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While there have been many published studies focusing on the structure of the rhizomicrobiome, studies com-
paring the functional traits of the microbial communities in the rhizospheres of wild rice and cultivated rice ac-
cessions are not yet available. In this study, we used metagenomic data from experimental rice plots to analyze
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pathways were found to be enriched in the rhizomicrobiomes of wild rice accessions. Notably, methane metab-
olism in the rhizomicrobiomes of wild and cultivated rice accessions clearly differed. Key enzymes involved in
methane production and utilization were overrepresented in the rhizomicrobiome samples obtained from
wild rice accessions, suggesting that the rhizomicrobiomes of wild rice maintain a different ecological balance
for methane production and utilization compared with those of the related cultivated rice accessions. A novel as-
sessment of the impact of rice domestication on the primary metabolic pathways associated with microbial taxa

in the rhizomicrobiomes was performed. Results indicated a strong impact of rice domestication on methane me-
tabolism; a process that represents a critical function of the rhizosphere microbial community of rice. The find-
ings of this study provide important information for future breeding of rice varieties with reduced methane
emission during cultivation for sustainable agriculture.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Rice (Oryza spp.) is one of the major food crops produced in the
world; especially Oryza sativa that is the major contributor to the food
requirement of more than half of the world's population (Khush,
2005). There are many wild and cultivated Oryza species that are dis-
tributed worldwide. And genomes of Oryza species were classified
based on the chromosomes in pairing correctly during meiosis in inter-
species F1 hybrids (Kurata, 2008). All cultivated species of rice and their
wild progenitors are diploid and represent species possessing the AA
genome (Vaughan et al., 2008).

The development of cultivated rice from wild rice significantly in-
creased desirable traits, such as increased yield and nutritional content
(Moner et al., 2018; Zhao et al., 2018). African and Asian cultivated
rice species were independently domesticated (Chang, 1976; Nayar,
2012; Waters et al., 2012). African cultivated rice, O. glaberrima, was do-
mesticated from African wild rice, O. barthii, while Asian cultivated rice,
0. sativa, was domesticated from common wild rice (O. rufipogon) or
nivara wild rice (0. nivara) (Yamanaka et al., 2003; Li et al., 2006;
Bessho-Uehara et al., 2017). Oryza sativa has been continuously sub-
jected to breeding efforts, which resulted in the establishment of two
main varieties indica and japonica (Cheng et al., 2019).

The long-term process of domestication and crop breeding has also
led to significant changes in the composition and structure of the micro-
bial communities surrounding the roots of many crop species, including
common bean (Phaseolus vulgaris) (Perez-Jaramillo et al., 2019), barley
(Hordeum vulgare) (Bulgarelli et al., 2015), lettuce (Lactuca sativa)
(Cardinale et al., 2015) and sunflower (Helianthus annuus) (Leff et al.,
2017). 1t is generally presumed that wild plant species have characteris-
tics that support the ability of plants to survive when subjected to abiotic
stresses, including drought, extreme temperatures and low-nutrient
soils, and biotic stresses like soil-borne pathogens (Bin Rahman and
Zhang, 2016; Cen et al., 2018; Tian et al., 2018b). The greater adaptability
of wild species may be partially attributed to their association with the
microbial communities in the rhizosphere (Cen et al., 2018; Shi et al.,
2018; Tian et al.,, 2020D).

Studies comparing the rhizosphere microbiomes (rhizomicrobiomes)
of wild and domesticated crops have focused on community structure,
while no studies have yet explored microbiological functions at the
microbiome level to better understand the basis for plant and microbiome
mutual selection and co-existence (Shenton et al.,, 2016; Tian et al.,, 2017;
Tian et al,, 2020a). Shenton et al. (2016) studied different genotypes of
rice and found that the structure of the microbial communities in the rhi-
zospheres of wild and cultivated rice significantly differed (Shenton et al.,
2016). In particular, taxa of methanotrophic Anaerolineae were overrepre-
sented in the rhizocommunities of wild rice relative to cultivated rice. The
authors suggested that methane emission from rice paddy fields could be
lowered by introgressing genetic materials from wild rice into cultivated
rice (Shenton et al. 2016). This suggestion, however, was only based on
the comparative analysis of microbial community structures associated
with wild and cultivated rice, but not on any assessment of the potential
functional traits of the rhizosphere communities at gene level (Shenton

et al,, 2016), which would require a different methodology and further
studies. Yet, the implications of their suggestion are highly relevant
since the emission of methane from the huge areas of rice production
all over the world are a major source of global greenhouse gas emission
(Su et al., 2015; Bhattacharyya et al., 2016; Carlson et al., 2017; Su et al.,
2018; Bhattacharyya et al.,, 2019), which needs to be reduced. Therefore,
a comparison of the potential functional traits of the rhizomicrobiomes
of wild and related cultivated rice accessions at gene level using
metagenomic analysis could provide a greater understanding of the im-
pact of crop domestication on the differential functional traits of their
rhizomicrobiomes.

