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Abstract 

Modelling long time series of photovoltaic electricity generation in high temporal resolution using reanalysis 

data has become a commonly used alternative to assess the viability of systems with high shares of 

renewables, their risks of failure and probability of extreme events. While there is a considerable amount of 

literature evaluating the accuracy of the original solar radiation and temperature variables in these data sets, 

the validation of the calculated output of photovoltaic installations is scarce and usually limited to locations 

in Europe. This work combines the new ERA5-land reanalysis data set and PV_LIB to generate hourly time 

series of photovoltaic electricity generation for several years and validates the results using individual data 

of 57 large photovoltaic plants located in Chile. Results are also compared with PV output for these locations 

calculated using renewables.ninja, a platform relying on MERRA-2, a global reanalysis with five times lower 

spatial resolution. Accuracy and bias indicators are satisfactory for plants that do not present severe 

anomalies in their generation profiles and where basic plant characteristics such as size and orientation 

match our model assumptions. However, the improvements in indicators over results obtained with 

renewables.ninja from MERRA-2 are minor.  The validation process serves not only to confirm the 

suitability of the proposed workflow to model the output of individual photovoltaic plants, but also to list 

and discuss data quality and availability issues. Efforts towards availability and standardization of data of 

individual installations are necessary to improve the basis for further developments. 

Keywords: ERA5-land; photovoltaics; renewable energy; open data  

Highlights: 

 First time ERA5-land data is used to model long time series of PV generation 

 Validation with hourly data of 57 large photovoltaic plants located in Chile 

 Accuracy slightly better than renewable ninjas 

 Results are satisfactory when assumptions about basic characteristics match the actual PV systems   

1. Introduction 

Solar photovoltaic systems (PV) play a major role in the renewable energy transition taking place around the 

globe. E.g. in Germany, an early adaptor of PV, 20% of installed electricity generation capacity, i.e. 45 GW, 

was PV in 2019 [1]. Newcomers to the renewable energy transition are catching up quickly. One example is 

Chile where more than 2.6 GW of PV have been installed since 2013, representing 11% of the total installed 

electricity generation capacity. More than 2 GW are currently under construction and environmental 

permissions to an additional 17.7 GW have been granted until the beginning of 2020 [2].  

There is considerable work on the forecasting of solar radiation and PV electricity generation, showing 

improvements in accuracy of up to two thirds in the last decade [3–5]. Much of these improvements are 

driven by the utilization of machine learning techniques that rely on high quality reference data of well 

documented and monitored measurement stations.  Three recent reviews [3–5] show that most of new 

research is dedicated to forecasting exercises for the very short and short term and are predominantly 

performed for locations in North America and Europe. There is increasing attention for locations in Asia 

http://www.wiso.boku.ac.at/en/inwe/
http://www.boku.ac.at/en/
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and Australia but there is very little work in South America and Africa. Furthermore, in general, scientific 

literature tends to avoid reporting on the performance of models for locations and time-horizons, where it 

is known that models underperform [3].  

However, there is considerable less scientific work related to the simulation of long-term time series of PV 

generation, as necessary for modelling studies for the energy transition. Private companies such as solargis 

[6] and VAISALA [7] offer high resolution time series of solar radiation and PV output estimations for 

particular locations but at costs that would be difficult to cover by research projects interested in data for 

thousands of locations or large-scale systems analysis. Pfenninger and Staffell [8]  addressed this issue with 

the renewables.ninja platform. This platform allows to freely generate long time series of hourly PV output 

for any location in the world. The underlying solar radiation data, the Modern-Era Retrospective Analysis 

for Research and Applications (MERRA)[9], the Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2) [10] and the Surface Radiation Data Set – Heliosat (SARAH)[11], have 

been validated extensively in literature and are in use in numerous studies, see e.g. [12–14]. There is also a 

growing body of literature making use of the renewables.ninja data but the output of individual PV 

installations estimated there has been only validated by Pfenninger and Staffell [8] themselves. This restricts 

the geographical coverage of the validations to Europe. Similarly, the PVGIS platform of the Joint research 

centre of the European Commission [15] in its version 5 allows to generate hourly time series for up to 12 

years (2005-2016) for locations in most parts of the world. The underlying solar radiation data sets, that 

include data derived from data of the Climate Monitoring Satellite Application Facility (CM-SAF) [16], the 

regional reanalysis COSMO-REA6 [17], the US National Solar Radiation Database (NSRDB) [18] and the 

global reanalysis ERA5 [19], have been validated also multiple times and a classification of which data set 

works better for which locations is also provided [20,21]. In contrast to the solar radiation data used in 

PVGIS, to the best knowledge of the authors, validations of the derived time series of PV output of this 

platform have not been performed.  

