire magnonen, is spin in dit geval niet
behouden, waardoor er verscheidene effecten optreden, waaronder een nieuwe
parasitische spinweerstand op de interface tussen de draad en de ferromagneet,
en een fenomeen dat squeezing wordt genoemd.

De rest van deze scriptie is alsvolgt geordend. In Hoofdstuk 3 geef ik een
technischere inleiding in de concepten waarop deze scriptie is gebaseerd. Hier
wordt een basiskennis aangenomen in de theorie van gecondenseerde materie en
kwantumtheorie, bijvoorbeeld concepten zoals creatie- en annihilatieoperatoren,
Fouriertransformatie en de Brillouinzones. In Hoofdstuk 4 analyseer ik de mag-
nonische bijdrage aan USMR in platina/yttrium-ijzergranaatbilagen. In Hoofd-
stuk 5 ontwikkel ik een niet-equilibrium Greense functieformalisme (NEGF-
formalisme) voor het ballistisch transport van elliptisch gepolariseerde magno-
nen in sterk anisotrope ferromagnetische isolatoren. In Hoofdstuk 6 leg ik een
uitbreiding van het NEGF-formalisme naar antiferromagneten voor. Hoofd-
stuk 7 is een samenvatting van deze scriptie in het Engels en een vooruitblik
in de toekomst van theoretische magnonica. Als laatste is Hoofdstuk 8 een
Nederlandse vertaling van de samenvatting en vooruitblik.
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3 Advanced introduction

Most elementary particles exhibit a nonzero angular momentum not associ-
ated with orbital motion. Being a purely quantum mechanical effect, this intrin-
sic angular momentum—called ‘spin’—occurs only in half-integer (for fermions)
or full-integer (for bosons) multiples of the reduced Planck constant ℏ def

= 1
2π ×

6.626 070 15× 10−34 kgm2 s−1. Of particular interest is the spin of the electron,
which may be either +ℏ

2 or −ℏ
2 (‘spin-up’ and ‘spin-down’), and gives rise to a

nonzero magnetic dipole moment.
Due to the Pauli exclusion principle, electrons in atoms inhabit fixed orbitals,

forming pairs of spin-up and spin-down electrons that have zero net magnetic
moment. However, in atoms with unfilled orbitals, not all electrons form pairs,
and a net magnetic moment remains. When two atoms are in close proximity,
as is the case in a solid, the partially filled orbitals may overlap, giving rise to an
exchange interaction between the electrons. Following Hund’s rules, this causes
the spins to become aligned either parallel or anti-parallel to one another.

Because atoms in a solid generally have multiple close neighbors, the short-
range exchange interaction may still give rise to long-range order, creating mag-
netic domains in which all pairs of nearest-neighbor electron spins are parallel or
antiparallel. In the case of parallel alignment, the magnetic moments of the elec-
trons in the domain add, creating a ferromagnet (FM) that exhibits a net mag-
netization. Conversely, if the spins are aligned anti-parallel, the moments of each
participating pair subtract, creating an antiferromagnet (AFM) that does not
exhibit magnetization (in the absence of an external field). FMs and AFMs ex-
hibit second-order phase transitions, characterized by transition temperatures—
the Curie temperature for FMs and Néel temperature for AFMs—below which
magnetic order forms spontaneously.

The magnetic order of mesoscopic structures is one of the key properties of
interest in the field of spintronics. The direction of magnetization of FMs, and
the manipulation thereof, is used in well-known commercialized devices such as
magnetic-core memory (a historic form of random-access memory that fell to
disuse as early as the mid-1970s), magnetic tape and hard disks, and in more
experimental or speculative devices such as racetrack memory, spin torque oscil-

9



3 Advanced introduction

lators, and spin valves. Having no spontaneous magnetization, AFMs have not
yet obtained widespread use, but potential applications have been envisioned,
for example, in terahertz oscillators [17].

Although no introduction to spintronics should omit reference to devices uti-
lizing the mesoscale magnetic order directly (and the reader is highly encouraged
to peruse the wealth of literature available on the subject), the prime focus of
this thesis is the somewhat narrower subfield of magnonics—the generation,
detection and manipulation of spin waves. In magnonics, the global magnetic
order is considered to be a fixed (or, rarely, dynamic) background, upon which
live bosonic perturbations called magnons: quantized spin waves.

3.1 Magnetic models and the Holstein-Primakoff
transformation

The majority of magnetically ordered materials are crystals with complicated
unit cells, many of which are the subject of vast works that describe their mag-
netic, optic and thermal properties in excruciating detail [18–22]. Fortunately,
one can strip away virtually all of these minutiae and still be left with a func-
tional model of a ferromagnet or antiferromagnet. The simplest model that
captures the properties necessary for theoretical magnonics is the Heisenberg
(anti)ferromagnet [23, 24]. This model considers abstract spins in a regular lat-
tice, with neighboring spins having an exchange interaction that tries to align
them parallel or antiparallel to one another. It is represented by the concise
Hamiltonian

H0 = ∓J
2

∑
⟨i,j⟩

Ŝi · Ŝj . (3.1)

Here, Ŝi is the vectorial spin operator for spin i, of which the components obey
the commutation relations [Ŝa

i , Ŝ
b
j ] = iℏεabcδijŜc

i , where a, b, c refer to any of
the three Cartesian directions, εabc is the Levi-Civita symbol, and δij is the
Kronecker delta. The Hamiltonian sums over nearest-neighbor sites i and j of
the lattice, and the factor of 1

2 prevents double-counting. J is a positive real
constant representing the exchange energy involved with the alignment of two
nearest-neighbor spins, and the sign preceding it determines the nature of the
magnetic material: a negative sign favors aligned spins and thus produces a
ferromagnet, while a positive sign favors counter-alignment and thus produces
an antiferromagnet.

Note that many works use alternative conventions regarding the prefactor:
the range of J may be extended to the full real line so that the sign of J itself
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3.1 Magnetic models and the Holstein-Primakoff transformation

Figure 3.1: Two-dimensional square-lattice Heisenberg ferromagnet in its
ground state, with all spins ‘up’. Shown are the couplings J be-
tween nearest neighbors.

determines the nature of the magnetic material, and the factor of 1
2 may be

replaced with −1
2 , 1,−1, 2 or −2 depending on the author.

In the ground state of the Heisenberg ferromagnet, all spins are mutually
aligned. In absence of anisotropies or external fields, the alignment axis is
arbitrary, and is conventionally considered to be the z-axis. In three- or higher-
dimensional systems, mutual alignment of the spins occurs at a finite temper-
ature, called the Curie temperature, due to spontaneous symmetry breaking.
However, in one- and two-dimensional systems, the Mermin-Wagner theorem
[25] forbids spontaneous alignment; in this case, anisotropies and/or magnetic
fields may be used to ensure the system obtains a nonzero magnetization at
finite temperatures (see Section 3.2).

Let us now consider a ferromagnet in the ground state, with all spins aligned
with the z-axis (Fig. 3.1). A small perturbation of this ground state produces a
spin wave (in a classical description) or magnon (in a quantum description)—
however, as a quantum spin is represented by an operator rather than a simple
vector, the perturbation theory that produces magnons contains some subtleties.

If the spin quantum number S of one site is large (at minimum, S > 1)—
which is the case, for example, when a theoretical ‘site’ corresponds to a large
physical unit cell with many free electrons, that collectively act as a single
entity—we may expand the spin operator in terms of spin-1 bosonic creation
and annihilation operators â†i and âi, a process known as the Holstein-Primakoff
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3 Advanced introduction

(HP) transformation [26, 27]. The three Cartesian spin operators are then given
by

Ŝx
i =

1

2

[√
2S − â†i âiâi + â†i

√
2S − â†i âi

]
, (3.2a)

Ŝy
i = − i

2

[√
2S − â†i âiâi − â†i

√
2S − â†i âi

]
, (3.2b)

and

Ŝz
i = S − â†i âi. (3.2c)

(N.B.: commonly, the HP transformation is expressed in terms of the ladder
operators Ŝ±

i ≡ Ŝx
i ± iŜy

i and Ŝz
i instead of the Cartesian spin operators.) Note

that HP magnons are circularly polarized and carry a spin of ℏ. In the pres-
ence of anisotropy, the correct low-energy excitations are elliptically polarized
magnons, which are superpositions of HP states, and therefore carry a spin that
is not exactly ℏ (see Chapter 5).

As the expressions for Ŝx
i and Ŝy

i contain operators under the square root, the
HP transformation is in principle a series with infinite interaction terms between
HP magnons. However, in practise—and henceforth in this thesis—it is often
sufficient to initially truncate all interaction terms, and validate this approach
post-hoc by comparing the local magnon number density

〈
â†i âi

〉
(for all sites

i) to the spin S: if the first is small compared to the latter, the magnons can
safely be assumed to be non-interacting. The quadratic ferromagnetic magnon
Hamiltonian then reads

H
(2)
FM =

JS

2

∑
⟨i,j⟩

[
â†i âi + â†j âj − â†i âj − â†j âi − S

]
=
JS

2

∑
r,δ

[
â†(r)â(r) + â†(r + δ)â(r + δ)

− â†(r)â(r + δ)− â†(r + δ)â(r)− S
]
, (3.3)

where the vectors r now represent the positions of sites previously labelled i,
and the vectors δ—the number of which is given by the coordination number
z—represent the offsets to the z nearest neighbors of a site at the origin (a
d-hypercubic lattice will have z = 2d vectors δ). We assume r is expressed in
the basis of lattice vectors.
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3.1 Magnetic models and the Holstein-Primakoff transformation

In translationally invariant systems, this Hamiltonian is diagonalized by a
Fourier transformation:

â(r) =
1√
N

∑
k

â(k)eir·k. (3.4)

Assuming periodic boundary conditions, the component ρ of the vector k takes
the values 2πnρ/Nρ, with Nρ the total number of sites along the lattice vector ρ
and nρ an item from a set of Nρ successive integers. For simplicity, we assume
Nρ is even, and specify that k lies in the first Brillouin zone, i.e. −Nρ/2 ≤ nρ <
Nρ/2. Inserting this operator and its Hermitian conjugate into Eq. (3.3), we
obtain

H
(2)
FM = −JS

2Nz

2
+
∑
k

ωFM(k)â†(k)â(k), (3.5)

where

ωFM(k) = JSz − JS
∑
δ

cos (δ · k) (3.6)

is the frequency of the mode with wavevector k.
A similar treatment for antiferromagnets is somewhat more complicated, as

they consist of sublattices whose ground-state magnetizations cancel one another
(Fig. 3.2). Here, the simplest model is a d-hypercubic lattice consisting of two
sublattices, typically called A and B, arranged such that every A-site has 2d B-
type nearest neighbors, and vice-versa. The general Hamiltonian (3.1), remains
unchanged, but sites subscripted with i (j) now correspond to A (B) sites.

To ensure the ground state has no magnetization, the A-sites must have spin
projection +S on the z-axis, while the B-sites have projection −S. To this end,
the A-part of the HP transformation remains the same as given by Eqs. (3.2),
while the B-operators become [28]

ŜBx
j =

1

2

[√
2S − b̂†j b̂j b̂j + b̂†j

√
2S − b̂†j b̂j

]
, (3.7a)

ŜBy
j =

i

2

[√
2S − b̂†j b̂j b̂j − b̂†j

√
2S − b̂†j b̂j

]
, (3.7b)

and

ŜBz
j = b̂†j b̂j − S. (3.7c)
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3 Advanced introduction

Figure 3.2: Two-dimensional square-lattice Heisenberg antiferromagnet in its
ground state, with A-sublattice spins (amber) ‘up’ and B-sublattice
spins (blue) ‘down’.

(In terms of the ladder operators, ŜB+
j and ŜB−

j have their definitions swapped
compared to the A-sublattice, while Ŝz

j is multiplied with −1.)

Note that it is not necessary for an antiferromagnet to have a hypercubic
lattice structure. However, other crystal symmetries complicate the sublattice
approach: consider, for example, three antiferromagnetic spins in a triangle.
Choose one spin to be ‘up’, and the other two ‘down’. Then there exist two pairs
of nearest neighbors that satisfy the antiferromagnetic coupling, but one pair
that does not. This principle is known as frustration, and makes it impossible
to uniquely define two sublattices. It further leads to an extremely degenerate
ground state and a complicated energy landscape. While frustrated systems are
an interesting topic in their own right—to the extent that Giorgio Parisi was
awarded the 2021 Nobel Prize in Physics for finding new theoretical methods
to tackle them [29]—they are far outside the scope of this dissertation, and we
shall therefore restrict discussion to the hypercubic lattice.

The quadratic magnon Hamiltonian may then be expressed in a separate sum
for each sublattice (we assume there are N/2 A-spins and an equal number of

14



3.1 Magnetic models and the Holstein-Primakoff transformation

B spins):

H
(2)
AFM =

JS

2

∑
δ

{∑
r∈A

[
â†(r)â(r) + b̂†(r + δ)b̂(r + δ)

+ â(r)b̂(r + δ) + â†(r)b̂†(r + δ)− S
]

+
∑
r∈B

[
â†(r + δ)â(r + δ) + b̂†(r)b̂(r)

+ â(r + δ)b̂(r) + â†(r + δ)b̂†(r)− S
]}

(3.8)

=
JS

2

∑
δ

{∑
k

[
â†(k)â(k) + b̂†(k)b̂(k)

+ e−iδ·kâ(k)b̂(−k) + eiδ·kâ†(k)b̂†(−k)− S
]

+
∑
k

[
â†(k)â(k) + b̂†(k)b̂(k)

+ eiδ·kâ(k)b̂(−k) + e−iδ·kâ†(k)b̂†(−k)− S
]}

= JSz
∑
k

{
â†(k)â(k) + b̂†(k)b̂(k)

+ C(k)
[
â(k)b̂(−k) + â†(k)b̂†(−k)

]
− S

}
, (3.9)

where

C(k) ≡ 1

z

∑
δ

cos(δ · k). (3.10)

Thus we see that even in translationally invariant systems, a Fourier trans-
formation is no longer sufficient to diagonalize the AFM Hamiltonian, due to
the presence of anomalous terms of the form â(k)b̂(−k) (and h.c.). Instead, we
must follow the Fourier transformation with a Bogoliubov transformation that
mixes the sublattices:

â(k) = u(k)α̂(k) + v(k)β̂†(−k), (3.11a)

b̂(k) = u(k)β̂(k) + v(k)α̂†(−k), (3.11b)

where u(k) = u(−k) and v(k) = v(−k).
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3 Advanced introduction

Inserting this into Eq. (3.9), we find

H
(2)
AFM = JSz

∑
k

{[
α̂†(k)α̂(k) + β̂†(k)β̂(k)

]
×
[
u2(k) + v2(k) + 2u(k)v(k)C(k)

]
+
[
α̂(k)β̂(−k) + α̂†(k)β̂†(−k)

]
×
[
u2(k)C(k) + v2(k)C(k) + 2u(k)v(k)

]
+
[
2v2(k) + 2u(k)v(k)C(k)

] }
− JS2Nz. (3.12)

To diagonalize this Hamiltonian, we must eliminate the terms containing α̂(k)β̂(−k)
and α̂†(k)β̂†(−k). Because the new operators α̂(k) and β̂(k) must also satisfy
the bosonic commutation relations, we require that u2(k)− v2(k) = 1, or

u(k) = cosh [θ(k)] , (3.13a)
v(k) = sinh [θ(k)] , (3.13b)

where θ(k) = θ(−k). To eliminate the anomalous terms, we then require

cosh2 [θ(k)] + sinh2 [θ(k)] = −sinh [2θ(k)]

C(k)
, (3.14)

which is satisfied if

θ(k) =
arctanh [−C(k)]

2
. (3.15)

The Hamiltonian then reads

H
(2)
AFM = Ω0,AFM +

∑
k

ωAFM(k)
[
α̂†(k)α̂(k) + β̂†(k)β̂(k)

]
, (3.16)

where

Ω0,AFM = −JS(1 + S)Nz +
∑
k

ωAFM(k) (3.17)

and

ωAFM(k) = JSNz
√

1− C2(k). (3.18)
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3.1 Magnetic models and the Holstein-Primakoff transformation

3.1.1 Para-unitary diagonalization

The previous discussion pertains only to translationally invariant systems, where
periodic boundary conditions may be applied in order to perform the Fourier
transformation. When this is not the case, discrete FM and AFM Hamiltonians
are diagonalized by a para-unitary transformation [30], which may be viewed as
a combination of a pseudo-Fourier transformation and a Bogoliubov transfor-
mation. Consider a Hamiltonian that can be described by the matrix structure

H =
(
â† â

)(h1 h2
h†2 h3

)(
â
â†

)
≡ ϕ†hϕ. (3.19)

Here, we define the operator ϕ ≡ (â, â†)T, where â is a vector operator of
dimension N (with each component âi an operator acting on site i), h1 and h3
are Hermitian N ×N matrices, and h2 is a general complex N ×N matrix. The
2N × 2N matrix h is required to be positive definite. The components of the
operator â obey bosonic commutation relations:

[âi, â
†
j ] = δij (3.20)

[âi, âj ] = [â†i , â
†
j ] = 0. (3.21)

The goal is to find a matrix T , such that

ϕ†hϕ = Ψ†DΨ ≡ ϕ†T †DT ϕ, (3.22)

where D is a diagonal matrix, and we define the vector operators Ψ ≡ T ϕ ≡
(ψ̂, ψ̂†)T. The matrix T must be chosen such that ψ̂ preserves the commutation
relations of â:

[ψ̂i, ψ̂
†
j ] = δij (3.23)

[ψ̂i, ψ̂j ] = [ψ̂†
i , ψ̂

†
j ] = 0. (3.24)

To satisfy this condition, the matrix T must be para-unitary, i.e., it must obey
the relation

σ3T † = T −1σ3, (3.25)

where

σ3 =

(
IN 0
0 −IN

)
(3.26)
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is the 2N × 2N analog of the third Pauli matrix, and IN is the N ×N identity
matrix.

The procedure of constructing the inverse transformation T −1 is similar to
that of constructing an ordinary unitary transformation: first, one solves the
characteristic equation to find the paravalues (cf. eigenvalues), and using these
one solves for the paranormalized paravectors (cf. normalized eigenvectors),
which then make up the columns of the inverse transformation matrix. The
para-unitary characteristic equation is given by

|h− λµσ3| = 0, (3.27)

and produces 2N paravalues λµ (possibly degenerate). All λµ are positive if and
only if h is positive-definite [30], and each paravalue gives rise to a paravector

pµ ≡
(
uµ
vµ

)
, (3.28)

where uµ and vµ are N -vectors. Next, one must compute the paranorm of the
vectors pµ, which is defined as

(pµ)
† σ3pµ = (uµ)

†uµ − (vµ)
†vµ. (3.29)

Upon dividing by the square root of the absolute value of their paranorm, the
vectors pµ are said to be paranormalized. The inverse transformation matrix
T −1 then has as its first N columns the paravectors with paranorm 1, and as
its last N columns the paravectors with paranorm −1.

Note further that the para-unitary diagonalization of h is equivalent to the
unitary diagonalization of the matrix σ3h, which yields N positive and N neg-
ative eigenvalues, and has the vectors pµ as its eigenvectors.

Up to a constant, the ferromagnetic magnon Hamiltonian (3.3) may be cast
into the form of Eq. (3.19) using the bosonic commutation relations. While the
bare Heisenberg Hamiltonian can be unitarily diagonalized, the introduction
of anisotropy terms (see Section 3.2) produces nonzero h2-submatrices, making
the para-unitary treatment a requirement. The constant that remains does not
change the spacing between energy levels, and can often be ignored.

The para-unitary approach is likewise necessary to diagonalize the antiferro-
magnetic Hamiltonian (3.8). Observant readers will note that this Hamiltonian
contains â and b̂ operators, whereas the operator ϕ̂ is defined only in terms of
the â operator. However, as terms combining â† with b̂ or â with b̂† (i.e., terms
that convert a B-magnon into an A-magnon or vice-versa) are absent from the
quadratic Hamiltonian, the overall Bogoliubov structure remains, so that one
may redefine ϕ as (â, b̂†)T and proceed as before.
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3.2 Anisotropies and fields

(a) (b)

Figure 3.3: Visualization of the three-component anisotropy model as an axis-
aligned ellipsoid. The full anisotropy tensor is a rotated form of this
object. (a): easy-z-axis anisotropy, where the z axis is shorter than
the x and y axes. (b): easy-xy-plane anisotropy, where the x and y
axes are equal and shorter than the z axis.