Thus, in the present study, microbial functional potential in the rhi-
zospheres of wild and domesticated rice accessions originating from
Asia and Africa were comparatively assessed under field conditions by
conducting shotgun metagenome sequencing of rhizomicrobiomes.
This approach could provide information on the impact of rice domesti-
cation on the potential functional traits in the rhizomicrobiomes of do-
mesticated rice accessions. Additionally, results of this study may also
provide information on the mechanisms responsible for potential func-
tions of the microbial communities in the rhizospheres of wild and cul-
tivated rice in a comparative manner.

2. Materials and methods
2.1. Site description, plant materials, and experimental design

The study area was located in the rice experimental region of the
Jiangxi Agricultural Institute Station (18°19'57 N, 109°27’ E) in San'ya,
Hainan Province, China. The field experiment was conducted in a trop-
ical maritime monsoon climate with an annual average temperature
of 25.7 °C, and a mean annual precipitation of 1347.5 mm, of which
85% occurs during the months between May and October.

Three wild rice species (namely African wild rice, and Asian common
wild rice and nivara wild rice), and two cultivated rice species, Oryza
glaberrima (varieties LM8 and WH20 representing African cultivated
rice) and O. sativa (varieties 106 indica, Meitezhen indica, Jiangxi japon-
ica and Daohuaxiang japonica representing Asian cultivated rice) were
used in the study (Table 1). Thus, one African wild rice species [one va-
riety O. barthii SW42 (Af_W1-5)] and one African cultivated rice species
[two varieties O. glaberrima LM8 (Af_C1-5) and WH20 (Af_C6-10)] were
used in the comparison of African wild and cultivated rice (Table 1). On
the other hand, two Asian wild rice species, namely the common wild
rice [two varieties O. rufipogon SW499 (As_W1-5) and SW502
(As_W6-9)] and the nivara wild rice [two varieties O. nivara SW218
(As_W11-15) and SW223 (As_W16-20)], and one Asian cultivated
rice species [four varieties O. sativa 106 indica (As_C1-5), Meitezhen
indica (As_C6-10), Jiangxi japonica (As_C11-15) and Daohuaxiang ja-
ponica (As_C16-20)] were used in the comparison of Asian wild and
cultivated rice. Seeds of African wild and cultivated rice accessions were
kindly provided by the International Rice Research Institute (IRRI),
while those of the Asian cultivated rice accessions were obtained from
the Jiangxi Academy of Agricultural Sciences (Table 1). Experimental
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Table 1
Wild rice species and their cultivated relatives used in this study.
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Origin Cultivar name Species International code Sample name Distribution
Africa African wild rice SW42 Oryza barthii 106,238 Af-W1-5 Western, eastern, southern Africa
African cultivated rice LM8 0. glaberrima LM8 Af-C1-5 Western Africa
African cultivated rice WH20 0. glaberrima WH20 Af-C6-10 Western Africa
Asia Common wild rice SW499 0. rufipogon 106,286 As-W1-5 Asia
Common wild rice SW502 0. rufipogon 106,452 As-W6-9
Indian wild rice SW218 0. nivara 86,655 As-W11-15 Asia
Indian wild rice SW223 0. nivara 88,949 As-W16-20
106 indica 0. sativa subsp. indica - As-C1-5 China
Meitezhen indica 0. sativa subsp. indica - As-C6-10 China
Jiangxi japonica 0. sativa subsp. japonica - As-C11-15 China
Daohuaxiang japonica 0. sativa subsp. japonica - As-C16-20 China

field plots were designed in the same size (2-m width and 2-m length) for
rice planting. The experiment was arranged in a randomized block de-
sign with a distance of 0.5 m between two plots. Under such condi-
tions, the plots used to grow the replicates could be considered to
have neglectable differences in soil properties. Each rice accession
had 5 replicates, except the common wild rice accession SW502
(As_W6-9) that had 4 replicates.

