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a b s t r a c t 

Modelling and optimising modern energy systems is inherently complex and often requires methods to 

simplify the discretization of the temporal domain. However, most of them are either (i) not well suited 

for systems with a high penetration of non-dispatchable renewables or (ii) too complex to be broadly 

adopted. In this work, we present a novel method that fits well with high penetration of renewables and 

different spatial scales. Furthermore, it is framework-independent and simple to implement. We show 

that, compared to the full time discretization, the proposed method saves > 90% computation time with 

< 1% error in the objective function. Moreover, it outperforms commonly used methods of modelling 

through typical days. Its practical usefulness is demonstrated by applying it to a case study about the 

optimal hydrogen production from renewable energy. The increased modelling fidelity results in a signif- 

icantly cheaper design and reveals operational details otherwise hidden by typical days. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Energy system design and optimisation, from the design of 

hemical plants to the planning of national infrastructures, has al- 

ays been a discipline of utmost importance. The emergence of re- 

ewable energy technologies, widespread distributed energy gen- 

ration, and the pressure to timely decarbonize the energy sec- 

or to limit global warming brought energy systems optimisation 

o a new level of difficulty, and therefore put it in the spot- 

ight of an even wider community of researchers. In this context, 

igorous mathematical analysis allows not only to outline decar- 

onization pathways important for policy makers nowadays but 

lso to facilitate the understanding of how technologies interact, 

eed to develop, and how synergies can be exploited. While the 

urrent work is focused on multi-energy systems, it is worth high- 

ighting that the increasing volatility of energy supply is also re- 

ected in other related research fields. Representative examples are 

itra et al. (2012) , who modelled and optimised transitions in the 

ynamic operation of gas separation and cement plants for varying 

lectricity prices, Ču ̌cek et al. (2014) , who optimised supply chains 

or biofuels such as bioethanol, biodiesel, or Fischer-Tropsch diesel 

ased on multiple periods, or Peng et al. (2021) , who studied dif- 
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erent thermochemical energy storage systems in concentrated so- 

ar plants and developed process models for the optimisation of 

heir design and operation. 

When dealing with multi-energy system optimisation, and de- 

ending on the purpose of the analysis, four different dimensions 

f complexity need to be balanced: technology detail, time, space, 

nd uncertainties. Despite Moore’s law still holding up, even to- 

ay computational resources do not allow to solve models with 

igh level of detail in all complexity dimensions in a reason- 

ble amount of time, e.g. multi-year planning considering hourly 

esolution (and associated uncertainties), detailed and often non- 

inear technology descriptions, and multi-node spatial resolution. 

riesmann et al. (2019) tried to assess the impact of technol- 

gy, space, and time complexity domains and suggested that a 

eduction in overall complexity should start in the technical do- 

ain, followed by time and lastly space, in order to maintain 

ccuracy. Wirtz et al. (2021) analysed the impact of technology 

omplexity and also found that a certain extent of simplifica- 

ion can be achieved without significant loss of accuracy. For un- 

ertainties, treated with either robust or stochastic optimisation, 

ailor-made methods that aim at embedding them into the other 

hree levels of complexity are often used ( Grossmann et al., 2015; 

ilpola and Lund, 2020; Chen et al., 2021 ). However, generalised 

uidelines can easily lead to large errors; as also highlighted by 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

MILP Mixed integer linear programming 

NDRES Non-dispatchable renewable energy conversion 

technologies 

ECT Energy conversion technology 

M-THS Time-hierarchical solution method 

M-TD Typical design days method (including networks) 

M-TDNW Typical design days method (excluding networks) 

M-REF Reference method 

LHV Lower heating value 

A constraint matrix for continuous variables 

B constraint matrix for binary variables 

b constant term vector of MILP 

C constraint matrix for integer variables 

d cost vector for continuous variables 

e cost vector for binary variables 

f cost vector for integer variables 

x continuous variable vector 

y binary variable vector 

z integer variable vector 

S installed capacity 

P max maximum output power 

F input power or fuel 

N total number of hierarchy layers 

x technology installation decision 

u technology operation decision 

T amb ambient air temperature 

Q thermal output power 

N 

on number of units operating 

T total number of time intervals 

M total number of nodes 

v in cut-in wind speed 

v out cut-out wind speed 

v r rated wind speed 

A available area 

U imported energy 

L end-user demand 

J costs 

d distance 

G installed network capacity 

P generated power 

a annuity factor 

p price of energy carrier 

e emission factor of energy carrier 

max maximum 

min minimum 

PV photovoltaic 

ST solar thermal 

S solar irradiance 

W wind 

c costs 

e emissions 

NW network 

T technology 

O operation 

O objective function 

E objective function error 

α performance coefficient 

β cost coefficient 

γ fitting parameter (electrolyzer model) 

δ minimum flow or input as a fraction of the in- 

stalled capacity 
i

2

� non-weather input data, e.g. energy demands, 

prices, or resource availability 

λ self-discharge coefficient 

θ weather input data, e.g. solar irradiance or wind 

speed 

σ length of time instance 

ζ size coefficient 

φ mass ratio 

ρ efficiency ratio 

κ network losses 

ψ network flow 

χ maintenance cost factor 

n hierarchy layer/stage 

t time 

i technology or running index of sum 

k type of fuel 

m node 

j type of network or energy carrier 

z segment of piecewise-linear model 

T Set of time instances 

N Set of hierarchy layers 

M Set of nodes 

I Set of technologies 

J Set of energy carriers 

R Real Numbers 

N Natural Numbers including zero 

riesmann et al. (2019) , the model complexity needs to fit the re- 

earch question. 

Traditionally, research used to focus on one or two di- 

ensions while drastically simplifying the others. For example, 

cenario analyses and long-term planning use time horizons of 

everal decades but limit the temporal and spatial granularity and 

echnology detail significantly. On the other hand, detailed process 

odelling is often limited to steady state analyses or short time 

orizons for specific dynamic behaviours. More recently, an over- 

ap between those two extremes emerged, which aims at bringing 

he complexity domains together at sufficient detail. An archetype 

f such analyses is energy system design considering one year at 

igh temporal resolution and detailed technology models, which 

re translated into linear models for use in mixed integer linear 

rogramming (MILP) optimisations. Although the time horizon is 

lready limited, methods to simplify the temporal domain are still 

equired due to the high resolution, most often hourly, which dras- 

ically increases the number of decision variables. This is especially 

rue if weather and demand profiles for different locations are con- 

idered to analyse spatially resolved systems including renewable 

nergy technologies. The methods most frequently used for tempo- 

al simplification can be assigned to one of three groups: (i) rolling 

orizon, (ii) time aggregation, and (iii) multi-scale models. Each of 

hese approaches have benefits and drawbacks, and the decision 

n which is best to use depends on the research question and case 

tudy. 

The rolling horizon method considers a limited time interval, 

.g. one week, which ‘rolls’ on until a full year (or any other de- 

ired time horizon) is analysed. To ensure continuity between the 

ntervals, some overlap between the previous and the next inter- 

al is considered. This method is mainly used for the optimisa- 

ion of operation as exemplified by Marquant et al. (2015) , who 

eport computation time savings of more than a factor 10 for op- 

imising the operation of a system of multiple urban energy hubs. 

ischi et al. (2019) showed that a rolling horizon can also be com- 

ined with constraints on different temporal scales by optimis- 

ng the operational scheduling of co-generation systems consid- 
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ring yearly periodicity constraints, cogeneration incentives, and 

onthly fiscal constraints. With its focus on operation optimisa- 

ion, the rolling horizon method by itself is not well suited for co- 

ptimisation of design and operation but can be combined with 

ther methods. 

Time-aggregation methods aim at reducing the temporal com- 

lexity by reducing the number of time instances to be anal- 

sed and therefore the number of decision variables. For exam- 

le, Bakirtzis et al. (2014) used multiple time resolutions for solv- 

ng unit commitment problems. Starting with a fine time reso- 

ution early in the analysed time horizon, periods of increasing 

ength were aggregated for time instances later on the horizon. 

om Stein et al. (2017) also used the idea of varying lengths of ag-

regated periods. However, they used different measures, e.g. the 

olatility of input data, to assess which periods require high res- 

lution. More typical for energy system design problems, cluster- 

ng algorithms are used to derive representative periods of the to- 

al time horizon and simplify the design problem. Irrespective of 

he method, representative periods impose a limit on the oper- 

tion modes. Therefore, time aggregation methods often require 

n additional operation optimisation for the full time resolution 

nd constant design - or even multiple iterations to obtain a fea- 

ible system. The most commonly used clustering algorithms for 

his application are k-means, k-medoids, and hierarchical cluster- 

ng ( Kotzur et al., 2018a ). While the first two are frequently found

nd applied in the vast majority of the studies, the latter is less 

rominent. An interesting application example was provided by 

ahmmacher et al. (2016) who implemented time slices based on 

ierarchical clustering in the TIMES-EU model. A hybrid method 

as presented by Fazlollahi et al. (2014) : they applied k-means 

n a hierarchical manner, i.e. finding clusters within clusters. More 

ecently, Tso et al. (2020) applied agglomerative hierarchical clus- 

ering to optimise renewable power systems with energy storage. 

he authors highlight the method’s ability to preserve the time 

hronology as crucial for modelling storage technologies. 

Several studies compared these three basic clustering meth- 

ds with similar findings: the best choice depends on the use- 

ase ( Kotzur et al., 2018a; Schütz et al., 2018; Pfenninger, 2017 ). 

owever, independently of the use-case, the analysis of energy 

ystems with high penetration of non-dispatchable renewable en- 

rgy sources, i.e solar and wind, were identified as particularly 

hallenging and error-prone. This is because (i) wind profiles are 

ard to cluster due to their volatility, an effect that is ampli- 

ed by spatially resolved systems in which different wind pro- 

les need to be clustered together, and (ii) inter-period storage, 

equired to dispatch the renewables, cannot be considered using 

he original approaches. To tackle the latter, Gabrielli et al. (2018a) , 

nd later also Kotzur et al. (2018b) , proposed a method to cou- 

le modelling through typical days, i.e. using representative pe- 

iods obtained from clustering the original data to represent the 

ull analysis horizon, with seasonal storage. While these improve- 

ents increase accuracy when modelling renewable energy sys- 

ems, they also increase the computation time and a significant 

rror may remain, among other things due to the difficulty of clus- 

ering wind profiles. Another pathway to improve the accuracy of 

ime-aggregation methods is the consideration of extreme events. 

atti et al. (2019) proposed k-MILP , a k-medoids based cluster- 

ng algorithm that automatically identifies a defined number of 

xtreme periods, e.g. 20 typical days and two extreme days. It 

oes so by leaving the extreme days as degrees of freedom to 

he clustering algorithm. In an attempt to minimise the overall 

rror, these degrees of freedom are used for days that show the 

east similarity with any of the clusters, i.e. extreme periods. A 

ethod with a similar goal but different approach was proposed 

y Teichgraeber et al. (2020) , who added slack variables to the op- 

ration optimisation and added the day with maximum slack de- 
3 
and to the typical days before iterating over the design optimi- 

ation. While neither of those methods were originally developed 

or systems with a high penetration of renewables, both are use- 

ul for such. Most often, time-aggregation methods are applied in 

wo stages: the design is optimised using the aggregated model 

hile the operation is optimised using the non-aggregated pro- 

les. To ensure feasibility, iteration between the two stages is usu- 

lly needed. The research group around Bardow developed sophis- 

icated methods to improve the computational efficiency of this it- 

rative approach ( Bahl et al., 2017; Bahl et al., 2018a; Bahl et al., 

018b; Baumgärtner et al., 2019; Baumgärtner et al., 2020 ). They 

ntroduce features like bounded error in the objective function via 

onvergence criteria and effective treatment of time-coupling con- 

traints, and report computation time savings up to a factor 100. 

owever, the analysed systems are not spatially resolved and con- 

ider non-dispatchable renewables only to a limited extent. Fur- 

hermore, multiple iterations between the design and operation 

ptimisation remain necessary, which might pose a problem for 

ystems for which the operation problem is hard to solve (e.g. 

hen high renewables penetration, multiple networks, and differ- 

nt storage options come together). 