While satellite derived solar radiation data were shown to be usually more accurate than reanalysis data sets 

of previous generations, the accuracy of state of the art regional reanalysis data sets such as COSMO-REA6 

is coming closer to the one of their satellite derived counterparts [21,22] and in particular the last global 

reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5, presents 

promising results compared to its global reanalysis predecessors. Urraca et al. [21] showed that ERA5 solar 

radiation data have an average bias on the global scale that is 50% to 75% lower compared to ERA-interim 

and MERRA-2. Huang et al. [23] found that ERA5 performs relatively robustly across Australia without 

notable deficiency and is more accurate than the Global Forecast System (GFS) and the Australian 

Community Climate and Earth-System Simulator (ACCESS). Trolliet et al. [24] compared 5 data sets 

including MERRA-2 and ERA5 for irradiance estimation in the tropical Atlantic ocean and stated that while 

the reanalysis data sets are not the best performing among all available datasets, ERA5 presented consistently 

higher correlations than MERRA-2, i.e. correlation coefficients greater than 0.85 for MERRA-2 and 0.89 

for ERA5. Overestimation of global horizontal irradiation (GHI) by ERA5 has been, however, reported for 

98 sites in China [25] and multiple locations in Norway  [26]. Further low performance of ERA5 was 

reported for direct normal radiation in a location in Brazil, when comparing it to other 10 solar radiation 

data sets, where ERA5 scored a root mean square error (RMSE) of 63.4%  but none of the other data sets 

in the comparison reached better values than 37% [27]. However, concerning GHI, ERA5 performed in 

the midfield of the evaluated data sets for the same location [27], did not have considerable lower 

performance than data from CAMS, CM-SAF and SARAH for a location in Methoni, in southwest 

Peloponnese, Greece [28], had similar bias compared to that of satellite data for inland regions with few 

clouds globally [21] and presented promising results as a complement for satellite-based databases in regions 

not covered by geostationary satellites when simulating PV systems [20]. Atencio Espejo et al. [29] present 

even a comparison between  ERA5 and PV_LIB derived PV power and measured data for one location in 

Milano, Italy for 2014-2016. They find correlations around 0.91 and a normalized RMSE around 11% when 

comparing the calculated against the measured PV output.  

The positive accuracy results have already been used as justification in multiple studies that employ ERA5 

data as input to calculate PV output time series. These studies include an assessment of synergies of solar 

https://www.sciencedirect.com/topics/engineering/geostationary-satellites
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PV and wind power potential in West Africa at hourly resolution [30], an assessment of on-site steady 

electricity generation from hybrid (PV, wind power and battery) renewable energy systems for the entire 

territory of Chile [31], and the mapping of degradation mechanisms and total degradation rates for a 

monocrystalline silicon PV module at the global scale [32]. However, none of these studies presented a 

validation of the PV output data.   

Recently, the Copernicus Climate Change Service (C3S) launched the ERA5-land [33] data set of the 

ECMWF, derived from ERA5, with a spatial resolution of 9 km x 9 km, which is more than three times and 

five times higher than the resolution of ERA5 and MERRA-2, respectively. To the best of our knowledge, 

no validations of the radiation variables in this data set or any validation of PV output derived from them 

have been performed so far. Considering the progress in the accuracy of radiation variables in the global 

reanalysis data sets, it could be expected that such high resolution data set allows the estimation of PV 

output time series that are considerable more accurate than calculations relying on previous global reanalysis 

generations. In order to test this, the present study proposes the calculation of PV output time series relying 

on ERA5-land data and the widely used PV_LIB library [34]. Moreover, it compares the estimations to 

renewables.ninja PV output data as well as to measured data from the locations of large PV installations in 

Chile. The comparison is performed using hourly, daily and monthly capacity factors as well as typically 

used indicators such as MBE, the Pearsons correlation coefficient and RMSE. The selection of locations in 

Chile is related not only to the massive expansion of PV generation PV in this country but also to the fact 

that data of all large PV installations connected to the grid are open and freely available online through 

official sources. An additional particularity of this country is that most part of its territory is not reached by 

the Meteosat Second Generation (MSG) geostationary satellite, which is the main source of most of the 

solar radiation data sets that are the usual benchmark for solar radiation reanalysis data sets, also in use in 

renewables.ninja and PVGIS.   

2. Data and Methodology 

2.1. Data sets and pre-processing 

Three data sets are used to test the proposed hypothesis. These include the measured data from PV 

installations in Chile, the variables of the ERA5-land data necessary for PV output estimation, and PV 

output time series for the locations of the Chilean PV Plants calculated with renewable.ninjas. All of them 

are available openly and freely for academic uses, have an hourly temporal resolution and its basic 

description is summarized in Table 1. Details of the data and the necessary pre-processing are presented in 

sections 2.1.1. – 2.1.3.  

Table 1. Summary of the input data sets used in the analysis. 

Data set Provider Spatial Resolution of the 
underlying irradiance data set 

Data format 

PV electricity output of 
Chilean installations  

Energía abierta Chile 
(http://energiaabierta.cl/) 

 
csv 

ERA5-land ECMWF 
(https://cds.climate.copernic
us.eu/cdsapp#!/home) 

0.1° ~ 9 km  NetCDF 

Renewables.ninja Renewables.ninja 
(www.renewables.ninja) 

 0.625°  ~ 50 km json 

 

2.1.1. Generation profiles of large PV installations in Chile  

Chile started its transition to renewable energies recently, but at a fast pace [35]. Apart from regulations to 

support the deployment of RES and the establishment of energy efficiency measures that are developing 

rapidly (see e.g. [36] for an overview), the Chilean government follows also a policy of transparency in the 

energy sector that lead to the commissioning of the Open Energy (“Energía Abierta”) platform [37]. This 

http://energiaabierta.cl/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://www.renewables.ninja/
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web platform includes, among many others, hourly data for marginal electricity costs, grid balances, 

electricity demand and electricity generation of every single large generation plant connected to the grid. 