2.2. DNA extraction, sequencing and data analysis

Four plants were harvested for each collected sample during the
flowering stage. The rhizosphere soil was carefully collected by gentle
brushing of the whole root system (Schlemper et al., 2017b). A total of
0.5 g soil from each sample were used for the extraction of DNA from
the rhizomicrobiome following the protocol provided by the manufac-
turer of the Fast DNA SPIN Kit (Catalog No. 6560-220, USA). The concen-
tration and quality of the extracted DNA were determined using a
NanoDrop 2000 Spectrophotometer (Thermo Scientific, Germany).
The DNA from each sample was fragmented using an ultrasonic probe,
resulting in an average fragment length of 300-bp length. An adapter
was added to each of the DNA fragments by PCR for the construction
of the DNA libraries. The DNA libraries were submitted for a paired-
end shotgun sequencing using an [llumina HiSeq X TEN (San Diego,
CA, USA) platform. The raw metagenomic sequencing data were
quality-controlled using fastp (https://github.com/OpenGene/fastp).
Clean data were assembled into contigs using megahit (Li et al.,, 2015;
Yan et al.,, 2016). The contigs > 500 bp were used for gene prediction
with MetaGeneMark (Zhu et al., 2010). Cd-hit was used to remove the
redundancy of any predicted genes with 90% coverage and 90% similar-
ity (Li and Godzik, 2006). For quantification of the abundance of the
predicted genes, Bowtie 2 was used to blast the contigs of the predicted
genes against the raw metagenomic sequencing reads, and SAMtool
was used to convert SAM files into BAM files (Li et al., 2009;
Langmead and Salzberg, 2012). Subsequently, transcripts per million
reads (TPM) representing the gene abundances were calculated by
eXpress software (https://github.com/adarob/eXpress). To analyze
the bacterial functional potential and annotated genes, the se-
quences of the microbial genes were queried in KAAS (KEGG
Automatic Annotation Server) (https://www.genome.jp/tools/kaas/
) to obtain the KEGG orthology (KO) number (Moriya et al., 2007).
Differentially abundant genes in the rhizomicrobiomes of Asian
wild rice versus the rhizomicrobiomes of Asian cultivated rice acces-
sions were determined by using the TPM data [one-way ANOVA and
Student's t-tests (P < 0.01) in R v.3.3.1 (https://www.r-project.org/
)]. Then, KEGG pathway enrichment analysis was conducted to iden-
tify microbial genes more abundant in the rhizomicrobiomes of
African wild rice versus rhizomicrobiomes of African cultivated rice
accessions by the package GOstats in the package of Bioconductor
in R v.3.3.1. To analyze the microbial compositions in the rhizo-
spheres of wild and cultivated rice, the metagenomic data was
explored to annotate the taxonomies of the related archaea and bacteria

using Metaphlan2 software (https://bitbucket.org/biobakery/biobakery/
wiki/metaphlan2) (Truong et al., 2015).

2.3. Statistical analysis

Principal component analysis (PCA) based on the TPM data of the
genes or TPM data of methane metabolism-related genes was con-
ducted using the PCA function in the FactoMineR package in R v.3.3.1.
A bubble diagram was constructed from the enriched KEGG pathways
of microbial genes in the rhizospheres of wild versus the rhizospheres
of cultivated rice samples using the ggplot2 package in R v.3.3.1. One-
way ANOVA and Tukey's tests were used to determine the statistical sig-
nificance of differences (P < 0.05) between rhizomicrobiomes of African
wild rice and African cultivated rice, and between rhizomicrobiomes of
Asian wild rice and Asian cultivated rice accessions, in terms of the func-
tional KOs of the methane metabolism-related microbial genes. The cor-
relation between rhizosphere functional KOs were assessed by SparCC
analysis (SparCC's rho cut-off = 0.8, P < 0.01).

3. Results
3.1. Summary of the metagenomic data set

The metagenomic sequencing data representing the microbiota in
rhizosphere soil samples associated with wild and cultivated rice geno-
types were used to evaluate and compare the potential functional traits
and community structures of their rhizomicrobiomes. The raw sequenc-
ing data for the rhizosphere soil samples each contained reads between
40.7 and 153.0 million. Quality trimming of raw metagenomic data re-
sulted in clean data sets of 39.2-147.7 million raw reads per sample
(Table S1). De novo co-assembly generated high-quality scaffolds for
each sample after discarding scaffolds shorter than 500 bp and contam-
inant scaffolds (Table S1). The N50 value ranged from 583 to 690 bp of
the scaffolds (Table S1).

