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Abstract 

The course of pupillary constriction and dilation provides an easy to access, inexpensive, 

and non-invasive readout of brain activity. Here, we propose a new taxonomy of factors 

affecting the pupil and link these to associated neural underpinnings in an ascending 

hierarchy. Besides two well established low-level factors (light level and focal distance), we 

further suggest two intermediate-level factors, alerting and orienting, and a higher-level 

factor, executive functioning. Alerting, orienting, and executive functioning – including 

their respective underlying neural circuitry - highly overlap with the three principal 

attentional networks, making pupil size an integrated readout of distinct states of 

attention. As a now widespread technique, pupillometry is ready to provide meaningful 

applications and constitutes a viable part of the psychophysiological toolbox. 

Keywords: Orienting, alerting, executive function, locus coeruleus, superior 

colliculus 
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A new taxonomy of pupil responses 1 

The human pupil is a roughly circular aperture of variable size in the iris that allows light 2 

to strike the retina. Pupil-size changes have been investigated as a neurophysiological 3 

readout since the earliest days of psychology, neurology, ophthalmology, and neuroscience. 4 

Well-documented effects in pupillometry span diverse factors, such as bodily and mental 5 

effort, attentional shifts, or neurological diseases [1, 2]. Recent developments now allow us 6 

to isolate more general, distinct types of pupil responses. 7 

Here, we propose a novel taxonomy that divides pupil responses into five factors of low, 8 

intermediate and higher levels of hierarchy and link intermediate and higher-level factors to 9 

attentional functions. Low-level factors are light level and focal distance (when fixating 10 

from far to near or vice versa). On the intermediate level rank alerting and orienting, 11 

whereas executive functioning constitutes a higher-level factor. This distinction is 12 

supported by evidence for four underlying neural circuits: Low-level parasympathetic 13 

and sympathetic circuits yield all pupil responses via innervation of the pupillary 14 

muscles, and intermediate-level subcortical areas that control pupil size. We argue that 15 

changes so far coined as arousal-related in fact result from two partially overlapping, but 16 

distinct neural circuits that are part of an overarching attention network on the 17 

intermediate level: a locus coeruleus (LC)-centered circuit that brings about 18 

alertness-related changes in pupil dilation and a superior colliculus (SC)-centered 19 

circuit that mediates the pupil orienting response [3, 4]. These networks in turn receive 20 

input from both sensory and executive control areas, the highest level in the proposed 21 

hierarchy. These factors affect pupil size via a cascade adhering to the neural hierarchy: All 22 

factors affect low-level parasympathetic and sympathetic circuits, intermediate-level factors 23 

involve the intermediate LC-centered or SC-centered networks, and higher-level factors 24 

involve circuits on all levels. The intermediate- and higher-level circuits and responses 25 

largely overlap with factors and structures described in Petersen and Posner’s networks of 26 

attention [5]: alerting, orienting, and executive function. This suggests the pupil to 27 

constitute an integrated readout of differential states/networks of attention. We propose 28 
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that the orienting and alerting systems match the SC and LC networks, respectively, and 29 

that the executive function network (or fronto-parietal attention network), including its 30 

connections to sensory areas, accounts for the role of top-down, focal attention in shaping 31 

primary pupillary responses. 32 

We present recent findings on pupillary dynamics following the aforementioned 33 

taxonomy, including a brief overview of the associated neural underpinnings. We also 34 

discuss some key experimental protocols, and highlight applications that emerged out of 35 

more than a hundred years of pupillometry research. Circuits and involved areas are 36 

visualized in Figure 1. The intermediate circuits are presented in more detail in Box 1. 37 

Lastly, we provide an overview of techniques that may allow for dissociating the networks 38 

introduced here, outline best practices in pupillometry research (Box 2), describe 39 

pupillometry in relation to other psychophysiological measurements (Box 3), and highlight 40 

applications of the five factors that drive pupil responses (Box 4). 41 
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 42 

 Figure 1. 43 

Pupillary dynamics 44 

Pupillary dynamics can best be categorized into (1) steady-state changes in baseline pupil 45 

size and (2) transient changes relative to baseline pupil size [3]. Whereas the light level and 46 

focal distance only affect the pupil’s steady-state, and orienting only evokes temporary 47 

changes, alerting and executive-control modulate steady-state and temporary changes in 48 

pupil size depending on whether sustained or transient state changes occur, respectively. 49 

Of the five proposed factors driving pupil size, two can be described as low-level, causing 50 

the pupil light response (PLR) and the pupil near response (PNR), while two 51 
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intermediate-level factors are linked to fluctuations in alerting and orienting. Lastly, 52 

higher-level responses come into place due to executive function, including the interaction 53 

between the control of focal attention and sensory processing. We next introduce the five 54 

factors, from low-level to higher-level, along with recently emerged applications. We also 55 

link the factors to the four circuits visualized in Figure 1. 56 

Low-level responses 57 

Light levels 58 

First and foremost, a high retinal light level is associated with a constricted pupil state 59 

whereas low retinal light level is associated with a relatively dilated pupil state. 60 

