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Then, formal linguistics, to work from very precise notions of grammar,
or syntax, and meaning, or semantics, that provides a framework to solve
some of those challenges. And finally, quantum mechanics, necessary
to understand how we will approach the problems, taking advantage of
representing words as quantum states. These subjects are introduced in
Chapter 1, in what is intended to be a framing background of some of
the ideas, notations and concepts that will appear in later chapters. Given
the scope of this work, I attempted in this chapter to accommodate the
readers of diverse backgrounds, thinking of both experts and non-experts
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languages like Dutch) can be treated, quite literaly, with an extra spin; in
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algorithm can be deployed to search for the answer to a question, faster
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1

I N T R O D U C T I O N

1.1 natural language processing

One of the central obstacles of human-computer interaction is the fact that
computers understand very little about the meanings of words. A telling
example is the necessity to come up with other symbolic representations to
establish this communication: programming languages were designed to
this effect. From binary assembly languages to a more modern, "English-
like", programming language, such as Python, some translation from a
human request to a command line always had to take place before an action
was executed by the computer. After these methods were established, a
new question was ripe: can we extract the meaning and intent of natu-
ral language utterances directly in an automated way, from sentences to
statements that our computers can understand? What follows sketches
the efforts made to this date with regards to inferring the meanings of
words by using large volumes of text data to find the frequency with which
expressions appear in that data.

1.1.1 Vector Space Models

In the field of Natural Language Processing (NLP), Vector Space Models
(VSMs) have turned out to be one its most successful tools. The idea behind
a VSM is to represent each word or document as a point in a certain space.
In this sense, a document can be regarded as anything from an entire

1



2 introduction

page of text, to a paragraph, a sentence, or even a "tweet". This model
first became relevant for an information retrieval system called SMART
[121, 135]. Points that are close in that space should represent similar
content, contrary to points that are far apart. In information retrieval, a
query such as "fluffy dog" is turned into a point in that space, and the
closest point to it is given as the answer to the user. One such answer
could be "poodle". The success of the application of the model in this task
inspired the application of VSMs to other tasks with encouraging positive
outcomes, that achieved supra-human results on the TOEFL dataset [112]
and human-like performance on the American entrance college SAT tests
[134].

Essential to this success were two important underlying ideas, that explain
the name of the approach: that the points that represent the documents
can be seen as vectors that belong to a larger vector space, and that the
notions of distance between these vectors encode meaningful semantic
relationships, namely of similarity [122, 135].

While the use of vectors was common in artificial intelligence and cognitive
science previously [121], the bottleneck resided in how to build them. To
understand how this could be done, suppose that we characterize elements
in a dataset, that we want to represent as vectors, by the values of some
features, or attributes, that measure different aspects of that element, like
their color, shape or size [146]. The elements represented by such vectors
belong to a vector space that has these features as a basis, where for example
"poodle" might be described by the vector (3.4, 4.5, 1.2), with the entries
representing the color, shape and size of the object, in some numerical
scale. Another way in which words can be represented as vectors is if the
features correspond to the characters that compose that word. For a basis
{ni}, with i a letter in the alphabet, and ni the number of times the letter
i appears in it. For the word "poodle", as an example, the vector in this
basis is (. . . , 1, 1, . . . , 1, . . . , 2, 1, . . . ), where 1 corresponds to the number of
times the letters "d", "e", "l" and "p" appear, respectively, and 2 that number
but for the letter "o". The ellipsis representing a value of 0 for all the other
alphabetic entries of the vector.
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In a similar way, in cognitive science, prototype theory also makes use of
vectors, assuming some members of a category are more prototypical than
others [67]. For example, "labrador" is a more central (prototypical) member
of the category "dog", while "borzoi" is less so, being more peripheral. Thus
concepts can have various degrees of memberships in categories, described
by graded categorization. A natural way to implement this idea early on
was to have concepts as vectors with some concept features as basis, and
categories as sets of vectors [130]. However, these were usually based on
numerical scores that were elicited by questioning human subjects, and so
were not easy to automated.

Hopefully, this shows that finding the right features and the respective
appropriate weight is no trivial task [92]. When moving to more automated
ways of extracting representations of language fragments, using for instance
machine learning techniques, inputs are usually still represented using fea-
ture vectors, and, although they yield more accurate results in downstream
tasks, their interpretation also more elusive.

1.1.2 Term-document and word-context matrices

To automatically obtain vectors that represent words and phrases, in a way
that preserves some semantic information but at the same time optimizes
tasks such as information retrieval, the statistical hypothesis is used. It claims
that statistical patterns of human word usage can be leveraged to infer
what people really mean when they search, for example, for "fluffy dog".
To test this hypothesis, Furnas et al. [46] asked a number of annotators to
describe certain target words using other words, such as "green" for "lime",
and studied the patterns that emerged, finding significant agreement in the
words chosen across annotators. This hypothesis subsequently gave way
to the adoption of two other important ones: the bag-of-words hypothesis,
and the distributional hypothesis.

If we have a large number of documents that can each be represented as a
vector, it can be useful to organize them as a matrix. While the columns
correspond to documents, the row vectors of the matrix correspond to the
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terms, that is, features that describe the document and that are usually
taken to be the words that appear in the document. This matrix is called
the term-document matrix [135]. If a certain word appears more than once
in a document, its vector entry corresponds to that frequency, similarly to
what was done when representing a word by its characters. This introduces
a frequency component to the vectors that can be automated. One property
of this representation is that the ordering in which the words appear in
the document does not matter, and as such it is called the bag-of-words
representation. Note that this representation is not very useful when
different meanings are obtained by changing the ordering of the words,
such as in “Mary likes John” versus “John likes Mary”. However, for
information retrieval, the bag-of-words representation proved to be good
enough, allowing the frequency of the words in a document to inform its
relevance to a particular query. This is at the basis of the success of SMART
[123], where word-frequency tables were capable of capturing information
about the document’s content.

Soon after, Derweester et al. [37] noted that if, instead of comparing
column vectors, they compared the row vectors of the term-document
matrix, they would get a vector representation of the word or term instead,
containing information about the distribution of that term across documents.
Therefore, comparing these vectors allowed them to compare different
words. However, for this application, the entire document might not be of
the optimal length. Therefore, in general, we can create a word-context matrix,
where the context can be a word, phrase, sentence, paragraph, chapter or,
ultimately, a document [135]. To make this choice, the distributional principle
is often invoked. According to Harris [54], words that appear in similar
contexts tend to have similar meanings. While his original assertion did not,
in principle, require any frequency analysis, it has been used as such in this
context. This principle is used to justify the use of VSMs in the task of word
similarity, in the following way: if the context of a word is defined by its
surrounding words, then similar frequencies of these words would indicate
that the words are similar [78]. For example, if we extract the vectors of
the target words "happy" and "glad", they should be fairly similar, as these
words often appear close to the same context words, and although this is



1.1 natural language processing 5

not a methodology without fault ("happy" and "sad" might also appear
in the same contexts), it often provides satisfactory results, namely when
distinguishing words that appear in very different contexts, as exemplified
in Fig. 1.1.

Figure 1.1: Vector representation of two words.

Thus, similar row vectors in the word-context matrix produced similar
word meanings, which therefore automated the problem of synonymy in
information retrieval [37]. Given that to some extent these vectors contained
semantic information, the term "distributional semantics" came to be often
interchangeable with VSMs.

There are some interesting historical precursors leading up to Deerwester’s
insight. In first instance, already the philosopher Wittgenstein had argued
that a word can be understood by its context, but he was mostly referring to
the physical, real-world context, while in this case we employ other words
as contexts [147]. Recently, some debate has been generated regarding
whether this type of context will ever be enough for computers to capture
the full meanings of words [14], and Wittgenstein’s intuition might be
better captured in what is nowadays known as multimodal learning, where
images of the referents are used to aid text interpretation [63]. Weaver [142]
had already suggested in 1955 that the word context for disambiguation
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should matter in the context of translationa. It would be Firth, however,
who would capture this idea in what is now the slogan of the distributional
principle: “You shall know a word by the company it keeps.” [143]. The
main insight is that words don’t appear randomly in text; instead, they
form patters, and if we find clever enough ways of analysing them, we
might just be able to infer their meaning.

1.1.3 Statistical Natural Language Processing

The idea that information about the context of written text can be extracted
from the distributions of words across large amounts of text gave rise to yet
another type of language representation. Statistical language modelling, or
more simply just language modelling (LM) involves estimating a probability
distribution that captures statistical regularities in natural language [76].
Its roots date back to the beginning of the 20th century, when Markov
first used what is now known as Hidden Markov Models to try to model
letter sequences in works of Russian literature [80]. It would be Shannon,
however, who would in 1951 introduce the first systematic prediction of
content in an English text, introducing and using n-grams [127]. For the
task of predicting the next word, a stochastic probability function P can be
defined such that the probability of the next word depends on the preceding
n − 1 words:

P(wn|w1, ..., wn−1). (1.1)

a "First, let us think of a way in which the problem of multiple meaning can, in principle at
least, be solved. If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible to determine, one at a
time, the meaning of the words. "Fast" may mean "rapid"; or it may mean "motionless"; and
there is no way of telling which. But if one lengthens the slit in the opaque mask, until one
can see not only the central word in question, but also say N words on either side, then if
N is large enough one can unambiguously decide the meaning of the central word. The
formal truth of this statement becomes clear when one mentions that the middle word of a
whole article or a whole book is unambiguous if one has read the whole article or book,
providing of course that the article or book is sufficiently well written to communicate at
all. The practical question is, what minimum value of N will, at least in a tolerable fraction
of cases, lead to the correct choice of meaning for the central word?" [142]
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Common values of n are 2, 3 or 4 [79]. By looking at the frequency in
which these arrangements of words appear anywhere else in the text. This
makes it possible to calculate, for example, in "Mary has a fluffy dog",
what is the probability that the word "dog" follows the word "fluffy". For
n=2, this depends on the distribution P(dog|fluffy) with which these two
words appear next to each other across the data, as well as the normalized
frequency P(fluffy) of appearance of "fluffy", resulting in P(fluffy dog) =
P(dog|fluffy)P(fluffy). Given the sparsity of language data, n = 3 is
usually used, which is a value also common for the context windows
of word-context matrices in VSMs. In fact, windows of around 2 seem
to achieve the best results in this type of extraction, suggesting that the
meaning of a word can be extracted from its immediate surroundings [112].

1.1.4 Machine Learning and Natural Language Processing

While the distributional and the modelling approaches to automatic ex-
traction of meaning lived somewhat independently, in 2013 Mikolov et al.
[87] introduced a paper that radically changed the way in which these two
methods interacted. I introduce this advancement in the field because it
is important to understand for two reasons. The first is that it happened
in parallel with the development of ways to compose, in a grammatical
way, vectors that were originally obtained using word-context matrices,
introduced for instance in Mitchell et al. [91], a field of study that this thesis
advances, but it remains to be shown how precisely these ideas extend to
more dynamic ways of obtaining vector representations, some of which
already seem to have some notion of syntax embedded [59]. The second is
that, on trying to go beyond this restriction, it motivates the explorations in
Chapter 4.

The first machine learning algorithms for Natural Language Processing
were trained on a language modelling goal, that is, as a speedup technique
to implement statistical language models, where the probabilities output by
the model corresponded to the Markov probabilities for a given n. How each
word is represented as an input of these learning models varied, but usually
started as 1-of-V, where V is the size of the vocabulary, or were otherwise
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initiated at random. Instead of remaining fixed, these vectors would be
updated in order to optimize those probabilities, using more robust machine
learning architectures, like recursive neural networks [88]. It was then
shown that if the goal was turned into finding the vector representations
that predicted the neighbouring words (CBOW), or that instead predicted
a certain word based on the neighbouring words (Skip-gram), then the
resulting vectors contained semantic information. In particular, an additive
measure of the vectors after being projected onto the principal components
provided relationships between vectors such as country/capital [89]. This
approach became known as "word2vec" and was ground-breaking because
it gave a new, more efficient, way of finding vector representations of words
that were not just based on counts, were efficient to train with large amounts
of data, and seemed to contain relevant semantic information. What they
provided, most of all, was a great set of vectors to initialize other models for
different tasks, and no less for the distributional compositional programme,
that we will introduce in the next section. From then on, other language
models that provide more informative vector representations have been
developed, from BERT [? ] to more recently GPT-2 [111], as more and more
tasks rely on their improvement for better results.

1.2 formal grammar

There is one crucial ingredient that the VSMs lack on their own: how the
notions of meaning are related with the notions of grammar. However, we
need this to go beyond the "bag-of-words" models, in an explainable and
controlled way. The proposal is to do this by composing the representations,
or interpretations, of the individual words in accordance with grammatical
rules, in order to obtain representations of larger fragments of text for which
it is difficult to get frequency statistics. Take, for instance, the expression
"fluffy dog". As it is harder to find a vector of context frequencies for
this entire expressions than it is for "fluffy" and "dog", from the sheer fact
that it appears less often in any text, we might be better off finding a
vector representation for each word and an accurate way to represent the
interaction between them. To do that, some notions of formal linguistics
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are required. What follows starts by contextualizing the discussion around
compositionality, paving the way to the introduction of rigorous notions of
grammar and meaning, by presenting formal languages for the syntax and
the semantics. These concepts form the substrate of the present thesis. For
a deeper understanding of the formalisms that we will be using, the reader
is referred to Refs. [1, 60, 98, 99].

1.2.1 Compositionality

“Every time I fire a linguist, the performance of the speech recognizer goes
up.” The apocryphal words of one of the principal proponents of the
statistical approach to language modelling, F. Jelinek, are often cited as
support to the idea that frequency-based semantics can completely dispense
with any linguistic work done previously. However, he apparently hadn’t
completely lost faith that this work would soon become relevant: “We must
’put language back into language modelling”’[118].

To properly put in place a solution to Jelinek’s challenge, the call is to
include grammar and theoretical notions of meaning into our treatment
of language. This turns out to be key in dealing with linguistic cases that
cannot be captured statistically in a simple way, as we will see in later
chapters with sentence-level ambiguities.

To frame this inclusion, a foundational discussion from the earlier philo-
sophical and linguistics communities is worth revisiting. It contemplates
whether contextuality or compositionality were the most important approaches
for language processing and understanding [61]. According to the contex-
tuality proponents, a meaning can only be assigned to a complete sentence,
and so its parts can only be understood in the context of that sentence; we
can think of this as the sentence-to-word meaning direction. On the contrary,
compositionality implies that words have meanings of their own, and it is
their composition that forms the meanings of larger fragments of text, such
as a sentence; the meaning is assigned in a word-to-sentence direction. A
key distinction is that in the contextuality framework a fragment like "likes
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Mary" has no meaning, while one can be assigned in the compositionality
framework, given a proper definition.

Informally, the principle of compositionality, thus, states that "the meaning of
a compound expression is a function of the meanings of its parts and of the
way they are syntactically combined" [104]. That is to say, "the meaning of
the whole is computed in some predictable way from the meaning of its
parts" [60]. Also referred to as Frege’s principle in the context of modern
computational linguistics, it was only really stated as such by his student
Carnap [24, 105].

Until the 1960’s, the contextuality view was dominant in linguistics [61]. In
logics, and in computer science as a derivative, the principle of composition-
ality was more widely accepted. The introduction of this way of working
in logics in the 1930’s allowed the meanings of a certain expression to be
defined unambiguously, with the meaning of a complex expression being
given by the meanings of its individual parts and a set of compositional
rules. For example, if in Python we write print("dog"), the output will
invariably be dog, since the command print and the string "dog" are well
defined, as well as their interaction, or composition. The idea that human
languages can be understood too via the composition of its building blocks
thus gained strength alongside the development of computer languages,
resorting likewise to formal logical statements.

The philosopher and mathematical logician Richard Montague was dis-
satisfied with the way semantics was treated by Chomsky’s proposal in
1965 [25], which introduced a "deep structure" of a complete sentence that
would have to be given before any semantics could be computed, making
it a non-compositional process. Montague can be credited for making the
informal notion of compositionality precise [93], being of the opinion that a
single mathematical theory could be used to study the syntax and semantics
of both natural languages and formal languages as in logic or computer
science. In his view, syntax and semantics are understood as similar alge-
braic structures (sets of symbols and rules to manipulate them), and so a
compositional interpretation can be understood as a structure-preserving
mapping, a homomorphism, from syntax to semantics.
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This makes it an extremely useful method to study the relationships be-
tween form and meaning in natural language, in particular when we are
trying to model natural language in a way that a computer can understand,
since this way of thinking about the meanings of expressions and their
manipulation is also the basis of programming languages. Therefore, if we
can abstract language down to some rules, independently of the particular
inputs, we can map them to (computer) programs. For a sentence such
as "John likes Mary", we can first ignore the meanings of these particular
words, and formally describe what it has in common with any other sen-
tence that is likewise formed by a subject, an object, and a transitive verb,
and afterwards go back to the specific words to process its meaning as a
computer program.

Montangue’s theory is quite general, as it doesn’t commit to a particular
choice for the syntactic or semantic algebras, so long as they are related in
a structure preserving way. In the sections that follow, we provide some
background for the choices that are made in this thesis, first introduced
by van Benthem [137] and Moortgat [95]. We first discuss the typelogical
grammar that will serve as the syntactic front end for the compositional
mapping, and then we turn to the λ-calculus that we use to talk about
meanings, and show how these two calculi can be related in a compositional
way.

1.2.2 A calculus for syntax: typelogical grammar

The typelogical grammar that we will use in this thesis is an extended
version of the Syntactic Calculus that was introduced by the mathematician
Jim Lambek in 1958 [68]. Lambek’s syntactic calculus belongs to the family
of categorial grammar formalisms. Categories (or types, as we will use
both terms interchangeably), as the name suggests, play a central role in
this framework.

Before we present the Lambek calculus that we will will ultimately use
as the syntax of natural language, we build up to it by explaining some
of the developments that precede it. The first attempt at an algebra of
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syntax was given by Ajdukiewicz [5]. In this formalism, an expression is
assigned a syntactic type. Informally, in grammar we use types to group
together expressions that behave in a similar way, in the following sense. In
a sentence like "John likes Mary", "Mary" can be substituted by many other
expressions, such as "the dog that Bob owns", "a house with a garden", "a
fluffy dog", etc. We then say that "Mary" and all these other expressions
belong in the same type, and we call it the type, or category, of noun
phrases.

Categorial grammars refine this view on types as sets of expressions with
a similar behaviour by introducing a distinction between complete and
incomplete expressions. For complete expressions, we don’t need extra
information to come to a grammaticality judgement. These expressions
are assigned basic types. For incomplete expressions, we need some extra
context before we can decide on whether they are syntactically well-formed.
We can see this by comparing "the dog that Bob owns" with "the dog that
Bob", which still needs a completion. Incomplete expressions like the latter
get a complex type, that encodes how they will combine syntactically.

To keep things simple, let us assume basic syntactic types np, n and s,
corresponding to noun phrases, simple common nouns, and well-formed
sentences, respectively. For complex types, a type-constructor, −, is intro-
duced such that, together with any type A and any type B, it generates
the fractional type A

B . A lexicon then assigns a type to each word. Next,
the types combine via a cancellation scheme, represented in the following
notation:

A
B

, B → A. (1.2)

It reads as "An expression of type A
B combines with an expression of type

B into a formula of type A". The intuition is that these types interact in the
same way as arithmetic multiplication and fraction, a

b × b = a.

Introducing the notion of directionality, an expression of a complex type
can combine with an expression of simpler type expression either from its
left or from its right. Bar-Hillel [10] accommodated this in the previous
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syntactic account by replacing the type-constructor with two new ones,
/ and \, representing directional fractions. The type A/B reads "A over
B" the type A\B is reads "A under B". There are now two corresponding
cancellation rules,

B, B\A → A, A/B, B → A, (1.3)

indicating concatenation and cancellation to the immediate left, or to the
immediate right. These statements are read respectively as "An expression
of type B to the left of an expression of type B\A combines into an expres-
sion of type A", and "An expression of type B to the right of an expression
of type A/B combines into an expression of type A".

Taking into consideration the directionality of language in this way, we
can correctly assert the grammaticality of a large portion of grammatical
phrases. The sequence of types in "flies Mary", for instance, does not
combine to the type s using these rules, as can be immediately verified. A
more complex example is that of a sentence formed with a transitive verb.
Assigning the types np to "Mary", np to "John" and (np\s)/np to ’likes’,
we can indeed conclude that "John likes Mary" is a well-formed sentence by
using the rules in 1.3, by showing that the types of the constituent words
reduce to the type s, schematically as

John
np

likes
np\s/np

Mary
np

np\s
s (1.4)

and that we cannot use these rules to show the grammaticality for any other
word reordering.

Then, building on this earlier work, Lambek [68] formulated his Syntactic
Calculus, showing that, beyond just the algebraic symbols and mappings
between them, a full-fledged deductive system for reasoning about types
and their relations could be constructed. At the type level, the syntactic cal-
culus adds a third connective to Bar-Hillel’s formalism, an explicit product
operation • that is a multiplicative type-constructor, and stands for expres-
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sion concatenation. The connectives / and \ are its left and right residuals.
The full set of syntactic types, Lambek types, is thus given recursively in
the following notation:

F ::= P|F • F|F/F|F\F, (1.5)

where P is the set of basic type formulas, F is the set of all type formulas,
and | stands for choice, that is, a type is either basic or of one of the
connective-generated complex types. Since this process works recursively,
there is an unlimited possibility for different types.

The intended model for these types makes the informal view of types
as "sets of expressions with a shared behaviour" explicit. In it, types
are interpreted as sets of expressions, where we write v(A) for the set
of expressions of type A. Whatever the interpretation may be for basic
types, for complex types, we want it to reflect our understanding of the
type-forming operations:

v(A • B) = {x · y | x ∈ v(A) & y ∈ v(B)}, (1.6)

v(C\B) = {x | ∀y ∈ v(B), x · y ∈ v(C)}, (1.7)

v(A/C) = {y | ∀x ∈ v(A), x · y ∈ v(C)}. (1.8)

The operation · is interpreted as concatenation of expressions. For fractional
types, this formulation describes how their interpretation is that expressions
that belong to those types result in an expression of the "numerator" type
after it is concatenated with expressions of the "denominator" type.

With this language model in mind, we can now turn to the rules of the
syntactic calculus. The calculus is designed to produce statements A → B
expressing valid conclusions v(A) ⊆ v(B).

As for the rules, we first need A → A, since every set is a subset of itself,
and then cut rule
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if A → B and B → C, then A → C, (1.9)

since set inclusion is transitive. Since concatenation is associative, we also
need to add such a rule:

A • (B • C) ↔ (A • B) • C. (1.10)

Finally, we have that

A → C/B, (1.11)

if and only
A • B → C, (1.12)

and if and only if
B → A\C. (1.13)

With these rules, from the axioms

B\A → B\A, A/B → A/B, (1.14)

we can now not only derive the following cancellation schemata

B • B\A → A, A/B • B → A, (1.15)

that is akin to Eq. (1.3) and works in the direction of less complex types,
but also rules that increase the complexity of types, such as

B → A/(B\A), B → (A/B)\A, (1.16)

an operation known as type-lifting, from which we can obtain, for example,
the type of subject pronouns (words like "he" or "she") from the type of noun
phrases, as np → s/(np\s), as well as the type of object pronouns (him or
her) from the type of nouns, as np → (s/np)\s. The former indicates that
every noun phrase in subject position can be replaced by a subject pronoun,
such as in the sentence "He likes Mary". In contrast, a noun phrase in
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object position is replaced by a distinct type of pronoun, as in "John likes
her". This exemplifies the different behaviours of these two families of
pronouns, which in turn justifies the assignment of distinct syntactic types.
The correctness of this type assignment can be seen in that, while both
pronoun types can be formed from the type of noun phrases, we cannot
generate, using these rules, one pronoun type from the other.

In the presence of transitivity, given in Eq. 1.9, the questions of how to
find out whether A → B holds is not immediately obvious. To solve this
problem, Lambek reformulated the syntactic calculus as a logic sequent
calculus. The reformulation has the nice property that if one can prove a
theorem, then it is always possible to prove it without resorting to the cut
rule. The sequent calculus, in other words, has a decision procedure, an
algorithm that allows one to decide in a finite number of steps whether a
derivability statement holds or not.

To see this, suppose that we want to know whether "dog fluffy" is gram-
matical. That is, we want to decide whether n/n concatenated with n from
its right combines to n. For this, we need to check if our rules allow us to
combine the types into the following statement, which we intuitively infer
is wrong:

n • n/n → n. (1.17)

Starting from Eqs. 1.15, we know already that we cannot use either of
them directly. We also know that we cannot use that Eqs. 1.12 and 1.13

are equivalent to Eq. 1.11 because the target type is not fractional. But we
could still try to use the cut rule, using some other type A,

n → A and A → n. (1.18)

If we find such an A, we are one step closer to knowing where the com-
bination of expressions is grammatical or not. However, the number of
possibilities for A, together with the number of times that we can keep
applying the cut rule after we find A, is infinite, and it might not be possible
to decide whether the initial assertion was correct or not. Since we have
shown that only the cut rule gives a possibility to show that n combines
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with n/n to give n, there is no cut-free way of showing that this combination
is possible. Therefore, by the sequent calculus we can conclude that this
combination is ungrammatical, in accordance with our intuition.

Because of this, we can now prove whether an expression is grammatical.
For instance, to say that a sentence like "John likes Mary" is a well-formed
sentence, is to say that we can prove that the ordered list of types np,
(np\s)/np, np derives type s. The idea of this proof is to go from axioms
to conclusions. The following statement,

np, (np\s)/np, np ⊢ s, (1.19)

that we call a sequent and where the turnstile stands for "derives", should be
the conclusion statement of that proof. The initial statements are the axioms,
that introduce the types of the individual words, and in this calculus we
prove whether a conclusion follows from the axioms.

This sequent calculus is known as the (non-)associative Lambek calculus L,
of which the non-multiplicative fragment is used in this thesis, and that we
omit here because it is formally introduced in Chapter 2.

1.2.3 A calculus for semantics: λ-calculus

Let us now turn to the semantic calculus that forms the target for the
compositional mapping, which has a structure entirely parallel to the
syntactic calculus. The language consists of the terms of the (typed) λ-
calculus and the semantic types provide the typing rules that pick out the
well-formed expressions of this language. We then discuss the interpretation
process that assigns a semantic value in some intended model to each well-
formed expression. For the latter, we consider two options: a Montague-
style model-theoretic , truth-conditional semantics, and the distributional,
vector-based semantics that is the subject of this thesis. The development of
a formal semantics using the typed λ-calculus is well established [23, 40, 60],
and here we introduce some of the technicalities that will aid the reader of
Chapters 2 and 3.
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Parallel to the Lambek types that we had previously, we now introduce
semantic types τ. The semantic type system has the same recursive structure
that we saw for the syntactic types, but its details change. While for syntax
we distinguish the basic types np, n and s, because they behave differently
syntactically, for the semantic types we will similarly have to decide what
the essential distinctions are at the basic type level. This is inextricably
related to the interpretation of the type system, to which we come back
below. For incomplete expressions, instead of \ and /, we now have a
single type-forming operation → to form complex types:

τ := δ|τ → τ, (1.20)

with δ the set of basic types. The reason why now we only have one
connective is that word order is traditionally not relevant for the semantic
type system which considers language from a meaning perspective. We
work on bringing directionality to the level of the interpretation in Chapter
2.

We now turn to the language for which the semantic types provide the
typing rules, which is the language of the simply typed λ-calculus, in-
troduced as a model of computation by Alonzo Church [26]. Using a
variable-binding operator, the λb, this calculus forms the basis of typed
functional programming languages, and in that sense allows us to define
executable commands using the λ abstraction.

The typed statements of λ-calculus give us a language to talk about the
semantics. The well-formed expressions in this language are the terms Φτ.
For each type τ, we have a set of constants Cτ and a set of variables Vτ.
Using c, c′, . . . for constants, x, y, z, . . . for terms in general, and t, u, . . .
for terms in general, we establish three term formation rules. The first
is an atomic rule, stating that all constants and variables of type τ are
well-formed expressions of this type, that is, are in Φτ. Then we introduce
the application rule, stating that if t ∈ Φτ→τ′ and u ∈ Φτ, then (t u) ∈ Φτ′ .

b Other variable-binding operators include the ∃ operator and the ∀ operator, that can be
introduced in this calculus to retrieve first-order logic statements.
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Finally, there is the abstraction rule, stating that if x ∈ Vτ and t ∈ Φτ′ , then
λx. t ∈ Φτ→τ′ .

Intuitively, expressions with an arrow type τ → τ′ can be understood
as functions. In such a view, the application rule tells us how we can
use a function by applying it to an argument of the appropriate type,
and the abstraction rule tells us how we can create a function. Then, the
interpretation of the term language makes this intuition precise.

The first interpretation that we will put forward is the model-theoretic
one, resulting in a Montague-style semantics, where a compositional in-
terpretation establishes a relation between language and "the world". The
intended model for this kind of interpretation consists of the set U, the
"universe of discourse", encompassing all entities that language can talk
about and refer to, and the boolean set {true, false}. For each type τ, we
define a denotation domain Dτ, which is the set that contains the possible
meanings of expressions of type τ. In a simple account, this interpretation
uses the basic types e and t, such that De = U and Dt = {true, false}. The
domains of complex types are generated recursively from the previous as

Dτ′→τ = DDτ′
τ , (1.21)

where DDτ′
τ stands for all functions from Dτ′ to Dτ.

Each term t ∈ Φτ is now assigned a semantic value which is a member of
the denotation domain of its semantic type given as JtKg

I ∈ Dτ. Here g is
the assignment function that assigns an arbitrary element of Dτ to variables
of type τ, such that JxKg

I = g(x), and I is the interpretation function that
points each constant term to a specific value in the denotation domain, such
that JcKg

I = I(c), which is constant across assignments. For application, we
have, for t ∈ Φτ→τ′ and u ∈ Φτ, that

J(t u)Kg
I = JtKg

I
(
JuKg

I
)
∈ Φτ′ . (1.22)

For abstraction, for x ∈ Vτ and t ∈ Φτ′ we have that Jλx.tKg
I is a function

from Dτ to Dτ′ , such that for each object a ∈ Dτ, it computes the semantic
value of JtK for an assignment g′ that assigns a to x and for the rest is like g.



20 introduction

An alternative interpretation that we can give to the semantic language is a
distributional, vector-based one, where the interpretation domains are taken
as vector spaces. These vector spaces are intended to be obtained from
VSMs. The practical way in which compositionality is implemented when
words are represented as vectors is done by assuming the same two basic
semantic types, e and t, but by assigning them as domains the vector spaces
N and S, respectively, so that De = N and Dt = S. The vector space N is
where nouns are represented, and S is the vector space where the meaning
of sentences is represented (Fig. 1.2). As such, maps between elements of
these vector spaces are given as linear maps, with these themselves forming
a vector space [7], such that the domain of complex semantic types is given
as

Dτ′→τ = D∗
τ′ ⊗ Dτ. (1.23)

For all other things, this model behaves in an equivalent way to the model-
theoretic interpretation.

1.2.4 From Syntax to Semantics

We will now show how the languages that we have developed so far for
syntax and semantics are connected, and how that can be used to our
advantage for natural language processing.

To represent the syntax-semantics mapping, we define the homomorphism
⌈.⌉, that sends syntactic types to semantic types. For the model-theoretic
interpretation, ⌈n⌉ = e → t, ⌈np⌉ = e and ⌈s⌉ = t. Simple common nouns,
such as "dog", with syntactic type n, are interpreted with a function of type
e → t because this is the type of characteristic functions in the set De. For
instance, in the case of "dog", it specifies which elements of U are dogs, by
mapping those elements to the the boolean value true. In the distributional
interpretation, ⌈n⌉ = ⌈np⌉ = e and ⌈s⌉ = t. We see here that the distinction
between common nouns and noun phrases is flattened, as we can obtain a
distributional vector for a word like "dog".
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Complex syntactic types are sent to semantic types in a similar way for
both interpretations, as

⌈A\B⌉ = ⌈B/A⌉ = ⌈A⌉ → ⌈B⌉ (1.24)

Next, let us see how ⌈.⌉ acts on derivations, sending a syntactic derivation to
its semantics counterpart. Going back to the example of "John likes Mary",
we have two constants of type e, John’ and Mary’, whose interpretation
is some element in U, and a constant of type e → e → t, likes’, that takes
two individuals and provides a relationship between them, which is either
true or false. In this case, the resulting interpretation of the sentence is
whether the relationship between John and Mary estblished by the verb
holds, namely whether it is true that John likes Mary. The composition of
the semantic types is parallel to that of that of the syntactic types, as given
in Eq. (1.4):

John’
e

likes’
e → e → t

Mary’
e

e → t
t . (1.25)

The resulting (constant) term in this case is (likes’(Mary)’)John’), interpreted
as boolean value. In terms of notation, to follow this parallel more broadly
we decorate sequents such as those in Eq. (2.1) with constant or variable
terms,

x : n, z : (n\s)/n, y : n ⊢ ((zy)x) : s, (1.26)

a notation that we use throughout this thesis.

This guarantees that each expression has a unique derivation and meaning
structure assigned. But the insight is greater than this: by understanding
this way of reasoning, we can reach a level of abstraction that is akin to those
of programming languages, and draw the parallel with natural languages,
by thinking of words of complex syntactic types as maps, such as functions,
acting on others of simpler types. Thus, in assigning syntactic types to
the words, knowing how these map to semantic types and how these are
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Figure 1.2: Vector interpretation of sentences.

interpreted, should suffice to arrive at the semantics of larger fragments of
text. A big advantage of this approach is that it requires only the surface
form of the input and of the types of the words, and also provides an
independent interpretation of the building blocks of a sentence that can be
treated in a compositional way.

1.2.5 Distributional Compositional Semantics

Let us now give a couple of examples of how this machinery acts when the
domains are vector spaces. Take again "fluffy dog" and "John likes Mary".
The constant fluffy’ is interpreted as an element of the space N∗ ⊗ N, and
while the constant dog’ is an a vector in N. Given an orthonormal basis
{êi} of N, the dual vector space can be identified with N (the lifting of
this restriction is studied in Chapter 2), these interpretations can be made
explicit as
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Jdog’KI = ∑
i

di êi, (1.27)

Jfluffy’KI = ∑
jk

f jk êj ⊗ êk. (1.28)

To arrive at the interpretation of the larger fragment by composition, we act
with the matrix that represents the adjective on the vector that represents
the noun, just as we apply a map to an argument, interpreting the appli-
cation operation, which mirrors the syntactic cancellation rule, as matrix
multiplication, in linear algebra equivalent to the inner product, following
the methodology originally introduced in [33]:

Jfluffy’[dog’]KI = Jfluffy’KI .Jdog’KI

= ∑
jk

f jk êj ⊗ êk · ∑
i

di êi = ∑
jk

f jkdk êj. (1.29)

For the transitive sentence, the verb is a cube in the N ⊗ S ⊗ N space, and
as it contracts with the subject and object via matrix multiplication, a vector
in the sentence space results. Note that because the verb cube might not be
symmetric in the N components, it makes a difference whether the same
words appear as subjects or objects (see Fig. 1.2). The general idea is that
words become tensors of higher rank the more arguments they require.