Monthly reports of hourly generation of all large-scale PV plants connected to the grid were downloaded 

for the period 2014-2018. The very first installations were supposed to go online in 2012, however, we only 

found generation observations since 2014. The output of PV installations were merged with a spatially 

referenced data set of 103 PV installations that also included basic information about commissioning year 

and size in MWp. The matching was performed based on installation names in a semi-automatic fashion 

supported by a fuzzy string matching function that uses the Levenshtein distance algorithm to calculate 

differences between strings [38]. This was necessary since the names of the installations in both data sets 

had small differences that did not allowed a fully automated matching. After the matching and the exclusion 

of all installations with less than one year of generation data, a total of 57 installations remained available 

for validation. Hourly capacity factors were calculated dividing the total output of the installation per hour 

by a maximum output value determined as highest value in the 99 percentile of each installation. This served 

to correct differences between maximum observed generation values and the installed capacity reported in 

the data base. These are in average only 5.9 % but in in several cases showed a significant difference of +/- 

30%, with two exceptional cases with differences even beyond 150%. Additionally, all values beyond 1.1 

times the 99 percentile were classified as outliers and excluded from further calculations. Similarly, only 

values larger than 0 were preserved for the validation in order to avoid the inclusion of periods where plants 

were entirely offline as well as night periods, when prediction is trivial. A summary of the main characteristics 

of the measured data is provided in Table A1 in the appendix. Additionally the processed data set with the 

capacity factors is available under https://data.mendeley.com/datasets/6mkhck9t6x/draft?a=07b9492f-

16ad-4126-a977-e5c8dd0308d7. 

Moreover, two subsets of installations were created after a manual screening of the time series of each plant. 

The first subset of data (S1) has a total of 23 PV installations and excludes installations with large periods 

of exceptionally low generation after the commissioning day (determined by the first record of the system). 

An example is presented in Figure 1. We assume that such periods are related to some kind of failure or 

maintenance in the plant or to an erroneous data logging process that we are not able to account for in the 

model. These periods are also difficult to remove individually from the timeseries and therefore we prefer 

to exclude the generation time series for the entire installation.  

 

Figure 1. Example of a time series excluded from S1 of PV plants for the validation 

The second subset of data (S2) excludes time series that present a pattern resembling a system configuration 

different to the one that is assumed for our simulation with ERA5-land data. In the present study we rely 

on a PV system configuration that aims at maximizing yield in a year by using a panel orientation towards 

the equator (in this case towards North) and an inclination equal to the latitude. These conditions represent 

optimally installed PV systems without tracking [8,39]. The meta data on installations does not include 

https://data.mendeley.com/datasets/6mkhck9t6x/draft?a=07b9492f-16ad-4126-a977-e5c8dd0308d7
https://data.mendeley.com/datasets/6mkhck9t6x/draft?a=07b9492f-16ad-4126-a977-e5c8dd0308d7
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information about the configuration (orientation, inclinations, use of a tracking system, size of the ) of the 

PV systems. We therefore made a manual selection of installations, which time series do not present several 

hours of (close to) maximum generation per day during summer days with clear sky conditions. Such time 

series reflect the generation of installations with some sort of tracking systems, undersized invertor or fixed 

injection limit. Since it is not possible to determine with certainty which type of tracker systems are 

responsible for the particular shapes of the time series and these would present differences to the simulated 

time series with optimal static configuration, we decided to also create a subset that excludes such 

installations. Figure 2 shows an example of one excluded installation. In this case, the PV system “Puerto 

Seco Solar” has a one axis tracking system [40]. The resulting data set excluding time series of installations 

with such particularities is subset S2.   

 

Figure 2. Time series of hourly PV capacity factors for the PV installation “Puerto seco solar” in the first week of 

January 2018 (Summer), an example of the installations excluded from S2.  

2.1.2. ERA5-land data and PV power output using PV_LIB  

ERA5-land is defined by the ECMWF as an enhanced version of ERA5 for land applications [41].  The 

main particularity compared to ERA5 is the spatial resolution of around 9 km, which is more than three 

times higher than the one of ERA5 and more than five times higher than the resolution of MERRA-2. The 

data will eventually cover the same time horizon as ERA5 (January 1950 to near real time) and the period 

2014-2018 was retrieved from the Copernicus Climate Data Store [33]. The necessary data for PV output 

modelling are solar irradiance, the temperature of the air and wind speed. These parameters are derived 

from the variables from the ERA5-land data set listed and described in Table 2. Wind speed is calculated 

using the u and v components of wind at 10m (v10 and u10). This is adjusted to one meter height using a 

logarithmic vertical wind profile equation, using a surface roughness length of 0.25, i.e. assuming terrain 

with scattered obstacles. Furthermore, the accumulated radiation values are transformed to hourly values 

by subtracting the previous values within each forecast horizon, i.e. in this case 24 hours starting at 00 UTC.  

Table 2. Variables from ERA5-land used for the PV output model. 

Variable Description Units 

10m u-component of wind (u10) Eastward component of the 10m wind. It is the horizontal 
speed of air moving towards East, at a height of ten meters 
above the earth surface. 

m s-1 

10m v-component of wind (v10) Northward component of the 10m wind. It is the horizontal 
speed of air moving towards North, at a height of ten 
meters above the earth surface. 

m s-1 

2m temperature (t2m) Temperature of air at 2m above the earth surface.  K 

Surface solar radiation downwards 
(SSRD) 

Amount of solar radiation reaching the earth surface. This 
variable is accumulated from the beginning of the forecast 
time to the end of the forecast step. 