3.2. Functional profiles of the rhizomicrobiomes of different wild and related
cultivated rice accessions

PCA analysis of the microbial functional structure in the rhizo-
spheres of wild and cultivated rice varieties based on the KO assignment
was conducted (Fig. 1). A clear separation in the potential functional
profiles of the rhizomicrobiomes of wild and related cultivated rice sam-
ples was evident for both the African and Asian rice accessions. Notably,
the overall functional profiles of the rhizomicrobiomes of wild rice and
domesticated rice only explained 9.04% of the variation on PC1 (Fig. 1a).
Clustering of the KEGG functional profiles of the rhizomicrobiomes of
African rice species showed that African wild rice was well separated
from the African cultivated rice; and interestingly, the two African culti-
vated rice varieties were also clearly separated from each other
(Fig. 1b). On the other hand, based on the clustering data, the two
Asian wild rice species displayed a clear separation from each other


https://github.com/OpenGene/fastp
https://github.com/adarob/eXpress
https://www.genome.jp/tools/kaas/
https://www.r-project.org/
https://bitbucket.org/biobakery/biobakery/wiki/metaphlan2
https://bitbucket.org/biobakery/biobakery/wiki/metaphlan2

L. Tian, J. Chang, S. Shi et al.

(a)

200 -

Science of the Total Environment 803 (2022) 150131

As—W.GAs—W7
Aswg ©®
@

As-W9

_100- *
X
3 AfCE
-C6 A
: AFf-C9
T U
N Af-C10 Af-C8
(&)
o
0 - As-C9
s-C7 23-82 As-p(f1 ;é y As-W12 §.A5-W1 3
S- S-
As-C20 A ﬁf—W1 As-W11%5 As-W15
A, AFW2 Asw1e As-W14 P
s-C ARWA @ As-WA7 Afr!can wnld_ rice
AF\VS & A ?N20 A African cultivated rice
3A W1gA V;;g @ Asian wild rice
-100 - & = @ Asian cultivated rice
-100 0 100 200
PC1 (9.04%)
(b) (c)os-
AFW4 . As-W6
o1 aphtus A o g i
Ty Ao vz ERER T > AsW7 ASC18 ‘As C15
N ARW5 Af-C3 s As-Wo  As-W1 el AsCl4
S © (1. Asw3 Ca® - oh sASC20
2 0.0- 0.1 As-C16
o o As-W2 As-W5 C13
-— - As-W4 Ag S
&l 1 As-C1 ASKE @As-C2
0.0- AsC
O-0.1- O As-C4 5c Ed
AF-C10 As-W11 As-C7 AsCB
Af.C7 4§ AF-CE -0.1- As-W114 ~ As-W18
-0.2- Af-C8 = A Af-C9 As-W12 As-vAv1 Ww
As-W13 >
. -0.2- As-W15 As-W20

—0‘.3 —OI.2 —O.‘1 0‘.0 0‘.1 0.2
PC1 (27.81%)

-0.3

As-W19

-0.2 -01 0.0 0.1 0.2
PC1 (19.20%)

Fig. 1. Principal component (PC) analysis of samples based on the KEGG functional profiles of the different rhizomicrobiomes. (a) Functional profiles of the rhizomicrobiomes of all
samples. (b) Functional profiles of the rhizomicrobiomes of African wild and cultivated rice. (c) Functional profiles of the rhizomicrobiomes of Asian wild and cultivated rice. The four
groups were African wild rice Oryza barthii (Af_W1-5), African cultivated rice O. glaberrima (Af_C1-10), Asian wild rice (As_W1-9 and As_W11-20), and Asian cultivated rice varieties
(As_C1-20). Af_W1-5, African wild rice; Af_C1-5, African cultivated rice LM8; Af_C6-10, African cultivated rice WH20; As_W1-5, Asian common wild rice SW499; As_W6-9, Asian common
wild rice SW502; As_W11-15, nivara wild rice SW218; As_W16-20, nivara wild rice SW223; As_C1-5, 106 indica; As_C6-10, Meitezhen indica; As_C11-15, Jiangxi japonica; As_C16-20,
Daohuaxiang japonica. Each rice accession has 5 replicates, except the common wild rice accession SW502 that has 4 replicates (As_W6-9).

(Fig. 1c), and the four Asian cultivated rice varieties were closer to each
other than the two Asian wild rice species (Fig. 1c).

3.3. Comparative KEGG pathway enrichment analysis in the
rhizomicrobiomes of wild rice and cultivated rice accessions

The KEGG pathway enrichment analysis was then used to identify the
genes more abundant in the rhizomicrobiomes of wild rice vs. relative
cultivated rice accessions revealed that there were a wide variety of path-
ways that differed between African wild and related cultivated rice ac-
cessions, as well as between Asian wild and related cultivated rice
accessions (Fig. 2). Pathways associated with methane metabolism, ala-
nine, aspartate and glutamate metabolism, carbon fixation, lipopolysac-
charide biosynthesis, nitrogen metabolism, pyruvate metabolism, etc.
were more highly enriched in the rhizomicrobiome of African wild rice
(Af_W1-5) than those of African cultivated rice (Af_C1-10) (Fig. 2a).