An interesting and rather recent development is the area of 

ulti-scale models, which can be seen as an evolution of time- 

ggregation methods. Similar to hierarchical clustering, multiple 

ime scales are defined (e.g. a year consisting of typical seasons, 

hich consist of typical days, which consist of typical hours). Nev- 

rtheless, where hierarchical clustering is just a means to an end, 

.g. finding typical days, multi-scale models utilise all relevant 

cales, e.g seasonal storage is modelled on a daily scale while re- 

ewables are modelled at an hourly scale. The two most signifi- 

ant contributions known to the authors are by Samsatli and Sam- 

atli (2018) and Zhang et al. (2019) . Both studies are very sim- 

lar in their basic idea, but the former presents a more generic 

ramework. The latter, on the other hand, raises an issue that is 

lso important for the present study; it highlights the superior- 

ty over models that separate design and operation when treating 

ases with variable renewables. 

In the course of this literature review, no study was found that 

ombines a time horizon of at least one year, hourly temporal res- 

lution, spatial resolution, and technical detail - although some 

f the aforementioned methodological improvements certainly al- 

ow for such analyses. This raises the question why they have 

ot found their way into broader application yet. Presumably, an 

xplanation could be the high complexity and framework speci- 

city of those methods. Furthermore, most studies do not inves- 

igate systems with a high penetration of non-dispatchable re- 

ewables. In a previous study ( Weimann et al., 2021 ) however, 

e showed that this is the domain where the accuracy of classi- 

al time-aggregation methods suffers the most. Those few studies 

hich consider renewables iterate between design and operation 

ptimisation, which might increase the computation time if the 

peration optimisation is hard to solve. 

To fill this gap, we present a method that (i) is framework 

ndependent and simple to implement for researchers and prac- 

itioners, (ii) does not necessarily rely on clustering algorithms, 

iii) has a limited and a-priori defined number of optimisations, 

.e. does not iterate until a convergence criterion is met, (iv) does 

ot separate design and operation optimisation, (v) works for very 

igh penetration of renewables and different spatial scales, and 

vi) shows excellent accuracy and drastically reduced computation 

ime. 

The rest of this article is structured as follows: in Section 2.1 , 

he general formulation of the mathematical problem and tech- 

ology models are presented. The remainder of Section 2 covers 

 detailed description of the proposed time-discretization method, 

hich is the key methodological novelty of this work. The results 
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n Section 3 consist of two parts. Firstly, the method’s performance 

s assessed and the tuning parameters are discussed. Secondly, we 

how how the new method allows for a better analysis and pro- 

uces new insights when applied to a case study of interest. Fi- 

ally, Section 4 provides a summary of the paper and discusses 

he limitations of the method. 

. Methodology 

.1. MILP formulation and features 

Here, we present a short overview of the multi-energy sys- 

em optimisation problem. More details can be found in published 

ork ( Gabrielli et al., 2018a; Gabrielli et al., 2018b; Gabrielli et al., 

020; Weimann et al., 2021 ). The energy system design and opera- 

ion optimisation problem was formulated as an MILP using the 

nergy hub approach ( Geidl et al., 2007 ). The original approach 

as adapted for spatial resolution by considering a directed graph 

n which each node constitutes an energy hub with its own input 

ata. The general formulation of the MILP is 

min 

x,y,z 

(
d 

′ 
x + e ′ y + f 

′ 
z 
)

s.t. 

Ax + By + Cz = b 

x ≥ 0 ∈ R 

N x , y ∈ { 0 , 1 } N y , z ∈ N 

N z (1) 

here d , e , and f are generic cost vectors (the prime-symbol in- 

icates the use of their transpose form) with respect to contin- 

ous x , binary y , and integer variables z . A , B , and C are their 

espective constraint matrices and b is the constant term of the 

onstraints. N represents the dimensions of x , y , and z (indicated 

s subscript). The associated input data are (i) weather data, i.e. 

ind speed, solar irradiance, and air temperature, (ii) energy de- 

and profiles, (iii) emission factors, prices, and import limitations 

f energy carriers, and (iv) technology cost and performance pa- 

ameters. Data sets (i)–(iii) are hourly resolved in the framework, 

lthough (iii) was considered to be constant for the cases analysed 

n the present study, given the limited role of fossil-based electric- 

ty therein. Data sets (i) and (ii) are also spatially resolved, and in 

his work we consider cases both with and without spatial resolu- 

ion. In the following, the most important equations of the model 

re summarised for the objective functions, the energy balances, 

he networks, and the technologies. The reader is referred to the 

riginal publications whenever appropriate. In the following equa- 

ions, i ∈ I indicates the technologies, m ∈ M indicates the nodes, 

nd t ∈ T indicates the time instance. The total number of nodes 

nd time instances are denoted by M and T , respectively. 

Objective functions The objective functions of the optimisation 

roblem are the total annual cost of the system, O 

c , or the total

nnual CO 2 emissions, O 

e . The former is composed of the annual 

apital and maintenance cost of technologies J T , the annual capital 

ost of networks, J NW , and the annual operation cost, J O 

 

c = J T + J NW + J O (2) 

he annual technology costs are expressed as 

 

T = 

∑ 

i ∈I 

∑ 

m ∈M 

(
βi S i,m 

+ β ′ 
i 

)
(1 + χi ) a i (3) 

here β and β ′ represent the variable and fixed cost coefficients, S

s the technology size/installed capacity, and χ is a factor account- 

ng for maintenance costs. The equivalent annual investment cost 

s computed through the annuity factor a, where an interest rate 

f 10% is considered. The annual operation cost is calculated based 

n the amount of imported energy U during the year: 

 

O = 

∑ 

j∈J 

∑ 

m ∈M 

∑ 

t∈T 
p j U j,m,t (4) 
4 
here p j is the price for importing energy carrier j. The emissions 

re determined solely by the imported energy carriers, 

 

e = 

∑ 

j∈J 

∑ 

m ∈M 

∑ 

t∈T 
e j U j,m,t (5) 

here e j is the emission factor of imported energy carrier j. For 

his to hold true, three assumptions are crucial: (i) no carbon 

ourcing, e.g. drilling for gas, happens inside the system bound- 

ries, (ii) life-cycle emissions of technologies are neglected, and 

iii) all imported energy is consumed in the analysed time period, 

.e. no energy is stored in a multi-year fashion. 

Energy balance The sum of imported and generated energy 

ust equal the consumed energy for all energy carriers j at all 

ime intervals t ∈ T 

 = 

∑ 

m 

′ ∈M 

m 

′ � = m 

(
ψ j,m 

′ ,m,t (1 − κ j ) 
d j,m ′ ,m − ψ j,m,m 

′ ,t 
)

+ 

∑ 

i ∈I 

(
P j,m,i,t − F j,m,i,t 

)
+ U j,m,t − L j,m,t (6) 

here P is the energy generation, F the energy stored or consumed 

y storage or conversion technologies, L the end-user demand, ψ
he flow between nodes, and d and κ are the network-specific dis- 

ance and loss coefficient, respectively. 

In case of a copper-plate approach for the networks, i.e. all en- 

rgy carriers are free to flow without restrictions, the energy bal- 

nce simplifies to 

 = 

∑ 

m ∈M 

∑ 

i ∈I 

(
P j,m,i,t − F j,m,i,t 

)
+ U j,m,t − L j,m,t (7) 

Networks The network is described as a directed graph in 

hich the nodes are connected through potentially bi-directional 

ertices. This graph is characterised by two parameters, namely the 

onnectivity c j,m,m 

′ ∈ { 0 , 1 } and distance d j,m,m 

′ ∈ R between two

odes m and m 

′ for network j. In the course of this work, each 

nergy carrier has only one associated network, i.e. j also indicates 

he energy carrier transported. The flow, ψ j,m,m 

′ ,t , from node m to 

ode m 

′ at any time instance t is constrained as 

j G j,m,m 

′ ≤ ψ j,m,m 

′ ,t ≤ G j,m,m 

′ (8) 

 j,m,m 

′ G 

min 
j,m,m 

′ ≤ G j,m,m 

′ ≤ c j,m,m 

′ G 

max 
j,m,m 

′ (9) 

here δ is the minimum flow as a fraction of the installed capac- 

ty G . We distinguish two ways of implementing this model, ei- 

her sizing-and-scheduling or scheduling-only. In the sizing-and- 

cheduling approach, both the network design and network opera- 

ion are subject to optimisation, i.e. ψ, c, and G are decision vari- 

bles. In the scheduling-only approach, only the operation is opti- 

ised for a given network, i.e. c is given and G 

min = G 

max . More-

ver, a concave, piecewise linear cost-model describing the invest- 

ent cost J NW was defined to account for existing free capacity 

 

NW 

j = 

∑ 

m 

∑ 

m 

′ 

(∑ 

z 

[(
G j,m,m 

′ βz, j + β ′ 
z, j 

)
w z, j,m,m 

′ d j,m,m 

′ 
]
+ c j,m,m 

′ β ′′ 
j 

)

(10) 

 

z 

w z, j,m,m 

′ ≤ 1 (11) 

here β, β ′ , and β ′′ are cost coefficients, and w ∈ { 0 , 1 } is a bi-

ary selecting segment z. The bilinearity between G and w was 

esolved according to Eq. (23) . Following this piecewise linear ap- 

roach, Eq. (9) needs to be adjusted such that 

 

min 
j,m,m 

′ = 

∑ 

z 

G 

min 
z, j,m,m 

′ w z, j,m,m 

′ (12) 
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max 
j,m,m 

′ = 

∑ 

z 

G 

max 
z, j,m,m 

′ w z, j,m,m 

′ (13) 

As an alternative to the sizing-and-scheduling and scheduling- 

nly network designs, a copper-plate approach can be imple- 

ented in which all energy carriers are free to flow between the 

odes without restrictions. In this case, Eqs. (8) and (9) become 

bsolete, and J NW = 0 . 

Technology cost and performance constraints Two different 

amilies of technologies are considered in this work, namely energy 

onversion technologies (ECTs) and storage technologies. For each 

echnology i, the installed capacity S i must fall between a mini- 

um and a maximum value, S min 
i 

and S max 
i 

, respectively 

 

min 
i x i ≤ S i ≤ S max 

i x i (14) 

here the binary variable x i determines if a technology is installed. 

 

min 
i 

and S max 
i 

are decided depending on the case study; however, 

he interval is typically set very broad intentionally to avoid ex- 

luding optimal solutions. 

Technology-specific constraints are implemented per family of 

echnology: 

Energy conversion technologies. All energy conversion technolo- 

ies follow the same fundamental logic: the actual power output 

 i,m,t of technology i at node m and time instance t is constrained 

y a maximum value P max 
i,m,t 

. 

 i,m,t ≤ P max 
i,m,t (15) 

his maximum value is determined by the input, which is either 

 decision variable for dispatchable ECTs or imposed, e.g. by the 

eather profile, for non-dispatchable ECTs. 