This approach is especially interesting because of the fact that we can
use the vectors that were obtained from the context in a compositional
way. One of the limitations, though, is how quickly the dimensions of the
tensors scale up, and therefore how applicable these ideas are using the
currently available computational tools, when it comes to memory and
processors. In these regards, quantum computation promises a number of
new developments that are worth exploring.
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1.3 quantum mechanics

Another take at resolving the apparent incompatibilities between VSMs and
probabilistic language models is a probabilistic interpretation of the vector
entries of VSMs. As argued in [110], “quantum mechanics is already a
clearly extant framework that combines both probabilistic and geometric in-
sights, with coordinates of vectors being related to probability amplitudes”,
referring to the work of [138], that already argued that the probabilistic
interpretation of quantum mechanics could be used for the vectors obtained
in the context of information retrieval.

Moving to a quantum framework, words will no longer be represented
just as vectors of any vector space, but as states on a Hilbert space. To
understand this, it helps to be familiar with some of the notation and
concepts of quantum mechanics. There are a number of reasons to extent
the interpretation domains of the words in this way. One is that it allows for
the introduction of complex valued parameters, which increases the amount
of information that can be represented in a state when compared to a real-
valued vector. Another is that we can talk about two types of probability
distribution that contribute to the states coefficients, quantum and classical
probabilities, which again expand the possible interactions between word
representations. Lastly, using a quantum mechanics framework allows for
the exciting idea that we can model words and phrases such that they can
hold several ambiguous meanings simultaneously via quantum superposition.
All these quantum properties have in recent years started to be implemented
by using quantum computers, which will very soon be able to speed up
certain computations that are currently costly, but this not without the
ingenious new algorithms. The development of such algorithms for the
processing of natural language is the aim of this thesis.

If the reader does not have a background in physics, all this might sound
like a daunting proposition, so in this section we first give a colourful
example of what a quantum system is, and what constitutes a state in
such a system, before a compact overview of the mathematical concepts
that we will make use of is given, leading to a precise understanding of
what a quantum superposition is. Comprehensive references can be found



1.3 quantum mechanics 25

in Refs. [34, 102]. The understanding of these is at the heart of most
of what is ultimately achieved in this thesis, and so understanding what
follows, especially in terms of the notation introduced, is the golden ticket
to understanding how a quantum mechanics interpretation of sentences can
be of any benefit to the merging of linguistics with distributional models of
meaning.

1.3.1 Quantum Systems

In what follows, a curious fact will be fleshed out: the reason why we can
combine certain materials and set them on fire to get fireworks with shiny
colors is the same one that allows scientists to figure out what materials
compose the stars in the sky. It turns out that both these questions are
connected to the quantum properties of the materials. We will explain this
as a simple, and simplified, example of what a quantum system is, and
how it could be useful for language processing.

The puzzle of how fireworks and stars are connected is one that scien-
tists faced in the second half of the 19th century. By 1814, the physicist
Fraunhofer had invented the spectroscope. When directed at a source of
natural light, like a candle flame or the sun, it decomposed that light into
the specific wavelengths, in nanometers, that added up to the color of the
light that could be seen with the naked eye. It was known that the visible
light was characterized by a wave, with each color corresponding to a
specific wavelength, and it was already known, since Newton, via his prism
decomposition of visible light, that the light coming from the sun contained
the full spectrum of colors. In 1824, Fraunhofer published what happened
when he pointed his spectrometer at the sun [45]. What he expected to
see were all colors of the rainbow in a continuum, as in the first spectrum
of Fig. 1.4. However, he observed instead something quite extraordinary:
some very specific lines (wavelengths) were missing, as can be seen in the
spectrum of Fig.1.3.

Something else that he realized was that his spectrometer allowed the colors
emitted by the gases of certain heated materials to be measured exactly,
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Figure 1.3: Absorption spectrum of the sun.

and that each material had a specific signature in terms of the lines that it
produced (Fig. 1.4).

By comparing both the spectrum of the sun and the spectra of different
materials, he found that what was missing in the former found a perfect
match with what was found in the latter. If each material had an absorption
spectrum that corresponded to the negative of the emission spectrum (see
Fig. 1.5), then this could make it possible to figure out what materials
composed the atmosphere of the sun: a cold gas of a certain material in
the sun’s atmosphere absorbed light of the exact same wavelengths than
the heated gas of that same material, emitted in his lab experiments. So
by mapping out the spectral lines of each element and comparing their
absorption with the lines missing in the full visible spectrum coming from
the sun, it was possible to figure out what the atmosphere of the sun is
made of: mainly hydrogen and helium.

In the same way, we can understand that fireworks get their colors for the
same reason: if we want a yellow firework, we do it by burning sodium
salts, and if we want a green one, we can use copper salts. We can rest
assured that these materials will always emit the same colors.

But how to explain such reliability in the colors? The answer came from
quantum mechanics. The first finding was that the light that we see is
not only a wave, but that it is actually composed by a beam of particles,
and that each different color corresponds to a particle that is vibrating
with a certain wavelength. These light particles are called photons. So
this means that if a photon has a certain wavelength, making a beam of
more particles exactly like that one will not change the color of the light
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Figure 1.4: Flame spectroscopy of different elements.

Figure 1.5: Emission vs absorption spectrum.
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beam, but only its intensity. The second assertion was that each particle of
matter, atoms, could only interact with light particles with a very specific
wavelength, either in absorbing or emitting them. Since different materials,
are made up of different types of atoms, these different materials also
interact with light particles of different wavelengths. That is, for example,
if photons pass through atoms of hydrogen in the atmosphere of the sun,
those atoms will only care about the photons that vibrate at very specific
wavelengths, retaining them and so not allowing them to travel until they
reach us and can be observed. Since these atoms don’t interact with the
photons of other wavelengths, these remain invisible to them. Similarly
with the emission spectrum, if we heat up the atom, only when it reaches a
certain temperature can a light particle be released. This is because both the
temperature and the photon emission are related with the energy available,
so that thermal energy is absorbed, and then emitted as a photon, of which
the wavelength represents a very specific energy. The rest of the energy,
that is not emitted as light, is released as heat. And so, there is no emission
of photons with intermediate wavelengths, and we are bound to see the
colors that we see. Almost a century after Fraunhofer’s results, in 1913

Bohr used the recently developed theory of quantum mechanics to show
that wavelengths of the emission spectrum of the hydrogen corresponded
exactly to the differences in energy between the states of the hydrogen
atom [19] (Fig. 1.6). Incidentally, it is worth mentioning that the Physics
Institute in Utrecht had an important role to play in the ever more precise
measurement of the spectral lines around this time, chiefly under Ornstein,
contributing to the validation of the new theory of quantum mechanics
[55, 148].

The theory of quantum mechanics explains this by asserting the following:
each quantum system has a number of allowed states in which it can be
observed, and all of these states together define the system. As such, there
is a number of states that they can transition to-and-fro. In the context of
atoms, the states are associated with specific amounts of energy, which are
then different for atoms of varying elements.

That means that each atom only deals with photons of specific energies, or
not at all. Each time the atom goes into a lower energy state, it lets go of
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Figure 1.6: Some hydrogen transition lines in the visible spectrum. The energy
transition is due to a change in the state of its electron.

the excess energy by emitting a photon of a wavelength that corresponds
exactly to that energy difference. On the contrary, in order to go to a higher
energy state, the atom has to absorb a photon that contains the exact energy
necessary to compensate for the energy difference. Now we can explain
why these emissions always happen at specific wavelengths: there are no
in-between states for the atoms to be in, and two photons with half of the
necessary energy will typically not do the job.

But what is truly remarkable in a quantum system is that, while which states
it can be in are perfectly well established, whether it will be in a particular
state is a probabilistic issue. This means that if a photon with the exact
amount of energy for an atomic state transition comes along, this transition
will only happen with a certain probability, since the atom can be in a linear
superposition of the states before and after the absorption of the photon.
In what follows we will make this assertion more precise, by moving to a
more mathematical treatment of a quantum system.
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1.3.2 Quantum formalism

Suppose that we have a quantum system Ψ. This can be described using n
independent states, with n the dimension of the Hilbert space (a complex-
valued vector space with an inner product) where it is being described.
When a measurement is performed, the system is observed in exactly one
and only one of these states. To describe this mathematically, we set these
states to be the orthonormal basis vectors of the Hilbert space.

Before the measurement, the system can be in a quantum superposition of
states. While this term is often thrown around as sort of mystical property,
let me take this chance to break the spell, and hopefully convince you
that this is simpler than it sounds: purely from a mathematical definition
point of view, a quantum superposition is nothing but a state that can be
described as a linear combination of basis states. It is, therefore, any vector
in a Hilbert space other than a basis state.

The story starts to get a little bit more interesting when we consider what
the coefficients of that linear combination are. These turn out to be related
with the probabilities that the system is observed in the corresponding
basis states. Again, this makes it sound spookier than it is. In fact, the best
that quantum mechanics gives is a probability for obtaining the result of a
measurement, these probabilities can actually be calculated very precisely,
in the way that we will introduce shortly, and have been extensively verified
time and time again in experiments with unprecedented accuracy.

Another special feature of quantum mechanics is that, after a measurement,
the system is described exactly by the basis state in which it was observed,
and no longer by the previous superposition, which is destroyed by the
measurement process. Again, mathematically, this is just the same as saying
that the measurement corresponds to a projection to a basis state.

In the case of the atom, the emission of a photon of a certain wavelength
corresponds to an observation, and it allows us to know exactly the lower
energy state in which the atom is now in. However, in the moments right
before or right after, the atom is described by a quantum superposition of
possible states (see Fig. 1.7).
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Figure 1.7: Collapse of the wave function.

Let us now make the previous remarks more precise, and introduce some
notation for that. The ith basis state of a Hilbert space A is represented by
|i⟩A, which is a vector in the vector space A and is called a ket. Dual to the
ket is the bra, represented by A⟨i| and given by the conjugate transpose of
the ket, which lives in the dual vector space A∗c:

|Ψ⟩A = ∑
i

Cj |i⟩A , (1.30)

A⟨Ψ| = ∑
i

C∗
i A⟨i|. (1.31)

Take as an example the Hilbert space that has two orthonormal basis states
|0⟩ and |1⟩. Then a quantum system Ψ that can be in one of these two states
can be represented as a superposition state in this space as

|Ψ⟩ = C0 |0⟩+ C1 |1⟩ . (1.32)

This state reads as "The quantum system Ψ is, with certainty, in state |Ψ⟩."
The coefficients of the linear combination are related with the probability pi
that the system is measured in each possible state by the modulus squared
of the corresponding coefficient, pi = |Ci|2. This means, for example, that

c It should be clear that the bra belongs to A∗. However, to make the notation less heavy, we
write simply A in the subscript.
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the system Ψ will be observed in state |0⟩ with probability |C0|2. Thus, in
order for the probabilities to add up to 1, the sum of all |Ci|2 has to be 1.
This restricts the values of the coefficients. In order for the probability of
measuring system Ψ in either state to be equal, the state that it has to be in
is

|Ψ⟩eq =
1√
2
|0⟩+ 1√

2
eiϕ |1⟩ , (1.33)

where we see the complex-valued exponent introducing a relative phase
between the states.

Using that ∑j |j⟩ A⟨j| = 1, the general state of the quantum system can be
rewritten with respect to this basis as

|Ψ⟩A = ∑
ij

Ci |j⟩ A⟨j|i⟩A. (1.34)

Now we move to the formalism of density matrices, where we can un-
derstand what we talk about when we distinguish between classical and
quantum probabilities. The density matrix is an object in a tensor product
space defined as the tensor product between the possible states of the
system and the respective duals, weighted by the corresponding probability
p′j of being in that state:

ρ = ∑
j

p′j
∣∣Ψj

〉
A

〈
Ψj

∣∣. (1.35)

Since this is the tensor product between two states, this is a pure density
matrix when p′j is 1 for a particular value of j, and 0 otherwise. Our
previous system Ψ can be described using a pure density matrix, using Eq.
(1.32) as

ρ
pure
Ψ = |Ψ⟩ ⟨Ψ| = |C0|2 |0⟩ ⟨0|+ C0C∗

1 |0⟩ ⟨1|+ C∗
0 C1 |1⟩ ⟨0|+ |C1|2 |1⟩ ⟨1| .

(1.36)
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This product state can be presented by a matrix as well, which has the
coefficients as elements:

ρ
pure
Ψ =

(
|C0|2 C0C∗

1
C∗

0 C1 |C1|2

)
. (1.37)

So we see that there are two types of probability: p′, as in Eq. 1.35, is a
classical probability. In the case of Eq. 1.37, we know with certainty what
is the state in which system Γ is, which is |Γ⟩, and so p′ = 1. Then the
elements in the diagonal of the density matrix are the quantum probabilities,
which are, as we have seen, the probabilities that the system is observed, or
measured, in a certain basis state.

With respect to the basis vectors, the density matrix can be expressed as

ρ = ∑
ii′

Xii′ |i⟩A ⊗ A

〈
i′
∣∣ ≡ ∑

ii′
Xii′ |i⟩ A

〈
i′
∣∣ ∈ A ⊗ A∗. (1.38)

It is also possible that at least p′j are different from zero, in which case we
talk about a mixed state, which makes for an entirely diagonal density matrix
if the states are basis states. In this case, the values of the probabilities p′j
correspond to classical probabilities. For instance, the system Ψ could be at
another moment described as

ρmix
Γ = p′0 |0⟩ ⟨0|+ p′1 |1⟩ ⟨1| . (1.39)

This state can be read as "The quantum system Ψ is either in state |0⟩,
with probability p′0, or in state |1⟩, with probability p′1." Compare this
with the pure state reading of Eq. 1.32. In this difference lies on of the
reasons why quantum systems show such wonderful behaviour: if we
think that the interactions between quantum systems involve quantum
state multiplications, as we will see below, which can be expressed as
matrix multiplication, we see that, if these matrices are diagonal (classical),
the diagonal values of the interacting system are readily computable; but
since this is not necessarily the case, the off-diagonal terms of each system
contribute to the diagonal terms of the system after the interaction, and, as



34 introduction

we have seen, these are the values that govern the actual observations. This
has the important consequence too that the order of the multiplications
can matter, which suits well with the idea the order in which the word
interpretations are composed should be meaningful.

1.3.3 Quantum States as Distributional Semantics

Let us come back to the agenda of this thesis, which is to use this machinery
to describe sentence-level ambiguities as quantum superpositions, so we
can take advantage of the quantum properties of the system.

One way to represent words as quantum objects starts by defining the
domains of the semantic types using Hilbert spaces and words as states
therein. If for instance n is interpreted in the Hilbert space HN , then

Jdog’KI′ = ∑
i

di |i⟩ , (1.40)

Jfluffy’KI′ = ∑
jk

f jk |jk⟩ , (1.41)

resulting in the previous noun contraction. Implementing this contraction
in a quantum computer is a topic of exploration of Chapter 5.

But furthermore, the ability to include classical probabilities as well is
naturally embedded in the formalism. The previous formalism only regards
states that are pure, and that is not without its limitations. Moving to mixed
states, which can only be done in the formalism of density matrices, has
been proposed as a way to represent ambiguities in word senses in one
single representation of that word [9, 85, 109, 119], something that cannot
be done with simple VSMs. We want to bring this success to a full-fledged
representation of words and their composition using density matrices
that also represent sentence-level ambiguities, such as the syntactic and
structural ambiguities that we look at in Chapters 2 and 3, with examples
given below. In this setting, the domains of basic semantic types are the
tensor-product vector space where density matrices are described (see also
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Ref. [126]). Some technicalities of the handling of density matrices can be
found in Appendix B. In this setting, the domains of the semantic types are
linear maps between these spaces, and our previous examples now become

Jdog’KI′′ = ∑
ii′

Dii′ |i⟩
〈
i′
∣∣ , (1.42)

Jfluffy’KI′′ = ∑
jj′kk′

Fjj′,kk′ |jk⟩
〈

j′k′
∣∣ . (1.43)

The interpretation of the composition, that related the interpretations of the
individual words in the image of the syntactic composition, is given by a
contraction between tensors, given as the partial trace over the space where
that contraction takes place, in this particular case the space where nouns
are interpreted, N = HN∗ ⊗HN :

Jfluffy’[dog’]KI′′ = TrN (Jfluffy’KI′′ .Jdog’KI′′)

= ∑
ii′,kk′

Fjj′,kk′Dk′k |j⟩
〈

j′
∣∣ . (1.44)

This will be basis for the rest of the chapters in this thesis. In Chapter
2 we introduce a modification of this formalism to include directionality
in the semantic type domains to study a certain number of sentence-level
ambiguities and how to keep them in quantum superposition. The fol-
lowing chapters are, each in their own way, its spin-offs: in Chapter 3

we extend the formalism to include other types of ambiguities present in
Dutch; in Chapter 4 we numerically implement an aspect of the formalism
essential to the directionality of the interpretations; and in Chapter 5 we
go through the ropes of quantum computation to implement the quantum
state contractions that allow us to keep the several readings of ambiguous
sentences in quantum superposition.
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1.4 outlook

In Chapter 2 we look at the phenomenon of syntactic ambiguities. Sentences
like Babies are what the mother eats, Crowds rush to see Pope trample man to
death or Killer sentenced to die for second time in 10 years have appeared as real
headlines of newspaper or magazine articles [22], and are instances of such
linguistic phenomena. While from the reader’s side these headlines can
be undoubtedly amusing, more seriously intended communication can be
harmed them, and so approaching them from a syntactic perspective offers
a level of control that simple "bag-of-words" cannot. Examples include the
interpretation of the law [124], or the understanding of incomplete medical
notes, also known as ’doctor scribbles’ [43]. What is at hand in these cases
is that different syntactic contractions can take place, and under the view
that the semantics and syntax are connected, we can study the different
meanings that arise from different syntactic contractions. The focus will be
a phrase of the form of old women and men. The scope of "old" in the noun
phrase should become clear from context if it is followed by the segment
can’t get pregnant.

In Chapter 3 we extend the syntax of the previous chapter, the Lambek
calculus, with modalities that allow us to control the use of the structural
commutativity rule, essential to the derivation of structural ambiguities in
verb-final structures that exist is Dutch relative clauses. We aim to give a
quantum state semantic interpretation of these modalities, by introducing
an extra vector space, akin to a spin space, that keeps track of the use of
the commutativity structural rule, once more giving us control over which
reading is intended at the level of the interpretation. We do this as an
extension of the more general framework of directional density matrices
introduced in the previous chapter.

In Chapter 4, we explore the idea already proposed in the first chapter
that the contractions between the vector representations of words should
not be done using the Euclidean inner product, as done in the [33] and
related work, but that within certain contexts the ways in which vectors
relate should be refined. We use a machine learning algorithm to fine-tune
the inner products between word representations that belong to similar
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contexts, achieving an improvement on the correlation between the resulting
cosine similarities and human-reported similarity judgements.

Finally, in Chapter 5, introduce the way to the contractions on a quantum
computer, to describe the different ambiguity readings using quantum
superposition. We first show how this works for the syntactic ambiguities
of the first chapter, and then use the fact that we know how to input
words as quantum states to develop a quantum search algorithm, Grover’s
algorithm, to find the correct answer to a natural language question, directly
from the representation of this question generated by using a contraction of
quantum states that is compositional according to what we have introduced
here.





2

D E N S I T Y M AT R I C E S W I T H M E T R I C F O R
D E R I VAT I O N A L A M B I G U I T Y

abstract Recent work on vector-based compositional natural language se-
mantics has proposed the use of density matrices to model lexical ambiguity and
(graded) entailment (e.g. Piedeleu et al 2015, Bankova et al 2019, Sadrzadeh et al
2018). Ambiguous word meanings, in this work, are represented as mixed states,
and the compositional interpretation of phrases out of their constituent parts takes
the form of a strongly monoidal functor sending the derivational morphisms of a
pregroup syntax to linear maps in FdHilb. Our aims in this paper are threefold.
Firstly, we replace the pregroup front end by a Lambek categorial grammar with
directional implications expressing a word’s selectional requirements. By the
Curry-Howard correspondence, the derivations of the grammar’s type logic are
associated with terms of the (ordered) linear lambda calculus; these terms can
be read as programs for compositional meaning assembly with density matrices
as the target semantic spaces. Secondly, we extend on the existing literature and
introduce a symmetric, nondegenerate bilinear form called a "metric" that defines a
canonical isomorphism between a vector space and its dual, allowing us to keep a
distinction between left and right implication. Thirdly, we use this metric to define
density matrix spaces in a directional form, modeling the ubiquitous derivational
ambiguity of natural language syntax, and show how this allows an integrated
treatment of lexical and derivational forms of ambiguity controlled at the level of
the interpretation.

39
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2.1 introduction

Semantic representations of language using vector spaces are an increas-
ingly popular approach to automate natural language processing, with
early comprehensive accounts given in [27, 91]. This idea has found several
implementations, both theoretically and computationally. On the theoreti-
cal side, the principle of compositionality [62] states that the meaning of
a complex expression can be computed from the meaning of its simpler
building blocks and the rules used to assemble them. On the computational
side, the distributional hypothesis [54] asserts that a meaning of a word
is adequately represented by looking at what words most often appear
next to it. Joining these two approaches, a distributional compositional
categorical (DisCoCat) model of meaning has been proposed [33], mapping
the pregroup algebra of syntax to vectors spaces with tensor operations,
by functorialy relating the properties of the categories that describe those
structures, allowing one to interpret compositionality in a grammar-driven
manner using data-extracted representations of words that are in principle
agnostic to grammar. This method has been shown to give good results
when used to compare meanings of complex expressions and with human
judgements [51]. Developments in the computation of these vectors that
use machine learning algorithms [89] provide representations of words that
start deviating from the count-based models. However, each model still
provides a singular vector embedding for each word, which allows the
DisCoCat model to be applied with some positive results [144].

The principal limitation of these embeddings, designated static embeddings,
is that it provides the same word representation independently of context.
This hides polysemy, or even subtler gradations in meaning. Using the
DisCoCat framework, this issue has been tackled using density matrices
to describe lexical ambiguity [108? ], and using the same framework also
sentence entailment [119] and graded hyponymy [9], since the use of ma-
trices allows the inclusion of correlations between context words. From
the computational side, the most recent computational language models
[38, 107] present contextual embeddings of words as an intrinsic feature.
In this paper we aim at reconciling the compositional distributional model
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and these developments by presenting density matrices as the fundamental
representations of words, thus leveraging previous results, and by intro-
ducing a refined notion of tensor contraction that can be applied even if
we do not assume that we are working with static embeddings coming
from the data, thus additionally presenting the possibility of eliminating
the distinction between context and target words, because all words can be
equally represented with respect to one another. To achieve this, we build
the components of the density matrices as covariant or contravariant by
introducing a metric that relates them, extending to the interpretation space
the notion of directionality of word application, as a direct image of the
directional Lambek calculus. After that, we attach permutation operations
that act on either type of components to describe derivational ambiguity in
a way that keeps multiple readings represented in formally independent
vector spaces, thus opening up the possibility of integration between lexical
and syntactic ambiguity.

Section 2.2 introduces our syntactic engine, the Lambek calculus (N)L/,\,
together with the Curry-Howard correspondence that associates syntactic
derivations with programs of the ordered lambda calculus λ/,\. Section 2.3
motivates the use of a more refined notion of inner product and introduces
the concept of a tensor and tensor contraction as a basis independent
application of a dual vector to a vector, and introduces a metric as the
mechanism to go from vectors extracted from the data to the dual vectors
necessary to perform tensor contraction. Section 2.4 gives some background
on density matrices, and on ways of capturing the directionality of our
syntactic type logic in these semantic spaces using the previously described
metric. Section 2.5 then turns to the compositional interpretation of the λ/,\
programs associated with (N)L/,\ derivations. Section 2.6 shows how the
directional density matrix framework can be used to capture simple forms
of derivational ambiguity.
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2.2 from proofs to programs

With his [68, 69] papers, Jim Lambek initiated the ‘parsing as deduction’
method in computational linguistics: words are assigned formulas of a type
logic designed to reason about grammatical composition; the judgement
whether a phrase is well-formed is the outcome of a process of deduction in
that type logic. Lambek’s original work was on a calculus of syntactic types,
which he presented in two versions. With L/,\ we refer to the simply typed
(implicational) fragment of Lambek’s [68] associative syntactic calculus,
which assigns types to strings; NL/,\ is the non-associative version of [69],
where types are assigned to phrases (bracketed strings).a

Van Benthem [15] added semantics to the equation with his work on
LP, a commutative version of the Lambek calculus, which in retrospect
turns out to be a precursor of (multiplicative intuitionistic) linear logic.
LP is a calculus of semantic types. Under the Curry-Howard ‘proofs-as-
programs’ approach, derivations in LP are in 1-to-1 correspondence with
terms of the (linear) lambda calculus; these terms can be seen as programs
for compositional meaning assembly. To establish the connection between
syntax and semantics, the Lambek-Van Benthem framework relies on a
homomorphism sending types and proofs of the syntactic calculus to their
semantic counterparts.

In this paper, rather than defining semantic interpretation on a commutative
type logic such as LP, we want to keep the distinction between the left
and right implications \, / of the syntactic calculus in the vector-based
semantics we aim for. To achieve this, our programs for meaning com-
position use the language of Wansing’s [141] directional lambda calculus
λ/,\. Wansing’s overall aim is to study how the derivations of a family of
substructural logics can be encoded by typed lambda terms. Formulas, in
the substructural setting, are seen as information pieces, and the proofs ma-
nipulating these formulas as information processing mechanisms, subject

a Neither of these calculi by itself is satisfactory for modelling natural language syntax. To
handle the well-documented problems of over/undergeneration of (N)L/,\ in a principled
way, the logics can be extended with modalities that allow for controlled forms of reordering
and/or restructuring. We address these extensions in [36].
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Terms: t, u ::= x | λrx.t | λlx.t | t ◁ u | u ▷ t

Typing rules:

x : A ⊢ x : A Ax

Γ, x : A ⊢ t : B
Γ ⊢ λrx.t : B/A I/

x : A, Γ ⊢ t : B
Γ ⊢ λlx.t : A\B

I\

Γ ⊢ t : B/A ∆ ⊢ u : A
Γ, ∆ ⊢ t ◁ u : B E/

Γ ⊢ u : A ∆ ⊢ t : A\B
Γ, ∆ ⊢ u ▷ t : B

E\

Figure 2.1: Proofs as programs for (N)L/,\.

to certain conditions that reflect the presence or absence of structural rules.
The terms of λ/,\ faithfully encode proofs of (N)L/,\; information pieces,
in these logics, cannot be copied or deleted (absence of Contraction and
Weakening), and information processing is sensitive to the sequential order
in which the information pieces are presented (absence of Permutation).

We present the rules of (N)L/,\ with the associated terms of λ/,\ in Fig
3.1. The presentation is in the sequent-style natural deduction format. The
formula language has atomic types (say s, np, n for sentences, noun phrases,
common nouns) for complete expressions and implicational types A\B,
B/A for incomplete expressions, selecting an A argument to the left (resp.
right) to form a B.

Ignoring the term labeling for a moment, judgments are of the form Γ ⊢ A,
where the antecedent Γ is a non-empty list (for L) or bracketed list (NL)
of formulas, and the succedent a single formula A. For each of the type-
forming operations, there is an Introduction rule, and an Elimination rule.

Turning to the Curry-Howard encoding of NL/,\ proofs, we introduce a
language of directional lambda terms, with variables as atomic expressions,
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left and right λ abstraction, and left and right application. The inference
rules now become typing rules for these terms, with judgments of the form

x1 : A1, . . . , xn : An ⊢ t : B. (2.1)

The antecedent is a typing environment providing type declarations for the
variables xi; a proof constructs a program t of type B out of these variables.
In the absence of Contraction, Weakening and Permutation structural rules,
the program t contains x1, . . . , xn as free variables exactly once, and in that
order. Intuitively, one can see a term-labelled proof as an algorithm to
compute a meaning t of type B with parameters xi of type Ai. In parsing a
particular phrase, one substitutes the meaning of the constants (i.e. words)
that make it up for the parameters of this algorithm.

2.3 directionality in interpretation

In order to introduce the directionality of the syntactic calculus in the
semantic calculus, we expand on the existing literature that uses FdVect as
the interpretation category by calling attention to the implied inner product.
We introduce a more abstract notion of tensor, tensor contraction and the
need to introduce explicitly the existence of a metric, coming from the
literature of general relativity, following the treatment in [139].b Formally,
a metric is a function that assigns a distance between two elements of a set,
but if applied to the elements of a set that is closed under addition and
scalar multiplication, that is, the elements of a vector space, it becomes an
inner product. Since we will be looking at vector spaces, we use the terms
metric and inner product interchangeably.

To motivate the need for a more careful treatment regarding the inner
product, lets look at a very simple yet illustrative example. Suppose that
a certain language model provides word embeddings that correspond to
two-dimensional, real valued vectors. In this model, the words "vase" and
"wall" have the vector representations v⃗ and w⃗, respectively

b An alternative introductory treatment of tensor calculus can be found in [41].
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v⃗ = (0, 1) and w⃗ = (1, 0). (2.2)

This representation could mean that they are context words in a count-
based model, since they form the standard (orthogonal) basis of R2, or that
they have this particular representation in a particular context-dependent
language model. To compute cosine similarity, the notion of Euclidean
inner product is used, where the components corresponding to a certain
index are multiplied:

v⃗ · w⃗ = 0 · 1 + 1 · 0 = 0, (2.3)

which we can use to calculate the cosine of the angle θ between these
vectors,

cos(θ) =
v⃗ · w⃗

∥v⃗∥ · ∥w⃗∥ =
0 · 1 + 1 · 0 = 0

1 · 1
= 0. (2.4)

Thus, if the representations of these words are orthogonal, then using this
measure to evaluate similarity we conclude that these words are not related.
However, there is a degree of variation in the vectors that are assigned to
the distributional semantics of each word. Static embeddings are unique
vector representations given by a global analysis of a word over a corpus.
The unique vector assigned to the semantics of a word depends on the
model used to analyze the data, so different models do not necessarily
put out the same vector representations. Alternative to this are dynamic
embeddings, which assign different vector representations to the same word
depending on context, within the same model.

Therefore, there are at least three ways in which the result of eq.4.1 and
subsequent interpretation can be challenged:

1. Static Embeddings. If the representations come from a count-based
model, choosing other words as context words changes the vector
representation and therefore these words are not orthogonal to one
another anymore; in fact this can happen with any static embedding
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representation when the basis of the representation changes. Exam-
ples of models that give static embeddings are Word2Vec [89] and
GloVe [106].

2. Dynamic Embeddings. When the vector representations comes from
a context-dependent embedding, changing the context in which the
words are evaluated influences their representation, which might not
be orthogonal anymore. Dynamic embeddings can be obtained with
i.e. ELMo[107] BERT[38] and GPT-2[111].

3. Expectation of meaning. Human judgements, which are the out-
comes of experiments where subjects are explicitly asked to rate the
similarity of words, predict that some words should have a degree of
relationship. Therefore, the conclusion with respect to similarity we
derive from orthogonal representations of certain words might not be
valid if there is a disagreement with their human assessment. These
judgements are condensed in datasets such as the MEN dataset [21].

While points 1 and 2 can be related, caution is necessary in establishing
that link. On a preliminary inspection, comparing the cosine similarity of
context-free embeddings of nouns extracted from pre-trained BERT [38]
with the normalized human judgements from the MEN dataset [21], we
find that the similarity between two words given by the language model is
systematically overrated when compared to its human counterpart. One
possible explanation is that the language model is comparing all words
against one another, so it is an important part of similarity that the two
words belong to the the same part of speech, namely nouns, while humans
assume that as a condition for similarity evaluation. Further, though we
can ask the language model to rate the similarity of words in specific
contexts, that has not explicitly been done with human subjects. A more
detailed comparison between context-depend representations and human
judgement constitutes further research.

One way to reconcile the variability of representations and the notion of
similarity is to expand the notion of inner product to be invariant under
the change of representations. Suppose now that by points 1 or 2 the
representations of "vase" and "wall" change, respectively, to
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v⃗′ = (1, 1), w⃗′ = (−1, 2). (2.5)

These vectors also form a basis of R2, but not an orthogonal one. If we use
the same measure to compute similarity, taking normalization into account,
the Euclidean inner product gives v⃗′ · w⃗′ = (−1) · 1 + 1 · 2 = 1 and cosine
similarity gives

cos(θ′) =
v⃗′ · w⃗′

∥v⃗′∥ · ∥w⃗′∥ =
1√

2 ·
√

5
=

1√
10

. (2.6)

If now we have a conflict between which representations are the correct
ones, we can look at the human evaluations of similarity. Suppose that it
corresponds too to 1√

10
.

We argue in this paper that, by introducing a different notion of inner prod-
uct, we can fine-tune a relationship between the components of the vectors
with the goal to preserve a particular value, for example a human similarity
judgement. In this framework, the different representations of words in
dynamic embeddings are brought about by a change of basis, similarly to
what happens when the context words change in static embeddings, in
which case the value of the inner product should be preserved. This can be
achieved by describing the inner product as a tensor contraction between a
vector and a dual vector, with the latter computed using a metric.

Let V be a finite dimensional vector space and let V∗ denote its dual vector
space, constituted by the linear maps from V to the field R. A tensor T of
type (k, l) over V is a multilinear map

T : V∗ × · · · × V∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l

→ R. (2.7)

Once applied on k dual vectors and l vectors, a tensor outputs an element
of the field, in this case a real number. By this token, a tensor of type (0, 1)
is a dual vector, which is the map from the vector space to the field, and a
tensor of type (1, 0), being technically the dual of a dual vector, is naturally
isomorphic to a vector. Given a basis E = {êi} in V and its dual basis dE =
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{êj} in V∗, with êj(êi) = δ
j
i , the tensor product between the basis vectors

and dual basis vectors forms a basis B = {êi1 ⊗ · · · ⊗ êik ⊗ êj1 ⊗ · · · ⊗ êjl} of
a tensor of type (k, l), allowing the tensor to be expressed with respect to
this basis as

T = ∑
i1,...,ik ,j1,...,jl

Ti1 ...ik
j1...jl

êi1 ⊗ · · · ⊗ êik ⊗ êj1 ⊗ · · · ⊗ êjl . (2.8)

The basis expansion coefficients Ti1 ...ik
j1...jl

are called the components of the
tensor.