Pathways associated with methane metabolism, pyruvate metabolism,
glycolysis/gluconeogenesis, pyrimidine metabolism, purine metabolism,
etc., were found to be more enriched in the rhizomicrobiomes of Asian
wild rice (As_W1-9 and As_W11-20) than those of Asian cultivated rice
varieties (As_C1-20) (Fig. 2b).

Among the differentially enriched pathways, alanine, aspartate and
glutamate metabolism, methane metabolism, carbon fixation, citrate
cycle (TCA cycle), pyruvate metabolism and lipopolysaccharide biosyn-
thesis were found to be enriched most consistently and pronounced in
the rhizomicrobiomes of wild rice species originated from both Africa
or Asia (Fig. 2). From the aspect of methane metabolism, 30 methane
metabolism-related genes were more abundant in the rhizomicrobiome
of African wild rice relative to those of African cultivated rice (Table S2),
while 181 methane metabolism-related genes were more abundant in
the rhizomicrobiomes of Asian wild rice compared with those of Asian
cultivated rice accessions (Table S3). In addition, we also carried out
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Fig. 2. KEGG pathway enrichment analysis of the rhizomicrobiomes of wild rice versus cultivated rice. (a) Comparison of the rhizomicrobiomes of African wild rice Oryza barthii (Af_W1-5)
and African cultivated rice O. glaberrima (Af_C1-10). (b) Comparison of the rhizomicrobiomes of Asian wild rice (As_W1-9 and As_W11-20) and Asian cultivated rice varieties (As_C1-20).
KEGG pathway enrichment with a P value < 0.01 was considered statistically significant. The count indicates the number of genes related to the KEGG pathway enrichment analysis. —logo
(P value) data are used to represent significantly enriched KEGG pathways, and color intensity indicates the significant levels as designated by the colored bar.

the KEGG analysis of the less abundant genes obtained from the com-
parison of the rhizomicrobiomes of wild rice vs. relative cultivated
rice accessions, and the result revealed that methane metabolism-
related less abundant genes were not present in such comparison
(Fig. S1).

3.4. Profiles of methane metabolism-related genes that are more enriched in
the rhizomicrobiomes of wild versus cultivated rice accessions

As illustrated in Fig. 3a, the profiles of genes involved in methane me-
tabolism and more enriched in the rhizospheres of wild and cultivated
rice accessions clearly clustered separately (PC1 23.16%). Notably, the
separation between wild and cultivated accessions was even more dis-
tinct, when genetically-related accessions (African wild vs. cultivated
rice and Asian wild vs. cultivated rice) were compared (Fig. 3b and c).
A total of 18 common genes involved in methane metabolism were
more significantly enriched in wild versus cultivated rice accessions
originating from both Africa and Asia (Table S4). Among these common
genes, 12 genes encoding K00402, K00400, K00200, K06914, K18933,
K00197, K00194, K00124, K00170, K00024, K00443 and K11781 are in-
volved in methane production, while 6 genes encoding K15633, KOO600
K13831 and K00058 are involved in methane utilization (Table S4).

3.5. The relative abundance of methanogenic archaea and methane
oxidation-related bacteria

Next, methane metabolism-related reads were annotated to taxo-
nomic status using Metaphlan2 software. The annotated taxa were
mainly affiliated with the Methylocystaceae (methane consumers) and
Methanomicrobia (methane producers). The relative abundance of
Methanomicrobia was significantly enriched in the rhizomicrobiomes
of both African and Asian wild rice relative to their related cultivated
rice accessions (Fig. S2). The relative abundance of Methanomicrobia
in the rhizosphere of African wild accession (46%) was remarkably
higher than that in the rhizosphere of related cultivated rice varieties

(21%) (Fig. S2a and b). The relative abundances of Methanomicrobia in
the rhizospheres of Asian rice accessions were 34% and 24% for wild
and cultivated accessions, respectively (Fig. S2c and d). On the other
hand, the relative abundances of Methylocystaceae in the rhizospheres
of all four groups were low, ranging between 1.03 and 2.08%. More spe-
cifically, the relative abundance of Methylocystaceae in the rhizospheres
of African cultivated rice (1.19%) was lower than in the rhizosphere of
African wild rice (1.93%), and the relative abundance of Methylocystaceae
in the rhizospheres of Asian cultivated rice (1.03%) was lower than in the
rhizospheres of Asian wild rice accessions (2.81%).