3.2 Anisotropies and fields

While the Heisenberg Hamiltonian (3.1) produces the basic phenomenology
of (anti)ferromagnetism, real magnetic materials invariably include a certain
amount of anisotropy. Various sources may be distinguished, such as the crys-
talline nature of the material, the shape of mesoscopic structures, and applied
strain. The latter may in turn be ‘built in’ during the crystal grows process, or
originate from externally applied bending, shearing, etcetera. These anisotropies
act to create preferred directions for the magnetization or Néel vector (the differ-
ence between the magnetization vectors of the two sublattices), and may further
be position-dependent, for example, in the presence of crystal defects or across
the boundary of a grain.

At the lowest relevant order, the combined effect of these anisotropies can be
captured by a Hamiltonian term of the form

Hani =
∑
i

ŜT
i KiŜi, (3.30)

where K is a Hermitian 3×3 matrix. Restricting to the case where K is real, this
anisotropy matrix may be decomposed into the form RT

i diag(Kx
i ,K

y
i ,K

z
i )Ri,

where Ri is a rotation (orthogonal matrix).
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Roughly speaking, one can view the diagonal anisotropy matrix diag(Kx
i ,K

y
i ,K

z
i )

as forming an axis-aligned ellipsoid, acting to align the equilibrium spin with
its shortest axis, i.e. the one corresponding to the smallest Kν . If there is one
distinct smallest anisotropy constant, the Hamiltonian describes an easy-axis
magnet (Fig. 3.3a); conversely, if the ellipsoid is a prolate spheroid, such that
two anisotropy constants are equal and the third is larger, the Hamiltonian de-
scribes an easy-plane magnet (Fig. 3.3b). Note that because only the square of
the spin operators appears in Eq. (3.30), terms of this form leave the system
invariant under reversal of the (sublattice) magnetization.

Upon Holstein-Primakoff transformation (to second order in the magnon op-
erators) and, if necessary, completing the square (i.e. transforming âi → â′i =
âi + λi and choosing the complex constant λ such that the Hamiltonian coef-
ficient of the single-operator terms â′ and â†′ vanishes), Eq. (3.30) may always
be brought into the form

H
(2)
ani = S

∑
i

[
Aiâ

†
i âi + Biâiâi + B∗

i â
†
i â

†
i + Ci

]
, (3.31)

and similar for the B-sublattice of an AFM. Here, Ai and Ci are real con-
stants, and Bi is a complex constant. Bi vanishes only when the projection of
the anisotropy ellipsoid on the xy plane (i.e. the plane perpendicular to the
quantization axis) is circular. In all other cases, the Hamiltonian will have non-
vanishing anomalous terms of the form ââ and â†â†, so that a Bogoliubov or
para-unitary transformation is needed to diagonalize it.

Another key ingredient that is present in virtually every treatment (be it
theoretical or experimental) is an external magnetic field. In the context of
theoretical magnonics, this may be used, for example, to break ground state
degeneracy, fix natural a spin quantization axis, and tune the magnon energy
gap. Furthermore, the processes typically present in spintronic systems have
varying dependence on both the direction and magnitude of the external field,
making it an indispensable tool for discerning concurrent effects in experimental
research.

The magnetic field is a vector that couples linearly to the spin:

Hmag =
∑
i

hi · Ŝi. (3.32)

In the context of magnonics, one typically uses the magnetic field to fix the
direction of the magnetization or Néel vector in the ground state before per-
forming the Holstein-Primakoff transformation. For position-independent fields
(hi = h), it is then a natural choice to define one’s coordinate system such that
h lies along the z-axis.
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3.3 Spin-flip scattering and the spin Hall effect

In AFMs, spins from both sublattices try to align parallel to the magnetic
field. However, this implies A-type spins are parallel to B-type spins, which
is carries an energy penalty due to the exchange interaction. As a result, the
actual ground state configuration of an isotropic AFM in a magnetic field has
its spins aligned perpendicular to the field, and mutually antiparallel; this is
known as the spin-flop phase. Within the plane to which the magnetic field is
normal, this ground state exhibits rotational symmetry, which is undesirable in
light of the Holstein-Primakoff transformation. For this reason, one typically
introduces an easy-axis anisotropy term into the AFM Hamiltonian, parallel to
the magnetic field, so that mutually antiparallel alignment of all spins, collinear
to the external field becomes the unique ground state.

3.3 Spin-flip scattering and the spin Hall effect

To use magnons as an information carrier, one must be able to inject magnons
into a magnetically ordered material. Although various means exist to do so
(e.g. optical or thermal methods), for the purpose of this work, we shall consider
only electronic spin flip scattering.

In this process, a conductor is interfaced with a magnetic material (MM –
this can be either an FM or an AFM). When a spin-up (+ℏ

2) electron moving
through the conductor hits the interface, it can flip its spin (to −ℏ

2), transferring
the angular momentum to the MM by creating a magnon of spin ℏ. Conversely,
when a magnon moving through the MM reaches the interface, it can flip the
spin of a spin-down electron, annihilating the magnon in the process. The
operator forms of these processes—the Feynman diagrams of which can be found
in Figure 3.4—are easily derived from the exchange coupling between electrons
at the interface and spins in the MM.

Consider an itinerant electron at position r in a lead, and a nearby spin in
the MM at position r′. The Hamiltonian term corresponding to the exchange
interaction between the lead electron and MM spin is given by

Hex(r, r
′) = J(r, r′)Ŝlead(r) · ŜMM(r′). (3.33)

The Cartesian components ν ∈ {x, y, z} of the lead electron’s spin operator
Ŝlead can be expressed in terms of the Pauli matrices σν and spin-up (-down)
fermionic creation and annihilation operators ĉ†↑(↓) and ĉ↑(↓) as [31]

Ŝlead
ν (r) =

(
ĉ†↑(r) ĉ†↓(r)

)
σν

(
ĉ↑(r)
ĉ↓(r)

)
, (3.34)

21



3 Advanced introduction

↑
↓

(a)

t

↓
↑

t

(b)

Figure 3.4: Feynman diagrams for spin-flip scattering processes, whereby an
electron (thick straight lines) creates (a) or annihilates (b) a magnon
(wavy lines). Arrows represent the electron spin. The horizontal di-
rection represents time t.

or, in Cartesian vector notation,

Ŝlead(r) =

 ĉ†↓(r)ĉ↑(r) + ĉ†↑(r)ĉ↓(r)

−iĉ†↓(r)ĉ↑(r) + iĉ†↑(r)ĉ↓(r)

ĉ†↑(r)ĉ↑(r)− ĉ†↓(r)ĉ↓(r)

 . (3.35)

The MM spin operator is expressed in bosonic operators using the Holstein-
Primakoff transformation (3.2), so that we obtain (to quadratic order, for an
FM or A-sublattice spin in an AFM)

Hex(r, r
′) =

√
2SJ(r, r′)

[
ĉ†↓(r)ĉ↑(r)â

†(r′) + ĉ†↑(r)ĉ↓(r)â(r
′)
]

+J(r, r′)
[
ĉ†↓(r)ĉ↓(r)− ĉ†↑(r)ĉ↑(r)

] [
S − â†(r′)â(r′)

]
. (3.36)

Here, the first line describes the spin-flip scattering processes: a spin-up electron
is annihilated to produce a spin-down electron and a magnon, or conversely, a
spin-down electron and a magnon are annihilated to create a spin-up electron.
The terms on the second line produce an overall energy shift that depends on the
spin accumulation and magnon density, but leave the magnon number invariant
(and are therefore irrelevant to the present discussion).

Normally, the magnon creation and annihilation contributions to the spin-flip
scattering process are (on average over large scales) exactly balanced, so that
there is no net magnon injection or extraction. The balance is broken when
one electron spin species is more prevalent at the interface inside the conductor,
e.g. when the current passed through it is spin-polarized. However, rather than
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3.3 Spin-flip scattering and the spin Hall effect

deferring the generation of spin imbalance to the current source, a more direct
means exists in the form of the spin Hall effect (SHE) [32], which allows the
required spin imbalance to be created from a spin-unpolarized electron current
in a metallic contact to the magnonic device.

The SHE occurs when an electric current is passed through a conductor which
exhibits strong spin-orbit coupling, and is essentially a solid-state version of a
spin-dependent electron scattering effect proposed by Mott [33] in 1929. Per
Gay and Dunning [34], Mott scattering, and by extension the spin Hall effect,
is best explained in terms of classical physics.

Consider a heavy atom of atomic number Z, such that the electrical charge
of its nucleus is eZ. At a separation r from the nucleus, an electron experiences
a magnetic field

B =
eZ

cme|r|3
L =

eZ

c|r|3r × v (3.37)

originating from the charge of the nucleus. Here, c is the speed of light, me is
the electron’s mass, L = mer×v is the orbital angular momentum, and v is the
electron’s velocity. The magnetic field in turn couples to the electron’s intrinsic
(spin) magnetic moment µs, giving rise to a potential term

Vso = −µs ·B, (3.38)

which causes the electron to deflect in the direction normal to the plane spanned
by its motion and its magnetic moment. As the motion of electrons in a metal
is proportional to the electric current je, electrons with their magnetic moment
aligned to some given axis n̂ produce a transverse spin current js ∝ je × n̂; see
Figure 3.5a.

More generally, if the direction of the electrons’ spin is not specified, one may
describe a spin current by a tensor jsij , where the index i describes the direction
of motion and the index j describes the spin orientation. In an isotropic heavy
metal (HM), spin-orbit coupling introduces an interdependence between the
charge current jei and the spin current jsij [35]:

jei = j
e(0)
i + γϵijkj

s
jk, (3.39)

jsij = j
s(0)
ij − γϵijkj

e
k, (3.40)

where γ is a small scalar parameter, ϵijk is the Levi-Civita symbol, and j
e(0)
i

and js(0)ij are, respectively, the charge and spin currents in absence of spin-orbit
coupling.
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(a)

(b)

Figure 3.5: Graphical depictions of the spin Hall effect. (a) Spin deflection
of electrons with a given spin orientation. In a heavy metal, spin
species deflect in the plane normal to the electric current je, produc-
ing a spin current js. (b) Spin accumulation profile arising from an
electric current. The large red arrow represents the electron current
je, flowing in the positive x-direction. The four tangential arrows
represent the direction of the current-induced spin accumulation at
the conductor’s edges.
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3.3 Spin-flip scattering and the spin Hall effect

Analogous to the ordinary Hall effect, in which the transverse electric current
causes a voltage to build up, the spin Hall effect produces a spin accumulation
at opposite sides of the spin Hall device perpendicular to the charge current
(see Figure 3.5b). By interfacing the HM with an FM or AFM [36–38], the
SHE directly produces the spin imbalance necessary to inject magnons through
spin-flip scattering.

By the principle of Onsager reciprocity, there also exists an inverse spin Hall
effect (ISHE): a pure spin current leads to a transverse charge current. As
a result, a heavy-metal lead may be used to detect the presence of magnonic
spin in a ferromagnet. In 2015, Cornelissen et al. [16] used the ISHE to measure
magnonic spin transport through a ferromagnetic insulator (yttrium iron garnet;
YIG), injected using the SHE several micrometres away from the detector.
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4 Magnon contribution to unidirectional
spin Hall magnetoresistance

...in ferromagnetic-insulator/heavy-metal bilayers

We develop a model for the magnonic contribution to the unidirectional
spin Hall magnetoresistance (USMR) of heavy metal/ferromagnetic in-
sulator bilayer films. We show that diffusive transport of Holstein-
Primakoff magnons leads to an accumulation of spin near the bilayer
interface, giving rise to a magnoresistance which is not invariant under
inversion of the current direction. Unlike the electronic contribution de-
scribed by Zhang and Vignale [Phys. Rev. B 94, 140411 (2016)], which
requires an electrically conductive ferromagnet, the magnonic contribu-
tion can occur in ferromagnetic insulators such as yttrium iron garnet.
We show that the magnonic USMR is, to leading order, cubic in the spin
Hall angle of the heavy metal, as opposed to the linear relation found
for the electronic contribution. We estimate that the maximal magnonic
USMR in Pt|YIG bilayers is on the order of 10−8, but may reach values
of up to 10−5 if the magnon gap is suppressed, and can thus become
comparable to the electronic contribution in e.g. Pt|Co. We show that
the magnonic USMR at a finite magnon gap may be enhanced by an
order of magnitude if the magnon diffusion length is decreased to a spe-
cific optimal value that depends on various system parameters.

4.1 Introduction

The total magnetoresistance of metal/ferromagnet heterostructures is known
to comprise several independent contributions, including but not limited to
anisotropic magnetoresistance (AMR) [39], giant magnetoresistance (GMR, in
stacked magnetic multilayers) [40] and spin Hall magnetoresistance (SMR) [41].
A common characteristic of these effects is that they are linear; in particular,
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this means the measured magnetoresistance is invariant under reversal of the
polarity of the current.

In 2015, however, Avci et al. [42] measured a small but distinct asymmetry
in the magnetoresistance of Ta|Pt and Co|Pt bilayer films. Due to its striking
similarity to the current-in-plane spin Hall effect (SHE) and GMR, save for its
nonlinear resistance/current characteristic, this effect was dubbed unidirectional
spin Hall magnetoresistance (USMR).

In the years following its discovery, USMR has been detected in bilayers con-
sisting of magnetic and nonmagnetic topological insulators [43], and the depen-
dence of the USMR on layer thickness has been investigated experimentally for
Co|Pt bilayers [44]. Additionally, Avci et al. [45] have shown that USMR may
be used to distinguish between the four distinct magnetic states of a ferromag-
net|normal metal|ferromagnet trilayer stack, highlighting its potential applica-
tion in multibit electrically controlled memory cells.

Although USMR is ostensibly caused by spin accumulation at the ferromag-
net|metal interface, a complete theoretical understanding of this effect is lack-
ing. In bilayer films consisting of ferromagnetic metal (FM) and heavy metal
(HM) layers, electronic spin accumulation in the ferromagnet caused by spin-
dependent electron mobility provides a close match to the observed results [46].
It remains unknown, however, whether this is the full story; indeed, this model’s
underestimation of the USMR by a factor of two lends plausibility to the idea
that there may be additional, as-yet unknown contributions providing the same
experimental signature. Additionally, the electronic spin accumulation model
cannot be applied to bilayers consisting of a ferromagnetic insulator (FI) and a
HM, as there will be no electric current in the ferromagnet to drive accumulation
of spin.

Kim et al. [47] have measured the USMR of Py|Pt (where Py denotes for
permalloy) bilayer and claim, using qualitative arguments, that a magnonic
process is involved. Likewise, for Co|Pt and CoCr|Pt, more recent results by
Avci et al. [48] argue in favor of the presence of a magnon-scattering contri-
bution consisting of terms linear and cubic in the applied current, and having
a magnitude comparable to the electronic contribution of Zhang and Vignale
[46]. Although these experimental results provide a great deal of insight into the
underlying processes, a theoretical framework against which they can be tested
is presently lacking. In this work, we aim to take first steps to developing such
a framework, by considering an accumulation of magnonic spin near the FI|HM
bilayer interface, which we describe by means of a drift-diffusion model.

The remainder of this article is structured as follows: in Sec. 4.2, we present
our analytical model as generically as possible. In Sec. 4.3 we analyze the
behavior of our model using parameters corresponding to a Pt|YIG (YIG being
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4.2 Magnonic spin accumulation

yttrium iron garnet) bilayer as a basis. In particular, in Sec. 4.3.1 we give
quantitative predictions of the magnonic USMR in terms of the applied current
and layer thicknesses, and in Sec. 4.3.2 we take into account the effect of Joule
heating. In the remainder of Sec. 4.3, we investigate the influence of various
material parameters. Finally, in Sec. 4.4 we summarize our key results and
present some open questions.

4.2 Magnonic spin accumulation

To develop a model of the magnonic contribution to the USMR, we focus on the
simplest FI|HM heterostructure: a homogeneous bilayer. We treat the trans-
port of magnonic and electronic spin as diffusive, and solve the resulting dif-
fusion equations subject to a quadratic boundary condition at the interface.
In this approach, valid in the opaque interface limit, current-dependent spin
accumulations—electronic in the HM and magnonic in the FI—form near the
interface. In particular, the use of a nonlinear boundary condition breaks the
invariance of the SMR under reversal of the current direction, i.e. it produces
USMR.

Figure 4.1: Schematic depiction of our system. The magnetization M of the
FI layer lies in the +y direction, an electric field of magnitude E is
applied to the heavy metal layer (HM) in the ±x direction, and the
interface between the layers lies in the xy plane.
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4 Magnon contribution to unidirectional spin Hall magnetoresistance

We consider a sample consisting of a FI layer of thickness LFI directly contact-
ing a HM layer of thickness LHM. We take the interface to be the xy plane, such
that the FI layer extends from z = 0 to LFI and the HM layer from z = −LHM to
0. The magnetisation is chosen to lie in the positive y-direction, and an electric
field E = ±Ex̂ is applied in the x-direction. The set-up is shown in Fig. 4.1.

The extents of the system parallel to the interface are taken to be infinite,
and the individual layers completely homogeneous. This allows us to treat
the system as quasi-one-dimensional, in the sense that we will only consider
spin currents that flow in the z-direction. We account for magnetic anisotropy
only indirectly through the existence of a magnon gap. We further assume
that our system is adequately described by the Drude model (suitably extended
to include spin effects[49]), and that the interface between layers is not fully
transparent to spin current, i.e., has a finite spin-mixing conductance [50]. For
simplicity, we assume electronic spin and charge transport may be neglected in
the ferromagnet, as is the case for ferromagnetic insulators.

We describe the transfer of spin across the interface microscopically by the
continuum-limit interaction Hamiltonian

Hint = −
∫

d3rd3r′ J(r, r′)
[
b†(r′)c†↓(r)c↑(r)

+ b(r′)c†↑(r)c↓(r)
]
, (4.1)

where c†α(r) [cα(r)] are fermionic creation [annihilation] operators of electrons
with spin α ∈ {↑, ↓} at position r in the HM, and b†(r′) [b(r′)] is the bosonic cre-
ation [annihilation] operator of a circularly polarized Holstein-Primakoff magnon
[26] at position r′ inside the ferromagnet. We leave J(r, r′) to be some unknown
coupling between the electrons and magnons, which is ultimately fixed by taking
the classical limit [51, 52].

Transforming to momentum space and using Fermi’s golden rule, we obtain
the interfacial spin current jint

s , which can be expressed in terms of the real part
of the spin mixing conductance per unit area g↑↓r as [51, 53]

jint
s =

g↑↓r
πs

∫
dε g(ε)(ε−∆µ)

×
[
nB

(
ε−∆µ

kBTe

)
− nB

(
ε− µm
kBTm

)]
. (4.2)

(Similar expressions were derived by Takahashi et al. [54] and Zhang and Zhang
[55], although these are not given in terms of the spin-mixing conductance.)

Here, s is the saturated spin density in the FI layer, g(ε) is the magnon den-
sity of states, nB (x) = [ex − 1]−1 is the Bose-Einstein distribution function, kB
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4.2 Magnonic spin accumulation

is Boltzmann’s constant, and Tm and Te are the temperatures of the magnon
and electron distributions, respectively, which we do not assume a priori to
be equal (although the equal-temperature special case will be our primary in-
terest). Of crucial importance in Eq. (4.2) are the magnon effective chemical
potential µm—which we shall henceforth primarily refer to as the magnon spin
accumulation—and the electron spin accumulation ∆µ ≡ µ↑ − µ↓, which we
define as the difference in chemical potentials for the spin-up and spin-down
electrons. (In both cases, a positive accumulation means the majority of spin
magnetic moments point in the +y direction.)

We employ the magnon density of states

g(ε) =

√
ε−∆

4π2J
3
2
s

Θ(ε−∆). (4.3)

Here, Js is the spin wave stiffness constant, Θ(x) is the Heaviside step function,
and ∆ is the magnon gap, caused by a combination of external magnetic fields
and internal anisotropy fields in ferromagnetic materials [56]. In our primary
analysis of a Pt|YIG bilayer, we take ∆ ≡ µB × 1T ≈ kB × 0.67K with µB
the Bohr magneton, in good agreement with e.g. Cherepanov et al. [18], and in
Sec. 4.3.5 we specifically consider the limit of a vanishing magnon gap.