We can perform two important operations on tensors: apply the tensor
product between them, T′ ⊗ T, and contract components of the tensor, CT.
The first operation happens in the obvious way, while the second corre-
sponds to applying one of the basis dual vectors to a basis vector, resulting
in an identification and summing of the corresponding components:

(CT)i1 ...ik−1
j1...jl−1

= ∑
σ

Ti1...σ...ik−1
j1 ...σ...jl−1

. (2.9)

The outcome is a tensor of type (k − 1, l − 1). Note that this procedure is
basis independent, because of the relationship between the basis and dual
basis. For a tensor of type (1, 1), which represents a linear operator from
V to V, tensor contraction corresponds precisely to taking the trace of that
operator. To simplify the notation, we will use primed indices instead of
numbered ones when the tensors have a low rank. We define a special (0, 2)
tensor called a metric d:

d = ∑
j,j′

djj′ êj ⊗ êj′ . (2.10)

This tensor is symmetric and non-degenerate. The contraction of this tensor
with two vectors v and w gives the value of the inner product:

d(v, w) = ∑
j,j′

vjdjj′wj′ . (2.11)
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Because of symmetry, d(v, w) = d(w, v), and because of non-degeneracy,
the metric is invertible, with its inverse d−1 expressed as

d−1 = ∑
i,i′

dii′ êi ⊗ êi′ . (2.12)

Given that the elements extracted from the data are elements of V, the
contractions that need to be performed, for example for the application of
the compositionality principle in vector spaces, must involve a passage from
vectors to dual vectors as seen in the DisCoCat model, before contraction
takes place. The metric can be used to define a canonical map between V
and V∗ via the partial map that is obtained when only one vector is used as
an argument of the metric, giving rise to the dual vector dv : v 7→ d(−, v),
with the slash indicating the empty argument slot:

d(v, w) ≡ d(v,−)(w) ≡ dv(w). (2.13)

This formulation is basis independent, since it results from tensor contrac-
tion. Once a basis is defined, the resulting dual vector can be expressed
as

vd = ∑
i,j,j′

djj′vi êj ⊗ êj′(êi) = ∑
j,j′

djj′vj′ êj = ∑
j′

vj′ êj′ , (2.14)

where we rewrite vj′ = ∑j djj′vj′ .

We call the components of vectors, with indices "up", the contravariant
components, and those of dual vectors, with indices "down", the covariant
components. Thus, consistent with our notation, the metric can be used to
"lower" or "raise" indices, applying contraction between the metric and the
tensor and relabeling the components:
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d(T) = ∑
i1,...,ik ,j1,...,jl+2

djl+1,jl+2 Ti1,...,ik
j1,...,jl

êjl+1 ⊗ êjl+2(êi1)⊗ . . . ⊗ êjl

= ∑
i1,...,ik ,j1,...,jl+1

djl+1,i1 Ti1,...,ik
j1,...,jl

êjl+1 ⊗ êi2 ⊗ . . . ⊗ êjl

= ∑
i2,...,ik ,j1,...,jl+1

T i2,...,ik
jl+1 j1,...,jl

êjl+1 ⊗ êi2 ⊗ . . . ⊗ êjl . (2.15)

The effect of the metric on a tensor can be captured by seeing how we
rewrite the components of some example tensors:

⋄ ∑j′ djj′T
j′

j′′ = Tjj′′ ;

⋄ ∑i′ Ti
i′ d

i′i′′ = Tii′′ ;

⋄ ∑j′,j′′′ djj′dj′′ j′′′T j′ j′′′ = Tjj′′ .

Most importantly, a proper tensor is only defined in the form of eq.2.8,
so whenever we have a tensor that has components "up" and "down" in
different orders, for example in T i

j , this is in fact a tensor of type (1, 1) of
which the actual value of the components is

∑
i′,j′

dii′djj′T
j′

i′ . (2.16)

Returning to our toy example with the words "vase" and "wall", we can look
at the change in vector representations as a change of basis êi = ∑i′ Λ i′

i ê′i′ :

v⃗ = ∑
i

vi êi = ∑
ii′

viΛ i′
i ê′i′ = ∑

i′
v′i

′
ê′i′ , (2.17)

corresponding to a change in the vector components v′i
′
= viΛ i′

i . The
components of the metric change as

d′j′′ j′′′ = Λ j
j′′djj′Λ

j′

j′′′ . (2.18)
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With this change, we can show that inner product remains invariant under
a basis change:

w′i′v′i′ = w′i′di′ j′v′j
′
= w′i′Λ i

i′ d′ijΛ
j

j′v
′j′ = wid′ijv

j = wivi. (2.19)

In this way, finding the right metric allows us to preserve a value that is
constant in the face of context dependent representations. Assuming a
metric that has the following matrix representation in the standard basis,

d =

(
2 1
1 5

)
, (2.20)

its application to the vector elements in eqs.2.2 gives a value of the inner
product calculated in the new representation:

v′i′w
′i′ =

(
1 0

) (2 1
1 5

)(
0
1

)
= 1. (2.21)

Since norms of the vector have to be calculated using the same notion of
inner product,

∥v⃗∥ =
√

vigijvj, (2.22)

we find exactly the cosine similarity calculated in eq.2.6. Note that this
formalism allows us to deal with non-orthogonal basis, but does not re-
quire it: in fact, there is an implicit metric already when we compute the

Euclidean inner product in eq.2.2, given by dorth =

(
1 0
0 1

)
in the standard

basis, which is the one assumed when talking about an orthonormal basis.

Since these new tools allow us to preserve a quantity in the face of a change
of representation, we can start reversing the question on similarity: given
a certain human judgement on similarity, or another constant of interest,
what is the metric that preserves it across different representationsc? Once

c In case the quantity we wish to preserve is other than that of the Euclidean inner product
in either representation, there is an option to expand the vector representation of our words
by adding vector components that act as parameters, to ensure that the quantity is indeed



52 density matrices with metric for derivational ambiguity

the vector spaces are endowed with specific metrics, the new inner product
definitions permeate all higher-rank tensor contractions that are performed
between higher and lower rank tensors, namely the ones that will be used
in the interpretation of the Lambek rules,d and can further be extended to
density matrices.

2.3.1 Metric in Dirac Notation

We want to lift our description to the realm of density matrices. We now
show how the concept of a metric can also be introduced in that description,
such that the previously described advantages carry over.

Dirac notation is the usual notation for vectors in the quantum mechanics
literature. To make the bridge with the previous concepts from tensor
calculus, we introduce it simply as a different way to represent the basis
and dual basis of a vector space. Let us rename their elements as kets
|i⟩ ≡ êi and as bras ⟨j| ≡ êj. The fact that the bases are dual to one another
is expressed by the orthogonality condition ⟨j|i⟩ = δij, which, if the vector
basis elements are orthogonal to each other, is equivalent to applying the
Euclidean metric to |i⟩ and |j⟩. Using Dirac notation, a vector and dual
vector are represented as v ≡ |v⟩ = ∑i vi |i⟩ and vd ≡ ⟨u| = ∑j vj ⟨j|e If the

conserved. This would be similar to the role played by the time dimension in Einstein’s
relativity theory.

d Using this formalism, we can replace the unit and counit maps ϵ and η maps of the compact
closed category FdVect by

ηl : R → V ⊗ V∗ :: 1 7→ 1 ⊗ d(1,−)

ηr : R → V∗ ⊗ V :: 1 7→ d(−, 1)⊗ 1

ϵl : V∗ ⊗ V → R :: d(−, v)⊗ u 7→ d(u, v)

ϵr : V ⊗ V∗ → R :: v ⊗ d(u,−) 7→ d(u, v).

e For orthonormal basis over the field of complex numbers, the covariant components are
simply given by the complex conjugate of the contravariant ones, vi = v̄i.
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basis elements are not orthogonal, this mapping has to be done through
a more involved metric. To express this, in this paper we introduce a
modified Dirac notation over the field of real numbers, inspired by the one
used in [47] for the treatment of quantum states related by a specific group
structuref. The previous basis elements of V are written now as |i⟩ ≡ êi and
the corresponding dual basis as

〈j
∣∣ ≡ êj, such that

〈j
∣∣i〉 = δ

j
i . In this basis,

the metric is expanded as d = ∑j,j′ dj′ j
〈j
∣∣⊗ 〈

j′
∣∣∣ while the inverse metric is

expressed as d−1 = ∑ii′ di′i |i⟩ ⊗ |i′⟩. The elements of the metric and inverse
metric are related by ∑i dj′idii′ = δi′

j′ . Applying the metric to a basis element
of V, we get

⟨i| ≡ d(−, |i⟩) = ∑
jj′

dj′ j

〈
j
∣∣∣⊗ 〈

j′
∣∣∣i〉 = ∑

j
dij

〈
j
∣∣∣ . (2.23)

Acting with this on |i′⟩ to extract the value of the inner product, the follow-
ing formulations are equivalent:

d(|i′⟩ , |i⟩) = d(−, |i⟩) |i′⟩ = ∑
j

dij

〈
j
∣∣∣i′〉 = ⟨i|i′⟩ = dii′ . (2.24)

When the inverse metric is applied to
〈j
∣∣ it gives∣∣∣j

〉
≡ d

(
−,

〈
j
∣∣∣) =

〈
j
∣∣∣∑

ii′
di′i |i⟩ ⊗ |i′⟩ = ∑

i′
di′ j |i′⟩ , (2.25)

with a subsequent application on
〈

j′
∣∣∣ giving

d−1
(〈

j′
∣∣∣ ,
〈

j
∣∣∣) =

〈
j′
∣∣∣ d

(
−,

〈
j
∣∣∣) =

〈
j′
∣∣∣∑

i′
di′ j |i′⟩ =

〈
j′
∣∣∣j
〉
= dj′ j. (2.26)

f This treatment can be extended to the field of complex numbers by considering that the
metric has conjugate symmetry, dij = d̄ji [120].
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Consistently, we can calculate the value of the new bras and kets defined
in eqs.2.23 and 2.25 applied to one another, showing that they too form a
basis/dual basis pair:

〈
i

∣∣∣j
〉
= ∑

j′
dij′

〈
j′
∣∣∣∑

i′
di′ j |i′⟩ = ∑

i′ j′
dij′di′ j

〈
j′
∣∣∣i′〉 = ∑

j′
dij′dj′ j = δ

j
i . (2.27)

If the basis elements are orthogonal, the components of the metric and
inverse metric coincide with the orthogonality condition.

2.4 density matrices : capturing directionality

The semantic spaces we envisage for the interpretation of the syntactic
calculus are density matrices. A density matrix or density operator is
used in quantum mechanics to describe systems for which the state is not
completely known. For lexical semantics, it can be used to describe the
meaning of a word by placing distributional information on its components.
As standardly presentedg, density matrices that are defined on a tensor
product space indicate no preference with respect to contraction from the
left or from the right. Because we want to keep the distinction between
left and right implications in the semantics, we set up the interpretation of
composite spaces in such a way that they indicate which parts will and will
not contract with other density matrices.

The basic building blocks of the interpretation are density matrix spaces
Ṽ ≡ V∗ ⊗ V. For this composite space, we choose the basis formed by
|i⟩ tensored with ⟨i′ |, Ẽ = {|i⟩ ⟨i′ |} =

{
ẼJ
}

. Carrying over the notion of
duality to the density matrix space, we define the dual density matrix space
Ṽ∗ ≡ V∗ ⊗ V. The dual basis in this space is the map that takes each basis
element of Ṽ and returns the appropriate orthogonality conditions. It is
formed by

〈j
∣∣ tensored with

∣∣∣j′
〉

, dẼ =
{∣∣∣j′

〉 〈j
∣∣} =

{
ẼJ} , and is applied

on the basis vectors of Ṽ via the trace operation

g A background for the non-physics reader can be found in [102].
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ẼJ (ẼI
)
= Tr

(
|i⟩

〈
i′
∣∣∣j′
〉 〈

j
∣∣∣) = ∑

l

〈
l
∣∣∣i〉 〈

i′
∣∣∣j′
〉 〈

j
∣∣∣l

〉
= ∑

jj′

〈
j
∣∣∣i〉 〈

j′
∣∣∣i′〉 δ

j
i δ

j′

i′ ≡ δJ
I . (2.28)

Because density operators are hermitian, their matrices do not change
under conjugate transposition, which extends to elements of the basis of
the density matrix space. In this way, we can extend our notion of metric
to the space of density matrices, where a new metric D emerges from d,
expanded in the basis of V∗ as

D = ∑
J,J′

DJ J′ ẼJ ⊗ ẼJ′ (2.29)

= ∑
jj′,j′′ j′′′

dj′′ j′dj′′′ j

∣∣∣j′
〉 〈

j
∣∣∣⊗ ∣∣∣j′′′

〉 〈
j′′
∣∣∣ . (2.30)

We can see how both definitions are equivalent by their action on a density
matrix tensor T ≡ ∑I T I ẼI ≡ ∑ii′ Tii′ |i⟩ ⟨i′ |. Staying at the level of Ṽ and
Ṽ∗, we use eq.2.29 to obtain

D(−, T) = ∑
I,J,J′

DJ J′T I ẼJ ⊗ ẼJ′ (ẼI
)
= ∑

I,J,J′
DJ J′T I ẼJδJ′

I

= ∑
J,J′

DJ J′T J′ ẼJ ≡ ∑
J

TJ ẼJ = ∑
jj′

Tj′ j

∣∣∣j′
〉 〈

j
∣∣∣ , (2.31)

where we redefine TJ ≡ DJ J′T J′ , thus establishing covariance and con-
travariance of the tensor components defined over the density matrix space.
Looking in its turn at the level of V and V∗, using eq.2.30, we see that both
definitions are equivalent:
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D(−, T) = ∑
ii′,jj′,j′′ j′′′

Tii′dj′′ j′dj′′′ j

∣∣∣j′
〉 〈

j
∣∣∣⊗ Tr

(∣∣∣j′′′
〉 〈

j′′
∣∣∣i〉 ⟨i′ |

)
= ∑

ii′,jj′,j′′ j′′′
Tii′dj′′ j′dj′′′ jδ

j′′

i δ
j′′′

i′

∣∣∣j′
〉 〈

j
∣∣∣

= ∑
ii′ jj′

Tii′dij′di′ j

∣∣∣j′
〉 〈

j
∣∣∣ ≡ ∑

jj′
Tjj′

∣∣∣j′
〉 〈

j
∣∣∣ , (2.32)

where we rewrite Tjj′ ≡ Tii′dij′di′ j
h.

From these basic building blocks, composite spaces are formed via the binary
operation ⊗ (tensor product) and a unary operation ()∗ (dual functor)
that sends the elements of a density matrix basis to its dual basis, using
the metric defined above. In the notation, we use Ã for density matrix
spaces (basic or compound), and ρ, or subscripted ρx, ρy, ρz, . . . ∈ Ã for
elements of such spaces. The ()∗ operation is involutive; it interacts with
the tensor product as (Ã ⊗ B̃)∗ = B̃∗ ⊗ Ã∗ and acts as identity on matrix
multiplication.

Below in (†) is the general form of a density matrix defined on a single
space in the standard basis, and (‡) in the dual basis:

(†) ρÃ
x = ∑

ii′
Xii′ |i⟩ Ã⟨i′ |, (‡) ρÃ∗

x = ∑
jj′

Xj′ j

∣∣∣j′
〉

Ã∗

〈
j
∣∣∣.

Over the density matrix spaces, we can see these matrices as tensors as we
defined them previously, with X I ≡ Xii′ the contravariant components and
with XJ′ ≡ Xj′ j the covariant components.

h Here we can compare our formalism to that of the compact closed category of com-
pletely positive maps CPM(FdVect) developed in [126]. The categorical treatment ap-
plies here at a higher level, however, as introducing the metric defines explicitly the
canonical isomorphisms V ∼= V∗ and Ṽ ∼= Ṽ∗, which trickles down to knowing ex-
actly how the symmetry of the tensor product acts on the components of a tensor:

σV,V∗ : V∗ ⊗ V → V ⊗ V∗ :: ∑ij T j
i êi ⊗ êj 7→ ∑ii′ ,jj′ dii′djj′ T

j′
i′ êi ⊗ êj.
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A density matrix of a composite space can be an element of the tensor
product space between the standard space and the dual space either from
the left or from the right:

ρÃ⊗B̃∗
y = ∑

ii′,jj′
Yii′

j′ j

∣∣∣ j′

i

〉
Ã⊗B̃∗

〈
j

i′

∣∣∣; (2.33)

ρB̃∗⊗Ã
w = ∑

ii′,jj′
W ii′

j′ j

∣∣∣j′

i

〉
B̃∗⊗Ã

〈
j

i′

∣∣∣. (2.34)

Although both tensors are of the form (1, 1), the last one is a tensor with
components Y I

J′ , which relate with a true tensor form by DI I′Y J
I′ DJ J′ . Re-

cursively, density matrices that live in higher-rank tensor product spaces
can be constructed, taking a tensor product with the dual basis either from
the left or from the right. Multiplication between two density matrices of a
standard and a dual space follows the rules of tensor contraction:

ρÃ∗
y · ρÃ

x = ∑
jj′

Yj′ j

∣∣∣j′
〉

Ã∗

〈
j
∣∣∣ · ∑

ii′
Xii′ |i⟩ Ã⟨i′ | = ∑

i′,jj′
Yj′ jX ji′

∣∣∣j′
〉

Ã⟨i′ |. (2.35)

ρÃ
x · ρÃ∗

y = ∑
ii′

Xii′ |i⟩ Ã⟨i′ | · ∑
jj′

Yj′ j

∣∣∣j′
〉

Ã∗

〈
j
∣∣∣ = ∑

i,jj′
Xij′Yj′ j |i⟩

Ã

〈
j
∣∣∣, (2.36)

respecting the directionality of composition. To achieve full contraction, the
trace in the appropriate space is applied, corresponding to a partial trace if
the tensors involve more spaces:

TrÃ

(
∑
i′,jj′

Yj′ jX ji′
∣∣∣j′
〉

Ã⟨i′ |
)

= ∑
l,i′,jj′

Yj′ jX ji′

Ã

〈
l

∣∣∣j′
〉

Ã∗ Ã

〈
i′
∣∣∣l
〉

Ã∗
= ∑

jj′
Yj′ jX jj′ ,

(2.37)
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TrÃ

(
∑
i,jj′

Xij′Yj′ j

∣∣∣i〉 Ã

〈
j
∣∣) = ∑

l,j′,ij
Xij′Yj′ j

Ã∗

〈
l

∣∣∣i〉
Ã Ã∗

〈
j

∣∣∣l
〉

Ã
= ∑

jj′
X jj′Yj′ j.

(2.38)

We see that the cyclic property of the trace is preserved.

In §2.6 we will be dealing with derivational ambiguity, and for that the
concepts of subsystem and permutation operation introduced here will be
useful. A subsystem can be thought of as a copy of a space, described using
the same basis, but formally treated as a different space. In practice, this
means that different subsystems do not interact with one another. In the
quantum setting, they represent independent identical quantum systems.
For example, when we want to describe the spin states of two electrons,
despite the fact that each spin state is defined on the same basis, it is
necessary to distinguish which electron is in which state and so each is
attributed to their own subsystem. Starting from a space Ã, two different
subsystems are referred to as Ã1 and Ã2. If different words are described
in the same space, subsystems can be used to formally assign them to
different spaces. The permutation operation extends naturally from the one
in standard quantum mechanics. We define two permutation operators:
PÃ1 Ã2 permutes the elements of the basis of the respective spaces, while
PÃ1 Ã2

permutes the elements of the dual basis. If only one set of basis
elements is inside the scope of the permutation operators, then either the
subsystem assignment changes,

PÃ1 Ã2 |i⟩ Ã1
⟨i′ |PÃ1 Ã2 = |i⟩ Ã2

⟨i′ |; PÃ1 Ã2

∣∣∣i′〉
Ã1

∗

〈
i
∣∣∣PÃ1 Ã2

=
∣∣∣i′〉

Ã2
∗

〈
i
∣∣∣;

(2.39)
or the respective space of tracing changes,

TrÃ1

(
PÃ1 Ã2

|i′⟩ Ã2
∗⟨i|PÃ1 Ã2

)
= TrÃ2

(
|i′⟩ Ã2

∗⟨i|
)

. (2.40)
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Note that permutations take precedence over traces. If two words are
assigned to different subsystems, the permutations act to swap their space
assignmenti:

PÃ1 Ã2 |i⟩ Ã1
⟨i′ | ⊗

∣∣j
〉

Ã2

〈
j′
∣∣PÃ1 Ã2 = |i⟩ Ã2

⟨i′ | ⊗
∣∣j
〉

Ã1

〈
j′
∣∣, (2.41)

PÃ1 Ã2

∣∣∣i′〉
Ã1

∗

〈
i
∣∣∣⊗ ∣∣∣j′

〉
Ã2

∗

〈
j
∣∣∣PÃ1 Ã2

=
∣∣∣i′〉

Ã2
∗

〈
i
∣∣∣⊗ ∣∣∣j′

〉
Ã1

∗

〈
j
∣∣∣. (2.42)

If no word has that subsystem assignment then the permutation has no
effect.

2.5 interpreting lambek calculus derivations

Let us turn now to the syntax-semantics interface, which takes the form of
a homomorphism sending the types and derivations of the syntactic front
end (N)L/,\ to their semantic counterparts. Consider first the action of the
interpretation homomorphism on types. We write ⌈.⌉ for the map that sends
syntactic types to the interpreting semantic spaces. For primitive types we
set

⌈s⌉ = S̃, ⌈np⌉ = ⌈n⌉ = Ñ, (2.43)

with S the vector space for sentence meanings and N the space for nominal
expressions (common nouns, full noun phrases). For compound types we
have

⌈A/B⌉ = ⌈A⌉ ⊗ ⌈B⌉∗, and ⌈A\B⌉ = ⌈A⌉∗ ⊗ ⌈B⌉. (2.44)

i We define this as a shorthand application of the permutation operations as defined in
eq.2.39, such that eq.2.41 can be calculated w.r.t. that definition as

PÃ1 Ã2 |i⟩Ã1

(
Ã1
⟨i′ |PÃ1 Ã2

)
⊗

(
PÃ1 Ã2

∣∣∣j

〉
Ã2

)
Ã2

〈
j′
∣∣∣PÃ1 Ã2

= PÃ1 Ã2 |i⟩Ã1 Ã2
⟨i′ | ⊗

∣∣∣j

〉
Ã1 Ã2

〈
j′
∣∣∣PÃ1 Ã2 = |i⟩ Ã2

⟨i′ | ⊗
∣∣∣j

〉
Ã1

〈
j′
∣∣∣,

and similarly for eq.2.42.
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Given semantic spaces for the syntactic types, we can turn to the interpreta-
tion of the syntactic derivations, as coded by their λ/,\ proof terms. We write
J·Kg for the map that associates each term t of type A with a semantic value,
i.e. an element of ⌈A⌉, the semantic space where meanings of type A live.
The map J.K is defined relative to a assignment function g that provides a
semantic value for the basic building blocks, viz. the variables that label
the axiom leaves of a proof. As we saw above, a proof term is a generic
meaning recipe that abstracts from particular lexical meanings. Specific
lexical items, as we will see in §2.6, have the status of constants. These
constants are mapped to their distributional meaning by an interpretation
function I. The distributional meaning corresponds to the embeddings
assigned by a particular model to the lexicon. Below we show that this
calculus is sound with respect to the semantics of section 2.4.

axiom r
xA

z

g
= g(xA) = ρ

⌈A⌉
x = ∑

ii′
Xii′ |i⟩ ⌈A⌉⟨i′ |. (2.45)

elimination Recall the inference rules of Fig 3.1.

E/: Premises tB/A, uA; conclusion (t ◁ u)B:

r
(t ◁ u)B

z

g
≡ Tr⌈A⌉

(r
tB/A

z

g
·
r

uA
z

g

)
(2.46)

= Tr⌈A⌉

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
⌈B⌉⊗⌈A⌉∗

〈
j

i′

∣∣∣ · ∑
kk′

Ukk′ |k⟩ ⌈A⌉⟨k′ |
)

(2.47)

= ∑
ii′,jj′

∑
kk′

Tii′
j′ j · Ukk′ δ

j
kδ

j′

k′ |i⟩ ⌈B⌉⟨i′ | = ∑
ii′,jj′

Tii′
j′ j · U jj′ |i⟩ ⌈B⌉⟨i′ |. (2.48)

E\: Premises uA, tA\B; conclusion (u ▷ t)B:
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r
(u ▷ t)B

z

g
≡ Tr⌈A⌉

(r
uA

z

g
·
r

tA\B
z

g

)
(2.49)

= Tr⌈A⌉

(
∑
kk′

Ukk′ |k⟩ ⌈A⌉
〈′

k
∣∣ · ∑

ii′,jj′
T ii′

jj

∣∣∣j′

i

〉
⌈A⌉∗⊗⌈B⌉

〈
j
i′

∣∣∣) = (2.50)

= ∑
kk′

∑
ii′,jj′

Ukk′ · T ii′
j′ j δ

j
kδ

j′

k′ |i⟩ ⌈B⌉⟨i′ | = ∑
ii′,jj′

U jj′ · T ii′
j′ j |i⟩ ⌈B⌉⟨i′ |. (2.51)

introduction I/: Premise tB, with xA as its rightmost parameter;
conclusion (λrx.t)B/A:

r
(λrx.t)B/A

z

g
≡ ∑

kk′

(
JtBKgx

kk′
⊗

∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣) (2.52)

I\: Premise tB, with xA as its leftmost parameter; conclusion (λlx.t)A\B:

s(
λlx.t

)A\B
{

g
≡ ∑

kk′

(∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣⊗ JtBKgx

kk′

)
(2.53)

Here gx
kk′ is the assignment exactly like g except possibly for the parametric

variable x which takes the value of the basis element |k⟩ ⌈A⌉⟨k′ |. More
generally, the interpretation of the introduction rules lives in a compound
density matrix space representing a linear map from Ã to B̃. The semantic
value of that map, applied to any object m ∈ Ã, is given by JtBKg′ , where
g′ is the assignment exactly like g except possibly for the bound variable
xA, which is assigned the value m. Note that now, given the introduction
of the metric, the interpretations of A/B and B\A are related by it: if
the components of the first are T I

J , then those of the second are given
by those in eq.2.16 adapted for density matrices. This is what introduces
directionality in our interpretation: using the metric, we can extract a
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certain representation for a function word and distinguish by the values of
the components whether it will contract from the left or from the right.

2.6 derivational ambiguity

The density matrix construction has been successfully used to address
lexical ambiguity [108], as well as lexical and sentence entailment [9, 119],
where different measures of entropy are used to perform the disambigua-
tion. Here we arrive at disambiguation in a different way, by storing in the
diagonal elements of a higher order density matrix the different interpreta-
tions that result from the different contractions that the proof-as-programs
prescribes. This is possible due to the the set-up that is formed by a
multi-partite density matrices space, so that, by making use of permutation
operations, it happens automatically that the two meanings are expressed
independently. This is useful because it can be integrated with a lexical
interpretation in density matrices optimized to other tasks, such as lexical
ambiguity or entailment. It is also appropriate to treat the existence of these
ambiguities in the context of incrementality, since it keeps the meanings
separated in their interaction with posterior fragments.

We give a simple example of how the trace machinery can be used on an
ambiguous fragment, providing a passage from one reading to the other at
the interpretation level, and how the descriptions are kept separated. For
this application, the coefficients in the interpretation of the words contain
distributional information harvested from data, either from a count-base
model or a more sophisticated language model. The final coefficient of each
outcomes is the vector-based representation of that reading.

We illustrate the construction with the phrase "tall person from Spain". The
lexicon below has the syntactic type assignments and the corresponding
semantic spaces.
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syn type A ⌈A⌉
tall n/n N∗ ⊗ N ⊗ (N∗ ⊗ N)∗

person n N∗ ⊗ N
from (n\n)/np (N∗ ⊗ N)∗ ⊗ N∗ ⊗ N ⊗ (N∗ ⊗ N)∗

Spain np N∗ ⊗ N

Given this lexicon, "tall person from Spain" has two derivations, correspond-
ing to the bracketings "(tall person) from Spain" (x/tall, y/person, w/from, z/Spain):

axx : n/n ⊢ x : n/n axy : n ⊢ y : n
/E2(x : n/n, y : n) ⊢ (x ◁ y) : n

axw : (n\n)/np ⊢ w : (n\n)/np axz : np ⊢ z : np
/E1(w : (n\n)/np, z : n) ⊢ (w ◁ z) : n\n

\E3[(x : n/n, y : n), (w : (n\n)/np, z : n)] ⊢ ((x ◁ y) ▷ (w ◁ z)) : n

versus "tall (person from Spain)":

axx : n/n ⊢ x : n/n

axy : n ⊢ y : n

axw : (n\n)/np ⊢ w : (n\n)/np axz : np ⊢ z : np
/E1(w : (n\n)/np, z : n) ⊢ (w ◁ z) : n\n

\E2[y : n, (w : (n\n)/np, z : n)] ⊢ (y ▷ (w ◁ z)) : n
/E3(x : n/n, [y : n, (w : (n\n)/np, z : n)]) ⊢ (x ◁ (y ▷ (w ◁ z))) : n

In the first reading, the adjective "tall" is evaluated with respect to all people,
before it is specified that this person happens to be from Spain, whereas
in the second reading the adjective "tall" is evaluated only in the restricted
universe of people from Spain.

Taking "from Spain" as a unit for simplicity, let us start with the following
primitive interpretations:

⋄ Jtalln/nKI = ∑ii′,jj′ T j′ j
ii′

∣∣∣ij′〉 N⊗N∗

〈
i′
j

∣∣∣,
⋄ JpersonnKI = ∑kk′ Pkk′

∣∣k〉
N

〈
k′
∣∣∣,

⋄ J f rom_Spainn\nKI = ∑ll′,mm′ Fl′ l
mm′

∣∣ m
l′
〉

N∗⊗N

〈
m′

l

∣∣∣.
Interpreting each step of the derivation in the way described in the previous
section will give two different outcomes. The first one is
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Jtall_person_ f rom_SpainnK1
I =

=TrN

(
TrN

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
N⊗N∗

〈
j

i′

∣∣∣ · ∑
kk′

Pkk′ |k⟩ N⟨k′ |
)

· ∑
ll′,mm′

F mm′
l′ l

∣∣∣l′
m

〉
N∗⊗N

〈
l
m′

∣∣∣)
= ∑

ii′,jj′,mm′
Tii′

j′ j Pjj′ F mm′
i′i |m⟩ N⟨m′ |, (2.54)

while the second one is

Jtall_person_ f rom_SpainnK2
I =

=TrN

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
N⊗N∗

〈
j

i′

∣∣∣ · TrN

(
∑
kk′

Pkk′ |k⟩ N⟨k′ |

· ∑
ll′,mm′

F mm′
l′ l

∣∣∣l′
m

〉
N∗⊗N

〈
l
m′

∣∣∣))
= ∑

ii′,jj′,ll′
Tii′

j′ j Pll′ F jj′

l′ l |i⟩ N⟨i′ |. (2.55)

The respective graphical representations of these contractions can be found
in fig.2.2.

Though the coefficients might be different for each derivation, it is not
clear how both interpretations are carried separately if they are part of
a larger fragment, since their description takes place on the same space.
Also, this recipe gives a fixed ordering and range for each trace. To be
able to describe each final meaning separately, we use here the concept of
subsystem. Because different subsystems act formally as different syntactic
types and in each derivation the words that interact are different, it follows
that each word should be assigned to a different subsystem:

⋄ Jtalln/nKI1 = Jtalln/nKI2 = ∑ii′,jj′ Tii′
j′ j

∣∣∣ j′

i

〉
N1⊗N2∗

〈
j

i′

∣∣∣,
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⋄ JpersonnKI1 = ∑kk′ Pkk′ |k⟩ N2⟨k′ |,
JpersonnKI2 = ∑kk′ Pkk′ |k⟩ N3⟨k′ |,

⋄ J f rom_Spainn\nKI1 = ∑ll′,mm′ F mm′
l′ l

∣∣∣l′
m

〉
N1∗⊗N3

〈l
m′
∣∣,

J f rom_Spainn\nKI2 = ∑ll′,mm′ F mm′
l′ l

∣∣∣l′
m

〉
N3∗⊗N2

〈l
m′
∣∣.

Notice that the value of the coefficients given by the interpretation functions
I1 and I2 that describe the words does not change from the ones given in I,
only possibly the subsystem assignment does.

Rewriting the derivation of the interpretations in terms of subsystems, the
ordering of the traces does not matter anymore since the contraction is
restricted to its own subsystem. For the first reading we obtain

Jtall_person_ f rom_SpainnK1
I1
=

=TrN1

(
TrN2

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
N1⊗N2∗

〈
j

i′

∣∣∣ · ∑
kk′

Pkk′ |k⟩ N2⟨k′ |

· ∑
ll′,mm′

F mm′
l′ l

∣∣∣l′
m

〉
N1∗⊗N3

〈
l
m′

∣∣∣))
= ∑

ii′,jj′,mm′
Tii′

j′ j Pjj′ F mm′
i′i |m⟩ N3⟨m′ | (2.56)

and for the second

Jtall_person_ f rom_SpainnK2
I2
=

=TrN2

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
N1⊗N2∗

〈
j

i′

∣∣∣ · TrN3

(
∑
kk′

Pkk′ |k⟩ N3⟨k′ |

· ∑
mm′,ll′

F mm′
l′ l

∣∣∣l′
m

〉
N3∗⊗N2

〈
l
m′

∣∣∣))
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=TrN3

(
TrN2

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
N1⊗N2∗

〈
j

i′

∣∣∣ · ∑
kk′

Pkk′ |k⟩ N3⟨k′ |

· ∑
ll′,mm′

F mm′
l′ l

∣∣∣l′
m

〉
N3∗⊗N2

〈
l
m′

∣∣∣))
= ∑

ii′,jj′,ll′
Tii′

j′ j Pll′ F jj′

l′ l |i⟩ N1⟨i′ |. (2.57)

The interpretation of each derivation belongs now to different subsystems,
which keeps the information about the original word to which the free
"noun" space is attached. We can see this by comparing the upper and
lower links in fig. 2.3.

Figure 2.2: Representation of contractions corresponding to the first reading (lower
links) and to the second reading (upper links), without subsystems.
The final value is a coefficient in the Ñ space as in eq.2.54 and in eq.2.55,
respectively.

However, it is not very convenient to attribute each word to a different
subsystem depending on the interpretation it will be part of, since that
is information that comes from the derivation itself and not from the
representations of words. To tackle this problem, one uses permutation
operations over the subsystems. Since these have precedence over the trace,
when the traces are taken the contractions change accordingly. This changes
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Figure 2.3: Representation of contractions corresponding to the first reading (lower
links) and to the second reading (upper links), with subsystems. The
final value is a coefficient in the Ñ space as in eq.2.56 and in eq.2.57,
respectively.

the subsystem assignment at specific points so it is possible to go from
one interpretation to the other, without giving different interpretations
to each word initially. Thus, there is a way to go directly from the first
interpretation to the second:

Jtall_person_ f rom_SpainnK2
I1
=

=TrN1

(
P13 TrN2

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
N1⊗N2∗

〈
j

i′

∣∣∣ · P13P23 ∑
kk′

Pkk′ |k⟩ N2⟨k′ |

· ∑
ll′,mm′

F mm′
l′ l

∣∣∣l′
m

〉
N1∗⊗N3

〈
l
m′

∣∣∣P23P13

)
P13

)

=TrN3

(
TrN2

(
∑

ii′,jj′
Tii′

j′ j

∣∣∣ j′

i

〉
N1⊗N2∗

〈
j

i′

∣∣∣ · ∑
kk′

Pkk′ |k⟩ N3⟨k′ |

· ∑
ll′,mm′

F mm′
l′ l

∣∣∣l′
m

〉
N3∗⊗N2

〈
l
m′

∣∣∣))
. (2.58)
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Figure 2.4

The reasoning behind is as follows: the permutation P23 swaps the space
assignment between that of "person" and the free space in "from_Spain",
according to eq.2.42; after that a permutation P13 is used as in eq. 2.39 to
change the argument space of "from_Spain" from N1∗ to N3∗ , and then the
same permutation is applied again to change the space of tracing, following
eq.2.40. In this way, all the coefficients will have the correct contractions
and in a different space from the first reading. In fig. 2.4 we can see the
action of the permutations by visualizing how both the spaces and the
traces change as we go from the lower to the upper links.