Correspondingly, changes in retinal light levels let pupils dilate and constrict respectively, 61 

likely as a relatively fast adaptation mechanism to improve contrast perception. In terms of 62 

time course, pupil constrictions in response to a light level increase at the retina reach 63 

minimum pupil size typically faster than 1 s and within 2 s maximum, while redilations 64 

usually take several seconds, and can even take minutes after strong stimulation with blue 65 

light [6]. Pupil response onset latencies are faster for constrictions (ranging from 200 ms to 66 

400 ms) than for dilations, but these vary hugely as they depend on the individual and on 67 

stimulus intensity [2, 6, 7]. 68 

The pupil light response and the neural structures mediating it are well-established [2]. 69 

Transient changes in steady-state pupil size in response to an increase or decrease in light 70 

levels are mediated mainly by the activation of the parasympathetic or sympathetic 71 

pathway, respectively [2]. As illustrated in Figure 1, many structures are involved in the 72 

control of pupil size (see [2, 3, 8] for reviews). Briefly, the pupil is controlled by the 73 

sphincter pupillae muscle (for constriction) and the dilator pupillae muscle (for dilation) 74 

of the iris. These two muscles are mediated, respectively, by the parasympathetic (black 75 

lines in Figure 1) and sympathetic (gray lines) pathways of the autonomic nervous system; 76 

pupil size is hence determined by balanced activity between these two antagonistic 77 

pathways. In the parasympathetic pathway, neurons in the Edinger-Westphal preganglionic 78 

cell group (EWpg) project to the ciliary ganglion [9]. The cholinergic postganglionic 79 
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fibers in the ciliary ganglion target the muscles of the sphincter pupillae via the short 80 

ciliary nerves. 81 

The Edinger-Westphal (EW) nucleus receives projections from the pretectal olivary 82 

nucleus (PON), and neurons in the PON receive direct retinal signals including ones 83 

from intrinsically photosensitive retinal ganglion cells that are important for reflexive, 84 

steady-state pupillary adaptations to daylight. In the sympathetic pathway, the 85 

hypothalamus receives direct retinal input and projects to the ciliospinal centre located in 86 

the intermediolateral cell column of the spinal cord (IML) at the level of C8–T2, though 87 

the projections from the hypothalamus to the IML are less established. The preganglionic 88 

neurons of the IML project to the superior cervical ganglia (SCG), and the adrenergic 89 

postganglionic neurons of the SCG terminate in the dilator pupillae muscle via the long 90 

and short ciliary nerves. 91 

Focal distance 92 

Steady-state pupil size is modulated by the focal distance, that is, the depth at which 93 

both eyes fixate [10]. When fixation focus changes from far to near, the lens 94 

accommodates, the eyes converge, and pupils constrict. These three aspects form what is 95 

known as the near triad [2, 11]. Shortly after the lens is accommodated, the pupil starts 96 

constricting. This constriction typically slightly overshoots, and the pupil starts to 97 

redilate when accommodation is still maintained. Such a pupil constriction, like a 98 

narrowing of the aperture of a camera lens, increases the depth of focus (or field), 99 

meaning that objects slightly deviating in depth from the optimal fixation remain in focus. 100 

When focus changes from near to far, the lens disaccommodates, the eyes diverge, and 101 

the pupil dilates [11]. 102 

The pupil near-response is regulated by the parasympathetic pathway [11]. As pupil 103 

constriction during near viewing is not correlated to responses in PON luminance neurons, 104 

it is believed that the PNR is simply controlled by the EWpg [12]. A number of brain areas 105 

are involved in the near triad, and the current model suggests that the PNR is driven by 106 

an interaction of the accommodation and convergence controller [13].  107 
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Intermediate-level responses 108 

Alerting 109 

Vigilance and performance are related to arousal in an inverted-U shape. Optimal 110 

performance is therefore generally observed at intermediate levels of arousal indicated by 111 

pupil size [14]. As a modification of Petersen and Posner’s broader term of alerting [5], it is 112 

specifically the intensity of attention [15] that seems to be most closely reflected in pupil 113 

size. Whereas steady oscillations in pupil size around baseline reflect fatigue [16], 114 

steady-state pupil size is determined by general arousal levels [17, 18]. Temporary 115 

responses reflect short-lasting deviations from baseline, characterized as sudden dilations or 116 

constrictions in response to changes in internal mental states. Internal events that dilate 117 

pupils include factors such as evidence accumulation during decision-making, processing of 118 

self-relevant, emotional, or sexual stimuli and are commonly traced back to changes in 119 

mental effort [19] [see 20, 21, for reviews], in other words to changes in the intensity of 120 

attention. The intensity of attention in turn relates to many higher-level processes, which 121 

is part of the reason why so many higher-level factors are reflected in pupil size. 122 