• Photovoltaic (PV) and solar thermal (ST) panels: the maxi- 

mum electric power output of PV panels is described as a 

function of solar irradiance θ S and ambient air temperature 

T amb 

P max 
m,t = ηPV 

(
θ S 

m,t , T 
amb 

t 

)
θ S 

m,t S 
PV 
m 

(16) 

where ηPV is the efficiency calculated as proposed by 

De Soto et al. (2006) . For ST panels, the maximum thermal 

output power is described as 

P max 
m,t = ηST θ S 

m,t S 
ST 
m 

(17) 

where the efficiency ηST is a function of the output tem- 

perature and considered constant at 0.65 in this work 

( Gabrielli et al., 2018a ). In addition to Eq. (14) , PV and ST

panels compete for the same available area A 

S PV 
m 

+ S ST 
m 

≤ A m 

(18) 

• Wind turbines (WT): the maximum power output is calcu- 

lated as a function of the wind speed θW and the turbine’s 

performance parameters, namely the cut-in wind speed v in , 
the rated wind speed v r , the cut-out wind speed v out , and 

the rated power P r as proposed in Jerez et al. (2015) 

P max (θW 

m,t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 if θW 

m,t < v in 

P r 
(θW 

m,t ) 
3 −( v in ) 

3 

( v r ) 3 −( v in ) 
3 if v in ≤ θW 

m,t < v r 

P r if v r ≤ θW 

m,t < v out 

0 if θW 

m,t ≥ v out 

(19) 

The costs for onshore turbines are solely defined by the tur- 

bine price and a constant share of installation cost. For off- 

shore turbines, the costs are a function of turbine price, dis- 

tance to shore, and water depth. For details about this cost 

model, the reader is referred to Weimann et al. (2021) . 
5 
• Polymeric electrolyte membrane electrolysers (PEMECs) and 

fuel cells (PEMFCs): PEMECs produce hydrogen and oxygen, 

the latter being neglected in this work, while consuming 

electricity. Although PEMFCs can produce electricity from 

natural gas (NG) or hydrogen, we only consider hydrogen as 

fuel in this work, which has to be produced within the sys- 

tem. The maximum output is described using a piecewise 

affine approximation as discussed by Gabrielli et al. (2018b) 

P max 
m,t = αz F m,t + α′ 

z S m 

u m,t (20) 

δS m 

u m,t ≤ F m,t ≤ S m 

u m,t (21) 

where αz and α′ 
z are the coefficients of the zth approxima- 

tion line segment. For the PEMFC, P m,t and F m,t are the elec- 

tric power outlet and the lower heating value (LHV) based 

hydrogen power inlet, respectively, while for the PEMEC they 

refer to the LHV-based hydrogen power output and the elec- 

tricity power input, respectively. The binary u m,t is an hourly 

ON/OFF decision, and δ is the minimum input as a fraction 

of the installed capacity. The PEMFC is also capable of co- 

producing heat Q m,t 

Q 

max 
m,t = P max 

m,t (ρ − 1) (22) 

where ρ is the ratio of first-principle efficiency to electrical 

efficiency. Further details about the model and its parame- 

ters can be found in Gabrielli et al. (2018a) . The bilinearity 

between S and u in Eqs. (20) and (21) is resolved by replac- 

ing Su with an auxiliary variable ˜ S which is constrained as 

S min u m,t ≤ ˜ S m 

≤ S max u m,t (23) 

S m 

− S max ( 1 − u m,t ) ≤ ˜ S m 

≤ S m 

(24) 

This approach is used to tackle all bilinearities relevant in 

this work. 
• Electrically driven heat pumps (edHP): the maximum ther- 

mal power generated is described as 

P max 
m,t = αF m,t f (T amb 

t ) + α′ S m 

u m,t + α′′ u m,t (25) 

u m,t (δS m 

+ γ ) ≤ F m,t ≤ u m,t 

(
δ′ S m 

+ γ ′ ) (26) 

where the parameters α, α′ , α′′ , δ, δ′ , γ , γ ′ are determined 

by fitting manufacturer data. Further details about the model 

and its parameters can be found in Gabrielli et al. (2018a) . 
• Gas turbines (GT): In this work, the gas turbine model pre- 

sented in Weimann et al. (2019) was used. The maximum 

power output is 

P max 
m,t = 

(
αk u m,t F k,m,t + α′ 

k N 

on 
k,m,t 

)
f 
(
T amb 

)
(27) 

N 

on 
k,m,t ≤ S m 

(28) 

where k indicates the fuel used, i.e. hydrogen or natural gas, 

and N 

on is the number of turbines operating. The choice of 

fuel is a design decision, i.e. fuel switching during operation 

is not possible. 

The heat output Q 

max 
m,t is determined indirectly by deducting 

the losses in the stack 

Q 

max 
m,t = F k,m,t − P max 

m,t − φk 

F k,m,t 

LHV k 

c flue gas 
p �T (29) 

where φ is the mass ratio between fuel and flue gas and 

LHV k is the lower heating value of fuel k . 

Energy storage technologies. The energy content E i,m,t of storage 

echnology i at node m and time t can be described as 

 i,m,t = E i,m,t−1 (1 − λ) − λ′ S i,m 

+ ηin P in i,m,t −
1 

ηout 
P out 

i,m,t (30) 
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Fig. 1. Graphic representation of the proposed solution method. 
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here λ and λ′ are self-discharge coefficients, and ηin and ηout are 

he charging and discharging efficiency, respectively. Furthermore, 

ize and periodicity constraints have to be fulfilled 

 ≤ E i,m,t ≤ S i,m 

∀ t ∈ T (31) 

 0 = E T (32) 

here T is the last time instance of the analysed period. Finally, 

he maximum charging rate P in and discharging rate P out are lim- 

ted as 

 

in 
i,m,t ≤

S i,m 

τ in 
i 

(33) 

 

out 
i,m,t ≤

S i,m 

τ out 
i 

(34) 

here τ in/out is the time required to completely charge (in) or dis- 

harge (out) the storage medium. 

.2. Time-hierarchical solution method 

The method we propose in the current work has its foundations 

n a common observation in energy system design: the cost of a 

ystem designed for average values, e.g. average annual demand, 

s lower than for a system designed for highly fluctuating values, 

.g. hourly demand. The reason for this lies in the volatility of the 

ime series used and can be illustrated by a simple example: an 

rbitrary energy production unit that follows a sinusoidal opera- 

ion profile with a maximum of 2 MW, a minimum of 0 MW, and

 period length of 0.5 h requires an installed capacity of 2 MW 

o produce an average of 1 MW. When using an hourly average 

f the same profile, the technology will be sized at a capacity of 

ust 1 MW, therefore reducing the cost. The same consideration, 

.e. averaging temporal profiles reduces the magnitude of peaks 

nd hence the installed capacity, holds for non-dispatchable re- 

ewable energy technologies. Additionally, the balancing demands, 

nd therefore storage costs, also reduce for a coarser time dis- 

retization. Therefore, the fundamental assumption of our method 

s that a coarser time-discretization leads to smaller installed ca- 

acities of all units, and therefore cheaper system designs, due to a 

eduction in overall volatility. This feature is used to create a time- 

ierarchical solution approach where the time-resolution increases 

ith every hierarchy layer, also called stage in the present work, as 

llustrated in Fig. 1 . Progressing through the tree, layer n − 1 pro- 

ides lower bound constraints for layer n as explained in the fol- 

owing. Note that all constraints presented are resolved by type of 

echnology and location - the respective indices were omitted to 

mprove readability. 

Reducing the time resolution of input data. When reducing 

he time resolution of input data, the method differentiates be- 

ween profiles that are directly used in the optimisation and pro- 

les which are precursors for data that is used in the optimisation. 

nergy demands, energy prices, resource availability, and emission 
6 
actors of imported energy carriers belong to the former category. 

eather data input to non-dispatchable technologies belongs in- 

tead to the latter category, as they are used in a pre-processing 

tep outside the MILP solution to calculate the maximum power 

otential of wind and solar power plants at different time in- 

tances. This maximum power profile is then directly used in the 

ptimisation itself. In the methodological framework presented in 

his work, weather profiles are the only example of this category, 

nd in the following we simply differentiate between non-weather 

nput data � and weather input data θ . 

All time-resolved input data except for weather data are arith- 

etically averaged to reduce the time resolution according to 

n,t n = 

∑ 

i �N,i 

σn 

∀ t n ∈ T n 
n ∈ N , N = [1 , N] 

i ∈ [ (t n − 1) σn + 1 , t n σn ] (35) 

here n indicates the hierarchy layer, and N is the set of hierarchy 

ayers with the total number of layers, N. The interval length, σn , 

s the number of subsequent Nth-layer time instances, t N , used to 

orm one time instance in layer n, t n (compare with Fig. 1 ). In the

urrent work, the interval length is constant since a preliminary 

nalysis showed no significant advantage in using variable interval 

engths. However, varying the interval length might be beneficial 

or specific cases, e.g for regions with a significant imbalance be- 

ween daytime and nighttime. In case of constant interval length, 

he total number of time instances in the optimisation is given as 

 n = 

T N 
σn 

(36) 

urthermore, the interval lengths of subsequent layers must fulfil 

he following condition 

σn −1 

σn 
∈ N (37) 

Opposed to the other time-resolved profiles, weather profiles, 

, are not averaged but carried over between hierarchy layers with 

heir full N 

th -layer resolution. 

n −1 = θn = θN (38) 

he resulting dependent profiles, i.e. the maximum power of re- 

ewable energy technologies, are averaged according to the rel- 

vant time discretization, as explained in detail in the following 

aragraphs. 

Energy conversion technologies. All energy conversion tech- 

ologies are constrained in size by the previous layer in the form 

f a lower bound 

 n ≥ S n −1 (39) 

here S is the installed capacity of any energy conversion technol- 

gy. Depending on the technology, S can be continuous or integer. 
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onstraint (39) is the mathematical implementation of the afore- 

entioned fundamental assumption that an increase in volatility 

f the time series will always lead to greater, or equal, installed ca- 

acities. This constraint also tightens constraint (14) on the lower 

nd, hence imposing a positive investment decision for the tech- 

ology in stage n if S n −1 > 0 . 

For the time aggregation in the different stages, conventional 

ispatchable energy conversion technologies and non-dispatchable 

enewable energy conversion technologies (NDRES) are treated dif- 

erently. 

As mentioned earlier, the input data for NDRES, i.e. weather 

rofiles, remain at their maximum resolution, no matter the stage. 

his is an important feature of the proposed method, which 

eads to a significant improvement compared to methods where 

 coarser time resolution is adopted irrespective of the technology. 

n fact, the non-linear input-output correlation for NDRES causes 

he maximum power calculated from an averaged weather profile 

o deviate significantly from the value obtained when averaging 

he maximum power calculated from the original weather profile. 

ence, we calculate the maximum power output for one unit in 

ayer n at time instance t n as 

 

max 
t n 

= 

∑ 

i f (θN,i ) 

σn 
, i ∈ [ (t n − 1) σn + 1 , t n σn ] (40) 

here f is the technology specific input-output function, and θN,i 

s the weather profile of layer N, i.e. at original time resolution. 

ote that this is only possible because the maximum power output 

s calculated in a pre-processing step outside the MILP solution. 

As opposed to NDRES, dispatchable energy conversion technolo- 

ies do not need modifications when applying this method. As 

oth input power and output power are decision variables, albeit 

utually dependent, the models can be applied directly to a prob- 

em with reduced time resolution. 

Storage technologies. Storage technologies are the only tech- 

ologies for which the previous stage also imposes constraints on 

he operation variables, and therefore take a special position in 

his method. In particular, the energy content or storage level, E, 

s bound by previous hierarchy layers according to 

 n,tσn −1 
≥ E n −1 ,t ∀ t ∈ T n −1 (41) 

urthermore, differentiating between power and energy becomes 

rucial for time resolutions other than hourly. Therefore, the en- 

rgy balance described for hourly resolution in Eq. (30) needs to 

e generalised as 

 t n = E t n −1 (1 − λ) σn + 

(
ηin P in t n 

− 1 

ηout 
P out 

t n 
− λ′ S 

) σn −1 ∑ 

i =0 

(1 − λ) i (42) 

inally, the installed capacity, S, is also bound by Eq. (39) . 

Networks. As for energy conversion and storage technologies, 

he installed capacity of networks has a lower bound imposed by 

he previous stage 

 m,m 

′ ,n ≥ G m,m 

′ ,n −1 (43) 

here G m,m 

′ is the installed capacity for a certain type of net- 

ork (e.g. pipeline, trucks, electricity grid - index omitted) be- 

ween nodes m and m 

′ . Similar to storage technologies, networks 

ontribute significantly to the complexity of both the design and 

he operation problem. This suggests that bounding the operation 

imilar to storage technologies, e.g. applying lower limits on flows, 

ould be beneficial. However, no constraints which improve the 

erformance while ensuring feasibility and accuracy could be for- 

ulated. This is a result of the network operation varying signifi- 

antly between the hierarchy layers. 