Although the metric is not used explicitly in the application of the permu-
tation operators, it is necessary to generate the correct tensors where the
permutation operator is applied in the first place, by going from the vector
representation that comes directly from the data to one that allows contrac-
tion. As an example, the adjective "tall" would have a vector representation
from the data as an element of Ṽ ⊗ Ṽ, of the form Tii′,kk′ . We need the
metric dkj′dk′ j to change its form to Tii′

j′ j . By defining the interpretation space
of adjectives as Ñ ⊗ Ñ∗, we assume this passage has already been made
when we assign an interpretation to a word in this space. As an alternative
to this derivation, we mention that it is possible to apply a P23 permutation
followed by a P13 permutation that results in the correct contraction of the
indices, but fails to deliver the results of the two derivations in different
subspaces, as represented in Fig. 2.5. It is however noteworthy that, in
order to start with a unique assignment for each word, this alternative
derivation can, in any case, only be achieved by distinguishing between
subsystems, as well as the covariant and contravariant indices.
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Figure 2.5

2.7 conclusion and future work

In this paper we provided a density matrix model for a simple fragment
of the Lambek Calculus, differently from what is done in [18] who uses
density matrices to interpret dependency parse trees. The syntax-semantics
interface takes the form of a compositional map assigning semantic values
to the λ/,\ terms coding syntactic derivations. We proposed the use of a
metric as a way to reconcile the various vector representations of the same
word that come from different treatments, assuming that there is a quantity
that is being preserved, such as human judgements. If we know the metric,
we can confidently assign only one embedding to each word as its semantic
value. A metric can relate these various representations so that we can
assign only one vector as its semantic value. The density matrix model
enables the integration of lexical and derivational forms of ambiguity. Addi-
tionally, it allows for the transfer of methods and techniques from quantum
mechanics and general relativity to computational semantics. One example
of such transfer is the permutation operator. In quantum mechanics, this
operator permits a description of indistinguishable particles. In the linguis-
tic application, it allows one to go from an interpretation that comes from
one derivation to another, without the need to to go through the latter, but
keeping this second meaning in a different subsystem. Another example
is the introduction of covariant and contravariant components, associated
with a metric, that allow the permutation operations to be properly applied.
In future work, we want to explore the preservation of human judgements
found in the literature via a metric that represents the variability of vector
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representations of words, either static or dynamic. We also want to extend
our simple fragment with modalities for structural control (cf [95]), in order
to deal with cases of derivational ambiguity that are licensed by these
control modalities. Finally, we want to consider derivational ambiguity
in the light of an incremental left-to-right interpretation process, so as to
account for the evolution of interpretations over time. In enriching the
treatment with a metric, we want to explore the consequences of having
this new parameter in treating context dependent embeddings.
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2.a proof transformation : β reduction

The β-reduction is one of the rewrite rules of the λ-calculus. It asserts
that applying a term with a lambda-bound variable to a certain argument
is equivalent to substituting that argument directly in the original term,
before introducing the lambda. In proof-theoretic terms, if an introduction
rule is used followed by an elimination rule, the derivation is not minimal.
To elucidate this point, below is the skeleton of a derivation where a term
of type A is proved twice, by axiom and by an unknown proof:

...

∆ ⊢ n : A

axiomx : A ⊢ x : A
...

x : A, Γ ⊢ t : B
\I

Γ ⊢ λlx.m : A\B
\E

(Γ, ∆) ⊢ (λlx.m)n : B .

The β reduction consists of substituting the unknown proof of the term of
type A in place of the axiom, reducing the need for the double proof of that
term, and consequently the size of the proof:

...

∆ ⊢ n : A
...

∆, Γ ⊢ m[x/n] : B .

Through this reduction, a map from one conclusion to the other can be
obtained, which has to be an equality regarding their interpretations:

J(λx.m)n]Kg = Jm[x/n]Kg, ∀g.



72 density matrices with metric for derivational ambiguity

This equality will be used to check that the density matrix construction
interpretation is consistent with the λ-calculus. Below a concrete symbolic
derivation before the reduction is shown:

axw : B ⊢ w : B axz : B\(A/B) ⊢ z : B\(A/B)
\E2w : B, z : B\(A/B) ⊢ z(w) : A/B

axx : A/B ⊢ x : A/B axy : B ⊢ y : B
/E1x : A/B, y : B ⊢ x(y) : A

\I1
y : B ⊢ λlx.x(y) : (A/B)\A

\E3
(w : B, z : B\(A/B), u : B) ⊢ (z(w))λlx.x(y) : A .

The interpretation of the several steps of the proof is then given, following
the numbering in the proof:

JE/1(xA/B, yB)Kg = Xii
jj′ Y j′ j |i⟩ ⌈A⌉⟨i′ |,

JI\1
(x(y)A, xA/B)Kg =

∣∣∣ i′
j

〉
⌈B⌉⊗⌈A⌉∗

〈
i
j′

∣∣∣⊗ Y j′ j |i⟩ ⌈A⌉⟨i′ |,

JE\2
(wB, zB\(A/B)Kg = W ll′ Z m′m

l′ l,nn′

∣∣∣ n′
m

〉
⌈A⌉⊗⌈B⌉∗⟨

n
m′ |,

JE\3
(z(w)A/B, (λx.x(y))(A/B)\B)Kg = W ll′ Z i′i

l′ l,jj′ Y j′ j |i⟩ ⌈A⌉⟨i′ |.

A similar treatment is done for the derivation after the reduction:

axw : B ⊢ w : B axz : B\(A/B) ⊢ z : B\(A/B)
\E2w : B, z : B\(A/B) ⊢ z(w) : A/B axy : B ⊢ y : B

\E4w : B, z : B\(A/B), u : B ⊢ z(w)(y) : A .

The value for JE\2
(wB, zB\(A/B))K is the same as before. For JE\4

(z(w)A/B, yBK:

JE\4
(z(w)A/B, yBK = W ll′ Z i′i

l′ l,jj′ Y j′ j |i⟩ ⌈A⌉⟨i′ |.
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Comparing the two derivations and interpretations, the conclusion is that

JE\4
(y, z(w))K = JE\3

(z(w), λx.x(y))K,

as expected.





3

P U T T I N G A S P I N O N L A N G UA G E

abstract Extended versions of the Lambek Calculus currently used in compu-
tational linguistics rely on unary modalities to allow for the controlled application
of structural rules affecting word order and phrase structure. These controlled
structural operations give rise to derivational ambiguities that are missed by the
original Lambek Calculus or its pregroup simplification. Proposals for composi-
tional interpretation of extended Lambek Calculus in the compact closed category
of FVect and linear maps have been made, but in these proposals the syntax-
semantics mapping ignores the control modalities, effectively restricting their role
to the syntax. Our aim is to turn the modalities into first-class citizens of the vecto-
rial interpretation. Building on the directional density matrix semantics, we extend
the interpretation of the type system with an extra spin density matrix space.
The interpretation of proofs then results in ambiguous derivations being tensored
with orthogonal spin states. Our method introduces a way of simultaneously
representing co-existing interpretations of ambiguous utterances, and provides a
uniform framework for the integration of lexical and derivational ambiguity.
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3.1 introduction

A cornerstone of formal semantics is Montague’s [93] compositionality
theory. Compositional interpretation, in this view, is a homomorphism, a
structure-preserving map that sends types and derivations of a syntactic
source logic to the corresponding semantic spaces and operations thereon.
In the DisCoCat framework [33] compositionality takes a surprising new
turn. Montague’s abstract mathematical view on the syntax-semantics
interface is kept, but the non-committed view on lexical meaning that
one finds in formal semantics is replaced by a data-driven, distributional
modelling, with finite dimensional vector spaces and linear maps as the
target for the interpretation function. More recently density matrices and
completely positive maps have been used to treat lexical ambiguity [109],
word and sentence entailment [9, 119] and meaning updating [31].

Our goal in this paper is to apply the DisCoCat methodology to an extended
version of the Lambek calculus where structural rules affecting word order
and/or phrase structure are no longer freely available, but have to be
explicitly licensed by unary control modalities [66, 94]. In particular, we
adjust the interpretation homomorphism to assign appropriate semantic
spaces to the modally extended type language, and show what their effect
is on the derivational semantics. We choose to use density matrices as our
interpretation spaces and show that, besides allowing for an integration of
our model with other forms of ambiguity at the lexical level, it is key to
preserve information about the ambiguity at phrase level.

The paper is structured as follows. In section 3.2 we recall the natural
deduction rules of the simply typed Lambek Calculus, with the associated
lambda terms under the proofs-as-programs interpretation. We extend the
language with a residuated pair of unary modalities ♢,□ and show how
these can be used to control structural reasoning, in particular reordering
(commutativity). As an illustration, we show how the extended type logic
allows us to capture derivational ambiguities that arise in Dutch relative
clause constructions. In section 3.3 we set up the mapping from syntactic
types to semantic spaces, adding an extra spin space to the previously
used density matrix spaces. We motivate the introduction of this extra
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space and relate the interpretation of the connectives in these spaces to the
measurement and evolution postulates of quantum mechanics. In section
3.4 we show how the interpretation of the logical and structural inference
rules of our extended type logic accommodates the spin space. In section
3.5 we make explicit the two-level spin space that we will use to store the
ambiguity in the case of Dutch relative clauses. In section 3.6 we return
to our example of derivational ambiguity and show how orthogonal spin
states keep track of co-existing interpretations.

3.2 extended lambek calculus

By NL♢ we designate the (non-associative, non-commutative, non-unital)
pure residuation logic of [69], extended with a pair of unary type-forming
operators ♢,□, also forming a residuated pair. Formulas are built over a set
of atomic types A (here s, np, n for sentences, noun phrases and common
nouns respectively) by means of a binary product • with its left and right
residuals /, \, and a unary ♢ with its residual □:

F ::= A | □F | ♢F | F\F | F/F | F • F .

Figure 3.1 gives the (sequent-style) natural deduction presentation, to-
gether with the Curry-Howard term labellinga. Judgements are of the
form Γ ⊢ B, with B a formula and Γ a structure term with formulas
at the leaves. Antecedent structures are built according to the grammar
S ::= F | (S · S) | ⟨S⟩. The binary structure-building operation (− · −) is
the structural counterpart of the connective • in the formula language. The
unary structure-building operation ⟨−⟩ similarly is the counterpart of ♢ in
the formula language.

With term labelling added, an antecedent term Γ with leaves x1 : A1, . . . , xn :
An becomes a typing environment giving type declarations for the variables
xi. These variables constitute the parameters for the program t associated
with the proof of the succedent type B. Intuitively, one can see a term-

a We restrict to the simply typed fragment, ignoring the • operation.
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labeled proof as an algorithm to compute a meaning t of type B with
parameters xi of type Ai. In parsing a particular phrase, one substitutes the
meaning of the constants (i.e. words) that make up for the parameters of
this algorithm.

Notice that the term language respects the distinction between / and \: we
use the ‘directional’ lambda terms of [141] with left versus right abstraction
and application. The inference rules for □ and ♢ are reflected in the term
language by ∨, ∪ (Elimination) and ∧, ∩ (Introduction) respectively.

Terms: t, u ::= x | λrx.t | λlx.t | t ◁ u | u ▷ t |∪ t |∩ t |∨ t |∧ t | ct

Typing rules:

x : A ⊢ x : A Ax

Γ · x : A ⊢ t : B
Γ ⊢ λrx.t : B/A I/

x : A · Γ ⊢ t : B
Γ ⊢ λlx.t : A\B

I\

Γ ⊢ t : B/A ∆ ⊢ u : A
Γ · ∆ ⊢ t ◁ u : B E/

Γ ⊢ u : A ∆ ⊢ t : A\B
Γ · ∆ ⊢ u ▷ t : B

E\

⟨Γ⟩ ⊢ t : B
Γ ⊢∧ t : □B I □ Γ ⊢ t : B

⟨Γ⟩ ⊢∩ t : ♢B
I ♢

Γ ⊢ t : □B
⟨Γ⟩ ⊢∨ t : B E □

∆ ⊢ t : ♢A Γ[⟨x : A⟩] ⊢ u : B
Γ[∆] ⊢ u[∪t/x] : B

E ♢

Figure 3.1: NL♢. Proofs and terms. Antecedent structure terms must be non-
empty. Notation Γ[∆] for structure term Γ with substructure ∆.

In addition to the logical rules for ♢ and □, we are interested in formulating
options for structural reasoning keyed to their presence. Consider the postu-
lates expressed by the categorical morphisms of (3.1), or the corresponding
inference rules of (3.2) in the N.D. format of Figure 3.1. These represent
controlled forms of associativity and commutativity, explicitly licensed by
the presence of ♢ (or its structural counterpart ⟨−⟩ in the sequent rules).
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♢A ⊗ (B ⊗ C) −→ (♢A ⊗ B)⊗ C ♢A ⊗ (B ⊗ C) −→ B ⊗ (♢A ⊗ C) (3.1)

Γ[(⟨∆1⟩ · ∆2) · ∆3] ⊢ t : B
Γ[⟨∆1⟩ · (∆2 · ∆3)] ⊢ t : B

Ass♢
Γ[∆2 · (⟨∆1⟩ · ∆3)] ⊢ t : B
Γ[⟨∆1⟩ · (∆2 · ∆3)] ⊢ ct : B

Comm♢

(3.2)

Controlled forms of structural reasoning of this type have been used to
model the dependencies between question words or relative pronouns and
‘gaps’ (physically unrealized hypothetical resources) that follow them. We
illustrate with Dutch relative clauses, and refer the reader to [97] for a
vector-based semantic analysis. Dutch, like Japanese, has verb-final word
order in embedded clauses as show in (3.3a) which translates as (3.3b).
Now consider the relative clause (3.3c). It has two possible interpretations,
expressed by the translations (3.3d) and (3.3e). With a typing (n\n)/(np\s)
for the relative pronoun ‘die’ we can capture only the (3.3d) interpretation;
the improved typing (n\n)/(♢□np\s) creates a derivational ambiguity that
covers both the (3.3d) and the (3.3e) interpretation, where the latter relies
on the ability of the ♢□np hypothesis to ‘jump over’ the subject by means
of Comm♢.

a. (ik weet dat) Bobnp Alicenp bewondertnp\(np\s)
b. (I know that) Bobnp admires(np\s)/np Alicenp

c. mann die?? de_hondnp bijtnp\(np\s)
d. man who bites the dog (= subject relativization)
e. man whom the dog bites (= object relativization)

(3.3)

The crucial subderivations for the (3.3c) example schematically rely on the
following steps (working upward): \ Introduction withdraws the ♢□np
hypothesis, ♢ Elimination followed by zero or more steps of structural
reasoning bring the hypothesis to the position where it can actually be used
as a ‘regular’ np, thanks to the □ Elimination proof of ⟨□np⟩ ⊢ np. The
derived rule (xleft) in (3.4) telescopes this sequence of inference steps into a
one-step inference, allowing for a succinct representation of the derivations.
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x : ♢□A ⊢ x : ♢□A

z : □A ⊢ z : □A
⟨z : □A⟩ ⊢ ∨z : A E □

...
Γ[⟨z : □A⟩ · ∆] ⊢ t : B

...
⟨z : □A⟩ · Γ[∆] ⊢ cn

t : B
(Ass♢, Comm♢)

n

x : ♢□A · Γ[∆] ⊢ cn
t[∪x/z] : B

E ♢

Γ[∆] ⊢ λlx.c
n
t[∪x/z] : ♢□A\B

I\

[y : A ⊢ y : A]n

...
Γ[y : A · ∆] ⊢ t : B

Γ[∆] ⊢ λlx.c
n
t[∨∪x/y] : ♢□A\B

[xleft]n

(3.4)

Here abbreviate the repeated application of the controlled commutativity
rule on a single formula using the index n, where it serves a double purpose:
indexing the hypothesis that will be extracted, and quantifying how many
times the commutativity rule must be applied to licence this extraction. The
proof term cn

t results from the nth application of this rule to the proof with
conclusion term t, inductively defined with c0

t = t and cn+1
t = c(cnt).

Using our compiled inference rule, here are the derivations of both rela-
tivization readings, to be compared with those with the full uncompiled
derivation in Appendix 3.A. On the proof of the subject relativization
reading (3.3d), at the axioms, we show the constants (words) that will be
substituted for the parameters of the proof term for the derivation. Also, in
the structure terms on the left of the turnstile, we use these words instead
of the parameter-type pairs to enhance legibility. This derivation uses the
♢□np hypothesis as the subject of the relative clause body; it simply relies
on ♢ and □ Elimination, and doesn’t involve structural reasoning.

man
y0 : n ℓ

die
z0 : (n\n)/(♢2np\s) ℓ

[ ⊢ x : np]0

de
x2 : np/n ℓ hond

y2 : n ℓ

de · hond ⊢ (x2 ◁ y2) : np
[/E]

bijt
z2 : np\(np\s) ℓ

(de · hond) · bijt ⊢ ((x2 ◁ y2) ▷ z2) : np\s
[\E]

· ((de · hond) · bijt) ⊢ (x ▷ ((x2 ◁ y2) ▷ z2)) : s
[\E]

(de · hond) · bijt ⊢ λlx1.c
0
(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)) : ♢2np\s

[xleft]0

die · ((de · hond) · bijt) ⊢ (z0 ◁ λlx1.c
0
(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))) : n\n

[/E]

man · (die · ((de · hond) · bijt)) ⊢ (y0 ▷ (z0 ◁ λlx1.c
0
(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)))) : n

[\E]

The index 0 in the rule xleft connects to the indexing of the hypothesis,
reflecting that the hypothesis was already at the leftmost position. Therefore,
no control rule is in need to be used. Contrast this with the derivation of the
(3.3e) object relativization interpretation. In this case the ♢□np hypothesis
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is manoeuvred to the direct object position in the relative clause body
thanks to the controlled commutativity option, used once as indicated by
the index 1 in the xleft rule:

man
y0 : n ℓ

die
z0 : (n\n)/(♢2np\s) ℓ

de
x2 : np/n ℓ hond

y2 : n ℓ

de · hond ⊢ (x2 ◁ y2) : np
[/E]

[ ⊢ x : np]1
bijt

z2 : np\(np\s) ℓ

· bijt ⊢ (x ▷ z2) : np\s
[\E]

(de · hond) · ( · bijt) ⊢ (x2 ◁ y2) ▷ (x ▷ z2) : s
[\E]

(de · hond) · bijt ⊢ λlx1.c
1
((x2 ◁ y2) ▷ (∨∪x1 ▷ z2)) : ♢2np\s

[xleft]1

die · ((de · hond) · bijt) ⊢ (z0 ◁ λlx1.c
1
((x2 ◁ y2) ▷ (∨∪x1 ▷ z2))) : n\n

[/E]

man · (die · ((de · hond) · bijt)) ⊢ (y0 ▷ (z0 ◁ λlx1.c
1
((x2 ◁ y2) ▷ (∨∪x1 ▷ z2)))) : n

[\E]

Our aim in the following sections is to provide a compositional interpreta-
tion of the control operators and the structural reasoning licensed by them
that allows us to simultaneously represent the co-existing interpretations of
ambiguous utterances such as (3.3c).

3.3 interpretation spaces

Let us turn to the action of the interpretation homomorphism on the types
of our extended Lambek calculus. In the approach introduced in [35], types
are sent to density matrix spaces. These spaces are set up in a directionality-
sensitive way, keeping in the semantics the distinction between left- or
right-looking implications. Starting from the vector space V and its dual
V∗, we use a modified Dirac notation to distinguish between two sets of
basis of V, {|i′⟩} and

{∣∣j〉}, and two sets of basis of V∗,
{〈

j′
∣∣∣} and {⟨i|},

obeying the orthogonality conditions

⟨i|i′⟩ = dii′ , ⟨j′
∣∣∣j
〉
= dj′ j,

〈
i

∣∣∣j
〉
= δ

j
i , and

〈
j
∣∣∣i〉 = δ

j
i ,

where a metric function d accounts for the eventual non-orthogonality
between basis elements, and the Kronecker δ function defines the the
relationship between dual basis elements. In general, the basis vector ⟨j′ |
is obtained by the conjugate transposition of

∣∣j〉. When the basis is not
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orthogonal, this operation does not render the dual basis vector of
〈

j′
∣∣∣

(which by definition is orthogonal to it and in our notation is represented
by |i′⟩), but another vector

∣∣j〉 that requires the metric tensor to describe
this relationship. Compare this with the case with only one set of basis for
each space, obtained in the standard way:

〈
j′
∣∣∣ coincides with |i′⟩ so that all

basis vectors are orthogonal to each other, and the metric is just δ

The basic building block for the interpretations is the density matrix space
Ṽ ≡ V ⊗ V∗. This space has density matrices as elements, which we will
use as the starting representations of words, instead of vectors. Density
matrices are 1) positive operators with 2) trace normalized to 1 [102]. In
a physical system, this means that we can not only access the quantum
properties of states, expressed as a linear combination of basis states of V
or V∗, but we can also include the classical properties of a state, by con-
structing a basis of Ṽ and describing the states as any linear combination
formed with these basis elements that obeys conditions 1) and 2). Because
the range of representations is enlarged, their use has been proposed for
linguistic applications[9, 31, 109, 119], which we expand on here focusing
on including the directionality of the calculus in this distributional repre-
sentation. Defining the basis of V and V∗ as we did before, we are able to
construct a non-trivial basis for the density matrix space that carries over
the structure of duality. For this space, we choose the basis formed by |i⟩
tensored with ⟨i′ |, Ẽ = {|i⟩ ⟨i′ |}. We define the dual density matrix space
Ṽ∗ ≡ V ⊗ V∗ and assign to the dual basis of this space the map that takes
each basis element of Ṽ and returns a scalar. That basis is formed by

〈j
∣∣

tensored with
∣∣∣j′
〉

, D̃ =
{∣∣∣j′

〉 〈j
∣∣} , and is applied on the basis vectors of Ṽ

via the trace operation

Tr
(
|i⟩

〈
i′
∣∣∣j′
〉 〈

j
∣∣∣) = ∑

l

〈
l
∣∣∣i〉 〈

i′
∣∣∣j′
〉 〈

j
∣∣∣l

〉
. (3.5)

The composite spaces are formed via the binary operation ⊗ (tensor product)
and the unary operation ()∗ (dual functor) that sends the elements of
a density matrix basis to its dual basis, using the metric tensor. In the
notation, we use Ã for density matrix spaces (basic or compound), and ρ, or
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subscripted ρx, ρy, ρz, . . . ∈ Ã for elements of such spaces. The ()∗ operation
is involutive; it interacts with the tensor product as (Ã ⊗ B̃)∗ = B̃∗ ⊗ Ã∗

and acts as identity on matrix multiplication.

The homomorphism that sends syntactic types to semantic spaces is the
map ⌈.⌉. For primitive types it acts as

⌈s⌉ = S̃ and ⌈np⌉ = ⌈n⌉ = Ñ,

with S the vector space for sentence meanings, N the space for nominal
expressions (common nouns, full noun phrases). For compound types we
have

⌈A/B⌉ = ⌈A⌉ ⊗ ⌈B⌉∗ and ⌈A\B⌉ = ⌈A⌉∗ ⊗ ⌈B⌉.

This can be seen as an operational interpretation of formulae: a dualizing
functor acting on one of the types, followed by a tensor product, also a
functor, are identified with particular operations on elements, specifically
by multiplying with the elements of a metric or by taking the trace b.

3.3.1 Translation of unary modalities

We now turn to how to send the formulae decorated with unary modali-
ties to semantic spaces, in a way that stays in this functorial/operational
framework. Recall that in earlier work [96, 97] modally marked formu-
lae are interpreted in the same space as their undecorated versions, i.e.
⌈♢A⌉ = ⌈□A⌉ = ⌈A⌉.

To build a non-trivial interpretation of the unary connectives, we expand
the interpretation space using the description of quantum states, distin-
guishing between their spatial and spin degrees of freedom. Let the ⌈.⌉
homomorphism give a description of the spatial components, encoding the
numerically extracted distributional data. In addition to the spatial com-
ponent, and commuting freely with the spatial parts, we introduce a new

b Equivalentely, in a categorical distributional framework this corresponds to establishing a
basis and taking either tensor contraction or multiplication as the operations that represent
the η and ϵ maps at the element level.
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vector space, a density matrix space S, with dimension (N + 1)× (N + 1),
where N the maximum value of index n in the xleft rule of eq.(3.4), where
the spin components are encoded. We denote this by the N-level spin space.
Here we do not distinguish between covariant and contravariant compo-
nents, making the standard Dirac notation the appropriate one to deal
with this space. Accordingly, the basis is orthonormal and has elements in
{|a⟩ ⟨a′|}, with the values of a and a′ ranging from 0 to N.

To obtain the full translation from syntactic types to their distributional
interpretation spaces, we introduce an extended interpretation homomor-
phism that tensors the ⌈·⌉ interpretation of all types with a density matrix
space S resulting in

⌊A⌋ = ⌈A⌉ ⊗S. (3.6)

For atoms and slash types, ⌈·⌉ stays as defined. For ♢A and □A, we tensor
⌈A⌉ with S⊗S∗, the type for the matrix representation of the operators
associated with ♢ and □, that is,

⌈♢A⌉ = ⌈□A⌉ = ⌈A⌉ ⊗S⊗S∗. (3.7)

The key idea here is that by tensoring every type with an extra spin space
via ⌊·⌋, the marked types have representations that encode maps from S

to S coming from ⌈·⌉. This justifies the use of the same spin space to
interpret the two markers, as they act as endomorphisms on the S space
coming from ⌈·⌉, as in for lozenge ⌊♢A⌋ = ⌈♢A⌉ ⊗S and similarly for
box. At the type level, then, we find the structure to accommodate the
operators T♢, T□ ∈ L(S), for which the concrete distinct interpretations
will be provided at the term level. The key point of this structure is to give
us precise control over the spin space as we interpret the unary modalities.
Note that our connectives’ interpretations do not interfere either with the
distributional data that is stored in the spacial spaces, which is compatible
with the interpretation of these connectives in previous work [96, 97]. The
interpretations we assign to the unary connectives consist of operations that
only modify elements of an ancillary space. By enlarging the distributional



3.4 operational interpretation of lambek rules 85

space with this new spin space, we can effectivelly find a distributional
meaning for the unary connectives.

As an example, here is the ⌊·⌋ mapping for the relative pronoun type of
(3.3c).

⌊(n\n)/(♢□np\s)⌋ = ⌈(n\n)/(♢□np\s)⌉ ⊗S

= ⌈n⌉∗ ⊗ ⌈n⌉ ⊗ ⌈s⌉∗ ⊗ ⌈np⌉ ⊗ (S⊗S∗)︸ ︷︷ ︸
T♢

⊗ (S⊗S∗)︸ ︷︷ ︸
T□

⊗S (3.8)

3.4 operational interpretation of lambek rules

Given the new semantic spaces for the syntactic types, we now turn to
the interpretation of the syntactic derivations, as encoded by their lambda
proof terms, proving the soundness of the calculus presented in section 3.2
with respect to the semantics of section 3.3. In spin space, the operations
that interpret different syntactic maps relate with the quantum postulates
describing measurement and evolution of quantum systems[102].

quantum measurement : Quantum measurements are described by a
collection Ma of measurement operators, acting on the state space of the
system being measured. The index a refers to the measurement outcomes
that may occur in the experiment. If the state of the quantum system is
ρ immediately before the measurement then the probability that result a
occurs is given by p(a) = Tr

(
M†

a Maρ
)

and the state of the system after the
measurement is

ρa :=
MaρM†

a
p(a)

. (3.9)

The measurement operators satisfy the completeness equation, ∑a M†
a Ma =

I. For an observable M with eigenvalues m and eigenvectors |a⟩, a projective
measurement is defined with Ma = |a⟩ ⟨a|; in this context we say that a
state has been projected onto |a⟩ ⟨a|, and the quantum operator is then
called a projector.
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evolution The evolution of a closed quantum system is described by
a unitary transformation. That is, the state ρi of the system at time ti is
related to state ρi+1 of the system at time ti+1 by a unitary operator U which
depends only on these times. The state ρi+1 relates with the previous one
ρi by ρi+1 = UρiU†.

This correspondence is established via a function J·Kg that associates each
term t of type A with a semantic value, i.e. an element of ⌈A⌉, the semantic
space where meanings of type A live. For proof terms, J.K is defined relative
to an assignment function g, that provides a semantic value for the basic
building blocks, viz. the variables that label the axiom leaves of a proof,
in this case independently for the spatial (S) and spin (S) components. A
particular assignment gS

x,kk′ is used to interpret the lambda abstraction in
the spatial spaces:

Definition 3.4.1. Given a variable x of type A, we write gS
x,kk′ for the

assignment exactly like gS except for the variable x, which takes the value
of the basis element of the interpreting space

∣∣
k

〉
⌈A⌉⟨k′ |.

The elements of the spin space are given by

ρSx =
n−1

∑
a,a′=0

SXaa′ |a⟩S
〈

a′
∣∣. (3.10)

A pair of special assignment functions gSx,I and gSx,y is used to interpret the
lambda abstraction in the spin space:

Definition 3.4.2. Given a variable x of type A, we write gSx,I for the assign-
ment exactly like gS except for the variable x, which takes the value of the
normalized identity, I = ∑a

1
dim S |a⟩S⟨a|.

Definition 3.4.3. Given a variable x of type A, we write gSx,y for the assign-
ment exactly like gS except for the variable x, which takes the value of
variable y, also of type A.
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The spatial interpretation of terms of types formed with binary connectives
is as given in [35]. We reproduce here the main results, but focus on their
interpretation in spin space. Further, we introduce the interpretation of the
rules that introduce and eliminate unary connectives.

Some elimination rules will be interpreted in spin space using an instance
of a projective measurement. Given a term u of type A and another term
t of type B, we define a map JtAKgS ∗ JuBKgS : S×S → S acting on the
interpretation of the terms in spin space:

JtAKgS ∗ JuBKgS =

(q
uBy

gS

) 1
2 ·

q
tAy

gS ·
(q

uBy
gS

) 1
2

TrS

((
JuBKgS

) 1
2 · JtAKgS ·

(
JuBKgS

) 1
2
) , (3.11)

with (.)
1
2 such that when applied on an operator R we have that (R)

1
2 ·

(R)
1
2 = R. Positive operators, such as density matrices, have a unique

positive square root [7]. Physically, the spin split in its square-root acts
as a measurement operator on the other input spin. Using normalization,
the outcome is a well defined spin state. An unnormalized version of this
operator is defined in c. An unnormalized version of this map is defined as
the "phaser" in Coecke and Meichanetzidis[31].

3.4.1 Axiom

The axiom will be given by an element of the spatial spaces, tensored with
an element of the spin space.

r
xA

z

g
= g(xA) = ρ

⌊A⌋
x =

r
xA

z

gS
⊗

r
xA

z

gS
, (3.12)

where

c This a generalization of one of the Frobenius algebras already used in [9] in the category
CPM(FHilb), where, given the full density matrix representations of sentence, noun and
verb, respectively ρ(s), ρ(n) and ρ, they relate by ρ(s) = ρ(n)

1
2 ρ(v)ρ(n)

1
2 .
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r
xA

z

gS
= ∑

aa′

SXaa′ |a⟩S
〈

a′
∣∣ and

r
xA

z

gS
= ∑

ii′

SXii′ |i⟩ ⌈A⌉⟨i′ |. (3.13)

3.4.2 Introduction and elimination of binary connectives

elimination of / and \

r
(t ◁ u)B

z

g
≡ Tr⌈A⌉

(r
tB/A

z

gS
·
r

uA
z

gS

)
⊗ JtB/AKgS ∗ JuAKgS . (3.14)

r
(u ▷ t)B

z

g
≡ Tr⌈A⌉

(r
uA

z

gS
·
r

tA\B
z

gS

)
⊗ JtA\BKgS ∗ JuAKgS . (3.15)

introduction of / and \

r
(λrx.t)B/A

z

g
≡ ∑

kk′

(
JtBKgS

x,kk′
⊗

∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣)⊗

r
tB

z

gSx,I

. (3.16)

s(
λlx.t

)A\B
{

g
≡ ∑

kk′

(∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣⊗ JtBKgS

x,kk′

)
⊗

r
tB

z

gSx,I

. (3.17)

Syntactic equalities like beta reduction are interpreted as equalities in this
model, as is shown in appendix 3.D.

3.4.3 Introduction and elimination of unary connectives

As seen earlier in the example of eq.(3.8), at the term level the diamond in-
troduction is interpreted by the map T♢ and box introduction is interpreted
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by the map T□, both consisting of maps S → S. Two more operations need
to be introduced, namely those that eliminate box, T′

□, and that eliminate
diamond T′♢. Since these are the maps applied in our proof, we next give
their explicit form.

The operation T′
□ acting on elements of S is the linear combination of pro-

jectors T′a
□ onto pure states used as projectors Ma = |a⟩S⟨a|, generated by

the eigenstates of an observable with N + 1 different eigenvalues, specified
for a particular unary modality, indexed by a ∈ {0, ..., N}. Applied on a
state ρSx , the general result is the following mixed state

T′
□(ρ

S
x ) =

N

∑
a=0

caT′a
□ (ρ

S
x ) ≡

N

∑
a=0

ca(ρ
S
x ∗ |a⟩S⟨a|) =

N

∑
a=0

ca

(
MaρSx Ma

Tr (MaρSx Ma)

)
,

(3.18)

with ∑N
a=0 ca = 1, ca ∈ R. Defining the ordering of the eigenstates by the in-

creasing value of their corresponding index a, rule E□ will be interpreted in
the spin components as the projection onto the lowest eigenstate, effectively
with c0 = 1 and ca ̸=0 = 0.

The operation T′
♢ acts on elements by performing a unitary transformation,

generated by the successive application of matrices U0 = 1 and Ub ∈
SU(N + 1) on density matrices, for b ∈ {1, ..., N2 + 2N}, represented as T′b

♢ ,
for a particular representation and ordering. Again applied to the state ρSx ,
the application of this operation is

(
T′b
♢

(
ρSx

))db
=

{
ρSx if db = 0

UbρSx U†
b if db = 1

(3.19)

T′
♢(ρ

S
x ) =

(
T′N2+2N
♢

(
T′N2+2N−1
♢

(
...
(

T′0
♢

(
ρSx

))d0
))dN2+2N−1

)dN2+2N

(3.20)
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where ()† indicates hermitian conjugation and db ∈ {0, 1} d. The rule E♢ is
thus interpreted as performing a unitary transformation, using that d0 = 1
and db ̸=00.