Furthermore, movement or its preparation, for instance pressing a key, causes a pupil dilation 123 

that likely only partially reflects the foregoing decision [22, 23, 24]. 124 

Differential roles of tonic and phasic LC-activity, reflected in distinct pupil dynamics, have 125 

been suggested as part of the influential adaptive-gain theory [25]. The theory relates to 126 

concepts from the foraging behavior field, which differentiates between period of 127 

exploitation (consuming resources) and exploration (seeking for new resources). According 128 

to the adaptive-gain theory, during periods of exploitation, task-engagement is maintained, 129 

distraction is shielded against, and information is processed accurately. In these periods, 130 

baseline firing rate of the LC is moderate and baseline pupil size remains small. In 131 

response to relevant events, phasic firing of the LC occurs and results in transient pupil 132 

dilations. During (tonic) periods of exploration, task-disengagement and the exploration 133 

of new sources of reward is facilitated and baseline firing of the LC and pupil size is 134 

elevated [26, 27, 28]. This contrast concurs with the rest-and-digest versus fight-flight 135 
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function of the parasympathetic versus sympathetic components of the autonomous, 136 

peripheral nervous systems, respectively [2, 29]. The adaptive gain theory therefore links 137 

phasic and tonic components driving pupil size changes to behavior across different 138 

species [30, 31, 32, 33, 34]. Modeling accounts allow to understand functional roles of 139 

pupil responses in task behavior, and such modeling suggested for instance differential 140 

roles of phasic responses linked to stimulus encoding and of decision formation in mice 141 

[33]. 142 

The alerting LC-centered circuit releases norepinephrine and connects to most of the 143 

brain  (see Box 1 for a detailed description and Figure 1 for a visualization). This is 144 

demonstrated, among other ways, by conjoint fMRI and pupillometry investigations, 145 

showing a high degree of covariation between changes in pupil size and LC-activation 146 

[35, 36] and by animal studies in which microstimulation of the LC results in pupil-size 147 

changes [37, 38, 39]. A crucial role of input from the orbitofrontal cortex (OFC) and 148 

anterior cingulate cortex (ACC) to the LC has been proposed as part of the adaptive-gain 149 

theory, with the OFC being linked to evaluating reward and the ACC being linked to 150 

evaluating cost [25]. While innervations of the LC by the ACC are established in 151 

multiple species, such innervations by the OFC are found in rodents but not primates 152 

[40, 41, 42], requiring further investigation.  153 

 154 

Orienting 155 

The appearance of an external, salient, and relatively novel stimulus in the environment 156 

initiates a repertoire of orienting responses to prepare the body for possible action for 157 

survival, including attentional shifts, eye/head/body movements, and changes in pupil size 158 

[43, 44]. Temporary pupil responses following attentional re-orienting may occur in 159 

isolation, but are mostly observed in parallel with steady-state changes in pupil size caused 160 

by alterations in light levels, focal distance, or alertness that stimulus onsets typically also 161 

evoke (e.g., see [45]). However, due to differences in latency, pupil orienting responses 162 

slightly precede responses linked to alerting and the pupil dark response. Multiple 163 

components within a pupil response (e.g., a dilation to a decrease in light levels 164 
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superimposed on a constriction after re-orienting) can be disentangled using 165 

(de)convolution modelling [46] if the implementation of control conditions is not feasible. 166 

Pupillary orienting responses are by definition short-lasting. The pupil changes (most often: 167 

constricts) in response to any type of visual event, even when the global luminance level 168 

remains unaltered, whether it is a change in local or global contrast [47, 48], color [48, 49], 169 

spatial frequency [50], orientation [51], motion velocity [49], or (apparent) motion direction 170 

[52, 53, 54]. Moreover, these pupillary orienting responses are evoked independent of 171 

stimulus modality [55, 56, 57], and enhanced by multisensory presentation in an additive and 172 

linear manner [23, 24]. More importantly, the speed and amplitude of evoked pupillary 173 

orienting responses scale with salience [55, 58, 59], suggesting that this response is indeed 174 

linked to orienting. Interestingly, the amplitude of such saliency-driven responses is shaped 175 

by the depth of sensory processing, such as the degree of attention and awareness for the 176 

external events (for reviews, see [60, 61]). So far, it remains unknown why the pupil 177 

orienting response consists of a constriction or dilation depending on the type of stimulus 178 

