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A B S T R A C T

Two machine learning (ML) models are investigated for retrieving sea surface temperature (SST) from
passive microwave (PMW) satellite observations from the Advanced Microwave Scanning Radiometer –
Earth Observing System (AMSR-E) and auxiliary data, such as ERA5 reanalysis data. The first model is the
Extreme Gradient Boosting (XBG) model and the second is a multilayer perceptron neural network (NN).
The performance of the two ML algorithms is compared to that of an existing state-of-the-art regression (RE)
retrieval algorithm.

The performance of the three algorithms is assessed using independent in situ SSTs from drifting buoys.
Overall, the three models have similar biases; 0.01, 0.01 and −0.02 K for the XGB, NN and RE, respectively.
The XGB model performs best with respect to standard deviation; 0.36 K. While the NN model performs slightly
better than the RE model with respect to standard deviation, 0.50 and 0.55 K, respectively, the RE model is
found to be more sensitive to changes in the in situ SST. Moreover, the XGB model is the least sensitive with
an overall sensitivity of 0.78, compared to 0.90 for the RE model and 0.88 for the NN model.

The good performance of the two ML algorithms compared to the state-of-the-art RE algorithm in this
initial study demonstrates that there is a large potential in the use of ML algorithms for the retrieval of SST
from PMW satellite observations.
1. Introduction

Sea surface temperature (SST) is an essential climate variable (Bo-
jinski et al., 2014) used in various applications such as climate monitor-
ing (e.g. Merchant et al., 2019), numerical weather prediction (NWP;
Chelton and Wentz, 2005; Brasnett and Colan, 2016), ocean and cou-
pled models (Le Traon et al., 2015; Yang et al., 2015; Liang et al.,
2017) and in the understanding of air–sea interactions (Monzikova
et al., 2017; Ning et al., 2018). SST has been measured in situ for
more than 150 years, initially from ships and oceanographic profiles
and later from moored and drifting buoys (Rayner et al., 2006). SST
retrieved from Earth-orbiting satellites is a crucial supplement to the in
situ network due to the more complete temporal and spatial coverage
from satellites (Minnett et al., 2019). Thermal infrared (IR) satellite
observations have been available since 1981, but these observations
are biased from aerosols and limited by their inability to observe
the surface through clouds (Merchant et al., 1999, 2006). Observa-
tions from passive microwave (PMW) sensors are widely recognised
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as an important supplement to IR observations since PMW observa-
tions of the surface are not prevented by non-precipitating clouds
and the impact from aerosols is small (Wentz and Meissner, 2000;
Chelton and Wentz, 2005). They are, however, impacted by precipi-
tation (Gentemann et al., 2010) and sun glint contamination, which
increases the swath gaps (Gentemann and Hilburn, 2015). The first
global accurate PMW SST data using the 6 GHz channels became
available in 2002 from the Advanced Microwave Scanning Radiometer
– Earth Observing System (AMSR-E; Kawanishi et al., 2003; Chelton
and Wentz, 2005), carried onboard the National Aeronautics and Space
Administration’s (NASA’s) Earth Observation System Aqua platform.
AMSR-E ceased normal operations in October 2011 and was followed
by the currently operational AMSR2 on the Global Change Observing
Mission (GCOM-W1; Maeda et al., 2015), launched in May 2012. An
AMSR2 follow-on mission (AMSR3) is planned by Japan Aerospace
Exploration Agency (JAXA) (Maeda et al., 2020) and the Copernicus
Imaging Microwave Radiometer (CIMR) is prepared by the European
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Space Agency (ESA) as a part of the Copernicus Expansion Program of
the European Union (http://www.cimr.eu/; Donlon, 2020).

Different PMW SST retrievals have been developed and refined over
the years using different frequency channels and approaches. Two types
of retrieval algorithms have generally been used to retrieve SST from
PMW observations; statistical algorithms and physically based algo-
rithms. The most common approach to generate PMW SST products is
by using a statistical retrieval algorithm (e.g. Shibata, 2006; Wentz and
Meissner, 2007; Gentemann et al., 2009; Chang et al., 2015; Alerskans
et al., 2020). Statistical retrieval algorithms are developed by com-
parisons of satellite measured brightness temperatures and collocated
and temporally matched in situ observations and model data, such as
atmospheric and oceanic reanalysis data of wind speed, atmospheric
water vapour content and SST. The second type of retrieval algorithm
uses a radiative transfer model (RTM) to simulate the top of atmo-
sphere brightness temperatures. This approach requires instrument
information (azimuth/earth incidence angles, frequency and polarisa-
tion) and environmental information (SST, sea surface salinity, wind
speed/direction, water vapour density, liquid water density, pressure,
and atmospheric profiles of temperature). Optimal estimation (OE)
theory is an example of an approach that makes use of an RTM (forward
model). In OE models, the RTM is inverted in order to retrieve SST
from satellite measured brightness temperatures (Nielsen-Englyst et al.,
2018). The inversion is performed using a priori information about the
ocean and atmosphere (and corresponding uncertainties) to constrain
the retrievals.

The OE retrieval allows for indication of measurement errors, such
as imperfect calibration and channel contamination (Minnett et al.,
2019). This also means that the performance of OE algorithms is con-
strained by the accuracy of the RTM as well as the representativeness
of the observation and prior error covariances (Merchant et al., 2020).
Moreover, measurement errors require ad-hoc corrections to the geo-
physical retrievals in the OE type of algorithms (Meissner and Wentz,
2012; Nielsen-Englyst et al., 2018). In contrast, statistically based al-
gorithms may account for some of the measurement errors through the
coefficient derivation process, but they are limited by the established
statistical relationships between the variables. Hence, both physical and
statistical models make a series of considerable assumptions about the
nature of the radiative transfer process, which are provided directly
by the RTM in physical models, whereas statistical models rely on
established assumptions of how the geophysical quantities can be used
as proxies for the actual physical processes that influence the surface
emissivity and the radiative transfer through the atmosphere.

Machine learning (ML) models may improve or supplement exist-
ing retrieval algorithms through their higher flexibility and capability
of recognising meaningful patterns and structures in complex prob-
lems (Lee et al., 2017; Azodi et al., 2020). Compared to both physical
models and statistical models, there are much fewer assumptions about
the functional form of how the geophysical quantities are related to
the predicted quantity in ML models. This may allow development of
complex functional forms that more closely approximate the actual
physical processes and thereby provide a more accurate SST retrieval.
ML models may also be a good alternative in situations where obser-
vation characteristics and the structure of the uncertainty components
are not well known, e.g. during a commissioning phase of a new
instrument such as CIMR. Therefore, there is a need for insight into the
performance of different ML models for retrieving SST. Until recently,
the use of ML techniques has been very limited within the field of
SST retrievals, but investigations using ML to improve the accuracy
of SST algorithms is listed as one of the priority recommendations
provided by the SST community (O’Carroll et al., 2019). There has been
an increasing amount of research applying ML techniques to specific
parts of retrieval algorithms, such as for cloud detection (Paul and
Huntemann, 2021), bias correction (Saux Picart et al., 2018), error
estimation (Kumar et al., 2021), identification of eddies (Moschos et al.,
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2020) and ocean extremes (Prochaska et al., 2021). A recent study
also used ML techniques to retrieve daily cloud-free IR SSTs from the
MODIS Aqua sensor (Sunder et al., 2020). In addition, ML techniques
have also been used for retrieval of other satellite-derived geophysical
variables, such as soil moisture (Rodriguez-Fernandez et al., 2015) and
precipitation (Sanò et al., 2016, 2018).