In the particular case where we interpret the introduction of a connective
with the same operation of its connective, that is T□ = T′

♢ and T♢ = T′
□, the

adjoint properties of the unary connectives are preserved. The implications
♢□A → A → □♢A are interpreted on space S as

T♢ (T□ (S)) ∈ S ∈ T□ (T♢ (S)) .

In the first inclusion we have a unitary transformation followed by a
projection, which is inside the interpretation space of the state, the entire
Bloch sphere. For second inclusion, any state inside of the Bloch sphere is
inside the scope of projections followed by a unitary transformation. This
is a consequence of the non-commutativity of the operations that interpret
these connectives, measurement and evolution.

elimination of □ : J(∨t)BKg = Jt□BKgS ⊗ T′0
□

(
Jt□BKgS

)
elimination of ♢ :

J∪tKgS = T′0
♢

(
Jt♢AKgS

)
(3.21)

r
(u[∪t/x])B

z

g
= Tr⌈A⌉

(r
t♢A

z

gS
· ∑

kk′

∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣⊗ JuBKgS

x,kk′

)
⊗ JuBKgSx,∪ t

.

(3.22)

introduction of □ and ♢ :

d Eq. (3.20) can possibly be extended with permutations over the order of application of T′b
♢ .
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r
(∧t)□B

z

g
=

r
tB

z

gS
⊗ T0

□

(
JtBKgS

)
,

r
(∩t)♢B

z

g
= JtBKgS ⊗ T0

♢

(
JtBKgS

)
(3.23)

3.4.4 Structural Reasoning

To interpret the derived infererence rule, a raising operator S+ acts on the
input state and is applied as many times as nodes that need to be jumped
to be in the right position to be extracted. We record that information by
an index n on the substitution brackets of the proof term encoding the
(xleft) inference. The index acts as a power on the raising operator, (S+)n,
changing a state ρa = |a⟩S⟨a| to ρa+n = |a + n⟩S⟨a + n|, where we use the
convention that a matrix to the zeroth power is the identity matrix. Note
that this is not a unitary operator, which means that the resulting state must
be normalized after the application. Additionally the derived inference rule
is interpreted using the previously given interpretations of □ and ♢.

derived inference rule

[xleft]n: Premise tB with subterm yA at location n;
conclusion (λlx.

(cn
t
)B

[∨∪x/y]n)♢□A\B:

r(∨∪x
)A

z

gS
= T0

♢

(
T0
□

(r
x♢□A

z

gS

))
(3.24)
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J(λlx.
(

cn
t
)B

[∨∪x/y])♢□A\BKg =

=∑
ll′

∣∣∣l′
〉

⌈A⌉∗

〈
l
∣∣∣⊗ [

Tr⌈A⌉

(r
x♢□A

z

gS
· ∑

kk′

∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣⊗ JtBKgS

y,kk′

)]
gS

x,ll′

⊗

[
(S+)

n JtBKgSy,∨∪x

(
(S+)

†
)n

]
gSx,I

TrS

([
(S+)

n JtBKgSy,∨∪x

(
(S+)

†
)n

]
gSx,I

) (3.25)

Here we can see clearly the physical meaning that the quantum interpre-
tation gives to the application of the modal operators. In eq.(3.24), the
combination of application of T′0

♢ and T′0
□ , interpreted as a projection and

a unitary operation, respectively, takes the form of one of the possible
outcomes of the quantum process E = PU [102], applied on the stateq

x♢□Ay
gS , namely the one where the final state is ⟨0|S|0⟩. Having the

unary connectives interpreted with the non-commutative operations of
projection and unitary transformation correctly preserves the order of ap-
plication of the connectives imposed at the syntactic level. The derivation
of this interpretation from the extended version of xleft rule is explored in
Appendix 3.B.

3.5 two-level spin space

The structural ambiguity at hand will be treated using a two-level spin
space, since we have two ambiguous readings. This space is used to encode
spin states of fermionic particles, with spin 1/2, such as electrons and
protons. A helpful geometric visualization of the states in this space is the
Bloch sphere, in fig. 3.2.

To interpret the action of the unary connectives in the spin space, we
suppose that the particles with spin, our words in this case, are subjected



3.5 two-level spin space 93

Figure 3.2: Bloch sphere representation of a two-level quantum state, also called
a qubit. The general form of a state on the surface is |Ψ⟩ =(

cos θ
2 |0⟩+ eiϕ sin θ

2 |1⟩
)

eiγ. The global phase eiγ is not represented
because it has no effect on the density matrix. A product of states
pureρS = |Ψ⟩S⟨Ψ| is called a pure state, represented on the surface of
the sphere. Otherwise the states are called mixed states and live inside
of the sphere.

to a uniform magnetic field pointing in the z direction. Using natural units,
let

Sz =
1
2

(
1 0
0 −1

)
be the spin operator in the z direction. The eigenvectors of this operator

are the orthogonal states |0⟩ = (0, 1)⊺ and |1⟩ = (1, 0)⊺, using the standard
matrix representation. On the Bloch sphere, these states correspond to the
north and south poles, respectively. The corresponding eigenvalues are
e0 = −1/2 and e1 = 1/2. This is the operator that we will use to interpret
our unary modality. Thus T♢ is the set formed by linear combinations of
states ρ0 = |0⟩S⟨0| and ρ1 = |1⟩S⟨1|, the states that lie on the z-axis inside
the Bloch sphere.

To interpret controlled commutativity, we use that the raising operator is

S+ = Sx + iSy =

(
0 1
0 0

)
.
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Once applied on ρ0 the result is ρ1, and a further application has a null
result. Note that, together with with the lowering operator

S− = Sx − iSy =

(
0 0
1 0

)
,

it obeys the completeness relation S+ (S+)
† + S− (S−)

† = 1.

3.6 going dutch again

To illustrate the interpretation process, we return to our Dutch relative
clause example "man die de hond bijt", and show how we handle the
derivational ambiguity. The lexicon below has the syntactic type assign-
ments and the corresponding semantic spaces:

syn type A ⌊A⌋
man’ n Ñ ⊗S,

die’ (n\n)/(♢□np\s) Ñ∗ ⊗ Ñ ⊗ S̃∗ ⊗ Ñ ⊗ (S⊗S∗)⊗ (S⊗S∗)⊗S,
de hond’ np Ñ ⊗S,

bijt’ np\np\s Ñ∗ ⊗ Ñ∗ ⊗ S̃ ⊗S.

In order to compute the interpretations given by the two above derivations,
we start from the following primitive interpretations:
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Jman’nKI = ∑
rr′,ii′

SM
rr′ |r⟩ ⌈N⌉⟨r′ | ⊗S Mii′ |i⟩S

〈
i′
∣∣, (3.26)

Jdie’(n\n)/(♢□np\s)KI = ∑
kk′,ll′,mm′,nn′,ii′

SD ll′ nn′
k′k m′m

∣∣∣k′ m′
l n

〉
⌈N⌉∗⊗⌈N⌉⊗(⌈S⌉∗⊗⌈N⌉)

〈
k m

l′ n′

∣∣∣
⊗S Dii |i⟩S⟨i|; (3.27)

Jde hond’npKI = ∑
jj′,ii′

SHjj′ ∣∣j
〉

Ñ

〈
j′
∣∣⊗S Hii′ |i⟩S

〈
i′
∣∣; (3.28)

Jbijt’np\np\sKI = ∑
oo′,pp′,qq′,ii′

SB qq′

o′o,p′p

∣∣∣o′p′
q

〉
⌈N⌉∗⊗⌈N⌉∗⊗⌈S⌉

〈
op

q′

∣∣∣⊗S Bii′ |i⟩S
〈
i′
∣∣.

(3.29)

To obtain the correct contractions in the spatial components, that are re-
lated either to the subject or object relativization readings, the role of the
hypothesis x is crucial: interpreted as in eq.(3.13), it contracts with the
interpretation of "bijt" as the interpretations of the slash elimination rules
prescribe, either in subject or object position. Its most important role is in
the latter, blocking "de hond" from taking the immediate object position
contraction. After that, variable x is extracted using the xleft rule, in a way
that keeps all the other contractions unchanged, and keeping the right form
such that "die" can contract in the correct position. This process is worked
out in Appendix 3.C.1.

With respect to the spin components, the goal is that a pure state is pre-
served as it interacts with other spin states via slash elimination. As the
hypothesis of type ♢□np is abstracted over, it attains the value of the iden-
tity matrix, onto which the box and diamond eliminations are applied,
projecting it to the ρ0 state. If the controlled commutativity rule is is ap-
plied, the raising operator brings this pure state to the orthogonal pure
state ρ1. In this way, each of the two readings is stored in one of orthogonal
eigenstates of the Sz operator, which are necessarily pure states. As they
interact with "man" using the (.) ∗ (.) map, we predict that the final spin
states will remain pure, using the result of Lemma 4.1 on the phaser in
Coecke and Meichanetzidis[31], since the spin state that represents "man"
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interacts with a pure state in argument position. The full calculations are
shown in Appendix 3.C.2.

The relative clause of the first reading has the interpretation

Jdie_de_hond_bijt’K1
I =

∑
rr′,ll′,jj′,mm′,nn′

SD ll′ nn′
r′r m′m

SHjj′ SB mm′
j′ j,n′n

∣∣∣r′l〉 ⌈N⌉⟨
r

l′ | ⊗ |0⟩S⟨0|, (3.30)

while for the second reading the interpretation is it is

Jdie_de_hond_bijt’K2
I =

sumrr′,ll′,jj′mm′,nn′SD ll′ nn′
r′r m′m

SHjj′ SB mm′
n′n,j′ j

∣∣∣r′l

〉
⌈N⌉⟨

r
l′ | ⊗ |1⟩S⟨1|. (3.31)

Figure 3.3: Representation of spatial contractions corresponding to the subject
relativization reading of "man die de hond bijt", according to eq.(3.30).

The final interpretation of the ambiguous phrase is given by the direct sum
of the two unambiguous interpretations, weighted by parameters p1 and p2

that express the likelihood of each reading:
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Figure 3.4: Representation of contractions corresponding to the object relativization
reading of "man die de hond bijt", according to eq.(3.31).

Jman_die_de_hond_bijtKI

= p1Jman_die_de_hond_bijtK1
I ⊕ p2Jman_die_de_hond_bijtK2

I . (3.32)

3.7 discussion and conclusion

In this paper we extended the interpretation space with a spin degree of
freedom, showing how that can preserve extra information about the proof.
We showed how interpreting the meanings of words directly as density
matrices introduces a framework that can be used to encode higher-level
content. This was done by interpreting the unary connectives as quantum
operations in the spin space, such that the information about the readings
is preserved via a quantum process. When more than two ambiguous
readings are possible, it constitutes future work to show that our frame-
work can be extended by using a larger spin space and an appropriate
raising operator. Besides its usefulness to deal with ambiguity, in future
work we want also to study how the spin degree of freedom is suitable to
distinguish the representations of marked types in a multimodal setting,
possibly by associating them with eigenstates of different operators. While
in this work the spin degree of freedom plays no bigger role than an extra
two-dimensional degree of freedom, when going to a multimodal setting
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the interactions between the different spin eigenvectors will have quantum
properties due to the non-commutativity of the operators. Interesting too
is to relate our approach, where lambda terms are directly interpreted
using elements and operations over them, with Kripke frames on vector
spaces [50], defining the valuation sets with the accessibility relations that
translate into our operations, unveiling a stronger connection with the logic
of residuation. Also relevant would be to compare our take on interpreting
certain logic connectives using quantum mechanical operations with the
mirror field of quantum logic [32] that aims at interpreting quantum me-
chanics using logic tool, particularly modal logic [32] which is at the root
of our unary connectives, where too an association between projections
and the logic of possibility (♢ in our notation) is suggested. Finally, further
research will have to show how the probability coefficients can be extracted
from derivational data, and whether it is possible to go from the subject
relativization reading to the object relativization reading applying only per-
mutation operators as is done in [35] for syntactic ambiguities and, in that
case, what is precisely the connection with the derivation. Other interesting
questions relate to finding the appropriate categorical interpretation of the
spin space and operations that take place there, further helping us to relate
our interpretation of control modalities with other logical operators that
are also syntactic but do affect the meaning of a sentence, such as negation
or quantification, but these are outside the scope of the present paper.
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3.a complete proof trees for dutch relativization clauses

3.a.1 Subject Relativization

man
y0 : n ℓ

die
z0 : (n\n)/(♢2np\s) ℓ

[ ⊢ x1 : ♢2np]1

[ ⊢ z1 : 2np]2

⟨ ⟩ ⊢ ∨z1 : np
[2E]

de
x2 : np/n ℓ hond

y2 : n ℓ

de · hond ⊢ (x2 ◁ y2) : np
[/E]

bijt
z2 : np\(np\s) ℓ

(de · hond) · bijt ⊢ ((x2 ◁ y2) ▷ z2) : np\s
[\E]

⟨ ⟩ · ((de · hond) · bijt) ⊢ (∨z1 ▷ ((x2 ◁ y2) ▷ z2)) : s
[\E]

· ((de · hond) · bijt) ⊢ (∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)) : s
[♢E]2

(de · hond) · bijt ⊢ λx1.(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)) : ♢2np\s
[\I]1

die · ((de · hond) · bijt) ⊢ (z0 ◁ λx1.(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))) : n\n
[/E]

man · (die · ((de · hond) · bijt)) ⊢ (y0 ▷ (z0 ◁ λx1.(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)))) : n
[\E]

3.a.2 Object Relativization

man
y0 : n ℓ

die
z0 : (n\n)/(♢2np\s) ℓ

[ ⊢ x1 : ♢2np]1

de
x2 : np/n ℓ hond

y2 : n ℓ

de · hond ⊢ (x2 ◁ y2) : np
[/E]

[ ⊢ z1 : 2np]2

⟨ ⟩ ⊢ ∨z1 : np
[2E]

bijt
z2 : np\(np\s) ℓ

⟨ ⟩ · bijt ⊢ (∨z1 ▷ z2) : np\s
[\E]

(de · hond) · (⟨ ⟩ · bijt) ⊢ ((x2 ◁ y2) ▷ (∨z1 ▷ z2)) : s
[\E]

⟨ ⟩ · ((de · hond) · bijt) ⊢ ((x2 ◁ y2) ▷ (∨z1 ▷ z2)) : s
[Comm♢]

· ((de · hond) · bijt) ⊢ ((x2 ◁ y2) ▷ (∨∪x1 ▷ z2)) : s
[♢E]2

(de · hond) · bijt ⊢ λx1.((x2 ◁ y2) ▷ (∨∪x1 ▷ z2)) : ♢2np\s
[\I]1

die · ((de · hond) · bijt) ⊢ (z0 ◁ λx1.((x2 ◁ y2) ▷ (∨∪x1 ▷ z2))) : n\n
[/E]

man · (die · ((de · hond) · bijt)) ⊢ (y0 ▷ (z0 ◁ λx1.((x2 ◁ y2) ▷ (∨∪x1 ▷ z2)))) : n
[\E]

3.a.3 Formal semantics of relative pronouns

To obtain the usual ‘formal semantics’ terms, one substitutes for the param-
eter z0 the lexical program for the word ‘die’:

die = λxλyλz.((y z) ∧ (x ∩∧z))

which then, after β conversion and cap-cup and wedge-vee cancellation,
reduces to

λz.((man z) ∧ ((bijt (de hond)) z)) (subject reading)
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λz.((man z) ∧ ((bijt z) (de hond))) (object reading)

3.b interpretation of extended [xleft ]n
rule

To arrive at the interpretation of the xleft rule, we compose the inter-
pretations of the rules that it abreviates, explicit on the left part of 3.4.
Additionally to the interpretations of E□, E♢ and I\, we only need to pro-
vide the interpretation for Ass♢ and Comm♢. Strucutral rules do not affect
systematically the programme encoded by the associated lambda term.
Howver, in this paper we go beyond the "bag of words" view and introduce
a specification in the lambda term that results from the Comm♢ rule:

Γ[∆2 · (⟨∆1⟩ · ∆3)] ⊢ t : B
Γ[⟨∆1⟩ · (∆2 · ∆3)] ⊢c t : B

Comm♢ (3.33)

The interpretation of Comm♢ is as follows:

J(ct)BKg = JtBKgS ⊗ S+

(
JtBKgS

)
(S+)

†,

with S+ the raising operator in the interpreting space, according to the
discussion in sec. 3.4.4. If it is applied n times successively , it is takes the
form and respective interpretation

J
(

cn
t
)B

Kg = JtBKgS ⊗ (S+)
n
(
JtBKgS

) (
(S+)

†
)n

.

This extends naturally to the case when the Comm♢ rule is never applied,
in which case n = 0, where we have that (S+)

0 = I.

In what follows we take the necessary steps to arrive at the interpretation
of term λlx.c

n
t[∪x/z] in spin space. First, we interpret the application of

Comm♢:

J
(

cn
t
)B

[∪x/z]KgS = (S+)
n J

(
t[∪x/z]

)BKgS

(
(S+)

†
)n

Then we expand on the interpretation of E♢:
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J
(
t[∪x/z]

)BKgS = JtBKgSz,∪x
,

which means that

J(∪x)□AKgS = T′0
♢

(
Jx♢□A

)
KgS (3.34)

will replace Jz□AK inside of t, appearing here already as the result of the
application of E□:

J(∨z)AKgS = T′0
□

(
Jz□AKgS

)
.

Finally, abstracting over variable x is interpreted as

Jλlx.c
n
t[∪x/z]KgS = Jcn

t[∪x/z]KgSx,I
,

such that the only instance of x has its interpretation subsituted by the
indentity, namely in eq.(3.34). Putting all these elements together and
normalizing, we arrive at the interpretation in eq.(3.25).

3.c concrete interpretation of relative clauses

The derivations in 3.2 have a final term that depends on the variables
y0, z0, x2, y2 z2 and x1. The latter is a bound variable (as well as the
intermediate variable x), due to the lambda abstraction, and the former
are free variables. Bound variables can be substituted by any free variable
during the derivation, via beta reduction, and will take the value of that
variable, contrasting with free variables that will be substituted by constants,
and interpreted accordingly. An assignment function g assigns bound
variables to a later-to-be-defined constant, and assigns free variables to
specific constants, here our words. In our assignment, taken as an example,
the assignment function gives g(y0) = man′ but g(x1) remain in this form,
until x1 is substituted by a free variable. Alternatively we can represent the
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free variables as bound variables using a lambda abstraction, applied on a
constant: λy0.y0(man′) → man′.

Looking at the interpretation of any variable stated in the interpretation of
the axiom rule in eq.(3.13) and comparing with the interpretation of the
constants in eqs.(3.26) to (3.29), we note that both represent the density
matrix entries in a symbolic form, where we can apply directly operations
like trace and matrix multiplication in the spatial components, or spin
operators in the spin components. This permits that, when we perform
these calculation step by step using each rule, we can perform them directly
on the symbolic representations of interpretations of constants, in eqs.(3.26)
to (3.29), as well as of variables that naturaly take the same form as states
in eq.(3.13), since it can potentially take the value of any other constant.

Therefore, one can impose an assignment that will interpret our particular
Dutch relative clause "man die de hond bijt" g that instantiates the free
variables like so:

J(x2 ◁ y2)Kg = Jde_hond’npKI , (3.35)

J(z2)Kg = Jbijt’np\np\sKI , (3.36)

Jz0Kg = Jdie’(n\)/(np\s)KI , (3.37)

Jy0Kg = Jman’nKI (3.38)

and instantiates the bound variable x according to eq.(3.13).

Substituting these directly in the derivations, we can, step by step, arrive at
the final different readings. In what follows we give a full breakdown of
these steps, splitting between spatial and spin components, and between
subject and object relativization.
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3.c.1 Interpretations in ⌈.⌉:

Subject Relativization

The interpretation of this derivation starts by making use of the interpreta-
tion of E\ as given in eq.(3.15), substituting the variables by the assigned
constants as described above.

J(x2 ◁ y2) ▷ z2KgS = TrÑ

(
J(x2 ◁ y2)KgS · Jz2KgS

)
TrÑ

(
∑
jj′

SHjj′ ∣∣j
〉

Ñ

〈
j′
∣∣ · ∑

oo′,pp′,qq′

SB qq′

o′o,p′p

∣∣∣o′p′
q

〉
⌈N⌉∗⊗⌈N⌉∗⊗⌈S⌉

〈
op

q′

∣∣∣)
= ∑

jj′,pp′,qq′

SHjj′SB qq′

j′ j,p′p

∣∣∣p′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
p

q′

∣∣∣ (3.39)

Then we use again eq.(3.15) and the interpret the variable x using axiom
rule as in eq.(3.13).

Jx ▷ ((x2 ◁ y2) ▷ z2)KgS = TrÑ

(
JxKgS · J(x2 ◁ y2) ▷ z2KgS

)
= TrÑ

(
∑
ii′

SXii′ |i⟩ Ñ⟨i′ | · ∑
jj′,pp′,qq′

SHjj′SB qq′

j′ j,p′p

∣∣∣p′
q

〉
⌈N⌉∗⊗ ⌈S⌉

〈
p

q′

∣∣∣)
= ∑

ii′,jj′,qq′

SXii′SHjj′SB qq′

j′ j,i′i

∣∣∣q

〉
⌈S⌉

〈
q′

∣∣∣ (3.40)

To use the xleft rule, we first interpret the previous term in the assignment
gS

x,ll′ , as described in Def.3.4.1. recalculating the previous interpretation
using the basis of its interpretation space instead of eq.(3.13).
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Jx ▷ ((x2 ◁ y2) ▷ z2)KgS
x,ll′

= TrÑ

(
|l⟩ ⌈N⌉⟨l′ | · J(x2 ◁ y2) ▷ z2KgS

)
= ∑

jj′,qq′

SHjj′SB qq′

j′ j,l′ l

∣∣∣q

〉
⌈S⌉

〈
q′

∣∣∣ (3.41)

We simplify the spatial interpretation of xleft as given in eq.(3.25), using
that x and y are interpreted both interpreted in ⌈A⌉, since ⌈♢□A⌉ = ⌈A⌉:

J(λlx.c
0
t[∨∪x/y])♢□A\BKgS =

= ∑
ll′

∣∣∣l′
〉

⌈A⌉∗

〈
l
∣∣∣⊗ [

Tr⌈A⌉

(r
x♢□A

z

gS
· ∑

kk′

∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣⊗ JtBKgS

y,kk′

)]
gS

x,ll′

= ∑
ll′

∣∣∣l′
〉

⌈A⌉∗

〈
l
∣∣∣⊗ Tr⌈A⌉

(
|l⟩ ⌈A⌉⟨l′ | · ∑

kk′

∣∣∣k′
〉

⌈A⌉∗

〈
k
∣∣∣⊗ JtBKgS

y,kk′

)
= ∑

ll′

∣∣∣l′
〉

⌈A⌉∗

〈
l
∣∣∣⊗ JtBKgS

y,ll′
. (3.42)

Using this simplified form, we see that multiplying with the dual basis of
the space that interprets both x and x1 results in an expression that will
take any value of a variable of that type, precisely the goal of the lambda
abstraction.

Jλlx1.c
0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))KgS = ∑

ll′

∣∣∣l′
〉

⌈N⌉∗

〈
l
∣∣∣⊗ Jx ▷ ((x2 ◁ y2) ▷ z2)KgS

x,ll′

= ∑
ll′

∣∣∣l′
〉

⌈N⌉∗

〈
l
∣∣∣⊗ ∑

jj′,qq′

SHjj′SB qq′

j′ j,l′ l

∣∣∣q

〉
⌈S⌉

〈
q′

∣∣∣
= ∑

ll′,jj′,qq′

SHjj′SB qq′

j′ j,l′ l

∣∣∣l′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
l

q′

∣∣∣ (3.43)
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To finalize, the next two steps consist in the application of the interpretations
of E/ in eq.(3.14) and E\ (eq.3.15), respectively, resulting in the spatial part
of eq. 3.30.

Jz0 ◁ λlx1.c
0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))KgS =

TrS̃

(
TrÑ

(
Jz0KgS .Jλlx1.c

0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))KgS

))
= TrS̃

(
TrÑ

(
∑

kk′,tt′,mm′,nn′

SD tt′ nn′
k′k m′m

∣∣∣k′ m′
t n

〉
⌈N⌉∗⊗⌈N⌉⊗(⌈S⌉∗⊗⌈N⌉)

〈
k m

t′ n′

∣∣∣
· ∑

ll′,jj′,qq′

SHjj′SB qq′

j′ j,l′ l

∣∣∣l′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
l

q′

∣∣∣))
= ∑

kk′,tt′,mm′,nn′,jj′

SD tt′ nn′
k′k m′m

SHjj′SB mm′
j′ j,n′n

∣∣∣k′
t

〉
⌈N⌉∗⊗⌈N⌉

〈
k

t′

∣∣∣ (3.44)

Jy0 ▷ (z0 ◁ λlx1.c
0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)))KgS =

= TrÑ

(
Jy0KgS · Jz0 ◁ λlx1.c

0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))KgS

)
= TrÑ

(
∑
rr′

SM
rr′ |r⟩ ⌈N⌉⟨r′ |

· ∑
kk′,tt′,mm′,nn′,jj′

SD tt′ nn′
k′k m′m

SHjj′SB mm′
j′ j,n′n

∣∣∣k′
t

〉
⌈N⌉∗⊗⌈N⌉

〈
k

t′

∣∣∣)

= ∑
rr′,tt′,mm′,nn′,jj′

SM
rr′SD tt′ nn′

r′r m′m
SHjj′SB mm′

j′ j,n′n |t⟩ ⌈N⌉⟨t′ | (3.45)

= Jman_die_de_hond_bijt’K1
IS (3.46)

Object relativization

This derivation is very similar to the previous, except that on the first
application of E\ the bound variable x is introduced as the argument of
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z2, and only on the next application of the rule is (x2 ◁ y2) taken as an
argument.

Jx ▷ z2KgS = TrÑ

(
JxKgS · Jz2KgS

)
= TrÑ

(
∑
ii′

SXii′ |i⟩ Ñ⟨i′ | · ∑
oo′,pp′,qq′

SB qq′

o′o,p′p

∣∣∣o′p′
q

〉
⌈N⌉∗⊗⌈N⌉∗⊗⌈S⌉

〈
op

q′

∣∣∣)
= ∑

ii′,pp′,qq′

SXii′SB qq′

i′i,p′p

∣∣∣p′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
p

q′

∣∣∣ (3.47)

J(x2 ◁ y2) ▷ (x ▷ z2)KgS = TrÑ

(
J(x2 ◁ y2)KgS · Jx ▷ z2KgS

)
= TrÑ

(
J(x2 ◁ y2)KgS · TrÑ

(
JxKgS · Jz2KgS

))
= TrÑ

(
∑
jj′

SHjj′ ∣∣j
〉

Ñ

〈
j′
∣∣ · ∑

ii′,pp′,qq′

SXii′SB qq′

i′i,p′p

∣∣∣p′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
p

q′

∣∣∣)
= ∑

jj′,ii′,qq′

SHjj′SXii′SB qq′

i′i,j′ j

∣∣∣q

〉
⌈S⌉

〈
q′

∣∣∣ (3.48)

Note at this point that, due to changing the ordering of contraction, when
compared with the subject relativization reading, the matrix indices are
contracted differently from eq.3.40. We see now what the role of the
hypotheses x is: to block (x2 ▷ y2) from contracting inevitably as the first
argument of z2. Now that the contraction is in line with what we want for
an object relativization reading, we will extract variable x via xleft. To do
that, we first reinterpret the previous term using the assignment gS

x,ll′ . To
substitute the interpretation of x by that of its basis elements we need to
go further into de proof, when compared with the subject relativization
reading.
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J(x2 ◁ y2) ▷ (x ▷ z2)KgS
x,ll′

= TrÑ

(
J(x2 ◁ y2)KgS · TrÑ

(
|l⟩ ⌈N⌉⟨l′ | · Jz2KgS

))
= TrÑ

(
∑
jj′

SHjj′ ∣∣j
〉

Ñ

〈
j′
∣∣ · ∑

pp′,qq′

SB qq′

l′ l,p′p

∣∣∣p′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
p

q′

∣∣∣)
= ∑

jj′,qq′

SHjj′SB qq′

l′ l,j′ j

∣∣∣q

〉
⌈S⌉

〈
q′

∣∣∣ (3.49)

The following steps are as before, with the final result referring to eq.3.31.

Jλlx1.c
1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS = ∑
ll′

∣∣∣l′
〉

⌈N⌉∗

〈
l
∣∣∣⊗ J((x2 ◁ y2) ▷ (x ▷ z2))KgS

x,ll′

= ∑
ll′

∣∣∣l′
〉

⌈N⌉∗

〈
l
∣∣∣⊗ ∑

jj′,qq′

SHjj′SB qq′

l′ l,j′ j

∣∣∣q

〉
⌈S⌉

〈
q′

∣∣∣ (3.50)

= ∑
ll′,jj′,qq′

SHjj′SB qq′

l′ l,j′ j

∣∣∣l′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
l

q′

∣∣∣ (3.51)

Jz0 ◁ λlx1.c
1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS

= TrS̃

(
TrÑ

(
Jz0KgS .Jλlx1.c

1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS

))
= TrS̃

(
TrÑ

(
∑

kk′,tt′,mm′,nn′

SD tt′ nn′
k′k m′m

∣∣∣k′ m′
t n

〉
⌈N⌉∗⊗⌈N⌉⊗(⌈S⌉∗⊗⌈N⌉)

〈
k m

t′ n′

∣∣∣
· ∑

ll′,jj′,qq′

SHjj′SB qq′

l′ l,j′ j

∣∣∣l′
q

〉
⌈N⌉∗⊗⌈S⌉

〈
l

q′

∣∣∣))
= ∑

kk′,tt′,mm′,nn′,jj′

SD tt′ nn′
k′k m′m

SHjj′SB mm′
n′n,j′ j

∣∣∣k′
t

〉
⌈N⌉∗⊗⌈N⌉

〈
k

t′

∣∣∣ (3.52)
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Jy0 ▷ (z0 ◁ λlx1.c
1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2)))KgS

= TrÑ

(
Jy0KgS · Jz0 ◁ λlx1.c

1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS

)
= TrÑ

(
∑
rr′

SM
rr′ |r⟩ ⌈N⌉⟨r′ |

· ∑
kk′,tt′,mm′,nn′,jj′

SD tt′ nn′
k′k m′m

SHjj′SB mm′
n′n,j′ j

∣∣∣k′
t

〉
⌈N⌉∗⊗⌈N⌉

〈
k

t′

∣∣∣)

= ∑
rr′,tt′,mm′,nn′,jj′

SM
rr′SD tt′ nn′

r′r m′m
SHjj′SB mm′

n′n,j′ j |t⟩ ⌈N⌉⟨t′ | (3.53)

= Jman_die_de_hond_bijt’K2
IS . (3.54)

3.c.2 Interpretations in S:

Subject Relativization

We start by using the interpretations of variables in the interpretation of E\
as given in eq. 3.15, which are particular forms of eq. 3.11. The variables can
have any value with the only requirement that it is neither ρ0 nor ρ1. This
is because the resulting states must have a non-zero probability of being
projected on either of these states, which is necessary for the following step.

J(x2 ◁ y2) ▷ z2KgS = Jz2KgS ∗ Jx2 ◁ y2KgS

=

(
Jx2 ◁ y2KgS

) 1
2 · Jz2KgS ·

(
Jx2 ◁ y2KgS

) 1
2

TrS

((
Jx2 ◁ y2KgS

) 1
2 · Jz2KgS ·

(
Jx2 ◁ y2KgS

) 1
2
) . (3.55)
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Jx ▷ ((x2 ◁ y2) ▷ z2)KgS =
(
Jz2KgS ∗ Jx2 ◁ y2KgS

)
∗ JxKgS

=

(
JxKgS

) 1
2 ·

(
Jz2KgS ∗ Jx2 ◁ y2KgS

)
·
(
JxKgS

) 1
2

TrS

((
JxKgS

) 1
2 ·

(
Jz2KgS ∗ Jx2 ◁ y2KgS

)
·
(
JxKgS

) 1
2
) (3.56)

Looking at the interpretation of xleft in eq. 3.25, we first work out eq.
3.24 with JxKgS substituted by J∨∪x1K = T′0

□

(
T′0
♢

(
Jx1KgS

))
because of

assignment gSx,∨∪x1
, and with Jx1KgS substituted by I in its turn, because of

the assignment gSx1,I . Recall that in our definitions U0 = 1. Since controlled
commutativity is not used, n = 0 and (S+)

0 = 1. In both steps below, pure
state ρ0 will be preserved, taking into account that

JtAKgS ∗ JuBKgS = JuBKgS , (3.57)

when JuBKgS equals ρ0 or ρ1. To show this, take JtAKgS =

(
a b
c d

)
and

JuBKgS = |0⟩S⟨0| =
(

0 0
0 1

)
,

JtAKgS ∗ JuBKgS =

(
0 0
0 1

)(
a b
c d

)(
0 0
0 1

)
Tr

((
0 0
0 1

)(
a b
c d

)(
0 0
0 1

)) =

(
0 0
0 d

)
d

=

(
0 0
0 1

)
,

(3.58)
and similarly for JuBKgS = ρ1.

Therefore, the concrete interpretation of the xleft rule uses

J∨∪x1K = T′0
□

(
T′0
♢ (I)

)
= I ∗ |0⟩S⟨0| = |0⟩S⟨0|, (3.59)

which substituted in eq.3.56 gives
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Jλlx1.c
0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))KgS =

= S0
+

((
Jz2KgS ∗ Jx2 ◁ y2KgS

)
∗ |0⟩S⟨0|

) (
S0
+

)†

= |0⟩S⟨0| (3.60)

In the following two steps, the interpretations of rules E/ and E\ are used.
In the last step of 3.61, we refer again to eq.3.30.

