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Compression of mathematical objects, procedures and statements could play a major role in successful 

problem solving. We report on a study in which we aim to design an instrument, named heuristic tree, 

to stimulate the process of compression in students while working in a digital problem-solving 

environment. In particular, we report on the evidence a second pilot study provided that improvements 

in the design helped to overcome issues with help-seeking that presented themselves in a first pilot. 

INTRODUCTION 

Proficient problem solvers express their solution strategy in compressed, abstract language. For 

instance, the sentence: “By constructing a perpendicular line, I found a perpendicular triangle to which 

I applied the Pythagorean theorem” is easily understood by a more advanced students, but is too 

compressed for a novice. For a novice the process of constructing perpendiculars, the concept of a 

perpendicular triangle and the statement and application of the Pythagorean Theorem are intricate, 

extensive, not easily applied, nor understood in one sentence, because they are the result of 

compression.  

Compression is a central organizational feature of mathematical knowledge. Mathematician William 

Thurston conjectured that compression, that is easily observed in mathematical discourse, is mirrored 

by a cognitive compression process:  

Mathematics is amazingly compressible: you may struggle a long time, step by step, to work through some 

process or idea from several approaches. But once you really understand it and have the mental perspective 

to see it as a whole, there is often a tremendous mental compression. You can file it away, recall it quickly 

and completely when you need it, and use it as just one step in some other mental process. The insight that 

goes with this compression is one of the real joys of mathematics (Thurston, 1990, p.847) 

Compression is not unique to mathematical cognition, but unique to mathematics is the way 

compressed content can be part of many new rounds of compression creating deeply nested abstract 

cognitive structures. Moreover, mathematical compression consists not merely of filing away details 

of processes or ideas in a reliable way to long-term memory, but is complemented by a shift of attention 

from a multitude of phenomena to common properties of those phenomena.  

An issue in mathematics education is that it does not prepare students enough for dealing with 

mathematical problem situations. Our hypothesis is that a major cause for this is that compression 

processes are not attended to, facilitated or stimulated in mathematics education.  The aim of our 

research is to develop a tool that does just that. The tool, named heuristic tree, offers students support 

implemented in a digital problem-solving environment, allowing students to decompress the heuristic 

statements into constituents, by clicking through a tree-like structure (see Figure 1).  

Other tools and approaches have been developed to address this or a very similar problem, among 

others, the ACE-approach and genetic decomposition linked to APOS-theory (Arnon et al., 2014), and 
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the Teaching for abstraction-model (White & Mitchelmore, 2010). New about our approach is the 

foundation on self-regulated learning in a digital problem-solving environment. 

 

Figure 1. A sketch of a heuristic tree to support an undescribed problem about computing a length 

This paper reports on the second pilot as part of a broader design study, consisting of several cycles of 

(re)design, classroom tests and analysis. A pilot study (Bos, 2017) revealed that students had difficulty 

with self-regulation, in particular adopting the right help-seeking behavior using heuristic trees. In the 

method section we describe how we redesigned the project’s setup for a second pilot study to overcome 

this issue. In the last section we present a brief overview demonstrating how these changes were 

successful in dealing with these difficulties. 

THEORETICAL FRAMEWORK 

Compression applies to three aspects of mathematical organization: objects, procedures and 

statements. Each form of compression is characterized by a shift of attention – represented both in the 

individual (cognitive perspective) and in the mathematical discourse (socio-cultural perspective) – 

from a multitude of phenomena to common properties of those phenomena together with a filing away 

of details in a reliable way to long-term memory or reference books. 

We distinguish two forms of compression: compression on cases – cases of objects, cases where 

procedures apply, and cases where statements apply – and compression on steps/details of a 

process/technique. Tall calls compression on cases of mathematical objects categorization (Tall, 

2013): a multitude of objects is compressed to a category. Similarly, reorganizing knowledge on 

procedures and statements, such that separate cases are treated uniformly is a form of compression on 

cases. Literature provides various vocabularies to discuss the phases, stages or levels of abstraction 

processes that apply to compression on cases (Hershkowitz, Schwarz, & Dreyfus, 2001; Tall, 2013; 

van Hiele, 1986). In this paper we use the stages of the model of White and Mitchelmore (White & 

Mitchelmore, 2010): familiarity, similarity, reification and application. In short, in a first stage one 

familiarizes oneself with the separate cases. Then, one shifts one’s attention to the similarities between 

these cases. Next, one sees the totality (called condensation) of cases as a category, a new object, 

described by its properties – this is called the reification phase. In this phase the shift of attention to 

properties, mentioned before, takes shape.  Finally, the new object (object, procedure or statement) is 

seen and used in applications, like problem solving, dealing with all underlying cases at once.  