In this paper two types of ML SST retrieval techniques have been
assessed and compared against an existing state-of-the-art statistical
regression model retrieval algorithm. The first is the decision tree-based
algorithm Extreme Gradient Boosting (XGBoost, here XGB; Chen and
Guestrin, 2016), and the second is a multilayer perceptron (MLP) neural
network (NN; Haykin, 1999; Nielsen, 2015). These methods differ in
architecture and represent two of the main ML categories; decision-
trees and neural networks. The XGB is a relatively new algorithm which
has shown good performance for retrieval and bias correction of other
geophysical variables (e.g. Just et al., 2018, 2020; Liu et al., 2021). The
MLP is a fully-connected feed-forward NN and is one of the simplest and
most used neural network architectures.

The paper is structured with a description of the dataset, as well as
pre-processing and dataset splitting in Section 2. This is followed by a
presentation of the three retrieval algorithms and model optimisation
of the two ML algorithms in Section 3. The results are presented in
Section 4 and discussed in Section 5 before the final concluding remarks
are provided in Section 6.

2. Data

2.1. ESA CCI Multisensor Matchup Dataset (MMD)

The ESA climate change initiative (CCI) Multisensor Matchup
Dataset (MMD), described in Nielsen-Englyst et al. (2018) and Aler-
skans et al. (2020), is the basis for this work. The MMD consists of
quality controlled in situ measured SST observations from the Inter-
national Comprehensive Ocean-Atmosphere DataSet (ICOADS) version
2.5.1 (Woodruff et al., 2011) and the Met Office Hadley Centre (MOHC)
Ensembles dataset version 4.2.0 (EN4; Good et al., 2013). Brightness
temperatures from the AMSR-E Level 2 A (L2 A) swath data product,
AMSR-E V12 (Ashcroft and Wentz, 2013), spatially re-sampled to the
6.9 GHz resolution (75 × 43 km), are also included. The in situ and
satellite observations are matched by imposing a maximal geodesic
distance of 20 km and a maximal time difference of 4 h. The MMD
includes matchups from the period June 2002–October 2011.

Additional data included in the MMD are information from both
the ERA-Interim reanalysis (Dee et al., 2011) and the ERA5 reanaly-
sis (Hersbach et al., 2020) on SST, total column water vapour (TCWV),
total cloud liquid water (TCLW), wind speed (WS) and sea ice concen-
tration (SIC). Sea surface salinity (SSS) from the GLOBAL-REANALYSIS-
PHY-001-030 reanalysis product, provided by the Copernicus Marine
Environment Monitoring Service (CMEMS; http://marine.copernicus.
eu) is also included in the MMD. Additional wind data from the
Cross-Calibrated Multi-Platform (CCMP) gridded surface wind vector
product (Atlas et al., 2011) version 2.0 was included. The additional
data were collocated in time and space with the MMD matchups using
the nearest neighbour interpolation. For a list of the MMD variables
extracted for this study and considered as input features to the two ML
retrieval algorithms see Table 1.

2.2. Pre-processing

To ensure an accurate derivation of the retrieval algorithms erro-
neous in situ, satellite and auxiliary data are excluded. The quality
of the brightness temperatures were assessed using the L1 AMSR-E
instrument quality flags and low-quality data were excluded. Moreover,
brightness temperatures outside the accepted range (0–320 K) were
flagged. In addition, data were excluded if the difference between ver-
tical (V) and horizontal (H) polarisations for the 18–36 GHz brightness

temperatures were negative, as this indicates invalid oceanographic
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Table 1
MMD variables considered as input features to the ML retrieval algorithms. The asterisk
marks the features used in the XGB model (see Section 3.2).

Feature Acronym Source

AMSR-E orbit (asc./desc.) orbit AMSR-E
Latitude∗ lat AMSR-E
Longitude∗ lon AMSR-E
Solar zenith angle solza AMSR-E
Satellite zenith angle∗ satza AMSR-E
Satellite azimuth angle sataz AMSR-E
Sun glint angle sga AMSR-E
Brightness temperature, channel 6V∗ tb6V AMSR-E
Brightness temperature, channel 6H∗ tb6H AMSR-E
Brightness temperature, channel 10V∗ tb10V AMSR-E
Brightness temperature, channel 10H∗ tb10H AMSR-E
Brightness temperature, channel 18V tb18V AMSR-E
Brightness temperature, channel 18H tb18H AMSR-E
Brightness temperature, channel 23V tb23V AMSR-E
Brightness temperature, channel 23H tb23H AMSR-E
Brightness temperature, channel 36V∗ tb36V AMSR-E
Brightness temperature, channel 36H∗ tb36H AMSR-E
Brightness temperature, channel 89V∗ tb89V AMSR-E
Brightness temperature, channel 89H∗ tb89H AMSR-E
Wind speed∗ WS ERA5
Wind direction 𝜙𝑊 ERA5
Relative angle between sataz and 𝜙∗

𝑊 𝜙𝑅𝐸𝐿 ERA5/AMSR-E
Total column water vapour∗ TCWV ERA5
Cloud liquid water∗ CLWT ERA5

retrievals. To exclude low-quality brightness temperatures possibly
contaminated by e.g. rain and sea ice, an additional quality control
check for the AMSR-E 23 and 36 GHz brightness temperatures were per-
formed. The spatial standard deviation was calculated over a 21 × 21
pixel subregion around each matchup in order to exclude matchups
with an anomalously high standard deviation. Data were flagged if
the standard deviations of the 23 V and H and 36 V and H channels
were larger than 55, 35, 25 and 25 K, respectively. These thresholds
were chosen based on the distribution of the spatial standard deviations
in order to exclude matchups in the end tails, as they have a very
high and anomalous spatial standard deviation and therefore likely are
contaminated. The chosen thresholds resulted in exclusion of less than
1% of the matchups. Low quality in situ data and matchups with an
in situ or ERA5 SST outside the range −2–34 ◦C were also excluded,
where the lower limit of −2 ◦C is used in order to exclude matchups
potentially contaminated by sea ice. Furthermore, matchups with an
ERA5 WS greater than 20 ms−1 were also flagged. The upper wind
speed limit is based on the fact that extreme surface roughness and the
existence of foam on the surface caused by high wind speeds impact the
brightness temperatures and make the SST retrievals uncertain (Kilic
et al., 2018). Together, these checks constitute the gross error checks
in Table 2, which are performed to remove obviously erroneous satel-
lite, in situ and auxiliary data. To exclude matchups that might have
been contaminated due to atmospheric or surface effects, additional
checks were performed. Matchups contaminated by sea ice or land
were excluded using the AMSR-E land/ocean flag and the ERA5 sea
ice fraction. To account for contamination due to rain, matchups were
removed if the 18 V GHz brightness temperature was greater than 240
K. Sun glitter contamination was avoided by excluding matchups with a
sun glint angle less than 25◦. Diurnal warming effects were accounted
for by excluding daytime matchups with ERA5 WS less than 4 ms−1.
Matchups potentially contaminated by ground-based and space-based
RFI were excluded using observation location and reflection longitude
and latitude according to Table 2 in Gentemann and Hilburn (2015).
Lastly, obviously erroneous in situ SSTs were removed using a 3-sigma
filter, based on the mean difference between ERA5 and in situ SSTs. To
ensure a balanced and latitudinally representative dataset, such that
the models are trained and validated on data not only from a few
specific regions in which in situ observations are dense, the number
of matchups per latitude degree was restricted. As the number of
3