3.6. Co-occurrence of methane metabolism-related KOs and functional KOs
associated with other pathways in the rhizomicrobiomes of wild and
cultivated rice accessions

Functional interactions play an important role in pathway assembly
(Yan et al, 2016). Therefore, the interactions between methane
metabolism-related KOs and other pathway-related functional KOs
enriched in the rhizomicrobiomes in African wild rice, Asian wild rice,
African cultivated rice and Asian cultivated rice were illustrated in a net-
work analysis based on the obtained SparCC correlation coefficients
(Fig. 4). Visualization of the interactions between methane metabolism-
related KOs and functional KOs representing other pathways revealed
that the interaction network was the most complex in the rhizosphere
of African wild rice, which had the largest numbers of nodes and correla-
tions (Fig. 4a). The network in the rhizomicrobiomes of African cultivated
rice accessions was less complex, although a relatively large number of in-
teractions were still observed (Fig. 4b). The co-occurrence networks in
Asian rice accessions were rather simpler compared with those of the
African rice accessions (Fig. 4c-d). The complexity of the network param-
eters, including nodes, correlations, modularity and betweenness central-
ity distribution, followed (from greatest to lowest complexity) the order:
African wild rice (Af_W) > African cultivated rice (Af_C) > Asian wild rice
(As_W) > Asian cultivated rice (As_C) (Table S5). Furthermore, the num-
bers of negative correlations in African wild rice and Asian wild rice were
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ane metabolism-related KOs in the rhizomicrobiomes of Asian wild and cultivated rice samples. The four groups were African wild rice Oryza barthii (Af_W1-5), African cultivated rice
0. glaberrima (Af_C1-10), Asian wild rice (As_W1-9 and As_W11-20), and Asian cultivated rice varieties (As_C1-20). Af_W1-5, African wild rice; Af_C1-5, African cultivated rice LM8;
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mon wild rice accession SW502 that has 4 replicates (As_W6-9).

higher than in their related African cultivated rice and Asian cultivated
rice (Table S5).

3.7. Correlation analysis of methane metabolism-related genes with the
relative abundances of Methanomicrobia and Methylocystaceae

Results revealed significant correlations between the relative
abundance of methane-producing Methanomicrobia and the overrepre-
sentation of methyl-coenzyme M reductase gamma subunit (K00402),
5-amino-6-(D-ribitylamino) uracil L-tyrosine 4-hydroxyphenyl trans-
ferase (K11781) and formylmethanofuran dehydrogenase subunit A
(K00200) (Fig. 5). A significant linear relationship was also observed be-
tween the TPM of K00402, K11781 and K00200 and the relative abun-
dance of Methanomicrobia (Fig. 5a, b and c). Additionally, a significant
correlation was observed between the TPM of K13812, which encodes
the bifunctional enzyme Fae (formaldehyde lyase)/Hps (3-hexulose-6-
phosphate synthase) that functions in the assimilation of formaldehyde

in the ribulose monophosphate pathway (Grochowski et al., 2005), and
the relative abundance of methane-consuming Methylocystaceae
(Fig. 5d).

4. Discussion

Whether domestication of crops from wild ancestor accessions had a
specific impact on rhizosphere microbial communities is still a topic of
debate, and the information reported in different studies provides a var-
iable picture. Most studies have indicated that crop domestication re-
sulted in directed selection of the rhizosphere microbiome, but that
the characteristics of the selection will vary depending on the environ-
ment in which the selection has occurred (Nallanchakravarthula et al.,
2014; Bulgarelli et al., 2015; Schlemper et al., 2017a). Notably, observa-
tions indicate that crop domestication has had a lesser selective effect
on bacteria than on fungi (Leff et al., 2016; Carvalhais et al., 2019).
This premise is consistent with results reported in our previous study
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comparing the structures of the rhizomicrobiomes of wild and culti-
vated rice in natural environments (Xu et al., 2019).