Objective functions. In a single-objective optimisation, apply- 

ng bounds on the objective functions throughout hierarchy layers 

howed only limited effect since the bounds for design variables 
7 
lready imply indirect bounds for the objective functions. However, 

or multi-objective optimisation (or Pareto optimisations) using the 

-constraint or similar methods, i.e. optimising objective 1 while 

onstraining objective 2 , it is imperative to constrain objective 2 at 

ach hierarchy layer 

 2 ,n ≤ O 

max 
2 ,n ≤ O 

max 
2 ,N (44) 

 

max 
2 ,n = O 

max 
2 ,N ⇐⇒ n = N (45) 

elaxing inequality (44) , e.g. by using O 

max 
2 ,N 

to bound O 2 ,n (if n � =
), can be detrimental for the computation time. Most often how- 

ver, this cannot be avoided if only O 

max 
2 ,N 

is known. The accuracy 

s not affected by relaxing inequality (44) , as shown in Section 3.3 .

n the other hand, over-constraining the problem as O 2 ,n ≤ O 

max 
2 , n −1 

ill lead to infeasibility in most cases. 

.3. Method benchmarking 

To test the proposed methods under different boundary con- 

itions, three substantially different real-world applications were 

onsidered. These feature (i) different energy carriers, (ii) differ- 

nt number of nodes, i.e. different spatial resolution, (iii) different 

echnologies, and (iv) different demand characteristics. All appli- 

ations were optimised for minimum cost at minimum emissions, 

.e. minimising emissions first and applying the found optimum as 

pper bound in the subsequent cost optimisation. 

The first case is an energy system design for a dis- 

rict of the city of Zurich (Switzerland) as analysed in 

abrielli et al. (2018a) (tag ‘LZH’ for Local Zurich ). The second 

ase is an energy system design for the campus of Utrecht Univer- 

ity (tag ‘LC’ for Local Campus ). Both LZH and LC feature electricity 

nd heat demand profiles, as is typical for urban energy system 

esigns. However, the demand profiles vary in magnitude and 

eriodicity. Furthermore, the available space for renewable energy 

onversion technologies is different. The third case is an energy 

ystem design for the Netherlands on a national scale, focused 

n fulfilling electricity and hydrogen demands (tags N1,N3, and 

8 for national ). Cases LZH, LC, and N1 are not spatially resolved, 

hile cases N3 and N8 are spatially resolved over three nodes 

nd eight nodes, respectively. The networks of N3 and N8 were 

nalysed with different levels of detail: (i) a copper-plate as- 

umption (N3C/N8C), (ii) a scheduling-only network in which the 

peration is optimised for a fixed capacity (N3S/N8S), and (iii) 

 network which is optimised for both operation and capacity 

N3NW/N8NW). In either case, networks are only considered for 

lectricity and hydrogen. The mathematical formulation of the 

ifferent networks is described in Section 2.1 . Finally, the com- 

lexity of each case was further varied by varying the technology 

ortfolio, starting with a simple case (electricity as the only energy 

arrier, wind turbines and photovoltaics as the only conversion 

echnologies, no storage) and gradually increasing the number 

f conversion and storage technologies and energy carriers. This 

esults in a total of 38 test cases. To ensure feasibility of the sys- 

ems, import of electricity entering the system boundaries with an 

mission factor of 371g CO2/kWh e and costs of 0.034 EUR/kWh e 

as allowed for, but minimised in the course of the emissions 

inimisation. An overview of the different cases can be found 

n Table A.1 in the appendix while Table A.2 summarises the 

roblem size of the different test cases. All case abbreviations 

sed henceforth refer to these tables, unless stated otherwise. 

For benchmarking, the proposed method and two other com- 

on methods for time discretization were compared against a ref- 

rence, resulting in four different methods: (i) full hourly reso- 

ution as optimal reference (M-REF), (ii) a method using 20 typ- 

cal design days to model binary-intensive technologies (mostly 

ispatchable ECTs) and the networks (method M2 presented in 
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Table 1 

Summary of average performance parameters for different methods, relative to the reference method’s performance. Note that the reported computation 

times always include the time for compiling the MILP problem, hence giving the time-hierarchical method an intrinsic disadvantage for very low computa- 

tion times where the compilation time makes up a significant share of the total computation time. 

Ref. comp. Emission increase [-] Cost increase [-] Relative comp. time [-] Infeasible problems 

time [h] M-THS M-TD M-TDNW M-THS M-TD M-TDNW M-THS M-TD M-TDNW M-THS M-TD M-TDNW 

0.01-0.1 < 0.001 0.385 < 0.001 0.015 0.011 < 0.001 0.850 0.880 1.030 1 0 0 

0.1-1 < 0.001 0.663 0.006 0.012 0.766 0.303 0.195 0.893 0.821 0 2 0 

1–10 < 0.001 0.540 < 0.001 0.008 1.870 0.669 0.073 0.769 0.641 0 0 0 

10–100 < 0.001 0.253 < 0.001 0.007 2.021 0.670 0.082 0.258 0.512 0 0 0 

Problem size Continuous variables Integer variables (of which binary) Constraints 

0.01-0.1 median 220,325 8 (0) 341,001 

min/max 64,801/548,660 3/8,643 (0/8,640) 102,873/910,871 

0.1-1 median 450,022 149 (128) 811,886 

min/max 144,791/1,454,229 21/21,621 (0/21,600) 257,263/2,562,131 

1–10 median 788,414 28,462 (21,856) 1,445,326 

min/max 233,357/2,015,253 71/129,922 (63/43,200) 440,878/3,684,947 

10–100 median 1,512,160 87,621 (43,240) 2,887,909 

min/max 466,637/3,066,160 469/259,266 (448/87,856) 880,954/5,856,202 
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5

abrielli et al. (2018a) , in the present work referred to as M-TD), 

iii) the same as method (ii) but with networks modelled using the 

ull time resolution instead of design days (M-TDNW), and (iv) the 

ime-hierarchical solution method proposed in the present work 

sing two stages, i.e. N = 2 (M-THS). The results were compared 

or computation time and the optimal value of both objective func- 

ions. To avoid confusion by the wide range of values found for the 

ifferent test cases, results are reported relative to the respective 

-REF value. We distinguish between relative values, O 

rel , and er- 

ors, E

 

rel = 

O 

M-X 

O 

M-REF 
(46) 

 = 1 − O 

M-REF 

O 

M-X 
(47) 

ere, M-X refers to any of M-TD, M-TDNW, or M-THS, and O also 

ncludes the computation time in addition to the objective func- 

ions. The definition of E shown in Eq. (47) was chosen to avoid 

ividing by zero in case of zero-emission reference designs. Since 

 

M-REF ≤ O 

M-X always holds for emissions and costs, E was defined 

o be zero for cases where O 

M-X = 0 . As a result, E always falls be-

ween zero and one, reaching a value of one only if O 

M-REF = 0 and

 

M-X > 0 . 

Furthermore, a multi-objective optimisation was conducted for 

ase N3S-3 using the ε-constraint method to show the perfor- 

ance of M-THS applied to constrained objective functions. In to- 

al, four Pareto-optimal points, evenly spaced and spanning the full 

ange from minimum emissions to maximum emissions (i.e. mini- 

um cost) were calculated with M-THS and M-REF. 

To test how multi-year analyses can benefit from the proposed 

ethod, test cases N8S-3 and N8S-4 (the systems are identical ex- 

ept for the hydrogen demand which is only applied in N8S-4) 

ere extended to two years. For that, weather and demand pro- 

les of the first year were distorted by random noise and applied 

o the second year. In particular, 5% noise was applied to the de- 

and profiles, 10% noise was applied to the solar irradiance pro- 

les, and 50% noise was applied to the wind speed profiles. Each 

cenario was optimised for minimum cost at minimum emissions 

sing two and three hierarchy stages. A comparison with M-REF is 

ot possible as it exceeded the computation time limit, but a com- 

arison to the single-year application of M-THS is provided. 

All problems were formulated in MATLAB 2018a ( The Math- 

orks Inc., 2018 ) using the YALMIP-toolbox ( Löfberg, 2004 ), and 

olved with Gurobi v9.1 ( Gurobi Optimization LLC, 20 0 0 ) on an

ntel Xeon Silver 4110 machine (2.10 GHz, 2 sockets, 16 cores, 32 
8 
ogical processors, 64 GB RAM) assigning 4 logical processors per 

roblem. A time limit of 60 h was applied for each optimisation 

tep (emission and cost optimisation). Cases for which M-REF was 

nfeasible or reached the time limit were neglected in the compar- 

son. 

. Results 

.1. Benchmarking 

Figure 2 a and b show the error in the emission and cost ob- 

ective, respectively, for the three compared methods relative to 

he reference method. In general, time discretization methods in- 

roduce an error in both emission and cost objective, albeit more 

ronounced for the cost objective. The extent of the error intro- 

uced also varies widely and ranges from negligibly small errors 

ell below 1% to more than four-fold increases in emissions and 

ight-fold increases in costs. Contrary to this general observation, 

-THS shows excellent accuracy regarding the costs ( < 1.5% error) 

nd emissions ( < 0.001% error) over the whole range of test cases. 

n the other hand, 18 cases with a significant increase in emis- 

ions can be observed for M-TD. Eleven of these cases show emis- 

ions while the reference had no emissions. However, these errors 

re solely due to the limitation of operation modes of the networks 

nd vanish using M-TDNW. For the cost objective, M-TD shows up 

o 8.3-fold increases. Again, some of those errors can be reduced 

y M-TDNW, but significant increases of up to 2.6-fold remain. 

The computation time for the three methods relative to the 

eference method are shown in Fig. 2 c. For reference computa- 

ion times shorter than 0.1 h, no substantial time savings for ei- 

her algorithm can be found due to the high share of compila- 

ion time. For higher reference computation times, i.e. where really 

eeded, a general trend of decreasing relative computation times 

an be observed. Nevertheless, a significant amount of test cases 

hows hardly any decrease in computation time and some even 

uffer from increased computation time upon application of time 

iscretization methods. Again, M-THS defies this observation and 

learly outperforms M-TD and M-TDNW with savings of up to 99% 

nd absence of significant outliers. This is shown more explicitly 

n Table 1 , which reports average values of the data visualised in 

ig. 2 a–c. 

In conclusion, the benchmarking showed the proposed 

ethod’s superiority, especially for problems featuring com- 

utation times longer than 1 h. Here, the method is by a factor 

–10 faster while also keeping the objective function error at 
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Fig. 2. Comparison of the three evaluated methods against the reference for (a) 

total emissions, (b) total system costs, and (c) computation time. The definitions of 

the values shown on the y-axis are reported in Section 2.3 . The raw data can be 

found in Table A.2. 
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 negligible value ( < 1 %). It has to be noted at this point that

ne of the 68 test cases was infeasible using M-THS. This case, 

ogether with other limitations of the method, will be discussed 

n Section 4.1 . 

.2. Parameter tuning 

The influence of the key parameters of this method, i.e. the 

umber of hierarchy stages N and the interval length σn , were in- 

estigated first using cases N3S-4 and the more complex N8S-4. To 

nalyse the effect of the interval length, the test cases were opti- 

ised for minimum cost at minimum emissions over one year us- 
9 
ng two hierarchy stages and interval lengths of 12, 8, 6, 4, 3, and 

 h in the first stage. In a second analysis, the effect of the number

f stages was investigated by analysing both cases with 1, 2, 3, and 

 stages. Increasing the number of stages automatically introduces 

ifferent interval lengths. To isolate the two effects, the first-stage 

nterval length was varied as well as shown in Table 2 . 