J m-2 
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The PV output is calculated using PV_LIB for python [34]. This is a widely used open source toolbox 

created by the PV Performance Modeling Collaborative (PVPMC) of the Sandia National Laboratories in 

continuous development since 2014. The reported users include Espejo et al. [29], which employs PV_LIB 

in combination with ERA5 data to predict the output of one installation in Italy with promising results. For 

this study it has been assumed that PV installations are oriented towards North and inclined in an angle 

equal to the latitude of the location. This characteristics are an approximation of the necessary conditions 

for maximum output during a year without any tracking system. The conversion from horizontal irradiance 

to an inclined surface requires an estimation of the DNI and DHI from the derived instantaneous SSRD in 

Wm-2. These are obtained using the Erbs model as implemented in PV_LIB. GHI, DNI, DHI, air 

temperature and wind speed as well as technical details of technologies launched in 2014 are the input to 

the model. The selected PV panel, “Silevo_Triex_U300_Black”, is part of the module data base of the 

Sandia National Laboratories and the selected inverter “ABB__MICRO_0_3_I_OUTD_US_240_240V” 

belongs to the list of approved systems of the US Clean Energy Council. From the data base available for 

PV_LIB these systems resemble the state of the art technology in 2014, the first year for which we have 

generation observations for PV installations in Chile. The resulting time series were adjusted to daylight 

summer times since these are present in the timeseries of observed generation. 

2.1.3. PV output from renewables.ninja 

The third data set was retrieved from renewables.ninja. Time series from 2014 to 2018 were calculated and 

downloaded for each location of the 57 available PV plants in Chile. The orientations and inclinations for 

the PV panels are the same as for the ERA5-land derived data set, the selected source for the weather 

variables is MERRA-2 (SARAH is not available for most part of Chile), the selected capacity is 1.0 and no 

additional system loss is assumed. The authors of renewable ninja provide their own simplified PV model 

with temperature-dependent panel efficiency that relies on global solar irradiance data, the BRL model for 

estimating the diffuse irradiance fraction and the ground temperature data at each location. Further details 

are available in [8] or directly on the renewables.ninja web page. An adjustment of the daylight summer 

times was also performed.  

2.2. Accuracy indicators for PV output time series 

To allow comparability with the results obtained for locations in Europe in [8], the comparison is performed 

for capacity factors. Three commonly used indicators in solar and PV forecasting literature, MBE, MRSE 

and Pearson’s correlation coefficient [3], defined in equations 1-3 respectively, are calculated for the hourly, 

daily and monthly values:  

𝑀𝐵𝐸 =  
1

𝑁
∑(Ît − It)

𝑁

𝑡=1

 (Eq. 1) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(Î𝑡 − It)

2

𝑁

𝑡=1

 (Eq. 2) 

𝜌 =
(𝐶𝑜𝑣(Î, I))2

𝑉𝑎𝑟(Î)𝑉𝑎𝑟(I)
 (Eq. 3) 

, where Î𝑡 are the simulated and It the measured capacity factors.   

Additionally, for the subset S2 of PV installations the indicators were also calculated for deseasonalized time 

series of the data sources. In order to do this, clear sky global horizontal irradiance profiles where calculated 

for each location using the Ineichen and Perez clear sky model [42] also available in PV_LIB. These where 

normalized to one by dividing the time series trough the highest irradiance value. The normalized clear sky 

GHI time series were subtracted from the hourly capacity values of the measured, calculated and 

renewables.ninja PV output data. The indicators of the deseasonalized data should show in how far the 

simulated time series are able to predict the non-trivial variations in the PV output of the installations, i.e. 
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those variations caused by weather impacts.  Moreover, the accuracy indicators are calculated for the 

aggregated values of subset S2 in their raw and deseasonalized versions. This should present evidence if 

spatial aggregation contributes to reduce error.     

3. Results 

3.1. All installations  

Pearsons correlation coefficient and RMSE for all sets of installations and the hourly, daily and monthly 

capacity factors for the ERA5-land derived PV output as well as for the renewables.ninja PV output data 

are presented in Figure 3. When considering the data set with all installations, the correlation values for the 

hourly capacity factors are mainly around 0.8, there are some outliers below 0.6 and the best cases reach 

even more than 0.95. These results deteriorate considerably for the daily and monthly values. In the case of 

RMSE and for the hourly capacity values, the most common results are around 0.2 and in general the 

distributions are very similar for the ERA5-land and the renewables.ninja PV output data sets. Concerning 

the MBE for the hourly capacity values, the highest amount of the installations in the case of the ERA5-

land derived PV output data is around 0.0 and for the renewable ninja data is around -0.05. However, as in 

the case of the correlations, the distribution of the MBE values is very similar between the two compared 

data sets. The distributions of the MBE for the daily and monthly capacity factors for both data sets are 

analogous to the ones obtained for the hourly capacity factors (see Figure B1 in the appendix).  