Table 2
Number of matchups remaining after each check and the percentage of matchups each
check removes. The percentages removed for checks 1–8 plus the summary checks
(‘‘Checks 1–7’’, ‘‘Checks 1-8’’ and ‘‘All checks 1–9’’) are with respect to all matchups.
The percentage of matchups removed by the SST 3𝜎-filter, on the other hand, is with
respect to ‘‘Checks 1–7’’ and the even-out-by-latitude check is with respect to ‘‘Checks
1–8’’.

Filter No. of matchups Percentage of matchups
removed (%)

(0) All matchups (no filter) 40,480,306 –
(1) Gross error checks 31,070,944 23.24
(2) Rain 401,42,612 0.83
(3) Sun glint 38,145,778 5.77
(4) RFI 37,387,456 7.64
(5) Land 34,839,510 13.93
(6) Sea ice 31,390,993 22.45
(7) Diurnal warming 37,311,599 7.83

Checks 1–7 19,397,886 52.08

(8) SST 3𝜎-filter 18,999,399 2.05

Checks 1–8 18,999,399 53.07

(9) Even-out-by-latitude 15,316,989 19.38

All checks 1–9 15,316,989 61.16

matchups increase with time, the restriction is temporally dependent
with different number of matchups allowed for different years. For
2002, which is the year with fewest matchups, a maximum of 2,000
matchups per latitude degree were allowed, whereas for 2011, which is
the year with the most matchups, a maximum limit of 20,000 matchups
per latitude degree was used. The percentage of matchups removed and
the total number of matchups left after each filtering check is shown in
Table 2. Furthermore, the geographical distribution of satellite versus
drifting buoy matchups after filtering for the validation dataset is
shown in Fig. 1.

The MMD is divided into six subsets in order to perform all steps on
independent data. A random splitting of the data is performed such that
all datasets retain the same distribution for each variable. The number
of matchups in each subset, as well as the percentage of data with
respect to the filtered dataset, is indicated in parentheses.

1. Training dataset: used for training the NN and XGB models
(6,126,795/40.0%).

2. Test dataset: used for evaluating the performance of the ML
models during training (1,021,133/6.7%).

3. Hyperparameter optimisation dataset: used for optimising model
hyperparameters (see Section 3.4; 3,063,398/20.0%).

4. Feature selection dataset: used for selecting input variables for
the NN and XGB models (see Section 3.1; 1,021,133/16.7% of
the training dataset).

5. Validation dataset: used for validating the performance of the
NN, XGB and RE models (5,105,663/33.3%).

6. Sensitivity dataset: used for the estimating the SST sensitivity of
the NN, XGB and RE models (1,021,133/20.0% of the validation
dataset).

Another important part of the pre-processing step in order to ensure
a good performance for the ML retrieval algorithms is data normali-
sation (Kotsiantis et al., 2006; Huang et al., 2020). Normalisation of
the data is a transformation of the data in order to transform the data
to the same scale. Different methods can be used for normalisation
of the data. Here, we have used quantile transform normalisation.
This method uses quantile information in order to transform the data
to follow a uniform distribution and as it reduces the impact from
outliers it is a robust normalisation method. It has previously been
used for feature normalisation within satellite-based applications and
for classification (Ferreira et al., 2019; Sismanidis et al., 2021). Other
popular methods include min–max normalisation and standardisation.

It should be mentioned that no universal normalisation method exists
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Fig. 1. Spatial distribution of satellite matchups with drifting buoys for the validation dataset. The statistics have been calculated on a 2 × 2 degree grid with a minimum of 50
matchups per grid cell.
and that the performance of models might vary depending on the
normalisation method and the problem.

3. Retrievals

In this section the three models used for retrieving SST will be
introduced. First the selection of input variables (also called input
features) is presented, followed by a description of the two ML models,
XGB and NN, and the optimisation thereof. Lastly, the state-of-the-art
regression retrieval model used as a benchmark is presented.

3.1. Feature selection

Table 1 shows the 24 features that were extracted from the MMD
and considered as input to the two ML models. To exclude redun-
dant features and only select the important ones, such that the di-
mensionality of the input data is reduced and the risk of overfitting
likewise is reduced (Goodfellow et al., 2016), a feature importance
analysis was performed in order to obtain the explanatory power of
each input feature. The analysis was based on the SHapley Additive
exPlanations (SHAP) values (Lundberg and Lee, 2017). SHAP uses
shapley values (Shapley Ll, 1953), which are based on cooperative
game theory and are used in many state-of-the-art feature attribution
methods (Ribeiro et al., 2016; Shrikumar et al., 2016, 2017). SHAP is
based on the idea that the performance of all possible combinations of
input features should be considered when determining the importance
of a single feature on a single prediction. To determine the importance
of each feature, the ML model to be used (here XGB and NN) is trained
for each combination of input features and the marginal contribution
of each feature is evaluated. The marginal contribution is defined as
the difference between the performance of the model which includes
the feature to be assessed and the model in which the feature is
excluded. The marginal contribution of a feature is therefore obtained
by considering the difference between all models in which this feature
is present and all models in which it is excluded. From this, the average
contribution of a single feature can be obtained. Based on this, an
importance is assigned to each feature for each prediction and from
this the average explanatory power of each feature can be estimated.
For a further explanation of SHAP see Lundberg and Lee (2017).

The SHAP analysis is performed on the XGB and NN base models,
i.e. the models with default settings. For XGB the default settings
are given by its python implementations using scikit-Learn (Pedregosa
et al., 2011), whereas for the NN model the corresponding default
parameters were used, with the exception of number of hidden layers
4

Fig. 2. SHAP feature importance analysis for XGB (black) and NN (red) with the
average magnitude of impact on the model prediction (in percentage points) on the
ordinate. Each bar represents the importance of a single input feature.

and neurons, which were chosen as 2 layers and 20 and 15 neurons,
respectively (see Section 3.3). Therefore, the SHAP feature importance
analysis might be slightly different after the ML model settings have
been optimised. However, performing the optimisation using all fea-
tures might also yield different results than performing it on the subset
of selected features. As the purpose of the feature analysis is to estimate
the explanatory power of the input features and perform a feature
selection we therefore perform the SHAP analysis before optimising the
models. Fig. 2 shows the SHAP values for each input feature for the
two models. In both models the most dominant feature is the vertical
polarisation of the 6 GHz brightness temperature (tb6V), on average
changing the predicted values by 23 percentage points (pp) and 21
pp for XGB and NN, respectively. Other than tb6V, the SHAP values
of the different input features differ greatly between the two models.
Furthermore, the general magnitudes of importances are very different
for the two models, with lower average importances in the XGB model.
Therefore, the choice is made to keep all features in the NN model
and only reduce the number of features in the XGB model by using
a threshold of 0.1 pp. The features with an average impact on the XGB
model predictions higher than this threshold are therefore included in
the XGB model. These are marked with an asterisk in Table 1.
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Fig. 3. Example of a neural network with an input layer consisting of two input
neurons, two hidden layers with three and four neurons, respectively, and an output
layer consisting of one neuron.