Studies addressing the question of the impact of domestication on rhi-
zosphere microbial selection have utilized next generation sequencing of
amplicons generated by the PCR-amplification of extracted DNA with uni-
versal primer sets to assess microbial diversity (Pérez-Jaramillo et al.,
2016; Tian et al., 2018a; Brisson et al., 2019; Tian et al., 2020a). It would
be highly relevant for future crop development, however, to increase
our knowledge on the intrinsic traits of wild relatives and better under-
stand how domestication has impacted the functioning of the
rhizomicrobiome. Therefore, DNA shotgun metagenomic sequencing
was used in the current study to identify the major functions potentially
carried out in the rhizomicrobiomes of wild and domesticated accessions
of rice at their flowering stage, which is sensitive to available nutrients, as-
sociated rhizomicrobiome and surrounding environment (Edwards et al.,
2018; Yang et al., 2019), to better understand how their functional poten-
tial has been impacted by crop domestication. Results from our study, in
which all rice varieties were treated in identical experimental conditions,
clearly demonstrated that the domestication of rice originating from Asia
and Africa impacted the functional potential of the rhizomicrobiomes
(Fig. 1). Although the evolution of rice accessions in different geographical
locations (Asia and Africa) led to the development of different rice acces-
sions, a number of specific changes were observed in the functional po-
tential of rhizosphere microbiota independently of the origin and type

of rice accessions. Specific genes, such as those related to carbon metabo-
lism and amino acid metabolism, were primarily enriched in wild rice,
while others, such as those related to nitrogen metabolism, amino acid
metabolism, lipid metabolism, metabolism of cofactors and vitamins, bio-
degradation of xenobiotics, and metabolism and biosynthesis of second-
ary metabolites, were enriched in cultivated rice, relative to wild rice
(Fig. 2).

Notably, the methane metabolism pathway was significantly and con-
sistently enriched in the rhizomicrobiomes of all wild accessions relative
to the accessions and varieties of cultivated rice (Fig. 2). This was true
for genes involved in methane production and those related to methane
oxidation (Tables S2 and S3). Microbial methanogenesis accounts for ap-
proximately 74% of natural methane emission (Liu and Whitman, 2008), a
process that plays a major role in global warming (Jiang et al., 2019). In
fact, rice paddies have been shown to constitute a major source of anthro-
pogenic methane emission (Cui et al., 2015; Chen et al.,, 2019). Methane
that is primarily produced by rhizosphere methanogenic archaea and re-
leased during rice growth accounts for approximately 20% of global meth-
ane emission (Xiubin et al., 2014; Joseph et al., 2015).

Three types of methanogenic pathways have been identified,
namely methanol to methane, CO, to methane, and acetate to
methane (Evans et al., 2019). 18 common genes, which were more
abundant in rhizomicrobiomes of wild rice versus those of cultivated
rice, encode 16 KOs (Table S4), including 12 KOs that represent the
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three types of methanogenic pathways. More specifically, K00200,
K00124, K00443, K06914, K18933 and K11781 of the CO,-to-methane
pathway were more enriched in the rhizomicrobiomes of wild rice
than in those of cultivated rice (Fig. 6). This result suggests that the
rhizomicrobiomes of wild rice has a greater potential to transform CO,
into methane than those of cultivated rice. Similarly, K00197, K00194,
K00170 and K00024 belonging to the acetate-to-methane pathway,
while K00402 and K00400 participating in the methanol to methane
pathway, were also more highly enriched in the rhizomicrobiomes of
wild rice than in those of cultivated rice (Fig. 6).

Three types of methanotrophic pathways are recognized: the serine
pathway, the ribulose phosphate pathway and the xylulose phosphate
pathway (Kalyuzhnaya et al.,, 2015). Results of this study indicated that
the serine pathway with associated genes K15633, K00058 and K00600,
and the ribulose phosphate pathway with associated genes K13812
were enriched in the rhizomicrobiomes of wild rice than those of culti-
vated rice (P < 0.05) (Fig. 7, Table S4), which is consistent with the finding
that methane oxidation is also more active in the rhizomicrobiomes of
wild rice than those of cultivated rice accessions. Interactive networks
showed that methane production-related KOs in the rhizomicrobiomes
of wild rice were mainly associated with the carbon fixation pathway,
pyruvate metabolism, glycolysis/gluconeogenesis and pyrimidine

metabolism (Fig. 4), which can provide energy resources and intermedi-
ate molecules required for methane production (Lu et al., 2017; Staley
et al., 2017; Miret-Casals et al., 2018). However, methane oxidation-
related KOs in the rhizomicrobiomes of cultivated rice were mainly asso-
ciated with phenylalanine, tyrosine and tryptophan biosyntheses, as well
as retinol metabolism (Fig. 4). The aromatic amino acid phenylalanine, in
addition to tyrosine and tryptophan, all are vital constituents of proteins
and serve as precursors for thousands of indispensable metabolites
(Maeda and Dudareva, 2012). Retinoids play an important role in regulat-
ing important biological processes, including morphogenesis, develop-
ment, reproduction and apoptosis (Novak et al., 2008). Thus, their
interaction with methane oxidation pathways may be indirect.