Figure 3 a and b show the effect of the interval length on the 

omputation time and the objective functions, respectively. For 

3S-4, the error in minimum emissions is less than 0.4% for all 

nterval lengths and shows low sensitivity towards this parame- 

er. The minimum cost at minimum emissions are more sensitive 

o the interval length; however, the maximum error at an inter- 

al length of 12 h is still only 1.2%. For interval lengths of 6 h and

horter, the error drops well below 0.5%. The computation time de- 

reases with increasing interval length. This effect is mostly due to 

avings in the first stage, while the computation time in the sec- 

nd stage is almost constant except for very short interval lengths. 

n particular, increasing the interval length from 2 h to 6 h, the 

omputation time drops by 50%, while increasing it further to 12 h 

educes computation time by only ∼9% additionally. Similar qual- 

tative trends are found for the more complex N8S-4 case ( Fig. 3 c

nd d). The error in the cost objective is larger but stays below 5% 

ver the full range, whereas there is no error in emissions (the ob- 

ective value in the reference case is zero, the relative values were 

et to 1 for visualisation purposes). The computation time is again 

ominated by the first stage for short interval lengths and by the 

econd stage for long interval lengths. The effect of increasing the 

nterval length on the computation time is more pronounced than 

or the simpler N3S-4 case; increasing it from 2 h to 6 h reduces 

he computation time by 89%, while reducing it further to 12 h 

educes the computation time by another 15%. Overall, an inter- 

al length of 6 h was identified as a reasonable trade-off between 

omputation time and accuracy. This is despite the sharp increase 

n the cost objective at 6 h interval length for N8S-4, which is con- 

idered a peculiarity of this specific test case. 

The effect of the number of stages is shown in Table 2 . For both

est cases, the interval length in the first stage dominates the er- 

or in the objective functions, while the number of stages has only 

inor effects. This makes sense, since the strongest simplification, 

hich is the first stage by definition, determines the error which 

s propagated through the stages as a result of the method design. 

or the computation time, the effect of the number of stages is 

ore complex and can have two outcomes: 

i. Adding stages speeds up the problem, as it enables to tighten 

the bounds step-wise. 

ii. For cases where the bounds provided by the first stage are tight 

already and therefore allow the subsequent stages to solve very 

fast, the aforementioned benefit is outweighed by the time the 

additional stages take to solve. 

The combination of both effects can be seen for case N3S-4. 

tarting from two stages with interval lengths of 24 h and 1 h, 

dding a 6 h stage reduces the computation time by 28%. How- 

ver, adding another stage with 12 h interval length increases the 

omputation time again by 27%. 

Which of the two effects dominates varies and the appropriate 

umber of stages needs to be decided on a case-by-case basis in 

ractice. 

.3. Application examples 

Application to Pareto optimisation. The Pareto front shown in 

ig. 4 clearly shows the high accuracy of M-THS with respect to M- 

EF along the whole Pareto front. It is however noteworthy, that 

he minimum emissions found with M-REF are 0.5% lower than 

ith M-THS. This leads to higher costs at minimum emissions for 
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Table 2 

Effects of the number of stages and interval length on the performance of M-THS for the examples of test 

cases N3S-4 and N8S-4. All values are relative to the reference reported in the first row. 

#Stages Interval Length N3S-4 N8S-4 

Emission Cost Comp. time Emission Cost Comp. time 

1 1 1 1 1 1 1 1 

2 6-1 1.001 1.003 0.161 1.000 1.037 0.024 

2 12-1 1.003 1.012 0.133 1.000 1.041 0.020 

2 24-1 1.004 1.015 0.197 1.000 1.303 0.017 

3 12-6-1 1.003 1.012 0.184 1.000 1.042 0.019 

3 24-6-1 1.004 1.015 0.142 1.000 1.304 0.021 

4 24-12-6-1 1.004 1.016 0.181 1.000 1.306 0.021 

Fig. 3. Effect of interval length on computation time (first row, (a) and (c)) and objective functions (second row, (b) and (d)), for test cases N3S-4 (first column, (a) and (b)) 

and N8S-4 (second column (c) and (d)). The objective function value is shown relative to the reference case. 

Fig. 4. Comparison of Pareto fronts for case N3S-3 generated using M-THS and M- 

REF. 

M

b

w

h

Table 3 

Summary of the results of a 2-years analysis of test cases N8S-3 and N8S-4, opti- 

mised for minimum cost at minimum emissions. 

Horizon Int. length Comp. time Cost Emission 

[y] [h] [h] [10 10EUR/y] [t CO 2 /y] 

N8S- 

3 

1 6-1 1.71 3.963 0 

1 24-6-1 1.43 4.014 0 

2 6-1 7.36 4.164 0 

2 24-6-1 4.79 4.164 0 

N8S- 

4 

1 6-1 1.88 7.19 0 

1 24-6-1 1.15 9.04 0 

2 6-1 3.09 7.95 0 

2 24-6-1 4.03 10.53 0 

p

o

r

o

e

m

y

e

i

s

-REF. To identify if the costs for the minimum emissions found 

y M-THS are accurate, an additional optimisation was conducted 

ith M-REF. In this optimisation, the costs were minimised while 

aving the minimum emissions identified with M-THS as an up- 
10 
er limit. Despite the high accuracy, the computation time for the 

riginal four Pareto points is reduced by 82%. 

Application to long time periods using multiple stages. The 

esults in Table 3 show that the proposed method allows for co- 

ptimisation of design and operation of systems featuring consid- 

rable size and complexity (around 6 million constraints and 3 

illion variables, of which ∼88k integers, for one year) on a 2- 

ear horizon with a computation time of only a few hours. How- 

ver, since no simplification in the form of typical design periods 

s used, the problem remains memory intensive for high hierarchy 

tages. This can lead to intractability on low-memory machines, 
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Fig. 5. Results of re-analysing the case presented by Weimann et al. (2021) with M-THS for different H 2 demand scenarios. (a) Utilisation of uncurtailed primary electricity 

over the power spectrum. (b) Relative cumulative electricity input to batteries and electrolysers (as a proxy for power-to- H 2 ) over the power spectrum. 
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Table 4 

Key results from applying M-THS to a previous study ( Weimann et al., 2021 ). 

Present study using M-THS Original study 

System cost [MEUR/y] 1 . 9 · 10 4 3 . 01 · 10 4 

electrolyser capacity [GW] 23.5 18.4 

Fuel cell capacity [GW] 25.0 5.2 

H 2 storage capacity [GWh] 4,682 5,681 

Battery capacity [GWh] 48.2 576 
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nd therefore constitutes a potential limitation of this method. 

dding additional hierarchy stages can have significant benefits for 

ulti-year analyses, as showcased by the 35% saving in compu- 

ation time for N8S-3 over two years. However, a prerequisite for 

his is that the error of the objective function is acceptable, which 

an already be established on a shorter time horizon; this can be 

bserved by comparing N8S-3 and N8S-4, where the latter shows 

ignificant error already for one year. The 2-year analysis of N8S-4 

hows that adding stages can also increase the computation time. 

his effect was discussed in detail in Section 3.2 . 

.4. Relevance of time discretization for system design and 

nderstanding 

Not resorting to design days or other temporal approximations 

n the final stage of the proposed method not only increases the 

evel of temporal detail of the results but can also lead to dif- 

erent qualitative findings. To demonstrate this, the scenario dis- 

ussed in Weimann et al. (2021) , originally solved using M-TD with 

0 typical days to provide a tractable problem, was re-analysed 

sing M-THS. Note that the same scenario was also used as test 

ase N8C in the present study. The savings in computation time 

ere spent on increased spatial resolution (8 nodes in the original 

tudy, 15 nodes in the present study) and more detailed network 

odelling (copper plate in the original study, scheduling-only and 

izing-and-scheduling network modelling in the present study, see 

ection 2.1 for details about the network models) 

In the original work, it was shown that the design and op- 

ration of power-to- H 2 systems critically depends on the flexibil- 

ty of these technologies. This was done by varying the number 

f typical days for a reduced time horizon. While Figure 11b in 

eimann et al. (2021) shows that the utilisation of renewable en- 

rgy increases with increasing operational flexibility (i.e. a higher 

umber of typical days), it was uncertain whether this trend also 

olds for a longer time horizon, i.e. when seasonal effects come 

nto play. The application of M-THS in the present study shows that 

he utilisation is indeed significantly higher if no time-aggregation 

ethod is used, therefore confirming the finding of the original 

tudy. Figure 5 a shows how the whole power spectrum is per- 

ectly utilised except for extreme power peaks. Still, even for the 

atter, the utilisation hardly drops below 99%. Moreover, the orig- 

nal study found that batteries and power-to- H 2 systems take up 

omplementary roles if given the necessary operational flexibility. 

his finding could also be confirmed on a one year time horizon 
11 
sing M-THS (compare Figure 12 from Weimann et al., 2021 with 

ig. 5 b in the present work). 

The advantages of a higher temporal resolution are not limited 

o operational aspects but can also be found in the designs. Table 4 

ompares the system costs, battery capacity, and power-to- H 2 -to- 

ower capacity found in the original study and the present study. 

he cost decrease of around 37% clearly shows that the increased 

exibility leads to better system designs. In particular, the installed 

attery capacity decreases by almost 92% while the installed ca- 

acities of electrolyser and salt cavern increase only slightly. It 

hould be noted that the original study modelled the battery with 

ull flexibility due to which it compensated for the missing flexibil- 

ty in the power-to- H 2 technologies. Hence, the strong decrease in 

nstalled capacity was to be expected when allowing for more op- 

rating modes of the electrolyser. Another significant difference be- 

ween the two designs is the installed capacity of fuel cells, which 

ncreased by a factor 8.7. The small fuel cell capacity in the origi- 

al study is a result of the decreasing role of H 2 as an electricity 

torage medium for increasing H 2 commodity demands (see Fig- 

re 10 in Weimann et al., 2021 ). Opposed to this, the analysis using 

-THS shows no such decreasing trend but rather a proportional 

p-scaling of power-to- H 2 capacity with increasing H 2 commodity 

emand (see Fig. 6 ). The role of H 2 as electricity storage medium 

s highlighted in Fig. 6 d, which shows that the absolute amount 

f H 2 used for electricity storage, i.e. the excess production com- 

ared to the commodity demand, is rather constant. Conversely, 

his also implies that the relative amount of H 2 used for electricity 

torage, compared to the total H 2 produced, is decreasing. While 

n reality findings like this are influenced by technical constraints, 

.g. how electrolysers and fuel cells can be operated, a properly 

ime-resolved modelling framework can help to identify desirable 

echnology features. 

Due to the copper-plate approach in the original study, the spa- 

ial resolution only affected the system via varying weather pro- 



L. Weimann and M. Gazzani Computers and Chemical Engineering 163 (2022) 107816 

Fig. 6. Sizes of power-to- H 2 technologies as a function of the H 2 demand (re-analysing the case presented in Weimann et al., 2021 with M-THS). (a) Salt cavern ( H 2 storage) 

working capacity (b) Fuel cell input capacity (c) electrolyser input capacity (d) H 2 production. 

Fig. 7. Production profiles of the electrolysers at the storage site (top) and demand site (bottom). (a) full one year time horizon (b) close-up of the first four weeks of the 

year (c) close-up of the first week of the year. The light-blue profile is at hourly resolution, the dark blue profile is a moving average of seven days, one day, and one hour 

for (a), (b), and (c), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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les. The significantly decreased computation time using M-THS al- 

owed to increase the spatial resolution and model the networks 

n detail. While the electrolysers were randomly distributed in 

he original study, they are now limited to two locations. At the 

torage site, the electrolyser operates in a highly flexible man- 

er following the renewable electricity production since the pro- 

uced hydrogen can be directly stored (see Figs. 7 and 8 ). Con- 

rary, at the site where the flat commodity demand is located, the 

lectrolyser preferably operates in steady-state with some distur- 

ances over the year. The electrolyser capacity at the demand site 

s only 45% of the capacity at the storage site. Considering that 

ome of the H 2 produced at the storage site is also used to sup-

ly the commodity demand, the ratio of installed electrolyser ca- 

acity agrees with the ratio between storage and commodity de- 

and highlighted earlier ( Fig. 6 d). It is furthermore noteworthy 

hat the batteries are also installed only at those two sites but 

ith opposing trends in capacity: at the demand site, the smaller 

lectrolyser is combined with the larger battery, while the larger 

lectrolyser at the storage site is combined with the smaller bat- 

ery. This clearly shows that the steady-state operation periods 

f the electrolyser at the demand site are facilitated by the bat- 

m

12 
ery - an operational feature that is not necessary at the storage 

ite. 