being used. As the orienting response is spatial in nature, it can even reveal biases in spatial 179 

attention (e.g., "pseudoneglect") [62]. The generalization of effects of pupillary modulation 180 

in response to stimuli across sensory domains suggests the existence of an underlying 181 

modality-independent orienting system. This system is likely mediated by the SC-centered 182 

circuit (see Box 1), which receives multisensory [63] and cognitive signals from many areas 183 

such as the Frontal Eye Field (FEF) and basal ganglia [4]. Thus, pupil-size changes likely 184 

reflect attentional orienting in response to a novel stimulus and reflect a process serving 185 

the ability to prioritize sensory input by its modality or location [5]. 186 

As highlighted in Box 1 and visualized in Figure 1, the SC forms the hub of a network 187 

underlying pupil responses related to the integration of multisensory input and prominent 188 

areas in the orienting-network by Petersen and Posner [5], such as the FEF and ACC [64]. 189 

Thus, activity best described as orienting response affects the size of the pupil. The SC-190 

centered circuit which we have outlined here is proposed to be the primary network 191 

underlying the pupil orienting response, the speed of which is determined by the 192 

LC-centered alerting circuit which provides direct input to the SC [65]. It should be 193 
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noted, however, that the response latency to sensory stimulus onset is shorter for SC [66] 194 

than LC neurons [67], suggesting alertness at stimulus onset to be predictive of the speed 195 

of the orienting response, whereas changes in alertness elicited by the same stimulus are 196 

too late to affect the speed of that respective orienting response. In line with this notion, 197 

pupil response onset latencies are shorter for microstimulation of the SC than the LC 198 

[37], suggesting the SC to be closer to the final common path. 199 

 200 

Higher-level responses modulated by executive functions 201 

Higher-level factors that affect the pupil can be subsumed under the notions of sensory 202 

interpretation and executive function, with the latter being the broadest of Petersen and 203 

Posner’s factors [5]. Executive functions, among other roles, allow to guide the allocation 204 

of focal attention to control the depth of processing and degree of awareness of the most 205 

relevant and novel targets in the environment. Attention can be endogenously directed 206 

(top-down guided) to a target, which can consist of either a spatial element (e.g., a visual 207 

location), a physical entity (e.g., a person), or a specific feature (e.g., the pitch of a voice 208 

within a conversation at a cocktail party). When focal attention is allocated to a target, it 209 

is processed in depth - at the expense of other items - enabling more efficient processing. 210 

Such effects of attention operate, in part, on early sensory representations, enhancing 211 

targets relative to distractors. It is therefore perhaps no surprise that 212 

higher-level cognitive functions leave a mark on pupillary dynamics in a manner reflecting 213 

sensory operations [see 60, 61, 68, for reviews]. 214 

The strongest evidence of how higher-level cognitive processes shape pupil size comes from 215 

studies that manipulate perception (i.e., the content of awareness) despite a constant 216 

physical stimulation. Using bi-stable (ambiguous) figures that evoke alternating dark or 217 

bright percepts depending on the observer’s subjective state, pupil size will increase when a 218 

dark percept is dominant and decrease when a bright percept is dominant, even though the 219 

stimulus itself does not change [52, 69]. Furthermore, studies on mental imagery, a 220 

higher-level cognitive operation, showed that mentally visualizing a dark scene leads to a 221 
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pupil dilation [70], and natural scene studies showed that the presentation of illusory bright 222 

stimuli, like images of a sun, evokes pupil constrictions [68, 71, 72, 73]. Similarly, the 223 

interpretation of a scene as close in depth has recently been associated with a pupil 224 

constriction compared with the interpretation as far [74], as is the mental imagery of close 225 

compared with distant objects [75] via the pupil-near response. 226 

The aforementioned phenomena can be exploited to discern which objects or parts of a 227 

scene are attended [76] or how spatial attention is deployed [62, 77].When separate objects 228 

(or visual field regions) are tagged with a distinct light level, the attended object’s 229 

luminance but not its surrounding determines pupil size [60, 61, 72, 78]. Objects can also 230 

be tagged with distinct luminance flicker frequencies (or phases), accordingly affecting the 231 

pupil in a manner that allows the on-line identification of which objects are attended or 232 

ignored [76, 79]. 233 

Besides such higher-level effects on steady-state adaptations of pupil size to subjective 234 

brightness and depth perception, executive functions similarly affect the pupil’s orienting 235 

responses. The degree to which a stimulus receives attention determines the pupil 236 

responsiveness, and this applies to onsets of both auditory [80, 81, 82] and visual stimuli 237 

[76, 83]. The degree of pupil responsiveness during orienting may similarly depend on the 238 

saliency of subjective events, like the perceptual change of an ambiguous stimulus [45, 52, 239 