To treat the accumulations on equal footing, we now redefine µm → δµm and
∆µ→ δ∆µ, expand Eq. (4.2) to second order in δ, and set δ = 1 to obtain

jint
s ≃ −

[
kBTmI0 + Ie∆µ+ Imµm +

Iee
kBTe

(∆µ)2

+
Imm

kBTm
µ2m +

Ime

kBTm
µm∆µ

]
g↑↓r (kBTm)

3
2

4π3J
3
2
s s

. (4.4)

Here, the Ii are dimensionless integrals given by Eqs. (4.15) in the Appendix.
All Ii are functions of Tm and ∆, and I0, Ie and Iee additionally depend on Te. In
the special case where Tm = Te, I0 vanishes, Im = −Ie, and Iee = −(Imm+Ime).

In addition to jint
s , the spin accumulations and the electric driving field E

give rise to the following spin currents in the z direction:

jes =
ℏ
2e

(
− σ

2e

∂∆µ

∂z
− σθSHE

)
, (4.5a)

jms = −σm
ℏ
∂µm
∂z

. (4.5b)

Here jes and jms are the electron and magnon spin currents, respectively. σ is
the electrical conductivity in the HM, σm is the magnon conductivity in the
ferromagnet, e is the elementary charge, and θSH is the spin Hall angle.
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4 Magnon contribution to unidirectional spin Hall magnetoresistance

In line with Cornelissen et al. [57] and Zhang and Zhang [58], we assume the
spin accumulations µm and ∆µ obey diffusion equations along the z-axis:

d2µm
dz2

=
µm
l2m
,

d2∆µ

dz2
=

∆µ

l2e
, (4.6)

where lm and le are the magnon and electron diffusion lengths, respectively.
We solve these equations analytically subject to boundary conditions that de-
mand continuity of the spin current across the interface and confinement of the
currents to the sample:

jms (0) = jes (0) = jint
s (0), (4.7)

jms (LFI) = jes (−LHM) = 0. (4.8)

This system of equations now fully specifies the magnonic and electronic spin
accumulations µm and ∆µ, the latter of which enters the charge current jc via
the spin Hall effect:

jc(z) = σE +
σθSH
2e

∂∆µ(z)

∂z
. (4.9)

The measured resistivity at some electric field strength E is then given by the
ratio of the electric field and the averaged charge current:

ρ(E) =
E

1
LHM

∫ 0
−LHM

dz jc(z)
. (4.10)

Finally, we define the USMR U as the fractional difference in resistivity on
inverting the electric field:

U ≡
∣∣∣∣ρ(E)− ρ(−E)

ρ(E)

∣∣∣∣ =
∣∣∣∣∣1 +

∫ 0
−LHM

dz jc(z;E)∫ 0
−LHM

dz jc(z;−E)

∣∣∣∣∣ . (4.11)

It should be noted that the even-ordered terms in the expansion of the inter-
face current are vital to the appearance of unidrectional SMR. Suppose our sys-
tem has equal magnon and electron temperature, such that the interfacial spin
Seebeck term I0 vanishes (see Section 4.3.2), and we ignore the quadratic terms
in Eq. (4.4). Then because the only term in the spin current equations (4.5)
that is independent of the accumulations is −ℏσθSH

2e E in Eq. (4.5a), we have that
∆µ ∝ µm ∝ E. Then by Eqs. (4.9) and (4.10), jc ∝ E and ρ(E) ∝ E

E , such
that U = 0. Conversely, with quadratic terms in the interfacial spin current,
ρ(E) ∼ E

E+E2 , and likewise if I0 does not vanish, ρ(E) ∼ E
1+E . Both cases

give nonvanishing USMR. Physically, one can say that the spin-dependent elec-
tron and magnon populations couple together in a nonlinear fashion (namely,
through the Bose-Einstein distributions in Eq. (4.2)), leading to a nonlinear
dependence on the electric field.
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4.3 Results

4.3.1 Equal-temperature, finite gap case

Although our model can be solved analytically (up to evaluation of the integrals
Ii), the full expression of U is unwieldy and therefore hardly insightful. To get
an idea of the behavior of a real system, we use a set of parameters—listed
in Table 4.1—corresponding to a Pt|YIG bilayer as a starting point. (Unless
otherwise specified, all parameters used henceforth are to be taken from this
table.)

Fig. 4.2 shows the magnonic USMR of a Pt|YIG bilayer versus applied driv-
ing current (σE) when Tm = Te = T , at the temperature of liquid nitrogen
(77K, blue), room temperature (293K, green) and the Curie temperature of
YIG (560K [18], red). FI and HM layer thicknesses used are 90 nm and 3 nm,
respectively, in line with experimental measurements by Avci et al. [59].
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Figure 4.2: USMR U versus driving current σE for a Pt|YIG bilayer at liquid
nitrogen temperature (77K, blue), room temperature (293K, green)
and the YIG Curie temperature (560K, red). Inset: USMR versus
system temperature T at fixed current σE = 1× 1012Am−2.
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4 Magnon contribution to unidirectional spin Hall magnetoresistance

In all cases the magnonic USMR is proportional to the applied electric current—
that is, the cubic term found by Avci et al. [48] is absent—and at room tem-
perature has a value on the order of 10−9 at typical measurement currents [42].
This is roughly four orders of magnitude weaker than the USMR obtained—both
experimentally and theoretically—for FM|HM hybrids [42, 44, 46, 59], and is
consistent with the experimental null results obtained for this system by Avci
et al. [59]. Note, however, that the thickness of the FI layer used by these au-
thors is significantly lower than the magnon spin diffusion length lm = 326 nm,
which results in a suppressed USMR.

Furthermore, it can be seen in the inset of Fig. 4.2 that the magnonic USMR
is, to good approximation, linear in the system temperature, in agreement with
observations by Kim et al. [47] and Avci et al. [48].

In Fig. 4.3 we compute the USMR at σE = 1 × 1012Am−2 as a function of
both LFI and LHM. A maximum is reached around LHM ≈ 4.5 nm, while in
terms of LFI, a plateau is approached within a few spin diffusion lengths. By
varying the layer thicknesses, a maximal USMR of 4.2× 10−8 can be achieved,
an improvement of one order of magnitude compared to the thicknesses used by
Avci et al. [59].
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Figure 4.3: Pt|YIG USMR U at Tm = Te = 293K versus FI layer thickness LFI

and HM layer thickness LHM. A driving current σE = 1×1012Am−2

is used. A maximal USMR of 4.2×10−8 is reached at LHM = 4.5 nm,
LFI = 5 µm.
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4.3.2 Thermal effects

We take into account a difference between the electron and magnon tempera-
tures Te and Tm by assuming these parameters are equal to the temperatures
of the HM and FI layers, respectively, which we take to be homogeneous. We
assume that the HM undergoes ohmic heating and dissipates this heat into the
ferromagnet, which we take to be an infinite heat bath at temperature Tm. We
only take into account the interfacial (Kapitza) thermal resistance Rth between
the HM and FI layers, leading to a simple expression for the HM temperature
Te:

Te = Tm +RthσE
2LHM. (4.12)

Using this model, we still find a linear dependence in the electric field, U ≃
uE(Tm)σE, but the coefficient uE(Tm) increases by three orders of magnitude
compared to the case where the electron and magnon temperatures are set to
be equal. The overwhelming majority of this increase can be attributed to an
interfacial spin Seebeck effect (SSE) [57, 60]: it is caused by the accumulation-
independent contribution I0 (Eq. (4.15a)) in the interface current. When I0 is
artificially set to 0, uE(Tm) changes less than 1% from its equal-temperature
value.

Furthermore, the overall magnitude of the interfacial SSE in our system can be
attributed to the fact that we have a conductor|insulator interface: the current
runs through the HM only, resulting in inhomogeneous Joule heating of the
sample and a large temperature discontinuity across the interface.

4.3.3 Spin Hall angle

The electronic spin accumulation ∆µ at the interface in the standard spin Hall
effect is linear in the electric field E and spin Hall angle θSH [41]. From the
linearity in E, we may conclude that the terms in Eq. (4.4) that are linear in
∆µ have a suppressed contribution to the USMR. Thus, the contribution of the
interface current is of order θ2SH. Furthermore, ∆µ enters the charge current
(Eq. (4.9)) with a prefactor θSH, leaving the magnonic USMR predominantly
cubic in the spin Hall angle. Indeed, in the special case Tm = Te, expanding the
full expression for U (which spans several pages and is therefore not reproduced
within this work) in θSH reveals that the first nonzero coefficient is that of θ3SH.
This suggests a small change in θSH potentially has a large effect on the USMR.

In Fig. 4.4 we plot the USMR for a Pt|YIG bilayer—once again using Tm =
Te = 293K—consisting of 4.5 nm of Pt and 5 µm of YIG, in which we sweep
the spin Hall angle. Included is a cubic fit U = uθθ

3
SH, where we find uθ ≃
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4 Magnon contribution to unidirectional spin Hall magnetoresistance
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Figure 4.4: USMR U at Tm = Te = 293K versus spin Hall angle θSH. A driving
current σE = 1 × 1012Am−2 and FI and HM layer thicknesses
LFI = 5 µm and LHM = 4.5 nm are used. Blue curve: computed
value. Dashed green curve: fit of the form U = uθθ

3
SH, with uθ ≃

3.1× 10−4.

3.1 × 10−4. Here it can be seen that the magnonic USMR in HM|FI bilayers
can, as expected, potentially acquire magnitudes roughly comparable to those
in HM|FM systems, provided one can find or engineer a metal with a spin Hall
angle several times greater than that of Pt. This suggests that very strong spin-
orbit coupling (SOC) is liable to produce significant magnon-mediated USMR
in FI|HM heterostructures, although we expect our model to break down in this
regime.

4.3.4 A note on the magnon spin diffusion length

Although we use the analytic expression for the magnon spin diffusion length[55,
57, 58],

lm = vth

√
2

3
ττmr (4.13)
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—where vth is the magnon thermal velocity, τ is the combined relaxation time,
and τmr is the magnonic relaxation time (see Table 4.1)—this is known to cor-
respond poorly to reality, being at least an order of magnitude too low in the
case of YIG [57]. Artificially setting the magnon spin-diffusion length to the
experimental value of 10 µm (while otherwise continuing to use the parameters
from Table 4.1) results in a drop in USMR of some 4 orders of magnitude.

It follows directly that there exists some optimal value of lm (which we shall
label lm,opt) that maximizes the USMR, which we plot as a function of the FI
layer thickness LFI in Fig. 4.5, at LHM = 4.5 nm and σE = 1 × 1012Am−2,
and for various values of the magnon-phonon relaxation time τmp, which is the
shortest and therefore most important timescale we take into account. For
the physically realistic value of τmp = 1ps (blue curve), the optimal magnon
spin diffusion length is just 24 nm. Although lm,opt itself depends on τmp, the
condition lm = lm,opt acts to cancel the dependence of the USMR on the magnon-
phonon relaxation time. Curiously, the USMR additionally loses its dependence
on LFI, reaching a fixed value of 4.14× 10−7 for our parameters.
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Figure 4.5: Value of the magnon spin diffusion length lm that maximizes the
USMR, as a function of FI layer thickness LFI, at various values of
the magnon-phonon relaxation time τmp.
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4 Magnon contribution to unidirectional spin Hall magnetoresistance

We further find that lm,opt is independent of the spin Hall angle and driving
current, and shows a weak decrease with increasing temperature provided the
magnon-phonon scattering time is sufficiently short. A significant increase in
the optimal spin diffusion length is only found at low temperatures and large
τmp. Similarly, a weak dependence on the Gilbert damping constant α is found,
becoming more significant at large τmp, with lower values of α corresponding
to larger lm,opt. When α is swept, again the USMR at lm = lm,opt acquires a
universal value of 4.14× 10−7 for our system parameters.

4.3.5 Effect of the magnon gap

We have thus far utilised a fixed magnon gap with a value of ∆/µB = 1T for
YIG. Although this is reasonable for typical systems, it is possible to significantly
reduce the gap size by minimizing the anisotropy fields within the sample, e.g.
using a combination of external fields [61], optimized sample shapes [56, 62] and
temperature [63, 64]. This leads us to consider the effect a decreased or even
vanishing gap may have on our results.

Fig. 4.6 shows the USMR U for a Pt|YIG system (4.5 nm of Pt and 5 µm of
YIG) at room temperature, plotted against the driving current σE, now for dif-
ferent values of the magnon gap ∆. Here it can be seen that while U is linear in
E for large gap sizes and realistic currents, it shows limiting behavior at smaller
gaps, becoming independent of the electric current above some threshold (pro-
vided one neglects the effect of Joule heating). At low current and intermediate
magnon gap, the current dependence is nonlinear at O(I2) as opposed to the
O(I3) behavior found by Avci et al. [48].

Note also that the saturation value of the USMR is two to three orders of
magnitude greater than the values found previously in our work, and of the
same magnitude as the electronic contribution found by Zhang and Vignale
[46].

The maximal value of the USMR that can be achieved may be found by
considering the full analytic expression for U in terms of the generic coefficients
Ii representing the dimensionless integrals given by Eqs. (4.15) in the Appendix.
In the gapless limit ∆ → 0 and at equal magnon and electron temperature
(Tm = Te), the second-order coefficients Imm and Ime diverge, while their sum
takes the constant value λ ≡ Imm + Ime ≃ 0.323551 at room temperature. Iee
does not diverge, and obtains the value −λ.

Now working in the thick-ferromagnet limit (LFI → ∞), we substitute Ime →
−Imm + λ and take the limits E → ∞ and Imm → −∞. By application of
l’Hôpital’s rule in the latter, all coefficients Ii drop out of the expression for U .
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Figure 4.6: USMR U of a Pt(4.5 nm)|YIG(5 µm) bilayer at room temperature
versus applied current σE at various values of the magnon gap ∆.
For large gaps, linear behavior is recovered at realistic currents, while
for smaller gap sizes, the USMR saturates as the current is increased.

This leaves only the asymptotic value, which, after expanding in θSH, reads

Umax=
4e2l2s θ

2
SHσm tanh2

(
LHM
2ls

)
ℏ2lmLHMσ+4lse2LHMσm coth

(
LHM
ls

)+O(θ4SH). (4.14)

Whereas the linear-in-E regime of the magnonic USMR grows as θ3SH, we thus
find that the leading-order behavior of the asymptotic value is only θ2SH, and
the third-order term vanishes completely. Physically, this can be explained by
the fact that the asymptotic magnonic USMR is purely a bulk effect: all details
about the interface vanish, while parameters originating from the bulk spin-
and charge currents remain. The appearance of lm in the denominator and
its absence in the numerator of Eq. (4.14) once again highlights that a large
magnon spin diffusion length acts to suppress the USMR.
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Figure 4.7: USMR U of a Pt(4.5 nm)|YIG(5 µm) bilayer at room temperature
as function of the magnon gap size ∆, for various values of the base
charge current σE. Note the log-log scaling. Solid colored lines:
computed USMR. Dashed colored lines: continuations of the high-
gap tails of the corresponding curves according to the one-parameter
fit U = u0/

√
∆. Dashed black line: asymptotic value of the USMR

as given by Eq. (4.14).

Fig. 4.7 is a log-log plot of the USMR versus gap size ∆ at various values
of the driving current σE. Here the value Umax is shown as a dashed black
line, indicating that this is indeed the value to which U converges in the gapless
limit or at high current. Moreover, it shows that for given σE, one can find a
turning point at which the USMR switches relatively abruptly from being nearly
constant to decreasing as 1/

√
∆.

A (backwards) continuation of the decreasing tails is included in Fig. 4.7 as
dashed lines following the one-parameter fit U = u0/

√
∆, and we define the

threshold gap ∆th as the value of ∆ where this continuation intersects Umax.
We then find that ∆th scales as E2, or conversely, that the driving current
required to saturate the USMR scales as the square root of the magnon gap.
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We note that although the small-gap regime is mathematically valid (even in
the limit ∆ → 0, as ∆ may be brought arbitrarily close to 0 in a continuous
manner), it does not necessarily correspond to a physical situation: when the
anisotropy vanishes, the magnetization of the FI layer may be reoriented freely,
which will break our initial assumptions. Nevertheless, in taking the gapless
limit, we are able to predict an upper limit on the magnonic USMR.

4.4 Conclusions

Using a simple drift-diffusion model, we have shown that magnonic spin ac-
cumulation near the interface between a ferromagnetic insulator and a heavy
metal leads to a small but nonvanishing contribution to the unidirectional spin
Hall magnetoresistance of FI|HM heterostructures. Central to our model is an
interfacial spin current originating from a spin-flip scattering process whereby
electrons in the heavy metal create or annihilate magnons in the ferromagnet.
This current is markedly nonlinear in the electronic and magnonic spin accu-
mulations at the interface, and it is exactly this nonlinearity which gives rise to
the magnonic USMR.

For Pt|YIG bilayers, we predict that the magnonic USMR U is at most on
the order of 10−8, roughly three orders of magnitude weaker than the measured
USMR in FM|HM hybrids (where electronic spin accumulation is thought to
form the largest contribution). This is fully consistent with experiments that
fail to detect USMR in Pt|YIG systems, as the tiny signal is drowned out by the
interfacial spin Seebeck effect, which has a similar experimental signature and
is enhanced compared to the FM|HM case due to inhomogeneous Joule heating.

We have shown that the magnon-mediated USMR is approximately cubic in
the spin Hall angle of the metal, suggesting that metals with extremely large
spin Hall angles may provide a significantly larger USMR than Pt. It is therefore
plausible that a large magnonic USMR can exist in systems with very strong
spin-orbit coupling, even though our model would break down in this regime.

The magnonic USMR depends strongly on the magnon spin diffusion length
lm in the ferromagnet. Motivated by a large discrepancy between experimental
values and theoretical predictions of lm, we have shown that a significant in-
crease in USMR can be realized if a method is found to engineer this parameter
to specific, optimal values that, for realistic values of the magnon-phonon relax-
ation time τmp (on the order of 1 ps for YIG), are significantly shorter than those
measured experimentally or computed theoretically. We further find that when
the magnon spin diffusion length has its optimal value, the USMR becomes
independent of the ferromagnet’s thickness and Gilbert damping constant.
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4 Magnon contribution to unidirectional spin Hall magnetoresistance

Although in physically reasonable regimes, the magnonic USMR is to very
good approximation linear in the applied driving current σE, it saturates to a
fixed value given extremely large currents or a strongly reduced magnon gap ∆.
The transition from linear to constant behavior in the driving current is heralded
by a turning point which is proportional to the square root of the magnon gap.
The asymptotic behavior of the USMR beyond the turning point is governed by
the bulk spin- and charge currents, and is completely independent of the details
of the interface.

While a vast reduction in ∆ is required to bring the saturation current of a
Pt|YIG bilayer within experimentally reasonable regimes, the magnonic USMR
scales as 1/

√
∆ at currents below the turning point, suggesting that highly

isotropic FI|HM samples are most likely to produce a measurable magnonic
USMR. The increase in magnonic USMR at low gaps (and large currents) is
in good qualitative agreement with the recent experimental work of Avci et al.
[48], as is the linear dependence on system temperature.

A notable disagreement with the experimental data of Avci et al. [48] is found
in the scaling of the current dependence, which in our results lacks an O(I3)
term at large magnon gaps and contains an O(I2) term at intermediate gaps. It
is still unclear whether this discrepancy can be explained by system differences,
such as the finite electrical resistance of Co or the presence of Joule heating.

Finally, we note that while our results apply to ferromagnetic insulators, it
is reasonable to assume a magnonic contribution also exists in HM|FM het-
erostructures, although the possibility of coupled transport of magnons and
electrons makes such systems more difficult to model. Additionally, various
extensions of our model may be considered, such as the incorporation of spin-
momentum locking [43], ellipticity of magnons, heat transport and nonuniform
temperature profiles [57], directional dependence of the magnetization, etc.
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4.5 Appendix: System parameters for a Pt|YIG bilayer film.