Both comparison cases show how the proposed method can 

ontribute to gaining crucial insights otherwise hidden by time 

ggregation methods. This is especially true for systems with a 

ery high renewable energy penetration, where time aggrega- 

ion methods can lead to significant deviations from true opti- 

ality. An example thereof is the decreasing role of H 2 as elec- 

ricity storage medium with increasing demand as identified by 

eimann et al. (2021) , which was shown to be a result of the typ-

cal days applied to the model. While the finding in itself is not 

ncorrect, the reason for it - being the reduced operational flexibil- 

ty of the fuel cell - needs to be acknowledged. 

. Discussion and conclusions 

.1. Method limitations 

The method proposed in the current work has been developed 

ith the aim of providing a general and framework-independent 

ethod for the solution of complex design and operation optimisa- 
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Fig. 8. Total renewable power potential as imposed by the weather profiles and H 2 

production (electrolyzer output) at the storage site. Both profiles are relative to the 

maximum renewable power potential. 
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ion problems. While this has been mostly achieved, two potential 

imitations need to be discussed. 

Infeasibility for competing technologies. Competing technolo- 

ies, e.g. two types of wind turbines competing for the same land, 

an lead to infeasibility in high hierarchy stages. This can happen 

f the smaller type, i.e. the type with lower power output, is in- 

talled to a high extent in an early stage. The increasing tempo- 

al resolution of subsequent stages might reveal demand peaks or 

roduction valleys which require larger types. However, due to the 

ower bound imposed by the earlier stage on the small type, the 

arger type cannot be installed at sufficient quantity. This applies 

o all technologies which compete for the same land or some other 

hared resource. The problem can be resolved by applying a lower 

ound on the amount of shared resource used instead of the size 

f each single technology. The computation time penalty caused by 

his looser bound was not quantified in the course of this work. 

Intractability for memory intensive problems. The presented 

ethod is less suited if the necessity for simplification stems from 

emory requirements rather than, or in addition to, computation 

ime. An example for this are multi-year analyses. Since the prob- 

em is always solved with the maximum time resolution in the last 

tage of the method, the ultimate memory requirement is not re- 

uced. A potential, yet untested, approach to overcome this limita- 

ion is a hybrid of the proposed method and a rolling horizon. The 

ethod’s parameters should be chosen such that the second-last 

tage remains tractable. After applying the method’s constraints, 

he last stage can be solved with a rolling horizon. 

.2. Conclusion 

In this work, we presented a novel approach to solve intricate 

ILP energy system design and operation problems for yearly or 

ulti-year time horizons. The method relies on a multi-stage strat- 

gy in which the temporal resolution is increased at every stage. 

he last stage features the maximum resolution provided by the 
13 
nput data, i.e. hourly in the present study. This tackles a com- 

only known problem of time aggregation methods; they are not 

eliable for highly volatile systems, e.g. in the case of high re- 

ewable energy penetration. Using a vast set of different energy 

ystem design and operation optimisation problems, the method 

as evaluated against optimisations with full time resolution (ref- 

rence) and benchmarked against a commonly used method rely- 

ng on typical days. It proved to be both time-efficient ( > 90% com-

utation time saving compared to the reference) and highly accu- 

ate ( < 1% error in the objective function compared to the refer- 

nce) and clearly outperformed the typical days method in both 

omains. 

It has to be acknowledged that open literature provides plenty 

f highly sophisticated time aggregation methods which have not 

een included in the benchmarking. Therefore, it cannot be ruled 

ut that some of these methods outperform the method proposed 

n the present work. However, an advantage worth highlighting is 

he method’s simplicity. It does not require clustering algorithms 

r advanced iterative routines but rather relies on simple averaging 

f profiles and a set of constraints to transfer information between 

ubsequent stages. Hence, the proposed method is independent of 

he modelling framework and can be easily applied, therefore hav- 

ng a potentially high impact also outside of academia. 

Besides the model formulation, validation, and benchmarking, 

ts practical added value was demonstrated by re-analysing a sys- 

em for the production of hydrogen from non-dispatchable renew- 

ble energy sources the authors discussed in a previous work. The 

dded temporal information provided new insights on the technol- 

gy operation and system design, and allowed to find a better opti- 

um. Furthermore, it was shown that the increased time efficiency 

an be used to increase the spatial resolution and the model detail, 

hich results in a better physical representation of the system. Fi- 

ally, successfully applying the method to a hydrogen production 

ase indicates that it can be used for studying the production of 

ense chemical energy carriers as well. 
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Table A.1 

Summary of test cases. 

Tag ID Energy carriers End-user demands #Nodes Network Technologies 

LZH 1 electricity electricity 1 - WT, PV 

LZH 2 electricity electricity 1 - WT, PV, battery 

LZH 3 electricity, H2 electricity 1 - WT, PV, battery, PEMEC, PEMFC, H2-storage 

LZH 4 electricity, heat electricity, heat 1 - WT, PV, ST, battery, edHP, HWTS 

LC 1 electricity electricity 1 - WT, PV 

LC 2 electricity electricity 1 - WT, PV, battery 

LC 3 electricity, H2 electricity 1 - WT, PV, battery, PEMEC, PEMFC, H2-storage 

LC 4 electricity, H2, heat electricity, heat 1 - WT, PV, ST, battery, PEMEC, PEMFC, H2-storage, edHP, HWTS 

N1 1 electricity electricity 1 - WT, PV 

N1 2 electricity electricity 1 - WT, PV, battery 

N1 3 electricity, H2 electricity 1 - WT, PV, battery, PEMEC, PEMFC, H2-storage 

N1 4 electricity, H2 electricity, H2 1 - WT, PV, battery, PEMEC, PEMFC, H2-storage 

N1 5 electricity, H2, gas electricity, H2 1 - WT, PV, battery, PEMEC, PEMFC, H2-storage, GT 

N3C 1 electricity electricity 3 copper-plate WT, PV 

N3C 2 electricity electricity 3 copper-plate WT, PV, battery 

N3C 3 electricity, H2 electricity 3 copper-plate WT, PV, battery, PEMEC, PEMFC, H2-storage 

N3C 4 electricity, H2 electricity, H2 3 copper-plate WT, PV, battery, PEMEC, PEMFC, H2-storage 

N3C 5 electricity, H2, gas electricity, H2 3 copper-plate WT, PV, battery, PEMEC, PEMFC, H2-storage, GT 

N3S 1 electricity electricity 3 capacity limit, no sizing WT, PV 

N3S 2 electricity electricity 3 capacity limit, no sizing WT, PV, battery 

N3S 3 electricity, H2 electricity 3 capacity limit, no sizing WT, PV, battery, PEMEC, PEMFC, H2-storage 

N3S 4 electricity, H2 electricity, H2 3 capacity limit, no sizing WT, PV, battery, PEMEC, PEMFC, H2-storage 

N3S 5 electricity, H2, gas electricity, H2 3 capacity limit, no sizing WT, PV, battery, PEMEC, PEMFC, H2-storage, GT 

N3NW 1 electricity electricity 3 full network design WT, PV 

N3NW 2 electricity electricity 3 full network design WT, PV, battery 

N3NW 3 electricity, H2 electricity 3 full network design WT, PV, battery, PEMEC, PEMFC, H2-storage 

N3NW 4 electricity, H2 electricity, H2 3 full network design WT, PV, battery, PEMEC, PEMFC, H2-storage 

N3NW 5 electricity, H2, gas electricity, H2 3 full network design WT, PV, battery, PEMEC, PEMFC, H2-storage, GT 

N8C 1 electricity electricity 8 copper-plate WT, PV 

N8C 2 electricity electricity 8 copper-plate WT, PV, battery 

N8C 3 electricity, H2 electricity 8 copper-plate WT, PV, battery, PEMEC, PEMFC, H2-storage 

N8C 4 electricity, H2 electricity, H2 8 copper-plate WT, PV, battery, PEMEC, PEMFC, H2-storage 

N8C 5 electricity, H2, gas electricity, H2 8 copper-plate WT, PV, battery, PEMEC, PEMFC, H2-storage, GT 

N8S 1 electricity electricity 8 capacity limit, no sizing WT, PV 

N8S 2 electricity electricity 8 capacity limit, no sizing WT, PV, battery 

N8S 3 electricity, H2 electricity 8 capacity limit, no sizing WT, PV, battery, PEMEC, PEMFC, H2-storage 

N8S 4 electricity, H2 electricity, H2 8 capacity limit, no sizing WT, PV, battery, PEMEC, PEMFC, H2-storage 

N8S 5 electricity, H2, gas electricity, H2 8 capacity limit, no sizing WT, PV, battery, PEMEC, PEMFC, H2-storage, GT 

N8NW 1 electricity electricity 8 full network design WT, PV 

N8NW 2 electricity electricity 8 full network design WT, PV, battery 

N8NW 3 electricity, H2 electricity 8 full network design WT, PV, battery, PEMEC, PEMFC, H2-storage 

N8NW 4 electricity, H2 electricity, H2 8 full network design WT, PV, battery, PEMEC, PEMFC, H2-storage 

N8NW 5 electricity, H2, gas electricity, H2 8 full network design WT, PV, battery, PEMEC, PEMFC, H2-storage, GT 
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Table A.2 

Problem size and benchmark results for all successfully evaluated test cases. 

Case Horizon [d] Problem size (reference) Computation time [h] Emissions [t CO 2 /y] Costs [EUR/y] 

Cont. variable Int. variables Bin. variables Constraints M-REF M-THS M-TD M-TDNW M-REF M-THS M-TD M-TDNW M-REF M-THS M-TD M-TDNW 

LC-1 365 131,404 3 0 205,678 0.017 0.035 0.017 0.017 2848.6 2848.6 2848.6 2848.6 8E + 08 8E + 08 8E + 08 8E + 08 

LC-2 365 175,204 3 0 293,283 0.022 0.026 0.021 0.021 0 0 0 0 4E + 07 4E + 07 4E + 07 4E + 07 

LC-3 365 367,928 17,523 17,520 687,493 0.486 0.079 0.137 0.137 0 0 0 0 2E + 07 2E + 07 3E + 07 3E + 07 

LC-4 365 569,419 35,051 35,048 1,143,052 4.295 0.216 0.222 0.222 0 0 0 0 4E + 07 4E + 07 1E + 08 1E + 08 

LZH-1 180 64,801 3 0 102,873 0.028 0.020 0.016 0.016 61.644 61.645 61.644 61.644 290,952 290,945 290,952 290,952 

LZH-2 180 86,404 3 0 146,078 0.028 0.023 0.023 0.023 41.923 41.973 41.923 41.923 985,031 991,276 985,031 985,031 

LZH-3 180 181,448 8643 8640 340,488 0.046 0.046 0.041 0.041 41.923 41.924 41.923 41.923 985,182 988,322 985,182 985,182 

LZH-4 180 185,775 8651 8648 366,775 0.574 0.033 0.027 0.027 128.99 129.05 143.7 143.7 694,323 719,687 1E + 06 1E + 06 

LZH-1 365 131,404 3 0 208,693 0.025 0.021 0.019 0.019 128.2 128.2 128.2 128.2 316,818 316,815 316,818 316,818 

LZH-2 365 175,204 3 0 296,298 0.020 0.028 0.026 0.026 91.311 91.564 91.311 91.311 1E + 06 1E + 06 1E + 06 1E + 06 

N1-1 365 183,961 5 0 280,341 0.013 0.012 0.016 0.016 6E + 06 6E + 06 6E + 06 6E + 06 8E + 10 8E + 10 8E + 10 8E + 10 

N1-2 365 227,764 5 0 367,946 0.019 0.013 0.019 0.019 0 0 0 0 7E + 10 7E + 10 7E + 10 7E + 10 

N1-3 365 420,488 17,525 17,520 762,156 0.211 0.040 0.115 0.115 0 0 0 0 4E + 10 4E + 10 5E + 10 5E + 10 

N1-4 365 420,488 17,525 17,520 762,156 0.347 0.053 0.154 0.154 0 0 0 0 4E + 10 4E + 10 6E + 10 6E + 10 

N1-5 365 586,937 105,134 17,528 1,243,991 9.818 0.264 0.285 0.285 0 0 0 0 2E + 10 2E + 10 6E + 10 6E + 10 

N3C-1 365 341,642 8 0 533,278 0.024 0.016 0.023 0.023 6E + 06 6E + 06 6E + 06 6E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N3C-2 365 429,248 8 0 708,488 0.042 0.030 0.042 0.042 0 0 0 0 6E + 10 6E + 10 6E + 10 6E + 10 