84, 85, 86] or even the number of stimuli present in a display [87]. In a similar vein, 240 

presentations of stimuli with preferred and common features tend to evoke stronger pupil 241 

constrictions than stimuli displaying less preferred/common features. For example, the 242 

presentation of sine-wave gratings at around 3 cycles per degree, a spatial frequency 243 

preferred by the visual system, evokes stronger pupil constrictions than other spatial 244 

frequencies [47, 50, 88]. Uncommonly processed stimuli, such as an inverted natural scene, 245 

let the pupil constrict only weakly [73, 89]. When a novel rather than familiar stimulus is 246 

shown, the pupil constricts more strongly [90, 91]. 247 

The cortical processing of stimuli follows a hierarchy, with changes in simple stimulus 248 

features (e.g., contrast) evoking activity at early stages and changes in more complex 249 

features (e.g., shape) at later stages. Orienting responses to stimuli reflect the timing of 250 
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these operations as the complexity of a stimulus positively correlates with pupil 251 

constriction latencies [48]. Besides saliency (conspicuity), pupil responses thus also depend 252 

on the timing of the onset of processing of sensory events. The pupil as a tool to mark the 253 

order of processes has been demonstrated beyond sensory tasks, including the highlighting 254 

of object detection versus subsequent identification phases [92] and ballistic versus 255 

subsequent error-correction phases of motor coordination [27]. 256 

The attention network subserving executive function consists of frontal and parietal 257 

regions. Frontal regions include the dorsolateral prefrontal cortex (DLPFC), FEF, ACC, as 258 

well as pre-motor cortex, and are mostly responsible for initiating changes in focal 259 

attention. Parietal regions include the temporal-parietal junction (TPC), intraparietal 260 

sulcus and adjacent areas (e.g., LIP), and several other regions implicated in integrating 261 

visuomotor information to shift attention covertly (without eye movements) or overtly 262 

(with eye-movements). These latter areas reciprocally connect to sensory regions to 263 

enhance target processing and to plan subsequent shifts to novel targets, including 264 

through the feedback of information to frontal regions. Frontal regions, particularly the 265 

FEF and ACC, likely modulate the aforementioned higher-level effects on pupil size 266 

through the close connection to the SCi [44]. The topographic organization of the SC, in 267 

particular, marks this neural locus as a likely candidate to mediate pupillary effects of 268 

covert spatial attention to stimulus events (enhanced orienting) and anisotropies in 269 

background light levels (enhanced light response) [93]. 270 

It should be noted that the FEF also directly projects to the visual cortex [94] and the 271 

PON [95], potentially modulating sensory regions and changes in pupil size, but this 272 

proposition remains to be established. Additionally, the LC connects to the ACC and 273 

OFC anatomically and functionally, a pathway which is also involved in pupil size control 274 

and important to executive function [5, 96, 97]. Thus, the LC-centered circuit can also 275 

mediate higher-level pupillary responses. As the LC is non-topographically organized, 276 

we argue that the LC provides critical control signals to topographically sensitive structures 277 

[93], particularly the SC, to coordinate movements that are spatially directed (e.g., 278 

saccades) or non-spatially directed (e.g., pupil responses). 279 
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 280 

Concluding remarks and future perspectives 281 

Pupil size is influenced by a wide variety of factors, which we categorize into low-level 282 

factors – light-level and focal distance; intermediate-level factors – alerting and 283 

orienting; and higher-level phenomena, subsumed under executive function. Neural 284 

circuits underlying low-level, intermediate-level, and higher-level effects interactively 285 

change pupil size in a cascaded manner. As low-level and principal circuits, the 286 

parasympathetic and the sympathetic pathways control pupil responses from all levels of 287 

the hierarchy. The LC-centered and the SC-centered circuits underlie intermediate-level 288 

pupil responses. Effects linked to higher-level executive function are likely mediated via 289 

the LC- and SC-centered circuits, in which the ACC and FEF are particularly involved. 290 

Because the LC and SC have extensive connections to many brain regions (beyond the 291 

ACC and FEF), future research is required to explore their connections to these structures 292 

that may also contribute to higher-level pupil modulations.  293 

The intermediate and higher-level factors affecting pupil size, as well as their associated 294 

networks overlap with the attentional networks introduced by Petersen and Posner [5], 295 

suggesting that the pupil provides an integrated readout of activity in each attentional 296 

network. With the proposed taxonomy, we seek to demonstrate the rich neurophysiological 297 

signal that the timecourse of pupillary constriction and dilation provides and to outline 298 

further avenues for advancing its understanding. Many intriguing questions remain to be 299 

addressed in future work (see Outstanding Questions). For instance, future research will 300 

have to further elucidate the existence of differential factors within executive function, 301 

possibly by identifying differential components in the pupillary signal. At the level of 302 