3.2. XGBoost

Extreme Gradient Boosting (XGBoost, here referred to as XGB) is a
supervised machine learning model for when working with tabulated
data. It has shown to provide state-of-the-art results on both classifi-
cation and regression problems (Zhang et al., 2017; Liu et al., 2020).
Here, a brief introduction of XGB is given and for a more detailed
description the reader is referred to e.g. Chen and Guestrin (2016).

XGB is a so-called tree-based ML model, which means that it consists
of decision trees (Breiman et al., 1984). A decision tree divides the
input data into different regions with separate parameters for each
region, such that the structure of the model resembles that of a tree.
In XGB, trees are built sequentially, which allows a tree to learn from
previous trees through a method called gradient boosting (Friedman,
2001). XGB is based on extreme gradient boosting, which is a highly
scalable gradient boosting method with a sophisticated sparsity-aware
algorithm for parallel tree learning (Chen and Guestrin, 2016). In
gradient boosting algorithms, prior knowledge of trees and splitting is
used to build better trees, since every tree is validated as it is built.
Thus, each new tree will be better than the previous. All trees then
contribute to the final prediction through a weighted average. The
extreme gradient boosting algorithm uses a learning rate (also called
shrinkage) to update the trainable model parameters in the same way
as a neural network (Chen and Guestrin, 2016).

A well-known issue with machine learning is the risk of overfit-
ting, which means that the model becomes good only at predicting
data from the training dataset and performs poorly when presented
to unseen data, i.e. the generalisation ability of the model becomes
poor (Goodfellow et al., 2016). The problem of overfitting in tree-based
models is a well-studied topic, with several different methods suggested
for preventing overfitting, such as pre-pruning, post-pruning and early
stopping (Esposito et al., 1997; Ying, 2019). To avoid overfitting in
the XGB model early stopping, based on the mean absolute difference
(MAD) metric of a test dataset, is used in the training of the model.

3.3. Neural network (NN)

Neural networks (NNs) are inspired by the functionality of the
neural system and are one of the most well-known ML techniques for
supervised learning. Here, a short description of the neural network
used in this study is given. For a more comprehensive and detailed
description of neural networks see e.g. LeCun et al. (2015), Nielsen
(2015) and Goodfellow et al. (2016).

Fig. 3 shows an illustration of an NN, which consists of an input
layer, two hidden layers and an output layer. Each layer consists of
one or more neurons (also called nodes or units). It is through the
input layer that the NN receives its input and the output layer produces
the output of the model. The number of neurons corresponds to the
number of inputs and outputs, respectively. In Fig. 3, the NN receives
two inputs and as the output layer only consists of one neuron, only one
5

output is produced. The layers in between the input and output layers
are called hidden layers as they are neither input nor output layers,
but are hidden in between. The connections between neurons in the
different layers each has a weight associated with it, which indicates
the weight given to the respective input information. Furthermore, the
connections between the neurons in the hidden layer(s) are associated
with an activation function. The purpose of the activation function is to
introduce non-linearity to the system, as well as to allow for variable
importance and to introduce an on–off behaviour in the response of
the model to the input data. In this study, we have used the multilayer
perceptron model, which is a fully-connected feed-forward NN, apply-
ing the backpropagation method (Hecht-Nielsen, 1992) during training.
The NN retrieval algorithm used in this study is implemented using the
TensorFlow interface (Abadi et al., 2015). As for the XGB model, early
stopping is applied to ensure that the NN is not overfitting.

3.4. Optimisation

ML models have two types of parameters; (i) parameters which the
ML model estimates during the training process; and (ii) hyperparam-
eters, which need to be assigned prior to the model training. These
hyperparameters can be tuned in order to improve the performance of
the model. This is done through a process called hyperparameter opti-
misation (HPO). There exist several methods for performing HPO, two
of them being through gridded and randomised searches (Liashchynskyi
and Liashchynskyi, 2019; Yang and Shami, 2020). The gridded search
offers a thorough scan of the entire desired parameter space, whereas
the randomised search only scans a fraction of the desired parame-
ter space, based on the chosen hyperparameter distribution function,
thereby decreasing the computational cost.

HPO for the XGB model is performed using the scikit-learn Random-
izedSearchCV. For the NN model, on the other hand, the scikit-learn
GridSearchCV was used. The reason for this was that it was difficult
to define the parameter space and obtain a satisfactory performance
with the randomised algorithm for the NN model. Hence, a gridded
search was performed instead. The parameter space was easier to
define for the XGB model, which is why a randomised algorithm was
used in order to reduce the computational cost. To ensure that the
models are not overfitting to the training data in the HPO, k-fold cross-
validation (e.g. Grimm et al., 2017; Berrar, 2018) in five folds is used.
The hyperparameters considered, their prior distributions and the final
value for each hyperparameter obtained from the HPO is shown in
Table 3. It should be noted, that the entire possible hyperparameter
space has not been investigated. Searching for more combinations in an
extended space, might alleviate the strong link currently seen between
the prior distributions and their final chosen values.

3.5. Regression model

The statistical regression model retrieval algorithm described in
Alerskans et al. (2020) is used as benchmark in order to compare the
performance of the ML retrievals. The regression (RE) model consists of
a two-stage WS regression model followed by a two-step SST retrieval
regression model. The first step uses a global algorithm to retrieve
an initial estimate of wind speed. In the second step, these initial
estimates are used to derive localised retrieval algorithms. Both steps
in the WS retrieval algorithm use AMSR-E brightness temperatures and
are regressed against CCMP wind speeds. The SST retrieval algorithm
applies localised retrievals for both steps. In the first step, regres-
sion coefficients are derived locally for fixed latitude intervals and
ascending and descending passes, respectively, whereas the second step
uses localised SST and WS algorithms. Both steps in the SST retrieval
algorithm use AMSR-E brightness temperatures, Earth incidence angle,
retrieved wind speeds from the WS retrieval algorithm, and the relative
angle between satellite azimuth angle and wind direction. For more
information on the RE model, see Alerskans et al. (2020).
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Table 3
The hyperparameters optimised for the XGB and NN models, their prior distributions and final values obtained through the HPO. The prior
distributions for the XGB randomised HPO include a uniform distribution, with the minimum and maximum values specified, a Poisson
distribution, with the expected separation indicated, and a normal (Gaussian) distribution, with the mean and standard deviation indicated. For
the NN, the gridded HPO search intervals are shown.