 

Figure 3. Pearson correlation coefficient and RMSE for all sets of installations comparing the ERA5-land derived PV 

output as well as the renewables.ninja data against the measured data  

Violine plots of all simulated values, binned into the distribution of measured capacity factors (Figure 4) 

show that the majority of values are correctly predicted (at least they are in the same bin of size 0.2) but 

there are numerous outliers causing significant error. While the lowest capacity factors (0.0-0.2) are clearly 

concentrated at the bottom and the largest values (0.8-1.0) are concentrated at the top, the intermediate bins 

show a significant level of overlapping. In particular in the bin between 0.2 and 0.4 of observed capacity 

factors, the simulated capacity factors are in the range between 0.1 and 0.5. Furthermore, no clear difference 

can be recognized between data simulated using ERA5-land and renewables.ninja. The largest differences 

are visible in the capacity factor group 0.2-0.4. Here, renewables.ninja has a narrower distribution than 

ERA5-land, but it has more values above the upper bound of the bin, i.e. 0.4.  
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Figure 4. Violine plots of all simulated values classified by corresponding observed reference capacity factor divided 

in bins of size 0.2.  

3.2. Subsets of installations 

The full set of installations includes numerous installations with characteristics and events that cannot be 

simulated by the models. The statistics for subsets S1 and S2 show that results improve considerably when 

the characteristics of the installations actually match the simulated systems (see Figure 3). Correlations 

increase, RMSEs decrease, and the MBE has values closer to 0. Also, the spread of results decreases. For 

the subset S2 of PV installations and the ERA5-derived data the correlation values of the hourly capacity 

factors range between 0.88 and 0.97, the MBEs are -0.02 – 0.05, and root mean square errors are around 

0.12. Similarly, the renewables.ninja data shows a correlation spread between 0.86 and 0.96, and the MBE 

and RMSE present the same maximum and minimum values as the ERA5-land derived data. The statistics 

are only slightly better for the ERA5-land derived data. Furthermore, for this PV installations subset, the 

monthly correlations considerably improve with all values for the ERA5-land derived data above 0.84 and 

above 0.82 for renewables.ninja. Figure 5 shows an example of the time series of capacity factors from both 

simulated and measured data. In that case, ERA5-land data reproduce significantly better the time series for 

the 7th of June. However, even in this period it is not entirely accurate. For all other 6 days the results are 

mixed. In some cases renewables.ninja data are closer to the measured data than the ERA5-land derived PV 

output. Over the long time series the differences compensate, and the indicators tend to be similar for both 

compared data sets.   

 

Figure 5. Example of hourly capacity factors from the measured, ERA5-land derived und renewables.ninja data sets 

for the installation “SPS LA HUAYCA” in one week at the beginning of June 2017. 
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When comparing the indicators for the deseazonalized data of subset S2 (see Figure 6), daily and monthly 

correlations improve, hourly ones however deteriorate. In the latter case, the medians for both compared 

data sets have values below 0.8 showing that there is still considerable need for improvement of the 

reanalysis data sets to reproduce the intra-daily variability of PV generation related weather variables. Figure 

6 and B2 in the appendix also allow a direct comparison of the results of ERA-5 land derived and 

renewables.ninja PV output that shows that the medians of the ERA-5 land derived data have higher 

correlations, lower MBE and lower RMSE independent of the time horizon. However, the differences are 

low and may not significantly improve the results of model studies using these timeseries as input.  

 

Figure 6. Pearson correlation coefficient and RMSE for the deseasonalized time series of subset S2 of installations 

comparing the ERA5-land derived PV output as well as the renewables.ninja data against the measured data 

3.3. Aggregated results 

The indicators for the aggregated values have been calculated using the time series since February 2016, 

which is the month after the last of the installations in subset S2 starts having records. These indicators are 

presented in Table 3 and show that spatial aggregation will reduce errors. The correlations for the aggregated 

time series are either equal or larger than the ones for the individual installations in all cases. Even the 

deseasonalized time series reach correlations for hourly capacity factors of 0.88 for the ERA5-land derived 

PV output and 0.839 for the renewables.ninja data. MBEs are, in all cases but the monthly renewables-ninja 

data, below 0.05 and RMSEs remain always below 0.01. The results for the aggregated values corroborate 

the results for individual installations. Time series of PV output calculated with ERA5-land data and 

PV_LIB are consistently better than the ones calculated with renewables.ninja but the difference is minimal.  

Table 3. Indicators for the aggregated hourly capacity values of subset S2 for the period 2016-02 – 2018-12 

  Hourly Daily Monthly 

Indicator Data set Raw deseasonalized raw deseasonalized raw deseasonalized 

Pearson  
ERA5-land 0.970 0.880 0.860 0.939 0.920 0.986 

renewables.ninja 0.965 0.839 0.785 0.895 0.894 0.980 

MBE 
ERA5-land 0.018 0.007 0.019 0.009 0.042 0.018 

renewables.ninja 0.047 0.037 0.049 0.038 0.106 0.083 

RMSE 
ERA5-land 0.082 0.073 0.047 0.036 0.041 0.031 

renewables.ninja 0.097 0.085 0.072 0.059 0.079 0.064 
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4. Discussion 

The RMSE values for all stations are in most of the cases worse than the RMSE values presented in [8] for 

hourly capacity factors and European installations, which present a median around 0.1. For the daily and 

monthly capacity factors, the results improved and the majority of results are below 0.15 for both data sets 

being compared. Nevertheless, these remain worse than the results presented in [8] for European 

installations. In contrast, the RMSE values of subset 2 are very similar to the ones presented in [8] for 

installations in Europe for both compared data sets and both hourly and daily values. These achieve even 

the level of accuracy of the PV output calculated with SARAH irradiance data for installations in Europe. 