Compression on the steps of a process or details of a technique have also been described within several 

frameworks: for example operational-structural by Sfard (Sfard, 1991), APOS-theory by Dubinsky 

and collaborators (Arnon et al., 2014), and procept-theory by Tall (Tall, 2013). Our description builds 

on these frameworks, while trying to stay close to the description of compression on objects. We again 

discern four stages/levels/phases. In a first stage, recognition, individually performed actions (steps) 

are recognized as parts of overarching procedures; in a second stage, interiorization, similarities 
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between the performed procedures in different cases are observed, and therefore more efficiently 

stored in long-term memory (or a book) as a reliable process or technique. In the following reification 

phase, one sees the process as a totality (condensation), a new object (or procept (Tall, 2013)), and 

shifts attention to the properties of the process or technique; properties like the theoretical 

underpinning/justification of the mechanisms at work  or the domain to which the technique applies. 

In the final stage, application, the process can be recalled more easily in cases where it applies and 

can be applied more flexibly, adapted to the problem situation, if necessary. If students are stuck 

between the familiarity and similarity stage, they will not have the flexibility to use the concept, 

technique or statement (like theorems) to solve a problem.  

A proficient problem solver develops ideas into strategies by combining, adapting and elaborating 

techniques. To this purpose, the employed mathematical discourse needs to be abstract, formulated in 

terms of compressed objects, to make insurmountable series of steps, that form the obstacles that 

compose the problem, surmountable. Heuristic trees provide support for students in compressed 

language at the root, allowing students to click down the branches to decompress the these heuristics 

into more concrete hints (Bos, 2017). 

DESIGN IMPROVEMENTS 

To deal with the issue of help-seeking we implemented two improvements. A central insight, inspired 

by instrumentation theory (Artigue, 2002), was that compression – as a process of cognitive 

reorganization filing details away to long-term memory and shifting attention to properties – should 

develop in parallel with the use of the heuristic tree tool that allows students to experience the 

compression/decompression dynamic. The instrumental genesis of the heuristic tree instrument 

involves developing a cognitive scheme about this dynamic and how it is implemented in the tree 

structure. In the first pilot study students had difficulty navigating the structure because such scheme 

had not developed. In the second pilot this was overcome by a process of incrementation: The 

complexity of the problems and the supporting heuristic tree were gently increased, beginning with 

Figure 2. Help seeking flow chart 
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simple problems supported by trees of depth two growing to more complex problems supported by 

trees of depth four. 

The second improvement to support students help-seeking behavior was to provide students with a 

help-seeking flow-chart (see Figure 2). This is an major extension of the chart in (Roll, Aleven, 

McLaren, & Koedinger, 2011), to include the various phases of problem solving and facilitate the 

dynamic between compressed heuristics and more decompressed hints. The use of the chart is 

introduced to students by a demonstration video.   

RESULTS FROM A SECOND PILOT STUDY, DISCUSSION AND OUTLOOK 

Two classes (grade 9 and 11) each had two 90 minute lessons working in the online problem 

environment. For each problem students tracked their work flow in a flow chart. We registered their 

use of the heuristic trees and their results on the problems. Students filled in questionnaires before and 

after the experiment.  

The data supported the conclusion that help-abuse – like  clicking through all hints or not asking for 

help when needed – was reduced to nearly not occurring, while success in problem solving went up 

multiple times compared to the first pilot. Moreover, approximately 45% of students reported in the 

questionnaires that they improved their approach to problem solving.  

Up next is a main experiment in which we will collect data on the use of language by students thinking 

out loud while problem solving, to detect if working in our digital problem solving environment with 

support provided by heuristic trees facilitates the compression process, as described above.   
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