Hyperparameter Prior distribution Final value

Number of gradient boosted trees Poisson(100) 103
Maximum tree depth Poisson(25) 22
Minimum number of incidences in a final leaf uniform(1,5) 3

XGB Subsamplinga norm(0.6,0.1) 0.58
Subsampling by treeb norm(0.6,0.1) 0.7
Subsampling by levelc norm(0.6,0.1) 0.63
Learning rated norm(0.1,0.03) 8.5 ⋅ 10−2

Hyperparameter Search range Final value

Number of hidden layers 1–3 2
Number of neurons in each hidden layer [15,20,25,30] 20 (1st layer) 15 (2nd layer)

NN Activation function in the hidden layers [ReLU, tanh] tanh
Optimisere [Adam, SGD] Adam
Initial learning ratef 0.0001–0.01 8 ⋅ 10−4

aFraction used to randomly select a subset of training data.
bFraction used to randomly select features to train each tree.
cFraction used to randomly select a subsample of the features for every new depth level reached in a tree.
dThe rate at which the trainable model parameters are updated during the training process.
eAlgorithm by which the weights are optimised in order to minimise a loss function.
fAdam uses an adaptive learning rate, hence the initial value of the learning rate is optimised here.
The RE model was developed using a previous MMD version, in
which ERA-Interim data was used instead of ERA5 data, as it had
not been produced yet. The subsetting for the RE model is therefore
different from the two ML retrieval algorithms, also due to different
needs for number of subsets. Therefore, the same data are not used
for training of the RE and ML models. The two training dataset are,
however, representative of each other and the RE and ML models are
therefore trained on similar data. The RE model is, on the other hand,
validated on the same subset as the ML models. However, this means
that the validation of the RE model is likely not performed on com-
pletely independent data as some matchups in the RE training dataset
likely are included in the validation dataset. However, as validation on
the same data makes the results more comparable the RE model was
validated on the same subset as the two ML models.

4. Results

4.1. Overall

The two ML models and the RE retrieval algorithm have been
run for the validation dataset introduced in Section 2.2. The overall
performance of the three retrieval algorithms, as validated against
drifter in situ SSTs (SSTinsitu), is shown in Table 4. The overall bias
of the retrieved AMSR-E PMW SSTs is 0.01, 0.01 and −0.02 K for the
XGB, NN and RE models, respectively. The standard deviation of the
retrieved PMW SSTs versus drifter in situ SSTs is 0.36, 0.50 and 0.55
K for the XGB, NN and RE models, respectively. The XGB retrieval
algorithm performs the best, with a small bias and lowest standard
deviation, whereas the NN and RE retrievals perform more similarly,
where the NN model has a slightly smaller standard deviation. Overall,
the XGB model shows better performance with respect to the other
verification metrics as well and the NN and RE models show more
similar overall results, with the NN model performing slightly better.

Fig. 4 shows the geographical distribution of mean and standard
deviation of retrieved minus in situ SSTs for the XGB, NN and RE
models. For the XGB model, only few areas have biases and these
are generally small, as can be seen in Fig. 4(a). At higher latitudes,
especially in the Southern Ocean, areas with a slight warm bias can
be seen. Small cold biases, on the other hand, can be seen for e.g. the
Arabian Sea and the Pacific warm pool area. The corresponding results
for the NN model (Fig. 4(c)) show more and larger areas with both
warm and cold biases. Most notable are the areas of large warm biases
6

Table 4
Overall performance of the three retrieval algorithms. The table shows the mean
difference (MD), standard deviation of the difference (STD), mean absolute difference
(MAD), mean squared difference (MSD) and the R2 score of retrieved minus in situ SST.
The overall sensitivity of the three models to changes in situ SST (see Section 4.3) is
shown as well.

NN XGB RE

MD [𝐾] 0.01 0.01 −0.02
MSD [𝐾2] 0.25 0.13 0.30
MAD [𝐾] 0.37 0.24 0.42
STD [𝐾] 0.50 0.36 0.55
R2 0.997 0.998 0.996
Sensitivity 0.88 0.78 0.90

in the Southern Ocean. The XGB model also show a warm bias for some
of these areas, although not a as wide-spread nor as large. Cold biases
can be seen for the NN model for e.g. the higher northern latitudes and
close to the tip of South America, as well as for the Arabian Sea. The
RE model (Fig. 4(e)) also has a larger warm bias in the high latitudes,
especially for the southern hemisphere, which was confirmed to be
linked to undetected sea ice. This area is the same area where both
the XGB and NN models also exhibit warm biases. In addition, areas
of large warm biases are seen for the west coast of North and Central
America. Furthermore, the RE model also exhibits a similar cold bias
for the Arabian Sea and the Pacific warm pool area, much like the two
ML models, however more pronounced and wide-spread. Otherwise,
areas of both warm and cold biases can be seen. In general, no clear
latitudinal pattern for the spatial distribution of bias can be seen for
any of the models.

The geographical distribution of standard deviation, on the other
hand, shows a clear latitudinal pattern for all three models. Higher
standard deviations are seen for the higher latitudes, and lower stan-
dard deviations are found at lower latitudes. Furthermore, all three
models exhibit higher standard deviations for the dynamical ocean
regions, such as the Gulf Stream extension, the Aghulas Current and the
Kuroshio Current, as well as off the east coast of Argentina. These dy-
namical ocean regions are areas with large SST gradients over smaller
scales. Comparing the retrievals from AMSR-E, which has a resolution
of several kilometres, with a point observation in one of these regions
will therefore add to the discrepancies, as discussed in Alerskans et al.
(2020) and Nielsen-Englyst et al. (2018). Higher standard deviations

are therefore expected for the dynamical ocean regions and is not
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Fig. 4. The geographical distribution of mean and standard deviation of SST𝑟 minus in situ SST for XGB (a) and b)), NN (c) and d)) and RE (e) and f)). The statistics have been
calculated on a 2 × 2 degree spatial grid with a minimum of 50 matchups per grid cell.
necessarily an indication of the quality of the retrievals. Overall, the
XGB model shows smaller standard deviations, whereas the magnitude
of the standard deviation for the NN and RE models are more similar.
However, local areas with high standard deviations are seen for the
RE model. Most notably is the relatively larger area of higher standard
deviation in the South Atlantic. Neither the NN nor the XGB model
shows such high standard deviations for this area, although they seem
to have locally slightly larger standard deviations for the same area.

4.2. Dependencies

To further investigate the performance of the three retrievals, the
dependency of the retrieved minus in situ SST as a function of in situ
SST and WS is shown in Fig. 5. The dependence of the retrieved SSTs on
wind speed reflects the change in the sea surface roughness and hence
the emissivity of the ocean. It should be noted here that the wind speed
used for the XGB and NN models is the ERA5 wind speed, whereas
the wind speed used for the RE model is the CCMP wind speed, which
is also what was used in the RE retrieval algorithm (Alerskans et al.,
2020).