Jz0 ◁ λlx1.c
0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))KgS = Jz0KgS ∗ Jλlx1.c

0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2))KgS

= Jz0KgS ∗ |0⟩S⟨0| =
(|0⟩S⟨0|)

1
2 · Jz0KgS · (|0⟩S⟨0|)

1
2

TrS
(
(|0⟩S⟨0|)

1
2 · Jz0KgS · (|0⟩S⟨0|)

1
2

) = |0⟩S⟨0|

= Jdie_de_hond_bijt’K1
IS (3.61)

Jy0 ▷ (z0 ◁ λlx1.c
0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)))KgS

= J(z0 ◁ λlx1.c
0
t(∨∪x1 ▷ ((x2 ◁ y2) ▷ z2)))KgS ∗ Jy0KgS

= |0⟩S⟨0| ∗ Jy0KgS =

(
Jy0KgS

) 1
2 · |0⟩S⟨0| ·

(
Jy0KgS

) 1
2

TrS

((
Jy0KgS

) 1
2 · |0⟩S⟨0| ·

(
Jy0KgS

) 1
2
)

= Jman_die_de_hond_bijt’K1
IS . (3.62)

Object Relativization

Just as in the previous derivations, once more we use the interpretations of
E\ in the two first steps.
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Jx ▷ z2KgS = Jz2KgS ∗ JxKgS =

(
JxKgS

) 1
2 · Jz2KgS ·

(
JxKgS

) 1
2

TrS

((
JxKgS

) 1
2 · Jz2KgS ·

(
JxKgS

) 1
2
) . (3.63)

J(x2 ◁ y2) ▷ (x ▷ z2)KgS =
(
Jz2KgS ∗ JxKgS

)
∗ Jx2 ◁ y2KgS

=

(
Jx2 ◁ y2KgS

) 1
2 ·

(
Jz2KgS ∗ JxKgS

)
·
(
Jx2 ◁ y2KgS

) 1
2

TrS

((
Jx2 ◁ y2KgS

) 1
2 ·

(
Jz2KgS ∗ JxKgS

)
·
(
Jx2 ◁ y2KgS

) 1
2
) (3.64)

In the application of the interpretation of xle f t in eq.3.4) is the same as in
the previous reading, except that controlled commutation is used once, so
that m = 1, meaning that (S+)

1 = S+, U0 = 1 :

J∨∪x1K = T′0
□

(
T′0
♢ (I)

)
= I ∗ |0⟩S⟨0| = |0⟩S⟨0|, (3.65)

which substituted in 3.56 gives

Jλlx1.c
1
t(x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS =

=
S+

((
Jz2KgS ∗ |0⟩S⟨0|

)
∗ Jx2 ◁ y2KgS

)
(S+)

†

TrS
(

S+

((
Jz2KgS ∗ |0⟩S⟨0|

)
∗ Jx2 ◁ y2KgS

)
(S+)

†
)

= |1⟩S⟨1|, (3.66)
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since

S+JtAKSg S†
+

TrS
(

S+JtAKSg S†
+

) =

(
0 1
0 0

)(
a b
c d

)(
0 0
1 0

)
Tr

((
0 1
0 0

)(
a b
c d

)(
0 0
1 0

)) =

(
d 0
0 0

)
d

=

(
1 0
0 0

)
= |1⟩S⟨1|. (3.67)

Finally, for the interpretations of E/ and E\:

Jz0 ◁ λlx1.c
1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS =

Jz0KgS ∗ Jλlx1.c
1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS

=
(|1⟩S⟨1|)

1
2 · Jz0KgS · (|1⟩S⟨1|)

1
2

TrS
(
(|1⟩S⟨1|)

1
2 · Jz0KgS · (|1⟩S⟨1|)

1
2

) = |1⟩S⟨1|

= Jdie_de_hond_bijt’K2
IS . (3.68)

Jy0 ▷ (z0 ◁ λlx1.c
1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2)))KgS

= Jz0 ◁ λlx1.c
1
t((x2 ◁ y2) ▷ (

∨∪x1 ▷ z2))KgS ∗ Jy0KgS

=

(
Jy0KgS

) 1
2 · |1⟩S⟨1| ·

(
Jy0KgS

) 1
2

TrS

((
Jy0KgS

) 1
2 · |1⟩S⟨1| ·

(
Jy0KgS

) 1
2
)

= Jman_die_de_hond_bijt’K2
IS . (3.69)
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3.d proof transformation : beta reduction

The β-reduction is one of the rewrite rules of the λ-calculus. It asserts
that applying a term with a lambda-bound variable to a certain argument
is equivalent to substituting that argument directly in the original term,
before introducing the lambda. In proof-theoretic terms, if an introduction
rule is used followed by an elimination rule, the derivation is not minimal.
To elucidate this point, below is the skeleton of a derivation where a term
of type A is proved twice, by axiom and by an unknown proof:

...

∆ ⊢ n : A

axiomx : A ⊢ x : A
...

x : A, Γ ⊢ t : B
\I

Γ ⊢ λlx.m : A\B
\E

(Γ, ∆) ⊢ n ▷ (λlx.m) : B .

The β reduction consists of substituting the unknown proof of the term of
type A in place of the axiom, reducing the need for the double proof of that
term, and consequently the size of the proof:

...

∆ ⊢ n : A
...

∆, Γ ⊢ m[x/n] : B .

Through this reduction, a map from one conclusion to the other can be
obtained, which has to be an equality regarding their interpretations:

Jn ▷ (λlx.m)]Kg = Jm[x/n]Kg, ∀g.
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This equality will be used to check that the density matrix construction
interpretation is consistent with the λ-calculus. Below a concrete symbolic
derivation before the reduction is shown:

axw : B ⊢ w : B axz : B\(A/B) ⊢ z : B\(A/B)
\E2w : B, z : B\(A/B) ⊢ (w ▷ z) : A/B

axx : A/B ⊢ x : A/B axy : B ⊢ y : B
/E1x : A/B, y : B ⊢ (x ◁ y) : A

\I1
y : B ⊢ λlx.(x ◁ y) : (A/B)\A

\E3
(w : B, z : B\(A/B), u : B) ⊢ (w ▷ z) ▷ (λlx.(x ◁ y)) : A .

The interpretation in the spatial space S of the several steps of the proof is
given below, following the numbering in the proof:

E/1 : J(x ◁ y)KgS = ∑
ii′,jj′

SX
i′i

jj′
SY

j′ j |i⟩ ⌈A⌉⟨i′ |,

I\1
: Jλlx.(x ◁ y)KgS = ∑

ii′,jj′

∣∣∣ i′
j

〉
⌈B⌉⊗⌈A⌉∗

〈
i
j′

∣∣∣⊗ SY
j′ j |i⟩ ⌈A⌉⟨i′ |,

E\2
: J(w ▷ z)Kg = ∑

ll′,mm′,nn′

SW
ll′ SZ

m′m
l′ l,nn′

∣∣∣ n′
m

〉
⌈A⌉⊗⌈B⌉∗⟨

n
m′ |,

E\3
: J(w ▷ z) ▷ (λlx.(x ◁ y))KgS = ∑

ii′,jj′,ll′

SW
ll′ SZ

i′i
l′ l,jj′

SY
j′ j |i⟩ ⌈A⌉⟨i′ |.

In spin space S the interpretation of the proof steps is as follows:

E/1 : J(x ◁ y)KgS = JxKgS ∗ JyKgS

I\1
: Jλlx.(x ◁ y)KgS = I ∗ JyKgS = JyKgS

E\2
: J(w ▷ z)Kg = JzKgS ∗ JwKgS



3.D proof transformation : beta reduction 115

E\3
: J(w ▷ z) ▷ (λlx.(x ◁ y))KgS = JyKgS ∗

(
JzKgS ∗ JwKgS

)
A similar treatment is done for the derivation after the reduction:

axw : B ⊢ w : B axz : B\(A/B) ⊢ z : B\(A/B)
\E2w : B, z : B\(A/B) ⊢ (w ▷ z) : A/B axy : B ⊢ y : B

\E4w : B, z : B\(A/B), u : B ⊢ ((w ▷ z) ◁ y) : A .

The value of J(w ▷ z)Kg is the same as before. For J((w ▷ z) ◁ y)KgS :

E\4
: J((w ▷ z) ◁ y)KgS = ∑

ii′,jj′,ll′

SW
ll′SZ

i′i
l′ l,jj′

SY
j′ j |i⟩ ⌈A⌉⟨i′ |.

On the spin space, we have

E\4
: J((w ▷ z) ◁ y)KgS = JyKgS ∗

(
JzKgS ∗ JwKgS

)
Comparing the two derivations and interpretations, the conclusion is that

JE\4
(y, z(w))KgS = JE\3

(z(w), λx.x(y))KgS ,

as expected, and

JE\4
(y, z(w))KgS = JE\3

(z(w), λx.x(y))KgS .
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C O M PA R I N G I N C O N T E X T

abstract Cosine similarity is a widely used measure of the relatedness of
pre-trained word embeddings, trained on a language modeling goal. Datasets
such as WordSim-353 and SimLex-999 rate how similar words are according to
human annotators, and as such are often used to evaluate the performance of
language models. Thus, any improvement on the word similarity task requires
an improved word representation. In this paper, we propose instead the use
of an extended cosine similarity measure to improve performance on that task,
with gains in interpretability. We explore the hypothesis that this approach is
particularly useful if the word-similarity pairs share the same context, for which
distinct contextualized similarity measures can be learned. We first use the dataset
of Richie et al. (2020) to learn contextualized metrics and compare the results
with the baseline values obtained using the standard cosine similarity measure,
which consistently shows improvement. We also train a contextualized similarity
measure for both SimLex-999 and WordSim-353, comparing the results with the
corresponding baselines, and using these datasets as independent test sets for the
all-context similarity measure learned on the contextualized dataset, obtaining
positive results for a number of tests.

117
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4.1 introduction

Cosine similarity has been largely used as a measure of word relatedness,
since vector space models for text representation appeared to automatically
optimize the task of information retrieval [122]. While other distance mea-
sures are also commonly used, such as Euclidean distance [146], for cosine
similarity only the vector directions are relevant, and not their norms. More
recently, pre-trained word representations, also referred to as embeddings,
obtained from neural network language models, starting from word2vec
(W2V) [89], emerged as the main source of word embeddings, and are
subsequently used in model performance evaluation on tasks such as word
similarity [133]. Datasets such as SimLex-999 [58] and WordSim-353 [44],
which score similarity between word-pairs according to the assessment
of several humans annotators, have become the benchmarks for the per-
formance of a certain type of embedding on the task of word similarity
[8, 39, 114, 132].

For n⃗a and n⃗b, the vector representations of two distinct words wa and wb,
cosine similarity takes the form

cosab =
n⃗a · n⃗b

||⃗na|| ||⃗nb||
, (4.1)

with the Euclidean inner product between any two vectors n⃗a and n⃗b given
as

n⃗a · n⃗b = ∑
i

n⃗i
an⃗i

b, (4.2)

and the norm of a vector n⃗a given as

||⃗na|| =
√

n⃗a · n⃗a, (4.3)

dependent on the inner product [7].

Using this measure of similarity, improvements can only take place if the
vectors that represent the words change. However, the assumption that
the vectors interact using a Euclidean inner product becomes less plausible
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when it comes to higher order vectors. If, differently, we consider that
the vector components are not described in a Euclidean basis, then we
enlarge the possible relationships between the vectors. Specifically in the
calculation of the inner product, on which the cosine similarity depends,
we can use an intermediary metric tensor. By challenging the assumption
that the underlying metric is Euclidean, cosine similarity values can be
improved without changing vector representations.

We identify two main motivations to search for improved cosine similarity
measures. The first motivation has to do with the cost of training larger
and more refined language models [13]. By increasing the performance
on a task simply by changing the evaluation measure without changing
the pre-trained embeddings, we expect that better results can be achieved
with more efficient and interpretable methods. This is particularly true of
contextualized datasets, with benefits not only for tasks such as word simi-
larity, but also others that use cosine similarity as a measure of relatedness,
such as content based recommendation systems [125], and where it can
be particularly interesting to explore the different metrics that emerge as
representations of vector relatedness.

The second motivation comes from compositional distributional semantics,
where words of different syntactic types are represented by tensors of
different ranks, and representations of larger fragments of text are produced
via tensor contraction [11, 33, 51, 52, 90, 103]. This framework has proved
to be a valuable tool for low resource languages, enhancing the scarce
available data with a grammatical structure for composition, providing
embeddings of complex expressions [2]. As these contractions depend on
an underlying metric that is usually taken to be Euclidean, improvements
have only been achieved, once again, by modifying word representations
[144]. As proposed by Correia u. a. [35], another way to improve on these
results consists in using a different metric to mediate tensor contractions.
Metrics obtained in tasks such as word similarity can be transferred to
tensor contraction, and thus we expect this work to open new research
avenues on the compositional distributional framework, providing a better
integration with (contextual) language models.
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This paper is organized as follows. In §4.2 we introduce an extended
cosine similarity measure, motivating the introduction of a metric on the
hypothesis that it can optimize the relationships between the vectors. In
§4.3 we explain our experiment on contextualized and non-contextualized
datasets to test whether improvements can be achieved. In §4.4 we present
the results obtained in our experiments and in §5.5 we discuss these results
and propose further work.

Our contributions are summarized below:

⋄ Use of contextualized datasets to explore contextualized dynamic
embeddings and evaluate the viability of contextualized similarity
measures;

⋄ Expansion of the notion of cosine similarity, motivating our model
theoretically, contributing to a conceptual simplification that yields
interpretable improvements.

4.1.1 Related Literature

Variations on similarity metrics on the contextualized dataset of Richie
u. a. [116] have been first explored in Richie und Bhatia [115], but only
on static vector representations and diagonal metrics. Other analytical
approaches to similarity learning have been identified in Kulis u. a. [65].
The notion of soft cosine similarity of Sidorov u. a. [129] presents a relevant
extension theoretically similar to ours, but motivated and implemented
differently. Using count-base vector space models with words and n-grams
as features, the authors extract a similarity score between features, using
external semantic information, that they use as a distance matrix that can
be seen as a metric; however, they do not implement it as in Eq. (4.4), but
instead they transform the components by creating a higher dimensional
vector space where each entry is the average of the components in two
features, multiplied by the metric, whereas we, by contrast, learn the metric
automatically and apply it to the vectors directly. Hewitt und Manning [57]
also use a modified metric for inner product to probe the syntactic structure
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of the representations, showing that syntax trees are embedded implicitly
in deep models’ vector geometry.

Context dependency in how humans evaluate similarity, which we based
our study on, has been widely supported in the psycholinguistic literature.
Tversky [136] shows that similarity can be expressed as a linear combination
of properties of objects, Barsalou [12] looks at how context-dependent and
context-independent properties influence similarity perception, Medin u. a.
[82] explore how similarity judgments are constrained by the very fact of
being requested, and Goldstone u. a. [49] test how similarity judgments are
influenced by context that can either be explicit or perceived.

4.2 model

A metric is a tensor that maps any two vectors to an element of the under-
lying field K, which in this case will be the field of real numbers R. This
element is what is known as the inner product. To this effect, the metric
tensor can be represented as a function, not necessarily linear, over each
of the coordinates of the vectors it acts on. In geometric terms, the metric
characterizes the underlying geometry of a vector space, by describing the
projection of the underlying manifold of a non-Euclidean geometry to a
Euclidean geometry Rn [140]. The inner product between two vectors is
informed by the metric in a precise way, and is representative of how the
distance between two vectors should be calculated.

A standard example consists of two unit vectors on a sphere, which is an
S2 manifold that can be mapped onto R3. If the vectors are represented in
spherical coordinates, which are a map from S2 to R3, the standard method
of computing the angle between the vectors using Eq. (4.1) will fail to give
the correct value. The vectors need to be transformed by the appropriate
non-linear metric to the Euclidean basis in R3 before a contraction of the
coordinates can take place. To illustrate this, take as an example a triangle
drawn on the surface of a sphere S2. If it is projected onto a planisphere
R3, a naive measurement of its internal angles will exceed the known 180

degrees, which corresponds to a change in the inner product between the
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vectors tangents to the triangle corners (see Levart [74] for a demonstration).
To preserve this inner product, and thus recover the equivalence between
a triangle on a spherical surface and a triangle on a Euclidean plane, the
coordinates need to be properly transformed by the appropriate metric
before they are contracted.

By the same token, we explore here the possibility that the shortcomings of
the values obtained using cosine similarity when compared with human
similarity ratings are not due to poor vector representations, but to a
measure that fails to assess the distance between the vectors adequately.
To test this hypothesis, we generalize the inner product of Eq. (4.2) to
accommodate a larger class of relationships between vectors, modifying it
using a metric represented by the distance matrix d, once a basis is assumed,
that defines the inner product between two vectors as

n⃗a ·d n⃗b = ∑
ij

n⃗i
adi j⃗nj

b, (4.4)

where n⃗i
a is the ith component of n⃗a. Using a metric of this form, the best

we can achieve is a linear rescaling of the components of the vectors, which
entails the existence of a non-orthogonal basis. The metric d is required to
be bilinear and symmetric, which is satisfied if

dsym = BTB, (4.5)

such that Eq. (4.4) can be rewritten as

n⃗a ·d n⃗b = (Bn⃗a)
T · (Bn⃗b) . (4.6)

We can thus learn the components of a metric for a certain set of vectors by
fitting it to the goal of preserving a specified inner product. In the case of
word similarity, the matrix B can be learned supervised on human similarity
judgments, towards the goal that a contextualized cosine similarity applied
to a set of word embeddings, using Eq. (4.6), returns the correct human
assessment. An advantage of this approach is that the cosine is symmetric



4.3 methods 123

  Context dependent datasets

Each hypernym of Richie et al.
(2020) dataset

Human similarity
judgements

Standard Cosine 
(Baseline)

Context independent datasets

Entire Richie et al. (2020)
dataset (all hypernyms)
WordSim353
SimLex999

Contextualized Cosine

Word 
Representations

Contextual (dynamic) 

BERTctxt

Non-contextual (static and
dynamic) 

W2V
GloVe
BERT
GPT-2

Results

Metric learning

Early stopping
k-fold 
Learning rate 

Figure 4.1: Schematic representation of the experiment leading up to the results in
Tables 4.4 and 4.5.

with respect to its inputs, which is a nice property that this extension
preserves by requiring that symmetry of the metric.

4.3 methods

The general outline of our experiment is as follows. First, we learn con-
textualized cosine similarity measures for related (contextualized) pairs of
words, and afterwards for unrelated (non-contextualized) pairs of words.
A schematic representation can be found in Fig. 4.1. We then test whether
these learned measures are transferable and provide improvements on
word pairs that were not seen during training, when compared with the
standard cosine similarity baseline.
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4.3.1 Datasets

For a contextualized assessments of word similarity, we use the dataset of
Richie u. a. [116], where 365 participants were asked to judge the similarity
between English word-pairs that are co-hyponyms of eight different hy-
pernyms (Table 4.1). Participants were assigned a specific hypernym and
were asked to rate the similarity between each co-hyponym pair from 1 to
7, with the highest rating indicating the words to be maximally similar. The
number of annotators varies per hypernym, but each word-pair is rated by
around 30 annotators, such that for the largest categories each annotator
only saw a fraction of the totality of the word-pairs. As examples from the
hypernym ‘Clothing’, the word-pair ‘hat/overalls’ was rated by 32 of the 61

annotators, resulting in an average similarity of 1.469, while ‘coat/gloves’
had an average similarity rating of 3.281 and ‘coat/jacket’ of 6.438, also by
32 annotators. The average similarity was computed for all word-pairs and
rescaled to a value between 0 and 1, to be used as the target for supervised
learning.

Besides trying to fit a contextualized similarity measure to each hyper-
nym, we also considered the entire all-hypernyms dataset, in order to
test whether training on the hypernyms separately would result in a bet-
ter cosine measure compared with when the hypernym information was
disregarded.

To test whether similarity measures can be learned if the similarity of words
is not assessed within a specific context, we use the WordSim-353 (WS353)
[44] and part of the SimLex-999 (SL999) [58] datasets, where the word-pairs
bear no specific semantic relation. From the SL999 dataset only the nouns
were included, resulting in a dataset of 666 word-pairs. Additionally, we
use these datasets to verify whether the similarity metric learned by training
on the whole dataset of [116] can be transferred to other, more general,
datasets.
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Hypernym Words Pairs Annotators
Birds 30 435 54

Clothing 29 406 61

Professions 28 378 67

Sports 28 378 61

Vehicles 22 231 28

Fruit 21 210 31

Furniture 20 190 33

Vegetables 20 190 30

All 198 2418 365

Table 4.1: Number of words, word-pairs and human annotators per hypernym.

Representation Corpus Corpus size Dim
word2vec Google News 100B 300

GloVe GigaWord Corpus & Wikipedia 6B 200

BERTbase-uncased BooksCorpus & English Wikipedia 3.3B 768

GPT-2medium 8 million web pages ∼ 40 GB 768

Table 4.2: Pre-trained embeddings obtained from different source language models,
with BERT and GPT-2 implemented using the Huggingface Transformers
library.

4.3.2 Word embeddings

To fine-tune the cosine similarity measure, we start from different pre-
trained word representations. We do that for two classes of embeddings,
static and dynamic.

Static embeddings were obtained from a pre-trained word2vec (W2V) model
[89] and a pre-trained GloVe model [106], each used to encode each word in
the pair. Dynamic embeddings were obtained from two Transformers-based
models, pre-trained BERT [38] and GPT-2 models [111] (see Table 4.2). Here
the representation of each word was taken to be the average representation
of sub-word tokens when necessary, excluding the [CLS] and [SEP] tokens.

The token representations provided by the BERT model, as a bidirectional
dynamic language model, can change depending on the surrounding con-
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(a) (b)

(c) (d)

Figure 4.2: Distributions of pairwise human similarity judgments simhum and co-
sine similarity measures using either BERT representations (cos(BERT))
or contextualized BERT representations (cos(BERTctxt)). In (a) and (b)
the absolute difference of scores, ordered per hypernym, is shown.
while (c) and (d) represent the distribution of different similarity scores
with respect to each other. Comparing (a) and (b), we can see a regu-
larization effect by contextualizing the representations, and between (c)
and (d) we can see a clustering effect.
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Hypernym Context words
Birds small, migratory, other,

water, breeding

Clothing cotton, heavy, outer, winter,

leather

Professions health, legal, engineering,

other, professional

Sports youth, women, men, ea, boys

Vehicles military, agricultural, motor,

recreational, commercial

Fruit citrus, summer, wild, sweet,

passion

Furniture wood, furniture, modern,

antique, office

Vegetables some, wild, root, fresh, green

Table 4.3: Five most likely words for masked token preceding hypernym token
using BERT.

text tokens. As such, additional contextualized embeddings were retrieved,
BERTctxt, to test whether performance could be improved relative to the
baseline cosine metric by using the hypernym information, as well as when
compared with the hypernym cosine metric learned on non-contextualized
representations. In this way we test whether leveraging the contextual
information intrinsic to this dataset can in itself improve similarity at the
baseline level, without the need of further training.

The contextualized vectors of BERTctxt were obtained by first having BERT
predict the five most likely adjectives that precede each hypernym using
([MASK] <hypernym>), and then using those adjectives to obtain five contex-
tualized embeddings for each co-hyponym, subsequently averaged over.
Most of the predicted words were adjectives, and the few cases that were
not were filtered out. For instance, for the category ’Clothing’, the most
likely masked tokens were ‘cotton’, ‘heavy’, ‘outer’, ‘winter’ and ‘leather’.
The contextualized representation of each hyponyms of ‘Clothing’ was
thus calculated as its average representation in the context of each of the
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adjectives, so that, for instance, for ’coat’ we first obtained its contextualized
representation in ‘cotton coat’, ‘heavy coat’, ‘outer coat’, ‘winter coat’, and
‘leather coat’, performing a final averaging. The full list of context words
can be found in Table 4.3. Figs. 4.2a and 4.2b show that this transformation
reduces the absolute extreme values of the difference between the values
of the standard cosine similarity and the corresponding human similar-
ity assessments, while regularizing the bulk of the differences closer to
the desired value of 0. We tested other forms of contextualizing, such
as (<hypernym> is/are [MASK]), but the resulting representations did not
show as much improvement.

The WS353 and SL999 datasets were only trained with non-contextualized
embeddings, since we cannot obtain contextualized embeddings for the
nouns in these datasets using the same method. For consistency, the models
that were learned with contextualized representations were not tested on
these datasets at the final step of our experiment.

4.3.3 Model

A linear model was implemented on the PyTorch machine learning frame-
work to learn the parameters of B, without a bias, such that a word initially
represented by inputa is transformed to input’a = Binputa. The forward
function of this model takes two inputs and returns

(input’a)
T · input’b√

(input’a)
T · input’1

√
(input’b)

T · inputb

, (4.7)

where a and b correspond to the indices of the words of a given word-paira.

a https://github.com/maradf/Contextualized-Cosine
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Figure 4.3: Example of learning curve, showing losses over epochs, from a fold
training on the hypernym Clothes on the GloVe embeddings. In this
case, training was stopped early at 397 epochs.

4.3.4 Cross-validation

The number of co-hyponyms per hypernym is small when compared with
the number of parameters in B to be trained, which depends on the square
of the dimension Dim of each representation. To ensure that the models did
not overfit, a k-fold cross-validation was used during training [113], which
divided each dataset in k training sets and non-overlapping development
sets. Additionally, early stopping of training was implemented in the event
that the validation loss increased for ten consecutive epochs after it dropped
below 0.1 [17].

4.3.5 Hyperparameter selection

Per each dataset h (each hypernym, all hypernyms, WS353 or SL999) and
learning rate lr, k models Bh

i,lr were trained, with i ∈ {1, ..., k} and with k
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corresponding validation sets vali. The training was done using two 16

cores (64 threads) Intel Xeon CPU at 2.1 GHz.

A fixed seed was used to find the best combination of the learning rate lr
(1× 10−5, 1× 10−6, and 1× 10−7) and the number of folds (5, 6 and 7) for the
k-fold cross-validation. The regression to the best metric was done using the
mean square error loss function and the Adam optimizer. The maximum
number of training epochs was set to 500, as most models converged
at that point as per preliminary learning curve inspection (Fig.4.3). The
implementation of early stopping resulted in de facto variation of the number
of epochs required to train each model.

4.3.6 Testing the model

Each one of the Bh
i,lr models was tested on the corresponding holdout

validation set vali, resulting in two correlation scores between the models’
predicted similarity scores and the human judgment scores: a Pearson
correlation score rh

i,lr(valh
i ) and a Spearman correlation score ρh

i,lr(valh
i ). A

final score per k and lr was calculated using the average performance on
the validation sets as

rh
k,lr =

1
k

k

∑
i=1

rh
i,lr(valh

i ), (4.8)

ρh
k,lr =

1
k

k

∑
i=1

ρh
i,lr(valh

i ). (4.9)

The baseline results were obtained in a similar form, but with the model
Bstd corresponding to the identity matrix, returning the standard cosine
similarity rating as
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rh,std
k =

1
k

k

∑
i=1

rstd(valh
i ), (4.10)

ρh,std
k =

1
k

k

∑
i=1

ρstd(valh
i ). (4.11)

The model results shown in Table 4.4 correspond to the best correlation
values obtained using Eqs. (4.8) and (4.9), with the baselines given as
in Eqs. (4.10) and (4.11). The hyperparameters corresponding to the
best results can be found in Table 4.5, along with the relative change
in correlation performance. As the seed was fixed, the differences in
performance achieved by models trained on each hypernym and on all-
hypernyms of the contextualized dataset were not due to randomization
errors. The final correlation per fold on the entire all-hypernyms dataset
was found by first calculating the correlation per hypernym and then
averaging over all eight hypernyms.

To test the transferability of the metric learned on the all-hypernyms dataset
to other datasets, the model that returned the best correlation scores on the
validation datasets of the all-hypernyms dataset was tested on the entire
WS353 and SL999 datasets. As the best performing model consists in fact
of k models, each one of these was tested on the entire datasets, as

rh,test
k,lr

=
1
k

k

∑
i=1

rAll−hyp
i,lr

(testh), (4.12)

ρh,test
k,lr

=
1
k

k

∑
i=1

ρ
All−hyp
i,lr

(testh), (4.13)

with h ∈ {WS353, SL999}.

The baselines for these results were obtained by applying Bstd to the entire
WS353 and SL999 datasets as
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rh,std = rstd(testh), (4.14)

ρh,std = ρstd(testh). (4.15)

As the correlation functions are not linear, the results from Eqs. (4.10) and
(4.11) for the WS353 and SL999 datasets are expected to differ from those
obtained using Eqs. (4.14) and (4.15) for the same datasets.

4.4 results

The validation results on Table 4.4 show consistent improvements over the
baselines, with statistical significance. This confirms that the modification
introduced to the cosine measure worked in a principled way, and consis-
tent with the results found by Richie und Bhatia [115]. On the individual
hypernym datasets, ‘Vehicles’ showed the best correlations, except for the
Pearson correlation in GPT-2, in spite of not being the largest hypernym
dataset. On the contrary, the smallest categories showed the lowest cor-
relations. In general, the relative performance of hypernyms according
to the baselines extends to the model correlations, although with better
performance. With some exceptions, mainly in the ‘Birds’ hypernym, the
best performing representation was GPT-2, followed by W2V, but the rel-
ative increase as shown in Table 4.5 was clearly superior for the dynamic
representations. An important observation that we make is that the model
trained on all hypernyms had a better performance than the average per-
formance on the individual hypernyms. As the seed was fixed, this means
that the performance on the hypernym-specific validation sets increased if
at training time the models saw more examples, from different categories,
indicating that a similarity relationship was learned and transferred across
different contexts. Improvements over baseline also took place if a metric
was learned on datasets where the word pairs did not share a context, as
was the case with WS353 and SL999, but the percentual increase was lower,
as seen in Table 4.5.
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Comparing the results of BERT contextualized and non-contextualized, the
baseline values of the contextualized representations were worse than those
obtained with the contextualized embeddings, although without statistical
significance, while the improvement after training was consistently better
and significant for all datasets with the contextualized representations. Figs.
4.2c and 4.2d, show that the distribution of points using the contextualized
embeddings is more concentrated and collinear, making it more likely that
a metric that acts in the same way for all points in the dataset will rotate
and rescale them into a positive correlation. The percentual increases also
show that BERT contextualized had the greatest increases from before to
after training, suggesting that there was a cumulative effect in considering
the context both in the representations and in the similarity measure.

Table 4.6 shows the results of applying the best model learned on all hy-
pernyms to the WS353 and SL999 datasets. The baseline values for the
static representations are comparable with the existing literature [133]. We
see that our model was capable of improving on the correlation scores on
the datasets, for some representations. Although the improvements did
not happen across the board, they show clear evidence that the notion of
similarity in the form of a modified cosine measure can be learned in one
dataset and applied with positive results to an independent dataset.

4.5 conclusion and outlook

In this paper we tested whether a contextualized notion of cosine similarity
could be learned, improving the similarity not only of the results for the
datasets where it was learned, but of unrelated similarities. We showed that
this metric improved the correlations above baseline, and that, when learned
on a contextualized similarity dataset, it had an advantage when compared
to one learned on a dataset with unrelated word-pairs. We furthermore
showed that this framework has the potential to generalize the notion of
similarity to word-pairs it has not seen during training. An important
future research line towards interpretability consists in understanding
the properties of the metrics that yielded the best results, particularly
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in identifying the distinctive features of the best metrics, such as their
eigensystems. Other further directions include applying these metrics
to distributional compositional contractions, including with dependency
enhancements [64], testing this framework on larger contextualized datasets
and trying out more complex, non-linear, metric forms.
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(a) Pearson correlations.

Dataset (h) BERT BERTctxt GPT-2 word2vec GloVe

Model Base Model Base Model Base Model Base Model Base

Birds 0.311 0.098 0.316 0.042 0.200 -0.023 0.293 0.213 0.215 0.194

Clothing 0.550 0.141 0.515 0.065 0.501 0.349 0.529 0.417 0.574 0.364

Professions 0.501 0.193 0.601 0.073 0.651 0.542 0.635 0.566 0.529 0.529

Sports 0.452 0.175 0.543 0.139 0.556 0.324 0.532 0.418 0.580 0.386

Vehicles 0.496 0.218 0.616 0.123 0.645 0.385 0.738 0.719 0.703 0.567

Fruit 0.315 0.016 0.378 -0.037 0.333 0.203 0.361 0.239 0.571 0.392

Furniture 0.353 -0.018 0.539 -0.035 0.568 0.399 0.368 0.333 0.470 0.462

Vegetables 0.211 -0.059 0.293 -0.044 0.378 0.144 0.577 0.281 0.562 0.290

All 0.434 0.100 0.542 0.040 0.508 0.287 0.483 0.400 0.539 0.397

WS353 0.517 0.238 - - 0.651 0.647 0.637 0.654 0.622 0.568

SL999 0.403 0.161 - - 0.555 0.504 0.495 0.455 0.510 0.408

(b) Spearman correlations.

Dataset (h) BERT BERTctxt GPT-2 word2vec GloVe

Model Base Model Base Model Base Model Base Model Base

Birds 0.260 0.102 0.299 0.052 0.190 -0.054 0.250 0.211 0.238 0.201

Clothing 0.436 0.184 0.467 0.059 0.445 0.276 0.510 0.414 0.513 0.384

Professions 0.501 0.248 0.578 0.170 0.560 0.473 0.518 0.410 0.482 0.486

Sports 0.391 0.174 0.526 0.142 0.540 0.291 0.458 0.339 0.478 0.325

Vehicles 0.518 0.238 0.601 0.056 0.626 0.288 0.709 0.687 0.680 0.596

Fruit 0.265 -0.014 0.333 -0.103 0.365 0.173 0.368 0.277 0.491 0.342

Furniture 0.353 -0.032 0.491 -0.120 0.527 0.393 0.442 0.402 0.464 0.451

Vegetables 0.217 -0.028 0.305 0.015 0.363 0.089 0.587 0.290 0.528 0.228

All 0.407 0.111 0.504 0.034 0.504 0.242 0.446 0.379 0.477 0.377

WS353 0.543 0.267 - - 0.715 0.705 0.675 0.701 0.624 0.579

SL999 0.416 0.180 - - 0.566 0.513 0.475 0.445 0.500 0.374

Table 4.4: Best correlation scores between human similarity judgments and simi-
larity scores found by the trained model, compared with baseline cosine
metric values of the same hyperparameters. The underlined correlation
values are the statistical significant values with a p < 0.05, and the bold
values correspond to model correlations that were higher than base
correlations.
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(a) Pearson correlations.

Dataset (h) BERT BERTctxt GPT-2 W2V GloVe

% lr , k % lr, k % lr, k % lr, k % lr, k

Birds 217 10−6,5 652 10−6, 5 770 10−5, 5 38 10−5, 5 11 10−5, 7

Clothing 290 10−6,5 692 10−6, 6 44 10−5, 6 27 10−5, 7 58 10−6, 5

Professions 160 10−6, 5 723 10−6, 6 20 10−5, 5 12 10−5, 7 0 10−5, 5

Sports 158 10−5, 6 291 10−6, 6 72 10−5, 6 27 10−5, 6 50 10−6, 7

Vehicles 128 10−6, 6 401 10−5, 7 68 10−5, 5 3 10−5, 5 24 10−6, 6

Fruit 1869 10−5, 7 922 10−6, 6 64 10−5, 7 51 10−6, 5 46 10−7, 7

Furniture 1861 10−5, 7 1440 10−6, 6 42 10−5, 7 11 10−5, 6 2 10−5, 6

Vegetables 258 10−5, 7 566 10−6, 6 163 10−5, 5 105 10−6, 7 94 10−6, 5

All 334 10−5, 5 1255 10−6, 7 77 10−5, 6 21 10−5, 6 36 10−7, 6

WS353 117 10−6, 7 - - 1 10−5, 7 -3 10−5, 6 10 10−5, 5

SL999 150 10−6, 7 - - 10 10−5, 6 9 10−5, 6 25 10−6, 5

(b) Spearman correlations.