N3C-3 365 788,414 35,048 35,040 1,435,583 5.414 0.161 0.533 0.533 0 0 0 0 2E + 10 2E + 10 4E + 10 4E + 10 

N3C-4 365 788,414 35,048 35,040 1,435,583 4.986 0.189 0.672 0.672 0 0 0 0 3E + 10 3E + 10 5E + 10 5E + 10 

N3C-5 365 1,147,592 210,266 35,056 2,443,053 18.580 0.925 1.119 1.119 0 0 0 0 3E + 10 3E + 10 5E + 10 5E + 10 

N3NW-1 180 246,305 71 63 427,329 0.127 0.023 0.022 0.140 3E + 06 3E + 06 9E + 06 3E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N3NW-2 180 289,511 71 63 513,739 0.695 0.056 0.374 0.973 0 0 250,212 0 6E + 10 6E + 10 2E + 11 6E + 10 

N3NW-3 180 466,637 17,351 17,343 880,954 45.690 0.258 1.246 24.897 0 0 87,817 0 2E + 10 2E + 10 2E + 11 5E + 10 

N3NW-4 180 466,637 17,351 17,343 880,954 12.492 2.389 1.083 36.187 0 0 2E + 06 0 3E + 10 3E + 10 2E + 11 6E + 10 

N3NW-1 365 499,385 71 63 866,410 0.274 0.053 0.026 0.301 6E + 06 6E + 06 2E + 07 6E + 06 5E + 10 5E + 10 6E + 10 5E + 10 

N3NW-2 365 586,991 71 63 1,041,620 1.930 0.138 8.793 8.541 0 0 3E + 06 0 6E + 10 6E + 10 2E + 11 6E + 10 

N3NW-1 90 123,185 71 63 214,053 0.030 0.013 0.017 0.044 2E + 06 2E + 06 5E + 06 2E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N3NW-2 90 144,791 71 63 257,263 0.270 0.020 0.064 0.329 0 0 520,693 0 6E + 10 6E + 10 2E + 11 6E + 10 

N3NW-3 90 233,357 8711 8703 440,878 3.491 0.126 0.117 0.708 0 0 520,695 0 2E + 10 2E + 10 2E + 11 5E + 10 

N3NW-4 90 233,357 8711 8703 440,878 8.576 0.105 0.199 1.330 0 0 3E + 06 0 3E + 10 3E + 10 1E + 11 7E + 10 

N3S-1 365 420,491 26 18 708,514 0.037 0.018 0.023 0.048 2E + 07 2E + 07 2E + 07 2E + 07 6E + 10 6E + 10 6E + 10 6E + 10 

( continued on next page ) 
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Table A.2 ( continued ) 

Case Horizon [d] Problem size (reference) Computation time [h] Emissions [t CO 2 /y] Costs [EUR/y] 

Cont. variable Int. variables Bin. variables Constraints M-REF M-THS M-TD M-TDNW M-REF M-THS M-TD M-TDNW M-REF M-THS M-TD M-TDNW 

N3S-2 365 420,491 26 18 708,514 0.174 0.049 0.219 0.174 6E + 06 6E + 06 6E + 06 6E + 06 1E + 11 1E + 11 1E + 11 1E + 11 

N3S-3 365 946,112 35,084 35,076 1,786,055 2.610 0.239 1.237 1.462 5E + 06 5E + 06 5E + 06 5E + 06 1E + 11 1E + 11 2E + 11 1E + 11 

N3S-4 365 946,112 35,084 35,076 1,786,055 1.745 0.283 1.291 0.755 1E + 07 1E + 07 1E + 07 1E + 07 9E + 10 9E + 10 2E + 11 1E + 11 

N3S-5 365 1,305,290 210,302 35,092 2,793,525 20.169 0.851 3.114 2.278 1E + 07 1E + 07 1E + 07 1E + 07 9E + 10 9E + 10 2E + 11 1E + 11 

N8C-1 180 440,645 21 0 679,824 0.040 0.029 0.043 0.043 1E + 06 0 1E + 06 1E + 06 5E + 10 0 5E + 10 5E + 10 

N8C-2 180 548,660 21 0 895,849 0.077 0.047 0.082 0.082 0 0 0 0 4E + 10 4E + 10 4E + 10 4E + 10 

N8C-3 180 959,072 43,221 43,200 1,720,999 4.809 0.451 1.217 1.217 0 0 0 0 2E + 10 2E + 10 4E + 10 4E + 10 

N8C-4 180 959,072 43,221 43,200 1,720,999 5.462 0.473 1.378 1.378 0 0 0 0 2E + 10 2E + 10 4E + 10 4E + 10 

N8C-5 180 1,408,397 259,266 43,240 2,969,654 55.269 0.974 0.892 0.892 0 0 0 0 2E + 10 2E + 10 4E + 10 4E + 10 

N8C-1 365 893,525 21 0 1,379,277 0.217 0.033 0.208 0.208 3E + 06 3E + 06 3E + 06 3E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N8C-2 365 1,112,540 21 0 1,817,302 0.333 0.098 0.338 0.338 0 0 0 0 4E + 10 4E + 10 4E + 10 4E + 10 

N8C-3 365 1,944,752 87,621 87,600 3,490,492 14.458 3.587 6.881 6.881 0 0 0 0 2E + 10 2E + 10 3E + 10 3E + 10 

N8C-4 365 1,944,752 87,621 87,600 3,490,492 17.822 2.315 5.380 5.380 0 0 0 0 2E + 10 2E + 10 4E + 10 4E + 10 

N8C-1 90 220,325 21 0 341,001 0.028 0.019 0.028 0.028 1E + 06 1E + 06 1E + 06 1E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N8C-2 90 274,340 21 0 449,026 0.030 0.026 0.030 0.030 0 0 0 0 4E + 10 4E + 10 4E + 10 4E + 10 

N8C-3 90 479,552 21,621 21,600 861,616 0.846 0.116 0.056 0.056 0 0 0 0 2E + 10 2E + 10 4E + 10 4E + 10 

N8C-4 90 479,552 21,621 21,600 861,616 0.857 0.157 0.077 0.077 0 0 0 0 2E + 10 2E + 10 5E + 10 5E + 10 

N8C-5 90 704,237 129,666 21,640 1,486,031 10.295 0.345 0.129 0.129 0 0 0 0 2E + 10 2E + 10 5E + 10 5E + 10 

N8NW-1 180 994,053 469 448 1,817,774 0.222 0.098 0.072 0.267 1E + 06 1E + 06 7E + 06 1E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N8NW-2 180 1,102,068 469 448 2,033,799 3.006 0.220 6.214 3.283 0 0 0 0 4E + 10 4E + 10 1E + 11 4E + 10 

N8NW-1 365 2,015,253 469 448 3,684,947 2.118 0.322 0.314 1.860 3E + 06 3E + 06 2E + 07 3E + 06 5E + 10 5E + 10 6E + 10 5E + 10 

N8NW-2 365 2,234,268 469 448 4,122,972 33.752 0.941 67.028 20.080 0 0 0 0 4E + 10 4E + 10 0 4E + 10 

N8NW-1 90 497,253 469 448 910,871 0.061 0.041 0.023 0.084 1E + 06 1E + 06 4E + 06 1E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N8NW-2 90 551,268 469 448 1,018,896 3.685 0.104 1.011 4.235 0 0 0 0 4E + 10 4E + 10 1E + 11 4E + 10 

N8S-1 180 717,189 149 128 1,263,278 0.127 0.048 0.096 0.117 2E + 06 2E + 06 0 2E + 06 5E + 10 5E + 10 0 5E + 10 

N8S-2 180 825,204 149 128 1,479,303 0.794 0.125 5.361 0.766 0 0 0 0 6E + 10 6E + 10 1E + 11 6E + 10 

N8S-3 180 1,512,160 43,477 43,456 2,887,909 10.736 1.400 4.214 2.628 0 0 0 0 4E + 10 4E + 10 8E + 10 5E + 10 

N8S-4 180 1,512,160 43,477 43,456 2,887,909 19.899 0.628 7.537 4.128 0 0 345,373 0 6E + 10 6E + 10 2E + 11 7E + 10 

N8S-1 365 1,454,229 149 128 2,562,131 0.725 0.129 0.359 0.871 5E + 06 5E + 06 0 5E + 06 5E + 10 5E + 10 0 5E + 10 

N8S-2 365 1,673,244 149 128 3,000,156 2.926 0.361 11.243 3.244 0 0 0 0 6E + 10 6E + 10 6E + 10 6E + 10 

N8S-3 365 3,066,160 87,877 87,856 5,856,202 14.431 1.709 14.001 14.001 0 0 0 0 4E + 10 4E + 10 5E + 10 5E + 10 

N8S-4 365 3,066,160 87,877 87,856 5,856,202 55.124 1.883 12.013 12.013 0 0 0 0 7E + 10 7E + 10 8E + 10 8E + 10 

N8S-1 90 358,629 149 128 632,855 0.062 0.029 0.033 0.049 2E + 06 2E + 06 4E + 06 2E + 06 5E + 10 5E + 10 5E + 10 5E + 10 

N8S-2 90 412,644 149 128 740,880 0.268 0.055 0.394 0.330 0 0 0 0 6E + 10 6E + 10 1E + 11 6E + 10 

N8S-3 90 756,160 21,877 21,856 1,445,326 2.051 0.181 0.748 0.577 0 0 0 0 4E + 10 4E + 10 1E + 11 5E + 10 

N8S-4 90 756,160 21,877 21,856 1,445,326 2.923 0.292 0.930 0.843 0 0 603,913 0 6E + 10 6E + 10 2E + 11 8E + 10 

N8S-5 90 980,845 129,922 21,896 2,069,741 7.912 0.454 1.451 1.191 0 0 603,913 0 6E + 10 6E + 10 2E + 11 8E + 10 

1
6
 



L. Weimann and M. Gazzani Computers and Chemical Engineering 163 (2022) 107816 

R

B

B

B

B

B

B

B

C  

C

D  

F

G

G

G  

G
 

G

G
J  

K

K

L

M

M

N

P

P

P

P

S

S

T

T

T

V

W

W

W

Z

Z

eferences 

ahl, B., Kümpel, A., Seele, H., Lampe, M., Bardow, A., 2017. Time-series aggregation 

for synthesis problems by bounding error in the objective function. Energy 135, 

900–912. doi: 10.1016/j.energy.2017.06.082 . 
ahl, B., Lützow, J., Shu, D., Hollermann, D.E., Lampe, M., Hennen, M., Bardow, A., 

2018. Rigorous synthesis of energy systems by decomposition via time-series 
aggregation. Comput. Chem. Eng. 112, 70–81. doi: 10.1016/j.compchemeng.2018. 

01.023 . 
ahl, B., Söhler, T., Hennen, M., Bardow, A., 2018. Typical periods for two-stage 

synthesis by time-series aggregation with bounded error in objective function. 

Front. Energy Res. 5. doi: 10.3389/fenrg.2017.0 0 035 . 
akirtzis, E.A., Biskas, P.N., Labridis, D.P., Bakirtzis, A.G., 2014. Multiple time resolu- 

tion unit commitment for short-term operations scheduling under high renew- 
able penetration. IEEE Trans. Power Syst. 29 (1), 149–159. doi: 10.1109/TPWRS. 

2013.2278215 . 
aumgärtner, N., Bahl, B., Hennen, M., Bardow, A., 2019. RiSES3: rigorous synthe- 

sis of energy supply and storage systems via time-series relaxation and aggre- 
gation. Comput. Chem. Eng. 127, 127–139. doi: 10.1016/j.compchemeng.2019.02. 