neural circuitry, the (causal) identification of distinct and clearly defined circuits 303 

bringing about changes in relation to executive function could further help isolate these 304 

possible subcomponents of executive function. Furthermore, the relation between pupil-size 305 

changes and other peripheral indicators is still not fully understood, and it is likely that the 306 

pupil differs from other psychophysiological indicators in more than just sensitivity. Yet, 307 
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a deepened understanding of these relationships may allow for the isolation of much more 308 

specific cognitive factors by combining peripheral indicators of arousal that are sensitive 309 

to differential factors. Furthermore, such measurement combinations could bring about 310 

robust applications by factoring out effects of individual factors that selectively affect one 311 

but not all indicators obtained simultaneously. 312 

  313 
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Box 1. Neural circuitry involving the locus coeruleus, superior colliculus, and 314 

basal forebrain. 315 

The locus coeruleus (LC)-centered circuit mediates pupil responses related to alterations 316 

in the arousal system mainly via releasing norepinephrine throughout most of the brain 317 

[3, 25]. In behaving monkey, baseline (steady-state) pupil size during passive fixation and 318 

temporary pupil responses evoked by acoustic stimuli or stimuli related to effort and reward 319 

positively correlate with LC activity [37, 98]. Similarly, in humans performing cognitive tasks, 320 

LC BOLD activity positively correlates with pupil size [35] and responses [36]. Moreover, LC 321 

microstimulation in monkeys and rats evokes pupil dilation [37, 38], and pupil dilations are 322 

also observed after LC-NE activity in the cortex of awake mice [39, 99], although these 323 

correlations vary considerably over time [100]. While the latter finding warns against 324 

interpreting pupil size as direct readout of LC activity, notably, latencies in primates are 325 

fundamentally different than those in rats [37, 38]. It is hypothesized that LC efferent 326 

projections to the IML and hypothalamus could underlie coupling between pupil size and 327 

LC activity [3]. 328 

The superior colliculus (SC)-centered circuit mediates the orienting pupil response [4]. 329 

The intermediate SC (SCi) integrates multisensory, arousal, and cognitive signals from 330 

various areas including the superficial superior colliculus (SCs), inferior colliculus (IC), LC, 331 

lateral intraparietal cortex (LIP), anterior cingulate cortex (ACC) and frontal eye fields 332 

(FEF), and projects directly to the brainstem premotor circuit to coordinate the orienting 333 

response including eye/head/body movement, attention shifts, and pupil responses [44, 101]. 334 

SCi microstimulation can evoke pupil dilation [37, 102, 103], with similar dilation observed 335 

following IC, LC, and FEF microstimulation [37, 104]. The SCi, compared to the LC and 336 

IC, has the shortest microstimulation-evoked pupil response onset latency [37], suggesting 337 

that the SCi is the structure that is most closely located to the final common path. Besides, 338 

the SCi and FEF are causally involved in alternating pupil size as a function of the focus 339 

of attentional switches between locations with varying luminance [93, 105], explaining pupil 340 

brightness responses induced by higher-level cognition [60, 61]. The SCi connects to the 341 

EW nucleus mostly indirectly via the central mesencephalic reticular formation (cMRF; or 342 
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nucleus cuneiformis in humans) [106, 107]. The EW nucleus projects to the ciliary 343 

ganglion with excitatory and inhibitory connections [108], which at least theoretically could 344 

produce both constriction and dilation. The SC also links to the medullary reticular 345 

formation directly and indirectly via the cMRF to possibly influence preganglionic 346 

sympathetic motoneurons [109], together providing the necessary connections to change 347 

pupil size. 348 

Cholinergic neurons of the basal forebrain (BF) are activated during pupil dilation in 349 

walking mice [39, 110]. LC projections to the BF could underlie these pupil correlations 350 

[3]. Notably, the cholinergic BF functionally connects to the pedunculopontine tegmental 351 

nucleus (PPN), as injection of inhibitory lidocaine in the BF causes reduced activation 352 

elicited by PPN stimulation [111]. The SCi receives PPN projections, and changing SC 353 

cholinergic activity via PPT input modulates saccade responses [112]. Together, the BF 354 

could be involved in pupil modulations related to alerting and orienting. 355 

As pupil size is modulated by neural activity from noradrenergic brainstem nuclei (e.g., 356 

LC), the orienting circuit (e.g., SC), and cholinergic BF, we argue that all these circuits are 357 

involved in modulating pupil size during executive functioning. 358 

  359 
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Box 2. Pupil size as part of the psychophysiological toolbox. 360 