Dataset (h) BERT BERTctxt GPT-2 W2V GloVe

% lr, k % lr, k % lr, k % lr, k % lr, k

Birds 155 10−6, 5 475 10−6, 5 252 10−5, 7 18 10−5, 5 18 10−7, 5

Clothing 137 10−6, 5 692 10−6, 6 61 10−5, 7 23 10−5, 7 34 10−6, 5

Professions 102 10−6, 7 240 10−6, 5 18 10−5, 5 26 10−5, 7 -1 10−7, 6

Sports 125 10−5, 6 270 10−6, 6 86 10−5, 6 35 10−5, 6 47 10−6, 6

Vehicles 118 10−6, 6 973 10−6, 6 117 10−5, 7 3 10−5, 5 14 10−6, 6

Fruit 1793 10−6, 7 223 10−6, 6 111 10−5, 6 33 10−6, 6 44 10−7, 7

Furniture 1003 10−6, 6 309 10−6, 5 34 10−5, 5 10 10−5, 6 3 10−6, 7

Vegetables 675 10−5, 7 1933 10−6, 6 308 10−5, 5 102 10−6, 7 132 10−6, 5

All 267 10−5, 5 1382 10−6, 7 108 10−5, 6 18 10−5, 6 27 10−6, 5

WS353 103 10−6, 5 - - 1 10−5, 7 -4 10−6, 5 8 10−5, 5

SL999 131 10−6, 7 - - 10 10−5, 6 7 10−5, 6 34 10−6, 5

Table 4.5: Change (%) in correlation from Table 4.4, given by (|Model| −
|Base|)/|Base|, at corresponding best hyperparameters (lr, k). Values in
bold indicate the highest increase on a given dataset.
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Pearson Spearman

WS353 SL999 WS353 SL999

BERT Model 0.487 0.375 0.519 0.384
Base 0.239 0.151 0.267 0.172

GPT-2 Model 0.635 0.507 0.676 0.513

Base 0.647 0.504 0.709 0.520

W2V Model 0.613 0.472 0.632 0.457
Base 0.653 0.460 0.700 0.452

GloVe Model 0.593 0.431 0.558 0.392
Base 0.578 0.408 0.578 0.376

SOTA 0.704 0.658 0.828 0.76

Table 4.6: Best model trained on all hypernyms, tested on SimLex-999 and
WordSim-353 datasets. Bold values indicate correlation scores above
baseline, and underlining indicates statistical significance. State of the
art from Banjade u. a. [8], Dobó und Csirik [39], Recski u. a. [114], Speer
u. a. [132].
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Q UA N T U M C O M P U TAT I O N S F O R D I S A M B I G UAT I O N
A N D Q U E S T I O N A N S W E R I N G

abstract Automatic text processing is now a mature discipline in computer
science, and so attempts at advancements using quantum computation have
emerged as the new frontier, often under the term of Quantum Natural Language
Processing. The main challenges consist in finding the most adequate ways of
encoding words and their interactions on a quantum computer, considering hard-
ware constraints, as well as building algorithms that take advantage of quantum
architectures, so as to show improvement on the performance of natural language
tasks. In this chapter, we introduce a new framework that starts from a grammar
that can be interpreted by means of tensor contraction, to build word represen-
tations as quantum states that serve as input to a quantum algorithm. We start
by introducing an operator measurement to contract the representations of words,
resulting in the representation of larger fragments of text. We then go on to
develop pipelines for the tasks of sentence-meaning disambiguation and question
answering that take advantage of quantum features. For the first task, we show
that our contraction scheme deals with syntactically ambiguous phrases storing
the various different meanings in quantum superposition, a solution not available
on a classical setting. For the second task, we obtain a question representation that
contains all possible answers in equal quantum superposition, and we implement
Grover’s quantum search algorithm to find the correct answer, agnostic to the
specific question, an implementation with the potential of delivering a result with
quadratic speedup.

139
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5.1 introduction

Recent developments in quantum computation have given rise to new and
exciting applications in the field of Natural Language Processing (NLP).
Pioneering work in this direction is the DisCoCat framework [30, 33], which
introduces a compositional mapping between types and derivations of Lam-
bek’s typelogical grammars [68, 72] and a distributional semantics [135]
based on vector spaces, linear maps and tensor products. In this framework,
the interpretations of large text fragments are obtained by performing a
tensor contraction between the tensor interpretations of individual words.
To interpret text fragments taking into account their grammatical features,
while staying in the vector space semantics, the dimension of the repre-
sentation quickly scales, as it depends on the complexity of the syntactic
type, which has been a limiting feature in vector-based semantics imple-
mentations [145]. This motivates a representation of words as quantum
states, counting on the potential of quantum computers to outperform the
limitations of classical computation both in terms of memory use [48] and
in processing efficiency [6]. In this setting, words are represented as multi-
partite quantum states, with the theory predicting that, when contracted
with one another, the meaning of larger text fragments is encoded in the
resulting quantum states.

The challenge is now in implementing these contractions on quantum
circuits. Circumventing this issue, DisCoCirc [28] introduces a different
way of representing the meaning of a sentence, where certain words are
seen as quantum gates that act as operators on input states representing
other words. The DisCoCirc approach uses quantum machine learning
algorithms [16] for NLP [29, 83] where circuit parameters, related to word
representations, are then learned by classical optimization and used to
predict different binary labels statistically, such as the answers to yes-no
questions [84], topics of phrases, or the distinction between subject and
object relative clauses [77].

Although these implementations can play an important role in speeding
up NLP tasks based on current machine-learning ideas and techniques,
they do not go beyond the current paradigm in terms of classification tasks.
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Furthermore, a number of theoretical advances using the tensor contrac-
tions from DisCoCat cannot be directly reproduced, since the mapping
from a phrase to a circuit requires extra steps that deviate from the orig-
inal grammatical foundation, not treating every word as an input at the
same level. We refer here to the work done in expanding the toolbox of
word representations with density matrices [109], so as to achieve good
results on discerning different word and phrase senses [9, 85, 119], and
in entertaining simultaneously different possible interpretations of texts,
either by looking at an incremental interpretation of the parsing process
[128], or by considering a single representation for the multiple readings
of syntactic ambiguities [35, 36]. This presents a strong incentive to find
an alternative quantum-circuit implementation that sticks to the original
grammatical formulation, preserving the previous achievements, where all
words are taken as input on an equal footing. In addition, it is our belief
that a quantum framework can contribute a great deal to the reestablish-
ment of rule-based NLP, as a desirable alternative to large-scale statistical
approaches [13], since certain computations become more efficient if we
use the appropriate quantum algorithms, as we will illustrate in the case of
question-answering where quadratic quantum speedup can be achieved.

The paper is structured as follows. In Sec. 5.2 we develop the grammatical
framework and quantum state interpretation thereof, setting the stage for
the types of linguistic problems we will deal with here. Here we introduce
the idea that words are represented as vectors, matrices, and higher-rank
tensors, depending on their grammatical function, that contract with each
other following grammatical rules, explaining how we can arrive at the
interpretations of larger fragments of text. In Sec. 5.3 we put forward an
approach where the words are interpreted as quantum states, and we show
how the contractions between word representations can be implemented
on a quantum computer as the measurement of a permutation operator.
We elaborate on how this setting permits the simultaneous treatment of
ambiguous phrases in English. In Sec. 5.4 we apply Grover’s algorithm to
question-answering, using the framework developed in the previous section
to turn the representation of the question and answers into the input of
the algorithm, together with an oracle that identifies that correct answers.
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Finally, in Sec. 5.5 we give an overview of the developments introduced
and discuss further work.

5.2 syntax-semantics interface

In this section we introduce the grammatical framework that we will be
working with. It consists of a categorial grammar as the syntactic front
end, together with a compositional mapping that sends the types and
derivations of the syntax to a vector-based distributional interpretation.
This is necessary to understand the type of linguistic problems that we can
address and how they can be solved using a quantum circuit.

5.2.1 Type logic as syntax

The key idea of categorial grammar formalisms is to replace the parts of
speech of traditional grammars (nouns, adjectives, (in)transitive verbs, etc.)
by logical formulas or types; a deductive system for these type formulas
then determines their valid combinations. The idea can be traced back
to Ajdukiewicz [5], but Lambek’s Syntactic Calculus [68] is the first full-
fledged formulation of a categorial type logic that provides an algorithm to
effectively decide whether a phrase is syntactically well formed or not.

Let us briefly discuss types and their combinatorics. We start from a
small set of primitive types, for example s for declarative sentences, n
for noun phrases, w for open-ended interrogative sentences, etc. From
these primitive types, compound types are then built with the aid of three
operations: multiplication •, left division \ and right division /. Intuitively,
a type A • B stands for the concatenation of a phrase of type A and a phrase
of type B (“A and then B”). Concatenation is not commutative (“A and
then B” ̸= “B and then A”). Hence we have left vs right division matching
the multiplication: A\B can be read as “give me a phrase A to the left,
and I’ll return a phrase B”; B/A is to be interpreted as “give me a phrase
A to the right, and I’ll return a phrase B”. We can codify this informal
interpretation in the rules below, where A1 • · · · • An ⊢ B means that from
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the concatenation of phrases of type A1, . . . , An one can derive a phrase of
type B. Hence,

B/A • A ⊢ B, (5.1)

A • A\B ⊢ B. (5.2)

As examples of simple declarative sentences, consider Alice talks, or Bob
listens. In the former case, we assign the type n to Alice and the type n\s
to the intransitive verb talks. We start by multiplying the word types in
the order by which the words appear, forming n • n\s. Then, it suffices
to apply rule (5.2), with A = n and B = s, to show that n • n\s derives s,
i.e. constitutes a well-formed sentence. Conversely, the lack of a derivation
of s from n\s • n (talks Alice) allows us to conclude that this not a well-
formed sentence. These, and the later examples, illustrate only the simplest
ways of combining types, but these will suffice for the purposes of this
paper. To obtain a deductive system that is sound and complete with respect
to the intended interpretation of the type-forming operations, Lambek’s
Syntactic Calculus also includes rules that allow one to infer A ⊢ C/B and
B ⊢ A\C from A • B ⊢ C. Moreover, to deal with linguistic phenomena that
go beyond simple concatenation, Lambek’s type logic has been extended
in a number of ways that keep the basic mathematical structure intact but
provide extra type-forming operations for a finer control over the process
of grammatical composition. See Ref. [95] for a survey, and Ref. [36] for a
quantum interpretation of such structural control operations.

Syntactic ambiguities

To see rule (5.1) in action, consider adjectives in English. An adjective is
expecting a noun to its right, and, once it is composed with a noun, it must
derive something that can be used, for instance, as the argument of an
intransitive verb, which, as we have seen, is of type n. Thus, an adjective
must be of type n/n, and we can use rule (5.1) to prove that, as an example,
rigorous mathematicians is a well-formed phrase of type n.



144 quantum computations for disambiguation and question answering

For certain phrases, there is more than one way of deriving the target
type, with each derivation corresponding to a distinct interpretation. As
an example, consider the noun phrase rigorous mathematicians and physicists,
an ambiguous structure that has already been studied in the context of
vector representations in Ref. [35]. Here the conjunction and gets the type
(n\n)/n; for the complete phrase, we want to show that the following
judgement holds:

n/n • n • (n\n)/n • n ⊢ n. (5.3)

There are two possible interpretations: a first one, where the adjective
rigorous has scope over mathematicians and physicists, and a second one,
where it only has scope over mathematicians. Each of these interpretations
is connected to a different way of deriving the goal formula n. The first
reading is obtained by applying the rules in the following order

n/n • n • (n\n)/n • n︸ ︷︷ ︸
(5.1) ⊢n\n︸ ︷︷ ︸

(5.2) ⊢n︸ ︷︷ ︸
(5.1) ⊢n

, (5.4)

while for the second reading the rules apply in a different order as

n/n • n︸ ︷︷ ︸
(5.1) ⊢n

• (n\n)/n • n︸ ︷︷ ︸
(5.1) ⊢n\n︸ ︷︷ ︸

(5.2) ⊢n

. (5.5)

Our goal is to treat both readings simultaneously until further information
allows us to clarify which of the readings is the intended one.

Question answering

Question answering (Q&A) is one of the most common tasks in NLP [131].
Questions can be close ended, having “yes" or “no" for an answer, or open
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ended, starting by “who", “why" or “what", also referred to as wh-questions.
For P possible answers, it is always possible to turn wh-questions into close-
ended questions. If we know that either Alice, Bob, Carol or Dave is talking,
we can turn “Who talks?" into a series of four questions “Does [name]
talk?". Thus, for P possible answers, there are P closed-ended questions
that we need to checka. We would like to find the answer to the open-ended
questions directly, without this mapping. Syntactically, wh-questions are
open-endend interrogative sentences, and as such are assigned their own
type w. For a subject question, the type of the word who is thus w/(n\s),
since, when applied to an intransitive verb using rule (5.2), it derives the
interrogative type w.

5.2.2 Vectors as semantics

In the context of automatic processing of text, the most widely used form of
representing a word is by a unique array of values, referred to as a “word
embedding". Seen as vectors, we can cluster or compare them using varied
geometric tools [75, 100, 101]. Representing the meanings of words as such
is widely known as “distributional semantics" [20]. In earlier work, vector
entries were related with how often a word would appear next to other
words [117], following the “distributional hypothesis" that states that words
that appear in similar contexts are themselves similar [54]. Nowadays,
word embeddings are extracted using language models, targeted on the
prediction of the most likely next word [89? ]. This presents a problem
for the representation of larger fragments, since they are less likely to
appear in a text, making their distributional array rather sparse and thus
not particularly meaningful. Larger fragments can nevertheless receive an
embedding, but a direct connection with grammatical composition is lost.

a This is a common way of turning Q&A into a classification problem, where each close-ended
question gets a binary label, depending on whether the answer is true or false. Binary
classification problems are some of the most well established applications of machine
learning. After finding a way of representing the question statements, usually as single
vectors, a number of these labeled statements is used to predict the labels of the hold-out
statements.
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To tackle this problem, the authors in Ref. [33] propose that the arrays
representing different words depend on their syntactic types, namely having
a dimensionality that mirrors their type complexity. This introduces a way
of composing the meanings of the individual words that is homomorphic
to the syntactic derivations, generating a representation of larger fragments
from the representation of smaller ones. For completeness, the mapping
between the syntax and the semantics is done using the formalism of vector
spaces. Each syntactic type A is mapped to its semantic type via ⌈A⌉. Each
semantic type is then interpreted as a vector space, where the particular
words are represented. Let there be three basic semantic spaces {S, N, I}.
The simple syntactic types n and s are mapped respectively to ⌈n⌉ = N
and ⌈s⌉ = S. Each individual word is an element of the semantic space that
interprets its syntactic type. For instance, the interpretation of the word
physicists is now seen as a vector in N, this being the vector space where
the distributional information of nouns is stored. Similarly, Alice talks is
represented by a vector in S, that has as basis elements two orthogonal
states corresponding to “true" and “false". The interrogative type w is
mapped to ⌈w⌉ = I ⊗ N ⊗ I ⊗ S. The vector space I (“index") has basis
elements that are in one-to-one correspondence to the nouns that can be
used as answers to the interrogative sentence, providing an enumeration of
the noun vectors of N. This will be useful later when we need to index the
quantum states associated with each possible answer.

The vector spaces that translate the directional and multiplicative types are
obtained recursively as

⌈A\B⌉ = ⌈A/B⌉ = ⌈A • B⌉ = ⌈A⌉ ⊗ ⌈B⌉, (5.6)

where ⊗ forms a tensor product space, inductively starting from A, B, C ∈
{n, s, w}. Note that the tensor is commutative, such that ⌈A⌉ ⊗ ⌈B⌉ ∼=
⌈B⌉ ⊗ ⌈A⌉. We perform tensor contractions as the interpretations of the
rules in Eqs. (5.1) and (5.2). Thus, an intransitive verb is represented as a
matrix in N ⊗ S, that when acting on a vector of type N returns a vector in
S. Using the notation J.K to represent the tensor interpretation of a word,
and assuming an orthogonal basis {n̂i} of N and an orthogonal basis {ŝi}
of S, the composition of the vectorial interpretations of Alice and talks leads
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to the interpretation of the entire sentence as a vector in S. The word
meanings for this sentence are represented as

JAliceK = ∑
p

Ap n̂p (5.7)

JtalksK = ∑
qr

tqr n̂q ⊗ ŝr, (5.8)

and the full sentence meaning as

JAlice talksK = JAliceK · JtalksK = ∑
pr

Aptpr ŝr. (5.9)

A more refined treatment of the translation from the Lambek types to tensor
spaces has been given in Ref. [35].

Similarly, the semantic space for an adjective can be seen as a matrix in
N ⊗ N. Note that here the analogy between a matrix modifying a vector
and the adjective as a noun modifier is the clearest. Let us look at the
meanings of rigorous and mathematicians, which can be represented as

JrigorousK = ∑
ij

rij n̂i ⊗ n̂j (5.10)

JmathematiciansK = ∑
k

mk n̂k. (5.11)

The meaning of rigorous mathematicians will be given by the application of
the translation of rule (5.1) to tensors. At the components level, it is the
matrix multiplication between the rigorous matrix and the mathematicians
vector, which gives, consistently with n being the syntactic type of this
fragment, a vector in N, as
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Jrigorous mathematiciansK

= JrigorousK.JmathematiciansK = ∑
ij

rij mj n̂i. (5.12)

The different order of application of Lambek rules in Eqs. (5.4) and (5.5)
translates into different vectors that represent the two readings of rigorous
mathematicians and physicists. The words and and physicists are given the
vector representations

JandK = ∑
lmn

almn n̂l ⊗ n̂m ⊗ n̂n, (5.13)

JphysicistsK = ∑
o

po n̂o. (5.14)

The reading from Eq. (5.4) is represented by the vector

Jrigorous mathematicians and physicistsK1 = ∑
ijln

rij ml al jn pn n̂i, (5.15)

whereas the reading from Eq. (5.5) is encoded in the vector

Jrigorous mathematicians and physicistsK2 = ∑
jlmn

rl j mj almn pn n̂m, (5.16)

which are of the same form as the results in Ref. [35].

For interrogative sentences, the word who will have the semantic function
of “lifting" an intransitive verb with representation in space N ⊗ S to a
representation in I ⊗ N ⊗ I ⊗ S, since

⌈w/(n\s)⌉ = I ⊗ N ⊗ I ⊗ S ⊗ N ⊗ S
∼= I ⊗ N ⊗ I ⊗ S ⊗ S ⊗ N. (5.17)
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An element of this space contracts with an element of the representation
space of intransitive verbs, N ⊗ S, associating the index of every possible
answer, in I, with both its representation in N and its truth value in S.

5.3 implementation

In this section we motivate a passage from vectors to quantum states and
we introduce them as inputs of quantum circuits that calculate contractions
between word representations.

5.3.1 Quantum states as inputs of a quantum circuit

We now switch to a representation of word embeddings as vectors in
complex-valued inner product vector spaces, i.e. Hilbert spaces. Our
atomic semantic spaces N, S and I will now be replaced by their quantum
counterparts as the interpretation spaces. We thus have the Hilbert spaces
HN , HS and H⊗p respectively, with H⊗p the p-qubit Hilbert space corre-
sponding to the complex-valued realization of the semantic type I, where
we assume that P = 2p. For instance, with {|ni⟩} the basis of HN , we now
have

JAliceK = |Alice⟩ = ∑
p

Ap
∣∣np

〉
. (5.18)

Note that this space allows us to expand our representations with complex-
valued entries, and a proper contraction between the words will require the
conjugation of some of the components, i.e.

JAliceK∗ = ⟨Alice| = ∑
p

A∗
p
〈
np

∣∣ . (5.19)

Let the input of a circuit be the product of the states that interpret each
word in the language fragment in question. Our running example of a
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noun subject and an intransitive verb Alice talks is now represented as the
input

|Alice⟩ |talks⟩ ∈ HN ⊗HN ⊗HS.

The basis of HS, {|si⟩}, are the single-qubit spin states |0⟩ and |1⟩, where
the former represents a sentence that is false, and the later one that is true.
In this setting, it is also possible to establish a probability distribution over
the truthfullness of a sentence.

Each of the elements of the interpreting spaces will be represented by a
labeled quantum wire, thus rewriting the input state as

|Alice⟩ |talks⟩ ∈ H1
N ⊗H2

N ⊗H3
S, (5.20)

used as the input of a quantum circuit, as shown in Fig. 5.1.

|Alice⟩ 1

2

3

|talks⟩

.

Figure 5.1: Quantum circuit with intransitive sentence input.

The ambiguous fragment rigorous mathematicians and physicists will be ini-
tially represented as a unique state in the tensor space, formed by numbered
copies of the HN space as

|rigorous⟩ |physicists⟩ |and⟩ |mathematicians⟩
∈ HN

1 ⊗HN
2 ⊗HN

3 ⊗HN
4 ⊗HN

5 ⊗HN
6 ⊗HN

7 ,

forming the input of a quantum circuit as in Fig. 5.2.

From here, different contractions, corresponding to the two possible read-
ings, will be represented by different circuits acting on this same input, as
we show in detail below.
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1

2

|rigorous⟩

|mathematicians⟩ 3

4

5

6

|and⟩

|physicists⟩ 7

Figure 5.2: Quantum circuit with syntactically ambiguous input.

5.3.2 Contraction as measurement of permutation operator

To compute the desired contraction using the quantum circuit, we calcu-
late the expectation value of the permutation operator P̂ij on the input
states/wires indexed by i, j. These correspond to the spaces with elements
that we want to contract, following the syntactic rules. For two states |ϕ1⟩i
and |ϕ2⟩j belonging to two numbered copies of a Hilbert space, respectively

H⌈A⌉
i and H⌈A⌉

j , we refer to the following quantity as the measurement of the
expectation value of the permutation operator:

⟨ϕ1|i ⟨ϕ2|j P̂ij |ϕ1⟩i |ϕ2⟩j =

= ⟨ϕ1|ϕ2⟩i ⟨ϕ2|ϕ1⟩j ≡ |⟨ϕ1|ϕ2⟩|2. (5.21)

In general, to obtain this quantity on a quantum circuit, one must perform
repeated measurements of the input states |ϕ1⟩i and |ϕ2⟩j, on a basis that
diagonalizes the permutation operator, summing the frequency of outcomes,
using the respective operator’s eigenvalues as weights. We introduce the
following circuit notation to indicate the measurement of the permutation
operator:
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i

P̂ijj .

If the measuring device is only capable of performing measurements in
the standard basis, then we must additionally apply to the input states the
inverse of the transformation that diagonalizes the permutation operator,
before performing the repeated measurements. In appendix 5.A we show
how this can be achieved using the inverse transformation to the Bell basis
in the case of two-qubit inputs. In this case, the measurement of the expec-
tation value can be understood as the map between the SWAP operator,
that represents the permutation operator in that case, and the projection
operator on the maximally entangled state |β00⟩, which, although not a
homomorphism, will be diagonal in the same basis, since both operators
share an algebra.

|Alice⟩ 1

P̂122

3

|talks⟩

Figure 5.3: Quantum circuit that measures the permutation operator P̂12 on an
intransitive sentence input.

We now show in two ways that the final representation of a simple sentence
such as Alice talks is stored as an effective state |ψ⟩ in HS

3 , after measuring
P̂12 not normalizing for clarity, with input as given in Eq. (5.20).

using operators . Assume that an operator Ô3 is being measured in
space HS

3 . Its expectation value is given by ⟨ψ| Ô3 |ψ⟩, after measuring P̂12,
with
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⟨Alice| ⟨talks| P̂12 ⊗ Ô3 |Alice⟩ |talks⟩
≡ ⟨ψ| Ô3 |ψ⟩ . (5.22)

The left-hand side unfolds as follows:

⟨Alice| ⟨talks| P̂12 ⊗ Ô3 |Alice⟩ |talks⟩ =
= ∑

pqr,p′q′r′
A∗

pt∗qr
〈
npnqsr

∣∣ P̂12 ⊗ Ô3

= Ap′ tq′r′
∣∣np′nq′sr′

〉
= ∑

pqr,p′q′r′
A∗

pt∗qr
〈
npnqsr

∣∣ Ô3 Ap′ tq′r′
∣∣nq′np′sr′

〉
= ∑

pqr,p′q′r′
A∗

pt∗qr ⟨sr| Ô3 Ap′ tq′r′ |sr′⟩ δpq′δqp′

= ∑
qr,q′r′

Aqt∗qr ⟨sr| Ô3 A∗
q′ tq′r′ |sr′⟩ . (5.23)

To uniquely determine |ψ⟩, we need to solve m = d(d − 1)/2 independent
equations, where d is the dimension of H3, of the form below

∑
qr,q′r′

Aqt∗qr ⟨sr| Ô3 A∗
q′ tq′r′ |sr′⟩ = ⟨ψ| Ô3 |ψ⟩ . (5.24)

Any operator Ô3 can be decomposed as a sum of m linearly independent
operators Ôa

3, with 1 < a < m. Since Eq. (5.24) holds for any operator, then
it holds for each Ôa

3, thus generating m independent equations, necessary
and sufficient to solve for |ψ⟩. In particular, if |ψ⟩ is expressed in the basis
|sr′⟩, the components of |ψ⟩ are given precisely by the respective compo-
nents of the left-hand side of Eq. (5.24), from which we can immediately
conclude that the effective state in H3

S is

|ψ⟩ = ∑
q′r′

A∗
q′ tq′r′ |sr′⟩ ≡ JAlice talksK. ■ (5.25)
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Similarly, density matrices can be used to confirm not only that the state in
HS

3 corresponds to Eq. (5.25) after the measurement, using partial tracing,
but also that the outcome of this operation is a pure state.

using density matrices . Assume that the sentence Alice talks is being
represented by the pure state density matrix

ρ̂ = |Alice⟩ |talks⟩ ⟨Alice| ⟨talks| . (5.26)

We want to show that the density matrix ρ̂3 that we obtain in space HS
3

after the measurement of P̂12 is in fact a pure state. We do that by taking
the partial trace in spaces 1 and 2 of P̂12ρ̂:

ρ̂3 = Tr12

(
P̂12ρ̂

)
=

= ∑
ab

∑
pqr,p′q′r′

⟨nanb| P̂12Ap′ tq′r′
∣∣np′nq′sr′

〉 〈
npnqsr

∣∣ A∗
pt∗qr |nanb⟩

= ∑
ab

∑
pqr,p′q′r′

⟨nanb| Ap′ tq′r′
∣∣nq′np′sr′

〉 〈
npnqsr

∣∣ A∗
pt∗qr |nanb⟩

= ∑
r,p′q′r′

Ap′ tq′r′ |sr′⟩ ⟨sr| A∗
q′ t

∗
p′r

= ∑
q′r′

A∗
q′ tq′r′ |sr′⟩∑

p′r
⟨sr| Ap′ t∗p′r = |ψ⟩ ⟨ψ| . (5.27)

This thus proves that the resulting state in space HS
3 is pure and equal to

Eq. 5.25. It also proves that ⟨ψ|ψ⟩ = ⟨P̂12⟩, as expected from ⟨ψ| Ô |ψ⟩ =
⟨Ô⟩⟨P̂12⟩. ■
Note that here the index contraction is equivalent to that of Eq. (5.9),
enhanced with the conjugation of some components, which remain as an
informative feature from the directionality of language, which would be
lost otherwise. The circuit that calculates Eq. (5.25) is given in Fig. 5.3.

An alternative way of contracting the two-qubit spaces has been proposed
in Ref. [29], where the Bell effect ⟨β00| ≡ (⟨00|+ ⟨11|) /

√
2 ∈ H1

N ⊗ H2
N is

measured instead as
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JAlice talksK = ⟨β00|Alice⟩ |talks⟩

=
1√
2

∑
p′q′r′

(⟨00|+ ⟨11|) Ap′ tq′r′
∣∣np′nq′sr′

〉
=

1√
2

∑
r′
(A0t0r′ + A1t1r′) |sr′⟩ . (5.28)

Measuring the permutation operator as we do in Eq. (5.23) is manifestly a
more general way of contracting the representations of words than what
is done in Eq. (5.28). On the one hand, it allows each interpretation
space to have more than two basis states, that is, each quantum wire can
represent something more general than one qubit. On the other hand, it
accommodates correctly the existence of complex numbers in the quantum
mechanical representations. Importantly, it has also one more important
feature that we will make use of now: it allows us to integrate a quantum
superposition of conflicting readings.

5.3.3 Ambiguous readings on a quantum circuit

The quantum states of the two readings in Eqs. (5.15) and (5.16), that result
from contracting the individual word states, can be written as

Jrigorous mathematicians and physicistsK1 = ∑
ijln

rij ml a∗l jn p∗n |ni⟩ (5.29)

and

Jrigorous mathematicians and physicistsK2 = ∑
jlmn

r∗l j mj almn p∗n |nm⟩ .

(5.30)

These can be represented by the two different circuits in Figs. 5.4 and
5.5 respectively, coming from the two different contraction schemes, as
obtained in Ref. [35]. Also in this reference, an analysis of how to express
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the two readings syntactic ambiguities simultaneously is developed, which
we here implement. We can go from the first reading to the second by
applying two wire swappings. First, we swap wires 3 and 5 on the second
reading, which turns the measurement of P̂23 into the measurement of P̂25.
Next, by swapping wires 5 (which now contains the information from wire
3) and 1, we effectively turn the measurement of P̂14 into the measurement
of P̂34. In this way, the circuit in Fig. 5.6 is equivalent to that of the first
reading. If we control the application of this set of swap gates on an extra
qubit |c⟩ = c1 |1⟩+ c2 |0⟩, we entangle the states of this qubit with the two
possible readings. The first reading is stored in the quantum wire 5 with
probability |c1|2, while the second reading is stored in that same quantum
wire with probability |c2|2. In total we have what is represented in the
circuit of Fig. 5.7.

The innovation that this implementation brings is that we are now able to
deal with both interpretations simultaneously, that later contractions, with
the representations of other words, have the potential to disambiguate.

1

2

P̂25

|rigorous⟩

|maths.⟩ 3

P̂344

5

6

P̂67


|and⟩

|physicists⟩ 7

Figure 5.4: Quantum circuit for the first interpretation of the syntactically ambigu-
ous phrase.
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5.4 application

In this section we apply Grover’s quantum search algorithm to obtain the
answer to a wh-question with quantum speedup, using the quantum circuits
for sentence representation developed in the previous section.

5.4.1 Grover’s quantum search algorithm

Grover’s quantum search algorithm aims at finding the correct answer to a
query, by taking a state with an equal superposition of orthogonal states
representing the answers as the input, and outputting a state in which the
only basis states that have any probability of being measured correspond to
correct answers. For P = 2p possible solutions, the first step is to generate
a linear superposition of P unique states, with its index x corresponding to
one of the possible solutions. In the original proposal [53], this input state

1

P̂14

2

P̂23

|rigorous⟩

|maths.⟩ 3

4

5

6

P̂67


|and⟩

|physicists⟩ 7

Figure 5.5: Quantum circuit for the second reading of the syntactically ambiguous
phrase.
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1 ×

P̂14

2

P̂23

|rigorous⟩

|maths.⟩ 3 ×

4

5 ××

6

P̂67


|and⟩

|physicists⟩ 7

Figure 5.6: Quantum circuit that computes the first reading from the contractions
of the second, and is therefore equivalent to Fig. 5.4.

is obtained by acting on |0⟩⊗p qubit states with the H⊗p gate, where H is
the one-qubit Hadamard gate, which generates

|Ψ⟩ = 1√
P

P−1

∑
x=0

|x⟩ . (5.31)

Then, a sequence of gates, the Grover iteration, is repeatedly applied to
this input state, until a correct answer is the guaranteed outcome of the
measurement of the initial qubits. For Q correct solutions, only O(

√
P/Q)

iterations are necessary, representing a quadratic speedup compared to a
classical search algorithm, which requires checking all P possible answers.
Each Grover iteration G has two main components: first, an oracle operation
O, and then an inversion about the mean operation, formed by applying the
unitary transformation that generates |Ψ⟩ to 2 |0⟩ ⟨0| − 1, in this case

H⊗p(2 |0⟩ ⟨0| − 1)H⊗p ≡ 2 |Ψ⟩ ⟨Ψ| − 1, (5.32)
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1 ×

P̂14

2

P̂23

|rigorous⟩

|maths.⟩ 3 ×

4

5 × ×

6

P̂67


|and⟩

|physicists⟩ 7

|c⟩ • •

Figure 5.7: Quantum circuit that computes simultaneously the two readings from
the ambiguous input.

which can easily be shown to be unitary. The heart of the algorithm is the
oracle, as it is able to distinguish the answers that are correct from those
that are not. It is a unitary operation that works by flipping the sign of the
answer state if |x⟩ is correct, that is,

{
O(|x⟩) = − |x⟩ if |x⟩ is a correct answer,

O(|x⟩) = |x⟩ otherwise.

To achieve this, more qubits might be necessary, and those constitute the
“oracle workspace". In the original setup, it is the oracle that depends on
the query at hand, as well as the form of the inputs, while the inverse
operation has a universal form. By representing our wh-question query
as quantum states and contractions therein, we will see that we can use
Grover’s algorithm with the problem-dependence of its parts reversed:



160 quantum computations for disambiguation and question answering

instead it is the oracle that is universal, and the rotation is query-dependent,
obtained from a unitary transformation on |0⟩.

5.4.2 Input-state preparation for question answering

The question statement and possible answers hold the key for the search
algorithm to identify the correct answers in our application. This will
happen as a consequence of the contractions of the possible solutions with
the question predicate. We will use our previous construction as the input
of the first Grover iteration. To this end, suppose that we want to know the
answer to the question Who talks?, and that we have P possible answers, of
which Q are absolutely correct, and P − Q are, on the contrary, definitely
wrong. For the oracle to identify the correct answers, they must be produced
from the contraction with the verb, and they must be in a superposition
equivalent to Eq. (5.31).

The more complex mapping of w to the semantics, when compared with
the syntactic types s and n, can be attributed to the particular semantics
of questions and our application. In standard terms, the meaning of a
question is taken as the map that sends answers, which belong to the
interpretation space of nouns, to truth values, which are elements of the
interpretation space of declarative sentences. We want to keep track of
which word provides a correct answer in our quantum circuit, and a map
like the latter, upon performing contractions, would only give us a count of
how many correct and wrong answers there are. To see this, suppose that
the word who is represented in the space

⌈w/(n\s)⌉ = HN
1 ⊗HS

2 ⊗HS
3 ⊗HN

4 ,

and semantic representation as

|who⟩ = ∑
ab,ij,kl

|ni⟩1

∣∣sj
〉

2 |sk⟩3 |nl⟩4 δilδjk

= ∑
i,l

|ni⟩1

∣∣sj
〉

2

∣∣sj
〉

3 |ni⟩4 . (5.33)
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and the intransitive verb talks

|talks⟩ = ∑
mn

tmn |nm⟩5 |sn⟩6 . (5.34)

Following the contraction schemes presented in Sec. 5.3.2, the contraction
between these two words states results in the state

|who⟩ |talks⟩ = ∑
ij

tij |ni⟩1

∣∣sj
〉

2 , (5.35)

and representing the answers as

|answers⟩ = ∑
p

Wp
∣∣np

〉
7 , (5.36)

their final contraction results in

|who⟩ |talks⟩ |answers⟩ = ∑
ij

W∗
i t∗ij

∣∣sj
〉

2 . (5.37)

This shows that a contraction just on the S and N spaces gives only a count
of how many correct or incorrect answers there are, but not which ones are
which.