The binned statistics for retrieved SST minus in situ SST as a func-
tion of in situ SST (Fig. 5a) show a warm bias for cold SSTs (SSTinsitu <
1 ◦C) and a cold bias for warm SSTs (SSTinsitu > 30 ◦C) for all three
models. The standard deviation can be seen to decrease with increasing
SST, except for very warm SSTs where a sharp increase can be seen, at
least for the two ML models. This is the same interval for which the cold
bias is seen. Overall, all three models show similar biases. In general,
the XGB model has slightly lower standard deviation, whereas the NN
and RE models both have similar standard deviations. However, for the
edges of the SST interval, all three models exhibit a sharp increase in
standard deviation for very cold temperatures, whereas for very warm
7

temperatures a large increase in standard deviation is seen only for the
two ML models.

Fig. 5b shows no significant dependence of the retrieved SST for
the XGB and NN models as a function of WS with respect to bias.
Only a small bias can be seen for high wind speeds for both models.
For the RE model, on the other hand, a small bias can be seen for
wind speeds of around 4–8 ms−1, as well as for high wind speeds. The
standard deviation increases with increasing wind speed for all three
models, most notably for the NN and RE models which show standard
deviations of up to almost 1 ms−1 for very high wind speeds. Overall,
the XGB model has smaller standard deviations, with the NN and RE
models exhibiting larger standard deviations.

4.3. Sensitivity

The SST sensitivity is a measure of the change in retrieved SST
per unit change in the true SST (Merchant et al., 2009). Ideally, the
SST sensitivity is 1 K K−1, however, several geophysical factors can
have an impact on the sensitivity, such as water vapour, cloud water
and sea surface roughness. Here, a modified version of the forward
model developed by Wentz and Meissner (2000) (Nielsen-Englyst et al.,
2018) is used to estimate the SST sensitivity of each of the retrieval
algorithms. The forward model relates the relevant geophysical factors
to brightness temperatures, and the sensitivities to the geophysical
factors show good agreement with those found by Prigent et al. (2013)
using the fast radiative transfer model, RTTOV (Nielsen-Englyst et al.,
2021). Two sets of brightness temperature simulations were performed
for the sensitivity subset. The first set used ERA5 TCLW, TCWV and
WS input together with modified drifting buoy SSTs, where 1 ◦C was
added (SST+1). The second set, on the other hand, used the same
ERA5 data, but now together with modified drifting buoy SSTs where
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Fig. 5. Retrieved SST minus in situ SST as a function of (a) in situ SST and (b) wind speed. Solid lines show the mean and dashed lines show the standard deviation for the XGB
(black), NN (red), and RE (blue) retrieval algorithms. A minimum of 50 matchups were used for the statistics calculations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 6. The geographical distribution of sensitivity with respect to changes in SST for (a) the XGB, (b) the NN, and (c) the RE retrieval algorithms. The statistics have been
calculated on a 2 × 2 degree spatial grid with a minimum of 50 matchups per grid cell.
1 ◦C was subtracted (SST−1). These two subsets of simulated brightness
temperatures were propagated through the retrievals to obtain new
SSTs - SST𝑟,+1 and SST𝑟,−1. The sensitivity was then calculated based on
these new SST retrievals, such that the sensitivity is given by (SST𝑟,+1−
SST𝑟,+1)∕2, which ideally should be 1 as the two retrieved SSTs ideally
should differ by 2 ◦C. The average sensitivity for the XGB, NN and RE
models were found to be 0.78, 0.88 and 0.90, respectively.

Fig. 6 shows the geographical distribution of sensitivity for the
three models. Both the XGB and NN models have higher sensitivities
for lower latitudes and smaller sensitivities for higher latitudes. Areas
with relatively lower sensitivities can be seen in the Pacific warm
pool area as well as in the Arabian Sea. The two ML models show
the same geographical patterns in the sensitivity results, however,
overall the sensitivity for the NN model is higher than for the XGB
model. The RE model shows some similar geographical dependencies
as the other two models, such as lower sensitivities for the Pacific
warm pool area and the Arabian Sea, where minimum sensitivities
of 0.50 can be found. Overall, higher sensitivities are mainly found
for lower latitudes, however, areas with lower sensitivities are also
present at lower latitudes. Furthermore, high sensitivities are also found
for higher latitudes. Hence, the same clear latitudinal pattern as for
the other two models is not present for the RE model. Overall, the
sensitivity of the RE model is slightly higher compared to the NN
model, especially for the higher latitudes.
8

The dependency of the sensitivity on in situ SST is shown in Fig. 7.
Here, a clear dependence can be seen, with lower sensitivities for colder
SSTs and higher sensitivities for warm SSTs. However, a sharp decrease
in sensitivity can be seen for very warm SSTs for all three models.
The XGB model shows lowest sensitivity for all SSTs, with minimum
sensitivities of less than 0.5 seen for the very cold SSTs. The NN model
can be seen to have consistently higher sensitivities than the XGB
model; more than 0.2 for colder SSTs where the largest difference can
be seen. The RE model, however, has consistently higher sensitivities
than the NN model, except for very warm SSTs. Furthermore, the RE
model does not exhibit the same dependence on SST as for the other
two models. Instead, a more consistent sensitivity with SST can be seen,
except for very warm SSTs for which the sensitivity drops significantly.

5. Discussion

The XGB model provides the lowest bias and standard deviation
with a mean bias of 0.01 K and standard deviation of 0.36 K. The
NN and RE models have biases of 0.01 and −0.02 K and standard
deviations of 0.50 and 0.55 K, respectively. The results obtained here
for all three models are comparable to, and in the case of the XGB
model even better than, previous validation results of AMSR-E PMW
SST retrievals. O’Carroll et al. (2008) report a bias of 0.02 K and a
standard deviation of 0.46 K, whereas Gentemann (2014) obtained
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Fig. 7. Sensitivity as a function of in situ SST for the XGB (black), NN (red), and RE
blue) retrieval algorithms. A minimum of 50 matchups were used for the statistics
alculations. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

etrieved SSTs with a bias of −0.05 K and a standard deviation of 0.48
. Both Nielsen-Englyst et al. (2018) and Alerskans et al. (2020) report
imilar validation results with biases ±0.02 K and standard deviations
f around 0.46 K.

All three retrieval algorithms exhibit warm biases for higher lati-
udes, especially in the Southern Ocean. The areas close to the poles
ave previously been confirmed to be partly related to sea ice con-
amination (Alerskans et al., 2020). Furthermore, it is also believed
hat wind induced effects could play a role in the larger biases. Fig. 5
howed an increase in bias for strong wind speeds and since the
outhern Ocean is characterised by very strong wind speeds (Young,
999) it is likely that the retrievals are effected. Furthermore, the RE
odel, and the NN model to some extent, have a cold bias in the
rabian Sea, as well as in the Pacific warm pool area. These regions
re characterised by warm temperatures and the RE model especially
as a cold bias for very warm SSTs (Fig. 5). However, neither the NN
or the XGB models show the same cold bias for the Pacific warm pool
rea, which indicates that the RE model is impacted by other factors
nd at the moment it is still unclear why this large cold bias is seen.