Whereas both the parasympathetic and the sympathetic branch of the autonomous nervous 361 

system control pupil size, two other popular psychophysiological indicators, heart rate and 362 

skin conductance, are predominantly controlled by the former [113] and latter [114], 363 

respectively. To what extent and for which tasks the pupil provides independent information 364 

relative to these measures and to the EEG (power in certain frequency bands or components 365 

of the event-related potentials (ERPs) [115]) is therefore of particular interest. 366 

Correlations between pupil, heart rate and skin conductance have been reported, for example 367 

when viewing emotionally charged pictures, and suggest a common underlying system [80]. 368 

In contrast to arousal, valence seems to only affect heart rate, but not skin conductance and 369 

pupil size [116]. Skin conductance and heart rate can each predict unique components of 370 

the variations in pupil size, even on a trial-by-trail basis, suggesting that the pupil 371 

provides combined information from the sympathetic and parasympathetic systems 372 

[117]. Studies manipulating expectancy have shown that all three peripheral physiological 373 

measures relate to task preparation, but exhibit little between-subject or trial-by-trial 374 

correlations [118]. Similarly, mental fatigue affects heart rate variability, but leaves EEG, skin 375 

conductance, and pupil responses largely unaffected, whereas they scale similarly with 376 

reward [119]. During resting state, pupil size and skin conductance correlate [120], but in fear 377 

conditioning they clearly capture distinct aspects [121, 122]. In line with the latter, in rats, 378 

unique information is provided by both heart rate and pupil size on behavioral 379 

performance [123]. In EEG, the P3 ERP component shows similarities with phasic pupil 380 

dilations, for instance for time-on-task effects, but a mere alertness/LC-account is insufficient 381 

to explain all relations between these measures [17]. 382 

In sum - depending on the paradigm - pupil size, skin conductance, heart rate and EEG-383 

based measures are related [see 124, for a review], but often capture distinct aspects of 384 

underlying processes and their respective circuitry. Unlike EEG, peripheral measures, in 385 

particular pupil size, are one-dimensional and no spatial dimension is available. Unlike the 386 

general ERP, the pupil reflects activity in the highly specified subset of subcortical regions 387 

outlined in Figure 1. This might be one of the reasons why less trials are usually needed in 388 
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pupillometry compared to EEG research. Nonetheless, advanced data-analysis techniques 389 

put forward for EEG can be useful in pupillometry (see Box 3). Such techniques might 390 

eventually reveal more subtle relations between the indicators than simple correlations 391 

between more or less raw signals. While EEG can extract physiologically meaningful signals 392 

up to the high gamma range (around 60 Hz), pupillometry is limited by the frequency response 393 

of the pupil (up to about 3 Hz [76]) with the other measures even slower. Associated 394 

latencies and their variability thus limit the throughput of experimental paradigms. To this 395 

end, pupillometry often provides a good compromise between the speed of EEG and the 396 

relative simplicity and robustness of measurement of peripheral psychophysiological signals. 397 

  398 
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Box 3. Best practices in pupillometry research. Any stimulus used to study intermediate- 399 

or higher-level effects needs to be equalized for luminance, contrast, and other feature 400 

distributions across space. Brightness, movements, such as button presses [22, 23, 24], as 401 

well as other factors outlined in text must be kept constant or controlled for, unless being 402 

a manipulation of interest. For instance, even the tiniest luminance difference, such as the 403 

amount of eye-white (sclera) visible in face stimuli [125] or slight local differences in 404 

brightness [126] can already confound pupillary responses. Similarly, stimulus location, 405 

including stimuli presented (1) in the periphery, (2) monocularly near the nose (nasal), or 406 

(3) achromatically in the lower visual field evoke weaker pupil responses than other locations 407 

[127]. Blinks often induce a pupil constriction and are followed by a later redilation [57, 408 

128]. Blinks can be treated as missing data or be interpolated, the latter being more useful in 409 

context of analyses over time points. Saccades (planning and execution) may cause either 410 

pupil dilations or constrictions [57, 129]. Gaze position changes distort the estimated pupil 411 

size depending on the angle of video-based eye-trackers, but can be corrected for [130]. 412 

Latencies of pupillary responses are crucial for planning the duration of trials and inter- 413 

stimulus intervals. Based on the linearly additive model of pupil-size changes [e.g. 131] - 414 

at least in non-extreme ranges of baseline pupil size that can lead to floor/ceiling effects 415 

- the usage of subtractive rather than divisive baselines is usually advised for [132, 133]. 416 

Similarly, there is no standard for the units of pupil size effects. Absolute deviation (mm, 417 

pixels, arbitrary units) better represents the underlying model of the event-related pupil 418 

response than divisive units such as percentage changes or z-standardized values, although 419 

the latter offers the unique advantage of putting effects in context with variation directly and 420 

removes individual differences in pupil response sensitivities. Millimeters are generally best 421 

suited for reporting effects. Millimeters are understandable, more useful for practitioners 422 

who rely on anatomical size, allow to identify possible floor/ceiling effects and to compare 423 

effect sizes across studies. As for baselines and units, there is no established standard 424 