As such, the map of the wh-word needs to be furthermore tensored with
elements of H⊗p, of which each of the basis elements corresponds to the
unique indexing of the possible answers. This provides an entanglement
between the distributional representation of a noun, its corresponding truth
value and an enumerable representation in the quantum circuit. The word
textitwho thus belongs to the following semantic space, in the image of Eq.
(5.17),

⌈w/(n\s)⌉ = H⊗p
1 ⊗HN

2 ⊗H⊗p
3 ⊗HS

4 ⊗HS
5 ⊗HN

6 ,

with semantic representation given as
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|who⟩ = ∑
ab,ij,kl

|a⟩1 |ni⟩2 |b⟩3

∣∣sj
〉

4 |sk⟩5 |nl⟩6 δabδilδjk

= ∑
a,i,l

|a⟩1 |ni⟩2 |a⟩3

∣∣sj
〉

4

∣∣sj
〉

5 |ni⟩6 . (5.38)

The intransitive verb talks has the same representation as before, now with
the adapted labeling of wires

|talks⟩ = ∑
mn

tmn |nm⟩7 |sn⟩8 . (5.39)

For clarity, we flesh out the computation of the contractions that involve
the extra index space. The semantic contraction of who with talks, following
the interpretation of the syntactic contraction, results in

⟨who| ⟨talks| P̂67 ⊗ P̂58 ⊗ Ô1234 |who⟩ |talks⟩
= ∑

a′i′ j′m′n′

〈
a′
∣∣
1 ⟨ni′ |2

〈
a′
∣∣
3

〈
sj′
∣∣
4

〈
sj′
∣∣
5 ⟨ni′ |6 t∗m′n′ ⟨nm′ |7 ⟨sn′ |8

· Ô1234 ∑
aijmn

|a⟩1 |ni⟩2 |a⟩3

∣∣sj
〉

4 |sn⟩5 |nm⟩6 tmn |ni⟩7

∣∣sj
〉

8

= ∑
a′i′ j′m′n′

〈
a′
∣∣
1 ⟨ni′ |2

〈
a′
∣∣
3

〈
sj′
∣∣
4 t∗m′n′Ô1234 |a⟩1 |nm′⟩2 |a⟩3 |sn′⟩4 ti′ j′

= ∑
a′i′ j′

ti′ j′
〈

a′
∣∣
1 ⟨ni′ |2

〈
a′
∣∣
3

〈
sj′
∣∣
4 Ô1234 ∑

ail
t∗ij |a⟩1 |ni⟩2 |a⟩3

∣∣sj
〉

4 . (5.40)

From this we read off the question representation, rewriting the indices:

Jwho talksK = ∑
aij

t∗ij |a⟩1 |ni⟩2 |a⟩3

∣∣sj
〉

4 . (5.41)

To be the input of the quantum search algorithm, the full input needs to
correspond to an equal superposition of all possible answers. This can be
achieved by entangling the distributional representation of the answers
with the corresponding index
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|answers⟩ = ∑
bp

Wb
p
∣∣np

〉
9 |b⟩10 , (5.42)

followed by a contraction with the question representation, which happens
strictly at the semantic level. Hence

⟨who talks| ⟨answers| P̂29 ⊗ P̂1,10 ⊗ Ô34 |who talks⟩ |answers⟩ =

∑
a′i′ l′

ti′ j′
〈

a′
∣∣
1 ⟨ni′ |2

〈
a′
∣∣
3

〈
sj′
∣∣
4 ∑

b′p′
W∗b′

p′
〈
np′

∣∣
9

〈
b′
∣∣
10

· Ô34 ∑
ail

t∗ij |b⟩1

∣∣np
〉

2 |a⟩3

∣∣sj
〉

4 ∑
bp

Wb
p |ni⟩9 |a⟩10

= ∑
a′i′ j′

Wa′
i′ ti′ j′

〈
a′
∣∣
3

〈
sj′
∣∣
4 Ô34 ∑

amn
W∗a

i t∗ij |a⟩3

∣∣sj
〉

4 , (5.43)

such that the effective input state to the Grover’s algorithm is

|Ψinitial⟩ = ∑
aij

W∗a
i t∗ij |a⟩3

∣∣sj
〉

4 , (5.44)

which represents an entanglement between the indices of possible answers
and truth values. This process is represented by the circuit in Fig. 5.8.

5.4.3 Oracle and inversion

Grover’s algorithm requires a normalized state as initial input. Since the
amplitudes in the state in Eq. (5.44) have information about whether a
certain answer is correct, they uniquely associate each word indexed by a
with one of the basis states

∣∣sj
〉
, in such a way that ∑i W∗a

i t∗ij is null if the
combination between word index a and truth value j is not correct, and
otherwise equal to one. Since every word should be either true or false,
that leaves us with precisely P independent and equally summed states.
Therefore, if the indices aj are abbreviated by one index x, the normalized
state is given as
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1

P̂1,10

2

P̂29

3 //

4 //

5

P̂58

6

P̂677

8

9

10



|who⟩

|talks⟩

|answers⟩

Figure 5.8: Quantum circuit that generates the input of the first Grover iteration
for question-answering.

|Ψinitial⟩ =
1√
P

P−1

∑
x=0

|x⟩ , (5.45)

with

|x⟩ = ∑
i

W∗a
i t∗ij |a⟩3

∣∣sj
〉

4 . (5.46)

The oracle applied to this input state takes the form of the circuit in Fig.
5.9.
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3 //

4 • //

|Ψinitial⟩

|0⟩ 11 X H //

Figure 5.9: Oracle for question-answering.

The states |a⟩ on the first p qubits, being in one-to-one correspondence with
each of the possible solutions, are the complete set of states that build up
the equal superposition |Ψ⟩ = H⊗p |0⟩⊗p, as in Eq. (5.31). In terms of the
states that correspond to words that are correct or incorrect, we can rewrite
|Ψ⟩ as

|Ψ⟩ = cos
(

θ

2

)
|α⟩3 + sin

(
θ

2

)
|β⟩3 , (5.47)

with |α⟩ the normalized sum of all states that correspond to words that
are not solutions, and |β⟩ to the normalized sum of those that correspond
to words that are solutions. Using this notation, the |Ψinitial⟩ state that we
obtain using the contractions can be expressed as

|Ψinitial⟩ = cos
(

θ

2

)
|α⟩3 |0⟩4 + sin

(
θ

2

)
|β⟩3 |1⟩4 . (5.48)

Though there is entanglement between the first p qubits and the last one,
this is a pure state in the p + 1 qubit space, as it results from the measure-
ment of the permutation operators, as shown in Sec. 5.3.2. As such, there is
a unitary transformation that generates it from |0⟩⊗p+1 as

|Ψinitial⟩ = U |0⟩p+1 . (5.49)

Using this, we can construct the rotation part of the Grover algorithm as
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U(2 |0⟩ ⟨0| − 1)U† = 2 |Ψinitial⟩ ⟨Ψinitial | − 1. (5.50)

It follows that the Grover iteration applied on the input state in Eq. (5.48)
using the oracle and the rotation in Eq. (5.50) gives the desired outcome of

(2 |Ψinitial⟩ ⟨Ψinitial | − 1)O(|Ψinitial⟩) =

cos
(

3θ

2

)
|α⟩3 |0⟩4 + sin

(
3θ

2

)
|β⟩3 |1⟩4 . (5.51)

This is precisely what we expect to obtain. For the second iteration, the
oracle acts as desired, and so does the rotation. After a number of iterations
only the states associated with |1⟩4 have positive amplitude, which means
that we are certain to measure the index of a word that corresponds to a
correct answer when we make a measurement on the first p qubits. Thus we
have obtained a correct answer with quadratic speedup due to the quantum
search algorithm.

5.5 conclusion and outlook

In this paper we introduced two main developments in the application of
quantum computation to natural language processing. The first one is a
tensor-contraction scheme on quantum circuits. Taking quantum states
as the representations of all input words, contractions are then identified
with the expectation value of an appropriate permutation operator. Doing
this, are we not only able to reproduce previous analytical results, but
we also allow for complex values and create quantum circuits that are
equipped to deal with the syntactic ambiguities in Ref. [35]. With this
setup, each reading of an ambiguous phrase corresponds to a particular
circuit, and different readings are interchangeable upon the application of
a number of swap gates. Controlling on these swap gates, we can obtain
a true quantum superposition of the multiple readings. This covers the
problem of how to deal with multiple readings in real time, without the
need to assume any contextualization. While this addresses the question
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of syntactic ambiguities by making use of the quantum superposition
principle, ambiguities at the word level can be immediately accommodated
for by using density matrices [9, 86, 109, 119], instead of the pure states we
use here for simplicity. A generalization to other sentence-level ambiguities
constitutes further work, in the expectation that the use of different controls
allows for different readings simultaneously in the output state. Note that,
in terms of a concrete implementation, the permutation between two qubits
used to generate an equal superposition of readings from an ambiguous
input takes the form of a Fredkin gate, or a CSWAP gate, which might add
considerable circuit complexity, but this is expected to be compensated by
the fact that the number of two-qubit operations only scales linearly with
an increasing number of readings, since for these types of ambiguities all
permutations can be generated via sets of SWAP operations. We leave a
more robust exploration of these technical constraints to future work.

The second development builds on this quantum framework, and consists
of a quantum search algorithm that is able to find the answer to a wh-
question with quantum speedup. As input, the algorithm takes a multi-
partite state in quantum superposition, representing a wh-question and its
possible answers, and performs a series of tensor contractions as established
previously. A series of gates then acts repeatedly on the post-contraction
state, guaranteeing that a correct answer to the question is obtained upon
a single final measurement. Our algorithm takes advantage of intrinsic
quantum features to identify and deliver a correct answer with quantum
speedup of quadratic order, when compared to the classical alternative
of checking every possible answer. We are thus able to provide a correct
answer using information given directly by the tensor contractions of
representations of words as proposed by DisCoCat, and without needing
to hand-feed any labels nor to learn the answers to other questions. Our
approach thus shows how quantum circuit implementations can break
with the widely accepted “learning paradigm" of current NLP approaches
to question-answering and other tasks used in Ref. [84], providing a
scalable approach to open-ended questions. Our approach differs from
that of Ref. [28] also in the sense that we keep all words as input states,
instead of representing words from complex types as gates that modify
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circuit inputs, remaining closer to the compositional spirit of the syntax and
therefore being more easily extensible to larger language fragments. Further
work includes finding an effective implementation of the measurement
of the permutation operator for an arbitrary number of qubits, possibly
making use of the Hadamard test [4], and understanding how to find a
universal form of the inversion operator that does not depend on |α⟩ and |β⟩
separately. An extension of the present formalism can furthermore account
for a better understanding of the temporal evolution of the meanings of
sentences.
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5.a measuring the permutation operator on two qubits

In this appendix we show that for the measurement of the permutation
operator applied to two qubits it suffices to measure the input states in the
Bell basis. The two input qubits have the four possible joint states in the
standard basis, given by

|00⟩ =


1
0
0
0

 , |10⟩ =


0
1
0
0

 , |01⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 . (5.52)

The permutation operator applied to two qubits is equivalent to the SWAP
gate S. In this basis, this operator has the matrix representation

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (5.53)

The eigenstates of this operator are the well-known singlet and triplet states
that represent the joint spin of two spin-1/2 particles. With eigenvalue −1,
we have the singlet state

|0, 0⟩ = 1√
2


0
−1
1
0

 , (5.54)

and with eigenvalue 1 we have the three triplet states
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|1,−1⟩ =


1
0
0
0

 , |1, 0⟩ = 1√
2


0
1
1
0

 , and |1, 1⟩ =


0
0
0
1

 , (5.55)

expressed in the standard basis as

|0, 0⟩ = 1√
2
(|01⟩ − |10⟩), (5.56)

|1,−1⟩ = |00⟩ , (5.57)

|1, 0⟩ = 1√
2
(|01⟩+ |10⟩), (5.58)

|1, 1⟩ = |11⟩ . (5.59)

In its turn, the Bell basis can be expressed in terms of the standard basis in
the following way

|β00⟩ =
1√
2
(|00⟩+ |11⟩), (5.60)

|β01⟩ =
1√
2
(|01⟩+ |10⟩), (5.61)

|β10⟩ =
1√
2
(|00⟩ − |11⟩), (5.62)

|β11⟩ =
1√
2
(|01⟩ − |10⟩). (5.63)

The Bell states can thus be rewritten using the total-spin eigenstates of S,
given in (5.56) to (5.59), as:
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|β00⟩ =
1√
2
(|1,−1⟩+ |1, 1⟩) (5.64)

|β01⟩ = |1, 0⟩ (5.65)

|β10⟩ =
1√
2
(|1,−1⟩ − |1, 1⟩) (5.66)

|β11⟩ = |0, 0⟩ . (5.67)

Because any linear combination of degenerate eigenstates is also an eigen-
state of that operator with the same eigenvalue [proof: Av⃗ = λv⃗, Aw⃗ =

λw⃗ ⇒ A(av⃗ + bw⃗) = λ(av⃗ + bw⃗)], we see that |β00⟩, |β01⟩ and |β10⟩ are
eigenstates of S with eigenvalue 1, and |β11⟩ is an eigenstate with eigen-
value −1. Therefore, we can conclude that the Bell basis also diagonalizes
the permutation operator, and as such repeated measurements of the qubits
in this basis allows us to directly compute the expectation value of the
operator in the input states. So, for a two-qubit input state

|Φ⟩ = ∑
ij

aibj |ij⟩ , (5.68)

with i, j ∈ {0, 1}, the expectation value of the S operator is given by

⟨S⟩Φ = |⟨β00|Φ⟩|2 + |⟨β01|Φ⟩|2 + |⟨β10|Φ⟩|2 − |⟨β11|Φ⟩|2. (5.69)

If we are in the possession of a measuring device that can only measure
in the standard basis, we must transform our input states with the inverse
transformation that generates the Bell states. This serves to guarantee that
an outcome |ij⟩ is in fact as likely as the measurement of

∣∣βij
〉

if the input
states were measured directly in the Bell basis.





A
N O T E S O N C AT E G O RY T H E O RY

Category theory is the branch of mathematics formalized by Eilenberg and
Saunders Mac Lane in 1945 [42]. It emerged from the field of algebraic
topology, where it became apparent that a more general abstract theory
was necessary to describe the underlying relationships between different
mathematical entities, which were until then understood independently.

The best analogy to motivate the role and importance of category theory
comes from group theory. In the same way that the notion of group trans-
formation allowed mathematicians to assign abstract algebraic properties
to geometric objects, and thus freed them to focus on the underlying ge-
ometric space, so category theory offered a continuation of this idea, by
boiling down mathematical objects to their bare minimum properties, ren-
dering them comparable and interchangeable by turning on or off certain
properties [81].

A category is defined as a mathematical structure comprised by objects
and morphisms (also knows as arrows, or maps) between these objects. It
extends the theory of functions, which is then just an instance of the larger
theory. This can be easily understood by looking at the category of sets,
Set, which has sets as objects and total functions as morphisms. Another
example is the category of groups, Grp, which has groups as objects, and
group homomorphisms as morphisms. To fully be defined as a category, it
has to be furthermore endowed with a binary operation ◦, designated by
composition of morphisms. If f and g are two category morphisms, then so
must be f ◦ g. The composition has to be associative and there must be, for

173



174 notes on category theory

every object, an identity morphism that sends it to itself. It is easy to verify
that all conditions are satisfied for the categories of sets and groups. As
categories become more exotic, this becomes increasingly more difficult to
prove.

The main advantage of this abstraction is that we can prove the equivalence
of different frameworks in a rigorous way, and compare them according
to the properties that they eventually share, thus classifying mathematical
structures. For instance, we can inspect what it would take to turn the
category of functions to the category of groups, and vice-versa. To this
effect, a structure preserving map can be used between categories, called
a functor. If the functors mapping the categories to each other possess a
number of characteristicsa, then the categories can be said to be equivalent, or
isomorphic. Equivalence of categories turns out to be a powerful analytical
tool: if one knows how to prove statements in one category, and another
category is equivalent to the first, then the proofs of the first extend to the
second.

curry-howard-lambek correspondence

As the theory of categories is an abstract one, it can cover any kind of
object and morphism, and this includes formal logics. Lambek showed that
intuitionistic logics akin to his calculus could be understood in the language
of categories, with type formulas as objects, and (the equivalence classes of)
derivations as morphisms [70]. Lambek named the corresponding category
a residuated category, and noted that, within the hierarchy of categories,
it is related to a class of categories called closed categories. Later, Lambek
showed that, not only is a intuitionistic calculus a cartesian closed category,
but that also a λ-calculus generated on a category of the same kind, that
is, where the semantic types have, as domains, objects and morphisms of a
category of that type, would itself be a cartesian closed category, making
the connection between both of these structures, already known as the
Curry-Howard correspondence, more precise through category theory [71],

a The functor mapping a category to an isomorphic category must be full, faithful and dense,
with its inverse functor sharing these properties.
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forming what is now known as the Curry-Howard-Lambek correspondence.
One essential step on the proof is that the functor that takes A × B to C is
naturally isomorphic to the functor that takes B to the set of morphisms from
A to C.

It turns out that Set is a cartesian closed category, and therefore so is
the λ-calculus generated on it. This beautifully brings to a full circle
the compositional set-theoretic approach to natural language semantics
as already introduced by Montague, endowed with a robust recursive
grammar in the form of type-driven formal deduction systems, such as is
the Lambek calculus.

categorical vector spaces

If we are interested in extending this reasoning to a semantics of vector
spaces, we can use the categorical power of abstraction, knowing that
vector spaces of the kind that we need to represent words are object of
the category FdVect, which has finite vector spaces as objects and linear
maps as morphisms. It is however not a cartesian closed category, but a
compact closed one. This is because, while Set is furthermore endowed
with a monoidal structure that allows for the generation of a product space,
the cartesian product, FdVect also allows for the generation of product
spaces, which is crucial to this account, but instead by the tensor product
between vector spaces, which is not a proper categorical productb. It turns
out that it can be shown, using dual vector spaces, that a linear map from
U∗ ⊗ V to X is equivalent to the map from V to the set of linear maps from
U to X. This justifies the assignment of these tensor product spaces to the
domains of our complex semantic types, by using that DA→B = A∗ ⊗ B.

b The cartesian product is a proper product in the category theory sense. It can also be defined
between vector spaces, but it does not produce the desired result. This can be seen from
the fact that the tensor product generates a new space with dimensions Dim(V)×Dim(W),
while a Cartesian product generates a space with dimensions Dim(V)+Dim(W )[7].
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quantum categories

Around 2004, Samson Abramsky and Bob Coecke started developing a
categorical approach to quantum computing [3]. Their realization was that
the spaces where quantum states are defined, namely Hilbert spaces, form a
compact closed category. In 2010, Coecke et al. [33] proposed that a specific
grammar for natural language, that Lambek developed later in his career,
designated by pregroups[73], be used. This grammar is less restrictive than
the multiplicative fragment of the Lambek calculus, leading to a less fine-
grained control of language phenomena. For instance, while in pregroups
the statement (a • b)\c ⊢ a/(b • c) is derivable, this is not the case in the
original Lambek Calculus. Pregroups, however, have the advantage that
they too correspond to a compact closed category, and so using it as syntax
to a vector space semantics is more direct, allowing us to map the syntax to
a semantics of quantum states, where words are interpreted as quantum
states, which are vectors in a Hilbert space. In an attempt to reconcile all
approaches, the authors of Ref. [30] show that, if the product in the Lambek
Calculus is a monoidal tensor, then it can also be shown to be equivalent to
a compact closed category.



B
N O T E S O N D E N S I T Y M AT R I C E S

In this appendix are some of the rules of density matrix manipulation that
we use throughout this thesis. The inner product reduces the dimension of
the operators. The inner product is a map A × A∗ → C. It works on the
basis vectors as

A

〈
i′
∣∣i〉A = δi,i′ . (B.1)

If there is a correlation between two or more quantum systems, the tensor
product is used to create or represent density matrices and states that
belongs to a multipartite quantum system. The basis elements of the
composite vector space, which are kets, are given by

|i⟩A ⊗ |j⟩B ≡ |ij⟩A⊗B ≡ |k⟩C ∈ C = A ⊗ B, (B.2)

while the basis elements of the composite dual vector space, bras, are given
by

A

〈
i′
∣∣⊗ B

〈
j′
∣∣ ≡ A⊗B

〈
i′ j′

∣∣ ≡ C

〈
k′
∣∣ ∈ C∗ = A∗ ⊗ B∗. (B.3)

The density matrix of a multipartite system can then be defined:

ρC
x = ρA⊗B

x = ∑
ii′,jj′

Xii′ jj′
(
|i⟩ A

〈
i′
∣∣)⊗ (

|j⟩ B

〈
j′
∣∣) = ∑

ii′,jj′
Xii′ jj′ |ij⟩ C

〈
i′ j′

∣∣ , (B.4)
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with C = A ⊗ B. While a density matrix can already be describing a
composite system, the tensor product of two single-system density matrices
also creates a density matrix in the basis of the composite system:

ρC
y = ρA

w ⊗ ρB
z = ∑

ii′,jj′
Wii′Zjj′ |ij⟩ C

〈
i′ j′

∣∣ , (B.5)

again with C = A ⊗ B. If the density matrices are described in the same
space, matrix multiplication affects them in the following way:

ρA
x .ρA

y = ∑
ii′

Xii′ |i⟩ A

〈
i′
∣∣∑

jj′
Yjj′ |j⟩ A

〈
j′
∣∣ = ∑

ii′,jj′
Xii′Yjj′ |i⟩ A

〈
j′
∣∣δi′,j (B.6)

= ∑
ii′,j′

Xii′Yi′ j′ |i⟩ A

〈
j′
∣∣. (B.7)

This product is not commutative in general. If the product is between
composite density matrices that share a part in the same subsystem, the
components that belong to overlapping spaces are the ones affected in the
way described above.

An operation in what follows is the trace of a density matrix. In case the
trace is not taken over all the spaces of a composite density matrix, it is
called the partial trace, otherwise it is called the total trace. It acts by adding
the diagonal elements of the matrix that belongs to that space.

TrA

(
ρA

x

)
= TrA

(
∑
ii′

Xii′ |i⟩ A

〈
i′
∣∣) = ∑

j
A⟨j|∑

ii′
Xii′ |i⟩ A

〈
i′
∣∣j〉A

= ∑
ii′,j

Xii′δjiδi′ j = ∑
j

Xjj.

The trace is also a map A × A∗ → C, so it can be seen as the generalization
for matrices of the inner product. The trace is a basis independent quantity
and can also be defined as the sum of the eigenvalues of the linear map
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represented by the matrix. If the argument of the trace has a product of
matrices, the product is evaluated before the trace:

TrA

(
ρA

x .ρA
y

)
= TrA

(
∑
ii′,j′

Xii′Yi′ j′ |i⟩ A

〈
j′
∣∣) = ∑

ii′,j′
Xii′Yi′ j′δi,j′ = ∑

ii′
Xii′Yi′i.

(B.8)

Another property of the trace is that is cyclic:

TrA

(
ρA

x .ρA
y

)
= TrA

(
ρA

y .ρA
x

)
. (B.9)

The partial trace for a matrix in a composite space is a trace taken over only
some of the spaces it is composed of:

TrA

(
ρC

y

)
= TrA

(
ρA⊗B

y

)
= TrA

(
∑

ii′,jj′
Xii′ jj′ |ij⟩ A⊗B

〈
i′ j′

∣∣) (B.10)

= ∑
l

A⟨l| ∑
ii′,jj′

Xii′ jj′
(
|i⟩ A

〈
i′
∣∣)⊗ (

|j⟩ B

〈
j′
∣∣) |l⟩A = ∑

l,jj′
Xll jj′ |j⟩ B

〈
j′
∣∣. (B.11)

As it will be useful later, the permutation operation is now introduced. Per-
mutations act on two quantum systems to swap the state associated to each
system. On the states they act as

PAB |ij⟩A⊗B = |ij⟩B⊗A and A⊗B̃

〈
i′ j′

∣∣ PAB̃ = A⊗B
〈
i′ j′

∣∣ ,

such that on the density matrix elements it acts as

PAB |ij⟩ A⊗B
〈
i′ j′

∣∣ PAB = |ij⟩ B⊗A
〈
i′ j′

∣∣ = |i⟩ B

〈
i′
∣∣⊗ |j⟩ A

〈
j′
∣∣.
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S U M M A RY I N E N G L I S H

Oftentimes we say things that can have more than one meaning at the same
time:

“Look at the dog with one eye”.

Are you using just one eye to look at the dog, or is it the dog that only has
one eye?

We would really like a computer to understand that both of these meanings
are possible, but this is very hard to achieve for normal computers. However,
there is a special type of computer, called a quantum computer, for which
this task is particularly suited. This computer uses a property of nature
called “quantum superposition”, which allows for two apparently opposite
things to exist at the same time. For instance, a cat can be dead and alive at
the same time, as in the famous Schrodinger’s cat. By using that property,
both meanings of a phrase can too be true at the same time, until more
information is given to infer the intended meaning. In this way, we hope
to have computers that are smarter and can understand us better. In this
thesis we try to develop algorithms that make this goal possible, advancing
the frontier of applications of quantum computation in the field of natural
language processing.

To start with, we look at one of the central obstacles of human-computer in-
teraction: the fact that computers understand very little about the meanings
of words. Historically, this communication has happened using specialized
computer languages, which are particularly fit to encode meanings related
to logical statements. For instance, x+3 can be a way to write "The sum
of any number with the number three". If properly programmed, one can
obtain the actual result of this sum for a given x, which we would consider
its meaning. The fundamental question that this thesis tries to contribute to
is thus: is it possible to code and compute the meaning of phrases, such as
"fluffy dog", in a way that encodes not only logical reasoning, but provides
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a way to return our (possibly multiple) common understanding(s) of such
a phrase?

To this end, we rely on a compositional approach: the grammar rules act
as the "computational rules", and the meanings of the individual words
compose with each other following those same rules, in a way that is
consistent with the type of meaning that we wish to assign to each word.
To use the grammar rules in this way, we rely on Lambek types. In this
framework, a common noun is represented by a Lambek type n and an
adjective is represented by a type n/n. Following the appropriate type
composition rules, we can show that these two types can be mapped to the
type n. This means that an adjective applied on a noun gives something
that can be used in the same place on a sentence. This is very intuitive:
"fluffy dog" could always be used in the place of "dog".

To obtain the meaning of this phrase in a compositional way, the meanings
must compose in a way that is homomorphic to the grammar composition.
Additionally, it is convenient that these individual meanings have a format
that a computer can understand. The choice made here comes from an
approach to NLP called "distributional" semantics, that is able to extract
vector representations of words by looking at the other words that usually
appear next to it: "You shall know a word by the company it keeps".

Each Lambek type is assigned a vector space, and so the composition takes
place using operations in vector spaces. Then, each word of a certain type is
assigned an element of the correct vector space, a vector. The vector space
associated with the Lambek type n is N, which means that a word like
"dog" is represented by a vector in the noun space. In its turn, the vector
space associated with the Lambek type n/n is N ⊗ N, which describe maps
between vectors. The elements of this space can be represented as matrices,
and so an adjective such as "fluffy" is also represented by a matrix. The
composition of the adjective and the noun, thus, is automatically computed
by a computer as the application of the respective matrix to the respective
vector, which in turn results in a vector in the space N, consistent with the
resulting Lambek type n of grammar composition.

This framework can be extend to more complex types and grammar for-
mulations, which can get rather computationally heavy. One possibility
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to make these calculations more computationally efficient is to resort to
quantum computation, by having each vector component as a quantum
state and by performing the contractions using a quantum circuit. In this
thesis we explore those avenues, with special focus on ambiguities that
stem from different meanings for each word (for which density matrices are
particularly suited) and ambiguities that appear due to different possible
readings of the same phrase, as is the case of the scope in "old men and
women", or relative clauses in Dutch, where "man die de hond bijt" can
translate either to "man that bites the dog" or "man that the dog bites". For
these, the different possible contractions represent different readings, and
they can exist simultaneously in quantum superposition. In the process,
we explore ways of improving cosine similarity calculations using a metric
tensor, and we develop a quantum computation algorithm that is capable
to speed up the process of finding an answer to an open multiple choice
question.

1

2
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|quantum⟩

3

4
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S A M M E N VAT T I N G I N H E T N E D E R L A N D S

Vaak zeggen we dingen die meer dan één betekenis tegelijkertijd kunnen
hebben:

"Kijk naar de hond met één oog".

Gebruik je maar één oog om naar de hond te kijken, , of is het de hond die
maar één oog heeft?

We zouden graag willen dat een computer begrijpt dat beide betekenissen
mogelijk zijn, , maar dit is erg moeilijk te bereiken voor normale comput-
ers. Er is echter een speciaal type computer, een de kwantumcomputer
genaamd, waarvoor deze taak bijzonder geschikt is. Deze computer ge-
bruikt een eigenschap van de natuur die "kwantumsuperpositie" wordt
genoemd, waardoor twee schijnbaar tegengestelde dingen tegelijkertijd
kunnen bestaan. Een kat kan bijvoorbeeld tegelijkertijd dood en levend
zijn, zoals in het de beroemde voorbeeld van Schrödingers kat. Door
die eigenschap te gebruiken, kunnen beide betekenissen van een zinsdeel
kunnen ook tegelijkertijd waar zijn, totdat er meer informatie is gegeven
om de beoogde betekenis af te leiden. Op deze manier hopen we com-
puters te hebben die slimmer zijn en ons beter kunnen begrijpen. In dit
proefschrift proberen we algoritmen te ontwikkelen die dit doel mogelijk
maken, waardoor de grens van toepassingen van quantum computation
kwantumberekening op het gebied van natuurlijke taalverwerking wordt
vervroegdverlegd.

Om te beginnen, kijken we naar een van de centrale obstakels van mens-
computerinteractie: het feit dat computers heel weinig begrijpen van de
betekenis van woorden. Historisch gezien gebeurde deze communicatie
met behulp van gespecialiseerde computertalen, die bijzonder geschikt zijn
om betekenissen te coderen die verband houden met logische uitspraken.
Zo kan x+3 een manier zijn om te schrijven "De som van een willekeurig
getal met het getal drie". Indien correct geprogrammeerd, kan men het
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werkelijke resultaat van deze som verkrijgen voor een gegeven x, waarvan
hetgeen we als de betekenis zouden beschouwen. De fundamentele vraag
waar dit proefschrift een bijdrage aan probeert te leveren is dus als volgt:
is het mogelijk om de betekenis van zinsdelen te coderen en te berekenen,
zoals "pluizige hond", op een manier die niet alleen logisch redeneren
codeert, maar ook voorziet in een manier om ons (mogelijk meerdere)
gemeenschappelijke begrip(pen) van zo’n zinsdeel terug te geven?

Hiervoor vertrouwen we op een compositionele benadering: de grammati-
caregels fungeren als de "rekenregels", en de betekenissen van de afzonder-
lijke woorden vormen met elkaar samen worden samengevoegd volgens
dezelfde regels, op een manier die consistent is met het soort betekenis
dat we aan elk woord willen toekennen. Om de grammaticaregels op deze
manier te gebruiken, vertrouwen we op Lambek-typen. In dit raamwerk
wordt een zelfstandig naamwoord weergegeven door een Lambek type n, en
een bijvoeglijk naamwoord wordt weergegeven door een type n/n. Volgens
de toepasselijke regels voor de samenstelling van het type, kunnen we laten
zien dat deze twee typen kunnen worden toegewezen aan afgebeeld op het
type n. Dit is heel intuïtief: "pluizige hond" kan altijd worden gebruikt in
plaats van "hond".

Om de betekenis van deze zin frase op een compositionele manier te
verkrijgen, moeten de betekenissen zijn samengesteld op een manier die
homomorf is aan ten opzichte vande grammaticale compositie. Bovendien
is het handig dat deze individuele betekenissen een formaat hebben dat
een computer kan begrijpen. De keuze die hier wordt gemaakt, komt
van een benadering van NLP die "distributionele" semantiek heet, die
vectorrepresentaties van woorden kan extraheren door te kijken naar de
andere woorden die er meestal naast staan: "Je zult een woord kennen van
het bedrijf dat het houdtgezelschap waarin het verkeert".

Elk Lambek-type krijgt een vectorruimte toegewezen, en dus vindt de
compositie plaats met behulp van bewerkingen in vectorruimten. Ver-
volgens wordt aan elk woord van een bepaald type een element van de
juiste vectorruimte toegewezen, een vector. De vectorruimte die hoort bij
het Lambek-type n is N, wat betekent dat een woord als "hond" wordt
weergegeven door een vector in de ruimte van zelfstandige naamwoor-
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denruimte. Op zijn haar beurt is de vectorruimte geassocieerd met het
Lambek-type n/n N ⊗ N, die kaarten lineaire afbeeldingen tussen vectoren
beschrijftven. De elementen van deze ruimte kunnen worden weergegeven
als matrices, en dus wordt een bijvoeglijk naamwoord zoals "pluizig" ook
weergegeven door een matrix. De compositie van het bijvoeglijk naam-
woord en het zelfstandig naamwoord wordt dus automatisch berekend
door een computer als de toepassing van de respectievelijke matrix op
de respectievelijke vector, wat op zijn beurt resulteert in een vector in de
ruimte N, consistent met het resulterende Lambek-type n van grammaticale
compositie.

Dit raamwerk kan worden uitgebreid tot complexere typen en grammaticale
formuleringen, , die rekenkundig nogal rekenkundig zwaar kan worden.
Een mogelijkheid om deze berekeningen rekenkundig efficiënter te maken,
is door gebruik te maken van kwantumberekening , door elke vector-
component als een kwantumtoestand te hebben beschouwen en door de
samentrekkingen uit te voeren met behulp van een kwantumcircuit. In dit
proefschrift verkennen we die wegenrichtingen, met speciale aandacht voor
dubbelzinnigheden die voortkomen uit verschillende betekenissen voor elk
woord (waarvoor dichtheidsmatrices bijzonder geschikt zijn) en dubbelzin-
nigheden die verschijnen als gevolg van verschillende mogelijke lezingen
van dezelfde zinsdeel, , zoals het geval is met oude de reikwijdte in "oude
mannen en vrouwen", of bijvoeglijke bijzinnen in het Nederlands, waar
"man die de hondt bijt" twee betekenissen kan hebben. Hiervoor vertegen-
woordigen de verschillende mogelijke contracties verschillende lezingen,
en ze kunnen gelijktijdig bestaan in kwantumsuperpositie. In het proces
onderzoeken we manieren om cosinus-gelijkenisovereenkomstberekeningen
te verbeteren met behulp van een metrische tensor, en we ontwikkelen we
een kwantumberekeningsalgoritme dat in staat is om het proces van het
vinden van een antwoord op een open meerkeuzevraag te versnellen.
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