006 . 

aumgärtner, N., Shu, D., Bahl, B., Hennen, M., Hollermann, D.E., Bardow, A., 
2020. DeLoop: decomposition-based long-term operational optimization of en- 

ergy systems with time-coupling constraints. Energy 198, 117272. doi: 10.1016/j. 
energy.2020.117272 . 

ischi, A., Taccari, L., Martelli, E., Amaldi, E., Manzolini, G., Silva, P., Campanari, S., 
Macchi, E., 2019. A rolling-horizon optimization algorithm for the long term op- 

erational scheduling of cogeneration systems. Energy 184, 73–90. doi: 10.1016/j. 

energy.2017.12.022 . 
hen, Z., Avraamidou, S., Liu, P., Li, Z., Ni, W., Pistikopoulos, E.N., 2021. Optimal

design of integrated urban energy systems under uncertainty and sustainabil- 
ity requirements. Comput. Chem. Eng. 155. doi: 10.1016/J.COMPCHEMENG.2021. 

107502 . 
ˇu ̌cek, L., Martín, M., Grossmann, I.E., Kravanja, Z., 2014. Multi-period synthesis of 

optimally integrated biomass and bioenergy supply network. Comput. Chem. 

Eng. 66, 57–70. doi: 10.1016/J.COMPCHEMENG.2014.02.020 . 
e Soto, W., Klein, S., Beckman, W., 2006. Improvement and validation of a model

for photovoltaic array performance. Sol. Energy 80 (1), 78–88. doi: 10.1016/j. 
solener.2005.06.010 . 

azlollahi, S., Bungener, S.L., Mandel, P., Becker, G., Maréchal, F., 2014. Multi- 
objectives, multi-period optimization of district energy systems: I. Selection 

of typical operating periods. Comput. Chem. Eng. 65, 54–66. doi: 10.1016/j. 

compchemeng.2014.03.005 . 
abrielli, P., Gazzani, M., Martelli, E., Mazzotti, M., 2018. Optimal design of multi- 

energy systems with seasonal storage. Appl. Energy 219, 408–424. doi: 10.1016/ 
j.apenergy.2017.07.142 . 

abrielli, P., Gazzani, M., Mazzotti, M., 2018. Electrochemical conversion technolo- 
gies for optimal design of decentralized multi-energy systems: modeling frame- 

work and technology assessment. Appl. Energy 221, 557–575. doi: 10.1016/j. 

apenergy.2018.03.149 . 
abrielli, P., Poluzzi, A., Kramer, G.J., Spiers, C., Mazzotti, M., Gazzani, M., 2020. Sea-

sonal energy storage for zero-emissions multi-energy systems via underground 
hydrogen storage. Renew. Sustain. Energy Rev. 121, 109629 . 

eidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G., Fröhlich, K., 2007. 
Energy hubs for the future. IEEE Power Energy Mag. 5 (1), 24–30. doi: 10.1109/

MPAE.2007.264850 . 

rossmann, I.E., Apap, R.M., Calfa, B.A., Garcia-Herreros, P., Zhang, Q., 2015. Re- 
cent advances in mathematical programming techniques for the optimization 

of process systems under uncertainty. Comput. Aided Chem. Eng. 37, 1–14. 
doi: 10.1016/B978- 0- 4 4 4- 63578- 5.50 0 01-3 . 

urobi Optimization LLC, 20 0 0. Gurobi, version 9.1. 
erez, S., Thais, F., Tobin, I., Wild, M., Colette, A., Yiou, P., Vautard, R., 2015. The

CLIMIX model: a tool to create and evaluate spatially-resolved scenarios of pho- 
tovoltaic and wind power development. 10.1016/j.rser.2014.09.041. 

otzur, L., Markewitz, P., Robinius, M., Stolten, D., 2018. Impact of different time 

series aggregation methods on optimal energy system design. Renew. Energy 
117, 474–487. doi: 10.1016/j.renene.2017.10.017 . 
17
otzur, L., Markewitz, P., Robinius, M., Stolten, D., 2018. Time series aggregation for 
energy system design: modeling seasonal storage. Appl. Energy 213, 123–135. 

doi: 10.1016/j.apenergy.2018.01.023 . 
öfberg, J., 2004. YALMIP: a toolbox for modeling and optimization in MATLAB. In: 

Proceedings of the IEEE International Symposium on Computer-Aided Control 
System Design, pp. 284–289. doi: 10.1109/cacsd.2004.1393890 . 

arquant, J.F., Evins, R., Carmeliet, J., 2015. Reducing computation time with a 
rolling horizon approach applied to a MILP formulation of multiple urban en- 

ergy hub system. In: Procedia Computer Science. Elsevier B.V., pp. 2137–2146. 

doi: 10.1016/j.procs.2015.05.486 . 
itra, S., Grossmann, I.E., Pinto, J.M., Arora, N., 2012. Optimal production planning 

under time-sensitive electricity prices for continuous power-intensive processes. 
Comput. Chem. Eng. 38, 171–184. doi: 10.1016/J.COMPCHEMENG.2011.09.019 . 

ahmmacher, P., Schmid, E., Hirth, L., Knopf, B., 2016. Carpe diem: a novel approach 
to select representative days for long-term power system modeling. Energy 112, 

430–442. doi: 10.1016/j.energy.2016.06.081 . 

eng, X., Bajaj, I., Yao, M., Maravelias, C.T., 2021. Solid-gas thermochemical energy 
storage strategies for concentrating solar power: optimization and system anal- 

ysis. Energy Convers. Manage. 245. doi: 10.1016/j.enconman.2021.114636 . 
fenninger, S., 2017. Dealing with multiple decades of hourly wind and PV time 

series in energy models: a comparison of methods to reduce time resolution 
and the planning implications of inter-annual variability. Appl. Energy 197, 1–

13. doi: 10.1016/j.apenergy.2017.03.051 . 

ilpola, S., Lund, P.D., 2020. Analyzing the effects of uncertainties on the modelling 
of low-carbon energy system pathways. Energy 201. doi: 10.1016/J.ENERGY.2020. 

117652 . 
riesmann, J., Nolting, L., Praktiknjo, A., 2019. Are complex energy system models 

more accurate? An intra-model comparison of power system optimization mod- 
els. Appl. Energy 255, 113783. doi: 10.1016/j.apenergy.2019.113783 . 

amsatli, S., Samsatli, N.J., 2018. A multi-objective MILP model for the design 

and operation of future integrated multi-vector energy networks capturing de- 
tailed spatio-temporal dependencies. Appl. Energy 220, 893–920. doi: 10.1016/j. 

apenergy.2017.09.055 . 
chütz, T., Schraven, M.H., Fuchs, M., Remmen, P., Müller, D., 2018. Comparison of 

clustering algorithms for the selection of typical demand days for energy system 

synthesis. Renew. Energy 129, 570–582. doi: 10.1016/j.renene.2018.06.028 . 

eichgraeber, H., Lindenmeyer, C.P., Baumgärtner, N., Kotzur, L., Stolten, D., 

Robinius, M., Bardow, A., Brandt, A.R., 2020. Extreme events in time series ag- 
gregation: a case study for optimal residential energy supply systems. Appl. En- 

ergy 275, 115223. doi: 10.1016/j.apenergy.2020.115223 . 
he MathWorks Inc., 2018. MATLAB, version 9.4 (R2018a). 

so, W.W., Demirhan, C.D., Heuberger, C.F., Powell, J.B., Pistikopoulos, E.N., 2020. 
A hierarchical clustering decomposition algorithm for optimizing renewable 

power systems with storage. Appl. Energy 270, 115190. doi: 10.1016/J.APENERGY. 

2020.115190 . 
om Stein, D., Van Bracht, N., Maaz, A., Moser, A., 2017. Development of adaptive 

time patterns for multi-dimensional power system simulations. In: 2017 14th 
International Conference on the European Energy Market (EEM) doi: 10.1109/ 

EEM.2017.7981868 . 
eimann, L., Ellerker, M., Kramer, G.J., Gazzani, M., 2019. Modeling gas turbines in 

multi-energy systems: a linear model accounting for part-load operation, fuel, 
temperature, and sizing effects. In: International Conference on Applied Energy . 

eimann, L., Gabrielli, P., Boldrini, A., Kramer, G.J., Gazzani, M., 2021. Optimal hy- 

drogen production in a wind-dominated zero-emission energy system. Adv. 
Appl. Energy 10 0 032. doi: 10.1016/j.adapen.2021.10 0 032 . 

irtz, M., Hahn, M., Schreiber, T., Müller, D., 2021. Design optimization of multi- 
energy systems using mixed-integer linear programming: which model com- 

plexity and level of detail is sufficient? Energy Convers. Manage. 240, 114249. 
doi: 10.1016/j.enconman.2021.114249 . 

atti, M., Gabba, M., Freschini, M., Rossi, M., Gambarotta, A., Morini, M., Martelli, E., 

2019. k-MILP: a novel clustering approach to select typical and extreme days for 
multi-energy systems design optimization. Energy 181, 1051–1063. doi: 10.1016/ 

j.energy.2019.05.044 . 
hang, Q., Martín, M., Grossmann, I.E., 2019. Integrated design and operation of 

renewables-based fuels and power production networks. Comput. Chem. Eng. 
122, 80–92. doi: 10.1016/j.compchemeng.2018.06.018 . 

https://doi.org/10.1016/j.energy.2017.06.082
https://doi.org/10.1016/j.compchemeng.2018.01.023
https://doi.org/10.3389/fenrg.2017.00035
https://doi.org/10.1109/TPWRS.2013.2278215
https://doi.org/10.1016/j.compchemeng.2019.02.006
https://doi.org/10.1016/j.energy.2020.117272
https://doi.org/10.1016/j.energy.2017.12.022
https://doi.org/10.1016/J.COMPCHEMENG.2021.107502
https://doi.org/10.1016/J.COMPCHEMENG.2014.02.020
https://doi.org/10.1016/j.solener.2005.06.010
https://doi.org/10.1016/j.compchemeng.2014.03.005
https://doi.org/10.1016/j.apenergy.2017.07.142
https://doi.org/10.1016/j.apenergy.2018.03.149
http://refhub.elsevier.com/S0098-1354(22)00154-5/sbref0014
https://doi.org/10.1109/MPAE.2007.264850
https://doi.org/10.1016/B978-0-444-63578-5.50001-3
https://doi.org/10.1016/j.renene.2017.10.017
https://doi.org/10.1016/j.apenergy.2018.01.023
https://doi.org/10.1109/cacsd.2004.1393890
https://doi.org/10.1016/j.procs.2015.05.486
https://doi.org/10.1016/J.COMPCHEMENG.2011.09.019
https://doi.org/10.1016/j.energy.2016.06.081
https://doi.org/10.1016/j.enconman.2021.114636
https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1016/J.ENERGY.2020.117652
https://doi.org/10.1016/j.apenergy.2019.113783
https://doi.org/10.1016/j.apenergy.2017.09.055
https://doi.org/10.1016/j.renene.2018.06.028
https://doi.org/10.1016/j.apenergy.2020.115223
https://doi.org/10.1016/J.APENERGY.2020.115190
https://doi.org/10.1109/EEM.2017.7981868
http://refhub.elsevier.com/S0098-1354(22)00154-5/sbref0035
https://doi.org/10.1016/j.adapen.2021.100032
https://doi.org/10.1016/j.enconman.2021.114249
https://doi.org/10.1016/j.energy.2019.05.044
https://doi.org/10.1016/j.compchemeng.2018.06.018

	A novel time discretization method for solving complex multi-energy system design and operation problems with high penetration of renewable energy
	1 Introduction
	2 Methodology
	2.1 MILP formulation and features
	2.2 Time-hierarchical solution method
	2.3 Method benchmarking

	3 Results
	3.1 Benchmarking
	3.2 Parameter tuning
	3.3 Application examples
	3.4 Relevance of time discretization for system design and understanding

	4 Discussion and conclusions
	4.1 Method limitations
	4.2 Conclusion

	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A
	References