Similarly, the results obtained with subset S2 are comparable or better than the obtained by Atencio Espejo 

et al. [29]. While these authors show a correlation for hourly values for a location in Italy that reaches 0.91 

when using ERA5 data and PV_LIB, the time series of five out of six installations in subset S2 simulated 

using ERA5-land data and PV_LIB are equal or higher compared to this correlation. 

A clear output of the validation exercise presented here is the need for more and better data for validation 

and forecasting model development purposes. Using standard assumptions about PV system configurations 

may lead to the generation of PV output profiles that are considerable different to the actual ones, since 

differences on e.g. tracking system type or orientation already have a large impact on the estimated output 

of the systems. This might sound trivial but this is a known issue of PV installations data bases in Europe, 

where the information is either not available or have errors [8], an experience that is now replicated in energy 

transition newcomer countries such as Chile and Brazil. These issues are relatively easy to correct, at least 

for new installations that will be integrated in the data bases, but awareness about the importance of data 

requirements is necessary. We emphasize here that the open energy data initiative “energía abierta” in Chile 

goes beyond the official European Counterparts in terms of the provision of data. Comparable, entirely 

open, hourly PV output data at the individual installation level for a whole country, as provided by Chile, is 

only available for Brazil to the best of our knowledge, but not for European countries or the US. Making 

the data available, however, is an important step forward towards a geographical redistribution of research 

in the field of PV output forecasting and simulation.  

Furthermore, while most of the progress in the PV output forecasting field for the very-short and short 

term in the last decade came from artificial intelligence based procedures, the quality of the measured long 

time series of PV output have to improve in order to be a suitable input for e.g. machine learning 

applications. Since keeping good records of measured data is challenging, e.g. see Müller et al. [43] that 

report on a well monitored data set of the Fraunhofer ISE with more than 300 PV installations, where only 

38 have data that are good enough for comparisons of long term yield predictions, at least making the effort 

of keeping metadata of the operational status of installations will make a considerable contribution to the 

field. To make a simple example with such metadata our subset S1 of installations would have had 57 instead 

of 23 installations since we would have had certainty about which hourly values are suitable for comparison. 

In machine learning based approaches such metadata on the hourly values will bring certainty on which data 

is worth using for learning and validation.  

Finally, this study is a contribution to the evaluation of suitability of global reanalysis for the modelling of 

the output of PV installations but a global validation would require global efforts. Results are, however, 

mixed: a new generation of reanalysis with several times higher spatial resolution has not generated a 

significant step forward in the prediction of PV output at individual installation level. 

It should also be taken into account that there are uncertainties in the models which transform horizontal 

irradiance into irradiance on an inclined surface as well as in the technical PV and inverter models. However, 

the main parameters which determine the hourly variability of PV output are still weather variables. 

Following the results obtained with the deseasonalized data, there is still considerable room for 

improvement of the reanalysis data sets. Moreover, selection of optimal input weather data and PV and 

inverter models can only be improved if there are improvements in the reference data in a wide range of 

locations. Similarly, generalization of results at the global scale can only be achieved if such improvements, 

validation exercises and development of forecasting methods are also made for locations distant from typical 

hot spots of research. Beyond the necessity of open availability of data and standardization of data 
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warehousing procedures from official institutions, the scientific community can contribute here by making 

not only their datasets available but also reference data that have been gathered from data bases that are 

only available in locally known repositories. A platform such as open power system data [44] is a positive 

start but efforts have to be made to make data of locations outside the European borders also available in 

an open and usable way. This however relies on original data providers using open data licenses.   

5. Conclusions 

A workflow to estimate long time series of photovoltaic power output based on data derived from a recent 

global reanalysis data set, ERA5-land, and an open source software library for PV power estimation, 

PV_LIB, has been proposed. This has been assessed using open data from 57 large PV installations in Chile. 

The results are in general satisfactory since correlation values of hourly capacity factors for most of the 

installations are around 0.8 and reach 0.9 or more in eight cases, mean biased errors are mainly +/- 0.1 and 

root mean square errors are around 0.2. These values improve considerably when the measured data do not 

present any artefacts and the basic parameters of the installations are equal to the ones assumed in the 

modelling exercise. In this case the correlation values are in the range of 0.88 and 0.97, the mean bias errors 

are -0.02 – 0.04, and root mean square errors are around 0.12. When the time series are deseasonalized using 

a clear sky model the correlation improves for the daily and monthly values but deteriorates for the hourly 

ones.  These indicators are in most of the cases better, but do not present a considerable improvement 

compared to the ones calculated using renewables.ninja, which relies for such locations, on global reanalysis 

data sets that are several years older and with considerably lower spatial resolution.  

Furthermore, metadata about basic characteristics such as orientation, inclination, size of the inverter and 

tracking type of the existent PV systems play a key role in PV output estimation but are usually missing. 