(besides recent attempts, see [134]) for conducting and reporting statistics, as well as for 425 

correcting for multiple tests. Amplitudes, maxima, or minima in pupil size may be 426 

reported, which can be more prone to noise than averages over intervals, which in turn are 427 
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prone to cherry-picking. In the absence of prior knowledge about ’pupil components’ 428 

(analogous to ERP components), we argue in favor of using time-point-wise analysis [86, 429 

135] with the appropriate α-level correction. Based on a common practice for spatial 430 

dependency in fMRI research [136], we recommend the usage of cluster-based 431 

corrections to avoid alpha error inflation, as tests are locally highly dependent on 432 

adjacent tests over time. Alternatively, a data-driven decomposition into components, for 433 

instance with PCA, or weighted pulse event function modelling can be advisable [46, 56, 434 

57, 83]. 435 

  436 
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Box 4. Applications of pupil size measurements. As the pupil response can be accessed 437 

relatively easily by contact-free measurements, it offers a broad variety of applications. In 438 

clinical diagnostics and research, alterations of the pupil may indicate neurological 439 

damages, arguably one of the oldest pupillometry applications. Today, ample evidence exists 440 

on distinctions between healthy controls and individuals with conditions ranging from 441 

schizophrenia, autism spectrum disorder [137] (but see [138]), anxiety and phobia, 442 

Parkinson’s disease, and Alzheimer’s disease (see [7, 20] for reviews). 443 

In ophthalmology, pupil perimetry can detect visual field impairments, whether caused by 444 

retinal damage as a consequence of glaucoma, other eye diseases, or cerebral visual impairments 445 

[139, 140]. Here, pupil changes are visually evoked to assess awareness of (or visual sensitivity 446 

to) stimuli across the visual field [140, 141]. Stimuli presented in a patient’s scotoma let the 447 

pupil constrict with about half of the amplitude of healthy controls [142]. Similarly, 448 

attentional spatial biases, such as present in hemispatial neglect, can be revealed using 449 

pupillometry [62]. Pupil-computer interfaces (PCI) exploit pupillometry for a user to 450 

signal information actively (e.g., to input text, intended particularly for patient populations) 451 

or passively (e.g., to adapt an interface to arousal levels). Voluntary shifts in focus from 452 

far-to-near and near-to-far and the resulting pupil responses allow users to communicate 453 

about six bits per minute [143]. The pupil can decode which of several differentially 454 

flickering targets is covertly attended [76], which allows text input at about par to the best 455 

steady-state evoked potential-based brain computer interfaces [78]. As the pupil indicates 456 

changes in mental effort, locked-in patients could communicate "yes" or "no" by performing 457 

mental arithmetic for the time interval in which the response was presented - without the 458 

need for training or individual adjustment [144]. Based on effects of changes in mental effort 459 

on pupil size during decision-making [23, 30], binary decisions can be decoded in up to 75% 460 

success rate and thus contribute to intent predictions in PCIs [145]. The tight coupling 461 

between alertness and pupil size has been used as input signal for biofeedback 462 

applications [146, 147]. Alertness-adaptive interfaces can use sensed information, e.g., to 463 

adjust video gameplay dynamics [148]. 464 

The continuous monitoring of mental effort or workload via pupillometry is a popular 465 
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suggestion for many applied domains ranging from education sciences to human-computer 466 

interaction or human factors, e.g., in driving contexts [149]. While in many of the envisioned 467 

settings, other relevant factors - like rapidly changing light levels - are hard to control, the 468 

notion of measuring effort also allows screening non-visual deficits with pupillometry. For 469 

instance, close-to-deaf listeners likely apply more mental effort to decipher what is heard, 470 

resulting in pupil dilations [150, 151, 152]. 471 

  472 
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Figure legend 473 

Figure 1: Schematic overview of pupil control pathways. Top: Visualization of key pupil-474 

associated structures in sagittal cut of the human brain. Numbers, colors, and symbolic 475 

shapes in the brain figure indicate structures that correspond to the legend on the right. 476 

Bottom: Four main neural circuits determine pupil size: The parasympathetic (black) and 477 

sympathetic (gray) paths as low-level circuits (oval shapes), LC-centered (blue), and 478 

SC-centered circuits (red), as intermediate-level circuits (hexagonal shapes), and 479 

connecting points to higher-level circuits, such as frontal eye-fields and ACC 480 

(rectangles). Solid lines denote established connections whereas dashed lines denote 481 

plausible, but less definitively established connections. Yellow projections are 482 

anatomical pathways that do not form part of the four circuits outlined here. 483 
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