Description Symbol Expression Value at T = 293K Ref.
YIG spin-wave stiffness constant Js 8.458× 10−40 Jm2 [57]
YIG spin quantum number per unit cell S 10 [57]
YIG lattice constant a 1.2376 nm [57]
YIG Gilbert damping constant α 1× 10−4 [57]
YIG spin number density s Sa−3 5.2754× 1027 m−3 [57]
YIG magnon gap ∆ 9.3× 10−24 J [18]
YIG magnon-phonon scattering time τmp 1 ps [57]
YIG magnon relaxation time τmr

ℏ
2αkBTm

130 ps [57]

Combined magnon relaxation time τ
(

1
τmr

+ 1
τmp

)−1

1 ps [57]

Magnon thermal de Broglie wavelength Λ
√

4πJs

kBTm
1.62 nm [57]

Magnon thermal velocity vth
2
√
JskBT
ℏ 35.1 km s−1 [57]

Magnon spin diffusion length lm vth

√
2
3ττmr 326 nm [57]

Magnon spin conductivity σm ζ
(
3
2

)2 Js

Λ3 τ 1.35× 10−24 J sm−1 [57]
Real part of spin-mixing conductance g↑↓r 5× 1018 m−2 [53]
Pt electrical conductivity σ 1× 107 Sm−1 [65]1
Pt spin Hall angle θSH 0.11 [57]
Pt electron diffusion length ls 1.5 nm [57]
Pt|YIG Kapitza resistance Rth 3.58× 10−9 m2 KW−1 [60]

Table 4.1: System parameters for a Pt|YIG bilayer film.

1The conductivity of Pt is approximately inverse-linear in temperature over the regime we are considering. However, as we are not
interested in detailed thermodynamic behavior, we use the fixed value σ = 1× 107 Sm−1 throughout this work.
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4 Magnon contribution to unidirectional spin Hall magnetoresistance

4.6 Appendix: Interfacial spin current integrals

The following dimensionless integrals appear in the second-order expansion of
the interfacial spin current to the spin accumulations, Eq. (4.4):

I0 =

∫ ∞

∆
kBTm

dx

√
x− ∆

kBTm
x

(
nB (x)− nB

(
Tm
Te
x

))
, (4.15a)

Ie =

∫ ∞

∆
kBTm

dx

√
x− ∆

kBTm

(
nB

(
Tm
Te
x

)
− nB (x)

− Tm
Te
xe

Tm
Te

x

[
nB

(
Tm
Te
x

)]2)
, (4.15b)

Im =

∫ ∞

∆
kBTm

dx

√
x− ∆

kBTm
xex [nB (x)]2 , (4.15c)

Iee =

∫ ∞

∆
kBTm

dx

√
x− ∆

kBTm

(
e

Tm
Te

x

[
nB

(
Tm
Te
x

)]3
×
[
e

Tm
Te

x − 1− Tmx

2Te

(
e

Tm
Te

x + 1
)])

, (4.15d)

Imm =

∫ ∞

∆
kBTm

dx

√
x− ∆

kBTm

x

2
ex [ex + 1] [nB (x)]3 , (4.15e)

Ime = −
∫ ∞

∆
kBTm

dx

√
x− ∆

kBTm
ex [nB (x)]2 . (4.15f)
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5 Green’s function formalism for nonlocal
elliptical magnon transport

We develop a non-equilibrium Green’s function formalism to study
magnonic spin transport through a strongly anisotropic ferromagnetic
insulator contacted by metallic leads. We model the ferromagnetic insu-
lator as a finite-sized one-dimensional spin chain, with metallic contacts
at the first and last sites that inject and detect spin in the form of
magnons. In the presence of anisotropy, these ferromagnetic magnons
become elliptically polarized, and spin conservation is broken. We show
that this gives rise to a novel parasitic spin conductance, which becomes
dominant at high anisotropy. Moreover, the spin state of the ferromag-
net becomes squeezed in the high-anisotropy regime. We show that the
squeezing may be globally reduced by the application of a local spin
bias.

5.1 Introduction

The controllable transport of spin through magnetic materials has recently at-
tracted much attention, as it has the potential to augment or supplant modern
electronics with high-frequency and low-dissipation computational elements [66].
Various strategies have been envisioned to achieve this goal, generally using ei-
ther magnetic textures such as skyrmions [67, 68] or domain walls [69, 70] as
the carriers of information, or using spin waves or magnons to transport spin
angular momentum directly. The latter forms a broad field of research known
as magnonics [71]. In recent years, significant milestones, both experimental
and theoretical, have been achieved in the field of magnonics, with non-local
transport of spin through ferromagnetic insulators [16, 72–76] now commonly
realized and fairly well described using theoretical frameworks that range from
drift-diffusion models to non-equilibrium Green’s function formalism [57, 77–79].

At the core of these theoretical models is the Holstein-Primakoff (HP) magnon
[26], a bosonic quasiparticle that forms a natural approximation to low-energy
excitations of the Heisenberg (anti)ferromagnet [80]. The simplest variants of
the Heisenberg ferromagnet do not include any form of anisotropy, or have at
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5 Green’s function formalism for nonlocal elliptical magnon transport

most a ‘natural’ quantization axis, generally taken to be the z axis, set by an
external magnetic field. This results in a circularly polarized magnon, which
appears to offer a sufficient approximation to adequately describe the broad
behavior of magnon transport [53], for example in materials such as yttrium
iron garnet [81].

In this work, however, we explicitly consider the effects of potentially large
anisotropies, which break spin conservation and generate elliptically polarized
magnons. The breaking of spin conservation is known to give rise to phenomena
such as magnon tunneling between weakly coupled ferromagnetic insulators [82],
which is prohibited when spin is conserved, and super-Poissonian shot noise
[81]. Such phenomena are expected to arise whenever the ferromagnet under
consideration has sufficiently strong anisotropy, e.g. in iron thin films [81] or
exotic quantum magnets [83].

We develop a non-equilibrium Green’s function (NEGF) formalism, also known
as Keldysh formalism [84, 85], to study the anomalous or off-diagonal correla-
tions that are generated by the anisotropy terms, and as a proof of concept,
apply it to determine whether magnon ellipticity gives rise to observable effects
in local- and nonlocal transport experiments.

We find that, given sufficiently strong anisotropy, at least two potentially ob-
servable effects are produced: a novel parasitic spin resistance, and phase-space
squeezing of magnons. The parasitic spin resistance may provide experimental
insight into the anisotropy of the ferromagnet, provided a way can be found to
measure it directly. Squeezed magnons are predicted to yield reduced shot noise
in ferromagnet/conductor hybrids [86], analogous to the application of squeezed
light to reduce quantum noise in optical lasers [87, 88]. This effect may also
hypothetically find an application in the recently proposed magnon laser [89].

The outline of this work is as follows: in Section 5.2, we recast the continuum
field theory briefly outlined by Rückriegel and Duine [90] into a discrete, N -spin
form using a bottom-up approach (similar work has been done in contexts such
as the Bose-Hubbard model [91]), and in Section 5.3, show the results we obtain
from a numerical implementation of the framework. In Section 5.4 we provide
some concluding remarks and outline some potential further applications of the
formalism developed in this work.

5.2 Methods

In this section, we give a description of our model system and the implementa-
tion of the NEGF we use to investigate its dynamics.
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5.2 Methods

Figure 5.1: Cartoon representation of the system under consideration. A one-
dimensional chain of spins is terminated at either end by heavy-metal
leads, the left (right) lead having an electronic spin accumulation
µL(R) parallel to the magnetization axis, and temperature TL(R).
Spins precess elliptically due to the presence of high anisotropy, and
can transport angular momentum in the form of an elliptical magnon
or spin wave (yellow swirl).

5.2.1 System and Hamiltonian

We aim to consider systems typically used in long-distance transport experi-
ments akin to Cornelissen et al. [16]: a ferromagnetic insulator with two heavy-
metal leads, one of which serves to inject magnons, and one acting as a magnon
detector. The system is biased by a constant electronic spin accumulation in the
leads, aligned parallel to the magnetization so that there is no torque acting on
the magnetization. We assume spin transport in the ferromagnetic insulator is
quasi-one-dimensional, i.e., that magnons travel in a straight line from emitter to
detector, and the bulk of the ferromagnet effectively consists of macroscopically
many non-interacting parallel copies of the spin chain making up the transport
channel for a single magnon. This allows us to treat the ferromagnetic bulk as
a one-dimensional (1D) spin chain. A cartoon representation of this system is
shown in Fig. 5.1. Extension to a two- or three-dimensional cubic bulk is math-
ematically simple (and tractable in the continuum limit), but computationally
challenging for finite-sized systems due to the vast increase in lattice sites that
must be taken into account.

We thus model our system using the 1D, N -particle Heisenberg [80] ferromag-
netic insulator in the presence of quadratic anisotropy terms. It is described by
the Hamiltonian

H = HH +Hani, (5.1)

where

HH = − J̃
2

N−1∑
i=1

Ŝi · Ŝi+1 − hmag

N∑
i=1

Ŝz
i (5.2)

47



5 Green’s function formalism for nonlocal elliptical magnon transport

is the ordinary 1D Heisenberg Hamiltonian [80], and

Hani =
∑

ν∈{x,y,z}

N∑
i=1

Kν(Ŝ
ν
i )

2 (5.3)

is the anisotropy Hamiltonian. Here J̃ > 0 is the exchange constant, the Kν are
the anisotropy energies in the three Cartesian directions, Ŝi = (Ŝx

i , Ŝ
y
i , Ŝ

z
i )

T is
the spin operator at site i, and hmag is an externally applied magnetic field.

As we are only interested in the behavior of the ferromagnet, we have omitted
Hamiltonian terms originating from coupling to the leads, and instead opt to
directly write down the relevant self-energy terms when we develop our Green’s
function formalism later on.

The second-order, spin-S Holstein-Primakoff transformation [26]

Ŝx
i =

√
S

2

(
bi + b†i

)
, (5.4a)

Ŝy
i = −i

√
S

2

(
bi − b†i

)
, (5.4b)

Ŝz
i = S − b†ibi (5.4c)

is used to express the Hamiltonian 5.1 in terms of magnon creation (annihilation)
operators b†i (bi) acting at site i, that obey the bosonic commutation relations
[bi, bj ] = [b†i , b

†
j ] = 0 and [bi, b

†
j ] = δij . We additionally define the vector operator

ϕi ≡
(
bi
b†i

)
(5.5)

and its conjugate transpose ϕ†i .
Note that the Holstein-Primakoff transformation is an expansion around the

ground state in which all spins are aligned in the z-direction. In the absence of
an external field, this puts constraints on the relative signs and strengths of the
anisotropy terms Kν , however a sufficiently strong field hmag > 0 may always
be used to guarantee alignment to the z-axis.

The Hamiltion of Eq. (5.1) may be simplified somewhat if one defines the
constants ∆ ≡ S(Kx +Ky − 2Kz + J̃) + hmag, J ≡ J̃S

2 and K ≡ S
4 (Kx −Ky).

Then, dropping unimportant constant energy shifts, along with the additional
boundary terms −J(b†1b1 + b†NbN ) that originate from the fact that we consider
a finite-sized system (which we expect to be negligible for sufficiently large
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systems), the Hamiltonian (5.1) may be rewritten as

H =
1

2

∑
ij

ϕ†ihijϕj , (5.6)

with the 2N × 2N matrix

hij =

(
hiij Kδij
Kδij hiij

)
. (5.7)

Here δij is the N ×N identity matrix, and

hiij = ∆δij − J [δi,j+1 + δi+1,j ] (5.8)

is the isotropic Hamiltonian submatrix. We thus see that ∆ is an on-site poten-
tial for the magnons. The rescaled exchange energy J is a hopping parameter,
governing the probability for a magnon to hop from one site to the next.

The off-diagonal submatrices Kδij govern the ellipticity of the magnons,
and we shall henceforth use the term “the anisotropy” interchangeably with
“the scalar constant K” (alternatively, and equivalently, K could be called the
“squeezing factor” or “spin nonconservation factor”). Note, however, that K is
proportional to the difference in anisotropy energies in the x and y directions,
i.e. the principal directions perpendicular to the spin quantization axis.

The presence of nonzero K breaks conservation of spin by introducing terms
of the form K

[
bibi + b†ib

†
i

]
. The Hamiltonian of Eq. (5.7) therefore cannot be

unitarily diagonalized (in a physically meaningful way), and its eigenstates do
not have a well-defined spin. Rather, Eq. (5.7) describes a Hamiltonian of the
Bogoliubov form, which may be diagonalized using a para-unitary transforma-
tion [30], i.e. a transformation matrix Tij obeying∑

i

(σ3)ijT †
jk =

∑
i

T −1
ij (σ3)jk, (5.9)

where

(σ3)ij ≡
(
δij 0
0 −δij

)
(5.10)

is the 2N×2N analog of the third Pauli matrix (referred to as the para-identity
matrix by Colpa [30]). The Hamiltonian (5.7) allows us to choose Tij to be real,
such that it takes the simple block structure

Tij =
(
T (1)
ij T (2)

ij

T (2)
ij T (1)

ij

)
, (5.11)
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5 Green’s function formalism for nonlocal elliptical magnon transport

where the individual N ×N blocks T (1)
ij and T (2)

ij are not symmetric.
The para-unitary diagonalization of hij is performed analytically for arbi-

trary N ≥ 2 by leveraging the recurrent structure of the characteristic equation
det{hij − (σ3)ijε} = 0, whereby the N -level equation can be expressed terms
of the (N − 1)- and (N − 2)-level equations. The characteristic polynomial of
the recurrence relation contains only terms of degree N + 1, and is therefore
easily solved analytically. The quasiparticles are elliptical magnons with the
dispersion relation

εn =

√[
∆− 2J cos

(
nπ

N + 1

)]2
−K2, 1 ≤ n ≤ N. (5.12)

Here, the natural number n is the quantum number, and εn monotonically
increases with n. The corresponding eigenstates are plane waves 1, with the
quantum number n corresponding to the wavenumber k = nπ

L = nπ
Na for a spin

chain of physical length L = Na, with a the lattice constant.

5.2.2 Non-equilibrium Green’s function formalism

As stated in the previous subsection, diagonalization of our anisotropic ferro-
magnetic insulator Hamiltonian may be done analytically and results in free
elliptical magnon modes. We now seek to investigate the finite-temperature
steady-state behavior of such a system in the presence of two effects: (1) cou-
pling to one or more metallic leads and (2) bulk dissipation of elliptical magnons
in the form of Gilbert-like damping.

To this end, we develop a non-equilibrium Green’s function framework [92],
also known as Keldysh formalism [84, 85]. In what follows, we set ℏ = 1. The
spectral properties of the magnons are encoded in the single-particle retarded
Green’s function

gij(t, t
′) = −iθ(t− t′)

〈[
ϕi(t), ϕ

†
j(t

′)
]〉

(5.13)

and advanced Green’s function

g†ij(t, t
′) = iθ(t′ − t)

〈[
ϕi(t), ϕ

†
j(t

′)
]〉
, (5.14)

where θ(t− t′) is the Heaviside step function and [•, •] is the commutator. The
Keldysh Green’s function

gKij(t, t
′) = −i

〈{
ϕi(t), ϕ

†
j(t

′)
}〉

(5.15)

1Specifically, the components of the paravector with quantum number n corresponding to
site i are simply sin

(
inπ
N+1

)
, up to paranormalization.
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encodes information about the occupation of the single-particle states. Here,
{•, •} is the anticommutator. Using these Green’s functions, one may construct
the lesser Green’s function

g<ij(t, t
′) = −i

〈
ϕ†i (t)ϕj(t

′)
〉
, (5.16)

which, at equal times t = t′, contains the off-diagonal correlations (for i ̸= j)
and quasiparticle number density (for i = j), up to a prefactor of −i. Together
with the greater Green’s function

g>ij(t, t
′) = −i

〈
ϕi(t)ϕ

†
j(t

′)
〉
, (5.17)

one obtains the relations [85]

gij(t, t
′) = θ(t− t′)

[
g>ij(t, t

′)− g<ij(t, t
′)
]
, (5.18)

g†ij(t, t
′) = −θ(t′ − t)

[
g>ij(t, t

′)− g<ij(t, t
′)
]
, (5.19)

gKij(t, t
′) = g>ij(t, t

′) + g<ij(t, t
′), (5.20)

and

gij(t, t
′)− g†ij(t, t

′) = g>ij(t, t
′)− g<ij(t, t

′). (5.21)

For simplicity, we shall henceforth drop the subscripts i, j, . . . on all matrices,
as well as the explicit summations in matrix products seen in Section 5.2.1, and
work in the space of 2×2 matrices, of which the four components are themselves
N × N matrices. The presence of the N × N or 2N × 2N identity matrix is
implied when doing so does not lead to ambiguity.

For the remainder of this work, we shall only consider a system in the steady
state, i.e. g(t, t′) = g(t − t′) (and similar for the other Green’s functions), and
work with Fourier-transformed Green’s functions. In particular, the retarded
Green’s function g(ω) satisfies the Dyson equation

g(ω) = [ωσ3 − h− Σ(ω)]−1, (5.22)

where Σ(ω) is the retarded self-energy, and is easily obtained by numerical
matrix inversion.

Here, we opt to stay in the HP basis (i.e., the basis of the circular magnons
defined by the operators ϕ and ϕ†) instead of transforming to the elliptical
basis, and thus h in Eq. (5.22) is simply given by Eq. (5.7). Lead coupling and
Gilbert-like damping are to be incorporated into the (retarded) self-energy Σ.
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5 Green’s function formalism for nonlocal elliptical magnon transport

The reason we choose to compute observables in the circular basis is twofold:
(1) it provides a simple form for the lead self-energies, which will be explained
shortly, and (2) experimental measurement of observables is generally done elec-
trically (through the spin Hall effect and its inverse) [16, 93], so that electron
spin is the natural measurement basis (see below).

In line with Zheng et al. [77], we take the self-energy component arising from
lead X to have the form

ΣX(ω) = −iηX(ω − µXσ3)δi,iX δj,iX , (5.23)

where δi,iX δj,iX indicates that the self-energy is zero everywhere except for its
diagonal components corresponding to site iX2, i.e. the index where lead X is
attached. The positive dimensionless real constant ηX determines the strength
of the lead’s coupling to the system, and µX is the spin accumulation—i.e. the
difference in chemical potential between spin-up and spin-down electrons—in
the lead, generated, for example, by the spin Hall effect. In this work, we
attach at most two leads: the left lead (X = L) at iL = 1 and optionally the
right lead (X = R) at iR = N . We choose the coupling for positive and negative
modes to be equal-but-opposite [indicated by µXσ3 in Eq. (5.23)], such that our
system reduces to the one considered by Zheng et al. [77] in the limit K → 0
(up to the splitting into positive and negative modes itself, which, at K = 0,
becomes a purely notational operation). At the level of the approximations used
by Zheng et al. [77], the lead self-energy for this geometry is determined only
by the electrons in the metal and the interfacial interaction, and is independent
of the magnons and their particle-hole structure, making the form of Eq. (5.23)
a natural choice for our model.

The form of the lead self-energy given by Eq. (5.23) is only valid when one
assumes the spin basis is the natural basis for the lead Hamiltonians, i.e., that
the leads inject a well-defined amount of spin into the ferromagnet. This is the
case provided the electron spin in the leads is polarized in the z-direction and
a spin-flip scattering process at the interface is the source of magnons: here a
spin-12 excitation in the leads is flipped to −1

2 , injecting a (spin-1) HP magnon
into the ferromagnet. In the presence of anisotropy, the circular HP magnon is
a superposition of elliptical magnons.

To find an expression for the Gilbert-like damping self-energy, it is important
to carefully consider what one would expect the state of the system to be in
thermal equilibrium. Given that the lead contributions are local, acting on
only one or two sites of a much larger bulk, we assume our system ultimately

2Thus the full 2N×2N matrix has nonzero components at indices (iX , iX) and (iX +N, iX +
N).
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thermalizes to states close to the eigenstates of the free anisotropic ferromagnet,
i.e. the elliptical quasiparticles. Thus, what is linearly damped in our system
is the density of elliptical magnons, which does not necessarily correspond to
the classical magnetization—hence our use of the term ‘Gilbert-like damping’,
as opposed to just ‘Gilbert damping’: the latter, in the strict sense, refers to
damping of the classical magnetization only [94].

By this rationale, we employ a simple linear damping self-energy in the ellip-
tical basis:

ΣB,ell = −iαω. (5.24)

Here B stands for ‘bulk’ (as this is the only bulk self-energy we take into ac-
count), and α is the Gilbert-like damping parameter.