There is progress in terms of data availability at the individual plant level, coming from transparency and 

open data initiatives in newcomers of the energy transition such as Chile in Brazil, but standardization of 

metadata and additional data about the operation status of the installations will be necessary for further 

modelling developments. The improvements that have been made in the very short and short term 

forecasting of solar radiation and PV output by using machine learning techniques would only be possible 

for long term simulation of time series if input data quality is improved. While most of the responsibility in 

data availability might lay on governmental institutions, scientist might start contributing to simplifying such 

validation exercises and avoiding repetition of work by also making available the data of individual 

installations that have been used in their research.  
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Appendix A: Table with main characteristics of the reference PV installations and 

total generation from all available records 

  Latitude Longitude 
Sub 
set 

Capacity 
official 
[MW] 

Capacity 
estimated 

[MW] 

Capacity 
diff. [%] 

Official 
operation 

start 

First 
observation 

Avg CF 
meassured 

Avg CF 
era5-land 

Total 
generation 
measured 
since first 

observation  
[GWh] 

ANDES SOLAR -24.00129 -68.57215 s1 21.8 22.28 2.2 28.05.2016 10.02.2016 0.31 0.28 174.19 

BELLAVISTA -31.66627 -71.22094 all 3 3.05 1.67 27.03.2017 04.04.2016 0.16 0.25 11.76 

CARRERA PINTO 
ETAPA I 

-27.00424 -69.86704 all 20 89.76 348.8 03.05.2016 28.12.2015 0.23 0.27 535.21 

CHANARES -26.37306 -70.08013 all 36 36.06 0.17 31.03.2017 16.12.2014 0.24 0.27 311.01 

CONEJO SOLAR -25.5041 -70.1629 all 104 104.9 0.87 30.04.2014 04.05.2016 0.26 0.27 634.95 

CORDILLERILLA -35.1627 -71.13232 all 1.33 1.27 -4.51 01.12.2016 21.11.2016 0.18 0.21 4.29 

EL DIVISADERO -30.84575 -71.12747 all 3 3.16 5.33 01.06.2017 10.08.2016 0.12 0.25 7.96 

FV BOLERO -23.46973 -69.40927 all 138.2 130.79 -5.36 02.06.2015 08.03.2017 0.27 0.27 556.32 

LA CHAPEANA -30.5165 -71.11217 s1 2.93 2.76 -5.8 22.12.2017 19.01.2016 0.25 0.25 17.73 

LA QUINTA 
SOLAR 

-33.02892 -70.71171 s1 3 3.09 3 21.12.2017 06.09.2017 0.27 0.23 9.7 

LALACKAMA -25.11923 -70.30306 s1 55 56.8 3.27 31.08.2015 03.01.2015 0.27 0.27 530.65 

LALACKAMA 2 -25.10889 -70.30988 s1 16.5 17.18 4.12 19.10.2016 03.01.2015 0.23 0.27 135.79 

LAS ARAUCARIAS -33.34603 -70.71164 s1 0.14 0.11 -21.43 26.10.2016 12.05.2016 0.16 0.23 0.41 

LAS MOLLACAS -30.67633 -71.22556 s2 2.93 2.71 -7.51 09.06.2016 19.01.2016 0.22 0.25 15.62 

LAS TURCAS -33.80384 -71.28206 all 3 3.13 4.33 08.11.2017 01.10.2017 0.25 0.23 8.48 

LOS PUQUIOS -20.43731 -69.54557 all 3 1.97 -34.33 28.03.2014 01.01.2016 0.12 0.27 6.11 

LUNA DEL 
NORTE 

-30.04019 -70.68001 s2 2.96 3 1.35 01.03.2016 30.09.2015 0.24 0.24 20.64 

LUZ DEL NORTE -27.02625 -69.89286 all 141 136.67 -3.07 24.02.2016 01.01.2015 0.22 0.27 1047.74 

MARIA ELENA FV -22.2204 -69.57663 s1 68 65.67 -3.43 21.01.2015 01.01.2016 0.33 0.28 572.02 

PAMPA SOLAR 
NORTE 

-25.53295 -70.17987 all 69.3 70.28 1.41 08.01.2017 21.03.2016 0.28 0.27 479.67 

PARQUE SOLAR 
CUZ CUZ 

-31.66307 -71.21522 all 3 2.79 -7 13.09.2017 01.10.2017 0.24 0.25 7.23 

PARQUE SOLAR 
FINIS TERRAE 

-22.34464 -69.52243 all 138 140.74 1.99 08.03.2017 06.01.2016 0.29 0.28 1079.16 

PARQUE SOLAR 
PAMPA 

CAMARONES 
-18.88578 -70.11258 all 6.24 6.22 -0.32 04.11.2015 07.05.2016 0.29 0.26 42.62 

PFV LAGUNILLA -30.50755 -71.1119 all 3 2.92 -2.67 05.02.2016 04.11.2015 0.18 0.25 14.25 

PFV LOS LOROS -27.85138 -70.16848 all 46 47.5 3.26 11.08.2015 11.06.2016 0.13 0.27 139.33 

PILOTO SOLAR 
CARDONES 

-27.59346 -70.44039 s1 0.4 0.26 -35 21.02.2017 07.02.2017 0.18 0.27 0.78 

PLANTA PV 
CERRO 

DOMINADOR 
-22.79296 -69.45973 all 99.05 99.82 0.78 01.09.2017 21.07.2017 0.32 0.28 403.21 