The greater abundance of genes involved in methane metabolism in
the rhizomicrobiomes of wild rice accessions, relative to their
abundance in the rhizomicrobiomes of cultivated relatives, suggests that
both methane synthesis and oxidation are more pronounced in the
rhizomicrobiomes of wild rice than cultivated rice (Figs. 6 and 7). In
wild rice, the archaea present in the rhizomicrobiomes of wild rice can
utilize CO,, acetate and formate for methane synthesis more effectively
than cultivated rice (Fig. 6) (Conrad et al., 2009; Maurer et al., 2018;
Bhattacharyya et al., 2019). Such higher efficiency may allow wild rice
accessions to reduce the level of acidification caused by anaerobic
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conditions in rhizosphere (Ma et al., 2020). The produced methane can
then be utilized by bacteria capable of methane oxidation, helping
reduce the level of methane emission released to the atmosphere
(Fig. 7) (Bhattacharyya et al., 2019). Thus, the more prominent ability to
produce and oxidize methane in the rhizomicrobiomes of wild rice can
not only help plant growth, but also promote the growth of methane-

oxidizing bacteria. It was also reported that the wild rice exuded more
sugars, organic acids and amino acids than cultivated rice, and the root ex-
udation is essential for methane production (Waschutza et al., 1992;
Maurer et al., 2018). Additionally, the results of this study indicated that
the rhizomicrobiomes of wild rice maintained a better ecological balance
for methane production and utilization than those of their cultivated
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relatives (Figs. 6 and 7). It may be therefore helpful to pay attention on ex-
ploring the genetic potential of wild rice, especially Asian wild rice, in
breeding research to activate methane metabolism in rhizomicrobiomes
of new varieties, thereby increasing their adaptability to soil and
environmental conditions. Differences in the relative abundances of
methanobacteria and methane-consuming methanotrophs between
wild and cultivated rice accessions were not unambiguous (Fig. S2).
The analysis of the archaeal and bacterial community composition in
the rhizosphere of rice indicated that the relative abundance of
Methanomicrobia was significantly higher in rhizomicrobial communities
of both African and Asian wild rice accessions than in that of their related
accessions of cultivated rice. The relative abundance of Methylocystaceae,
which is the major family of methanotrophic bacteria, was significantly
higher in the rhizomicrobiomes of both African and Asian wild rice than
it was in related accessions of African and Asian cultivated rice (Fig. S2).
Notably, differences in the abundances of KOs in the rhizomicrobiomes
of wild versus cultivated rice were generally more pronounced in the
African accessions than in the Asian accessions (Figs. 6 and 7). This may
be due the larger sample representation of Asian rice accessions and the
associated larger variability that was observed in the abundance data, al-
though that was not entirely consistent as seen in Figs. 6 and 7. It is more
likely, however, that the obtained data reflect the impact of differences in
the genetic make-up of the examined rice accessions and the genetic dif-
ferences on the structures of the rhizomicrobiomes. Our previous study
showed that cultivated rice microbiome is more susceptible to shifts rela-
tive to wild rice microbiome, which may indicate that wild rice accessions
maintain a more stable functional rhizomicrobiomes, especially in meth-
ane metabolism (Xu et al,, 2019). The mechanisms associated with wild
rice in regulating methane metabolism also include root oxidase activities,
root exudates, aerenchyma gas spaces, plant growth parameters, biomass
and grain yield and soil pH (Bhattacharyya et al., 2019), and the traits of
few unproductive tillers, high root oxidative activity, small root system,
and high harvest index in rice accessions are ideal for mitigating methane
emission in rice fields (Wang and Adachi, 2000). Therefore, future studies
on this topic should take these issues into account in the experimental de-
sign. In general, the findings of the present study indicate that the func-
tional relationships between plants and their rhizomicrobiome may
play an important role in co-selection (Mendes et al., 2014; Mendes and
Raaijmakers, 2015). However, the limitation of the study based on the
metagenomic data can only reflect the functional potential of the microbi-
ota in the wild and cultivated rice at their flowering stage. Thus, further
studies at different growth stages shall be considered in future.

5. Conclusions

This study, which investigated wild and cultivated rice under identical
experimental conditions, demonstrated that the methane metabolism of
the rhizomicrobiomes clearly differed between wild and cultivated rice.
By comparing the African and Asian wild rice with their related cultivated
species, the key enzymes for methane production and utilization were
overrepresented in wild rice species, which indicated that the
rhizomicrobiomes of wild rice maintained a better ecological balance for
methane production and utilization than their related cultivated rice spe-
cies. The results provide an important guideline for future breeding and
cultivation of rice in the framework of more sustainable rice production.
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