Transforming to the spin basis, we find

ΣB(ω) = −iαωT †T , (5.25)

where T †T becomes the identity matrix in the limit K → 0. In this limit, the
bulk self-energy reduces to standard Gilbert damping, which has been addressed
by Zheng et al. [77].

The total (retarded) self-energy in our model is then simply the sum of the
lead- and bulk self-energies in the spin basis:

Σ(ω) = ΣB(ω) + ΣL(ω) + ΣR(ω). (5.26)

Under the assumption that the lead and bulk thermal baths are sufficiently
large to be undisturbed by coupling to the spins, we may use the fluctuation-
dissipation theorem [85] to find the associated Keldysh self-energy:

ΣK(ω) = 2ΣB(ω)T −1FB(ω)T
+ 2ΣL(ω)FL(ω) + 2ΣR(ω)FR(ω). (5.27)

Here, we define the statistical matrix

FX(ω) ≡ diag

{
coth

(
ω − µX

2kBTX

)
,

− coth

(−ω − µX

2kBTX

)}
, (5.28)

with X ∈ {B,L,R}, kB the Boltzmann constant, and TX the temperature of the
subsystem X. We will further assume the magnon chemical potential vanishes
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(µB = 0), such that T −1FB(ω)T = coth
(

ω
2kBTB

)
is a real number multiplying

the identity matrix.
Finally, from the Keldysh self-energy, we compute the Keldysh Green’s func-

tion [84, 95]

gK(ω) = g(ω)ΣK(ω)g†(ω). (5.29)

Note that gK(ω) is symmetric and anti-hermitian, and therefore pure-imaginary.

5.2.3 Observables

Using the elements outlined in Section 5.2.2, we may compute any physical ob-
servable of our system. As we are primarily interested in steady-state behavior,
the most obvious objects to consider are the equal-time two-point functions of
the creation and annihilation operators of HP magnons. In the presence of
anisotropy, we expect to obtain nonzero anomalous correlations, e.g.

〈
bibj
〉
, be-

cause the states in the system are a superposition of HP magnon states (leading
to nonconservation of spin). The normal and anomalous correlation functions
are conveniently collected in a single matrix through the vector operator ϕ, e.g.

ig>ij(t) =
〈
ϕi(t)ϕ

†
j(t)
〉
=

〈(
bi(t)

b†i (t)

)
⊗
(
b†j(t) bj(t)

)〉

=

〈bi(t)b†j(t)〉 〈
bi(t)bj(t)

〉〈
b†i (t)b

†
j(t)
〉 〈

b†i (t)bj(t)
〉 . (5.30)

Conversely, we may compute two-point functions of the elliptical magnons
Ψ ≡ T ϕ ≡

(
ψ, ψ†), e.g.〈

Ψ†(t)Ψ(t)
〉
= T ∗

〈
ϕ†(t)ϕ(t)

〉
T T. (5.31)

Here, we expect the anomalous blocks to be nonzero only when lead coupling
and anisotropy are simultaneously present: if only anisotropy is present, there
are no damping terms that try to push the system away from the native elliptical
magnon eigenstates (spin is not conserved, but there are no explicit sources and
sinks of spin). Conversely, if lead coupling is present but anisotropy is absent,
the elliptical magnons are identical to the HP ones, there is no breaking of spin
conservation, and the system reduces to the case investigated by Zheng et al.
[77].

As stated in Section 5.2.2, the matrix ρµν =
〈
ϕ†µϕν

〉
(at some arbitrary time

in the steady state, and with the indices µ and ν in the range [1, 2N ]) containing
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number densities and off-diagonal correlations may be computed through the
lesser Green’s function g<:

ρ = ig< = i

∫
dω

2π
g<(ω) (5.32)

=
i

2

∫
dω

2π

(
gK(ω)− g(ω) + g†(ω)

)
.

For the sake of brevity, we shall refer to ρ as the density matrix, although the off-
diagonal components are in fact off-diagonal correlations. Note also that by the
symmetry of g and gK, and anti-hermiticity of the Keldysh Green’s function, the
lesser Green’s function is itself symmetric, anti-hermitian and pure-imaginary.
One may alternatively work directly with the Keldysh Green’s function, of which
the corresponding observable is the semiclassical (SC) HP magnon density ma-
trix

ρSC =
i

2
gK − 1

2
=

1

2

〈{
ϕ†, ϕ

}〉
− 1

2

=
i

2

∫
dω

2π
gK(ω)− 1

2
. (5.33)

In equilibrium, the top-left and off-diagonal blocks correspond directly to those
of the true density matrix of Eq. (5.32).

From the density matrix ρ, we may compute the uncertainty operators ∆S̄x

and ∆S̄y for the corresponding normalized spin operators S̄x and S̄y, which
allow us to determine whether the elliptical magnons are squeezed in phase
space [87]. From the normalized spin operators

S̄x
i =

1√
2

(
bi + b†i

)
, (5.34a)

S̄y
i =

−i√
2

(
bi − b†i

)
, (5.34b)

and

S̄z
i = 1− b†ibi, (5.34c)

[i.e. the HP transformation with S set to 1, and applied in reverse with respect
to Eqs. (5.4)], we immediately find the uncertainty operators

∆S̄x
i ≡

√〈
(S̄x

i )
2
〉
−
〈
S̄x
i

〉2
=

√
1

2

[〈
bib

†
i

〉
+
〈
b†ibi
〉
+
〈
bibi
〉
+
〈
b†ib

†
i

〉]
=

√
1

2

[
I+ρIT+

]
ii

(5.35a)
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and

∆S̄y
i ≡

√〈
(S̄y

i )
2
〉
−
〈
S̄y
i

〉2
=

√
1

2

[〈
bib

†
i

〉
+
〈
b†ibi
〉
−
〈
bibi
〉
−
〈
b†ib

†
i

〉]
=

√
1

2

[
I−ρIT−

]
ii
, (5.35b)

where I± are the N × 2N matrices

I± ≡ δij(1,±1). (5.35c)

Here, the one-point functions
〈
S̄x
i

〉
and

〈
S̄y
i

〉
vanish, because we do not explicitly

couple to a pumping field and are not considering Bose-Einstein condensates
[53]. The Robertson uncertainty principle [96] then states that ∆S̄x

i ∆S̄
y
i ≥ 1

2 .
If either ∆S̄x

i <
1√
2

or ∆S̄y
i <

1√
2
, the state is squeezed [87], and the pattern of

quantum fluctuations of the spin around the z-axis takes the form of an ellipse,
rather than a circle [81]. As noted by Kamra et al. [81], the purely quantum
mechanical squeezing should not be confused with the magnetization trajectory
of a classical elliptical spin wave: the latter concerns coherent excited states,
whereas squeezing persists even in the ground state and affects properties such
as entanglement.

In addition to the magnon density and the related observables, we may com-
pute the spin currents in our system. These follows from the continuity equation
of the magnetization; a brief outline of the derivation is given in Appendix 5.5.
The total spin current jLs,tot flowing out of the left lead comprises three Landauer-
Büttiker-type [97] terms:

jLs,tot(t) = jR→L
s + jB→L

s + jLs (5.36)

where

jXs = −ReTr

∫
dω

2π
ιX(ω). (5.37)

Here the integrands ιX are the tunneling term

ιR→L(ω) = g†(ω)σ3Σ
L(ω)g(ω)ΣR(ω)

×
[
FR(ω)− FL(ω)

]
, (5.38a)

the bulk term

ιB→L(ω) = g†(ω)σ3Σ
L(ω)g(ω)ΣB(ω)

×
[
T −1FB(ω)T − FL(ω)

]
, (5.38b)
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and the lead-local term

ιL(ω) = g†(ω)σ3Σ
L(ω)g(ω)h

×
[
FL(ω)

∣∣
µL=0

− FL(ω)
]
. (5.38c)

Conversely, the spin current out of the right lead consists of the same expres-
sions but with L and R swapped.

Note that the terms in jLs,tot contain the statistical matrices FX(ω) in place
of the scalar Bose-Einstein functions one would normally find in Landauer-
Büttiker equations. One may exploit various symmetries of the components of
the integrals to recover the more familiar form (in the circular limit identical to
the expressions given by Zheng et al. [77]), though this requires the transmission
functions to be written in terms of the individual N×N blocks of the component
2N × 2N matrices, as has been done by e.g. Rückriegel and Duine [90].

To interpret the three spin current contributions, it is useful to consider the
system as a spin resistor network, shown in Fig. 5.2a. Here each node in the
circuit represents a spin in our chain, and each resistor represents a coupling
either between spins (tunneling resistors R̃T) or to a damping element (Gilbert-
like damping for the bulk resistors R̃B, and lead damping for RL/R). The
system is biased at either lead with a spin accumulation (voltage) µL/R. In this
resistor network analogy, one may ‘integrate out’ the bulk spins by repeated
application of the ∆−Y transform [98] to obtain Fig. 5.2b. At equal temperature
(TL = TR = TB = T ), the spin currents jX may then be interpreted as follows:

The tunneling term jR→L is the current flowing from right to left through the
resistor RT in Fig. 5.2b, and corresponds to the spin current flowing out of the
left lead when a spin accumulation is applied at the right lead. Physically, it is
the term corresponding to magnon-mediated non-local transport, and roughly
corresponds to the current measured experimentally in a ferromagnetic insulator
by Cornelissen et al. [16], although our work considers the ballistic regime (µB =
0) rather than the diffusive regime.

The bulk term jB→L corresponds to the current flowing out of the left lead as
a result of Gilbert-like damping in the bulk. It is negative when a positive spin
accumulation is applied to the left lead, indicating spin current flows from the
lead into the bulk, where it is dissipated into the lattice. In Fig. 5.2b, −jB→L(R)

is the current flowing to ground through the left (right) resistor RB.
The lead-local term jL, corresponding to the current flowing from ground

upwards through RL in Fig. 5.2b, is unique to systems that exhibit the Bogoli-
ubov structure described at the start of this section. It is linear in K to lowest
nonvanishing order, and, at nonzero K, vanishes unless the system is driven by
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5 Green’s function formalism for nonlocal elliptical magnon transport

the application of an electronic spin accumulation in the lead. We may there-
fore conclude that it arises due to the mismatch between the lead states, where
spin is a good quantum number, and the elliptical magnon eigenstates of the
anisotropic ferromagnet. Ultimately, the mismatch is necessarily compensated
by the lattice [82]. As this term contributes directly to the spin current flowing
out of the lead to which a spin bias is applied, it offers a way to probe the
ellipticity of magnons through local spin current measurements.

R̃T R̃T R̃T

2R̃
B

R̃
B

R̃
B

2R̃
B

R
L

R
RμL μR

(a)

RT

R
B

R
B

R
L

R
RμL μR

(b)

Figure 5.2: Resistor network diagrams of our model system. (a): In the full di-
agram, each black dot represents a spin, each resistor R̃T represents
an inter-spin coupling, and each resistor R̃B represents a coupling to
the field(s) responsible for Gilbert-like damping. The spin currents
through the resistors RL/R are given by the lead-local terms −jL/R.
(b): By repeated application of the ∆− Y transform [98], one may
collapse the internal couplings (red and green blocks), thereby re-
ducing the N -spin resistor network to a five-resistor form. In this
reduced diagram, the current through RT (from right to left) is given
by jR→L and the currents through the left (right) resistors RB are
represented by the bulk terms −jB→L(R). The lead-local resistors
remain unchanged.
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Taking the resistor network analogy further, the reduced model of Fig. 5.2b
provides us with a new set observables more generic than the spin currents
themselves, namely the spin resistances RT, RL/R and RB. Setting µR = 0 and
formally expanding the left-lead spin current terms in µL, we obtain

jR→L
s = jR→L

s0 (TL, TR)− 1

RT
µL, (5.39a)

jB→L
s = jB→L

s0 (TL, TB)− 1

RB
µL, (5.39b)

jLs = − 1

RL
µL. (5.39c)

Here jR→L
s0 (TL, TR) and = jB→L

s0 (TL, TB) are spin Seebeck effect [76, 99] terms
that vanish when TL = TR and TL = TB, respectively.

5.3 Numerical implementation and results

The framework outlined in the previous section is implemented numerically for
system sizes of order N = 20. At low or moderate damping, the functions in
our setup are sharply peaked in the frequency domain; frequency integrals are
evaluated with an adaptive trapezoidal algorithm to avoid missing such peaks.
As the setup requires matrices of size 2N × 2N and the computation of observ-
ables includes one matrix inversion and multiple dense matrix multiplications
per frequency sample, the numerical implementation scales poorly with system
size. However, as the qualitative differences between systems of size N = 40 and
N = 20 turn out to be minimal, we believe the latter to be a fair compromise
between manageable computation time and sufficient capture of large-system
behavior.

Our use of simplistic linear damping leads to a logarithmic divergence if the
frequency integrals in the expressions for ρ or ρSC are taken from −∞ to ∞. We
regularize the integrals by restricting the integration interval to [−εmax, εmax],
where

εmax = lim
N→∞

εN . (5.40)

We seek to investigate qualitative changes in the behavior of our system as
the anisotropy K is increased, while mitigating the effects of changes to the
energetics of the ferromagnet’s eigenstates. To realize this, we shall keep the
elliptical magnon gap ε1, given by Eq. (5.12), fixed. Furthermore, we keep
the exchange-like constant J fixed, and adjust the field-like parameter ∆ =

2J cos
(

π
N+1

)
+
√
ε21 +K2 accordingly. Finally, we shall measure all energy

scales relative to J , which is numerically realized by setting J = 1.
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5 Green’s function formalism for nonlocal elliptical magnon transport

5.3.1 Spin conductances

We compute the spin conductances

GT ≡ 1

RT
, (5.41a)

GB ≡ 1

RB
, (5.41b)

and

GL ≡ 1

RL
(5.41c)

by fitting the components of jLs,tot to Eqs. (5.39) for small values of µL, setting
TL = TR = TB = T and µR = 0. We consider a system with parameters
N = 20, α = 0.001, ε1 = 0.025J and ηL = ηR = 8. (Here, the values for ηL/R

are chosen in line with Zheng et al. [77], while our choices for α and ε1 are fairly
arbitrary within the low-damping and low-gap regimes, respectively.) Note that
because we have set ℏ = 1, the conductances are dimensionless.
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Figure 5.3: Tunneling conductance versus temperature at magnon gap
ε1/J = 0.025, for different values of the anisotropy K.
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Figure 5.3 shows the tunneling conductance GT vs. temperature kBT at var-
ious values of K. In all cases, the tunneling conductance vanishes at T = 0 (to
numerical accuracy; the highly nonlinear behavior at low temperature limits the
fitting accuracy) and slowly transitions to being linear with temperature. The
effect of anisotropy is to suppress the conductance, although this effect is small
until K/J = O(0.1), i.e. very large anisotropy (e.g. for yttrium-iron garnet, a
comparison of literature values [18, 100–103] yields K/J = O(10−3—10−2), al-
though the range is highly variable between different materials [14]). Physically,
this may be understood by the fact that the leads are not commensurate to the
elliptical spin waves, which causes an increase in reflection at the interface.

The bulk conductance GB, shown in Fig. 5.4, similarly vanishes at T = 0
and is suppressed by anisotropy. Unlike the tunneling conductance, where
the transition to a linear regime is smeared out at higher anisotropies, the
bulk conductance transitions more abruptly, at kBT/J ∼ 0.005. The suppres-
sion with anisotropy is mild: at kBT/J = 0.1, increasing the anisotropy from
K/J = 1×10−7 to K/J = 1×10−1 suppresses the bulk conductance by roughly
8%. Our formalism does not elucidate the physical mechanism underlying this
suppression, however, given its small magnitude, we believe it to be a natural
consequence of the anisotropy-dependence of the dispersion, rather than being
the result of any nontrivial effect.
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Figure 5.4: Bulk conductance versus temperature at magnon gap ε1/J = 0.025,
for different values of the anisotropy K.
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The relatively abrupt transition to a linear regime is a direct consequence
of the low-µL behavior of the difference of statistical matrices in the bulk spin
current integrand (5.38b):

coth

(
ω

2kBT

)
∓ coth

(±ω − µL

2kBT

)
≈ ± µL

kBT − kBT cosh
(

ω
kBT

) . (5.42)

Given that the most significant contribution to GB arises from a narrow region
of ιB→L centred around ω = ε1 (as one would expect), we may judiciously sub-
stitute ω = ε1 = 0.025J in this expression. Dividing by µL, we then obtain a
function that exhibits a kink near kBT/J = 0.005, similar to the bulk conduc-
tance. We may thus conclude, qualitatively, that the kink is explained by the
requirement for the temperature to overcome the finite gap.

In Fig. 5.5, it can be seen that the lead-local conductance GL nearly vanishes
at low anisotropy (as expected) and reaches a magnitude roughly comparable
to the bulk conductance at the fairly high anisotropy value K/J = 1 × 10−2.
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Figure 5.5: Lead-local conductance versus temperature at magnon gap ε1/J =
0.025, for different values of the anisotropy K.
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However, GL is vastly enhanced at the very high anisotropy valueK/J = O(0.1),
becoming several times larger than the tunneling conductance, indicating most
spin is lost to the lattice at the left-lead interface. This bears similarity to
the appearance of evanescent spin waves in anisotropic systems [104], however,
rigorously showing the relation between these effects requires reconstructing
the classical wave picture from our formalism, which is beyond the scope of
this work. Like the bulk conductance, the transition to a linear regime in the
lead-local conductance is relatively abrupt for the K/J = 1× 10−1 curve.

Although the tunneling and bulk conductances are suppressed by increasing
anisotropy, the corresponding increase in the lead-local conductance is greater
than the decrease in the sum of tunneling and bulk conductances. In other
words, the conductance of the parallel combination of the three spin resistors
RT, RB and RL increases with increasing anisotropy, while the individual con-
ductances of RT and RB decrease. Thus, although our model does not provide
an obvious way to separate the bulk and lead-local contributions, it suggests the
presence of anisotropy causes the local spin conductance to increase, while the
nonlocal conductance decreases, thereby potentially providing an experimental
way to probe the anisotropy of a ferromagnetic insulator using spin current
measurements.

5.3.2 Correlation functions and squeezing

To gain insight into the distribution of spin and the profile of spin noncon-
servation in the ferromagnet, we compute the density matrix at low and high
anisotropy. Figure 5.6a shows the spin density matrix

〈
b†i (t)bj(t)

〉
in a low-

damping (α = 1×10−3), low anisotropy (K/J = 1×10−7) system where only the
left lead is attached (ηL = 8, ηR = 0) and no biasing is applied (µL = µR = 0).
The temperature is taken to be homogeneous at kBTL = kBT

R = kBT
B = 0.1J .

The gap is set to ε1 = 0.025J , which is a reasonable value for e.g. yttrium-iron
garnet [18, 105].

In Fig. 5.6, the horizontal axes correspond to the site indices i and j. The
spin density is slightly elevated at the attached lead, but primarily accumulates
deep within the bulk, taking the shape of the crest of a standing wave whose
wavelength is twice the sample size. Here it is immediately apparent that the
Holstein-Primakoff magnons are significantly delocalized, as the correlations〈
b†i (t)bj(t)

〉
decrease only slowly as |i− j| grows.

At low anisotropy, the leads and bulk try to drive the system towards the same
set of states, so the anomalous correlations

〈
b†i (t)b

†
j(t)
〉
, shown in Fig. 5.6b,

vanish everywhere up to numerical accuracy. The spin density plots remain
virtually unchanged with increasing anisotropy up until about K/J = O(10−3).
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(a)

(b)

Figure 5.6: Normal and anomalous spin densities for a system of size N = 20
with only the left lead attached (ηL = 8, ηR = 0), low Gilbert-like
damping α = 1 × 10−3, temperature T/J = 0.1, gap ε1/J = 0.025,
and anisotropy K/J = 1 × 10−7. The horizontal axes represent
the site indices i and j. Insets: heatmaps of the corresponding 3D
plots. (a): normal density

〈
b†i (t)bj(t)

〉
. (b): anomalous density〈

b†i (t)b
†
j(t)
〉
.