PMGD PICA 
PILOT 

-20.49921 -69.44902 all 0.63 1.6 153.97 31.01.2018 01.01.2016 0.04 0.27 1.85 

PUERTO SECO 
SOLAR 

-22.44992 -68.87012 s1 9 9 0 12.05.2017 03.07.2017 0.39 0.27 45.87 

PV SALVADOR -26.31068 -69.86556 all 68 66.31 -2.49 08.09.2016 24.07.2014 0.26 0.27 671.63 

QUILAPILUN -33.1037 -70.68793 all 103.02 95.49 -7.31 10.06.2013 25.07.2016 0.22 0.23 448.8 

SAN FRANCISCO 
SOLAR 

-33.0401 -70.70382 s1 3 3.13 4.33 21.12.2017 06.09.2017 0.27 0.23 9.74 

SANTA JULIA -32.30107 -71.10395 s1 3 3.2 6.67 04.10.2016 01.05.2016 0.25 0.24 18.72 

SDGX01 -30.22716 -71.09248 all 1.28 1.06 -17.19 20.12.2013 01.01.2014 0.11 0.24 5.12 
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SOL DEL NORTE -30.04006 -70.68371 s2 2.96 3 1.35 12.08.2016 23.10.2015 0.24 0.24 20.15 

SOLAR ANTAY -27.49428 -70.38049 all 9 9.03 0.33 19.05.2015 28.06.2017 0.25 0.27 30.27 

SOLAR 
CHUCHINI 

-31.74682 -71.07885 s1 2.88 2.98 3.47 10.08.2016 18.07.2016 0.22 0.24 13.93 

SOLAR DIEGO DE 
ALMAGRO 

-26.37893 -70.02006 all 28.05 31 10.52 11.12.2014 29.05.2014 0.2 0.27 248.96 

SOLAR EL 
AGUILA I 

-18.44546 -69.88672 all 2 2.09 4.5 19.10.2017 01.01.2016 0.24 0.26 12.97 

SOLAR EL 
ROMERO 

-29.10949 -70.90793 all 196 200.37 2.23 03.03.2017 10.11.2016 0.19 0.25 719.18 

SOLAR 
ESPERANZA 

-26.29338 -69.62753 all 2.88 2.6 -9.72 06.12.2012 01.01.2014 0.14 0.27 15.91 

SOLAR HORMIGA -32.71604 -70.72022 all 2.54 2.5 -1.57 09.11.2017 28.12.2016 0.2 0.23 8.76 

SOLAR JAMA 1 -22.58605 -68.69941 s1 32.1 31.64 -1.43 14.04.2015 01.01.2016 0.36 0.27 296.34 

SOLAR JAMA 2 -22.58605 -68.69941 s1 22.47 23.43 4.27 21.01.2016 23.01.2016 0.33 0.27 199.82 

SOLAR JAVIERA -26.30374 -70.22074 all 69.02 65.5 -5.1 07.07.2015 02.01.2015 0.25 0.27 564.12 

SOLAR LA SILLA -29.21137 -70.74373 all 1.53 1.81 18.3 17.03.2016 30.04.2016 0.28 0.25 11.72 

SOLAR LAS 
TERRAZAS 

-27.62854 -70.3408 all 3 2.9 -3.33 15.12.2013 14.10.2014 0.14 0.27 14.81 

SOLAR LLANO 
DE LLAMPOS 

-27.11746 -70.17114 all 101.02 91.5 -9.42 30.04.2014 16.01.2014 0.3 0.27 1182.85 

SOLAR PSF 
LOMAS 

COLORADAS 
-31.18638 -71.02255 s2 2 2.15 7.5 19.06.2014 22.07.2014 0.23 0.25 19.59 

SOLAR SAN 
ANDRES 

-27.25423 -70.11122 all 50.6 45.3 -10.47 17.08.2016 14.02.2014 0.22 0.27 423.19 

SOLAR SANTA 
CECILIA 

-29.11718 -70.91339 s2 2.96 2.7 -8.78 19.06.2014 12.04.2014 0.24 0.25 26.3 

SOLAR TECHOS 
ALTAMIRA 

-33.47911 -70.53801 all 0.15 0.1 -33.33 08.08.2013 24.04.2014 0.14 0.23 0.57 

SPS LA HUAYCA -20.45456 -69.53401 s2 25.05 25.8 2.99 09.03.2017 01.01.2016 0.27 0.27 180.21 

TAMBO REAL -30.04853 -70.77019 all 2.94 2.86 -2.72 28.08.2014 01.01.2014 0.11 0.23 13.45 

TILTIL SOLAR -32.95755 -70.81997 s1 3 2.49 -17 27.10.2016 19.06.2016 0.25 0.23 13.7 

URIBE SOLAR -23.56178 -70.21661 s1 52.8 50.53 -4.3 03.11.2017 08.01.2017 0.34 0.26 298.17 

VALLE DE LA 
LUNA II 

-33.27176 -70.87008 s1 3 2.94 -2 11.10.2017 01.09.2017 0.25 0.23 8.7 
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Appendix B: Figures of the MBE for raw and deseasonalized data  

 

Figure B1. MBE for all sets of installations comparing the ERA5-land and renewables.ninja derived PV output with 

the measured data 

 

 

Figure B2. MBE for all sets of installations comparing the deseasonalized ERA5-land and renewables.ninja derived 

PV output with the measured data 

 

 