A latitudinal distribution of the standard deviation of the retrieved
inus in situ SSTs is seen for all three models, with lower values

or low latitudes and higher values for high latitudes. Gentemann
2014) reported similar results, with lowest standard deviation between
0◦S and 40◦N and higher values for increasing latitude. The PMW
ST validation results of Alerskans et al. (2020) and Nielsen-Englyst
t al. (2018) both show the same latitudinal dependence as shown
n Fig. 4. The greater variability near the poles can be attributed
o the presence of sea ice, which can contaminate the microwave
bservations (see e.g. Alerskans et al., 2020) and the fact that the
ensitivity of the brightness temperature to SST is lower for colder
emperatures compared to warmer temperatures (Prigent et al., 2013).
igher standard deviations are also seen for the dynamical ocean

egions, with a very similar pattern reported in Nielsen-Englyst et al.
2018) and Alerskans et al. (2020). This increase is not believed to
e due to the performance of the models but rather due to sampling
rrors in these large variability regions. The large AMSR-E footprint
43 × 75 km for the 6.9 GHz resolution) is compared against point
easurements from drifting buoys. The maximum allowed geodesic
istance of 20 km and maximum allowed temporal difference of 4 h
etween the matchups of AMSR-E and buoy data will contribute to the
iscrepancies seen. A high-resolution IR based SST reference has been
sed to calculate the variability within an AMSR-E microwave footprint
nd a similar pattern in the variability was found in the dynamical
egions. This indicates that the increased standard deviation seen in
ig. 4 is related to the larger variability found in these regions and
ampling errors, and not to poor model performances.

A higher standard deviation is also seen for the RE model for a small
9

rea in the South Atlantic Ocean. In addition, a slightly larger cold bias 2
s seen as well. Neither the NN nor the XGB models show the same clear
attern, although for the XGB a slight increase in standard deviation
an be seen. This area is a known region with strong RFI (Gentemann
nd Hilburn, 2015). The pre-processing of the data included an RFI
ask, which has previously been applied and successfully removed
FI (Gentemann and Hilburn, 2015; Nielsen-Englyst et al., 2018). Aler-
kans et al. (2020) showed that it is also possible to exclude RFI
ontaminated matchups by comparing the baseline retrieved SSTs to
dditionally retrieved SSTs, for which the 10 GHz and 18 GHz channels
ere excluded. A similar filter could be applied here. Neither the NN
or the XGB models show the same pronounced increase in standard
eviation, which indicates that they might not be as sensitive to RFI
ontamination. Further work is needed to investigate this.

The dependence of the retrieved minus in situ SST on in situ SST
Fig. 5) shows elevated bias and standard deviations for very warm
nd very cold SSTs for all three models. The behaviour for cold SSTs
s believed to be partly due to sea ice contamination, as previously
iscussed. Furthermore, it is well-known that ML models have a hard
ime predicting extreme values (Ribeiro and Moniz, 2020). If not
nough training data for a certain range, e.g. cold SSTs, are included,
he ML models will have a hard time learning how to predict these
old SSTs. In both the NN and XGB, the optimisation is performed
ased on the minimisation of a loss function. As this loss function
easures the average performance of the model across the domain

f the target variable, the most abundant cases will have the largest
mpact on the model performance. Rare cases will have an almost
egligible effect and the performance of the model for these cases will
herefore suffer (Ribeiro and Moniz, 2020). As such, the ML models
ill have a hard time retrieving SSTs for the very cold and very warm
STs, as there are not many matchups for these cases. In addition,
xtrapolation of predictions for data outside the training data ranges
oses a problem for ML models (Xu et al., 2020). To improve the
esults of the ML models for the extreme ends, more training data is
eeded for these cases. Another option would be to modify the loss
unction by scaling it during the training process such that a wrong
rediction of the rarer cases would have a larger impact on the model.
he uneven distribution of the training data could therefore perhaps
e partly offset. Yet another possibility is to train the ML models in a
imilar way as the RE model. By training separate instances of the ML
odels for e.g. the very cold and very warm SSTs a better performance
ight be obtained. The RE model is also seen to perform worse for the

ery cold and very warm SSTs. In this case, it is most likely related
o the training of the model. As the last step of the RE model uses
ocal SST and wind speed retrievals, the training data was binned into
ST and wind speed bins. For the extreme ends, there are not many
raining examples and a minimum number of matchups for each bin
as required in order to obtain robust statistics. Therefore, if there
ere not enough matchups in a bin, the regression coefficient from the

losest SST and wind speed bin is used instead. Hence, for the very
old and very warm SSTs, as well as for the very high wind speeds, the
egression coefficients are obtained from nearby bins, which might not
ccurately represent the relationship for the current bin.

All three models show an increase in standard deviation with wind
peed, as well as a slightly higher bias for very high wind speeds. The
ncreased uncertainty in retrieved SST for larger wind speeds is well
nown (see e.g. Alerskans et al. (2020)). It is likely to be related to the
urface roughness and the physical characteristics that the sensitivity of
he brightness temperature to wind speed increases as the wind speed
i.e. surface roughness) increases and when white foam appears on the
urface (Kilic et al., 2018).

The geographical pattern of sensitivities for the NN and XGB mod-
ls, with higher sensitivities for lower latitudes and lower sensitivities
or higher latitudes, is similar to what was reported by Nielsen-Englyst
t al. (2018) using an OE algorithm. As the sensitivity of the bright-
ess temperatures to SST decreases with colder SSTs (Prigent et al.,

013; Nielsen-Englyst et al., 2021) higher latitudes are expected to
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be associated with lower sensitivities and lower latitudes with higher
sensitivities. Gentemann et al. (2009) reported sensitivities of 0.39 for
SSTs of 0 ◦C and 0.65 for SSTs of 30 ◦C. The geographical distribution
of sensitivity for the two ML models are therefore consistent with the
expected distribution. The RE model, on the other hand, does not show
such a clear latitudinal pattern. There are regions with both relatively
higher and lower sensitivities found at lower latitudes. As discussed
in Alerskans et al. (2020), the absence of a clear latitudinal dependence
is thought to be related to the retrieval algorithm itself, more specifi-
cally to the binning performed. The RE model is trained on binned data
such that separate regression coefficients are obtained for each bin. If
the SST variability within a bin is small, the RE algorithm will fit very
well to the SST but may experience a lower sensitivity (Alerskans et al.,
2020).

It was seen in Fig. 2 that the input feature which impacts the output
of the XGB model the most is, by far, tb6V. The other input features
are at least an order of magnitude less important. For the NN model,
tb6V is also the most important feature, however, several other features
also contribute significantly to the model performance, such as tb10V,
tb18V and tb23V. All of the channels have a relatively large impact on
the performance of the NN model and are therefore included, whereas
all channels except the 23 and 18 GHz channels are included in the
XGB model. Nielsen-Englyst et al. (2021) has previously investigated
the importance of different frequency channels using both a physically
based and a statistically based retrieval algorithm by including different
subsets of the AMSR-E frequency channels (considering the 6–36 GHz
frequency range) and validating the resulting SST retrievals against
independent drifting buoy observations. Nielsen-Englyst et al. (2021)
found that the most important channels for SST retrievals are the 6 GHz
channels, which is in agreement with the feature importance analysis
for both the NN and XGB models. Following the 6 GHz channels, the
10 and 18 GHz channels were found to be the most important using
both the physically and statistically based models (Nielsen-Englyst
et al., 2021). The statistical algorithm showed a clear improvement
in performance when more channels are included, while the physical
algorithm showed less variation among the channel subsets, and it
actually performed quite well by only including 6 and 10 GHz. This is
similar to the XGB model, which also relies mostly on the 6 and 10 GHz
channels (see Fig. 2). The NN model, on the other hand, is more similar
to the regression based algorithm in the sense that it performs better
when more information is included, as is evident on the more even
distribution of importances.