64



5.3 Numerical implementation and results

(a)

(b)

Figure 5.7: Normal and anomalous spin densities for a system with high
anisotropy, K/J = 5 × 10−2. All other parameters are equal to
those in Fig. 5.6. (a): normal density

〈
b†i (t)bj(t)

〉
. (b): anomalous

density
〈
b†i (t)b

†
j(t)
〉
.
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At much greater anisotropy—K/J = 5 × 10−2 shown in Fig 5.7—the am-
plitude of the spin density at the center of the sample increases significantly
(Fig 5.7a), but the qualitative appearance of the profile remains broadly the
same. However, as shown in Fig. 5.7b, the anomalous correlations now take a
large negative value, highlighting that the Holstein-Primakoff magnons are no
longer good basis states in the ferromagnetic bulk.

In Figs. 5.8 and 5.9 we plot the equivalent matrices in the basis of elliptical
magnons: the horizontal axes now represent the quantum number, and the di-
agonals of the plots are ordered by increasing energy. In this basis, the ordinary
block

〈
ψ†
mψn

〉
of the correlation function

〈
Ψ†

mΨn

〉
is almost exactly diagonal at

low anisotropy (K/J = 1 × 10−7 shown in Fig. 5.8a). As we keep the gap ε1
fixed, our chosen parameters lead to excitation of the lowest few modes only,
regardless of anisotropy, with the overwhelming majority of quasiparticles being
in the ground state (as indicated by the large spike at m = n = 1). In Fig. 5.8b,
it can be seen that the anomalous block

〈
ψ†
mψ

†
n

〉
nearly vanishes, as expected

(the same is true for
〈
ψmψn

〉
).

Figure 5.9a) shows that the qualitative behavior of the ordinary correlations〈
ψ†
mψn

〉
does not change significantly even at the high anisotropy value K/J =

5 × 10−2. However, the anomalous block
〈
ψ†
mψ

†
n

〉
, shown in Fig. 5.9b now

exhibits a small but noticeable deviation from zero, and becomes asymmetric.
This asymmetry ultimately stems from the fact that

〈
b†ibj

〉
̸=
〈
bib

†
j

〉
. The

bosonic relations are nevertheless preserved because the full matrix
〈
Ψ†

mΨn

〉
is

symmetric.
As explained previously, we may use the density matrix to directly compute

uncertainty of the spin operators, which we expect to become squeezed at high
anisotropy. In Fig. 5.10, we plot the uncertainty amplitudes ∆S̄x

i and ∆S̄y
i for

K/J = 1 × 10−7 and K/J = 1 × 10−1, with weak left-lead coupling ηL = 0.1
and no right lead attached. In the case of zero bias (µL = 0, Fig. 5.10a),
it can be seen that high anisotropy causes the magnons to become squeezed
throughout the sample. At site 1, where the left lead is attached, both ∆S̄x

and ∆S̄y are squeezed, in an apparent violation of the uncertainty principle.
However, this may be explained by the fact that we only consider the lowest-
order self-energy contribution of the lead coupling: this ignores higher-order
electronic contributions to the total wavefunction at the interface, and it stands
to reason—although it remains to be verified—that the uncertainty principle is
not violated if higher-order contributions are taken into account.

Taking only sites i > 1 into account, we find that squeezing commences
at site 20 (the ‘far side’ of the chain, where no lead is attached) for K/J ≈
3× 10−2. Squeezing increases with increasing anisotropy, with the effect being
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(a)

(b)

Figure 5.8: Normal and anomalous elliptical magnon densities for a system with
low anisotropy, K/J = 1× 10−7. All other parameters are equal to
those in Fig. 5.6. The horizontal axes represent the quantum num-
bers m and n. (a): normal density

〈
ψ†
m(t)ψn(t)

〉
. (b): anomalous

density
〈
ψ†
m(t)ψ†

n(t)
〉
. The minor (light green) fluctuations are near

the scale of numerical error (10−8) and may be unphysical.
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(a)

(b)

Figure 5.9: Normal and anomalous elliptical magnon densities for a system with
high anisotropy, K/J = 5× 10−2. All other parameters are equal to
those in Fig. 5.6. (a): normal density

〈
ψ†
m(t)ψn(t)

〉
. (b): anomalous

density
〈
ψ†
m(t)ψ†

n(t)
〉
.
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Figure 5.10: Uncertainty in the spin operators Sx (solid lines) and Sy (dotted
lines), for a system of size N = 20 with only the left lead attached
(ηL = 0.1, ηR = 0), low Gilbert-like damping α = 1×10−3, temper-
ature kBT/J = 0.1, gap ε1/J = 0.025, and different anisotropies.
When the spin uncertainty drops below 1√

2
(dashed line), the state

is squeezed. At very high anisotropy, the magnons become squeezed
throughout the system. Note that the ∆S̄x and ∆S̄y curves lie on
top of each other at K/J = 1 × 10−7, indicating the magnons are
coherent at low anisotropy. (a): without applied bias (µL = 0).
(b): with bias at left lead (µL/J = 0.1).
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strongest at the center of the sample, where the overall spin density is the
highest. By applying a spin bias at the attached lead (µL/J = 0.1 shown in
Fig. 5.10b), squeezing is diminished throughout the sample, and the overall
uncertainty markedly increases. A local bias may thus be used to effect a global
change in the uncertainty.

5.4 Conclusions and outlook

We have developed and numerically implemented a NEGF formalism to describe
the transport of elliptically polarized magnons in finite-sized ferromagnetic in-
sulators terminated by metallic leads. The presence of anisotropy in a ferro-
magnetic insulator can give rise to a novel parasitic local spin resistance, and
additionally acts to suppress the spin conductance measured between the metal-
lic leads. However, our model predicts that these effects are mild in ferromag-
nets with weak anisotropy, and become significant only when the ferromagnet
exhibits strong anisotropy.

We have shown that the NEGF formalism allows theoretical access to the
anomalous correlation functions

〈
bibj
〉

and
〈
b†ib

†
j

〉
, which may obtain a large

amplitude in the presence of anisotropy, and provide a measure for the de-
gree of nonconservation of spin and ellipticity of magnons. Likewise, the cor-
relation functions

〈
ψmψn

〉
and

〈
ψ†
mψ

†
n

〉
in the basis of eigenstates of the free

anisotropic ferromagnetic insulator obtain a nonzero value in the presence of
coupling to metallic leads which inject a well-defined amount of spin, provided
the anisotropy is large and the lead coupling is sufficiently strong. Moreover,
strong anisotropy produces squeezing of ∆S̄x, which may be observable in the
form of reduced shot noise [86] and find applications in quantum information
science.

Although we have focussed on ferromagnets, where anisotropy tends to be
significantly weaker than the exchange interaction, it stands to reason that much
stronger observable effects may be realized in antiferromagnets, where similar
anomalous Hamiltonian terms are introduced by coupling between sublattices,
but are now governed by the exchange interaction itself [81].

While we have provided some examples of effects produced by the introduc-
tion of anisotropy, our model is simplistic, and omits several features one would
expect to find in a realistic system. A possible extension, for example, would
be the introduction of disorder, which can take the form of spatial fluctuations
in both ∆ and K. Moreover, our model considers only weak interactions be-
tween magnons and the leads and lattice (i.e. lowest-order self-energy terms),
while higher-order contributions may be relevant to physical systems. We have
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likewise neglected magnon-magnon interactions, while several real systems are
known or believed to violate this assumption [106–108].

Finally, the parameter space of our model (with or without extensions) is
quite large, and therefore remains mostly unexplored. Hence, it is plausible
that more observable effects of the spin-conservation breaking anisotropies can
be found, for example through the spin Seebeck effect.

5.5 Appendix: Derivation of the steady-state spin
current

We define the total spin current as the negative time-derivative of the total HP
magnon number density (as each magnon carries spin 1), i.e.

jtots = −∂tTr
〈
b†(t)b(t)

〉
= −1

2
∂t

[
Tr
{〈
b†(t)b(t)

〉
+
〈
b(t)b†(t)

〉}
−N

]
= −1

2
∂tTr

〈
ϕ†(t)ϕ(t)

〉
= −ReTr

〈
ϕ†(t)∂tϕ(t)

〉
. (5.43)

Note that the trace on the first two lines is over the spatial indices alone and
therefore has N terms, whereas on the last line, it is over the full matrix and
therefore has 2N terms. To evaluate Eq. (5.43), we introduce a stochastic field

ξ(ω) = −g(ω)ϕ(ω) (5.44)

obeying 〈
ξ(ω)ξ†(ω′)

〉
= πiδ(ω − ω′)ΣK(ω). (5.45)

By construction, ξ is the Hubbard-Stratonovich field that decouples the quantum-
quantum term of the Schwinger-Keldysh action for the continuum-limit field
theory. A more detailed derivation is given e.g. by Kamenev [109].

Inserting Eq. (5.22) into Eq. (5.44) and taking the Fourier transform, we find
the evolution equation

−i∂tϕ(t) = σ3hϕ(t) + σ3

∫
dt′Σ(t− t′)ϕ(t′)− σ3ξ(t), (5.46)
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which we may plug into Eq. (5.43) to obtain

jtots = − ImTr

{〈
ϕ†(t)σ3hϕ(t)

〉
+

〈
ϕ†(t)σ3

∫
dt′Σ(t− t′)ϕ(t′)

〉
−
〈
ϕ†(t)σ3ξ(t)

〉}
. (5.47)

Here the first term is the Hamiltonian evolution of the system, and the second
and third terms represent driving by external factors: the second term concerns
the interaction with the lead electrons and with the field(s) responsible for
Gilbert-like damping, and the third term contains the effect of quantum noise.

In the steady state, the total spin current vanishes by definition, and thus
the first term necessarily cancels against the driving terms. In an experiment
where the system is held out of equilibrium by external driving, the net external
source/sink current are then given by the sum of the last two terms of Eq. (5.47).
However, these terms, as given, sum over all of the spin currents within the
system, including unobservable contributions that occur deep within the bulk
and never exit the ferromagnet, whereas the actually observable spin currents
are those which flow out of the leads. This quantity is obtained when one
replaces Σ with ΣL/R and ξ with ξL/R in Eq. (5.47). Here we define ξL/R to be
the stochastic field obeying

〈
ξL/R(ω)ξ†(ω′)

〉
= 2πiδ(ω − ω′)ΣL/R(ω)FL/R(ω), (5.48)

where 2ΣL/R(ω)FL/R(ω) is the left/right lead term of the Keldysh self energy.
Thus, focussing now on the spin current flowing out of the left lead (in the

following derivation, one may obtain equivalent expressions for the right lead
by swapping L and R), we find

jL,tots = − ImTr

{〈
ϕ†(t)σ3

∫
dt′ΣL(t− t′)ϕ(t′)

〉

−
〈
ϕ†(t)σ3ξ

L(t)
〉}

. (5.49)
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Next, by Fourier transforming and using Eq. (5.44) to write ϕ in terms of ξ, we
obtain

jL,tots = − ImTr

∫
dω

2π

dω′

2π
eit(ω

′−ω)

×
{〈

ξ†(ω)g†(ω)σ3Σ
L(ω′)g(ω′)ξ(ω′)

〉
+
〈
ξ†(ω)g†(ω)σ3ξ

L(ω′)
〉}

. (5.50)

Reordering terms using the properties of the trace and making use of Eqs. (5.45), (5.48)
and (5.27), this gives

jL,tots = −ReTr

∫
dω

2π
g†(ω)σ3Σ

L(ω)g(ω)

×
{
ΣL(ω)FL(ω) + ΣR(ω)FR(ω)

+ ΣB(ω)T −1FB(ω)T + g−1(ω)FL(ω)

}
. (5.51)

Inserting the Dyson equation for g−1(ω), we find

jL,tots = −ReTr

∫
dω

2π

{
ιR→L(ω) + ιB→L(ω)

+ g†(ω)σ3Σ
L(ω)g(ω) [ωσ3 − h]FL(ω)

}
, (5.52)

where ιR→L(ω) and ιB→L are given by Eqs. (5.38a) and (5.38b), respectively.
By using that ReTrM = 1

2 Tr(M +M †) for an arbitrary square matrix M , the
term involving ωσ3 can easily be shown to vanish. In a similar vein, we find

−ReTr
{
g†(ω)σ3Σ

L(ω)g(ω)hFL(ω)
}

=
1

2
Tr
{
g†(ω)σ3Σ

L(ω)g(ω)
[
FL(ω), h

]}
. (5.53)

In the absence of a spin accumulation, FL(ω) becomes a scalar function mul-
tiplying the identity matrix, causing the commutator to vanish. Therefore, we
may add the term

0 = Tr g†(ω)σ3Σ
L(ω)g(ω)h FL(ω)

∣∣
µL=0

, (5.54)
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thereby recovering Eq. 5.38c). Finally, in the limit K → 0, the Hamiltonian h
becomes block-diagonal, so that the commutator in Eq. (5.53) causes ιL(ω) to
vanish in absence of anisotropy.
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6 Nonlocal spin transport in one-dimensional
antiferromagnetic insulators

6.1 Introduction

The field of spintronics concerns itself with the study of spin as an informa-
tion carrier, and typically involves the use of one or more magnetically or-
dered materials. While magnetic ordering can be roughly subdivided into two
classes—ferromagnetic and antiferromagnetic—the materials under considera-
tion in mainstream spintronics have, until very recently, almost exclusively been
ferromagnets (FMs). As antiferromagnets (AFMs) lack a ground-state magne-
tization, manipulating the antiferromagnetic order parameter (the Néel vector)
poses considerable challenges, and it has long been thought that AFMs did not
present any practical applications [17, 110]. More recently, however, it has been
shown that the Néel vector may be manipulated electrically, which, combined
with AFMs’ robustness against magnetic fields and terahertz dynamics, has
rekindled research into antiferromagnetic spintronics.

As is the case in FMs, a perturbation of the antiferromagnetic order parameter
produces spin waves or magnons. However, in contrast to FMs, where a single
band is sufficient to describe magnons at the quadratic order, the simplest de-
scription of an AFM consists of two sublattices with opposing spin orientations,
which leads to a two-band spin wave description. Moreover, the two antiferro-
magnetic magnon bands intrinsically exhibit pair production, which gives rise
to anomalous correlation functions and broken spin conservation (in the sense
that the pair has a well-defined spin, but its components can interact and decay
individually).

In this manuscript, we extend a Green’s function formalism developed ear-
lier by our group for isotropic and anisotropic FMs [2, 77] to antiferromagnetic
insulators. Although we have showed previously [2] that anomalous correla-
tion functions are present in strongly anisotropic FMs, their magnitude only
becomes significant at stronger anisotropies than are commonly seen in physi-
cal materials. However, in antiferromagnetic magnon systems, pair-producing
terms contain a component that is directly proportional to the exchange con-
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6 Nonlocal spin transport in one-dimensional antiferromagnetic insulators

Figure 6.1: Cartoon depiction of spin waves in a 1D antiferromagnetic spin chain
attached to metallic leads. The presence of two spin species produces
two magnon bands (amber and blue swirls). The metallic leads are
modelled as having a spin accumulation µX and temperature TX ,
where X = L for the left lead and X = R for the right lead.

stant, leading us to hypothesise that the corresponding ‘anomalous’ effects may
be significantly stronger in AFMs. Furthermore, the two-sublattice nature of
AFMs broadens the parameter space, for example by allowing external leads to
couple to the sublattices with different strength.

6.2 Methods and results

In this section, we outline the system we wish to study, and the methods we use
to do so.

6.2.1 System and Hamiltonian

We consider a one-dimensional (1D) discrete antiferromagnetic Heisenberg spin
chain (simplified depiction shown in Figure 6.1), consisting of two sublattices
labelled A and B. In the ground state, sites of the A-sublattice have spin
projection +S on the z-axis, while B-sites have spin projection −S. The chain
consists of N unit cells, each of which contains one spin belonging to the A
sublattice and one belonging to the B sublattice. The chain therefore has 2N
spins in total, and we assume its leftmost (rightmost) site belongs to the A-
sublattice (B-sublattice). The Hamiltonian of this system is

H = J
N∑
i=1

ŜA
i · ŜB

i + J
N−1∑
i=1

ŜB
i · ŜA

i+1 − hmagS
N∑
i=1

[
ŜAz
i + ŜBz

i

]
− K

2

N∑
i=1

[
(SAz

i )2 + (SBz
i )2

]
. (6.1)

Here, J > 0 is the exchange constant, hmagS is an externally applied magnetic
field (judiciously scaled with S), and K > 0 is an easy-z-axis anisotropy con-
stant. ŜA

i (ŜB
i ) is the vectorial spin operator acting on the A-type (B-type)
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site of the i’th unit cell. We choose K to be sufficiently large to ensure all spins
are collinear with the z-axis in the ground state, i.e. to prevent the system from
entering the spin-flop phase [111, 112].

We apply the second-order spin-S antiferromagnetic Holstein-Primakoff trans-
formation [26, 28] to Eq. (6.1):

ŜAx
i =

√
S

2

(
âi + â†i

)
, (6.2a)

ŜAy
i = −i

√
S

2

(
âi − â†i

)
, (6.2b)

ŜAz
i = S − â†i âi, (6.2c)

and

ŜBx
i =

√
S

2

(
b̂i + b̂†i

)
, (6.2d)

ŜBy
i = i

√
S

2

(
b̂i − b̂†i

)
, (6.2e)

ŜBz
i = −S + b̂†i b̂i. (6.2f)

Here â†i (âi) and b̂†i (b̂i) are the creation (annihilation) operators of A-band and
B-band magnons, respectively, localized at unit cell i. These operators obey
the bosonic commutation relations

[âi, â
†
j ] = [b̂i, b̂

†
j ] = δij , (6.3a)

[âi, âj ] = [b̂i, b̂j ] = [â†i , â
†
j ] = [b̂†i b̂

†
j ] = 0, (6.3b)

with operators of different bands commuting:

[âi, b̂j ] = [â†i , b̂
†
j ] = [âi, b̂

†
i ] = [â†i , b̂j ] = 0. (6.3c)

Up to quadratic terms in the bosonic operators, the resulting Hamiltonian
reads

H = JS

{
N∑
i=1

[
âib̂i + â†i b̂

†
i +

(
2 +

hmag

J
+
K

J

)
â†i âi +

(
2− hmag

J
+
K

J

)
b̂†i b̂i

]

+

N−1∑
i=1

[
âi+1b̂i + â†i+1b̂

†
i

]
− â†1â1 − b̂†N b̂N

}
, (6.4)

where we have ignored unimportant global energy shifts.
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Eq. (6.4) is further reduced by defining the vector operator

Φ̂ =
(
â1, â2, . . . , âN , b̂

†
1, b̂

†
2, . . . , b̂

†
N

)T
, (6.5)

which has 2N components in total. We then obtain

H = Φ̂†hΦ̂, (6.6)

where

h ≡
(
hAA hAB

hBA hBB

)
. (6.7)

The four N ×N submatrices have the following components:

hAA
ij = JS

(
2 +

hmag

J
+
K

J
− δi,1

)
δij , (6.8a)

hAB
ij = JS (δij + δi,j+1) , (6.8b)

hBA
ij = hAB

ji , (6.8c)

hBB
ij = JS

(
2− hmag

J
+
K

J
− δi,N

)
δij . (6.8d)

The 2N × 2N Hamiltonian matrix h is diagonalized by a para-unitary trans-
formation [30], i.e. a matrix T obeying

σ3T † = T −1σ3, (6.9)

where σ3 = diag(IN ,−IN ) is the 2N × 2N analog of the third Pauli matrix,
with IN the N ×N identity matrix. Unlike the anisotropic ferromagnet [2], no
simple closed expressions for the paravalues or paravector components exist for
an antiferromagnetic spin chain of arbitrary length; we therefore opt to perform
the diagonalization numerically. We normalize all energies to the exchange scale
by setting J = 1, and fix the magnon gap (lowest paravalue) ε1 to a constant
by using the Alefeld-Potra-Shi algorithm (TOMS Algorithm 748) [113] to vary
hmag.

Diagonalization of the Hamiltonian yields the transformed operators

Ψ̂ ≡
(
α̂1, . . . , α̂N , β̂†1, . . . , β̂†N

)T
(6.10)

given by

Ψ̂ = T Φ̂. (6.11)

78



6.2 Methods and results

2 4 6 8 10 12 14 16 18 20
Quantum number n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
M

od
e 

en
er

gy
 

n/(
JS

)

Dispersion for K/J = 1.0 × 10 2

-band
-band
-band (ring)
-band (ring)

Figure 6.2: Example of the discrete band structure (bar plots) at intermediate
anisotropy K/J = 1× 10−2. The line plots are analytical results for
a chain with periodic boundary conditions; no numerical fitting is
applied.

The operators α̂†
n and β̂†n produce eigenstates of the free antiferromagnetic

Hamiltonian, which are superpositions of the spin-±1 HP states and therefore
do not have a well-defined spin. As a result, spin transport through an AFM is
necessarily spin-nonconserving. The quantum number n is defined to correspond
to increasing energy within a given band, i.e. α̂†

n+1 (β̂†n+1) creates a mode with
higher energy than α̂†

n (β̂†n). For positive values of hmag and K, the energy level
εβn of the β-band is always lower than the corresponding α-band level εαn. An
example of the band structure can be seen in Figure 6.2. By comparison, closing
the spin chain into a ring (and thereby imposing periodic boundary conditions)
by adding the term JŜB

N ·ŜA
1 to Eq. (6.1), the diagonalization may be performed

analytically, yielding the dispersion relations (up to common energy shift, which
we have dropped to conform to the para-unitary results)

εα,ring
n = S

√
(2J +K)2 − 4J2 cos

(
π(n− 1)

2N

)
+ hmagS; (6.12a)

εβ,ring
n = S

√
(2J +K)2 − 4J2 cos

(
π(n− 1)

2N

)
− hmagS. (6.12b)

These dispersion relations have been included in Figure 6.2 for reference; it can
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be seen that only the lowest energy level of each band shows significant deviation
from the analytical continuum limit. Eqs. (6.12) further impose the condition

|hmag| <
√
K(4J +K) : (6.13)

if this is violated, εβ,ring
0 (for hmag > 0) or εα,ring

0 (for hmag < 0) becomes
negative, creating an instability that will push the system into the spin-flop
phase.

6.2.2 Green’s function formalism

To study spin transport in our system, we develop a discrete, real-space non-
equilibrium Green’s function formalism. We focus on steady-state behavior, so
that the time dependence of all functions f(t, t′) obeys

f(t, t′) = f(t− t′). (6.14)

We may then Fourier transform to the frequency domain, and obtain the re-
tarded Green’s function g(ω)—which contains the spectral properties of the
magnons—from the Dyson equation:

g(ω) = [ωσ3 − h− Σ(ω)]−1. (6.15)

Here, Σ(ω) is the retarded self-energy arising due to the magnons’ interaction
with electrons, phonons, etc. Following our previous work [2], we may directly
write down the self-energy contributions from coupling to external leads at the
left and right ends of the spin chain (corresponding to unit cells 1 and N ,
respectively). We further allow each lead to have different coupling strengths
to spins from either sublattice, making for a total of four retarded self-energy
components originating from the leads, which have the form

ΣX,γ
στ (ω) = −iηX,γ(ω − µXσ3)δσ,σX,γδστ , (6.16)

where X indexes the lead (X = L for the left lead or X = R for the right lead)
and γ ∈ {A,B} indexes the sublattice. ηX,γ is a real scalar coupling constant,
and µX is the spin accumulation at lead X. σ and τ are component indices
of the full 2N × 2N matrix. The two Kronecker deltas specify that only the
diagonal matrix component corresponding to the lead site in question is nonzero;
see Table 6.1. We define the full lead self-energy of lead X as

ΣX =
∑
γ

ΣX,γ . (6.17)
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X γ σX,γ

L A 1
L B N + 1
R A N
R B 2N

Table 6.1: Matrix index σX,γ in the full 2N×2N space for lead X and sublattice
γ, such that the only nonzero matrix element of the lead self-energy
ΣX,γ
σρ (ω) is (σX,γ , σX,γ).

The leads serve to directly inject spin by coupling to the HP magnon operators
âi and b̂i, which are superpositions of the diagonalized operators α̂n and β̂n. In
contrast, we additionally consider a bulk damping self-energy component that
acts to thermalize the system towards the eigenstates of the free AFM:

ΣB(ω) = −iαωT †T , (6.18)

where α is the (non-negative, real) Gilbert-like damping constant.
In principle, we allow the left lead, antiferromagnetic bulk and right lead

to have different temperatures, respectively TL, TB and TR. Assuming each
subsystem forms a sufficiently large bath to be unaffected by coupling to the
magnon distribution, we may use the fluctuation-dissipation theorem to com-
pute the Keldysh self-energy components from their retarded counterparts:

ΣK,X(ω) = 2ΣX(ω)FX(ω); (6.19)

ΣK,B(ω) = 2ΣB(ω)T −1FX(ω)T . (6.20)

Here, we define the statistical matrices

FX(ω) = diag

{
coth

(
ω − µX

2kBTX

)
,− coth

(−ω − µX

2kBT x

)}
, (6.21)

where X ∈ {L,R,B}, kBTX is the thermal energy of component X, and we
assume the absence of a magnon chemical potential, i.e. µB = 0.

Using the total Keldysh self-energy ΣK—which is the sum of the contributions
given by Eqs. (6.19) and (6.20)—we compute the lesser Green’s function

g<(ω) = g(ω)ΣK(ω)g†(ω)− g(ω) + g†(ω), (6.22)

which describes the quasiparticle density and off-diagonal correlations at finite
temperature.
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6.2.3 Spin conductance

One of the more useful mesoscopic parameters to understand and control in
the context of magnonic information processing is the spin conductance of the
magnetic material in use. Setting the right-lead spin accumulation µR to zero,
we define the (effective, nonlinear) total spin conductance of the left lead as

GL,tot = −∂j
L,tot
s

∂µL
. (6.23)

Here, jL,tots is the total spin current flowing out of the left lead, in response to
a spin accumulation µL at the same lead.

Following Sterk et al. [2], jL,tots comprises three contributions: a tunneling
contribution jL,Ts that describes the spin current sourced from the right lead, a
bulk contribution jL,Bs describing spin lost to the lattice from the chain itself,
and a lead-local contribution jLs that may be viewed as spin ‘rejected’ by the
interface between the lead and the chain, and ultimately dumped into the lattice.
The expressions for the three contributions are identical to those found in the
ferromagnetic case (see previous chapter):

jL,Ts = −ReTr

∫
dω

2π
g†(ω)σ3Σ

L(ω)g(ω)ΣR(ω)
[
FR(ω)− FL(ω)

]
, (6.24a)

jL,Bs = −ReTr

∫
dω

2π
g†(ω)σ3Σ

L(ω)g(ω)ΣB(ω)
[
T −1FB(ω)T − FL(ω)

]
,

(6.24b)

jLs = −ReTr

∫
dω

2π
g†(ω)σ3Σ

L(ω)g(ω)h
[
FL(ω)

∣∣
µL=0

− FL(ω)
]
. (6.24c)

Figures 6.3, 6.4 and 6.5 show typical nonlinear bulk, lead-local and tunneling
conductances, respectively. In these plots, coupled sites have coupling constant
ηX,γ = 1, while decoupled sites have ηX,γ = 0. N = 20 unit cells are used, the
Gilbert-like damping α = 0.01, anisotropy K/J = 0.01, and the magnon gap is
kept constant at εα1 /J = 0.025. All component systems are kept at the same
temperature; TL = TR = TB = T . The three spin conductance contributions
exhibit a strong quantitative and qualitative dependence on the configuration of
the attached leads, notably becoming negative in some configurations. As one
would expect, the bulk and lead-local conductances of the left lead exhibit only
a weak dependence on the right lead, and we have therefore opted to only show
configurations with both right-lead sites coupled in Figures 6.3 and 6.4. When
the left lead is coupled only to theB-site), the bulk conductance is negative while
the lead-local conductance obtains a small positive value. Conversely, when it is
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the A-site that is coupled, the bulk conductance is positive while the lead-local
becomes negative. When both sites of the left lead are attached, both the bulk
and lead-local conductances are positive, with the lead-local conductance over
two orders of magnitude larger compared to the single-site cases.

The configuration of the right lead is of much greater importance to the tun-
neling conductance. Qualitatively, decoupling the A-site of either lead produces
a negative tunneling conductance at low biases. A very notable exception is the
case where the A-site of both leads is decoupled: here, the tunneling conductance
is positive at µL = 0 and decreases linearly at increasing bias.

While individual conductance contributions may become negative depending
on the lead configuration, their sum (shown in Figure 6.6) remains positive. The
magnitude of the conductances generally increases with temperature, provided
the thermal energy is significantly greater than the applied spin bias.
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Figure 6.3: Effective nonlinear bulk spin conductance GL,B at the left lead.
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Figure 6.4: Effective nonlinear lead-local spin conductance GL at the left lead.
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Figure 6.5: Effective nonlinear tunneling spin conductance GL,T at the left lead.
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Figure 6.6: Total effective nonlinear spin conductanceGL,B at the left lead. Note
the logarithmic vertical axis. Configurations with only the right A
or right B site decoupled produce curves that are identical to the
all-leads configuration to within one part in 10000, and have been
omitted because they are indistinguishable at this scale.

6.2.4 Correlation functions

NEGF formalism additionally allows us to gain insight into the spatial spin
distribution of each sublattice. The steady-state magnon number of unit cell i
(at arbitrary time) is encoded on the diagonal of the lesser Green’s function:〈

â†i âi

〉
=

∫
dω

2π
ig<ii (ω); (6.25)〈

b̂†i b̂i

〉
=

∫
dω

2π
ig<i+N,i+N (ω), (6.26)

where the indices on g<(ω) refer to entries of the full 2N×2N matrix. Similarly,
off-diagonal elements of the upper left (lower right) blocks of ig<(ω) are magnon
number correlations of the A (B) sublattice in different unit cells, whereas el-
ements of the off-diagonal blocks of ig<(ω) are anomalous correlations of the
forms

〈
â†i b̂

†
j

〉
and

〈
b̂iâj

〉
.

The correlation functions
〈
â†i âj

〉
,
〈
b̂†i b̂j

〉
=
〈
b̂ib̂

†
j

〉
−δij and

〈
â†i b̂

†
j

〉
are shown
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Figure 6.7: A-sublattice correlation matrix
〈
â†i âj

〉
at temperature kBT/J =

0.01, Gilbert-like damping α = 0.01, lead couplings ηL,A = ηL,B =
ηR,A = ηR,B = 1, anisotropy K/J = 0.01 and magnon gap εα1 =
0.025. Inset: top-down view (heat map).

in Figures 6.7, 6.8 and 6.9, respectively, with lead coupling ηL,A = ηL,B =
ηR,A = ηR,B = 1 and bias µL = µB = 0. Contrary to the ‘standing wave’ distri-
bution seen in ferromagnets [2], magnons of both sublattices have a more even
distribution throughout the sample, albeit with a distinct asymmetry caused by
boundary conditions of the chain, i.e. the last two terms of Eq. (6.4). Despite
the absence of bias, a pronounced overdensity of A-magnons and underdensity of
B-magnons is present at the leads, their magnitude growing monotonically with
the lead couplings ηX,γ . From a technical point of view, our NEGF framework
does not impose bounds on these over- and underdensities, making it necessary
to verify that the quasiparticle densities

〈
â†1â1

〉
,
〈
â†N âN

〉
,
〈
b̂†1b̂1

〉
and

〈
b̂†N b̂N

〉
stay within physically reasonable range of [0, S], as required by the truncated
HP transformation.

The anomalous correlation matrices closely reflect the anomalous blocks of the
Hamiltonian, having maximal amplitudes both on its diagonal (corresponding
to A-to-B coupling within a single unit cell) and one position displaced from
the diagonal (reflecting the inter-unit-cell B-to-A coupling).
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6.2 Methods and results

Figure 6.8: B-sublattice correlation matrix
〈
b̂†i b̂j

〉
. For parameters, see Fig-

ure 6.7.

Figure 6.9: Inter-sublattice pair correlation matrix
〈
â†i b̂

†
j

〉
. For parameters, see

Figure 6.7.
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6 Nonlocal spin transport in one-dimensional antiferromagnetic insulators

6.3 Discussion, conclusions and outlook

Our results indicate that one-dimensional antiferromagnetic spin chains have the
potential to act as pure spin conductors in a fashion similar to ferromagnetic
insulators. Whereas ferromagnetic magnons exhibit particle-hole coupling in
the presence of strong anisotropy, antiferromagnetic spin wave theory inherently
yields two magnon species that are coupled at the exchange scale. In magnetic
materials, the exchange energy is typically much greater than the combined
anisotropy, and as a result, effects of the ‘anomalous’ coupling are amplified in
AFMs.

Despite the mathematical similarity between AFMs and strongly anisotropic
FMs, some key phenomenological differences exist. Most importantly, the spin
conductance depends strongly on the configuration of the attached external
leads. While the total spin conductance is always positive, individual con-
tributions may become negative depending on the lead coupling strengths of
each sublattice, as well as the applied spin bias and temperature. The exact
conditions leading to negative conductance contributions appear to be highly
nontrivial; for example, at kBT/J = 0.01, the tunneling conductance is nega-
tive at low bias when the A-site of either lead is decoupled, but not when both
A-sites are decoupled. When all lead sites are attached, the bulk conductance
is positive at low bias, experiences a negative local minimum, and then starts
to rise again as the bias approaches the thermal energy scale. A solid physical
explanation for this behavior has thus far eluded us.

Whereas the bulk and lead-local spin conductivities do not appear to be acces-
sible in physical systems, nonlocal transport experiments essentially measure the
tunneling conductivity directly. Our work indicates that if an uneven coupling
between the leads and the individual sublattices can be engineered, such that
one lead couples more strongly to the B-sublattice than to the A-sublattice, the
nonlocal signal may flip its sign with respect to an evenly coupled configuration,
or one in which the coupling to the A-sublattice is strongest.

It is known that antiferromagnets exhibit sublattice entanglement [114, 115],
and one may therefore envision that antiferromagnetic magnonics can lead to
applications in quantum information processing. The sublattice entanglement
of the two magnon species may be quantified through, for example, entangle-
ment entropy [116, 117] or concurrence [117–119]. In general, such parameters
involve the computation of the reduced density matrix, obtained by tracing out
the degrees of freedom of one of the sublattices. While bosonic density matrices
are in principle infinite-dimensional objects, in the special case where multi-
particle correlation functions factorize into products of single-particle ones—for
example, the ground state of an isolated system,—the reduced density matrix
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6.3 Discussion, conclusions and outlook

of an N -site subsystem is parameterized by N real numbers, and may be ob-
tained by diagonalization of the block of ig< corresponding to the subsystem
[120–123]. For that scenario, Peschel [122] provides simple expressions for the
reduced density matrices of an arbitrary bipartition, and the resulting entan-
glement entropy. Unfortunately, as their derivation derivation relies on the
applicability of Wick’s theorem, these expressions break down for our system
at finite temperature and/or in the presence of Gilbert-like damping or lead
coupling.

Nevertheless, we believe it is possible to rederive the appropriate expressions
by applying Wick’s theorem on the Keldysh contour. If such expressions can
be found—a feat which we humbly defer to future work—the sublattice entan-
glement entropy should be directly accessible using the framework outlined in
this manuscript—a computation which we believe would be of significant value
to the fields of quantum information science and quantum magnonics.
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7 Summary and outlook

As it becomes more and more difficult to miniaturize electronic circuits, the
information industry is faced with an existential crisis: soon, it will no longer be
possible to significantly expand the computational power of tried-and-trusted
electronic technology. It should come as no surprise that both science and in-
dustry are frantically searching for a way to avert this impending catastrophe,
and (perhaps more surprisingly) are willing to entertain the notion of abandon-
ing conventional electronics altogether if a more future-proof alternative can
be found. One field of research that has this potential is spintronics: the use
of intrinsic angular momentum—better known as spin—of electrons to store
information.

One of the key promises of spintronics is the ability to transport digital in-
formation without the need to shuttle around electrons, thereby avoiding the
adverse phenomenon of Joule heating. To this end, one may simply perturb
the magnetic order of a magnetic material. Doing so generates a spin wave
or magnon, in which spin is passed between neighboring electrons while their
position remains unchanged.

In the subfield of magnonics—the study of magnons—the use of electrically
insulating magnetic materials is currently being studied extensively. Novel ef-
fects are regularly predicted by theoreticians, while experimentalists continue
to design new ways to verify these predictions in the laboratory. Conversely,
experimentalists frequently discover discrepancies between their measurements
and accepted theory, leaving the theoreticians scrambling to explain said mea-
surements.

The path that ultimately led to Chapter 4 of this thesis is something of a
hybrid. In 2015, Avci et al. [42] discovered an unexpected magnetoresistance
signature in an experiment involving a ferromagnetic conductor in contact with
a heavy metal (HM). Although the effect seemed similar to spin Hall magnetore-
sistance (SMR), the magnitude of the contribution changed when the direction
of the current through the sample was reversed—a feature not seen in ordi-
nary SMR—and thus, it was dubbed unidirectional spin Hall magnetoresistance
(USMR).
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Following this discovery, Zhang and Vignale [46] found a possible explanation:
electronic spin accumulation caused by spin-dependent electron mobility would
produce a magnetoresistance with the same asymmetry. At the same time, it
has been established both experimentally and theoretically that such an elec-
tronic spin accumulation could likewise couple to a distribution of magnons in a
ferromagnetic insulator (FI). Thus, we hypothesised that USMR may likewise
be found in FI|HM bilayer systems.

In Chapter 4, we develop that hypothesis into a concrete set of predictions.
A magnonic contribution USMR can exist, but may be significantly smaller in
magnitude than the electronic contribution found by Avci et al. [42]. Impor-
tantly, in FI|HM bilayers, there is a fairly narrow range of HM layer thicknesses
at which a significant USMR is produced; if the layer is too thick or too thin,
the USMR drops off rapidly. We further show that USMR benefits from high
temperatures, a high spin-Hall angle in the HM, and low anisotropy in the FI.
Conversely, it is suppressed by a large magnon diffusion length.

Despite our prediction that any magnonic USMR present in platinum|yttrium
iron garnet (Pt|YIG) bilayers would most likely be extremely small, Liu et al.
[124] have observed USMR in exactly this system. Contrary to the predictions
of our model, the signal increases with decreasing YIG thickness. This suggests
that while our model has its merits—such as the experimentally supported pre-
diction that magnonic USMR vanishes at low temperatures—it is perhaps overly
simplistic. Extensions such as nonuniform equilibrium magnetization, coupled
heat and spin transport, or forgoing the linearization of the interfacial spin
current may yield more realistic results.

Whereas magnetoresistive effects such as USMR are by definition in the
domain of hybrid spintronic/electronic systems, in Chapter 5, we explore a
purely spintronic effect: the ballistic transport of elliptically polarized magnons
through a ferromagnetic insulator. Here, we assume a strongly anisotropic one-
dimensional FI is contacted on both sides by a metallic lead, each of which
has a given spin accumulation. The leads inject well-defined packets of spin in
the form of circular magnons, which are superpositions of the elliptical magnon
states native to the anisotropic FI, thus breaking the conservation of spin.

To study the transport properties of an elliptical-magnon channel, we develop
a discrete, real-space non-equilibrium Green’s function (NEGF) formalism, in-
corporating the lead coupling and bulk damping directly at the self-energy level.
While the leads couple to the circular magnon operators, we assume the bulk
damping instead acts on the elliptical magnon number. Expressed in the ba-
sis of elliptical operators, this bulk damping is mathematically identical to the
standard form of Gilbert damping, however, as it does not act on the classical
magnetization in a trivial way, we refer to it as ‘Gilbert-like damping’.
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When a weak spin accumulation is applied to one of the leads, the system
acts as a spin resistor network, with a ‘tunneling’ resistor between neighboring
sites, and ‘bulk’ resistors that siphon spin to ‘ground’ (i.e. the crystal lattice).
Although the individual spin resistances are not trivially accessible, the net-
work may be simplified using the ∆− Y transform [98], leading to system-scale
effective resistances. To avoid divergent behavior, we instead compute the cor-
responding conductances, and find three terms: a ‘tunneling’ term describing
the conductance between the left and right leads, a ‘bulk’ term describing the
effective ‘pull-down’ conductance to ground, and a novel term corresponding to
a parasitic conductance connecting the sites at which the leads are attached to
ground.

All three conductances increase monotonically with temperature, and are
asymptotically linear. The lead-local term vanishes when anisotropy is absent,
but becomes the dominant term at high anisotropy, indicating most spin in-
jected at the leads is lost immediately. Although the tunneling conductance
smoothly settles into the linear-in-temperature regime, the bulk and lead-local
conductance exhibit a fairly sharp kink, which is directly related to the magnon
gap: at low temperatures, not enough thermal energy is present to excite a
significant number of magnons.