The XGB model was found to perform best with respect to standard
deviation but worst with respect to sensitivity. This might be related
to a poor generalisation ability of the XGB model, which implies a
problem with overfitting. However, as mentioned in Section 3.2, the
XGB model is run with early stopping in order to prevent overfitting
and no overfitting was observed when analysing the training and gen-
eralisation errors. To investigate this issue further, simpler XGB models
could be trained and a comparison between performances with respect
to standard deviation, bias and sensitivity could be made in order to see
if the problem is related to overfitting. The low sensitivity might also
be related to the input features used. Even though a feature importance
analysis was performed in order to only select the most important
input features, the exclusion of some input features might negatively
influence the performance of the XGB model. Nielsen-Englyst et al.
(2021) found that the 18 GHz channels were important for the both
a physically based and a statistically based model. The XGB model
includes neither the 18 GHz channels nor the 23 GHz channels, the
latter which have been found to be sensitive to atmospheric water
content (Nielsen-Englyst et al., 2021). To investigate if the inclusion
of some of the excluded features could affect the performance of the
model, several new instances of the XGB model could be trained where
some of the now-excluded input features are included. The performance
of these models could then be compared with the performance of the
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current XGB model, especially with respect to sensitivity.
The RE and the two ML models are all statistically based retrieval
algorithms. However, the RE model used here is constrained to pre-
defined linear relationships (although it can be expanded to include
non-linearities), whereas the ML models allow non-linear relationships
between input features and retrieved SST. The main advantage of ML
models is that they allow approximation of complex functions as they
are considered universal approximators (Hornik et al., 1990; Cybenko,
1989; Hornik, 1991). They therefore allow for the learning of new rela-
tionships without prior assumptions. This is one of the main advantages
of ML-based models in comparison to more traditional regression-
based algorithms. On the other hand, one of the disadvantages of ML
models is related to the computational cost. The HPO of the models
for example, is very computationally heavy, especially if opting for the
gridded search. However, not performing an HPO can have an impact
on the performance of the model, as there is no optimal model structure
that suits all problems (Yang and Shami, 2020). Moreover, the training
of the ML models is also more computationally expensive than the
training of a linear regression based model such as the RE. Furthermore,
the more complex the model, e.g. the larger the architecture and the
more input features used, the slower the optimisation and training is.
This not only applies to the ML models but also to the RE model. For
retrieving SSTs, on the other hand, the ML models are equally as fast
as the RE model.

In this study, we focused on the retrieval of PMW SSTs from AMSR-
E, however, it is also possible to apply ML models to retrievals of
SSTs from other satellite sensors. Initial validation results using AMSR2
show good performances with biases of 0.01 and −0.08 K and standard
deviations of 0.34 and 0.44 k for an XGB and an NN model, respec-
tively. The better validation results of AMSR2 compared to AMSR-E
is in agreement with those reported in Alerskans et al. (2020). The
retrieval of satellite SSTs from PMW observations using ML can also be
extended to future satellite missions, such as CIMR, which is currently
prepared by the ESA as a part of the Copernicus Expansion Program of
the European Union (http://www.cimr.eu/; Donlon, 2020) and to the
retrieval of IR satellite SSTs (Sunder et al., 2020).

The uncertainties of the retrieved SSTs have not been considered
in this study but it is an important aspect that needs to be addressed
in the future as uncertainties are important for a wide variety of
applications, such as the use of SSTs within oceanic and atmospheric
models (Merchant et al., 2017). Therefore, future work should aim at
estimating the uncertainties of the retrieved SSTs for each of the two
ML models. Statistical models have previously been used to estimate the
uncertainty in SST retrievals, such as a regression based algorithm for
the estimation of the uncertainty of the RE SSTs (Alerskans et al., 2020).
More recently, Kumar et al. (2021) investigated the use of two ML
models for estimating the uncertainty in satellite derived IR SSTs. Good
results were obtained, showing the usefulness of ML based algorithms
in uncertainty estimates. Another approach could be to train multiple
algorithms to obtain an ensemble from which the uncertainties can
be estimated. Future work on estimating the uncertainties of the XGB
and NN SST retrievals could therefore include an investigation of these
approaches.

6. Conclusions

In this study, two types of machine learning (ML) models have
been assessed for the retrieval of SSTs using passive microwave (PMW)
satellite observations from AMSR-E. The results have been compared
with an existing state-of-the-art regression (RE) retrieval algorithm. The
ML models considered were the decision tree-based algorithm Extreme
Gradient Boosting (XGB) and a multilayer perceptron neural network
(NN). The performance of the models was evaluated using independent
in situ observations of SST from drifting buoys. The performance of
the RE and NN retrieval algorithms with respect to bias and standard
deviation is similar, with the NN generally performing slightly better.

The XGB model performs significantly better than both the RE and
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NN models with respect to standard deviation and has a similar bias.
However, the SST sensitivity of both the RE and NN models is signif-
icantly higher than that of the XGB model, with the RE model having
the highest sensitivity. This demonstrates the importance of including
the sensitivity in the validation analysis. It is not yet understood why
the XGB model performs well with respect to standard deviation but
significantly worse than the other two models with respect to sensi-
tivity. This should be further investigated, especially with respect to
overfitting and selected input features.

This is an initial study meant to investigate the possibilities of using
ML based algorithms for retrieval of SST from PMW observations. It
shows that there is a large potential for the use of ML models but
also that further work is needed in order to explore the full potential
of ML based retrievals. The NN used here is a very simple form of
a neural network and does not represent the full spectrum of neural
networks. In order to investigate the use of neural networks for PMW
SST retrievals, a study comparing different types of neural networks
is needed. Similarly, more work is needed for evaluating the potential
of the XGB model and other decision tree based ML models, especially
with respect to sensitivity.

The main strength of ML models is that they allow for the approxi-
mation of complex functions without prior assumptions. For statistical
based algorithms, such as the RE, the relationship between the input
and output variables needs to be explicitly specified in the model
formulation. For ML models, on the other hand, the model itself will
find the best relationship between input and output variables without
prior assumptions.

The ML methodology, where the algorithms select the important
features based on the information in the observations and the training
dataset may also be of great value in complex problems where not
all physical or instrumental effects are well determined e.g. in the
commissioning phase of new satellites and instruments. This initial
study demonstrates that there is a large potential in the use of ML
algorithms for the retrieval of SST from PMW observations.
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