The ellipticity of magnons further leads to squeezing: the quantum uncer-
tainty of the spin operator itself becomes elliptical. In particular, while the
Robertson uncertainty principle [96] dictates that in the circular case, the spin
uncertainty along any axis must be greater than 1√

2
, squeezing allows the uncer-

tainty along the semiminor axis of the ellipse to be smaller than this, as long as
long as the product of the uncertainty along any two orthogonal axis is greater
than 1

2 . This feature may find applications in quantum information science, in
particular in reducing shot noise. Although magnon squeezing becomes signifi-
cant in a strongly anisotropic ferromagnet, our results show that it may globally
be decreased by applying a local spin accumulation at one of the leads.

Modifying the NEGF framework to treat antiferromagnets is mathematically
simple, and even yields identical expressions for the spin conductances found in
elliptical ferromagnets. However, the two-sublattice nature of antiferromagnetic
spin chains and the exchange-scale coupling between the resulting magnon bands
leads to significantly different phenomenology. For example, magnons distribute
more evenly through an antiferromagnetic spin chain than through a ferromag-
netic one. Furthermore, by imposing different coupling strengths between the
leads and the A and B sublattices, substantial changes in the spin conductances
can be realized.

The work on discrete non-equilibrium Green’s function formalism for magnon-
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7 Summary and outlook

ics presented in this thesis provides many avenues that currently remain unex-
plored. Incorporating magnon-magnon interactions may be of particular inter-
est, as our results show that significant magnon densities may be reached even
at fairly low temperatures. Inclusion of inhomogeneity in parameters such as
magnetic field, Gilbert-like damping or anisotropy may improve the realism of
the modelled systems, and would be simple to implement. Another subject
worthy of study using this formalism is the interaction between magnons and
domain walls. In all of these cases, extension to two or three dimensions may
significantly affect the resulting scattering processes.

In the long-term future, a thorough understanding of the behavior of magnons—
including transport, but also their interaction with e.g. spin textures such as
skyrmions—may lead to pure-spintronic devices featuring low dissipation and
extremely high operating frequencies. This, in turn, may revitalize advancement
of computer hardware after the expected breakdown of Moore’s law.
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8 Samenvatting en vooruitblik

Naarmate het moeilijker en moeilijker wordt om elektronische circuits te ver-
kleinen, wacht de informatieindustrie een existentiële crisis: binnenkort zal het
onmogelijk worden om de rekenkracht van computers significant te vergroten
door middel van bekende en vertrouwde elektronische technologie. Het mag
dan ook geen verrassing zijn dat zowel de wetenschap als de industrie met milde
paniek op zoek zijn naar manieren om deze dreigende catastrofe af te wen-
den, en daarbij (wellicht verrassender) zelfs met het idee durven spelen om de
conventionele elektronica geheel af te danken, mits er een toekomstbestendi-
ger alternatief gevonden kan worden. Eén onderzoeksgebied dat hier wellicht
aan voldoet is de spintronica: het gebruik van intrinsiek impulsmoment—beter
bekend als spin—van elektronen om informatie op te slaan.

Eén van de meest veelbelovende eigenschappen van spintronica is de moge-
lijkheid om digitale informatie te verplaatsen zonder daarbij elektronen heen
en weer te sturen, waardoor het ongewenste fenomeen van Ohmse verwarming
vermeden wordt. Om dit te bereiken, hoeft men slechts de magnetische orde van
een magnetisch materiaal in beroering te brengen. Dit veroorzaakt een spingolf
of magnon, waarbij spin tussen aanliggende elektronen wordt doorgegeven, zon-
der dat hun positie verandert.

In het deelgebied van magnonica—het onderzoeken van magnonen—wordt
het gebruik van elektrisch isolerende magnetische materialen momenteel uit-
voerig onderzocht. Met regelmaat worden nieuwe effecten voorspeld door de
theoretici, terwijl de experimentatoren telkens nieuwe manieren zoeken om deze
voorspellingen in het laboratorium te bevestigen. Anderzijds stuiten experi-
mentalisten ook regelmatig op tegenstrijdigheden tussen hun metingen en de
gevestigde theorie, waardoor theoretici weer op zoek moeten naar verklaringen
voor die metingen.

De weg uiteindelijk naar Hoofdstuk 4 van deze scriptie heeft geleid is een
mengelmoes van deze routes. In 2015 ontdekten Avci et al. [42] kenmerken van
een onverwachte magnetoweerstand in een experiment waarin een ferromagne-
tische geleider in contact stond met een zwaar metaal (ZM). Hoewel het effect
leek op spin-Hallmagnetoresistentie (SMR), veranderde de grootte van de bij-
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drage als de richting van de stroom door het testobject omgekeerd werd—iets
dat niet bij gewone SMR voorkomt—en dus werd het unidirectionele spin-Hall
magnetoweerstand (USMR) genoemd.

Na deze ontdekking kwamen Zhang and Vignale [46] met een mogelijke ver-
klaring: opeenhoping van elektronische spin door spinafhankelijke elektronmobi-
liteit zou een magnetoresistentie met dezelfde asymmetrie produceren. Tegelij-
kertijd was ook zowel experimenteel als theoretisch vastgesteld dat een dergelijke
elektronische spinopeenhoping kan koppelen aan een magnondistributie in een
ferromagnetische isolator (FI). Hierdoor kwamen wij met de hypothese dat men
wellicht ook USMR zou kunnen vinden in tweelaagse FI|ZM-systemen.

In Hoofdstuk 4 werken we die hypothese uit tot een verzameling concrete
voorspellingen. Een magnonische bijdrage aan USMR kan bestaan, maar is
mogelijk veel kleiner dan de elektronische bijdrage van Avci et al. [42]. Voor-
namelijk moet in FI|ZM-bilagen de dikte van de ZM-laag binnen een vrij klein
bereik liggen om significante USMR te produceren; als de laag te dik of te dun
is, neemt de USMR snel af. Verder laten we zien dat hoge temperature, grote
spin-Hallhoek in de ZM-laag, en lage anisotropie in de FI-laag een positieve
invloed op de USMR hebben. Daarentegen is een grote magnondiffusielengte
juist een verkleinende factor.

Ondanks onze voorspelling dat magnonische USMR in platina|yttrium-ijzer-
granaat (Pt|YIG) bilagen waarschijnlijk extreem klein is, hebben Liu et al. [124]
precies in dit systeem USMR waargenomen. In tegenstelling tot de voorspellin-
gen van ons model, blijkt het signaal sterker te worden bij lagere YIG-diktes.
Hoewel ons model zeker nut heeft—bijvoorbeeld in de experimenteel onder-
steunde voorspelling dat magnonische USMR bij lage temperaturen verdwijnt—
suggereert dit dat het wellicht te eenvoudig is. Uitbreidingen zoals niet-uniforme
magnetisatie in evenwicht, gekoppeld warmte- en spintransport, of het niet li-
neariseren van de spinstroom door de interface tussen lagen kunnen wellicht
realistischere resultaten leveren.

Waar magnetoresistentie-effecten zoals USMR per definitie in het domein van
hybride spintronisch/elektronische systemen liggen, richten we ons in Hoofd-
stuk 5 op een puur spintronisch effect: het ballistische transport van elliptisch
gepolariseerde magnonen door een ferromagnetische isolator. Hierbij gaan we
uit van een sterk anisotrope, eendimensionale FI, die aan beide kanten met een
metalen contact verbonden is, waarbij de contacten beiden hun eigen spinac-
cumulatie hebben. Door deze contacten worden goedgedefinieerde pakketjes
spin geïnjecteerd, in de vorm van circulaire magnonen. Deze bestaan uit su-
perposities van de elliptische magnontoestanden in de anisotrope FI, waardoor
spinbehoud gebroken wordt.

Om de transporteigenschappen van een kanaal voor elliptische magnonen te
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bestuderen, ontwikkelen we een discreet non-equilibrium Greense functiefor-
malisme (NEGF formalisme) in reële ruimte, waarbij we de koppeling aan de
contacten en demping in de bulk direct op het niveau van zelfenergie meenemen.
Hoewel de contacten koppelen aan de circulaire magnonoperatoren, nemen we
aan dat de bulkdemping op het elliptische magnongetal werkt. Als men deze
bulkdemping uitdrukt in de basis van elliptische operatoren, is de vorm wiskun-
dig identiek aan de standaardvorm van Gilbertdemping, maar omdat deze niet
op een triviale manier uitwerking heeft op de klassieke magnetisatie, kiezen we
voor de term ‘Gilbert-achtige demping’.

Wanneer op één van de contacten een kleine spinaccumulatie geplaatst wordt,
gedraagt het systeem zich als een netwerk van spinweerstanden, met een ‘tun-
nelingweerstand’ tussen aanliggende spinposities, en ‘bulkweerstanden’ die spin
naar de ‘aarde’ afvoeren (d.w.z. het kristalrooster). Hoewel de individuele spin-
weerstanden niet op een triviale manier te beschrijven zijn, kan het netwerk
vereenvoudigd worden door middel van de ∆ − Y transformatie [98], waaruit
effectieve weerstanden op systeemschaal volgen. Om divergent gedrag te voor-
komen, berekenen i.p.v. weerstanden de spingeleidingen, en vinden daarbij drie
termen: een ‘tunnelingterm’ die de geleiding tussen de linker- en rechtercon-
tacten beschrijft, een ‘bulkterm’ die de ‘pull-downgeleiding’ naar de aarde be-
schrijft, en en nieuwe term die overeenkomt met een parasitische geleiding die
de spinposities van de contacten met de aarde verbindt.

Alle drie geleidingen zijn strikt stijgend met temperatuur, en zijn asympto-
tisch lineair. De contact-lokale term verdwijnt als anisotropie afwezig is, maar
wordt dominant bij hoge anisotropie, wat aangeeft dat de meeste spin die door
een contact geïnjecteerd wordt, meteen verdwijnt. Hoewel de tunnelinggeleiding
geleidelijk naar het lineaire regime in temperatuur overgaat, tonen de bulk- en
contact-lokale geleidingen een vrij scherpe knik, die direct voortvloeit uit de
magnonkloof: bij lage temperaturen is er niet genoeg thermische energie aan-
wezig om een significant aantal magnonen aan te slaan.

Verder veroorzaakt de ellipticiteit van magnonen ‘squeezing’: de kwantumon-
zekerheid van de spinoperator zelf wordt elliptisch. Daar het onzekerheidsprin-
cipe van Robertson [96] stelt dat de onzekerheid langs elke as in het circulaire
geval groter moet zijn dan 1√

2
, maakt squeezing het mogelijk om langs de korte

as van de ellips een kleinere onzekerheid te hebben, zolang het product van de
onzekerheid langs elke twee orthogonale assen maar groter is dan 1

2 . Dit feno-
meen heeft mogelijk toepassingen in de kwantuminformatiekunde, met name in
het verminderen van hagelruis. Hoewel magnonsqueezing significant wordt in
sterk anisotrope ferromagneten, laten onze resultaten zien dat het mogelijk is
om de squeezing globaal te verminderen door op één van de contacten lokaal
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een spinaccumulatie aan te brengen.
Wiskundig gezien is het eenvoudig om het NEGF-framework aan te passen

voor antiferromagneten; dit geeft zelfs identieke uitdrukkingen voor de spin-
geleidingen. Daarentegen zorgen de twee subroosters van antiferrmagnetische
spinketens, alsook de koppeling tussen de resulterende magnonbanden op de
schaal van de uitwisselingsenergie, voor beduidend andere fenomenologie. Zo
verspreiden magnonen zich veel regelmatiger over een antiferromagnetische ke-
ten dan een ferromagnetische. Verder kan men door verschillende koppelings-
sterktes tussen de externe draden en de A- en B-subroosters op te leggen, grote
verschillen in de spingeleidingen teweegbrengen.

In het raamwerk voor discreet non-equilibrium Greense functieformalisme dat
in deze scriptie voorgelegd wordt, zijn nog veel onverkende paden aanwezig.
Daarbij kan het met name interessant zijn om magnon-magnoninteracties mee
te nemen, gezien onze resultaten aantonen dat zelfs bij vrij lage temperaturen
al grote magnondichtheden bereikt kunnen worden. Het toevoegen van inho-
mogeniteiten in paramteres zoals het magneetveld, de Gilbert-achtige demping
of de anisotropie kunnen het model wellicht realistischer maken, en zijn niet
moeilijk om te implementeren. Een ander onderwerp dat het bestuderen met
dit formalisme waard is, is de interactie tussen magnonen en domeinmuren. In
al deze gevallen kan een uitbreiding naar twee of drie dimensies grote gevolgen
hebben voor de resulterende verstrooiingsprocessen.

Op lange termijn kan een grondig begrip van magnonen—zowel magnon-
transport en bijvoorbeeld de interactie tussen magnonen en spintexturen zoals
skyrmionen—leiden tot de ontwikkeling van puur-spintronische apparaten met
lage dissipatie en extreem hoge klokfrequenties. Op zijn beurt zou dit de voor-
uitgang van computerhardware nieuw leven in kunnen blazen na de verwachte
val van de Wet van Moore.

98



Acknowledgements

First and foremost I wish to thank my mother, who passed away on 23 January
2021, mere days from her 68th birthday. Without her by my side I would not
have made it this far, and it is with her memory by my side that I know I can
go on. Mum, thank you for everything, and with this thesis, I fulfil my promise.

I want to thank Rembert for being an amazing supervisor, and for giving me
the opportunity to take the wonderful journey that my PhD has been. Rembert,
you always had my back and gave me all the guidance I needed; it was a great
pleasure working with you, and with the others in your group. Most of all,
thank you for helping me through this difficult final year, for being someone I
could always confide in, for being a friend and mentor instead of a boss.

Andreas, Huaiyang and Akash, thank you for the great collaborations. Scott
and Jiansen, thank you for helping me along when I was still very green behind
the gills. And of course, Scott, Jiansen, Andreas, Etienne, Camilo, Dion, Ruben,
Huaiyang, Tim, Joren, Pieter, Valentina, Ivan, Lukasz, and all the Master and
Bachelor students: thanks for all the fun group meetings, and for being great
coworkers!

Kaveh, if it hadn’t been for my bachelor project with you and Jan, I might
never have heard of spintronics, so thank you for putting me on this path, and
also for helping me with my CV, and of course for the fun project.

And finally, thanks to all the wonderful friends I made back at Leiden Univer-
sity: Anne, Bas, Dieuwertje, Fré, Hiddo, Irene, Isabel, Koen, Marlize, Marten,
Matthijs, Remko and Thomas. As I write this, I’ve known you for almost a
decade, and what a decade it has been! From carrying each other through
gruelling homework sessions, to amazing summer holidays and hilarious game
nights, there’s never been a lack of fun. It’s safe to say you were what kept me
going when I was about to crack under the pressure, and you are the ones who
picked me up when the world shattered beneath my feet.

99





Curriculum vitæ

Peter Sterk is geboren op 26 februari 1990 te Goes. Op 6 juli 2012 heeft
hij het Voorbereidend Wetenschappelijk Onderwijs afgerond door middel van
Staatsexamen. Vervolgens begon hij aan de Universiteit Leiden met de op-
leiding Natuurkunde, waarbij hij de Bachelor afsloot met de scriptie getiteld
Magnetisation characteristics of noncollinear ferromagnetic bi-
layers, na onderzoek te hebben gedaan in de groep van prof. dr. Jan Aarts. In
de Master specialiseerde hij zich in de richting Theoretical Physics en verkoos hij
een breed vakkenpakket, waarin gecondenseerde materie, kosmologie en hoge-
energiefysica allen vertegenwoordigd waren. In het collegejaar 2016-2017 voegde
hij zich bij de groep van prof. dr. Koenraad Schalm, en gebruikte hij numerieke
methoden om onderzoek te doen naar de vorming van geladen zwarte gaten
in anti-De Sitterruimte. Op 31 augustus 2017 rondde hij deze Masteropleiding
af met de scriptie Formation of black branes with U(1) scalar hair.
Hierna werd hij aangenomen tot promovendus onder de begeleiding van prof.
dr. Rembert Duine aan de Universiteit Utrecht, en schakelde daarbij terug naar
het onderwerp Spintronica, waarmee hij tijdens zijn Bacheloronderzoek kennis
had gemaakt. Daarvan is dit proefschrift het gevolg.

101





Bibliography

[1] W. P. Sterk, D. Peerlings, and R. A. Duine. Magnon contribu-
tion to unidirectional spin hall magnetoresistance in ferromagnetic-
insulator/heavy-metal bilayers. Phys. Rev. B, 99:064438, Feb 2019.
doi:10.1103/PhysRevB.99.064438.

[2] W. P. Sterk, H. Y. Yuan, Andreas Rückriegel, Babak Zare Rameshti,
and R. A. Duine. Green’s function formalism for nonlocal el-
liptical magnon transport. Phys. Rev. B, 104:174404, Nov 2021.
doi:10.1103/PhysRevB.104.174404.

[3] H. Y. Yuan, W. P. Sterk, Akashdeep Kamra, and Rembert A. Duine. Pure
dephasing of magnonic quantum states. Phys. Rev. B, 106:L100403, Sep
2022. doi:10.1103/PhysRevB.106.L100403.

[4] H. Y. Yuan, W. P. Sterk, Akashdeep Kamra, and Rembert A.
Duine. Master equation approach to magnon relaxation and de-
phasing. arXiv e-prints, art. arXiv:2209.02961, September 2022.
doi:10.48550/arXiv.2209.02961.

[5] Julius Edgar Lilienfeld. Method and apparatus for controlling electric
currents, January 28 1930. US Patent 1,745,175.

[6] J. Bardeen and W. H. Brattain. The Transistor, A Semi-
Conductor Triode. Physical Review, 74(2):230–231, July 1948.
doi:10.1103/PhysRev.74.230.

[7] Cornelis Disco. Getting new technologies together : studies in making
sociotechnical order. Walter de Gruyter, Berlin New York, 1998. ISBN
978-3-11-015630-0.

[8] David C Brock, editor. Understanding Moore’s Law: Four Decades of
Innovation. Chemical Heritage Foundation, Philadelphia, PA, May 2006.
ISBN 0941901416.

103

https://doi.org/10.1103/PhysRevB.99.064438
https://doi.org/10.1103/PhysRevB.104.174404
https://doi.org/10.1103/PhysRevB.106.L100403
https://doi.org/10.48550/arXiv.2209.02961
https://doi.org/10.1103/PhysRev.74.230


Bibliography

[9] Atsufumi Hirohata, Keisuke Yamada, Yoshinobu Nakatani, Ioan-Lucian
Prejbeanu, Bernard Diény, Philipp Pirro, and Burkard Hillebrands.
Review on spintronics: Principles and device applications. Journal
of Magnetism and Magnetic Materials, 509:166711, September 2020.
doi:10.1016/j.jmmm.2020.166711.

[10] L. Bruno Chandrasekar, K. Gnanasekar, and M. Karunakaran. Spintronics
– a mini review. Superlattices and Microstructures, 136:106322, 2019. ISSN
0749-6036. doi:10.1016/j.spmi.2019.106322.

[11] Can Onur Avci. Picosecond switching in a ferromagnet. Nature Electron-
ics, 3(11):660–661, 2020. doi:10.1038/s41928-020-00502-8.

[12] Kaushalya Jhuria, Julius Hohlfeld, Akshay Pattabi, Elodie Martin, Aldo
Ygnacio Arriola Córdova, Xinping Shi, Roberto Lo Conte, Sébastien Petit-
Watelot, Juan Carlos Rojas-Sanchez, Grégory Malinowski, et al. Spin–
orbit torque switching of a ferromagnet with picosecond electrical pulses.
Nature Electronics, 3(11):680–686, 2020. doi:10.1038/s41928-020-00488-3.

[13] Atsushi Ono and Sumio Ishihara. Ultrafast reorientation of the Néel vector
in antiferromagnetic Dirac semimetals. npj Computational Mathematics,
7:171, January 2021. doi:10.1038/s41524-021-00641-2.

[14] J. M. D. Coey. Magnetism and magnetic materials. Cambridge University
Press, Cambridge New York, 2009. ISBN 978-0-511-67743-4.
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